NON-HOMOGENEOUS TERNARY QUADRATIC FORMS.

By
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1. This work has arisen from the consideration of possible extensions of
Minkowski's theorem on the product of two non-homogeneous linear forms. If

Li=ax + By, Ly=yx + dy

are two linear forms with real coefficients, and ¢;, ¢, are any two real numbers,
Minkowski's theorem asserts that there exist integers x,y such that

(1) Ly + ) (Ly+ )| < % 4,

where 4 =|ed —8y|, and we suppose o == 0. It is conjectured that a similar .
result holds for the product of #» non-homogeneous linear forms in » variables,
with 2=" in place of }. So far this conjecture has been proved only for n =3,
by Remak, and for » = 4, by Dyson.

Minkowski's theorem can be stated in another form, which suggests other
possible extensions. Write

LiLy=ax®+ bxy + ey’ = Qx,y);
then @(x,y) is an indefinite binary quadratic form with discriminant
VP—qac= A
Determine real numbers xg, ¥, so that
ey = axy + 3Yo, ca=17yZo+ 0o

Then Minkowski's theorem asserts that for any indefinite binary quadratic form

Q(z,y), and any real xy,y,, there exist integers x,y such that

(2) | Q@ + 2o, y + )| = 1 .

3
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The extension which now suggests itself is one to indefinite quadratic forms in
more than two variables.

In particular, let @(x,y,2) be an indefinite ternary quadratic form with real
coefficients, of determinant D == 0. The problem is whether there exist constants

k£ such that, for any real xy, ¥y, 2o, there are integers x, y, £ satisfying

| Qe + 20, ¥ + yo, 2+ 20)| = k| D|;

and if so, what is the least £ for which this is true? The exponent } is dictated
by considerations of homogeneity.

The existence of some such k, though not immediately obvious, is fairly easy
to prove. I have succeeded in determining the best possible value of &, but the
result has not the same simple and natural appearance as Minkowski's original

theorem. I prove:

Theorem 1. Let Q (x. y, 2) be an indefinite ternary quadratic form, with real
coefficients, of determinant D = o. Then, for any real xq, Yy, 2o, there exist integers

x, 9, £ such that

(3) | Q@ + 2o, y + 9o, 2+ 20)| = (& | D).

o

This is true with strict inequality unless @ is equivalent' to a multiple of
(4) '+ syt — 2+ sye + oz,

in which case it is not.

One of the lemmas (Lemma 3) which I use in the proof of Theorem 1 hasa
certain intrinsic interest, since it forms a simple generalization of Minkowski's
theorem which seems to have escaped notice. It asserts that we can satisfy,
instead of (1), the inequality
() —vd S Ly + )Ly + ) Sud,
provided u,» are positive numbers satisfying

By = .
Minkowski’s theorem is the particular case u=7»=1. An interesting feature of

the result is that there are other valnes of u,» with uv =, for which (5) is

the best possible inequality of its kind.

! Equivalence refers here to linear substitutions with integral coefficients and determinant =+ I.
An assertion such as the preceding one is unaffected by such a substitution, since variables of the
form &+ .y, Yy+yo, 2+ 29 are transformed into variables of a similar kind.
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If Q is a null form, <. e. if Q(x, y, z2) = o for some set of integers x, ¥, z not
all zero, the problem can be treated by a rather simpler method, and a more
precise inequality can be proved. This takes the form:

Theorem 2. If @ is a null form, then for any real x,, ¥, 2, there exist integers
z, Y, 2 such that

1
(6) |Q(~’C+3”0ay‘*‘yo,z“‘?o)lé(ﬂDl)g-
There exist null forms for which this is not true with strict inequality.
Finally, I prove that the minimum established in Theorem 1 is ‘isolated’.

The precise meaning of this term will be clear from the following enunciation:

Theorem 3. There exists a positive absolute constant 8 such that, if @ (x,y,2)
is not equivalent to a multiple of the special form (4), then for any real x4, 1o, £q
there exist integers x, y, z satisfying

. 1
(7) | @z + xo, ¥ + 00, 2+ 20)| = (1 — ) (&, | D).
This is a remarkable result in that it has no analogue for Minkowski's

original theorem.! The proof is naturally-rather difficult.

2. Lemma 1. Let Q(x,y,2) be an indefinite ternary quadratic form of deter-
minant D < o. Then there exist integers xy, y,, 2, such that

(8) 0 < Qlry 2 < (4| DI,

Proof. This is Theorem 2 of my paper ‘On indefinite ternary quadratic forms"”,
Proc. London Math. Soc. (in course of publication).

Lemma 2. Let Q(x,y,2) be an indefinite ternary quadratic form of determinant
D <o, and let a be any positive value of Q arising from integral values of x, ¥,z
whose highest common factor is 1. Then Q s equivalent to a multiple of

(9) @+ hy + g2 + ¢ (v, 2),
where ¢ (y,2) is an indefinite binary quadratic form, whose discriminant 4° satisfies

41D]
3

a

(10) A% =

! For a proof that there is no such analogous theorem, see Theorem 2 of my paper “Non-
homogeneous binary quadratic forms”, Proc. K. Akad. Wet. Amsterdam, 49 (1946}, 815—821.
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Progf. After applying a suitable linear substitution with integral coefficients
and determinant +1 to the variables, we can suppose that @ (1,0,0)= a. Then,
if h, g are suitably chosen,

Qlr,y,2)=allz+hy + g2’ + ¢(y, 2!,
where ¢(y,2) is a binary quadratic form. By comparison of determinants,
D = a3 (- i’ 41);

where 4, is the discriminant of ¢(y,2). Thus 4, > o, which implies that ¢ is
indefinite, and on writing «#, = 4% we have (10). This proves the lemma.

Lemma 3. Let
Ly =oapz + apy, L, = anx + asy
be linear forms with real coefficients, and let 4 =|ay ay—ayza|+0. Let u,v be
positive numbers satisfying

1
I

v
-

(r1) uv
Then, for any real cy,cy there exist integers x,y such that
(12) _'Vdé(Ll + C])(Lg‘f‘(’g)é,ud.

If v=2u, this is true with strict inequality in both parts of (12) unless the quadratic
Jorm Ly Ly, s equivalent to a positive multiple of

(13) @+ xy—tyt

Proof. We can suppose without loss of generality that #=1. We can also
suppose that » = u, and since the result reduces to Minkowski's theorem when
¥ =4 We can suppose ¥ > u, whence v > }.

Let M denote the lower bound of

,(Ll + ep) (Ly + C’z)l

for all integral z,y. By Minkowski's theorem, M = } <». If M is attained, or
approached, by negalive values of (L, + ¢;)(Ly + ¢,), then (12) is satisfied with
strict inequality in both parts, and there is nothing to prove. Hence we can
suppose that

(14) Mz p,
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and that, for an arbitrarily small positive number ¢, there exist integers z*, y*
for which

(13) | (L + e (L3 + ) = 2

»  where o0=¢<e

We suppose that (12) has no solution with strict inequality in both parts.
Write

L, — I3 .

Yt T Lite,

X =

then X, Y are linear forms in the integral variables x —«*, y — y*. The deter-
minant of these forms has absolute value

(16) I—e,

by (15). Since
(Ly + e1) (Ly + o)

X+ )Y+ D)= T Tt o)

the hypothesis that (12) has no solution, together with (15), tells that

— &)

[ —
8 v &)

=

=

X+ (Y + 1);’1(,

A

for all integral values of the variables. The definition of M tells us that
(X+1)(Y+1)|=1—¢
for all integral values of the variables. Writing

_v(1—¢)

A L.
we can say that
(18) (X+1)(Y+1)=z1—¢ or =—K?

for all integral values of the variables.

The points (X, Y) which correspond to integral values of the variables form
a lattice, whose determinant is given by (16), and every point of which satisfies
(18). We proceed to prove that there is no lattice point, except the origin, in
the rectangle

(19) IX+Y|<z2{t+Vi—e}, | X —Y|<2K.
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It will suffice (by reflection in the origin) to consider points satisfying X+ Y <o,
and therefore satisfying

(20) —2Vi—e<X+Y+2=2.
Since
4 X+ )Y+ 1)=(X+Y+2—(X—YP=—(X—-Y)2>—4K*®
by (19), the condition (18) implies
(21) (X+Y +2—(X—Y)E=4(1—¢).

This implies | X + Y + 2| =2V 1—¢, and so, by (20),

oz X+ Yz=—2{1—Vi—¢.
Also, by (20) and (21), (X —Y)?< 4¢. Hence we must have
(22) | X| = e, | Y] = e,

where &, depends only on ¢ and tends to zero with &, But if X, Y are not
both zero, we can find an integer m such that the point (m X, mY) lies in the
rectangle (19) but does not satisfy (22). This gives a contradiction, and therefore
there is no lattice point except the origin in the rectangle (19).

The area of the rectangle is

8K{1+Vi—e¢l,

hence, by Minkowski's theorem, since the determinant of the lattice is given by
(16), we have

(23) ’;jgzK{I + Vi—el.
By (17), this is
11}6 Zgvit+ Vi—e2
Using (14), we obtain
1—¢
vs—1 % .
# 4{1+ Vi—e)?

1f ¢>o, this contradicts (11), and so in this case, (12) must have a solution with
strict inequality in both parts. If ¢=o0, we still have a contradiction unless
equality occurs in the last step of the argument, i. e. unless M = pu. In this
case we still have a solution of (12), by (15), though not with strict inequality.
This proves the main assertion of the Lemma.
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We have now to investigate the case when » =2y, and (12) has no solution
with strict inequality. As we have just seen, this requires that

=0, uy =, M= pu.

There must also be no lattice point, other than the origin, in the rectangle (19),
which is now B

X +Y|<4, | X—Y|<2V2.
Since equality occurs in (23), the lattice must be a critical lattice for the rect-
angle, and so must have two generating lattice points on its boundary. By (18),
every lattice point satisfies

(X+1)(Y+1)=z1  or

IA

— 2.

By the same argument as before, we find that the only points on the boundary of
the rectangle which satisfy this condition and the same condition for — X, —1 are

t(22), £tz 1=V2), £(1=172 1+V2)

The lattice generated by any two of these (not images of one another in the
origin) is the lattice given by

X=z2u+(1+V2)y, Y=z2u+ (1 — V2

Here u, v take all integral values, and so are related to the variables z—z*, y—y*
by an integral unimodular substitution. Since (L; + ¢;){Ly + ¢3) is a positive
multiple of (X + 1) (Y + 1), it follows that L, L, is a positive multiple of XY,
and so is equivalent to a positive multiple of

e+ (1+V2)y)lza+ (1 —=V2)y) =42 + 420y —¢°.
This completes the proof of Lemma 3.
Lemma 4. Let ¢ (y, £) be an indefinite binary quadratic form with real coef-

ficients, of discriminant 4° (where A4 > o). Let u, v be positive numbers satisfying
uv = {s. Then for any real yy, 2y there exist real y, 2z satisfying

(24) y =y, (mod 1), 2=z (mod 1),
(23) —vd < ¢y, 2) < ud.

If v=2yu this is lrue with strict inequality in both parts of (25), unless ¢ (y,2) is
equivalent to a positive multiple of

(26) y:+yz—1312t

Proof. This is merely a restatement of Lemma 3 in other terms.
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_Lemma 5. Let 3, B be real numbers with B > L, and suppose that
(27) 8= B + }[2 B,

where [2 B] denotes the largest integer which does not exceed 2 B. Then for any
real xq there exists an x with x = x, (mod 1) such that

(28) |22 — 62| = B.

Provided that 2 B is not an integer, strict inequalily in (27) smplies strict inequalily
in (28). If 2B is an integer, a sufficient condition for the validily of (28) with
strict inequality s that

(29) g2<B+1(2B—1)

Proof.! Suppose first that 82<}. There exists an x with =z, (mod 1) such
that |z| =1 We have

|#®— g% < max (} — 8°,8°)= 1 < B.
Suppose next that g > 1. Write m = [2 B], so that
(30) Im=B<}(m+ 1), B2=B + im
Determine an integer ! = o sach that
(31) P<yp—1<(l+1)s
By (30) and (31),

PS4 —1=s4B+mP—1<2(m+1)+m*—1=(m+ 1)}
whence

(32) [ =m.
There exists an x such that z = x, (mod 1) and
H=s|x|=30+ 1),

for the intervals from 4/ to 3(/ + 1) and from — 1(/ + 1) to — 37 include all
values of 2 (mod 1). We have

1f—g s — =10+ 1) -3
Now, by (30), (31), (32),

i+ 1) ==l + 12— +1)=3%l=1im

IA

B.

! An imperfect form of this lemma occurred as Lemma I in my paper ‘‘Non-homogeneous
binary quadratic forms”, Proc. K. Akad. Wet. Amsterdam, 49 (1946}, 815—8z21.
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Also, if I =m,

b
1

P=g—1m*<B,

ﬂ_

[

and if [ < m,
B—1lr<il+1)+1—-3=3(+1)=im=B8HB

Hence this value of x satisfies (28).
The final clauses of the Lemma follow at once from the main part, on
replacing B by B’, where B’ is slightly less than B.

Lemma 6. If d>1%, then
(33) : (2d—1)(2d + [dP’) > 34 &’
Also, if d s a positive integer other than 3,
(34) (2d—1){2d +d— 1)?) > 3¢ d%
Proof. Suppose first that  <d < 1. The inequality (33) is then

(2d —1)2d > 3 &,

4

or
25d*—s54d + 27 <o,

(5d—%F)P < i
This is satisfied, since
—i<sd—%<—%

Lild

Suppose next that d=1. We note that (33) follows from (34), since [d] >d —1,
and (34) would be valid with equality in place of inequality when d = 3. Now
(34) can be written :
27(2d®* — d® + 2d — 1) > 50d8,
which is the same as

d—3)*(4d—3)>o0,

and so is valid for d = 1, d = 3.

3. Proof of Theorem 1. Let Q(x,y,2) be an indefinite ternary quadratic form
of determinant D 0. We have to prove that for any real xy, vy, £y there exist
real x, v, z satisfying

(35) x=uxy (mod 1), y= yy (mod 1), 2=z (mod 1),
(36) l Q(iL‘, Y, g)‘ < (,‘.’67U l D |)§ )

By considering the form — @ instead of @, we can suppose without loss of
generality that D < o.
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By Lemma 2, Q(w,y,2) is equivalent to a multiple of

(37) @y, 2)=(x+hy+gef+¢ye,

where ¢ (y,2) is an indefinite binary form of discriminant #°, and .#* satisfies (10).
By Lemma 1 we can suppose that « satisfies o<a =< (4|D|)%, whence

(38) 4= 1.

It will suffice to prove the result for the form (37).
Let d be defined by

- 9 11
(39) d =35 273,
then
(40) d= () > 1.

Define p, v by

(41) pnd=43%d—1}%, vd=4%d+ }[d]

Then u,» are positive, and

(42) wy=1547302d—1)(2d + [d]}) > %

by Lemma 6 and (40) and (39). Hence, by Lemma 4, there exist y,z satisfying

¥y =1y, (mod 1) and 2=z, (mod 1) such that

(43) —(Gd+ 1) <¢ly o) <id—1

If ¢(y,2) = o, we choose x so that =1, (mod 1) and |z + hy + gz| = }. Then
o=(z+hy+ge)+olye)<i+3d—}=(3 42);,

by (39). Since the determinant of the ternary form (37) is — } 2, this proves
that, in the present case, (36) is valid for the form (37), with strict inequality.
If ¢(y,2) <o, we apply Lemma 5, with

8 =—9ly,e2), B=}d>}

The condition (27) is satisfied, by (43). Hence there exists z with x=ux, (mod 1)
such that

7

1
l@+hy + g2 —(—¢w,2)| = B=}d= (& 273,

and the conclusion follows as before, but not necessarily with strict inequality
in (36).
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We have now to investigate the case in which (36) is not valid with strict
inequality. As we have seen in the preceding proof, this possibility can only arise
when ¢(y,2) < o. Since (43) has strict inequality, it follows from Lemma 5 that
2 B=d must be an integer. It follows further from Lemma 5 that the inequality

0<—¢(y2) <td+i{d—1)
cannot be satisfied. Thus, if we define »" by
VAa=3%d+ }{d—1)?

it is impossible that pv'>{,. This, however, is the same as the inequality (34)
of Lemma 6, and is satisfied unless d = 3. Hence we must have d = 3, whence
=350 by (39).
With d =3, we have ud/=34d—1=3% and v 4=}d+ }(d—1)?=4%, and
the preceding argument has shown us that it is impossible that

for y =y, (mod 1), 2= 2, (mod 1). It follows from the last clause of Lemma 4
that ¢(y,2) is equivalent to a positive multiple of the form (26). Since the
discriminant of ¢(y,2) is 50, and of the form (26) is 2, the multiple must be ;.

Hence, after an integral unimodular substitution on ¥, 2z, we can write
(44) Ql(x,?/,z)=(x+hy+gz)2+5_1/2+5yz_3_22'

The argument of this paragraph has been based on any representation of a
multiple of the original form as (37), derived from any positive value a of the
form satisfying a = (4 |D|):‘ It has been proved that if (36) is not valid with
strict inequality, the positive value a must be such that #°= 4]|D|/a® has the
value 50. Applying the same argument to the form (44), whose determinant is
— 3(25), it follows that any positive value @ of the form (44), satisfying

must be such that

s L

Hence the only positive value a of the form (44), with integers z,y,z whose

8 ——
highest common factor is 1, which satisfies a < V50 is a=1.
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By applying a substitution x =+ 2’ + my + nz, where m,n are integers, we
can suppose that in {44) we have
0s59=14, =S
Now
01(21 o, — I) =(2—g)2__%!

which is positive and does not exceed *. Hence it is 1, and consequently g = }.
Also

Ql(xv I, _I)—_—(x_% + h)?__;1)7

and on choosing z=2 if h=o0 and x=—1 if h <o we obtain h=0 by a
similar argument. Hence, if we cannot satisfy (36) with strict inequality subject
to (35), then Q(x,y,2) is equivalent to a multiple of the form (4).

Finally, we have to prove that for the form (4) there exist xy. #,, 2o such
that (36) has no solution with strict inequality. We take

xO:'%v y0=%1 ZO=01
and write the form as

Hlzz+ 2P+ 5(2y + 2)* —102°}.

We have to show that this has absolute value at least § when z, y, z satisfy (35).
This is the same as saying that

[X*+5Y2—10Z2% =6

when X, Y, Z are integers with X —Z and Y —Z both odd. If Z is odd, this
follows from the two congruences

X2+ 3Y*—10Z*=2 (mod 4)
=oor +1 (mod 5).

If Z is even, the same congruences are still valid, with the same conclusion.
This completes the proof of Theorem 1.

4. Lemma 7. If Q(x,y,2) is a null form, then either (i) for any real xq, Yo, 2o
there are real x,y,z satisfying x =z, (mod 1), y =y, (mod 1), 2= 2, (mod 1) which
make Q(x,y,2) arbitrarily small, or (ii) Q(x,¥, 2) is equivalent to a multiple of

(45) (w + hy)*—Ayle + 1y) (2 > o),

Jor certain values of I, 2, L
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Proof. Since @ represents zero for integral values of x, ¥,z not all zero, we
can suppose without loss of generality that ¢(o,0,1)=0. Then we can write

Q=ax®+ 2hay + by*+ 22(fy + ga).

Suppose first that f/g is irrational. By a well known theorem on Diophantine
approximation we can find, for any &> o0, x and y to satisfy x = x, (mod 1),
¥ =1y, (mod 1), and
o< |gx + fyl<e.

For this is equivalent to satisfying

o<|gu+fr+k|<e
in integers u,v. Having chosen z and y, @ is of the form

4 + Be,

where 0 < |B| < 2¢, and we can find 2=z, (mod 1) such that

|4+ Bz|=§|B|<e.
Thus in this case the assertion (i) is true.

Now suppose that f/g is rational. After multiplying @ by a suitable factor,
we can suppose that f and ¢ are relatively prime integers. There exist integers
f1, 91 such that fg, —fig=1. The integral unimodular substitution

d=gqx+hfiy, v=gx+fy. =c¢
transforms ¢ into
ayx’®+ 2’y byt 22y,
Here a; & o, since we suppose that the determinant D of the form is not zero.
On completing the square, we obtain a multiple of a form of the type (43).

The condition A > 0 can be satisfied by changing y into — y if necessary; that
A = o follows from the hypothesis that D =+ o.

Lemma 8. Let Q be the form (45). Suppose there exists y with y =y, (mod 1)
such that

(46) o<|yP = (24"

Then there exist x,y, z such that

(47) x=1xy (mod 1), y=y, (mod 1), 2=z, (mod 1)
and

(48) | Q(x, 1,2 = (| DI}
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Progf. Choosing y as in the enunciation, @ has the form
A— Bz,
where 0 < | B|<1(2 A)_%‘. For any x we can choose z with 2 = z; (mod 1) such that
|4— Bzl <3| B] = (29 = (¢ D],
Lemma 9. Let ¢ be the form (45), and suppose A = 4. Then, for any xy. ¥, 2o

there exist x, vy, z to satisfy (47) and (48).

Proof. Suppose first that o <A< }. Then (24)* = 1, and it is plain that there
exists y =y, (mod 1) to satisfy (46). Thus the result follows from Lemma 8.

Suppose next that ¥ <1=<4. Then (24)' =4, and there exists y with
y =y, (mod 1) such that |y[*<(24)". If y = o, the result follows again from
Lemma 8. If y =0 we have

Q(x,0,2) = 2
Choosing z to satisfy |z| =<1}, we have
o 1 1
@z, 0,2)| =} < (62 =D

Lemma 10. For any real xy there exists x = x, (mod 1) such that

I 3 ifgf=4

\vp—rit gz

Proof. By Lemma g, it suffices to verify that (27) is satisfied with B=}

or B—Vﬁ 1, as the case may be. The former is immediate, and the latter
follows from the fact that the stronger inequality

(49) |z~ 3| =

B=<B+3i(zB—1)
is satisfied (with equality) when B =V g*—1

Lemma 11. Let Q be the form (45), and suppose that i > 4. Then for any
To, Yo, 2o there exist x, y, z to satisfy (47) and (48).

Progf. We choose y =y, (mod 1) to satisfy |y]| =<}, and then choose z=z,

(mod 1) to satisfy
osz+ly<i if y=o,

ozz+ly>—1 if y<o.
Writing

(50) Lyle +ly) =3,
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we have
(s1) o=g<ilyl
By Lemma 10, if 8*<}, we can choose x =, (mod 1) so that

1=l + b =g = 3 <1< (3] = DI

Again, if 3* >}, we can still choose z to satisfy the final inequality, provided

) 12\
"’/ 52_—% é( ) .
Hence we may suppose that

(52) | g#>1+ (f6);

We now make a different choice of 2, keeping the same y. We put

Z=z—1 or z+1 according as y=o0 or y<o.
Then
— Ayl +lyy=1ly|—p'=o0

by (50) and (51). We have
Qlr,y,e)=(x + hy)— Ay +1ly)=(x + hy* + 1|y| — 8"

Choosing z = x, (mod 1) so that |x + hy| = %, we obtain

. ) , . A2
jel=t+2ll—g =i+ —g<ii(g)"

wity

by (52). Writing 4 == 44% we have

‘ ) 22\3
@l =2p’ —p'=2"—(u— )P =u’= (7{6) -

Again (48) is satisfied, and the proof of Lemma 11 is complete.

o. Proof of Theorem 2. The main assertion of Theorem 2 follows from
Lemmas 7, 9 and 11. That the constant 1 is the best possible follows from the
example

Qlry,e) =40 +y"— 2% xo=yo=s5=14
This is plainly a null form, and since D) =—4, it suffices to prove that | Q|=1

for r=y=2¢z=1 (mod 1). This is the same as saying that
|4 X2+ Y*—Z% =4

if X, Y, Z are odd integers. Since Y*— Z*=0 (mod 8), and 4 X* = 4 (mnod 8),
the result is immediate.
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6. We now prepare for the proof of Theorem 3. The vital weapon is
Lemma 14, an extension of Lemma 3, which asserts that the result of that
Lemma can be substantially improved when : is approximately 2, provided that
L, L, is not equivalent to a positive multiple of the speciﬁl form (13). This is
a remarkable result, for, as we have already observed', such a situation does not
arise in the case of Minkowski's original theorem, where » = pu. As might be
expected, the arguments which lead to the proof of L.emma 14, though elementary,
are of a delicate nature.

Lemma 12. Suppose that R, S are real numbers satisfying
(53) 5 <R <6, 1<S<e2
Let a, 8 be real numbers, satisfying
(54) |e| < 107, | 2] < 107"

Suppose that neither of the inequalities

(55) 10° < e B*"— 3 R" <1,
(56) 10 < — R+ B8RS <1
is satisfied by any positive integer n. Then

(57) «=g=o.

Progf. The result is immediate if §=o0. For suppose a¢>o0. Since e R*<1,
there exists a positive integer » such that

e R <1 £ e R?PMH2
Then «R*" = R*> 10° and (55) is satisfied, contrary to hypothesis. Similarly

if @ <o, we get a contradiction on using (50).
We may therefore suppose that g+ 0. In fact, we may suppose that
(58) g>o.
For if we replace o, 3, S by ¢, 8, §’, defined by
g I

) ;S-':: .
S S

a=—a, 3=

the hypotheses are unaltered, except for a slight change in the second half of (54).

In fact, this is never used in anything approaching its full strength.

! Sce footnote on p. 67.
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Our first step is to deduce from (58) that ¢ >o0. Suppose that e =0. Then

(__ Ol) R2n+2 + 5Rn+1 S
(_a) 1{‘_’11 + 51{115’

R <R3

IA

Hence there exists a positive integer 2 such that
R*<(—ea)R* + BR"S <1,

and (56) is satisfied, contrary to hypothesis.
We now have ¢ >0, > 0. The inequality

(59) 1t<ax’—Br<i,

corresponding to (55), is satisfied if x lies between the larger root of aa®—
— Bx — 10°° =0 and the larger root of ex*—fx —1=0, i.e. if

B+VE +ac(io9) <o < g+ VF+aa).

o

1
(60) Py
Note that the upper bound here is greater than a_%, and so greater than 1000
by (54). If (59) has no solution of the form x = R”, the ratio of the two bounds
in (60) cannot exceed R. We have, therefore

N e r—————ay é R < 6)
B+VE + 4a(107)

VE+4a—~6VE +4c(107) <58<51 8 +4a(107),

P+ q4ae<121(8*+ 4a10), |
a{r—i121(107)} < 308%
(61) o< 318%
Since 8RS < 107, there exvists a positive integer » such that
{62) 1I0*RT'=8R"S < 107,
By (61) and (62),

aR*" <3182 R < 31 (107 §71)? < 124(1078).
Hence
10*>—aR*™+ BR"S > 10%6" —124(10%) > 107

Thus (56) is satisfied, contrary to hypothesis. This proves Lemma 12.
6
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Lemma 13. Let &, &, 11, 75 be real numbers, each having absolute value less
than 107". Suppose that, for all integers p, q, the product

63) M={p+q+1+(p—a)V2+p&+a&lip+a+1—(p—a)V2+pn+an}

salisfies

(64) either M >1—107 o M<—2(1—107).
Then
(65) L=&=m=mn=o0.

Progf. The hypothesis is unaltered if we replace &, &, 71,12 by N2> T, Ba» &1,
since this is tantamount to interchanging p and ¢. Hence it will suffice to prove
that 7, =7, = o. '

Let
(66) R=3+2Vz2=1582....

We first ,use the hypothesis with the following choice of p and g¢:

,p = ((Vz+ )R+ (V2= )R —2V 2},

4
(67) 1 B B
g=—{(V2—1)R+ (V2 + 1)R"—2V 2},
4Vz2
where » is a positive integer. We note that RB"=u + vV;, R=u —vVE,

where u is odd and ¢ even. Hence R"+ B~"— 2 is a multiple of 4, and R"—R™"
is a multiple of 41 2. Consequently the above values of p and ¢ are integers.
Further, we have

ptg+i+(p—q)V2=Rr prag+i—(p—qVa2=Rm

We substitute in (63), and suppose that both factors are positive (a condition
which is certainly satisfied by small values of #). On dividing the first factor
by R", and the second by R-" we obtain, by (64),

(68) {1+ B "(p& + g8} {1 + B*(pyy + qma)} > 1 — 107,

provided that both factors are positive. By (67), 0 <p < R" and o = ¢ < B", hence
the first factor in (68) is certainly positive, and does not exceed 1 -+ 2(107).
Hence the second factor, if positive, is greater than

(1—10N(1 +20007)*>1—10°
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In other words, it is impossible that
— 1< R*(pn + qng) <—10"°

for any positive integer n. By (67),

aVa2R (pn + qng) = R*" (V2 +0)p +(V2— )7ne} —2 V2R (m1 + 12)
+{Vz—1)n + (V2 + 1)n,).

The last term on the right is numerically less than 2V 2(10%). Hence it is
impossible that

—gaVat 2V <R {(Vz+ 1)pm+ (V2—1)n} —2V 2R (ny + 3,)

<—4V2(10%—2V2(107.
We define a, 8 by

(69) e=Vz+ 0+ Vz—1)n,  g=2(m+n)
It follows from the above that there is no positive integer »n for which
(70) 10°<—Rm"a 4+ V2R <1.

We now apply the hypothesis with another choice of p and ¢q. Define p
and q by o

p={(Vz+1)R"—(V2—1)R" —2},
(71)

g=HVz—)R — (V2 +1) R —2}.

For the same reasons as before, these values of p and ¢ are integers. We have

(72) p+aqg+1+ (p—q)VZzl/;R", pt+q + 1—(p—q)V2=—V2R

We substitute in (64), and suppose that the two factors have opposite signs
(a condition which is certainly satisfied for small values of #). We obtain, on

division by the two expressions in (72), '

1 g |- | -
1+ j"“:R-n( )E + g I——[::R" ) + >1—10 7.
{ Vs P& +q 2)“ > (pm (.7772)[
By (71), o<p<R"and o= q << R*, hence the first factor is necessarily positive
and does not exceed 1+V2(1077). Hence there is no positive integer » for which

1
108 < V—;R"(pnl + qn) < 1.
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By (71),
4R (pmy + gua) =R {(V2 + )+ (V2—1)ne} — 2 B (ny + ma)
— V=1 + (V2 + 1)1,

The last term on the right is numerically less than 2 V2 (1077). Hence it is
impossible that

4V2(108 +2V2(107) < R*"a—R'3<4V2—2V2(107),

where «, 8 are defined, as before, by (69). Tt follows that there is no positive
integer » for which

(73) 10°< R*"a — R"3 < 1.

The hypotheses of Lemma 12 are satisfied, with S=12. For (53) follows
from (66); (54) follows from (69) and the initial hypothesis concerning the
magnitude of 7, and 7,; and (535), (56) are identical with (70) and (73). It follows
from Lemma 12 that ¢ =g =0, and so, from (69), that ;;=7,=0. As we saw
at the beginning of the proof, this suffices to establish (65).

Lemma 14. Suppose that y <10'". Let u,v be any positive numbers satisfying

1} -
(74) ‘L_L_z <~ 7
(75) v > (1—7).

Then, with the notation of Lemma 3, either there exist integers x, y such that
(76) ey d S (L4 e) (Lg + ) S u A,
or the quadratic form L, L, is equivalent to a positive multiple of the special form (13).

Proof. We may suppose without loss of generality that #/=1. We assume
that (76) has no solution in integers z, y, and prove that the alternative con-
clusion must hold.

We proceed as in the proof of Lemma 3. The condition »>> 1 is satisfied,
by (74) and (75). We obtain a lattice in the plane, of determinant (1 —&)/M,
where

(77) M=y,
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such that every lattice point satisfies
(78) X+ 1)(Y+1)=1—¢ or =-—K?
where K is defined by

(79) gr=Md

M

(K > o).
Again there is no lattice point, except the origin, in the rectangle

(80) |X+Y|<2{I+V1—£}, | X—Y|<2K,
and it follows that

I“SzzK{l +Vi—e).

S

Hence, as before,
I—e¢ 1
<l

M LN S
av{t+Vi—e¢r 16

IA

By (75) and (77), we have

{
< .
(81) p=M< =
We note, for future reference, that
2:v(l—e)Xv(l——e)(l——;/) B . N
(82) ‘K M b ‘ll, >(I 8)(1 7)(2 7)’ 2 477

by (79), (81), (74).
The rectangle defined by

(83) |X +Y|<H, |X —Y|<:2K

has area 4 H K, and so must contain a lattice point other than the origin, provided
H satisfies

I—é&
HK > e
By (79), (81), {73), o
1—e _|/1—e_ 1 4
KM My —]’f‘uv ' =7

Hence, if we take H=4(1 ~—y)_]2“, there is a lattice point other than the origin
satisfying (83). Since such a lattice point cannot satisfy (80), there must exist a
lattice point satisfying

(84) 21+ Vi—egf=X+Y< _4

) X—Y|<2K.
Vi, XY
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We have
4 X—1)(Y—1)=X+Y—2)—(X—Y)P>—4K?

and consequently, by (78), applied to —X, —Y we must have

(X+Y—2P—(X—YP=4(1 —¢).
This implies

(X—Y)< (1711:: —-2)2—4(1—-8) <107.

Hence, writing X =2+ & Y =2 + 9, we have

Vi—

|§+n|<~~*4~—y—4<37< Vioy,

So we have proved that there exists a lattice point
(85) U=(2+§ 2+7) with |§]<Vioy, |5]<Vioy.
Next we consider the rectangle defined by
| X +Y|<z2{1+Vi—g¢}, |X—Y|<2L,
where. L is so chosen that the area exceeds 4(1—¢)/M. For this it suffices that

2{1+V1—¢ L> I—J’_If

Now

1—¢ 1 / ]/ 24y -
= — <Va2(1+y9),
2 Mt +Vi—e 4M 4n 4Vuvl —7 ( 7)

by (81), (74), (75). Hence it will suffice to take L =V 2(1+y), and we obtain the
existence of a lattice point, other than the origin satisfying

(86) o=X+Y<z2{1+Vi—e}, 2K=<|X—Y|<2V2(1+9y).

Now
4 X—1)(Y—1)=(X+Y—2—(X—Y):=s4—4K:<o.

Hence (78) gives
(X+Y—2)—(X—Y)P=s—4K?
and, by (82),
(X+Y —2f<8(1+79)°—4(2—47y) < 407
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We suppose that X = Y, and refer later to the possibility X < Y. Writing

X=1+V2+§, Y=1—V2+q,
we have

(87) |5+ m| < Vaoy,

and, by (86), B 7 _
2 K—2V2=s§—p<2V2y.

By (82), 2K>2V2—4y>2V2—4y, so that
(88) 61— ml <4y

It follows from (87) and (88) that || < 10Vy, |m|< 10Vy. We have now
established the existence of a lattice point

(89) Po=(+Vz+§&, 1—Vz2+n) with |§|<10Vy, |5 <10Vy.
The point P;= U — P; is of the form
{90) Po=(1—V2+E& 1+Vz2+n) with |&]|<20Vy, |7:] <20Vy

from (85) and (89). A pair of points satisfying the same conditions is obtained
if we adopt the possibility X <Y above, except that 20y and 10V y would be
interchanged in (89) and (go).

The points P; and P, generate the lattice. For the determinant of their
coordinates is nearly 4V 2, and the determinant of the lattice is

1;{5 =2K{1 +V1—s} > 4V;(I—‘37)’

by (82) and the inequality following (80). Hence it is impossible that the former
should be a multiple of the latter by an integral factor greater than 1.
The general point of the lattice is (X, Y), where

X=pa+Vz+&) +q1—V2+5&,) Y=»p( —V2+ )+ q(1+1/5+7;2),

where p, ¢ are arbitrary integers. By (78) and (82), the hypothesis (64) of Lemma 13
is satisfied, provided that
e<107" and 2y <107,

which is so. The initial hypothesis of Lemma 13 is satisfied, by (89) and (90),

provided that B
20Vy <107, ie y<3}(1079),
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which is so. Hence, by Lemma 13,

e

1=& =M =1ny=0.

and the lattice is given by
X=p(1+V2)+q(1t =Vz)=2u+ (1 +V2)r,
Y=p(1—V2)+q( +V2)=2u+ (1—V2)r,

where %, v take all integral values. It follows, as in the proof of Lemma 3, that

L, L, is equivalent to a positive multiple of the quadratic form (13).

Lemma 15. Suppose that o < &, < 107, Let

(o1) Qr,y,2) =@+ hy + g2 + s M{y* + yz — %27,
where
(92) 1—d < M<1+ 6,

Suppose that every value of Q(x, v, 2), arising from integers x, ¥y, 2z whose highest

common factor is 1, which satisfies

(93) 0< Q<3

necessarily satisfies

(04) I—6< Q<1+ 6.
Then
(95) h=o0 (mod 1) and g=1} (mod 1)

Proof. On writing =1 2’ + my + nz, where m and » are integers, it is

clear that there is no loss of generality in supposing that
(96) o=g=14 |h| =%

We have
Q(z,0,—1)=(2—9) =i M>{—5(1+d)>0,
and ) )
2—g)f—iM<4—5(1—4)<3.

Hence, by the hypothesis,

1—0, < @Q(2,0, —1)<< 1 + dy,
which implies
(z2—glf<iM+1+6<i(1+d)<(@+d)"
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Hence

(97) 1—d<g=1i

If h > 0, we consider

which satisfies

Hence
24+h—gP—32M<1+ 4,
whence
2+h—g<$}+ oy,
h << d,.
If h < o0, we consider
1, —1,1)=(0—"h + g)*— 7 M,

which again satisfies 0 < @ << 3, and obtain

1—h+ g<i+dy

— h < 204
Thus, in either case, we have
(98) |n| < 26,
We write
(99) 9=3%—9§  0=g<d.

Let y, 2 be any integers for which
(100) v +yz—1lz2t=—1
and for which z is odd. Let x =} (3 —2), and consider

Qle,y,2) =@+ by —ge)* — i M.
If y, 2 are such that
VI 4 ) i<y —ge<VEI— )5 51,
then o0 < @ < 3. These conditions are certainly satisfied if
(ro1) lhy—gzl <}

The hypothesis tells us that, in this case,

1—0,<(E+hy—ge)—3M <1+ dy,
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whence
(102) |hy — g2| < d;.
Thus (101) implies (102).

We define g,z by

(103) 2= o {(]/g_,, et 4 (l/;_l)2n+l}’ 29+ z=§-{(l//;+ ,)gn+1__(1/5‘_1)2n+1},

2V

. . oy . . - S
where » is any integer, positive or negative. Since (Vz+1)"*1 =y + vV 2,

. S - o
where u, v are odd integers, and (V2—1)"+*!=—y + vV 2, the definitions make
2z an odd integer, and y an integer. Moreover,

2

(2y+2)—2e2

=-—I,

so that (100) is satisfied. It follows that, with these values of y and 2z, (101)
implies (102). We have

hy—gez=H( 2+1)2414 G (12— 1)y

where

1 I I I
10 H=l(1—a—_)h———:', G=— (1+—f)h—~f,,¢'.
(104) * V2 2V t V2 V2!
We have proved that there is no integer n for which
(105) &< |HVz+ 1+ G(V2—1)2| < 4

By (98), (99), (104), we have
(106) |H| < 24y, |G| < 24

Suppose first that |H| = |G| and H=+o0. We can find a positive integer »
such that

I
8()2+1)®

IA

(107) [H|(Vz+1)pr+1< L,

For this value of », we have

IGI(V;— 1)21l+1 < l < - 9 Q “
= = ={8(V2+1)|H|}*< (1004 P <o,
IHl(l 2+ I)2n+1 (;/2 + ‘)“,_F._, { ) I “ ( 1) 100

by (107) and (106). Hence (107) implies

— 0 | HV 2+ 1+ G 21 < 1

Ve

8oo (V2 +1)
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Hence (105) is satisfied, contrary to what had been proved. Similarly, if |G|=|H |
and G #0 we reach a contradiction, by giving % a suitable negative value. Hence
H = G'=o0, whence h =g =0 from (104), and the Lemma is established.

Lemma 16. With the same hypotheses as in Lemma 15, we have
(108) M=1
Proof. By Lemma 15, it suffices to consider the form
Qla,y,2) = + 32+ s My + yz — 1 2°),
where M satisfies (92). We have

Q(fb‘, o, Z) = x2 + xz + .:45,;',‘[2‘2

=z + re — N2,
where
(109) |N—1]<3d,.
Let Fy, F,, ... denote the Fibonacci numbers, defined by

1411=1, F2=2, Fppn=Fp+ Foy (’ﬂ-’:I,Z,...).

Then (Fn, Fp+1)=1 and
I",:.H — ‘Fn+1 F‘n - Fnlz (_ I)"_l-
Hence
Q(FQn, o, — IP‘.’. n—l) = F22n — Fln 1;'2 n—-1"—" NI'V;n--l

(110) =1—(N—1)Fs, ;.
Since (Fant1/F2n_1)’ <10, we can, by (109), if N < 1, determine # so that

116<|N—IIF22u—1< I.

Then (110) gives a value of @Q(x,y,2), arising from integral values of x,y,2
whose highest common factor is 1, satisfying o < Q@ < or 1 < @ < 2. This is
contrary to the hypothesis, and so N =1, whence M =1,

Lemma 17. Suppose that o < d,<10°® and that 9 >4/3. Then the inequality

(1) (28 —1)(2 + [ﬂ*)gg‘%(?iis;)a

tmplies

(112) C3(1—15V ) < 9 < 3.
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Proof. If 3 <& < 1, the proof is the same as in Lemma 6, with trivial
modifications. Now suppose that ¢ = 1. Then (111) implies

. I3 \®
(29 —1)(29+@—1°) < () ,
1—62
or

3
549 — 279 + 549 — 27 <50 (13‘6) )
— U2
whence
49°—279% + 549 — 27 < 503 {(1 — ) — 1} < 2000, 9%
Thus
(1—39(4— 39" < 2000,

Since 9! < 1, this gives | 1—3 97'| < V2004, whence

1 —1V 2006, < 391 <1 +V 2008,
and
3(1—15Vd) <9 <3(1+15V4,).

It is impossible that 3 <& < 3(1+ 15V dy), for then (111) would give

3
(29—1)(23+9)§gg( 4 )
1— 0,

which is obviously false, since the left hand side is at least 75 and the right
1+15@)3 (1.015 )3
O( 1—d, <5\ =10

7. Proof of Theorem 3. We shall prove that Theorem 3 is true with

hand side is less than

Hence (112) holds.

(IIS) d = 1074,

We may suppose that we have a form @ (x,y,2) and numbers xy, ¥y, 7o such that,
for all x, ¥, z satisfying

(114) x = x, (mod 1), ¥ = 1, (mod 1), z=¢, (mnod 1),
we have

_ 1
(115) | @ (@, v,2)| > (1 —6) (7% | D]

We have to prove that ) is equivalent to a multiple of the special form (4).
We may suppose that [ < o.
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By Lemma 1, there exists a positive value a of @(x,v,¢2), arising from

integral values of z, 9,2z whose highest common factor is 1, such that
(116) as (4| DI
By Lemma 2, Q(x,¥,2) is equivalent to a multiple of

(117) Q1(90:.’/12)=(90 + hy+g2)2+¢(y,z),

where ¢(y, 2) is an indefinite binary quadratic form, whose discriminant #* satisfies

(118) 42=4L3D =1.
Define d and 9 by
(119) d = (35 498, 9 =d(1—d)
and define positive numbers g, » by
(120) ud =39—4, vd =139 + }[91%

It is impossible that there should exist y, z satisfying (114) such that
(121) — v A=y, 2) S pd.

For if they existed, we could determine x, as in the proof of Theorem 1, to
satisfy (114) (with the transformed values of g, g, 2o) and would have

@+ hy + g2 + 9lp2)| = 49 = (1 — 8 bd = (1 — ) (& 4.

This contradicts (115) for the form ¢, of determinant — } #° and so contradicts
(115) for the original form @.

Since (121) has no solution, Lemma 4 tells us that uyv <, i.e.

I 3
(29 —1)(29 + [9]2)<4‘—'=gg( ) -
The condition ¢ > % of Lemma 17 is satisfied, by (119) and (118). Consequently
Lemma 17, with d;=d, implies that
(122) 3(1—13V <9 <3
From (119) we obtain

(123) 3(1—15Vd) <d<3(1+ 24),
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and
3
4'—’:50(;1) <501 + 20 < s50(1 + 100},
_ d\® v
4= 50(3) >s0(1—15V0)*> 50(1 — 3501 d).
Hence
VPP
(124) 1—5016\50<1+106.
By (120) and (122),
v_29+4
!L_219'—I,

<3i|%—3]<z25Va.

( v |_zl9—3l
(125) u 2' 29 —1
Also, by (120) and (122),

16ur L =(29—1)(29+4)=50—(3 — 3 (49 + 18)

> 50 — 30(45 V8.
By (124),

(126) 16uv>50(1—27Va)a2>(1—27Ve)(1 + 106)'>1—30V4.

By (125) and (126), the hypotheses (74) and (75) of Lemma 14 are satisfied,
if we take
=30V,
The condition y < 107'7 is satisfied, by (113). The statement that (121) cannot be
satisfied is the same, apart from a slight change of notation, as the statement
that (76) cannot be satisfied. Hence Lemma 14 tells us that ¢(y,2) is equivalent
to a positive multiple of y*+ yz — 12 By (117), after an integral unimodular

substitution on %, 2, we can write
(r27) (@ y,2) =+ hy +g2) + s Uy +yz—}2%,

where M > o. Comparing the determinant of this form with its known value
— 1 4* we have

e (-

(1—135 V8 < I < (1 + 20),

tefue

il

hence

(129) | M — 1] <30V
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The preceding argument has been based on expressing the given form @ (x, y, 2)
as equivalent to a positive multiple of a form @ (x, y, z) of the type (117), derived
by using any positive value a of Q({x,y,2) which satisfied (116). We have seen
that such a positive value must be such that #* defined by (118), satisfies (124).
Since ¢ is equivalent to a positive multiple of ¢,, the corresponding result must
hold for ;. The determinant of @, being — 1 #° it follows that any positive
value a; of ¢y, which satisfies

(130) ay = (4°P3,
must be such that ;, defined by
. AP
(131) 4;= a7
satisfies
(132) s0(1—s50Vé) < 4 < 50(1 + 104).

The condition (130) is certainly satisfied if a;<3. Hence with this condition,
we must have, by (124) and (132),

P I
4;  1—sz0b 6

(If:iz - I*SOVE

Hence, any positive value a; of @Q,(x,u,2), arising from integers x,y, z whose
highest common factor is 1, which satisfies a, < 3, must satisfy
1—30Vd<a <1+ 3016
Taking é; = 3ol'r6, the hypotheses of Lemma 15 are all satisfied. It follows that
Q1 (w,y, 2) is equivalent to
(w+ 3e)'+ s My* +yz—12°)

The hypotheses of Lemma 16 are satisfied, and hence M =1.

Hence we have finally proved that Q(x,y,2) is equivalent to a positive
multiple of
rsyt—2+ xz+ 5ye,

and this completes the proof of Theorem 3.



