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I.  This work has arisen from the consideration of possible extensions of 

Minkowski's theorem on the product of two non-homogeneous linear forms. If  

L1 = a x  q- fly, L2 --= 7 x + ~iy 

are two linear forms with real coefficients, and el, c2 are any two real numbers, 

lVlinkowski's theorem asserts that  there exist integers x, y such that  

(I) I(L1 + ex)(L2 + c~)l =< i ~r 

where A--- - ]a~--~T] ,  and we suppose J = ~ o .  I t  is conjectured that  a s imi l a r  

result holds for the product of n non-homogeneous linear forms in ~ variables, 

with 2-'~ in place of �88 So far this conjecture has been proved only for n----3, 

by Remak, and for n-----4, by Dyson. 

Minkowski's theorem can be stated in another form, which suggests other 

possible extensions. Write 

L 1 L ~ =  a x e +  b x y  + cy  ~-= Q(x ,y ) ;  

then Q ( x , y )  is an indefinite binary quadratic form with discriminant 

b2-- 4 a c  = A "~. 

Determine real numbers Xo, Yo so that  

cl = aXo + flYo, c2 = 7Xo + ~!1o. 

Then Minkowski's theorem asserts that  for any indefinite binary quadratic form 

Q(x ,y ) ,  and any real xo, Yo, there exist integers x, y such that  

(2) IQ(x + ,:o, !J + 
5 
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The extension which now suggests i tself  is one to indefinite quadrat ic  forms in 

more than  two variables. 

In  part icular ,  let  Q(x,y ,z)  be an indefinite t e rna ry  quadrat ic  form with real 

coefficients, of de te rminan t  D # o. The problem is whether  there  exist  constants  

k such that ,  for  any real xo, Yo, zo, there  are integers  x, y, z sat isfying 

] Q (x + xo, Y + Yo, Z + Z o ) [ < k l D l ~ ;  

and if so, what  is the least  k for  which this is t rue?  The exponent  ~ is d ic ta ted 

by considerat ions of homogenei ty .  

The existence of some such k, though  no t  immediately obvious, is fair ly easy 

to prove. I have succeeded in de te rmin ing  the best possible value of k, but  the 

resul t  has not  the same simple and na tura l  appearance  as Minkowski 's  or iginal  

theorem.  I prove:  

Theo rem 1. Let Q (x, y, z) be an indefi)~ite tertiary quadratic form, with real 

coefficie~ts, of determi~md D ~ o, The~, for any real xo, Yo, zo, there exist integers 

x, y, z such that 

(3) I Q(x + Xo, y + yo, z -~ Zo)l < (i~o~]DI) 1. 

This is true with sb'ict inequality unless Q is equirale~2t 1 to a multiple of 

(4) x~ + 5y~'--z:  + 5y z  + zx ,  

in which case it is .ot. 

One of the lemmas (Lemma 3) which I use in the proof  of Theorem I has a 

cer ta in  intr insic interest ,  since it  forms a simple general izat ion of Minkowski 's  

theorem which seems to have escaped notice. I t  asserts t ha t  we can satisfy, 

instead of (I), the inequal i ty  

(5) - - v J  < (Lx + c~)(L2 + c2) < t t J ,  

provided tt, v are positive numbers  sat isfying 

It v __--> i~;" 

Minkowski 's  theorem is the par t icu lar  case /~ = v = 1. An in teres t ing  fea ture  of 

the resul t  is t ha t  there  are o ther  values of Ft, v with ~tv-~ t~z, for  which (S) is 

the best possible inequal i ty  of its kind. 

L Equivalence refers here to l inear subs t i tu t ions  with integral  coefficients and de te rminan t  _ I. 

An asser t ion such as the preceding one is unaffected by such a subs t i tu t ion ,  since variables of the 

form x + x 0 ,  Y+Yo, z'Fzo are t ransformed into variables of a s imilar  kind. 
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I f  Q is a null form, i . e .  if Q ( x , y , z ) = o  for some set of integers x , y ,  z n o t  

all zero, the problem can be t reated by a ra ther  simpler method, and a more 

precise inequali ty can be proved. This takes the form: 

Theorem 2. I f  Q is a null form, then for a~y real x o, Yo, Zo there exist integera. 

x, y, z such that 

(6) I Q(x + ~o, y + yo, ~ + ~o)I ----(~IDI) '~. 
There exist null forms for which this is ~ot true with strict i~equality. 

Finally,  I prove tha t  the min imum established in Theorem I is ' isolated'. 

The precise meaning of this term will be clear from the following enunciat ion:  

Theorem 3. There exists a positive absolute co~stant d such that, i f  Q (x, y, z) 

is not equivalent to a multiple of the special form (4), the~ for any real Xo, Yo, Zo 

there exist integers x, y, z satisfying 

(7) I Q (x + x0, y + y0, z + zo) I ~ (I - r162 { D I)~. 
This is a remarkable result  in tha t  it  has no analogue for Minkowski 's  

original  theorem. ~ The proof is natur~ally-rather difficult. 

2. L e m m a  1. Let Q (x, y, z) be an indefinite ternary quadratic form of deter- 

minant D < o. Then there exist integers Xl, y~, Zl such that 

(s) o < q (Xl, y~, ~ )  < (4 [D ])~. 
Proof. This is Theorem 2 of my paper "On indefinite ternary quadrat ic  forms",  

Proc. London Math.  Soc. (in course of publication). 

L e m m a  2. Let Q (x, y, z) be an i,definite ternary quadratic form of determinant 

D < o, and let a be m~y positive value of Q arising from integral values of x, y, z 

whose highest common factor is I. Then Q is equivalent to a multiple of 

(9) (x + h,j + az)" + ~(~/,~), 

where 4)(y,z) is an indefinite biz~ary quadratic form, whose diserimiuant ~r 

(Io) .~.o__ 4!./) I .  
a ~ 

1 For  a proof  t h a t  the re  is no such  ana logous  theo rem,  see T h e o r e m  2 of m y  paper  "Non-  

h o m o g e n e o u s  b ina ry  q u a d r a t i c  fo rms" ,  Proc. K. Akad. lVet. Amsterdam, 49 (]946), 8 1 5 - - 8 2 I .  
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Proof After applying a suitable l inear substi tut ion with integral  coefficients 

and de te rminant  + I to the variables, we can suppose t ha t  Q (I, o, o) = a. Then, 

if h, g are suitably chosen, 

Q(x,y,z)  = a {(x + hy + gz) ~ + 4,(y, z)}, 

where ~(y,z) is a binary quadrat ic  form. By comparison of determinants ,  

n---- a S ( - [ J 1 ) ,  

where H 1 is the d iser iminant  of ~b(y,e). Thus H1 > o, which implies tha t  r is 

indefinite, and on writ ing z/1 = H ~, we have (io). This proves the lemma. 

Lemma. 3. Let 

L I =  gllZ q- a1211, L 2--  a21x q- {~22ff 

be linear forms with real coefficients, and let z / =  [alla2~--a12q21] ::~ o. Let Iz, �9 be 

positive numbers satL~ging 

(I I) ~,~ ~ 1 .  

Then, for any real el, e2 there exist integers x, y such that 

(12) --,,H__< (L1 + el)(L2 + c2) _--</~./. 

I f  , ,= zlz, this is true with strict inequaliO in both parts of (I2) unless the quadratic 

form L1L2 is equivalent to a positive multiple of 

( i 3 )  x ~ + x y - - � 8 8  ~. 

Proof We can suppose wi thout  loss of general i ty  tha t  z / =  I. We can also 

suppose tha t  ~ ~ ~, and since the result  reduces to Minkowski 's theorem when 

----/~ we can suppose ~ >/~, whence ~ > �88 

Let  M denote the lower bound of 

I(L1 q- el)(L2 + c,)] 

for  all in tegral  x, y: By Minkowski 's  theorem, M ~ �88 < r. I f  M is at tained,  or 

approached, by negatit'e values of (L1 + cl)(L~ + e2), then (12) is satisfied with 

strict  inequali ty in both parts, and there is no th ing  to prove. Hence we can 

suppose tha t  

(I4) i _>--_ p, 
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X *  # * and that, for an arbitrarily small  positive number *o, there exist integers , y 

for which 
M (I 5) (L~ + cl)(L~ + c2) = - - ,  where o =<, < *o- 

We suppose that (12) has no solution with strict inequality in both parts. 

Write 
X - -  L1 -- L] y _  Lz - -  L~ 

L]  + cl L~ + c2 

then X, Y are linear forms in the integral variables x--x*, y--y*. The deter- 

minant of these forms has absolute value 

(I6) I-- 

by (I5). Since 

(X + I)(Y + I) = (LI + el) (L~ + c~) 
(L] + cl) (L~ + cz)' 

the hypothesis that  (i2) has no solution, together with (15), tells that 

(X + I)(Y+ 1) > ~(~I~/"a) or < 
M 

for all integral values of the variables. The definition of M tells us that  

I(x + 1)(Y+ 1)1_-> 1 - ,  

for all integral values of the variables. 

(I7) 

we can say that 

(I8) (X + I ) ( Y  + I) ~ I - - *  or 

Writing 

K s _  V(I --,6) 
M 

(K > o), 

_ < - - K  ~ 

for all integral values of the variables. 

The points (X, Y) which correspond to integral values of the variables form 

a lattice, whose determinant is given by (I6), and every point of which satisfies 

(18). We proceed to prove that  there is no lattice point, except the origin, in 

the rectangle 

(19) IX+YI<2II+VI- ,} ,  [X--Y[<2K. 
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I t  will suffice (by reflection in the origin) to consider points satisfying X +  Y=< o, 

and therefore satisfying 

- -  2 ]/r i----~ < X + Y +  2 ~ 2. (2o) 

Since 

4 ( X +  1 ) ( Y +  , ) = ( X +  Y +  2)'~ - Y)~>=--(X--Y)~>--4 K~ 

by (19), the condition (18) implies 

(21) (X + r .  2 ) ~ -  ( x -  Y)-~ H 4(i  - - , ) .  

This implies [ X + Y +  2 [ ~ 2 ~ / i - - , ,  and so, by (2o), 

o H X +  Y ~ - 2  {, - -  1 / 1 - , } .  

Also, by (20) and (2I), (X -- Y)Z =< 4 ,. Hence we must have 

(22) I x I  _-< ,1, I r l  --< ,1, 

where '1 depends only on , and tends to zero with ,. But  if X, Y are not 

both zero, we can find an integer rn such that  the point (reX, mY) lies in the 

rectangle (19) but does not satisfy (22). This gives a contradiction, and therefore 

there is no lattice point except the origin in the rectangle (I9). 

The area of the rectangle is 

8 K { 1 +  V I - - , } ,  

hence, by Minkowski's theorem, since the determinant of the lattice is given by 

(I6), we have 

(23)  1 - ,  
M 

By (i7) , ,this is 

Using (I4), we obtain 
M 

- - = >  2 K { I  + VI- -e} .  

- - = > 4 v { I  + I / I - -*}  2. 

~v___< 
4 { I  -a t- I f  I - - , }  2 

I f  *>0,  this contradicts (II), and so in this case, (12) must have a solution with 

strict inequality in both parts. If  , = o, we still have a contradiction unless 

equality occurs in the last step of the argument, i. e. unless M = / ~ .  In this 

case we still have a solution of (12), by (15), though not with strict inequality. 

This proves the main assertion of the Lemma. 
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We  have now to investigate the case when u = 2 / ~ ,  and (12)has no solution 

with strict  inequal i ty.  As we have jus t  seen, this requires t ha t  

e = o, /~ ~ = ~;, M = u. 

There must  also be no lattice point, other than  the origin, in the rectangle (I9) , 

which is now 

I x+r l<4 ,  Ix-YI<2V/. 
Since equality occurs in (23) , the lattice must  be a critical lattice for the rect- 

angle, and so mus t  have two genera t ing  latt ice points on its boundary.  By (I8), 

every lattice point satisfies 

(X+I)(Y+I)>_-I  or _-<--2. 

By the same a rgument  as before, we find t h a t  the only points on the boundary of 

the rectangle which satisfy this condit ion and the same condition for - - X , -  Y are 

+_(2,2), +_(~+V~, ~-F~) ,  +(~- lP~,  ~+l'r~-). 

The lattice generated by any two of these (not images of one another  in the 

origin) is the lat t ice given by 

X = 2 u  + (I + ] /2 )  v, 2 " =  2,r + (I - -  V 2 ) v .  

Here u, v take all integral  values, and so are related to the variables x--x*,  y--y* 

by an integral  unimodular  substi tut ion.  Since (L1 + cl)(L,  + c2) is a positive 

multiple of (X + I ) ( Y  + I), it  follows tha t  L~L2 is a positive mult iple of XY,  

and so is equivalent  to a positive multiple of 

{2x + (~ + ] /~ )y }  { 2 ~  + (i - 1/~-)y} = 4 x  ~ + 4xy -V .  

This completes the proof of Lemma 3. 

L e m m a  4. Let @ (y, ~) be an indefinite binary quadratic form with real coef- 

ficients, of  discriminant J~" (where Lt > o). Let i~, J, be positive m onbers satisfying 

#v >= ]�89 Then for any real Yo, Zo  there exist real y, z satisfying 

(24) Y ~ Yo (mod I), #--~ zo (moo I), 

(25) - ,,~r _-< ~(~, z) =< ~z.  

I f  ~,= 2~  this is true with strict inequality in both parts of (25), unless @(y,e) is 

equiralent to a positive multiple of  

(26) ye + yZ - -  �88 ~- 

Proof. This is merely a res ta tement  of Lemma 3 in other terms. 
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L e m m a  5.  

H.  Davenport. 

Let ,3, B be real numbers with B > ~,1 and suppose that 

(27) ,3-~ N B + �88 [2 B] 2, 

where [2 B] denote.,, the la~2qest integer which doex not exceed 2 B. Then fov any 

real xo there exists an x with x ~ xo (rood I) such that 

(28) I x ' - -  3:1 =< B. 

Provided that 2 B is .not an integer, strict inequality in (27)implies strict inequality 

in (28). I f  2 B is an integer, a sufficient condition for the validity of (28) with 

strict inequah'O is that 

(29) fl'~ < B  -b 1 ( 2 B - -  I) ~. 

Proof. 1 Suppose first that  f l -~  ~. There exists an x with X ~ X o  (rood I) such 

tha t  ix]  ~ ,_1,. We have 

Ix-" - -  fl-~[ =< max (I- - -  ~-~, ~~) ----< �88 < B .  

Suppose next  tha t  fl'~> �88 Wri te  m-=  [2 B ] ,  so tha t  

(30) � 8 9 1 8 9  I), f l ~ ' N B + � 8 8  

Determine an integer  1 ~ o saeh tha t  

(3I) l :=<4f l  " ~  < ( l +  I) ~. 

By (30) a~d (3~), 

l" =< 4fl~ --  I ~ 4 B + m: - -  I < 2 (m + I) -t- m-" --  I = (m -[- I) 2, 

whence 

(32) 1 =< m. 

There exists an x such tha t  x ~ x0 (mod I) and 

�89189 ,); 

for the intervals from �89 to �89 l) and f rom - - � 8 9  I) to -- �89 include all 

values of x (mod I). We have 

I 1-" - ,3' =< x-" - ,3: =< l (z + ~)~ - ,3-'. 

Now, by (30), (3I), (32), 

�88 + ~)-" - , 3 ~  =< �88 * ~ ) ~ -  �88 + ~) = �89 _-< �89 =< B. 

t An imperfect form of this lemnla occurred as Lemma I in my paper "Non-homogeneous 
binary quadratic forms", Proc. K. Akad. Wet. Amslerdam, 49 0946), 815--82I.  
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Also, if 1 = m, 
~-"-- �88 ~ = ~ - -  �88 ~ =< B, 

and if l < m, 

~ - - � 8 8  "~<�88 I) "~+ � 8 8 1 8 8 1 8 9  I)<�89 

Hence this value of x satisfies (28). 

The final clauses of the Lemma follow at once from the main part,  on 

replacing B by B', where B' is sl ightly less than  B. 

L e m m a  6. I f  d > ~, then 

~" d s (33) (2 d - -  I) (2 d + [d] "~)>:~ . 

Also, i f  d is a positire integer ogter than 3, 

(34) (2 d -- x)(2 d + (d --  x)2) > :,o :_, 7 d s . 

Proof. Suppose first tha t  ~ < d < x. The inequali ty (33) is then 

( 2  d - i) .- d > ~? d ~, 
o r  

25d -~- 54d + 27 < o ,  

(5 d - -  ~ ) '  < ~'- 2 5 "  

This is satisfied, since 
o 

--,~ < 5 d - - ' ~  < - - ~ .  

Suppose next  tha t  d => x. We note t ha t  (33) follows from (34), since [d] > d - - I ,  

and (34) would be valid with equality in place of inequali ty when d---3.  Now 

(34) can be wri t ten 
2 7 ( 2 d S - - d  ~ + 2 d - -  I ) >  5od s, 

which is the same as 

( d - -  3)*" ( 4 d - -  3) > o, 

and so is valid for d ~ x, el ~ 3. 

3. Proof  of Theorem 1. Le t  Q(x, y,e) be an indefinite ternary quadrat ic  form 

of de te rminant  39 ~= o. We have to prove tha t  for any real xo, Yo, eo there exist 

real x, !/, z sa t isfying 

(35) x--=x0 (mod I), :'/--= llo (rood I), z - ~  zo (mod I), 

(36) I Q (x, y, z) l ~ (~o�89 1 D l) ] . 

By considering the form - - Q  instead of Q, we can suppose wi thout  loss of 

generali ty t ha t  D < o. 
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By Lemma 2, Q(x,  y, z) is equivalent  to a multiple of 

(37) Q~ (x, y, e) = (x + h y  + gz)  2 + 4' (Y, e),  

where ~ (y, z) is an indefinite binary form of discriminant/ / '9,  and _4 ~ satisfies (Io). 

By Lemma I we can suppose that  a satisfies o < a N (41DI) ~, whence 

(38) ,ff ~ I. 

I t  will suffice to prove the result  for the form (37). 

Let  d be defined by 
~t = (Ig ~-')~; (39) 

then 

(40) 

Define It, ~ by 

(4,) 

d > (}6) ~ > 

~ a = ~ d - - l ,  v a = � 8 9 1 8 8  -~. 

Then tt, v are positive, and 

1 - 9  (42) t t ~ = ~ , , d - ( 2 d - - l ) ( 2 d  + [d] ~ ) > ~ .  

by Lemma 6 and (40) and (39). Hence,  by Lemma 4, there  exist y ,z  sat isfying 

Y--= go (mod I) and z - - z o  (mod l) such that  

(43) - - ( � 8 9  + l [ d ]  "~) < ~(y,z) < � 8 9  I. 

I f  ( ~ ( y , z ) > o ,  we choose x so tha t  x ~ x o  (rood x) and [ x + h y + g z l < =  ~. Then 

o < (x + hy  + ge) ~ + q, (y, e) < �88 + (~ d - -  �88 = (/o~, .ff2)~, 

1 2 by (39). Since the de te rminant  of the ternary  form (37) is - - ~ A ,  this proves 

that,  in the present  case, (36) is valid for the  form (37), with strict  inequality.  

I f  6 ( y , z ) <  o, we a p p l y ' L e m m a  5, with 

fl~ = - -  ~(y,z), B = ~ d > �88 

The condit ion (27) is satisfied, by (43). Hence  there exists x with x-----xo (rood I) 
such that  

I(x + h y  + gz)  ~ - -  ( - -  O(y, z))! N B = �89 d = (~7o ,/'~)~, 

and the conclusion follows as before, but  not  necessarily with strict inequali ty 

in (36). 
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We have now to invest igate the case in which (36) is not  valid with strict 

inequality.  As we have seen in the preceding proof, this possibility can only arise 

when ~(y,z) < o. Since (43) has strict inequali ty,  it  follows from Lemma 5 tha t  

2 B = d must  be an integer. I t  follows fur ther  from Lemma 5 tha t  the inequali ty 

o < - e ( y , z )  < �89 + 

cannot  be satisfied. Thus, if we define v' by 

�89 + �88 

it  is impossible tha t  #v '>~! , .  This, however, is the same as the inequality (34) 

of Lemma 6, and is satisfied unless d = 3. Hence we m u s t  have d = 3, whence 

z / " =  5o by (39). 

Wi th  d = 3 ,  we have / ~ z / = � 8 9 1 8 8  and v ' J = � 8 9 1 8 8  '~ and 

the preceding a rgument  has shown us t ha t  it is impossible tha t  

5 < < 

for y ~ Y0 (rood I), z ~ z0 (mod I). I t  follows from the last clause of Lemma 4 

tha t  ~(y,z) is equivalent  to a positive multiple of the form (26). Since the 

discr iminant  of 6(y,z) is 50, and of the form (26) is 2, the multiple must  be 5. 

Hence, af ter  an integral  unimodular  subst i tut ion on y, z, we can write 

( 4 4 )  q l (x , y , z ) - - ( x  + hy + gz)" + 5Y' + 5YZ- -~  z~. 

The argument  of this paragraph has been based on any representat ion of a 

multiple of the original  form as (37), derived from any positive value a of the 

form sat isfying a ~ (4[D])'~. I t  has been proved tha t  if (36) is not  valid with 

strict  inequali ty,  the positive value a mus t  be such tha t  z/~-= 4]D[/a s has the 

value 5o. Applying the same argument  to the form (44), whose de te rminant  is 

--�89 i t  follows tha t  any positive value a of the form (44), sat isfying 

must  be such tha t  
a < (4. 

a s - -  50. 

Hence the only positive value a of the form (44), with integers x ,y , z  whose 
$ 

highest  common factor  is I, which satisfies a < l / ~  is a = I. 
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By applying a subst i tut ion x = + x'  + m y  + he, where m, n are integers, we 

can suppose tha t  in (44) we have 

o< < lhl<�89 --g �89 
Now 

q l  (2, o ,  - ~) = (2 - g)-' '~ 4 ,  

which is positive and does not  exceed ~ .  Hence it is I, and consequently g = �89 

Also 
(~l (X, I, - - I )  = ( X - -  ~ 4- h)-' '~ �9 - - 7 1 ,  

and on choosing x = 2  if h ~ o  and x = - - I  if h < o  we obtain h = o  by a 

similar argument .  Hence, if we cannot  satisfy (36) with strict  inequali ty subject 

to (35), then Q(x,y , z )  is equivalent to a multiple of the form (4). 

Finally,  we have to prove tha t  for the form (4) there exist Xo. yo, Zo such 

tha t  (36) has no solution with striet  inequality. We  take 

X o = � 8 9  V o = � 8 9  C o = O ,  

and write the form as 

t { (2z  + e)-' + 5 (2v + z)-' - i oz : ) .  

We have to show tha t  this has absolute value at  least ~ when x, y , z  satisfy (35). 

This is the same as saying tha t  

I X-" + 5 Y~- -  IoZ~I  > 6  

when X, Y, Z are integers with X - - Z  and Y - - Z  both odd. I f  Z is odd, this 

follows from the two congruences 

X2 + 5 Y - ' - - I o Z  ~ 2  (rood 4) 

o or _ I (mod 5). 

I f  Z is even, the same congruences are still valid, with the same conclusion. 

This completes the proof of Theorem I. 

4. L e m m a  7. I f  ~2 (x, y, z) is a mtll form, then either (i) for  any real xo, Yo, z0 

there are real x , y , z  satisfyiJ,g x = x  o (rood I), Y~Yo (rood ~), z = z  o (rood I)which 

make Q (x, y, z) arbitrarily small, or (ii) Q (x, y, e) is equivalent to a multiple of 

(45) (x + hy)-'-- Zy(z + ly) (Z > o), 

for  eertain values of  h, )., 1. 
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Proof Since Q represents  zero for  in tegra l  values of x, y, z not  all zero, we 

can suppose wi thou t  loss of general i ty  tha t  Q(o ,o ,  I ) =  o. Then we can write 

Q = a x " +  2 h x y  + bye+ 2 z ( f y  + gx). 

Suppose first t ha t  of/g is i r rat ional .  By a well known theorem on Diophan t ine  

approximat ion  we can find, for  any ~ > o, x and y to satisfy x ~  x0 (rood I), 

Y--= Yo (mod I), and 
o <  I~x + f v l < ~ .  

For  this is equivalent  to sa t isfying 

o < [ g u  + f c +  k [ <  

in integers  u, v. Hav ing  ehosen x and y, Q is of the form 

A + B z ,  

where o < l B l < 2 e ,  and we can find z ~ z 0  (rood I) such tha t  

IA + B z [ < � 8 9  

Thus in this case the  assert ion (i) is true.  

Now suppose tha t  f ig  is rat ional .  Af te r  mul t ip ly ing  Q by a suitable factor,  

we can suppose tha t  f and g are relat ively prime integers.  There  exist  integers  

fl,  g, such tha t  f g l - - J l g  ~ I. The integral  un imodular  subs t i tu t ion  

x" = g~x q-f~y, y' = gx  + f y ,  z' = z 

t ransforms  Q into 
a l x  '~" + 2 h l x ' y '  + b l y  '~ + 2 z ' y ' .  

Here  a 1 =t = o, since we suppose tha t  the de t e rminan t  D of the form is no t  zero. 

On complet ing the square, we obtain a mult iple of a form of the type (45). 

The condi t ion ). > o ean be satisfied by ehanging  y into - - y  if necessary;  t h a t  

;l q= o follows from the hypothes is  tha t  D q= o. 

Lemma 8. 
such that 

(46) 

The~ there exist x, y, z such that 

(47) x -  xo (,nod ~), 

a~?d 

Let Q be the form (45). Suppose there exists y with y -~ Yo (rood I) 

o < Iv I ~ < (2 ~.)-'. 

Y ~- Yo (mod x), z - ~ e o  (rood I) 

(4s) [ Q (x, :,,, ~)1 ~ (~ [ D I) :~. 
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Proof. Choosing y as in the enunciat ion,  Q has the form 

A - - B z ,  

where o < IBI_-<Z(2Z)-~. For an.v x we can choose z with z --  z0 (rood I) such that  

] A - - B z [  <= �89 _--< (~)2)~ = (�88 ] D[)~. 

Lemma  9. Let Q be the form (45), and suppose Z <= 4. Then, for any xo, Yo, zo 

there exist x, y, z to satisfy (47) and (48). 

Proof. Suppose first tha t  o < Z ~ �89 Then (2 ~)-1 => I, and it is plain tha t  there  

exists y ~ Yo (rood I) to sat isfy (46). Thus the resul t  follows from Lemma 8. 

Suppose next  tha t  �89 < Z_-< 4. Then (2 Z) -1 ~ ~, and there  exists y with 

Y ~ Y o  (rood I) such tha t  ] y p ~ ( 2 Z )  -1. I f  y ~ o ,  the result  follows again from 

Lemma 8. I f  y - = o  we have 

Q (x, o, ~) = x ~. 

Choosing x to satisfy [x I_--- < �89 we have 

I q (x, o, ~)i --< l < (,'6 z-~); - -  (t I D 1) ~. 

Lemma 10. For any real x o there exists x - - X o  (rood I) such that 

< [  �89 if#'__<�89 
(49) I = t F ~ - - I  if f-_>_ �89 

Proof. By Lemma 5, it suffices to verify tha t  (27) is satisfied with B =  �89 

or B = 1Ffl~188 as the ease may be. The former  is immediate,  and the la t ter  

follows from the fac t  tha t  the s t ronger  inequali ty 

fl*_--< B + � 8 8  ][)~ 

is satisfied (with equality) when B = Vfl ~ -  1. 

Lemra& 11. Let Q be the form (45), and suppose that ;t > 4. Then for any 

Xo, Yo, zo there exist x, y, z to sati.efy (47) and (48). 

Proof. We choose y ~ y o  (rood I) to satisfy l y[_-- < �89 and then choose Z ~ Z o  

(rood I) to satisfy 
o ~ z + l y < I  if y ~ o ,  

o ~ z + l y > - - I  if y < o .  
Wri t ing  

(50) ,;..,~ (z + Z:,t) = f ,  
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we have 

(SI) 0 =< ~ _< z l y l .  

By Lemma  IO, if fl'*~�89 we can choose X ~ X o  (mod 1) so tha t  
1 

IOl=l(x+hy)'--fl:l<=�89 (�88 s. 

Again,  if $ " >  �89 we can still choose x to satisfy the  final inequali ty,  provided 

1 

l/fl'~-- �88 =< \~6 l  
Hence  we may suppose tha t  

o 

(52) fl~> �88 + \ 1 6 !  

We  now make a different  choice of z, keeping the same y. We put  

z ' ~ z - - I  or z +  I according as y>- -o  or y < o .  
Then 

- z,z(e' + zy) = z l y l -  z~ -> o 

by (5 o) and (5I). W e  have 

Q(x,y,z')=(x + h:r xv(- /+ Z,j)= (x + by)" + Zlyl--fl~. 

Choosing x ~ x o  (rood 1) so tha t  Ix + hyl <= �89 we obtain 
o 

I ~1 - -<  1 + z I , ~ , 1 - Y = <  ~ + �89 -_a~ < ~2 - \ t 6 l  

by (52). Wr i t ing  ;t == 4 #  a, we have 
1 

Ir < 2 , , ~ - . , - - - , , ' - -  (~,-  ,,:): < . : =  ~ z!y. = ' ' = '  \ I 6 1  

Again (48) is satisfied, and the pi'oof of Lemma I I is complete.  

5. P roo f  of Theorem 2. The main assert ion of Theorem 2 follows from 

Lemmas  7, 9 and I I .  Tha t  the cons tant  1 is the best possible follows f rom the 

example 
Q (x, y, z) = 4 x "~ + y'~ - z "~, ~0 = yo = Zo = �89 

This is plainly a null form, and since D = - - 4 ,  it  suffices to prove tha t  I Q l ~  

for  x ~ y ~ z - ~  (mod I). This  is the same as saying tha t  

I 4 X ~ +  y ' - ' - -Z~ 

if  X, I', Z are odd integers.  Since y . o _ Z e ~ o  (rood8), and 4 X ~ - ~ 4  (rood 8), 

the resul t  is immediate.  
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6. W e  now prepare  for  the proof  of Theorem 3- The vi tal  weapon is 

L e m m a  I4, an extension of L e m m a  3, which asserts t h a t  the resul~ of t h a t  

Lemma  can be substantial ly improved when v . . - is approximate ly  2, provided  t h a t  
t t  

L1L~ is not  equivalent  to a positive mult iple of the special form (I3). This is 

a remarkable  result,  for, as we have already observed' ,  such a s i tuat ion does not 

arise in the case of Minkowski 's  or iginal  theorem,  where v ~ / z .  As migh t  be 

expected,  the a rguments  which lead to the proof  of Lem m a  I4, though  elementary,  

are of a delicate nature .  

L e m m a  12. Suppose that R, S are real numbers sati.~/~li,g 

(53) 5 < B < 6 ,  � 8 9  

Let c~, fl be real .umbers, sati,~/iqi.g 

(54) I '1 < ,o% l, l < tO". 

Stq~pose that .either of  the i.equalities 

(55) Io -̀ ~ < .  I ? ' - ' " -  I~R" < I, 

(56) ~o -~ < -  c~R"-" + f l B " S  < i 

is salts.fled b!! a , y  positive integer , .  The~ 

(57) a = ~ - - o .  

Proof. The  resul t  is immedia te  if f l = o .  For  suppose a > o .  Since aR~ 

there  exists a positive in teger  ~ such tha t  

. R-'" < I ~ Ct/~ 2n+2.  

Then a R ~ ' ~  R - e >  Io -'~, and (55) is satisfied, cont ra ry  to hypothesis .  Similarly 

if a < o, we get  a cont radic t ion  on using (5'6). 

We may there fore  suppose tha t  f l ~  o. In  fact,  we may suppose t h a t  

(58) > o.  

For  if we replace a, fl, S by d ,  fl', S', defined by 

, i~r 
a : -  ~ ,  /?----- - -  S ' S == ~ , ,  

the  hypotheses  are unal tered,  except  for  a sl ight  change in the second half  of (54). 

In  fact,  this is never  used in any th ing  apln 'oaching its full  s t rength.  

t See foo tnote  on p. 67. 
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O u r  first  s tep is to  deduce  f r o m  (58 ) t h a t  a > o .  Suppose  t h a t  a_--<o. T h e n  

R ~ ( -  ~) R2n+2 "j- ~ n + l  S < R2" 
- ( - - a )  B e " + f l l ~ " S  

H e n c e  t he r e  exists  a pos i t ive  i n t e g e r  ~ such t h a t  

R-" < (--c~)B ~'' + #B"  S < i, 

and  (56) is satisfied, c o n t r a r y  to  hypo thes i s .  

W e  now have  a > o ,  f l > o .  T h e  inequa l i t y  

(59) IO-5 < g X ~ - -  fiX < I, 

e o r r e s p o n d i n g  to  (55), is sat isf ied if  x lies b e t w e e n  t he  l a rge r  r oo t  of  a x  ~ -  

- -  f i x - -  IO -5 = o and  the  l a r g e r  r o o t  of  a x  ~ -  f i x - -  I = o, i . e .  if  

I 
(60) ._I {fl-i- lf)~e + 4a{IO-~)} < x <  --- I f l +  | ' f l e + 4 a } .  

2 g  2 a  

- 1  
N o t e  t h a t  t he  u p p e r  b o u n d  he re  is g r e a t e r  t h a n  a 2, and  so g r e a t e r  t h a n  m o o  

by (54). I f  (59) has  no so lu t ion  of  the  f o r m  x = R " ,  t he  r a t io  of  the  two  bounds  

in (60) c a n n o t  exceed  B. W e  have ,  t h e r e f o r e  

_<R<6, 
-b | / f t  '' + 4 a ( I O  -5) - -  

/~/T-' + 4 cr - -  6 ~ : ~ + 4  cr ( i o :~  < 5 fl < 5 l '  fie + 4 a (I o-5), 

~'~ + 4 a  < I2I  (fl~" + 4a(IO-5)), 

C~ { I - - I 2 I  (I0-5)} < 3or "~, 

(6I) a < 3 1 fl~. 

S ince  f i R S  < IO -~, t he r e  exists  a pos i t ive  i n t e g e r  ~ such  t h a t  

I O - I R  -1 ~ f l R " S  < IO-1. (62) 

By (6I) and (62), 

c~R"-,~ < 31 f l eB2"  < 31 ( l o  -~ S-X) -~ < xe4(Io-S). 
H e n c e  

I o  -4 > - -  c~R 2" + f l B " S  > io-46  -1 - -  I 2 4 ( I o  -8) > Io -5 . 

T h u s  (56) is sat isfied,  c o n t r a r y  to  hypo thes i s .  Th is  proves  L e m m a  12. 
6 
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Lemma 18. Let ~1, ~, ~1, ~2 be real numbers, each having absolute value less 

than IO-L Suppose that, for all integers p, q, the product 

(63) / / =  {p+q+ I+(p--q) l"2  + p ~ l  + q~2} { p + q  + I--(p--q)|/2+p~l+q72} 

satisfies 

(64) either / - / > I - - I O  -7 or / - / < - - 2 ( I - - I O - ; ) .  

Then 

Proof The hypothesis  is unaltered if we replace ~1, ~ ~2, ~h, ~2 by 73, 71, g2, ~1, 
since this is t an t amoun t  to in terchanging p and q. Hence it will suffice to prove 

tha t  7 ~ =  72 = o. 

Let  

(66) R = 3 + 2 lI2---- 5.82 . . . .  

We first .use the hypothesis  with the following choice of p and q: 

' p = {(V~+ ,)R~+ ( I ~ -  ,)R . . . .  2V2},  
4V~- 

(67) 
I I {(1'~2 -- (}F2- + . . . .  2 |/2}, l)Rn+ I)R 

q - - 4 t ~ 2  

where J~ is a positive integer. We note tha t  R " =  u + v l/2, R-" =u--v l 'P2,  
where u is odd and v even. Hence R *+ R - " - -  2 is a multiple of 4, and R " - - R  -~ 

is a multiple of 41/2.  Consequently the above values of p and q are integers. 

Further ,  we have 

p + q + i + ( p - - q ) l / 2 = R  ", p + q + i - - ( p - - q ) l / - 2 = R - ' L  

We substi tute in (63) , and suppose tha t  both factors are positive (a condit ion 

which is certainly satisfied by small values of n). On dividing the first factor  

by R ~, and the second by R - ' ,  we obtain, by (64), 

(68) {' + R-n(P~ + q~2)} {' + R"(PT, + q72)} > ' -- '0-7, 

provided that both factors are positive. By (67), o < p < R" and o _--< q < R ", hence 

the first factor in (68) is certainly positive, and does not exceed I + 2(IO-7). 

Hence the second factor, if positive, is greater than 

(, - ,0-7)( ,  + 2(,0-7~)-' > , - -  ,0-6. 
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In other words, it  is impossible tha t  

--  I "~ Rn(p~]l + q~/2) <- -xo-S  

for any positive integer J~. By (67), 

4 V2J.]~u(p~I + qr/2) : R ~'" {(1/2 + 1)*')1 -{'- (V-2--  i)g}2 } --2 V2/~a (r]l + ~'}2) 

83 

+ {(I/2-- I)~, + (F2+  i)n,}. 

than  2 I / 2 ( m 7 ) .  Hence i t  is The last  term on the r ight  is numerical ly less 

impossible tha t  

- -  4 ] / 2  + 2 l /2(IO -7) < R 2n {(l/2 + I)~h + 0 /2  --  I)~2} --  2 I /2R'~(r  n + V2) 

< -  4 ]/2-(Io-6) - 2 |/-2(Io-7). 
We define a,/~ by 

(69) a : ( I f2  -~- I)~ 1 ~- (V'2--  l) t~2 , • : 2 (71 -[- /~2)" 

I t  follows from the above tha t  there is no positive integer n for which 

(70) io-5 < _ / ~ 2 . ~  + V 2 / ~ " ~  < I. 

We now apply the hypothesis  with another  choice of p and q. Define p 

and q by 

~, = �88 { 0 / 2  + i) R - -  (v-~--~)  R-, ,  - 21, 
(7i) 

q = �88 { ( ] / 2 - - I ) R  n --(]//-2 -]- I ) /~-n  __ 2}. 

For the same reasons as before, these values of p and q are integers. We have 

(72 ) p + q +  I + ( p - - q )  1/2 = ] / 2 R  '~, p +  q + I - - ( p - - q )  l / 2 = - - V 2 R  -n. 

We subst i tute  in (64), and suppose tha t  the two factors have opposite signs 

(a condit ion which is certainly satisfied for small values of n). We obtain, on 

division by the two expressions in (72), L 

{ 1-{" ]'7:21 R__n(/)~l _]_ q~2)} [ i  |/~I/~n(p~]l_k q~]2)} :> 1 __ 10_7. 

By (7I), o < p < R" and o <~ q < R", hence the first factor  is necessarily positive 

and does not  exceed i + | /2( lo '7) .  'Hence there is no positive integer ~ for which 

Io -~ < . ~  Rn(p~l  + q~?~.) < I. 
v 2  
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By (7I), 

4 R ~ ( p w  + q v ~ ) =  tr {( I/z + ~)w + 0 / 2  - ~)w} - 2 Rn(vi + w) 

- { ( V z -  ~)~,~ + ( V 2 +  ~)~l .  

The last term on the r ight  is numerical ly less than  2]/2(Io-7).  Hence it is 

impossible tha t  

4 V 2 ( m  -~) + 2 V2-(~o -~) < / i ' - " .  - / ~ " f l  < 4 V T -  z V~-(~o-~), 

where a, fl are defined, 

integer  n for which 

as before, by (69). I t  follows tha t  there is no positive 

(73) Io -~< R~"~a--Rnfl < I. 

The hypotheses of Lemma 12 are satisfied, with S =  If2-. For  (53) follows 

from (66); (54) follows f rom (69) and the ini t ial  hypothesis  concerning the 

magni tude  of ~h and ~,~; and (55), (56) are identical  with (70)and (73)- I t  follows 

from Lemma I2 t ha t  a = f l =  o, and so, from (69), tha t  ~ l = V z = o .  As we saw 

at the beginning of the proof, this suffices to establish (65). 

Lemma 14. Suppose that 7 ~ I~ Let #, v be any positive mm~bers satisfying 

(74) i t - - 2  < 7 ,  

Then, with the notation of Lemma 3, either there exist integers x, y such that 

(7 6) --  v zJ ~ (L 1 + el) (L 2 + c2) =< # d ,  

or the quadratic form L 1 L2 is equicalent to a posith'e multiple of the special form (I 3). 

Proof. We may suppose wi thout  loss of generali ty tha t  d----I.  We  assume 

tha t  (7 6) has no solution in integers x, y, and prove tha t  the al ternative con- 

elusion must  hold. 

We  proceed as in the proof of Lemma 3. The condition v >  1 is satisfied, 

by (74) and (75)- We  obtain a lattice in the plane, of de te rminant  (~--~)/~I,  

where 

(77) M ~ t,, 



Non-homogeneous Ternary Quadratic Forms. 85 

such that  every lattice point satisfies 

(78 ) ( X + I ) ( Y + : ) ~ : - - e  or =<- -K 2, 

where K is defined by 

(79) K~ __ v(I--e)  
M 

( K >  o). 

Again there is no lattice point, except the origin, in the rectangle 

(80) 

and it follows that  

Hence, as before, 

[X + Y [ <  2{I + l / i - - e } ,  

I - - e  
M 

- - = > 2 K { I  + I / l - - e } .  

M_< t - - e  < I 
4v{i+V - 

By (75) and (77), we have 

(8~) t~ -- M <  ~_A% 
I - -  7 

We note, for future reference, that  

IX--YI<2K, 

(82) K 2 - - v ( l - - e )  > v ( I - e ) ( l -  7) 
M tt 

by (79), (81), (74). 
The rectangle defined by 

(83) IX  + Y I <  H, 

> ( I - - e ) ( l -  ~) (2 - -  ~]) > 2 - - 4 7 ,  

IX--:YI<eK 

has area 4 HK, and so must contain a lattice point other than the origin, provided 

H satisfies 
I - - e  

H K >  �9 
M 

By (79), (8:), (75), 
f 

[ K M  = " 
I 

Hence, if we take H - -  4(:  --Y) , there is a lattice point other than the origin 

satisfying (83). Since such a lattice point cannot satisfy (80), there must exist a 

lattice point satisfying 

(84) 2{I + l f l I -Z~}~ X +  1"-< ___4, I X - - Y I  <- ' 'K '  
V:-r  
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We have 
4 ( X - - , ) ( Y - - , ) = ( X +  :Y--2)-~--(X - Y ) ~ > - - 4  K'~, 

and consequently, by (78), applied to - - X , -  Y we mnst have 

This implies 
(X + Y - -  2)'-' - - (X -- Y)~ _>-- 4 ( '  --  ~). 

( )' (X--Y)-~< V: 4~:-7-2 - -4( , - - , )< ,o7.  

Hence, writing X----2 + ~, Y ~ - 2  +,7, we have 

1 ~ + , 2 [ <  4 , 4 < 3 7 <  i/iOT, 
V ' - - 7  

So we have proved that  there exists a lattice point 

(85) U = ( 2 + ~ ,  2+ ,7)  with I~I<VG~, Ivl<V,or. 

Next we consider the rectangle defined by 

IX + YI< 2{, + V , - , } ,  IX- -YI<2L ,  

where L is so chosen that  the area exceeds 4(I--~)/M. 

Now 

For this it suffices that 

2{, + VI--~}L>~-. 

2 -/]lr { I + ]/I--•} 42}/= 4#  41f,u~ < - -7  
(1+ Z), 

by (81), (74), (75). Hence it will suffice to take L----1/2(I+7) , and we obtainthe  

existence of a lattice point, other than the origin satisfying 

(86) o < = X + Y < 2 { , + I / , - - ~ } ,  2K<=IX--YI<21/-2(~+7). 
Now 

4 ( X - -  I) ( Y - -  I) = (X + Y - -  2) ~ - ( X -  Y)~_-< 4 - - 4 K 2  < o. 

Hence (78) gives 
(X+ Y - - 2 )  ~ - ( X - Y ) ~  

and, by (82), 

(X + Y-2)~< 8(, + r) -~ -4 (2 -4 r )  < 407. 
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We suppose tha t  X_--> Y, and refer later to the possibility X < Y. Wri t ing 

Z~--- i + V 2 - +  ~1 , Y~-- I - - V 2 +  Vl , 
we have 

(87) 

and, by (86), 

[~x + ~Txl < I 402', 

87 

2 K --  2 |#2  =< ~x --  ~]x < 2 | : 27 .  

By (82), 2 K > 2 V 2 - - 4 7  > 2 | r 2 - 4 7 ,  so that  

(88) I ~,  - -  711 < 4 2'. 

It follows from (87) and (88) that I~11< IoY~, 1711< I~ We have now 
established the existence of a lattice point  

(89) P l = ( I + V 2 - + ~ l ,  x--V-2+~h) with Igll<~oV2',lvll<~oVT. 
The point P ~ =  U - - / ) I  is of the form 

,(9 ~ P 2 = (  1-1fl~-+ ~2, I+V2-+~22) with 1~21 <2oVa, In~l <2ol/~ - 

from (85) and (89). A pair of points satisfying the same conditions is obtained 

if we adopt the possibility X < Y above, except that  2o~: 7 and l o l / T w o u l d  be 

interchanged in (89) and (9o). 

The points /)1 and P2 generate the lattice. For the determinant  of their  

coordinates is nearly 4}:2, and the determinant  of the lattice is 

I - - ,  > 2 K { I  + l /~ - - e}  > 4 br2-(I-- 3 2'), 
M = 

by (82) and the inequality following (8o). Hence it is impossible that  the former 

should be a multiple of the lat ter  by an integral factor greater than I. 

The general point of the lattice is (X, Y), where 

X=p(I + 1 / 2 +  ~1) + q ( I - - 1 # 2 +  ~), Y = p ( I  --lfl2--[ - 71) + q(I + V2--{-~2), 

where p, q are arbitrary integers. By (78) and (82), the hypothesis (64) of Lemma 13 

is satisfied, provided that  

< x o  -7 and 2 2 ' <  Io -7, 

which is so. The initial hypothesis of Lemma I3 is satisfied, by (89) and (90), 

provided tha t  
2o l f7 -<  Io -7, i .e. 2' < �88 
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which is so. Hence,  by Lemma I3, 

~ 1 : : 2  = 7 1 :  72--- O. 

and the lattiee is given by 

X = p ( I  -J-l/-2) + q(I - - | / 2 ) =  2~l q- (I -1-1/'2) /'} 

I T = 2 ) ( I - - | / 2 }  -[- q ( I  q- | / 2 )  = 2 , t  q- (I - - | ? 2 ) , ' ,  

where u, v take all integral  values. I t  follows, as in the proof  of Lemma 3, thnt  

L : L  2 is equivalent  to a positive mult iple of the quadrat ic  form (I3). 

Lemm& 15. Suppose that o < d: < Io -a. Le t  

(9 I) Q(x , y , z )  -~ (x + hy  + gz)  "2 + 5 M(Y ~ + y z  - -  [ z~-), 

~uhel'c 

(9 2) I - -  (~1 ( M < I -~- (~1. 

Suppose that ecery calue of  Q (x, y, e), arising fi'om integers x, y, z whose highest 

common factor is i, which satisfies 

(93) o < Q < 3, 

necessarily satisfies 

(94) : -- ~1 ( Q ( I "J- [~1' 

Then 

(95) h ~ = o  (mod I) and g ~ }  (rood I). 

Proof  On writ ing x = _ + _ x ' +  my + nG where m and n are integers, i~ is 

clear tha t  there is no loss of general i ty  in supposing tha t  

o=<.q_-< (9 6 ) 

We  have 

and 
9 - - 5 ( I  Jr- ~1) ~ O, 

(2 - -  g)'~ - -  ~ M < 4 - -  ~ (I - -  1~1) < 3' 

Hence,  by the hypothesis ,  

I ---(~1 < (~(2, 0, - -  I) < I q- (~1, 
which implies 

(2 _ _ g ) 2 <  ~Sj]L]" ]_ I -]- 1~1 < 9( 1 q- C~1) < (~ q- fi~1) ~" 
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Hence  

(97) 

I f  h > o, we consider 

which satisfies 

t Ience  

whence 

I f  h < o, we consider 

� 8 9 1 8 9  

Q(2, I , - I ) = ( 2  + h - - g ) " - - ~ M ,  

q > ~ - ~ ( ~ +  8 1 ) > o ,  

q < (2 + �89 - �89 + ~) ' - ' -  ~ (~ - ~ )  < 3. 

(2 + h - - g ) ~ ' - - ~ M <  I + (~1, 

2 + h - - g < ~  +~1,  

h < d ~ .  

Q ( I , - - I ,  i ) ~ - - - ( i -  h q- g)2-- ~ I ,  

which again satisfies o < Q < 3, and obtain 

I - -  h q- (J < 3 A- 81 , 

- - h < 2 8 1 .  
Thus,  in e i ther  case, we have 

(9 s) 

W e  write 

(99) g = 1 _ g, 

Le t  y, z be any integers  for  which 

[h{ < 281. 

(I00) yC ~_ yg - -  ~Z2 --  1 

and for  which z is odd. Le t  x = � 8 9  and consider 

Q (x, y, e) = (~ + h ~, - -  .0 e)'-' - ~ M. 

I f  y, z are such tha t  

) /~(~ 4 ~ 1 i -  ~ < h:~ - ~ z  < ) ' ~ ( , -  81) + 3 - ~ ,  

then  o < Q < 3. These condi t ions are cer tainly satisfied if 

The hypothes is  tells us that ,  in this case, 

I --(~i ~ (3 .q_ hy --~z)'--~'_/]I<l + 81, 

89 
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whence 

(I02) [hy --  (dz [ < ~1. 

Thus (Io,) implies (,02). 

We define y, z by 

I {(V2-F I) 'an+l-[- (|f2---I)2"n+1}) 2ff-['g=~{()::2-+ l)')n+l--(]':2 ~I)~ (lO3) , = ~1/~-~ 

where n is any integer, positive or negative. Since (1/2+I)2"§ + v } : 2 ,  
where u, v are odd integers, and (|/2---I) 2"+~ -------u + v]/2, the definitions make 

z an odd integer, and y an integer. Moreover, 

so that (IOO) is satisfied. 

implies (I02). We have 

where 

( ,04)  

(2y + z ) " - -  2.-*------  I, 

It  follows that, with these values of y and z, ( ,o , )  

h!/--pz = H(|:2 + x)2"+' + G (] :2--,) "-','+~, 

( . 
2}:2:/, a = - � 8 8  i +  h-~V~,q. 

We have proved that  there is no integer n for which 

(Io5) O~ ~ ] HO:~-+ 1) 2n+1 + GO:~ - - I )  0"+I ] < �88 

By (98), (99), (IO4), we have 

(106) [ H I < 2 al, ] G [  " (  2(~ 1 . 

Suppose first that  [HI ~=]G] and H=ko .  We can find a positive integer ,n 

such that 

(,oz) 
8 (]/2 "[- I )  ~~ 

[ H[(I~2 + ,)2.+1< ~. 

For this value of n, we have 

I G I (V2--  ,)'-'"+' < 

l HI()':2 + ,)""+~ = ( | ' : i ' +  I )  'n+'-) 
=< {8 (FY*. ,); IHl}; < (too,h); < ~o~,' 

by (IO7) and (IO6). Hence (,o7) implies 

99 < I H O G +  ,) '"+'  + a ():~-i)~"+' I < ,ol 8(5O �9 
8oo():2 + i)'- 
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Hence  (~o5) is satisfied, contrary to what  had been proved. Similarly, if I G I ~ I HI  

and G ~ o we reach a contradiction,  by giving n a suitable negat ive value. Hence  

H =  G ' =  o, whence h = ~)= o f rom (to4), and the Lemma is established. 

(~o8) 

Proof. 

Lemm& 16. With the same hypotheses as in Lemma 15, we have 

M = I .  

where M satisfies (92). 

By Lemma 15, it suffices to consider the form 

q ( x , y , e ) = ( x  + �89 , 5 M ( ~ +  ~ ,z - -  te-'), 

~Ve have 

Q ( x , o , z ) = x  ~ + xe  + . . . .  I - - S M z . ,  
4 

where 

(~o9) I ;v - ,  I < ~ ,h. 

Let  /~,  F 2 , . .  �9 denote  the Fibonacei  numbers,  defined by 

I ' ~ = , ,  F ~ = 2 ,  F , + I = F , + F , - I  ( n = I , 2 , . . . ) .  

Then (Fn, F . + I ) =  I and 

I",';+1 - -  F,,+I ~ ; ~ -  F,~ = ( - -  I) "- l .  
Hence 

Q(F2. ,  o, - -  ~2n-1) = F ~ n - -  F2n/~'2n-1-- N~Tn--1 

= I - -  ( N - -  ~) ~ 7 , , - ~ .  (I IO) 

Since (F2,+l/F2n_l)~'< IO, we can, by (1o9), if N=~ I, determine n so tha t  

?o < I~V-  I I ~.2,~-1 < ~. 

Then (IIO) gives a value of Q(x,y,z),  arising from integral  values of x , y , z  

whose highest  common fac tor  is I, sat isfying o < Q < ~q0 or ]1 < Q < 2. This is 

contrary  to the hypothesis,  and so h r = I, whence M =  I. 

Lemma 17. 

(I~I) 

implies 

(~i2) 

Suppose that o < ~ <  Io -~, and that ~ >4/5 .  

(2 a9" - -  I) (2 v% "i- ['~]') < ~~ (=':'-7 1 ~-~'~ (];)3 

Then the inequality 

3 ( 1 - ~ 5  VT~) < a < 3. 
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Proof. I f  ~ < ` 9  < I, the proof  is the same as in Lemma 6, with tr ivial  

modifications. Now suppose tha t  ~ > I. Then ( I I I )  implies 

( 2 e - x ) ( 2 , ~  + ( e -  i;-~) <~? i " o ~  ' 

or 

54 "93 - -  27 `9~ + 5 4 ` 9 - - 2 7 < 5 0  I--~22 ' 

whence 

4 ` 9 a - - 2 7  &'~ + 5 4 , 9 - - 2 7  < 5o&3{(I - -~2)  - 3 -  I} < 2oo02`9 3. 
Thus  

(I  - -  3 `9-1)2 (4 - -  3 `9-~) < 2o0 62. 

Since `9-~--< I, this gives 1 I - 3  `9-'1 < V2oodz, whence 

I - - | ~ 2 0 0 6 2  < 3 ~-~ < [ +V2oo62,  
and 

3(i - i5 l : ~ )  < ~ < 3 (1 + i5 ~ ) .  

I t  is impossible tha t  3 =<-`9 < 3 (I + I  5 Yd2), for  then  (I I I) would give 

( 2 ` 9 - - I ) ( 2 ` 9 + 9 ) < ~ ~  `9 ) 3 

which is obviously false, since the  lef t  hand side is at  least 75 and the r igh t  

hand  side is less than  

( i+151 /~13  < / i.oI5 X ~ 
50 X 

Hence (II2)  holds. 

7. Proof of Theorem 3. We shall prove tha t  Theorem 3 is t rue  with 

( ' I3 )  d = IO -'0. 

We may suppose tha t  we have a form Q(x , y , z )  and numbers  Xo, Yo, Zo such that ,  

for  all x, y, z sat is fying 

(II4)  x ~ x o (mod I), 

we have 

(II5) 

We have 

Y ~ Yo (mod I), 2' = SO (rood I), 

I Q(x,y,~) l  > (x - a ) ( , %  [DI) .~. 

to prove t ha t  Q is equivalent  to a mult iple of the special form (4). 

We may suppose tha t  D < o. 
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By Lemma 1, there exists a positive value a of Q(x,y,z),  arising from 

integral values of x, y ,z  whose highest common factor is 1, such that 

(I I6) a ~ (4 ]D])]. 

By Lemma 2, Q (x, y, z) is equivalent to a multiple of 

(II7) Ql(x,y,z) =-(x .4- hy + gz) ~ + @(y, z), 

where 4, (y, z) is an indefinite binary quadratic form, whose discriminant J "  satisfies 

(II8) j e _  4 [ D ]  > I. 
aS 

Define d and ~ by 

(1 i9) d = ( ~  ,r  a = ~ (i - a); 

and define positive numbers #, r by 

( i 2o )  ~,~r = � 8 9  �88 ~ =  � 8 9  + �88  ~. 

I t  is impossible that there should exist y, z satisfying (I I4) such that 

( i21)  - ~ < ~(y ,  z) _-_ ~ .  

For if they existed, we could determine x, as in the proof of Theorem I, to 

satisfy (I14) (with the transformed values of xo, Yo, Zo) and would have 

1 
I(x + h y  + g~ )~+  r � 8 9  - -  a ) l d  : (i - -  a) (j, oTo gf-) ,~. 

This contradicts (~15) for the form Q1 of d e t e r m i n a n t -  }J'~, and so contradicts 

(115) for the original form Q. 

Since (I2I) has no solution, Lemma 4 tells us that F,v< ~�89 i.e. 

(2 a - 1)(2 a + [a]  ~) < j :  = ~ ~ �9 

The condition ,~ > ~ of Lemma 17 is satisfied, by (119) and (2 I8). Consequently 

Lemma I7, with d~.--~ d, implies that  

(122) 3 (I - -  I 5 |'/a~) < a < 3' 

From (I 19) we obtain 

(123) 3 (2 - -  i5 V~) < d < 3 fl + 2a), 
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and 

Hence 

(124) 

L/~ = 50 
\31 

\ 3 !  

< 5 o ( I  + 2 ~ ) ~ <  5o( I  + IO~), 

> 5o ( i  _ i5 |/~-)3 > 5o( i  __ 5o |'-~)" 

By (I2O) and (122), 

Also, by (I2O) and (x22), 

zJ 2 
1 - - 5 0 | / ' ~ - <  - -  < I  + IOd. 

50 

v 2 & + 4  
//. 2 ~  % -  I 

2 1 ~ - 3 1  
2 ~ 9 - - I  

I6r " ~ = ( 2 , 9 - I ) ( 2 , 9 + 4 ) -  5 o - ( 3 - - 9 ) ( 4 &  + I8) 

> 5 ~ --  30 (45 |/'~J). 
By (124), 

(I26) I 6 ~ t v >  5 o ( I - - 2 7 V ~ ) J - 9 - > ( I - - 2 7 ~ / ~ ) ( I  + lOd)-' > I -- 3OVa. 

By (I25) and (I26), the hypotheses (74) and (75) of Lemma 14 are satisfied, 

if we take 

7 = 3 ~ 1/~. 

The condition F <  IO -~7 is satisfied, by (I13). The s ta tement  tha t  ( I 2 I ) c a n n o t  be 

satisfied is the same, apar t  from a sl ight  change of notation,  as the s ta tement  

tha t  (76) ennnot be satisfied. Hence Lemma t 4 tells us t ha t  @(y,z) is equivalent 

to a positive multiple of y'-'+ y z - - � 8 8  ~. By (117), af ter  an integral  unimodular  

substi tution on y, z, we can write 

(I27) Ql(X, y, z) - -  (x + h y  + gz)  ~" + 5 2l[(Y ~" + y z  - -  �88 

where M >  o. Comparing the de terminant  of this form with its known value 

__ �88 we have 

(12S) 

By (I23), 

hence 

(129) 

\5Ol \31 

(I - i 5 I"~) ~ < M < (i + 2 ~)~, 

I i - -  i I <  3o V~-. 
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The preceding argument has been based on expressing the given form Q (x, y, z) 

as equivalent to a positive multiple of a form Q1 (x, y, z) of the type (I I7) , derived 

by using any positive value a of Q(x ,y , e )  which satisfied (116). We have seen 

that such a positive value must be such that A -~, defined by (I I8), satisfies (124). 

Since Q is equivalent to a positive multiple of Q1, the corresponding result must 

hold for Q1. The determinant of Q1 bein~ - - } A  ~-, it follows that any positive 

value ai of Qx, which satisfies 

(I30) 

must be such that  A 1, defined by 

{I3') 

satisfies 

( I32)  

9 1 

a:  _-< (A'}:~, 

J ~  , / ~ = - - ,  
a~ 

5 0 ( I - - 5 0 | / d )  < ,d~ < 5 0 ( I  q- lOd) .  

The condition (I3o) is certainly satisfied if a l <  3- Hence with this condition, 

we must have, by (I24) and (132), 

d "~ I -1- I 0 ~  
< < i + 6 0  ! ~ ,  

a? = A~ 1 - - 5 0 | ' - ~  

H ~ a~ = - ~  > ,-5oV~ 
zJr I -}- I0  1~ > I--6~ 

I-Ienee, any positive value al of Ql(x, y, e), arising from integers x, y, z whose 

Mghest common factor is I, which satisfies a~ < 3, must satisfy 

I - - 3 o l P ~ <  ax < I + 3ol:d.  

Taking dx----3 ~ lrd, the hypotheses of Lemma 15 are all satisfied. I t  follows that 

Qx (x, y, z) is equivalent to 

1 ~ 1 Q (x + ~z)" + 5 M ( y  2 + y z - - ~ z - ) .  

The hypotheses of Lemma I6 are satisfied, and hence M =  I. 

Hence we have finally proved that Q ( x , y , e )  is equivalent to a positive 

multiple of 
x~" + 5 Y ~ - - z  ~- + x z  + 5YZ, 

and this completes the proof of Theorem 3. 


