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1. Introduction. The literature on the theory of functions of a real variable contains 

a variety of results which show that  measurable functions, and even arbitrary func- 

tions, have certain continuity properties. As examples, I mention the well known 

theorems of Vitali-Carathdodory [1], Saks-Sierpinski [2], Lusin [3], and the theorem 

of Blumberg [4] which asserts that  for every real function ](x) defined on the closed 

interval [0,1] there is a set D which is dense in the interval such that  /(x) is con- 

tinuous on D relative to D. 

The related topic of measurable and arbitrary one-one transformations has been 

given little attention. I know only of Rademacher's work [5] on measurability pre- 

serving transformations and my short paper [6] on the approximation of arbitrary 

one-one transformations. 

My purpose here is to fill this void partially by obtaining for one-one measurable 

transformations an analog of Lusin's theorem on measurable functions. The form of 

Lusin's theorm I have in mind is that  [7] for every measurable real function /(x) 
defined on the closed interval [0,1] there is, for every e > 0 ,  a continuous g(x) de- 

fined on [0,1] such that  /(x)=g(x) on a set of measure greater than 1 - e .  The 

analogous statement for one-one transformations between [0,1] and itself is that  for 

every such one-one measurable /(x) with measurable inverse ~-1 (x)there is, for every 

e > 0 ,  a homeomorphism g(x) with inverse g-l(x) between [0,1] and itself such that  

/(x)=g(x) and /-l (x) = g-l (x) on sets of measure greater than 1 - e .  I shall show 

that  this statement is false but that  similar statements are true for one-one trans- 

formations between higher dimensional cubes. 

I shall designate a one-one transformation by (/(x), Fl(y)) ,  where the functions 

(x) and /-1 (y) are the direct and inverse functions of the transformation, I shall 

say that  a one-one transformation (/(x), ]-l(y)) between n and m dimensional unit 

cubes I ,  and Im is measurable if the functions /(x) and /-1 (y) are both measurable, 
17--533805. Acta mathematica. 89. Irnprimd le 6 aofZt 1953. 
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and that (/(x), ]-l(y)) is absolutely measurable 1 if, for all measurable sets S c I n ,  
Tc Im ,  the sets /(S) and ] I ( T )  are measurable, where /(S) is the set of all yEIm 
for which there is an xES such that y=/(x),  and / I ( T )  is defined similarly. I t  is 

well known [8] that a measurable transformation (/(x),/-l(y)) is absolutely measurable 

if and only if, for all sets S c In and T c Ira, of measure zero, the sets ] (S) a n d / 1  (T) 

are also of measure zero. 

I show that if n = m_>-2, and (/(x), / l(y)) is a one-one measurable transformation 

between unit n cubes In and lm then for every E>0,  there is a homeomorphism 

(g(x), g l(y)) between In and Im such that  ](x)=g(x) and ]- l (y)=g l(y) on sets 

whose n dimensional measures both exceed 1 - e. This result does not hold if n = m = 1. 

I then show that  if 1 < n < m  and (/(x), ] l(y)) is a one-one measurable transforma- 

tion between unit cubes In and Ira, whose dimensions are n and m, respectively, 

then for every e > 0 ,  there is a homeomorphism (g(x), g-1(y)) between In and a subset 

of I~ whose m dimensional measure exceeds 1 -  e, such that  / (x )= g(x) and 

] 1 (y) = g 1 (y) on sets whose n and m dimensional measures exceed 1 - e, respectively. 

For the case n = m, the proof depends on the possibility of extending a homeo- 

morphism between certain zero dimensioncl closed subsets of the interiors of In and 

I~  to a homeomorphism between In and I~. I t  has been known since the work of 

Antoine [9] that such extensions are always possible only if n = m =  2. However, it 

is adequate for my needs that  such extensions be possible for homeomorphisms 

between special kinds of zero dimensional closed sets which I call sectional. In w 2, 

I show that if n = m > 2, then every homeomorphism between sectionally zero dimen- 

sional closed subsets of the interiors of In and Im may be extended to a homeomor- 

phism between In and Ira. For the case 1 < n < m, I show that  every homeomorphism 

between sectionally zero dimensional subsets of the interiors of In and Im may be 

extended to a homeomorphism between In and a subset of I~. In w 3, I show that  

for every one-one measurable (](x), ] 1 (y)) between In and Ira, where n > 1 and m > 1, 

there are, for every e > 0 ,  closed sets E n c I n  and E ~ I ~ ,  whose n and m dimen- 

sional measures, respectively, exceed 1 - e, such that ( ] (x ) , / l ( y ) )  is a homeomorphism 

between En and E~. I then show that the closed sets En and Em may be taken to 

be sectionally zero dimensional. These facts, when combined with the results of w 2, 

yield the main results of the paper which were mentioned above. w 4 is concerned 

whith related matters. I show that  for every one-one measurable (](x), ]- l (y) ) between 
unit intervals I = [0,1] and J = [0,1] there is a one-one (a(x), g-l(y)) between I and J 

The transformations which I call absolutely measurable are customarily called measurable. 
The terms used here seem to conform more nearly to standard real variable terminology. 
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such that  g (x) and g-1 (y) are of at  most  Baire class 2, and g (x)-- / (x), q-1 (y) = ]-1 (y) 

almost everywhere. I have not been able to answer the analogous question for trans- 

formations between higher dimensional cubes. Finally, I show tha t  for every one-one 

measurable transformation (](x), ]~(y)) between In and I~ there are decompositions 

I~ = S 1 (J S~ [J Ss and Im = ] (S1) ~ ] ($2) [,J ] ($3) into disjoint measurable sets, some 

of which could be empty,  such that  S1 is of n dimensional measure zero, ]($2)is of 

m dimensional measure zero, and (/(x), ] l(y)) is an absolutely measurable trans- 

formation between $3 and ](Ss). 

2. Extension of  homeomorphisms.  Let  n > 2 and let In be an n dimensional unit 

cube. I shall say that  a set E = In is sectionally zero dimensional if for every hyper- 

plane ~ which is parallel to a face of In and for every e > 0 there is a hyFerple~ne 

~ '  parallel to ~ whose distance from ~ is less than e and which contains no points 

of E. I t  is clear that  every sectionally zero dimensional set is zero dimensional in 

the Menger-Urysohn sense [10] but  tha t  there are zero dimensional sets which are 

not sectionally zero dimensional. A set S c I ~  will be called a p-set if it consists of 

a simply connected region, together with the boundary of the region, for which the 

boundary consists of a finite number of n - l  dimensional parallelopipeds which are 

parallel to the faces of I , .  

L e m m a  1. Every subset of a sectionally zero dimensional set is sectionally zero 

dimensional. 

P roo f .  The proof is clear. 

L e m m a  2. If  (](x), [ l(y)) is a homeomorphism between sectionally zero dimen- 

sional closed sets S and T, and e>O,  then S may be decomposed into disjoint 

sectionally zero dimensional closed sets S 1, S, . . . .  , S~, and T may be decomposed 

into disjoint sectionally zero dimensional closed sets T1, I ' ,  . . . . .  T~, each of diameter 

less than e, such that,  for every j= 1, 2, ...., m, (/(x), / l(y)) is a homeomort)hism 

between Sj and Tj. 

P roo f .  There is a 0 > 0, which may be taken to be less than e, such tha t  every 

subset of S of diameter less than 0 is taken by /(x) into a subset of T of diameter 

less than s. Let $1, $2 . . . .  , S m  be a decomposition of S into disjoint sectionally 

zero dimensional closed sets each of diameter  less than (~. Then the sets T 1 =/ ($1)  , 

T 2=/(S~) . . . . .  Tm=](Sm) are sectionally zero dimensional closed subsets of T each 

of diameter less than e. 
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L e m m a  3. If F is a sectionally zero dimensional closed set which is contained 

in the interior of a p-set P then, for every e>  0, there is a finite number of disjoint 

p-sets in the interior of P, each of which contains at least one point of F and is 

of diameter less than e, such that  F is contained in the union of their interiors. 

P roo f .  Since F is sectionally zero dimensional, there is, for every pair of 

parallel faces of In, a finite sequence of parallel hyperplanes such that  one of the 

two given faces of In is first in the sequence and the other is last, and such that  

the distance between successive hyperplanes of the sequence is less than e/~n.  The 

collection of hyperplanes thus obtained for all pairs of parallel faces of In decomposes 

P into a finite number of p-sets, whose interiors are disjoint, such that  F is contained 

in the union of their interiors. Since F is closed, these p-sets may be shrunk to 

disjoint p-sets which are such that  F is still in the union of their interiors. Select 

among the latter p-sets those whose intersection with F is not empty. I t  is clear 

that  these p-sets have all the required properties. 

L e m m a  4. If k > 0, and F 1, F2 . . . . .  F~ is a finite number of disjoint sectionally 

zero dimensional closed sets in the interior of a p-set P, each of diameter less than k, 

then there are disjoint p-sets P1, P 2 , - . - ,  P a  in the interior of P, each of diameter 

less than k I/n, such that  Fj is contained in the interior of Pj, for every / = l, 2 . . . . .  m. 

P roof .  Every Fj is evidently contained in the interior of a p-set Qj which is 

itself in the interior of P and also in a cube of side k. The set Ps will be a subset 

of Qj and so its diameter will be less than kVn. Since FI, F 2 , . . . ,  Fm are disjoint 

closed sets, there is a constant d > 0  such that  the distance between any two of 

them exceeds d. By Lemma 3, each Fj has an associated finite number of disjoint 

p-sets, all of which are subsets of @ of diameter less than d/2, each of which 

contains at least one point of Fj, and are such that  Fj is contained in the union 

of their interiors. Call these sets Psi, Ps2, . . . ,  Pjnj. If i ~ j ,  then every pair of sets 

PiT, Pj~ is disjoint, since the distance between F~ and Fj exceeds d. For every 

i = 1, 2 , . . . ,  m, the set Pjl can be connected to Pt~, Pj2 to PJ3, and so on until 

Pj, m j l  is connected to Pjmj by means of parallelopipeds with faces parallel to 

the faces of In, which remain in Qj and do not intersect each other or any of the 

sets P~T. The set Pj is the union of Pjl ,  Pjz . . . .  , Pjm s and the connecting paral]elo- 

pipeds. Pj is a subset of Qj. I t  is a p-set of diameter less than k Vn whose interior 

contains Fj. Moreover, if i ~ j ,  then the intersection of P, and Pj is empty. 
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L e m m a  5. If P and Q are p-sets, P1, Pz . . . . .  Pm and Qi, Q2, . . . ,  Qm are 

disjoint p-sets in the interiors of P and Q, respectively, having Pl, P2, . - . ,  pm and 

ql, q2 . . . . .  qm as their own interiors, then every homeomorphism (](x), ]-1 (y)) between 

the boundaries of P and Q may be extended to a homeomorphism between P - [ ~ p j  
1=1 

and Q - [ ~  qj which takes the boundary of Pj into the boundary of Qj for every 
/ffil 

j = l ,  2 , . . . , m .  

Proof. Let R be a p-set contained in the interior of P which has the sets 

P1, P2 . . . .  , Pm in its interior and let S be a p-set contained in the interior of Q 

which has the sets Q~, Q2 . . . . .  Q~ in its interior. There is a homeomorphism 

(~ (x), ~ l(y)) between R -  5 pj and S -  5 qs which takes the boundary of Pj into the 
1~1 / '=1 

boundary of Qj for every i- I need only show that there is a homeomorphism between 

the closed region bounded by P and R and the closed region bounded by Q and S 

which agrees with (](x), / l(y)) on the outer boundaries and agrees with (~(x), r (y)) 

on the inner boundaries. By taking cross-cuts from the outer to the inner boundaries 

and extending the homeomorphisms along the cross-cuts, the problem is reduced to 

the following one: if two regions R~ and R2 are both homeomorphic to the closed 

n dimensional sphere an and if (/(x),/-1 (y)) is a homeomorphism between the boundaries 

of RI and R2 then (](x), ]-l(y)) may be extended to a homeomorphism between R 1 

and R2. In order to show this, I consider arbitrary homeomorphisms (g(x), O-l(y)) 
and (h(x), h-l(y)) between R 1 and a,  and between R2 and a,. I then consider the 

following special homeomorphism (k(x), k-l(y)) between a, and itself: For each ~ on 

the boundary of an, let 
k (~) = h (] (r 1 (~))). 

For each ~ in the interior of an, let k(~) be defined by first moving ~ along the 

radius on which it lies to the point ~' on the boundary of an which lies on the 

same radius, then by moving ~' to the point k(~'), and finally by moving k(~')along 

the radius of a,  on which it ties to the point on the same radius whose distance 

from the center of an is the same as the distance of $ from the center of an. The 

transformation k (~) which is defined in this way is easily seen to be a homeomorphism 

between an and itself. The transformation 

(z) = h -1 (k (a (z))), 

together with its inverse, constitutes a homeomorphism between R~ and R~. This 

homeomorphism is an extension of (](x), ]-1 (y)), for if x is on the boundary of R 1, then 
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q~ (x) = h -1 (k (g (x))) = ]~-1 (Is (1 (g-i (g (x))))) 

= h -1 (h (/(x))) = ] (x). 

I am now ready to prove a theorem on the extension of homeomorphisms. 

T h e o r e m  i .  If P and Q are n-dimensional p-sets for n > 2 ,  and S and T are 

sectionally zero dimensional closed subsets of the interiors of P and Q, respectively, 

every homeomorphism (/(x), / i(y)) between S and T may be extended to a homeo- 

morphism between P and Q. 

proof .  By Lemma 2, S and T have decompositions into disjoint closed sets 

$1, $2 . . . . .  Sin, and T1, T 2 . . . .  , Tm~, all of diameter less than l ,  such that  Ts,=/(Sj,), 
for every i1= l, 2 , . . . ,  m 1. By Lemma 1, these sets are all sectionally zero dimen- 

sional, and so, by Lemma 4, there are disjoint p-sets P1, P2 . . . .  , Pm~ in the interior 

of P and disjoint p-sets Q1, Q2 . . . . .  .Qm~ in the interior of Q, all of diameter less 

than Vn, such that, for every i1= 1, 2 , . . . ,  ml, Sj 1 is in the interior of Pj, and Tj~ 

is in the interior of Qj,. For every jl = 1, 2 . . . . .  ml, the sets Sj, and Tj, have 

decompositions into disjoint sectionally zero dimensional closed sets Sj,~, Sj,e, . . . ,  SjI~j, 

and Tj,1, Tj,2, . . . ,  Tj, mj,, all of diameter less than 1/2, such that  T~Ij,=](Sj,s~), for 

for every i2 = l,  2 . . . .  , mjl; and there are disjoint p-sets Pj,1, Ps,2 . . . .  , Pj, mj, in the 

interior of PJl and disjoint p-sets Qj,I, QJ,~ . . . .  , Qj,~jl in the interior of Qs,, all of 

diameter less than fn/2, such that  for every i2 = 1, 2 . . . . .  rnj~, Sj~j, is in the interior 

of Ps,s, and Tj~j, is in the interior of Qj~j,. By repeated application of the lemmas 

in this way, the following system of sets is obtained: First, there is a posi- 

tive integer m~; for every j~<m~, there is a positive integer mj,; for every 

i~<nq, j~<mj, there is a positive integer mj,~,; and, for every positive integer 

k, having defined the positive integers rnjj~...jk ~, there is for every jx<m~, 

12<mj . . . . . .  jk<mj,  j,...jk_l, a positive integer mj~j,...j k. Now, for every positive 

integer k, for every /'1<ml, i2<mj . . . . .  , ik<mjlj~...j~_l, there are sets S~,~,...~, 

T~,~,...~, P~,~,...~, and Q~,~,...~. The sets S~,~,...~ and T~,~,...~ are sectionally zero 

dimensional subsets of S~,~,...~_~ and T~,~,...~_~, respectively, all with diameters 

less than 1/2 ~, such that  T~,~,...~,=/(S~,...~,). The set P~,~,...~e is a p-set of 

diameter less than fn/2 ~̀ which contains S~,~,...~ in its interior ~nd is in the interior 

of P~,~,...~_~. and Q~,~,...~ is a p-set of diameter less than n/2 ~ which contains 

T~,. . .~e in its interior and is in the interior of @,~,-..~-1" Moreover, for every 

i~<m~, i~-<m~,, . . . ,  i~-~ =<m~,~,...~_~, the sets P~,~,...~, as well as the sets Q~,~,...~, 

are disjoint for ~ = 1, 2, . . . ,  m~,~,...~_~. 
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The desired extension of the homeomorphism (](x), ]-l(y)) between 8 and T to 

a bomeomorphism between P and Q is now obtained by repeated application of 

Lemma 5 to the p-sets Pj,j, . . .j~ and QJ,J,...Jk" Designate the interiors of PJd,...Jk 

and QJ,J2...sk by ~0t~J2...Jk and qs,J,...Je, respectively. A homeomorphism (~o(x), q0-1(y)) 
m I m I 

is first effected between P -  [.J pj~ and Q -  U qj~ which takes the boundary of Pj~ into 
] t=l  g t ~ l  

the boundary of Q~,, for every j l = l ,  2 , . . . ,  mx. For every )'1= l ,  2 . . . .  , ml, this 

homeomorphism between the boundaries of P~, and Q~, may be extended to a homeo- 
mj  t mJ t 

morphism (r ~0 l(y)) between P~ , -  U p~,,l and Q ~ = , U  t q~,,, which takes the 

boundary of P~j, into the boundary of Q~,~2, for every J3= 1, 2 , . . . ,  m~,. For every 

positive integer k, having defined the homeomorphism (~(x), 90-1(y)) between 

P - U  P~,~,...~,-1 and Q - O  q~,~2...~-1, where the union is taken over all J l<ml ,  

J3 <ms, . . . . .  J,-1 < m~,~2...~,_~, the homeomorphism (r ~-l(y)) between the boundary 

of P~,~2--.~-t and the boundary of Q~,~2...~-~ may, for every j r<mr ,  j~<m1 . . . . . .  

J~-~<m~,~2...~-a, be extended to a homeomorphism between 

mj~ 12 . �9  Jk  - 1 

P/,/,.../k 1 -  U P1,1,...1~ 
J k - 1  

and 
rn l l t l  " " t k - 1  

Q t l J  s . . . J k _  1 - -  U qhJ, ...lk " 
J k - 1  

Since S =  f~(U Ps,,,...,k) and T--  l~ (U Qt,,,...,~), where the union is taken over 
k - 1  k - I  

all j l < m l ,  j2<mj . . . . .  , j k < ~ j d , . . . j k _ l ,  (~(X), 9~-11y)) is a one-one transformation 

between P - S  and Q - T .  By letting ~0(x) = / (x )  for every xeS,  (q~(x), ~-l(y)) becomes 

a one-one transformation between P and Q which is all extension of the homeo- 

morphism (/(x), Fl(y))  between S and T. For every x e S  and e > 0 ,  there are 

PJd,...Jk, and qJd,...sk of diameters less than e, such that xEpjd , . . . j  k, 90(x)E qtd,...Jk, 

and qtd,...Jk = ~ (PJ,~,".Jk), Accordingly, ~0 (x) is continuous at x. For every x E P -  S, 

there is a k such that xCUPs,j,...sj,, where the union is taken over all j l < m l ,  

J3 < mj, . . . . .  J~ < mj~j,...j~_1, so that  it follows from the above construction that ~(x) 

is continuous at x. Hence, ~(x) is continuous on P. Similarly, ~0-1(y) is continuous 

on Q. This shows that (90(x), ~0-1(y)) is a homeomorphism between P and Q which 

is an extension of the homeomorphism (/(x), [-l(y)) between 8 end T. 
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A result similar to that  of Theorem 1 holds even if n~m.  Of course, a given 

homeomorphism between sectionally zero dimensional closed subsets of an n dimen- 

sional p-set P and an m dimensional p-set Q, n < m, cannot now be extended to a 

homeomorphism between P and Q. However, it can be extended to a homeomorphism 

between P and a proper subset of Q. Constructions similar to the one which will 

be given here have been used by Nhbeling [11] and Besieovitch [12], in their work 

on surface area. 

T h e o r e m  2. If l < n < m ,  P is an n dimensional p-set and Q is an m dimen 

sional p-set, and S and T are sectionally zero dimensional closed subsets of the 

interiors of P and Q, respectively, then every homeomorphism (/(x), Fl(y))  between 

S and T may be extended to a homeomorphism between P and a subset of Q. 

Proof .  I shall dwell only upon those points at which the proof differs from 

that  of Theorem 1. Lemmas 1, 2, and 4 remain valid for l < n < m .  The families 

Sj,~2...j k and Tj,j , . . . j  k of sectionally zero dimensional closed sets, Pj, j , . . . j ,  of n 

dimensional p-sets, and QJ,~,...~k of m dimensional p-sets, for k = 1, 2 . . . .  , Jl < ml, 

]= < mJ,, �9 �9 jk < rnj,j,...jk_l . . . . .  may, accordingly, be constructed just as for the case 

n =m > 2. Let R be an n dimensional closed parallelopiped contained in the boundary 

of Q. Let R1, R= . . . . .  Rm, be disjoint n dimensional closed parallelopipeds contained 

in the interior of R, and for every j l < m t ,  let Us, be an n dimensional closed 

parallelopiped contained in the boundary of Qs,. Now, for every 11 < ml, the boundary 

of Rj, may be connected to the boundary of Us, by means of a pipe lying in the 

interior of Q, whose surface Zs, is an n dimensional closed polyhedron such that  if 

Jl~J; then Zs,, Zr, are disjoint. There is a homeomorphism (q0(x), ~p-l(y)) between 
m 2 m I m 1 

P - s  IJ,ps22- and (R,IJrs,)s,ol LJ (IJ Zs,) which takes the boundary of Ps, into the boundary 
Jl-1 

of Uj,, for every j l < m l .  For every jl~_~n], let Rj,1, Rj~, . . . .  , Rj,~s2 be disjoint n 

dimensional closed parallelopipeds in the interior of Us, and, for every J= < rnj,, let 

Uj,s, be an n dimensional closed parallelopiped contained in the boundary of QJ,s,. 

For every J= < ~nj,, the boundary of Rs,s, may be connected to the boundary of Us,J, 

by means of a pipe, lying in the interior of Qj, whose surface Zs,J, is an n dimen- 

sional polyhedron such that  if 1~i; then Zs,~,, Zs,r, are disjoint. The homeomorphism 

(q0(x), ~p-l(y)) between the boundaries of Ps2 and Uj, may be extended to a homeo- 
ms 2 rns 2 ms 2 

morphism (q~(x), q0-' (y)) between Ps,-s,_(,I 1 Ps,s, and (Us,-sl=Jlrs,,,) IJ (Us,.1Zs,s,) which 

takes the boundary of PJ,s, into the boundary of Us,s,, for every j,-< mj,. By repeating 
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the extension of the homeomorphism for all k = 1, 2, . . . ,  as in the proof of Theorem 1, 

a homeomorphism is obtained between P - S  and a subset of Q - T .  That  this 

homeomorphism may be extended to one between P and a subset of Q which contains 

T and is such that  ~ (x)= ] (x), for every x E S, follows by a slight modification of 

the argument used in the proof of Theorem 1. 

For the case n = m = l ,  one can easily find one-one transformations between 

finite sets in In and Im which cannot be extended to homeomorphisms between I~ 

and Ira. But every one-one transformation between finite sets is a homeomorphism, 

and every finite set is a sectionally zero dimensional closed set, so that  Theorem 1 

does not hold for this case. 

3. Application to one-one measurable transformations. As stated in the introduc- 

tion, a one-one measurable transformation, (/(x), /-l(y)), between an n dimensional 

open cube In and an m dimensional open cube Im is one for which /(x) and / - l (y )  

are both measurable functions. That  is to say, for all Borel sets T c I , ,  and S c ln ,  

the sets / l ( T ) c I n  and / ( S ) c I z  are measurable. 

A remark concerning this definition seems to be appropriate. That  the meas- 

urability of ]-l(y) does not follow from that  of /(x) is shown by the following 

example: Let  I and J be open unit intervals (0,1). Let  S ~ I  be a Borel set of 

measure zero, but  of the same cardinal number c as the continuum, and T c J  a 

Borel set of positive measure such that  J - T  is also of positive measure. Then T 

contains disjoint non-measurable sets T1 and T~, both of cardinal number c, such 

that  T=TtI.J T2; and S contains disjoint Borel sets $1 and S~, both of cardinal 

number c, such that  S=S1US 2. Define (/(x), / l(y)) by means of a one-one corre- 

spondence between I - S  and J - T  which takes every Borel set in I - S  into a 

measurable set in J - T  and every Borel set in J - T  into a measurable set in I - S ,  

and by means of arbitrary one-one correspondences between S1 and T~ and between 

$2 and T2. The function /(x) is measurable. For, let B be any Borel set in J .  Then 

B =  B1 LI B2, where B1 = B  CI (J ~ T )  and B2 = B CI T are also Borel set. But  /-1 (Bx) 

is measurable and / I(B~) is of measure zero, so that  ] - I ( B ) i s  measurable. The 

function / - l (y)  is non-measurable, since Sx is a Borel set and T I = t ( S I ) i s n o n -  

measurable. 

On the other hand, if (/(x), /-~(y)) is a one-one transformation such that  / ( z )  

is measurable and takes all sets of measure zero into sets of measure zero, then 

/-~(y) is also measurable, and (/(x), F~(y)) is a one-one measurable transformation. 

For, by the Vitali-Carath~odory theorem, there is a function 9@), of Baire class 2 
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at  most, such tha t  ] (x) = g (x), except on a Borel set Z c I of measure zero. Now g (x) 

as a Baire function on an interval I ,  takes all Borel sets [13] in I into Borel sets 

in J .  Let  B c I  be a Borel set. Then B is the union of Borel sets B 1 C I - Z  and 

B2cZ. Since /(B1)=g(B1) is a Borel set and /(B2) is of measure zero, / (B) i s  
measurable, so tha t  ]-1 (y) is a measurable function. 

The usual form of Lusin's Theorem [14] is tha t  for every measurable real valued 

function ](x) defined, say, on an open n dimensional unit cube In, and for every 

e >  0, there is a closed set S c In, whose n dimensional measure exceeds l - e ,  such 

tha t  ](x) is continuous on S relative to S. Since every measurable function on In 

with values in an m dimensional cube Im is given by m measurable real va]ued 

functions, and the continuous functions on a set S c In relative to S, with values 

in Ira, are those for which the corresponding set of m real functions are all continuous 

on S relative to S, the theorem is readily seen to hold just as well for functions 

on In with values in I~.  Moreover, the following result is valid for one-one measurable 

transformations. 

T h e o r e m  3. If (/(x), /-l(y)) is a one-one measurable transformation between 

open n dimensional and m dimensional unit  cubes In and I~,  where n and m are 

any positive integers then, for every e > 0 ,  there is a closed set S c I n  of n dimen- 

sional measure greater than 1 - e  and a closed set T c l ~  of m dimensional measure 

greater than 1 - e  such tha t  (/(x), /-](y)) is a homeomorphism between S and T. 

P roo f .  I t  is known [15] that  if (~(x), ~- l (y))  is a one-one transformation between 

a closed set S c $  and a set T ~ Y ,  where $ and Y are subsets of compact  sets, and 

if ~(x) is continuous, then T is a closed set and ~ - l ( y ) i s  continuous, so tha t  

(~(x), ~-1 (y)) is a homeomorphism. This assertion holds for the case $ = I , ,  Y = I~,  since 

their closures are compact sets. Since /(x) is measurable, there is a closed set SCln,  
Of n dimensional measure greater than l - e ,  such tha t  /(x) is continuous on S 

relative to S. The set ](S) is a closed subset of Ira, and t - l (y)  is continuous o n / ( S )  

relative to ](S). The complement, C/(S),  is measurable, and the function f-l(y) 
defined on it is measurable. Accordingly, again by Lusin's Theorem, there is a closed 

subset T of G ] (S), whose measure exceeds m (C / (8)) - e, such t h a t / - 1  (y) is continuous 

on T relative to T. The set /-1 (T) is closed a n d / ( x )  is continuous on / I (T) relative 

to / I ( T ) .  Now, the set S U ] I (T)  is closed and of n dimensional measure greater 

than l - E ,  the set TU](S) is closed and of m dimensional measure greater than 

1 - s .  The transformation (/(x), / - l (y))  is a homeomorphism between S ( J t  -1 (T) and 

TU/(S). For, the fact tha t  /(x) is continuous on S U / - I ( T )  relative to SU/-I(T)  
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follows from the facts that  it is continuous on S relative to S and o n / - i  (T) relative 

to / - I (T)  and that  S and / - I (T) ,  as disjoint closed sets, have positive distance from 

each other. The function ] l (y )  is continuous on T U / ( S )  relative to T U / ( S )  for 

similar reasons. 

T h e o r e m  4. The sets S and T of Theorem 3 may be taken to be sectionally 

zero dimensional closed sets. 

P roof .  Let  U c In and V c Im be closed sets, U of n dimensional measure greater 

than l - e / 2  and V of m dimensional measure greater than 1 - ~ / 2 ,  such that  

(/(x), t l(y)) is a homeomorphism between U and V. For convenience, I shall 

designate the intersection of a hyperplane ~ with the open cube In by ~ and shall 

refer to this intersection as the hyperplane. Among all hyperplanes g which are 

parallel to faces of In, there is only a finite or denumerable number for which the 

set /(~) is of positive m dimensional measure. For, if the set of hyperplanes with 

this property were non-denumerable, then a non-denumerable number of them 

would be parallel to one of the faces of In. Then, for some positive integer k, an 

infinite number of these hyperplanes ~ would be such that  the m dimensional measure 

of /(~) exceeds 1/k. This contradicts the fact that  m(Im)=l,  where the notation 

re(S) will henceforth indicate m dimensional measure for subsets of Im and n dimen- 

sional measure for subsets of Ira. I t  then follows that  for every face of I , ,  there is 

a denumerable set of hyperplanes parallcl to the face, whose union is dense in I , ,  

such that  m ( / ( ~ ) ) = 0  for every hyperplane ~ in the set. As the union of a finite 

number of denumerable sets, this totality of hyperplanes is denumerable in number, 

and so it may bc ordered as 
t 

:7~1~ 7/:2~ . . . ,  7 g k ,  . . . .  

I associate with each ~ an open set Gk, as follows: For every positive integer r, 

let Gkr be the set of all points in I ,  whose distance from ~k is less than 1/r. Since 

](~k) = ~/(Gkr),  the sets /(Gk~) are non-increasing, and m(/(~D)= 0, there is an rk 
r - 1  

for which m(/(Gk,k) ) < ~]/2 k, where ~] = e/4. Moreover, rk may be taken so large that  

m(Gk~k)<~]/2 k. Let G= ~J Gkr k, Then I n - G  is a sectionally zero dimensional closed 
k - 1  

set of n dimensional measure greater than 1-~1 such that  / ( I n -  G) is of m dimen- 

sional measure greater than l - r ] .  In the same way, there is an H c I,, for which 

I ~ - H  is a sectionally zero dimensional closed set of m dimensional measure greater 

than 1-~]  such that  /-1 ( I ~ - H )  is of n dimensional measure greater than 1-~].  The' 
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set (Ira- H)N V is sectionally zero dimensional, closed, and of m dimensional measure 

greater than 1 - ( e / 2 + ~ ] ) ;  and ]-I[(Im-H) N V] is closed and of n dimensional 

measure greater than 1 - (e/2 + ~). Then, the set S = / -1  [(Ira - H) N V] N (In - G) is a 

closed, sectionally zero dimensional set o f  n dimensional  measure greater than 

1 -  (e/2 + ~  ~ - ~ ) - - 1 -  e, whose image T=/(S) is a closed, sectionally zero dimensional 

set of m dimensional measure greater than 1 - e .  Since S c U, the transformation 

(/(x), ]-a(y)) is a homeomorphism between S and T. 

The main results of this paper now follow: 

T h e o r e m  5. If n = m > 2, In and Im are n dimensional open unit  cubes, and 

(/(x), / - l (y))  is a one-one measurable transformation between In and Ira, then for 

every e>O, there is a homeomorphism (g(x), g-l(y)) between In and I~ such that  

/(:r.)=g(x) and ]-l(y)=g-1 (y) on sets whose n dimensional measures exceed 1 - e .  

P roo f .  By Theorem 4, (](x), ]-l(y)) is a homeomorphism between sectionally 

zero dimensional closed sets S c In and T ~ I~, both of whose n dimensional measures 

exceed 1 - e .  Let  (g(x), g-l(y)) be the extension of this bomeomorphism between S 

and T to a homeomorphism between I ,  and I~, whose existence is assured by 

Theorem 1. 

That  Theorem 5 does not hold for the case n = m = 1 is shown by the following 

one-one measurable transformation between In = (0,1) and I~ = (0,1): 

](x)=x+ l/2 0 < x < l / 2  

---x-l~2 1 / 2 < x < l  

=1/2 x=1/2. 

Suppose (g(x), g-l(y)) is a homeomorphism between In and I~. Then g~x)is 
either strictly increasing or strictly decreasing on In. If g(x) is strictly decreasing, 

then ] (~ )=  g(x) for at  most three values of x. If g(x) is strictly increasing, then if 

there is a ~ such that  0 < ~ < 1/2 and t (~)=g(~), it follows that  / ( x ) ~ g  (x) for every x 

such that  1 / 2 < x < l ,  In either case, the set on which ](x)=g(x) is of measure not 

greater than 1/2. 

T h e o r e m  6. If l < n < m ,  In is an n dimensional open unit cube, I~ is an m 

dimensional open unit cube, and (~(x), t- l(y))  is a one-one measurable transformation 

between In and I~, then for every e > 0 ,  there is a homeomorphism (g(x), g-1(y)) 
between In and a subset of Ira, such that  ](x)=g(x) on a set whose n dimensional 

measure exceeds 1 - e  and Fl(y)=g-l(y) on a set whose m dimensional measure 

exceeds 1 - e. 
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Proof .  Just  as in the proof of Theorem 5 except tha t  Theorem 2 is needed 

instead of Theorem 1.. 

In Theorem 6, the subset of Im into which In is taken by g(x) is of m dimen- 

sional measure greater than 1 -  e. I show now that  it cannot be of m dimensional 

measure 1. For, suppose (g(x), g-~(y)) is a homeomorphism between In and a subset 

U of I z  of m dimensional measure 1. 

y=g(x)EU. Let {Ink} be the sequence of 

for every k, the n dimensional measure of 

subset of U which is nowhere dense in I~ 

Then U is dense in Ira. Let  x EI,, and 

closed cubes concentric with In such that ,  

I~k is 1 - 1 / k .  The set g(In~) is a closed 

since, otherwise, as a closed set, it would 

contain an m dimensional sphere, making an n dimensional set homeomorphic with 

an m>n  dimensional set. The sphere ak of center y and radius l /k ,  accordingly, 

contains a point yk E U such that  yk Cg(In~). The sequence {y~} converges to y, but  

the distances from the boundary of In of the elements of the sequence {9-1(yk)} 

converge to zero so that  the sequence does not converge to x, and the function 

g-l(y) is not continuous. This contradicts the assumption that  (g(x), g-l(y))is a 

homeomorphism. The following theorem should be of interest in this connection. 

T h e o r e m  7. If l < n < m ,  In is an open n dimensional unit cube, lm is an 

open m dimensional unit cube, and (](x), /- l(y))  is a one-one measurable transforma- 

tion between In and Ira, then, for every e > 0 ,  there is a one-one transformation 

(g(x), g-l(y)) between In and a subset of Im of m dimensional measure 1, such tha t  

g(x) is continuous, /(x)= g(x) on a set of n dimensional measure greater than 1 -  e, 

and / 1  (y)=g-1 (y) on a set of m dimensional measure greater than 1 - e .  

P roof .  By Theorem 4, there are sectionally zero dimensional sets S c I n  and 

T c Ira such that  (/(x), /-1 (y)) is a homeomorphism between ,S and T, and the n 

dimensional measure of ,~ and m dimensional measure of T both exceed 1 -  e. The 

distance of S from the boundary of In is positive, so that  there is a closed cube 

In1 in In such that  S is contained in the interior of In1. The homeomorphism (/(x), 

/-l(y)) between S and T may be extended, by Theorem 2, to a homeomorphism 

(gl(x), gil(y)) between In1 and a subset, El, of I~ whose boundary is the boundary 

of an n dimensional cube. Now, let In1 be the first member of an increasing sequence 

In1, In2, �9 . . ,  I n k , . . .  

of closed unit cubes whose union is In, each of which is contained in the interior 

of its immediate successor, and let 

El, E2, �9 �9 .~ Ek~ �9 �9 �9 
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be a decreasing sequence of positive numbers which converges to zero. The set El, as 

a closed homeomorphic image of an n dimensional set, is nowhere dense in Ira. 

Let T 1 C I m - E 1  be a sectionally zero dimensional closed set such tha t  the m dimen- 

sional measure of I m - ( E 1  (J T1) is less than e2. Now, T 1 may be taken to be the 

intersection of a decreasing sequence of sets each of which consists of a finite number 

of disjoint closed m dimensional cubes contained in I m -  El, so tha t  the homeomorphism 

(gl(x), gil(y)) between In1 and E 1 may  then be extended, in the manner  described 

by  Besicovitch [12], to a homeomorphism (g2(x), g21(y)) between In2 and a closed 

subset E 2 ~  T 1 of It, ,  of m dimensional measure greater than l - e 2 ,  whose boundary 

is the boundary of a n dimensional cube. In  this way, the sequence of homeomorphisms 

(gl(x) ' g~l(y)), (g2(x), g:il(y)) . . . .  , (gk(x), gZl(y)) . . . .  , each of which is an extension 

of its immediate predecessor, such tha t ,  for every k, (gk (x), g~ 1 (y)) is a homeomorphism 

between Ink and a subset Ek of Im of m dimensional measure greater than  1 - e k ,  

is obtained. The sequence {gk(x)} converges to a function g(x) defined on In which 

has an inverse g l (y) .  The one-one transformation (g(x), g~(y)) evidently has the 

desired properties. 

Theorem 5 has the following interpretation. For any two one-one measurable 

transformations Yl : (Ix(x), /11(Y)) and :72 : (/2(x), /.1 (y)) between a given n dimensional 

open unit cube In, n_- > 2, and itself, let 

5 (~Jl, Y2) = m (E) ~t m (F), 

where E is the set of points for which / l(x)~]2(x),  F is the set of points for which 

/ i ~ ( y ) r  and re(E) and re(F) are their  n dimensional measures. If  Ja is 

equivalent to J2 whenever 5 (Jl,  J2 )=  0, the equivalence classes obtained in the usual 

way are readily seen to form a metric space. Theorem 5 may now be restated: 

T h e o r e m  5'. The set of homeomorphisms is dense in the metric space of all 

one-one measurable transformations between an n dimensional open cube In, n > 2, 

and itself. 

A different distance between transformations has been introduced by P. R. Halmos 

[16] in his work on measure preserving transformations. A metric similar to the one 

used by Halmos could be introduced here. Theorem 5' could then be stated in terms 

of this metric (~', since it would follow tha t  5'_- < (~ for every pair of transformations. 

4. Re la ted  results  and  ques t ions .  The theorem of Vitali-Carath~odory says tha t  

for every measurable f(x) on, say, the open interval (0,1) there is a g(x) on (0,1), 

of Baire class 2 a t  most, such that  ] (x)=g(x)a lmost  everywhere. I prove the follow- 

ing analogous theorem for one-one measurable transformations. 
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T h e o r e m  8. If (](X), /-1 (y)) is a one-one measurable transformation between 

I= (0,1) and I= (0,1) there is a one-one transformation (g(x), g l(y))  between I and J 

such that  g(x) and g-l(y) are of Baire class 2 at most and are such t h a t / ( x ) = g ( x )  

and / l(y)=g 1(y) almost everywhere. 

P roof .  The proof depends upon the following relations between Baire functions 

and Borel sets (17]. A real function /(x), defined on a set S, is continuous relative 

to S if and only if, for every k, the set of points for which /(x)< k i s open relative 

to S and the set of points for which ](x)<k is closed relative to S; it is of at 

most Baire class 1 relative to S if and only if the sets of points for which /(x)< k 
and /(x)<k are of types F ,  and G~ relative to S, respectively; it is of at most 

Baire class 2 relative to S if and only if the sets of points for which /(x)<k and 

/(x)<k are of types G~, and F ~  relative to S, respectively. Now, by Theorem 4, 

there are closed sets S lc I ,  and T1cJ, each of measure greater than 1/2, such that  

(/(x), ]l(y)) is a homeomorphism between S 1 and T 1. Again, by Theorem 4, there 

are closed sets $2~S 1 and T2DT,, each of measure greater than 3/4,  such that  

(/(x), / l(y)) is a homeomorphism between S~ and T 2. In this way, obtain increasing 

sequences S 1CS2C . . .  ~ S n c  . . . a n d  T I C T  2C . . .  c T n c . . . ,  such t h a t S = l i m S n  

and T = l i m  T ,  are both of measure l, (/(x), ] l ( y ) ) i s  a one-one transformation 

between S and T, and for every n, S,  and T .  are closed sets and (](x), / l(y)) is 

a homeomorphism between them. Moreover, the sets S ,  and T ,  may be taken to 

be zero dimensional, hence nowhere dense, so that  S and T are sets of type F ,  

which are of the first category. ](x) is of Baire class 1 on S relative to S. For, by 

the Tietze extension theorem [18], the continuous function /(x) on S ,  relative to S ,  

may be extended to a continuous function ~,  (x) on I. The functions of the sequence 

{~,(x)} are all continuous on S relative to S and converge to / ( x ) o n  S so t h a t / ( x )  

is of at  most Baire class 1 on S relative to S. Similarly, / l(y) is of at most Baire 

class 1 on T relative to T. Since S and T are of type Fo, of measure 1, and of 

the first category, the sets I - S  and J - T  are of type Go, of measure 0, and resid- 

ual. Since they are of measure 0, they are frontier sets, and since residual they are 

everywhere dense. By a theorem of Mazurkiewicz [19], they are accordingly homeo- 

morphic to the set of irrationals and hence to each other. Let  (~(x), ~-l(y)) be a 

homeomorphism between I - S  and J - T .  Let  

g (x) = / (x) x e S 

=~(x)  x e I - S .  
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Then (g(x), g-l(y)) is a one-one transformation between I and J. For every k, the 

set of points of S for which ](x)<k is of type F ,  relative to the set S of type F,, 

and so is of type Fo relative to I; and the set of points of I - S  for which ~ (x )<k  

is open relative to the set I - S  of type G0, and so is of type G0 relative to I. 

Hence, ~he set of points of I for which g(x)<k, as the union of sets of type Fo 

and G0 is of type G~, relative to I. In the same way, the set of points of S for 

which /(x)< k is of type F,~ relative to I, and the set of points of I - S  for which 

~(x)<k is of type G~ relative to I, so that the set of points of I for which g(x)<k, 

as the union of sets of type F,o and of type G~, is of type Foo relative to I. Hence, 

g(x) is of Baire class 2 at most. Similarly, g-l(y) is of Baire class 2 at most. 

The method used here does not seem to apply to higher dimensional transforma- 

tions, and I have not found a way to treat this problem in such cases. 

The following converse to Theorem 8 holds. 

T h e o r e m  9. There is a one-one measurable transformation (](x), ] l(y))between 
open unit intervals I =  (0,1) and J =  (0,I) such that, for every one-one transformation 

(g(x), g-l(y)) between I and J for which /(x)=g(x) and / l (y)=g i(y) almost 

everywhere, the functions g(x) and g-l(y) are both of Baire class 2 at least. 

Proof. I first note that there is a Borel set S such that both S and its 

complement I - S  are of positive measure in every subinterval of I. For, if $1, $2, 

. . . ,  S . . . . .  is a sequence of nowhere dense closed sets, such that Sn has positive 

measure in each of the intervals 

In~ =(0,l/n),  In.z=(1/n, 2In) . . . . .  I n ~ = ( 1 -  l /n, l) 

and, for every n, 
n - I  

m(Sn)= l /3 min [m(In~- U Sj); i= l, 2 . . . . .  n], 
t - 1  

the set S=  O S. has this property. Now, let S be a Borel subset of (0, 1/2) such 

that both S and its complement have positive measure in every subinterval of (0, 1/2). 

Let S+  1/2 be the set obtained by adding 1/2 to all the points in S. Now, let 

I 
x xES  

x + l / 2  x E I - S  

/ (x)= x x e S §  

I x - l ~ 2  x e ( I - S ) + l / 2  

x x = l / 2 .  
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The function /(x) has an inverse /-l(y). Suppose g(x)=/(x) almost everywhere. 

Since every interval contains a set of positive measure on which / ( x ) <  1/2 and a 

set of positive measure on which /(x)> 1/2, the same holds for g(x). Then g(x) is 

discontinuous wherever g(x)~�89 (i.e., almost everywhere) and so is not of Baire 

class 1. Similarly, if r l(y)=f-l(y) almost everywhere, it is not of Baire class 1. 

One might  ask if whenever one-one measurable transformations are absolutely 

measurable or measure preserving the approximating homeomorphisms of Theorems 5 

and 6 may  also be taken to be absolutely measurable or measure preserving. I have 

not yet  considered these matters.  

Finally, I obtain a decomposition theorem for one-one measurable transforma- 

tions analogous to the Hahn  decomposition theorem for measures [20]: 

T h e o r e m  10. If (/(x), F1(y)) is a one-one measurable transformation between 

In and Ira, 1 < n < m, In has a decomposition into three disjoint Borel sets $1, $2, 

and $3, some of which might be empty,  such tha t  S1 is of n dimensional measure  

zero, ](S~) is of m dimensional measure zero, and (f(x), F I ( y ) ) i s  a one-one absolutely 

measurable transformation between $3 and ]($3). 

P r o o f .  Consider the set 71 of all closed sets in In whose n dimensional measures 

are positive but  which are taken by /(x) into sets of m dimensional measure zero. 

Let  F1 E 71 be such tha t  its measure is not less than half the measure of any set in 

71. Consider the set 72 of all closed sets in I n -  F 1 whose n dimensional measures 

are positive but  which are taken by /(x) into sets of m dimensional measure zero. 

In  this way, obtain a sequence of disjoint closed sets F1, F2 . . . .  , F~ . . . .  each of 

positive n dimensional measure, each taken by /(x) into a set of m dimensional 

measure zero, such tha t  for every k, the n dimensional measure of F~ is more than  
k - 1  

half the n dimensional measure of any closed subset of I , -  IJ Ft which is taken by 
t - 1  

/(~) into a set of m dimensional measure zero. Let  F = U Fk. Obtain an analogous 
k - 1  

sequence K I, K~, . .  Kk, . . of disjoint closed subsets of I m -  ~ (F) and let K - -  t~ K~. 

Now, /(F) is of m dimensional measure zero and [-1 (K) is of n dimensional measure 

zero. Let  SI=[-I(K), S2=F, a n d  S3=In-(FUf-I(K)). Let E c ~  8 be a measurable 

set such tha t  [(E) is of m dimensional measure zero. Suppose E is of positive n 

dimensional measure. Then E contains a closed subset S of positive n dimensional 

measure. But  the measure of S then exceeds twice the measure of Fk, for some k, 

and so ~q should appear in the sequence F1, F~ . . . .  instead of F , .  Hence E must  

1 8 -  533805.  Acta Mathematica.  89. I m p r i m ~  le 31 ju i l le t  1953. 
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be of n dimensional measure zero. Similarly, every measurable subset of /(8a) which 

is taken by t -1 (y) into a set of n dimensional measure zero is itself of m dimensional 

measure zero. The transformation (/(x), F l (y) )  between S a and /(Sa) is, accordingly, 

absolutely measurable. 
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