ONE-ONE MEASURABLE TRANSFORMATIONS.

By

CASPER GOFFMAN.

1. Introduction. The literature on the theory of functions of a real variable contains a variety of results which show that measurable functions, and even arbitrary functions, have certain continuity properties. As examples, I mention the well known theorems of Vitali-Carathéodory [1], Saks-Sierpinski [2], Lusin [3], and the theorem of Blumberg [4] which asserts that for every real function f(x) defined on the closed interval [0,1] there is a set D which is dense in the interval such that f(x) is continuous on D relative to D.

The related topic of measurable and arbitrary one-one transformations has been given little attention. I know only of Rademacher's work [5] on measurability preserving transformations and my short paper [6] on the approximation of arbitrary one-one transformations.

My purpose here is to fill this void partially by obtaining for one-one measurable transformations an analog of Lusin's theorem on measurable functions. The form of Lusin's theorem I have in mind is that [7] for every measurable real function f(x) defined on the closed interval [0,1] there is, for every $\varepsilon > 0$, a continuous g(x) defined on [0,1] such that f(x) = g(x) on a set of measure greater than $1 - \varepsilon$. The analogous statement for one-one transformations between [0,1] and itself is that for every such one-one measurable f(x) with measurable inverse $f^{-1}(x)$ there is, for every $\varepsilon > 0$, a homeomorphism g(x) with inverse $g^{-1}(x)$ between [0,1] and itself such that f(x) = g(x) and $f^{-1}(x) = g^{-1}(x)$ on sets of measure greater than $1 - \varepsilon$. I shall show that this statement is false but that similar statements are true for one-one transformations between higher dimensional cubes.

I shall designate a one-one transformation by $(f(x), f^{-1}(y))$, where the functions f(x) and $f^{-1}(y)$ are the direct and inverse functions of the transformation. I shall say that a one-one transformation $(f(x), f^{-1}(y))$ between n and m dimensional unit cubes I_n and I_m is measurable if the functions f(x) and $f^{-1}(y)$ are both measurable, 17-533805. Acta mathematica. 89. Imprimé le 6 août 1953.

and that $(f(x), f^{-1}(y))$ is absolutely measurable¹ if, for all measurable sets $S \subset I_n$, $T \subset I_m$, the sets f(S) and $f^{-1}(T)$ are measurable, where f(S) is the set of all $y \in I_m$ for which there is an $x \in S$ such that y = f(x), and $f^{-1}(T)$ is defined similarly. It is well known [8] that a measurable transformation $(f(x), f^{-1}(y))$ is absolutely measurable if and only if, for all sets $S \subset I_n$ and $T \subset I_m$, of measure zero, the sets f(S) and $f^{-1}(T)$ are also of measure zero.

I show that if $n = m \ge 2$, and $(f(x), f^{-1}(y))$ is a one-one measurable transformation between unit *n* cubes I_n and I_m then for every $\varepsilon > 0$, there is a homeomorphism $(g(x), g^{-1}(y))$ between I_n and I_m such that f(x) = g(x) and $f^{-1}(y) = g^{-1}(y)$ on sets whose *n* dimensional measures both exceed $1 - \varepsilon$. This result does not hold if n = m = 1. I then show that if $1 \le n < m$ and $(f(x), f^{-1}(y))$ is a one-one measurable transformation between unit cubes I_n and I_m , whose dimensions are *n* and *m*, respectively, then for every $\varepsilon > 0$, there is a homeomorphism $(g(x), g^{-1}(y))$ between I_n and a subset of I_m whose *m* dimensional measure exceeds $1 - \varepsilon$, such that f(x) = g(x) and $f^{-1}(y) = g^{-1}(y)$ on sets whose *n* and *m* dimensional measures exceed $1 - \varepsilon$, respectively.

For the case n = m, the proof depends on the possibility of extending a homeomorphism between certain zero dimensional closed subsets of the interiors of I_n and I_m to a homeomorphism between I_n and I_m . It has been known since the work of Antoine [9] that such extensions are always possible only if n = m = 2. However, it is adequate for my needs that such extensions be possible for homeomorphisms between special kinds of zero dimensional closed sets which I call sectional. In § 2, I show that if $n = m \ge 2$, then every homeomorphism between sectionally zero dimensional closed subsets of the interiors of I_n and I_m may be extended to a homeomorphism between I_n and I_m . For the case $1 \le n < m$, I show that every homeomorphism between sectionally zero dimensional subsets of the interiors of I_n and I_m may be extended to a homeomorphism between I_n and a subset of I_m . In § 3, I show that for every one-one measurable $(f(x), f^{-1}(y))$ between I_n and I_m , where $n \ge 1$ and $m \ge 1$, there are, for every $\varepsilon > 0$, closed sets $E_n \subset I_n$ and $E_m \subset I_m$, whose n and m dimensional measures, respectively, exceed $1-\varepsilon$, such that $(f(x), f^{-1}(y))$ is a homeomorphism between E_n and E_m . I then show that the closed sets E_n and E_m may be taken to be sectionally zero dimensional. These facts, when combined with the results of § 2, yield the main results of the paper which were mentioned above. § 4 is concerned which related matters. I show that for every one-one measurable $(f(x), f^{-1}(y))$ between unit intervals I = [0,1] and J = [0,1] there is a one-one $(g(x), g^{-1}(y))$ between I and J

¹ The transformations which I call absolutely measurable are customarily called measurable. The terms used here seem to conform more nearly to standard real variable terminology.

such that g(x) and $g^{-1}(y)$ are of at most Baire class 2, and g(x) = f(x), $g^{-1}(y) = f^{-1}(y)$ almost everywhere. I have not been able to answer the analogous question for transformations between higher dimensional cubes. Finally, I show that for every one-one measurable transformation $(f(x), f^{-1}(y))$ between I_n and I_m there are decompositions $I_n = S_1 \bigcup S_2 \bigcup S_3$ and $I_m = f(S_1) \bigcup f(S_2) \bigcup f(S_3)$ into disjoint measurable sets, some of which could be empty, such that S_1 is of *n* dimensional measure zero, $f(S_2)$ is of *m* dimensional measure zero, and $(f(x), f^{-1}(y))$ is an absolutely measurable transformation between S_3 and $f(S_3)$.

2. Extension of homeomorphisms. Let $n \ge 2$ and let I_n be an *n* dimensional unit cube. I shall say that a set $E \subseteq I_n$ is sectionally zero dimensional if for every hyperplane π which is parallel to a face of I_n and for every $\varepsilon > 0$ there is a hyperplane π' parallel to π whose distance from π is less than ε and which contains no points of E. It is clear that every sectionally zero dimensional set is zero dimensional in the Menger-Urysohn sense [10] but that there are zero dimensional sets which are not sectionally zero dimensional. A set $S \subseteq I_n$ will be called a *p*-set if it consists of a simply connected region, together with the boundary of the region, for which the boundary consists of a finite number of n-1 dimensional parallelopipeds which are parallel to the faces of I_n .

Lemma 1. Every subset of a sectionally zero dimensional set is sectionally zero dimensional.

Proof. The proof is clear.

Lemma 2. If $(f(x), f^{-1}(y))$ is a homeomorphism between sectionally zero dimensional closed sets S and T, and $\varepsilon > 0$, then S may be decomposed into disjoint sectionally zero dimensional closed sets S_1, S_2, \ldots, S_m , and T may be decomposed into disjoint sectionally zero dimensional closed sets T_1, T_2, \ldots, T_m , each of diameter less than ε , such that, for every $j = 1, 2, \ldots, m$, $(f(x), f^{-1}(y))$ is a homeomorphism between S_j and T_j .

Proof. There is a $\delta > 0$, which may be taken to be less than ε , such that every subset of S of diameter less than δ is taken by f(x) into a subset of T of diameter less than ε . Let S_1, S_2, \ldots, S_m be a decomposition of S into disjoint sectionally zero dimensional closed sets each of diameter less than δ . Then the sets $T_1 = f(S_1)$, $T_2 = f(S_2), \ldots, T_m = f(S_m)$ are sectionally zero dimensional closed subsets of T each of diameter less than ε .

Lemma 3. If F is a sectionally zero dimensional closed set which is contained in the interior of a *p*-set *P* then, for every $\varepsilon > 0$, there is a finite number of disjoint *p*-sets in the interior of *P*, each of which contains at least one point of *F* and is of diameter less than ε , such that *F* is contained in the union of their interiors.

Proof. Since F is sectionally zero dimensional, there is, for every pair of parallel faces of I_n , a finite sequence of parallel hyperplanes such that one of the two given faces of I_n is first in the sequence and the other is last, and such that the distance between successive hyperplanes of the sequence is less than ε/\sqrt{n} . The collection of hyperplanes thus obtained for all pairs of parallel faces of I_n decomposes P into a finite number of p-sets, whose interiors are disjoint, such that F is contained in the union of their interiors. Since F is closed, these p-sets may be shrunk to disjoint p-sets which are such that F is still in the union of their interiors. Select among the latter p-sets those whose intersection with F is not empty. It is clear that these p-sets have all the required properties.

Lemma 4. If k > 0, and F_1, F_2, \ldots, F_m is a finite number of disjoint sectionally zero dimensional closed sets in the interior of a *p*-set *P*, each of diameter less than *k*, then there are disjoint *p*-sets P_1, P_2, \ldots, P_m in the interior of *P*, each of diameter less than $k\sqrt{n}$, such that F_j is contained in the interior of P_j , for every $j = 1, 2, \ldots, m$.

Proof. Every F_i is evidently contained in the interior of a p-set Q_i which is itself in the interior of P and also in a cube of side k. The set P_i will be a subset of Q_i and so its diameter will be less than $k\sqrt{n}$. Since F_1, F_2, \ldots, F_m are disjoint closed sets, there is a constant d > 0 such that the distance between any two of them exceeds d. By Lemma 3, each F_i has an associated finite number of disjoint p-sets, all of which are subsets of Q_i of diameter less than d/2, each of which contains at least one point of F_i , and are such that F_i is contained in the union of their interiors. Call these sets $P_{i1}, P_{i2}, \ldots, P_{inj}$. If $i \neq j$, then every pair of sets P_{ir}, P_{is} is disjoint, since the distance between F_i and F_i exceeds d. For every $j=1, 2, \ldots, m$, the set P_{i1} can be connected to P_{i2}, P_{i2} to P_{i3} , and so on until P_i, m_{i-1} is connected to P_{im_j} by means of parallelopipeds with faces parallel to the faces of I_n , which remain in Q_i and do not intersect each other or any of the sets P_{ir} . The set P_j is the union of $P_{i1}, P_{i2}, \ldots, P_{im_j}$ and the connecting parallelopipeds. P_j is a subset of Q_j . It is a p-set of diameter less than $k\sqrt{n}$ whose interior contains F_j . Moreover, if $i \neq j$, then the intersection of P_i and P_j is empty.

Lemma 5. If P and Q are p-sets, P_1, P_2, \ldots, P_m and Q_1, Q_2, \ldots, Q_m are disjoint p-sets in the interiors of P and Q, respectively, having p_1, p_2, \ldots, p_m and q_1, q_2, \ldots, q_m as their own interiors, then every homeomorphism $(f(x), f^{-1}(y))$ between the boundaries of P and Q may be extended to a homeomorphism between $P - \bigcup_{j=1}^m p_j$ and $Q - \bigcup_{j=1}^m q_j$ which takes the boundary of P_j into the boundary of Q_j for every $j = 1, 2, \ldots, m$.

Proof. Let R be a *p*-set contained in the interior of P which has the sets P_1, P_2, \ldots, P_m in its interior and let S be a p-set contained in the interior of Q which has the sets Q_1, Q_2, \ldots, Q_m in its interior. There is a homeomorphism $(\varphi(x), \varphi^{-1}(y))$ between $R - \bigcup_{j=1}^{m} p_j$ and $S - \bigcup_{j=1}^{m} q_j$ which takes the boundary of P_j into the boundary of Q_i for every j. I need only show that there is a homeomorphism between the closed region bounded by P and R and the closed region bounded by Q and Swhich agrees with $(f(x), f^{-1}(y))$ on the outer boundaries and agrees with $(\varphi(x), \varphi^{-1}(y))$ on the inner boundaries. By taking cross-cuts from the outer to the inner boundaries and extending the homeomorphisms along the cross-cuts, the problem is reduced to the following one: if two regions R_1 and R_2 are both homeomorphic to the closed n dimensional sphere σ_n and if $(f(x), f^{-1}(y))$ is a homeomorphism between the boundaries of R_1 and R_2 then $(f(x), f^{-1}(y))$ may be extended to a homeomorphism between R_1 and R_2 . In order to show this, I consider arbitrary homeomorphisms $(g(x), g^{-1}(y))$ and $(h(x), h^{-1}(y))$ between R_1 and σ_n and between R_2 and σ_n . I then consider the following special homeomorphism $(k(x), k^{-1}(y))$ between σ_n and itself: For each ξ on the boundary of σ_n , let

$$k(\xi) = h(f(g^{-1}(\xi))).$$

For each ξ in the interior of σ_n , let $k(\xi)$ be defined by first moving ξ along the radius on which it lies to the point ξ' on the boundary of σ_n which lies on the same radius, then by moving ξ' to the point $k(\xi')$, and finally by moving $k(\xi')$ along the radius of σ_n on which it lies to the point on the same radius whose distance from the center of σ_n is the same as the distance of ξ from the center of σ_n . The transformation $k(\xi)$ which is defined in this way is easily seen to be a homeomorphism between σ_n and itself. The transformation

$$\varphi(x) = h^{-1}(k(g(x))),$$

together with its inverse, constitutes a homeomorphism between R_1 and R_2 . This homeomorphism is an extension of $(f(x), f^{-1}(y))$, for if x is on the boundary of R_1 , then

$$\varphi(x) = h^{-1}(k(g(x))) = h^{-1}(h(f(g^{-1}(g(x)))))$$

= h^{-1}(h(f(x))) = f(x).

I am now ready to prove a theorem on the extension of homeomorphisms.

Theorem 1. If P and Q are *n*-dimensional *p*-sets for $n \ge 2$, and S and T are sectionally zero dimensional closed subsets of the interiors of P and Q, respectively, every homeomorphism $(f(x), f^{-1}(y))$ between S and T may be extended to a homeomorphism between P and Q.

Proof. By Lemma 2, S and T have decompositions into disjoint closed sets $S_1, S_2, \ldots, S_{m_1}$ and $T_1, T_2, \ldots, T_{m_1}$, all of diameter less than 1, such that $T_{j_1} = f(S_{j_1})$, for every $j_1 = 1, 2, \ldots, m_1$. By Lemma 1, these sets are all sectionally zero dimensional, and so, by Lemma 4, there are disjoint p-sets $P_1, P_2, \ldots, P_{m_1}$ in the interior of P and disjoint p-sets $Q_1, Q_2, \ldots, Q_{m_1}$ in the interior of Q, all of diameter less than \sqrt{n} , such that, for every $j_1 = 1, 2, \ldots, m_1, S_{j_1}$ is in the interior of P_{j_1} and T_{j_1} is in the interior of Q_{j_1} . For every $j_1 = 1, 2, \ldots, m_1$, the sets S_{j_1} and T_{j_1} have decompositions into disjoint sectionally zero dimensional closed sets $S_{j_11}, S_{j_12}, \ldots, S_{j_1m_j}$ and T_{j_11} , T_{j_12} , ..., $T_{j_1m_{j_1}}$, all of diameter less than 1/2, such that $T_{j_1j_2} = f(S_{j_1j_2})$, for for every $j_2 = 1, 2, \ldots, m_{j_1}$; and there are disjoint *p*-sets $P_{j_1 1}, P_{j_1 2}, \ldots, P_{j_1 m_{j_1}}$ in the interior of P_{j_1} and disjoint p-sets $Q_{j_1 1}, Q_{j_1 2}, \ldots, Q_{j_1 m_{j_1}}$ in the interior of Q_{j_1} , all of diameter less than $\sqrt{n/2}$, such that for every $j_2 = 1, 2, \ldots, m_{j_1}, S_{j_1 j_2}$ is in the interior of $P_{i_1i_2}$ and $T_{i_1i_2}$ is in the interior of $Q_{i_1i_2}$. By repeated application of the lemmas in this way, the following system of sets is obtained: First, there is a positive integer m_1 ; for every $j_1 \leq m_1$, there is a positive integer m_{j_1} ; for every $j_1 \leq m_1, j_2 \leq m_j$, there is a positive integer $m_{j_1 j_2}$; and, for every positive integer k, having defined the positive integers $m_{j_1j_2...j_{k-1}}$, there is for every $j_1 \leq m_1$, $j_2 \leq m_{j_1}, \ldots, j_k \leq m_{j_1 j_2 \ldots j_{k-1}}$, a positive integer $m_{j_1 j_2 \ldots j_k}$. Now, for every positive integer k, for every $j_1 \leq m_1, j_2 \leq m_{j_1}, \ldots, j_k \leq m_{j_1 j_2 \ldots j_{k-1}}$, there are sets $S_{j_1 j_2 \ldots j_k}$, $T_{j_1j_2...j_k}$, $P_{j_1j_3...j_k}$, and $Q_{j_1j_2...j_k}$. The sets $S_{j_1j_2...j_k}$ and $T_{j_1j_2...j_k}$ are sectionally zero dimensional subsets of $S_{i_1i_2...i_{k-1}}$ and $T_{i_1i_1...i_{k-1}}$, respectively, all with diameters less than $1/2^k$, such that $T_{j_1j_2...j_k} = f(S_{j_1j_2...j_k})$. The set $P_{j_1j_2...j_k}$ is a p-set of diameter less than $\sqrt{n}/2^k$ which contains $S_{j_1j_2...j_k}$ in its interior and is in the interior of $P_{i_1i_2...i_{k-1}}$ and $Q_{i_1i_2...i_k}$ is a p-set of diameter less than $n/2^k$ which contains $T_{j_1j_2...j_k}$ in its interior and is in the interior of $Q_{j_1j_2...j_{k-1}}$. Moreover, for every $j_1 \leq m_1, j_2 \leq m_{j_1}, \ldots, j_{k-1} \leq m_{j_1 j_2 \ldots j_{k-2}}$, the sets $P_{j_1 j_2 \ldots j_k}$, as well as the sets $Q_{j_1 j_2 \ldots j_k}$, are disjoint for $j_k = 1, 2, ..., m_{j_1 j_2 ... j_{k-1}}$

 $\mathbf{266}$

The desired extension of the homeomorphism $(f(x), f^{-1}(y))$ between S and T to a homeomorphism between P and Q is now obtained by repeated application of Lemma 5 to the *p*-sets $P_{j_1j_2...j_k}$ and $Q_{j_1j_2...j_k}$. Designate the interiors of $P_{j_1j_2...j_k}$ and $Q_{j_1j_2...j_k}$ by $p_{j_1j_2...j_k}$ and $q_{j_1j_2...j_k}$, respectively. A homeomorphism $(\varphi(x), \varphi^{-1}(y))$ is first effected between $P - \bigcup_{j_1=1}^{m_1} p_{j_1}$ and $Q - \bigcup_{j_1=1}^{m_1} q_{j_2}$ which takes the boundary of P_{j_1} into the boundary of Q_{j_1} , for every $j_1 = 1, 2, ..., m_1$. For every $j_1 = 1, 2, ..., m_1$, this homeomorphism between the boundaries of P_{j_1} and $Q_{j_1} = \bigcup_{j_2=1}^{m_{j_1}} p_{j_1j_2}$ which takes the boundary of $P_{j_1j_2...j_k}$ into the boundary of $Q_{j_1j_2}$, for every $j_2 = 1, 2, ..., m_{j_1}$. For every positive integer k, having defined the homeomorphism $(\varphi(x), \varphi^{-1}(y))$ between $P - \bigcup p_{j_1j_2...j_{k-1}}$ and $Q - \bigcup q_{j_1j_2...j_{k-1}}$, where the union is taken over all $j_1 \leq m_1$, $j_2 \leq m_{j_1}, \ldots, j_{k-1} \leq m_{j_1j_2...j_{k-2}}$, the homeomorphism $(\varphi(x), \varphi^{-1}(y))$ between the boundary of $P_{j_1j_2...j_{k-1}}$ and the boundary of $Q_{j_1j_2...j_{k-1}}$ may, for every $j_1 \leq m_1, j_2 \leq m_{j_1}, \ldots, j_{k-1} \leq m_{j_1j_2...j_{k-2}}$, be extended to a homeomorphism between

$$P_{j_1j_2\ldots j_{k-1}} - \bigcup_{j_k=1}^{m_{j_1j_2\ldots j_{k-1}}} p_{j_1j_2\ldots j_k}$$

and

$$Q_{j_1j_2...j_{k-1}} - \bigcup_{j_{k-1}=1}^{m_{j_1j_2...j_{k-1}}} q_{j_1j_2...j_k}$$

Since $S = \bigcap_{k=1}^{\infty} (\bigcup P_{j_1 j_1 \dots j_k})$ and $T = \bigcap_{k=1}^{\infty} (\bigcup Q_{j_1 j_1 \dots j_k})$, where the union is taken over all $j_1 \leq m_1$, $j_2 \leq m_{j_1}, \dots, j_k \leq m_{j_1 j_2 \dots j_{k-1}}$, $(\varphi(x), \varphi^{-1}(y))$ is a one-one transformation between P - S and Q - T. By letting $\varphi(x) = f(x)$ for every $x \in S$, $(\varphi(x), \varphi^{-1}(y))$ becomes a one-one transformation between P and Q which is an extension of the homeomorphism $(f(x), f^{-1}(y))$ between S and T. For every $x \in S$ and $\varepsilon > 0$, there are $p_{j_1 j_2 \dots j_k}$, and $q_{j_1 j_2 \dots j_k}$ of diameters less than ε , such that $x \in p_{j_1 j_2 \dots j_k}, \varphi(x) \in q_{j_1 j_2 \dots j_k}$, and $q_{j_1 j_2 \dots j_k} = \varphi(p_{j_1 j_2 \dots j_k})$, Accordingly, $\varphi(x)$ is continuous at x. For every $x \in P - S$, there is a k such that $x \notin \bigcup P_{j_1 j_2 \dots j_k}$, where the union is taken over all $j_1 \leq m_1$, $j_2 \leq m_{j_1}, \dots, j_k \leq m_{j_1 j_2 \dots j_{k-1}}$, so that it follows from the above construction that $\varphi(x)$ is continuous at x. Hence, $\varphi(x)$ is continuous on P. Similarly, $\varphi^{-1}(y)$ is continuous on Q. This shows that $(\varphi(x), \varphi^{-1}(y))$ is a homeomorphism between P and Q which is an extension of the homeomorphism $(f(x), f^{-1}(y))$ between S and T.

A result similar to that of Theorem 1 holds even if $n \neq m$. Of course, a given homeomorphism between sectionally zero dimensional closed subsets of an *n* dimensional *p*-set *P* and an *m* dimensional *p*-set *Q*, n < m, cannot now be extended to a homeomorphism between *P* and *Q*. However, it can be extended to a homeomorphism between *P* and a proper subset of *Q*. Constructions similar to the one which will be given here have been used by Nöbeling [11] and Besicovitch [12], in their work on surface area.

Theorem 2. If $1 \le n < m$, P is an n dimensional p-set and Q is an m dimensional p-set, and S and T are sectionally zero dimensional closed subsets of the interiors of P and Q, respectively, then every homeomorphism $(f(x), f^{-1}(y))$ between S and T may be extended to a homeomorphism between P and a subset of Q.

Proof. I shall dwell only upon those points at which the proof differs from that of Theorem 1. Lemmas 1, 2, and 4 remain valid for $1 \leq n < m$. The families $S_{i_1i_2...i_k}$ and $T_{i_1i_2...i_k}$ of sectionally zero dimensional closed sets, $P_{i_1i_2...i_k}$ of n dimensional *p*-sets, and $Q_{j_1j_2...j_k}$ of *m* dimensional *p*-sets, for $k=1, 2, ..., j_1 \leq m_1$ $j_2 \leq m_{j_1}, \ldots, j_k \leq m_{j_1 j_2 \ldots j_{k-1}}, \ldots, may$, accordingly, be constructed just as for the case $n=m \ge 2$. Let R be an n dimensional closed parallelopiped contained in the boundary of Q. Let $R_1, R_2, \ldots, R_{m_1}$ be disjoint n dimensional closed parallelopipeds contained in the interior of R, and for every $j_1 \leq m_1$, let U_{j_1} be an n dimensional closed parallelopiped contained in the boundary of Q_{j_1} . Now, for every $j_1 \leq m_1$, the boundary of R_{i_1} may be connected to the boundary of U_{i_1} by means of a pipe lying in the interior of Q, whose surface Z_{j_1} is an *n* dimensional closed polyhedron such that if $j_1 \neq j'_1$ then Z_{j_1} , $Z_{j'_1}$ are disjoint. There is a homeomorphism $(\varphi(x), \varphi^{-1}(y))$ between $P - \bigcup_{j_1-1}^{m_1} p_{j_1}$ and $(R - \bigcup_{j_1-1}^{m_1} r_{j_1}) \cup (\bigcup_{j_1-1}^{m_1} Z_{j_1})$ which takes the boundary of P_{j_1} into the boundary of U_{i_1} , for every $j_1 \leq m_1$. For every $j_1 \leq m_1$, let $R_{i_1}, R_{i_1}, \dots, R_{i_1}, \dots, R_{i_1}$ be disjoint n dimensional closed parallelopipeds in the interior of U_{j_1} and, for every $j_2 \leq m_{j_1}$, let $U_{i_1i_2}$ be an *n* dimensional closed parallelopiped contained in the boundary of $Q_{i_1i_2}$. For every $j_2 \leq m_{j_1}$, the boundary of $R_{j_1j_2}$ may be connected to the boundary of $U_{j_1j_2}$ by means of a pipe, lying in the interior of Q_i , whose surface $Z_{i_1i_2}$ is an *n* dimensional polyhedron such that if $j_2 \neq j'_2$ then $Z_{j_1j_2}$, $Z_{j_1j'_2}$ are disjoint. The homeomorphism $(\varphi(x), \varphi^{-1}(y))$ between the boundaries of P_{i_1} and U_{i_1} may be extended to a homeomorphism $(\varphi(x), \varphi^{-1}(y))$ between $P_{j_1} - \bigcup_{j_2=1}^{m_{j_1}} p_{j_1 j_2}$ and $(U_{j_1} - \bigcup_{j_2=1}^{m_{j_1}} r_{j_1 j_2}) \cup (\bigcup_{j_2=1}^{m_{j_1}} Z_{j_1 j_2})$ which takes the boundary of $P_{i_1i_2}$ into the boundary of $U_{i_1i_2}$, for every $j_2 \leq m_{i_1}$. By repeating

 $\mathbf{268}$

the extension of the homeomorphism for all k = 1, 2, ..., as in the proof of Theorem 1, a homeomorphism is obtained between P-S and a subset of Q-T. That this homeomorphism may be extended to one between P and a subset of Q which contains T and is such that $\varphi(x) = f(x)$, for every $x \in S$, follows by a slight modification of the argument used in the proof of Theorem 1.

For the case n=m=1, one can easily find one-one transformations between finite sets in I_n and I_m which cannot be extended to homeomorphisms between I_n and I_m . But every one-one transformation between finite sets is a homeomorphism, and every finite set is a sectionally zero dimensional closed set, so that Theorem 1 does not hold for this case.

3. Application to one-one measurable transformations. As stated in the introduction, a one-one measurable transformation, $(f(x), f^{-1}(y))$, between an *n* dimensional open cube I_n and an *m* dimensional open cube I_m is one for which f(x) and $f^{-1}(y)$ are both measurable functions. That is to say, for all Borel sets $T \subset I_m$ and $S \subset I_n$, the sets $f^{-1}(T) \subset I_n$ and $f(S) \subset I_m$ are measurable.

A remark concerning this definition seems to be appropriate. That the measurability of $f^{-1}(y)$ does not follow from that of f(x) is shown by the following example: Let I and J be open unit intervals (0,1). Let $S \subset I$ be a Borel set of measure zero, but of the same cardinal number c as the continuum, and $T \subset J$ a Borel set of positive measure such that J-T is also of positive measure. Then T contains disjoint non-measurable sets T_1 and T_2 , both of cardinal number c, such that $T = T_1 \cup T_2$; and S contains disjoint Borel sets S_1 and S_2 , both of cardinal number c, such that $S = S_1 \bigcup S_2$. Define $(f(x), f^{-1}(y))$ by means of a one-one correspondence between I-S and J-T which takes every Borel set in I-S into a measurable set in J-T and every Borel set in J-T into a measurable set in I-S, and by means of arbitrary one-one correspondences between S_1 and T_1 and between S_2 and T_2 . The function f(x) is measurable. For, let B be any Borel set in J. Then $B = B_1 \cup B_2$, where $B_1 = B \cap (J \rightharpoonup T)$ and $B_2 = B \cap T$ are also Borel set. But $f^{-1}(B_1)$ is measurable and $f^{-1}(B_2)$ is of measure zero, so that $f^{-1}(B)$ is measurable. The function $f^{-1}(y)$ is non-measurable, since S_1 is a Borel set and $T_1 = f(S_1)$ is nonmeasurable.

On the other hand, if $(f(x), f^{-1}(y))$ is a one-one transformation such that f(x) is measurable and takes all sets of measure zero into sets of measure zero, then $f^{-1}(y)$ is also measurable, and $(f(x), f^{-1}(y))$ is a one-one measurable transformation. For, by the Vitali-Carathéodory theorem, there is a function g(x), of Baire class 2

at most, such that f(x) = g(x), except on a Borel set $Z \subset I$ of measure zero. Now g(x)as a Baire function on an interval *I*, takes all Borel sets [13] in *I* into Borel sets in *J*. Let $B \subset I$ be a Borel set. Then B is the union of Borel sets $B_1 \subset I - Z$ and $B_2 \subset Z$. Since $f(B_1) = g(B_1)$ is a Borel set and $f(B_2)$ is of measure zero, f(B) is measurable, so that $f^{-1}(y)$ is a measurable function.

The usual form of Lusin's Theorem [14] is that for every measurable real valued function f(x) defined, say, on an open *n* dimensional unit cube I_n , and for every $\varepsilon > 0$, there is a closed set $S \subset I_n$, whose *n* dimensional measure exceeds $1 - \varepsilon$, such that f(x) is continuous on *S* relative to *S*. Since every measurable function on I_n with values in an *m* dimensional cube I_m is given by *m* measurable real valued functions, and the continuous functions on a set $S \subset I_n$ relative to *S*, with values in I_m , are those for which the corresponding set of *m* real functions are all continuous on *S* relative to *S*, the theorem is readily seen to hold just as well for functions on I_n with values in I_m . Moreover, the following result is valid for one-one measurable transformations.

Theorem 3. If $(f(x), f^{-1}(y))$ is a one-one measurable transformation between open *n* dimensional and *m* dimensional unit cubes I_n and I_m , where *n* and *m* are any positive integers then, for every $\varepsilon > 0$, there is a closed set $S \subset I_n$ of *n* dimensional measure greater than $1 - \varepsilon$ and a closed set $T \subset I_m$ of *m* dimensional measure greater than $1 - \varepsilon$ such that $(f(x), f^{-1}(y))$ is a homeomorphism between *S* and *T*.

Proof. It is known [15] that if $(\varphi(x), \varphi^{-1}(y))$ is a one-one transformation between a closed set $S \subset S$ and a set $T \subset \mathcal{I}$, where S and \mathcal{I} are subsets of compact sets, and if $\varphi(x)$ is continuous, then T is a closed set and $\varphi^{-1}(y)$ is continuous, so that $(\varphi(x), \varphi^{-1}(y))$ is a homeomorphism. This assertion holds for the case $S = I_n, \mathcal{I} = I_m$, since their closures are compact sets. Since f(x) is measurable, there is a closed set $S \subset I_n$, of n dimensional measure greater than $1 - \varepsilon$, such that f(x) is continuous on Srelative to S. The set f(S) is a closed subset of I_m , and $t^{-1}(y)$ is continuous on f(S)relative to f(S). The complement, $\mathbb{C}f(S)$, is measurable, and the function $t^{-1}(y)$ defined on it is measurable. Accordingly, again by Lusin's Theorem, there is a closed subset T of $\mathbb{C}f(S)$, whose measure exceeds $m(\mathbb{C}f(S)) - \varepsilon$, such that $t^{-1}(y)$ is continuous on T relative to T. The set $t^{-1}(T)$ is closed and f(x) is continuous on $t^{-1}(T)$ relative to $t^{-1}(T)$. Now, the set $S \cup t^{-1}(T)$ is closed and of n dimensional measure greater than $1 - \varepsilon$, the set $T \cup f(S)$ is closed and of m dimensional measure greater than $1 - \varepsilon$. The transformation $(f(x), t^{-1}(y))$ is a homeomorphism between $S \cup t^{-1}(T)$ and $T \cup t(S)$. For, the fact that t(x) is continuous on $S \cup t^{-1}(T)$ relative to $S \cup t^{-1}(T)$ follows from the facts that it is continuous on S relative to S and on $f^{-1}(T)$ relative to $f^{-1}(T)$ and that S and $f^{-1}(T)$, as disjoint closed sets, have positive distance from each other. The function $f^{-1}(y)$ is continuous on $T \cup f(S)$ relative to $T \cup f(S)$ for similar reasons.

Theorem 4. The sets S and T of Theorem 3 may be taken to be sectionally zero dimensional closed sets.

Proof. Let $U \subset I_n$ and $V \subset I_m$ be closed sets, U of n dimensional measure greater than $1-\varepsilon/2$ and V of m dimensional measure greater than $1-\varepsilon/2$, such that $(f(x), f^{-1}(y))$ is a homeomorphism between U and V. For convenience, I shall designate the intersection of a hyperplane π with the open cube I_n by π and shall refer to this intersection as the hyperplane. Among all hyperplanes π which are parallel to faces of I_n , there is only a finite or denumerable number for which the set $f(\pi)$ is of positive *m* dimensional measure. For, if the set of hyperplanes with this property were non-denumerable, then a non-denumerable number of them would be parallel to one of the faces of I_n . Then, for some positive integer k, an infinite number of these hyperplanes π would be such that the *m* dimensional measure of $f(\pi)$ exceeds 1/k. This contradicts the fact that $m(I_m) = 1$, where the notation m(S) will henceforth indicate m dimensional measure for subsets of I_m and n dimensional measure for subsets of I_m . It then follows that for every face of I_n , there is a denumerable set of hyperplanes parallel to the face, whose union is dense in I_n , such that $m(f(\pi)) = 0$ for every hyperplane π in the set. As the union of a finite number of denumerable sets, this totality of hyperplanes is denumerable in number, and so it may be ordered as

$$\pi_1, \pi_2, \ldots, \pi_k, \ldots$$

I associate with each π_k an open set G_k , as follows: For every positive integer r, let G_{kr} be the set of all points in I_n whose distance from π_k is less than 1/r. Since $f(\pi_k) = \bigcap_{r=1}^{\infty} f(G_{kr})$, the sets $f(G_{kr})$ are non-increasing, and $m(f(\pi_k)) = 0$, there is an r_k for which $m(f(G_{kr_k})) < \eta/2^k$, where $\eta = \varepsilon/4$. Moreover, r_k may be taken so large that $m(G_{kr_k}) < \eta/2^k$. Let $G = \bigcup_{k=1}^{\infty} G_{kr_k}$. Then $I_n - G$ is a sectionally zero dimensional closed set of n dimensional measure greater than $1 - \eta$ such that $f(I_n - G)$ is of m dimensional measure greater than $1 - \eta$. In the same way, there is an $H \subset I_m$ for which $I_m - H$ is a sectionally zero dimensional closed set of m dimensional measure greater than $1 - \eta$ such that $f^{-1}(I_m - H)$ is of n dimensional measure greater than $1 - \eta$. The

set $(I_m - H) \cap V$ is sectionally zero dimensional, closed, and of *m* dimensional measure greater than $1 - (\varepsilon/2 + \eta)$; and $f^{-1}[(I_m - H) \cap V]$ is closed and of *n* dimensional measure greater than $1 - (\varepsilon/2 + \eta)$. Then, the set $S = f^{-1}[(I_m - H) \cap V] \cap (I_n - G)$ is a closed, sectionally zero dimensional set of *n* dimensional measure greater than $1 - (\varepsilon/2 + \eta + \eta) = 1 - \varepsilon$, whose image T = f(S) is a closed, sectionally zero dimensional set of *m* dimensional measure greater than $1 - \varepsilon$. Since $S \subset U$, the transformation $(f(x), f^{-1}(y))$ is a homeomorphism between *S* and *T*.

The main results of this paper now follow:

Theorem 5. If $n = m \ge 2$, I_n and I_m are *n* dimensional open unit cubes, and $(f(x), f^{-1}(y))$ is a one-one measurable transformation between I_n and I_m , then for every $\varepsilon > 0$, there is a homeomorphism $(g(x), g^{-1}(y))$ between I_n and I_m such that f(x) = g(x) and $f^{-1}(y) = g^{-1}(y)$ on sets whose *n* dimensional measures exceed $1 - \varepsilon$.

Proof. By Theorem 4, $(f(x), f^{-1}(y))$ is a homeomorphism between sectionally zero dimensional closed sets $S \subset I_n$ and $T \subset I_m$, both of whose *n* dimensional measures exceed $1 - \varepsilon$. Let $(g(x), g^{-1}(y))$ be the extension of this homeomorphism between S and T to a homeomorphism between I_n and I_m , whose existence is assured by Theorem 1.

That Theorem 5 does not hold for the case n = m = 1 is shown by the following one-one measurable transformation between $I_n = (0,1)$ and $I_m = (0,1)$:

f(x) = x + 1/2	0 < x < 1/2
= x - 1/2	1/2 < x < 1
= 1/2	x = 1/2.

Suppose $(g(x), g^{-1}(y))$ is a homeomorphism between I_n and I_m . Then g(x) is either strictly increasing or strictly decreasing on I_n . If g(x) is strictly decreasing, then f(x) = g(x) for at most three values of x. If g(x) is strictly increasing, then if there is a ξ such that $0 < \xi < 1/2$ and $f(\xi) = g(\xi)$, it follows that $f(x) \neq g(x)$ for every x such that 1/2 < x < 1. In either case, the set on which f(x) = g(x) is of measure not greater than 1/2.

Theorem 6. If $1 \le n < m$, I_n is an *n* dimensional open unit cube, I_m is an *m* dimensional open unit cube, and $(f(x), f^{-1}(y))$ is a one-one measurable transformation between I_n and I_m , then for every $\varepsilon > 0$, there is a homeomorphism $(g(x), y^{-1}(y))$ between I_n and a subset of I_m , such that f(x) = g(x) on a set whose *n* dimensional measure exceeds $1 - \varepsilon$ and $f^{-1}(y) = g^{-1}(y)$ on a set whose *m* dimensional measure exceeds $1 - \varepsilon$.

Proof. Just as in the proof of Theorem 5 except that Theorem 2 is needed instead of Theorem 1.

In Theorem 6, the subset of I_m into which I_n is taken by g(x) is of *m* dimensional sional measure greater than $1-\varepsilon$. I show now that it cannot be of *m* dimensional measure 1. For, suppose $(g(x), g^{-1}(y))$ is a homeomorphism between I_n and a subset U of I_m of *m* dimensional measure 1. Then U is dense in I_m . Let $x \in I_n$ and $y = g(x) \in U$. Let $\{I_{nk}\}$ be the sequence of closed cubes concentric with I_n such that, for every *k*, the *n* dimensional measure of I_{nk} is 1-1/k. The set $g(I_{nk})$ is a closed subset of U which is nowhere dense in I_m since, otherwise, as a closed set, it would contain an *m* dimensional sphere, making an *n* dimensional set homeomorphic with an m > n dimensional set. The sphere σ_k of center *y* and radius 1/k, accordingly, contains a point $y_k \in U$ such that $y_k \notin g(I_{nk})$. The sequence $\{y_k\}$ converges to *y*, but the distances from the boundary of I_n of the elements of the sequence $\{g^{-1}(y_k)\}$ converge to zero so that the sequence does not converge to *x*, and the function $g^{-1}(y)$ is not continuous. This contradicts the assumption that $(g(x), g^{-1}(y))$ is a homeomorphism. The following theorem should be of interest in this connection.

Theorem 7. If $1 \le n < m$, I_n is an open *n* dimensional unit cube, I_m is an open *m* dimensional unit cube, and $(f(x), f^{-1}(y))$ is a one-one measurable transformation between I_n and I_m , then, for every $\varepsilon > 0$, there is a one-one transformation $(g(x), g^{-1}(y))$ between I_n and a subset of I_m of *m* dimensional measure 1, such that g(x) is continuous, f(x) = g(x) on a set of *n* dimensional measure greater than $1 - \varepsilon$, and $f^{-1}(y) = g^{-1}(y)$ on a set of *m* dimensional measure greater than $1 - \varepsilon$.

Proof. By Theorem 4, there are sectionally zero dimensional sets $S \subset I_n$ and $T \subset I_m$ such that $(f(x), f^{-1}(y))$ is a homeomorphism between S and T, and the n dimensional measure of S and m dimensional measure of T both exceed $1-\varepsilon$. The distance of S from the boundary of I_n is positive, so that there is a closed cube I_{n1} in I_n such that S is contained in the interior of I_{n1} . The homeomorphism $(f(x), f^{-1}(y))$ between S and T may be extended, by Theorem 2, to a homeomorphism $(g_1(x), g_1^{-1}(y))$ between I_{n1} and a subset, E_1 , of I_m whose boundary is the boundary of an n dimensional cube. Now, let I_{n1} be the first member of an increasing sequence

$$I_{n1}, I_{n2}, \ldots, I_{nk}, \ldots$$

of closed unit cubes whose union is I_n , each of which is contained in the interior of its immediate successor, and let

$$\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_k, \ldots$$

be a decreasing sequence of positive numbers which converges to zero. The set E_1 , as a closed homeomorphic image of an n dimensional set, is nowhere dense in I_m . Let $T_1 \subset I_m - E_1$ be a sectionally zero dimensional closed set such that the m dimensional measure of $I_m - (E_1 \bigcup T_1)$ is less than ε_2 . Now, T_1 may be taken to be the intersection of a decreasing sequence of sets each of which consists of a finite number of disjoint closed m dimensional cubes contained in $I_m - E_1$, so that the homeomorphism $(g_1(x), g_1^{-1}(y))$ between I_{n1} and E_1 may then be extended, in the manner described by Besicovitch [12], to a homeomorphism $(g_2(x), g_2^{-1}(y))$ between I_{n2} and a closed subset $E_2 \supset T_1$ of I_m , of *m* dimensional measure greater than $1 - \varepsilon_2$, whose boundary is the boundary of a n dimensional cube. In this way, the sequence of homeomorphisms $(g_1(x), g_1^{-1}(y)), (g_2(x), g_2^{-1}(y)), \ldots, (g_k(x), g_k^{-1}(y)), \ldots, \text{ each of which is an extension}$ of its immediate predecessor, such that, for every k, $(g_k(x), g_k^{-1}(y))$ is a homeomorphism between I_{nk} and a subset E_k of I_m of m dimensional measure greater than $1-\varepsilon_k$, is obtained. The sequence $\{g_k(x)\}$ converges to a function g(x) defined on I_n which has an inverse $g^{-1}(y)$. The one-one transformation $(g(x), g^{-1}(y))$ evidently has the desired properties.

Theorem 5 has the following interpretation. For any two one-one measurable transformations $\mathcal{J}_1: (f_1(x), f_1^{-1}(y))$ and $\mathcal{J}_2: (f_2(x), f_2^{-1}(y))$ between a given *n* dimensional open unit cube $I_n, n \geq 2$, and itself, let

$$\delta (\mathcal{J}_{1}, \mathcal{J}_{2}) = m(E) + m(F),$$

where E is the set of points for which $f_1(x) \neq f_2(x)$, F is the set of points for which $f_1^{-1}(y) \neq f_2^{-1}(y)$, and m(E) and m(F) are their n dimensional measures. If \mathcal{J}_1 is equivalent to \mathcal{J}_2 whenever $\delta(\mathcal{J}_1, \mathcal{J}_2) = 0$, the equivalence classes obtained in the usual way are readily seen to form a metric space. Theorem 5 may now be restated:

Theorem 5'. The set of homeomorphisms is dense in the metric space of all one-one measurable transformations between an n dimensional open cube I_n , $n \ge 2$, and itself.

A different distance between transformations has been introduced by P. R. Halmos [16] in his work on measure preserving transformations. A metric similar to the one used by Halmos could be introduced here. Theorem 5' could then be stated in terms of this metric δ' , since it would follow that $\delta' \leq \delta$ for every pair of transformations.

4. Related results and questions. The theorem of Vitali-Carathéodory says that for every measurable f(x) on, say, the open interval (0,1) there is a g(x) on (0,1), of Baire class 2 at most, such that f(x) = g(x) almost everywhere. I prove the following analogous theorem for one-one measurable transformations. **Theorem 8.** If $(f(x), f^{-1}(y))$ is a one-one measurable transformation between I = (0,1) and I = (0,1) there is a one-one transformation $(g(x), g^{-1}(y))$ between I and J such that g(x) and $g^{-1}(y)$ are of Baire class 2 at most and are such that f(x) = g(x) and $f^{-1}(y) = g^{-1}(y)$ almost everywhere.

Proof. The proof depends upon the following relations between Baire functions and Borel sets (17]. A real function f(x), defined on a set S, is continuous relative to S if and only if, for every k, the set of points for which f(x) < k is open relative to S and the set of points for which $f(x) \leq k$ is closed relative to S; it is of at most Baire class 1 relative to S if and only if the sets of points for which f(x) < kand $f(x) \leq k$ are of types F_{σ} and G_{δ} relative to S, respectively; it is of at most Baire class 2 relative to S if and only if the sets of points for which f(x) < k and $f(x) \leq k$ are of types $G_{\delta\sigma}$ and $F_{\sigma\delta}$ relative to S, respectively. Now, by Theorem 4, there are closed sets $S_1 \subset I$, and $T_1 \subset J$, each of measure greater than 1/2, such that $(f(x), f^{-1}(y))$ is a homeomorphism between S_1 and T_1 . Again, by Theorem 4, there are closed sets $S_2 \supset S_1$ and $T_2 \supset T_1$, each of measure greater than 3/4, such that $(f(x), f^{-1}(y))$ is a homeomorphism between S_2 and T_2 . In this way, obtain increasing sequences $S_1 \subset S_2 \subset \ldots \subset S_n \subset \ldots$ and $T_1 \subset T_2 \subset \ldots \subset T_n \subset \ldots$, such that $S = \lim S_n$ and $T = \lim_{n \to \infty} T_n$ are both of measure 1, $(f(x), f^{-1}(y))$ is a one-one transformation between S and T, and for every n, S_n and T_n are closed sets and $(f(x), f^{-1}(y))$ is a homeomorphism between them. Moreover, the sets S_n and T_n may be taken to be zero dimensional, hence nowhere dense, so that S and T are sets of type F_{σ} which are of the first category. f(x) is of Baire class 1 on S relative to S. For, by the Tietze extension theorem [18], the continuous function f(x) on S_n relative to S_n may be extended to a continuous function $\varphi_n(x)$ on I. The functions of the sequence $\{\varphi_n(x)\}\$ are all continuous on S relative to S and converge to f(x) on S so that f(x)is of at most Baire class 1 on S relative to S. Similarly, $f^{-1}(y)$ is of at most Baire class 1 on T relative to T. Since S and T are of type F_{σ} , of measure 1, and of the first category, the sets I-S and J-T are of type G_{δ} , of measure 0, and residual. Since they are of measure 0, they are frontier sets, and since residual they are everywhere dense. By a theorem of Mazurkiewicz [19], they are accordingly homeomorphic to the set of irrationals and hence to each other. Let $(\varphi(x), \varphi^{-1}(y))$ be a homeomorphism between I-S and J-T. Let

$$g(x) = f(x) \qquad x \in S$$
$$= \varphi(x) \qquad x \in I - S$$

Then $(g(x), g^{-1}(y))$ is a one-one transformation between I and J. For every k, the set of points of S for which f(x) < k is of type F_{σ} relative to the set S of type F_{σ} , and so is of type F_{σ} relative to I; and the set of points of I - S for which $\varphi(x) < k$ is open relative to the set I - S of type G_{δ} , and so is of type G_{δ} relative to I. Hence, the set of points of I for which g(x) < k, as the union of sets of type F_{σ} and G_{δ} is of type $G_{\delta\sigma}$ relative to I. In the same way, the set of points of S for which $f(x) \leq k$ is of type $F_{\sigma\delta}$ relative to I, and the set of points of I - S for which $\varphi(x) \leq k$ is of type G_{δ} relative to I, so that the set of points of I for which $g(x) \leq k$, as the union of sets of type $F_{\sigma\delta}$ and of type G_{δ} , is of type $F_{\sigma\delta}$ relative to I. Hence, g(x) is of Baire class 2 at most. Similarly, $g^{-1}(y)$ is of Baire class 2 at most.

The method used here does not seem to apply to higher dimensional transformations, and I have not found a way to treat this problem in such cases.

The following converse to Theorem 8 holds.

Theorem 9. There is a one-one measurable transformation $(f(x), f^{-1}(y))$ between open unit intervals I = (0,1) and J = (0,1) such that, for every one-one transformation $(g(x), g^{-1}(y))$ between I and J for which f(x) = g(x) and $f^{-1}(y) = g^{-1}(y)$ almost everywhere, the functions g(x) and $g^{-1}(y)$ are both of Baire class 2 at least.

Proof. I first note that there is a Borel set S such that both S and its complement I-S are of positive measure in every subinterval of I. For, if S_1 , S_2 , ..., S_n , ... is a sequence of nowhere dense closed sets, such that S_n has positive measure in each of the intervals

$$I_{n1} = (0, 1/n), I_{n2} = (1/n, 2/n), \ldots, I_{nn} = (1 - 1/n, 1)$$

and, for every n,

$$m(S_n) = 1/3 \min [m(I_{ni} - \bigcup_{j=1}^{n-1} S_j); i = 1, 2, ..., n],$$

the set $S = \bigcup_{n=1}^{\infty} S_n$ has this property. Now, let S be a Borel subset of (0, 1/2) such that both S and its complement have positive measure in every subinterval of (0, 1/2). Let S+1/2 be the set obtained by adding 1/2 to all the points in S. Now, let

$$f(x) = \begin{cases} x & x \in S \\ x + 1/2 & x \in I - S \\ x & x \in S + 1/2 \\ x - 1/2 & x \in (I - S) + 1/2 \\ x & x = 1/2. \end{cases}$$

The function f(x) has an inverse $f^{-1}(y)$. Suppose g(x) = f(x) almost everywhere. Since every interval contains a set of positive measure on which f(x) < 1/2 and a set of positive measure on which f(x) > 1/2, the same holds for g(x). Then g(x) is discontinuous wherever $g(x) \neq \frac{1}{2}$ (i.e., almost everywhere) and so is not of Baire class 1. Similarly, if $g^{-1}(y) = f^{-1}(y)$ almost everywhere, it is not of Baire class 1.

One might ask if whenever one-one measurable transformations are absolutely measurable or measure preserving the approximating homeomorphisms of Theorems 5 and 6 may also be taken to be absolutely measurable or measure preserving. I have not yet considered these matters.

Finally, I obtain a decomposition theorem for one-one measurable transformations analogous to the Hahn decomposition theorem for measures [20]:

Theorem 10. If $(f(x), f^{-1}(y))$ is a one-one measurable transformation between I_n and I_m , $1 \le n \le m$, I_n has a decomposition into three disjoint Borel sets S_1 , S_2 , and S_3 , some of which might be empty, such that S_1 is of *n* dimensional measure zero, $f(S_2)$ is of *m* dimensional measure zero, and $(f(x), f^{-1}(y))$ is a one-one absolutely measurable transformation between S_3 and $f(S_3)$.

Proof. Consider the set \mathcal{F}_1 of all closed sets in I_n whose n dimensional measures are positive but which are taken by f(x) into sets of m dimensional measure zero. Let $F_1 \in \mathcal{F}_1$ be such that its measure is not less than half the measure of any set in \mathcal{F}_1 . Consider the set \mathcal{F}_2 of all closed sets in $I_n - F_1$ whose n dimensional measures are positive but which are taken by f(x) into sets of m dimensional measure zero. In this way, obtain a sequence of disjoint closed sets $F_1, F_2, \ldots, F_k, \ldots$ each of positive n dimensional measure, each taken by f(x) into a set of m dimensional measure zero, such that for every k, the n dimensional measure of F_k is more than half the *n* dimensional measure of any closed subset of $I_n - \bigcup_{i=1}^{k-1} F_i$ which is taken by f(x) into a set of *m* dimensional measure zero. Let $F = \bigcup_{k=1}^{\infty} F_k$. Obtain an analogous sequence $K_1, K_2, \ldots, K_k, \ldots$ of disjoint closed subsets of $I_m - f(F)$ and let $K = \bigcup_{k=1}^{\infty} K_k$. Now, f(F) is of m dimensional measure zero and $f^{-1}(K)$ is of n dimensional measure zero. Let $S_1 = f^{-1}(K)$, $S_2 = F$, and $S_3 = I_n - (F \bigcup f^{-1}(K))$. Let $E \subset S_3$ be a measurable set such that f(E) is of m dimensional measure zero. Suppose E is of positive n dimensional measure. Then E contains a closed subset S of positive n dimensional measure. But the measure of S then exceeds twice the measure of F_k , for some k, and so S should appear in the sequence F_1, F_2, \ldots instead of F_k . Hence E must 18 - 533805. Acta Mathematica. 89. Imprimé le 31 juillet 1953.

be of *n* dimensional measure zero. Similarly, every measurable subset of $f(S_3)$ which is taken by $f^{-1}(y)$ into a set of *n* dimensional measure zero is itself of *m* dimensional measure zero. The transformation $(f(x), f^{-1}(y))$ between S_3 and $f(S_3)$ is, accordingly, absolutely measurable.

Bibliography.

- 1. W. SIERPINSKI, Démonstration de quelques théorèmes fondamentaux sur les fonctions mesurables, Fund. Math., vol. 3 (1922), p. 319.
- C. GOFFMAN, Proof of a Theorem of Saks and Sierpinski, Bull. Amer. Math. Soc., vol. 54 (1948), pp. 950-952.
- 3. N. LUSIN, Sur les propriétés des fonctions mesurables, C. R. Acad. Sci. Paris, vol. 154 (1912), pp. 1688-1690.
- 4. H. BLUMBERG, New Properties of All Real Functions, Trans. Amer. Math. Soc., vol. 24 (1922), pp. 113-128.
- H. RADEMACHER, Eineindeutige Abbildungen und Messbarkeit, Monatshefte f
 ür Mathematik und Physik, vol. 27 (1916), pp. 183-290.
- 6. C. GOFFMAN, The approximation of Arbitrary Biunique Transformations, Duke Math. J., vol. 10 (1943), pp. 1-4.
- 7. E. J. MCSHANE, Integration, Princeton, 1947, p. 237.
- 8. J. VON NEUMANN, Functional Operators I, Princeton, 1950, p. 77.
- 9. W. A. BLANKINSHIP, Generalization of a Construction of Antoine, Annals of Math., vol. 53 (1951), pp. 276.
- 10. W. HUREWICZ and H. WALLMAN, Dimension Theory, Princeton, 1941, Chapter 2.
- G. NÖBELING, Über die Flächenmasse im Euklidischen Raum, Mathematische Annalen, vol. 118 (1941-3), pp. 687-701.
- A. S. BESICOVITCH, On the definition and Value of the Area of a Surface, Oxford Quarterly Journal of Math., vol. 16 (1945), pp. 86-102.
- W. SIERPINSKI, Sur l'inversion des fonctions représentables analytiquement, Fund. Math., vol. 3 (1922), pp. 26-34.
- 14. L. W. COHEN, A New Proof of Lusin's Theorem, Fund Math., vol. 9 (1927), pp. 122-3.
- 15. C. KURATOWSKI, Topologie II, Warsaw, 1950, p. 11.
- 16. P. R. HALMOS, Approximation Theories for Measure Preserving Transformations, Trans. Amer. Math. Soc., vol. 55 (1944), pp. 1-18.
- 17. F. HAUSDORFF, Mengenlehre, Leipzig, 1927.
- 18. H. TIETZE, Über Funktionen, die auf einer abgeschlossenen Menge stetig sind. Journal für die Reine und Angewandete Math., vol. 145 (1915), pp. 9-14.
- 19. C. KURATOWSKI, Topologie I, Warsaw, 1933, p. 225.
- 20. P. R. HALMOS, Measure Theory, New York, 1950, p. 121.

University of Oklahoma Norman, Oklahoma.