ONE.ONE MEASURABLE TRANSFORMATIONS.

By

CASPER GOFFMAN

1. Introduction. The literature on the theory of functions of a real variable contains a variety of results which show that measurable functions, and even arbitrary functions, have certain continuity properties. As examples, I mention the well known theorems of Vitali-Carathéodory [1], Saks-Sierpinski [2], Lusin [3], and the theorem of Blumberg [4] which asserts that for every real function $f(x)$ defined on the closed interval $[0,1]$ there is a set D which is dense in the interval such that $f(x)$ is continuous on D relative to D.

The related topic of measurable and arbitrary one-one transformations has been given little attention. I know only of Rademacher's work [5] on measurability preserving transformations and my short paper [6] on the approximation of arbitrary one-one transformations.

My purpose here is to fill this void partially by obtaining for one-one measurable transformations an analog of Lusin's theorem on measurable functions. The form of Lusin's theorm I have in mind is that [7] for every measurable real function $f(x)$ defined on the closed interval $[0,1]$ there is, for every $\varepsilon>0$, a continuous $g(x)$ defined on $[0,1]$ such that $f(x)=g(x)$ on a set of measure greater than $1-\varepsilon$. The analogous statement for one-one transformations between [0,1] and itself is that for every such one-one measurable $f(x)$ with measurable inverse $f^{-1}(x)$ there is, for every $\varepsilon>0$, a homeomorphism $g(x)$ with inverse $g^{-1}(x)$ between [0,1] and itself such that $f(x)=g(x)$ and $f^{-1}(x)=g^{-1}(x)$ on sets of measure greater than $1-\varepsilon$. I shall show that this statement is false but that similar statements are true for one-one transformations between higher dimensional cubes.

I shall designate a one-one transformation by $\left(f(x), f^{-1}(y)\right)$, where the functions $f(x)$ and $f^{-1}(y)$ are the direct and inverse functions of the transformation. I shall say that a one-one transformation $\left(f(x), f^{-1}(y)\right)$ between n and m dimensional unit cubes I_{n} and I_{m} is measurable if the functions $f(x)$ and $f^{-1}(y)$ are both measurable,

[^0]and that $\left(f(x), f^{-1}(y)\right)$ is absolutely measurable ${ }^{1}$ if, for all measurable sets $S \subset I_{n}$, $T \subset I_{m}$, the sets $f(S)$ and $f^{-1}(T)$ are measurable, where $f(S)$ is the set of all $y \in I_{m}$ for which there is an $x \in S$ such that $y=f(x)$, and $f^{1}(T)$ is defined similarly. It is well known [8] that a measurable transformation $\left(f(x), f^{-1}(y)\right)$ is absolutely measurable if and only if, for all sets $S \subset I_{n}$ and $T \subset I_{m}$, of measure zero, the sets $f(S)$ and $f^{1}(T)$ are also of measure zero.

I show that if $n=m \geqq 2$, and $\left(f(x), f^{-1}(y)\right.$) is a one-one measurable transformation between unit n cubes I_{n} and I_{m} then for every $\varepsilon>0$, there is a homeomorphism $\left(g(x), g^{-1}(y)\right)$ between I_{n} and I_{m} such that $f(x)=g(x)$ and $f^{-1}(y)=g^{-1}(y)$ on sets whose n dimensional measures both exceed $1-\varepsilon$. This result does not hold if $n=m=1$. I then show that if $1 \leqq n<m$ and $\left(f(x), f^{-1}(y)\right.$) is a one-one measurable transformation between unit cubes I_{n} and I_{m}, whose dimensions are n and m, respectively, then for every $\varepsilon>0$, there is a homeomorphism $\left(g(x), g^{-1}(y)\right)$ between I_{n} and a subset of I_{m} whose m dimensional measure exceeds $1-\varepsilon$, such that $f(x)=g(x)$ and $f^{1}(y)=g^{1}(y)$ on sets whose n and m dimensional measures exceed $1-\varepsilon$, respectively.

For the case $n=m$, the proof depends on the possibility of extending a homeomorphism between certain zero dimensionel closed subsets of the interiors of I_{n} and I_{m} to a homeomorphism between I_{n} and I_{m}. It has been known since the work of Antoine [9] that such extensions are always possible only if $n=m=2$. However, it is adequate for my needs that such extensions be possible for homeomorphisms between special kinds of zero dimensional closed sets which I call sectional. In § 2 , I show that if $n=m \geqq 2$, then every homeomorphism between sectionally zero dimensional closed subsets of the interiors of I_{n} and I_{m} may be extended to a homeomorphism between I_{n} and I_{m}. For the case $1 \leqq n<m$, I show that every homeomorphism between sectionally zero dimensional subsets of the interiors of I_{n} and I_{m} may be extended to a homeomorphism between I_{n} and a subset of I_{m}. In § 3, I show that for every one-one measurable $\left(f(x), f^{1}(y)\right)$ between I_{n} and I_{m}, where $n \geqq 1$ and $m \geqq 1$, there are, for every $\varepsilon>0$, closed sets $E_{n} \subset I_{n}$ and $E_{m} \subset I_{m}$, whose n and m dimensional measures, respectively, exceed $1-\varepsilon$, such that $\left(f(x), f^{-1}(y)\right)$ is a homeomorphism between E_{n} and E_{m}. I then show that the closed sets E_{n} and E_{m} may be taken to be sectionally zero dimensional. These facts, when combined with the results of $\S 2$, yield the main results of the paper which were mentioned above. § 4 is concerned whith related matters. I show that for every one-one measurable $\left(f(x), f^{-1}(y)\right)$ between unit intervals $I=[0,1]$ and $J=[0,1]$ there is a one-one $\left(g(x), g^{-1}(y)\right)$ between I and J
${ }^{1}$ The transformations which I call absolutely measurable are customarily called measurable. The terms used here seem to conform more nearly to standard real variable terminology.
such that $g(x)$ and $g^{-1}(y)$ are of at most Baire class 2, and $g(x)=f(x), g^{-1}(y)=f^{-1}(y)$ almost everywhere. I have not been able to answer the analogous question for transformations between higher dimensional cubes. Finally, I show that for every one-one measurable transformation $\left(f(x), f^{-1}(y)\right)$ between I_{n} and I_{m} there are decompositions $I_{n}=S_{1} \cup S_{2} \cup S_{3}$ and $I_{m}=f\left(S_{1}\right) \cup f\left(S_{2}\right) \cup f\left(S_{3}\right)$ into disjoint measurable sets, some of which could be empty, such that S_{1} is of n dimensional measure zero, $f\left(S_{2}\right)$ is of m dimensional measure zero, and $\left(f(x), f^{-1}(y)\right)$ is an absolutely measurable transformation between S_{3} and $f\left(S_{3}\right)$.
2. Extension of homeomorphisms. Let $n \geqq 2$ and let I_{n} be an n dimensional unit cube. I shall say that a set $E \subset I_{n}$ is sectionally zero dimensional if for every hyperplane π which is parallel to a face of I_{n} and for every $\varepsilon>0$ there is a hyperplane π^{\prime} parallel to π whose distance from π is less than ε and which contains no points of E. It is clear that every sectionally zero dimensional set is zero dimensional in the Menger-Urysohn sense [10] but that there are zero dimensional sets which are not sectionally zero dimensional. A set $S \subset I_{n}$ will be called a p-set if it consists of a simply connected region, together with the boundary of the region, for which the boundary consists of a finite number of $n-1$ dimensional parallelopipeds which are parallel to the faces of I_{n}.

Lemma 1. Every subset of a sectionally zero dimensional set is sectionally zero dimensional.

Proof. The proof is clear.
Lemma 2. If $\left(f(x), f^{1}(y)\right)$ is a homeomorphism between sectionally zero dimensional closed sets S and T, and $\varepsilon>0$, then S may be decomposed into disjoint sectionally zero dimensional closed sets $S_{1}, S_{2}, \ldots, S_{m}$, and T may be decomposed into disjoint sectionally zero dimensional closed sets $T_{1}, T_{2}, \ldots, T_{m}$, each of diameter less than ε, such that, for every $j=1,2, \ldots ., m,\left(f(x), f^{1}(y)\right)$ is a homeomorphism between S_{j} and T_{j}.

Proof. There is a $\delta>0$, which may be taken to be less than ε, such that every subset of S of diameter less than δ is taken by $f(x)$ into a subset of T of diameter less than ε. Let $S_{1}, S_{2}, \ldots, S_{m}$ be a decomposition of S into disjoint sectionally zero dimensional closed sets each of diameter less than δ. Then the sets $T_{1}=f\left(S_{1}\right)$, $T_{2}=f\left(S_{2}\right), \ldots, T_{m}=f\left(S_{m}\right)$ are sectionally zero dimensional closed subsets of T each of diameter less than ε.

Lemma 3. If F is a sectionally zero dimensional closed set which is contained in the interior of a p-set P then, for every $\varepsilon>0$, there is a finite number of disjoint p-sets in the interior of P, each of which contains at least one point of F and is of diameter less than ε, such that F is contained in the union of their interiors.

Proof. Since F is sectionally zero dimensional, there is, for every pair of parallel faces of I_{n}, a finite sequence of parallel hyperplanes such that one of the two given faces of I_{n} is first in the sequence and the other is last, and such that the distance between successive hyperplanes of the sequence is less than ε / \sqrt{n}. The collection of hyperplanes thus obtained for all pairs of parallel faces of I_{n} decomposes P into a finite number of p-sets, whose interiors are disjoint, such that F is contained in the union of their interiors. Since F is closed, these p-sets may be shrunk to disjoint p-sets which are such that F is still in the union of their interiors. Select among the latter p-sets those whose intersection with F is not empty. It is clear that these p-sets have all the required properties.

Lemma 4. If $k>0$, and $F_{1}, F_{2}, \ldots, F_{m}$ is a finite number of disjoint sectionally zero dimensional closed sets in the interior of a p-set P, each of diameter less than k, then there are disjoint p-sets $P_{1}, P_{2}, \ldots, P_{m}$ in the interior of P, each of diameter less than $k V / \bar{n}$, such that F_{j} is contained in the interior of P_{j}, for every $j=1,2, \ldots, m$.

Proof. Every F_{j} is evidently contained in the interior of a p-set Q_{f} which is itself in the interior of P and also in a cube of side k. The set P_{f} will be a subset of Q, and so its diameter will be less than $k V n$. Since $F_{1}, F_{2}, \ldots, F_{m}$ are disjoint closed sets, there is a constant $d>0$ such that the distance between any two of them exceeds d. By Lemma 3, each F_{j} has an associated finite number of disjoint p-sets, all of which are subsets of Q_{j} of diameter less than $d / 2$, each of which contains at least one point of F_{j}, and are such that F_{j} is contained in the union of their interiors. Call these sets $P_{j_{1}}, P_{f_{2}}, \ldots, P_{j_{j}}$. If $i \neq j$, then every pair of sets $P_{i r}, P_{j s}$ is disjoint, since the distance between F_{i} and F_{j} exceeds d. For every $j=1,2, \ldots, m$, the set $P_{j 1}$ can be connected to $P_{j 2}, P_{j 2}$ to $P_{j 3}$, and so on until P_{j}, m_{j-1} is connected to $P_{j m_{j}}$ by means of parallelopipeds with faces parallel to the faces of I_{n}, which remain in Q_{j} and do not intersect each other or any of the sets $P_{i r}$. The set P_{j} is the union of $P_{j 1}, P_{j 2}, \ldots, P_{j m_{j}}$ and the connecting parallelopipeds. P_{j} is a subset of Q_{j}. It is a p-set of diameter less than $k \sqrt{n}$ whose interior contains F_{j}. Moreover, if $i \neq j$, then the intersection of P_{i} and P_{j} is empty.

Lemma 5. If P and Q are p-sets, $P_{1}, P_{2}, \ldots, P_{m}$ and $Q_{1}, Q_{2}, \ldots, Q_{m}$ are disjoint p-sets in the interiors of P and Q, respectively, having $p_{1}, p_{2}, \ldots, p_{m}$ and $q_{1}, q_{2}, \ldots, q_{m}$ as their own interiors, then every homeomorphism $\left(f(x), f^{-1}(y)\right)$ between the boundaries of P and Q may be extended to a homeomorphism between $P-\bigcup_{j=1}^{m} p_{j}$ and $Q-\bigcup_{j=1}^{m} q_{j}$ which takes the boundary of P_{j} into the boundary of Q_{j} for every $j=1,2, \ldots, m$.

Proof. Let R be a p-set contained in the interior of P which has the sets $P_{1}, P_{2}, \ldots, P_{m}$ in its interior and let S be a p-set contained in the interior of Q which has the sets $Q_{1}, Q_{2}, \ldots, Q_{m}$ in its interior. There is a homeomorphism ($\left.\varphi(x), \varphi^{-1}(y)\right)$ between $R-\bigcup_{j=1}^{m} p_{j}$ and $S-\bigcup_{j=1}^{m} q_{j}$ which takes the boundary of P_{j} into the boundary of Q_{j} for every j. I need only show that there is a homeomorphism between the closed region bounded by P and R and the closed region bounded by Q and S which agrees with $\left(f(x), f^{-1}(y)\right)$ on the outer boundaries and agrees with ($\left.\varphi(x), \varphi^{-1}(y)\right)$ on the inner boundaries. By taking cross-cuts from the outer to the inner boundaries and extending the homeomorphisms along the cross-cuts, the problem is reduced to the following one: if two regions R_{1} and R_{2} are both homeomorphic to the closed n dimensional sphere σ_{n} and if $\left(f(x), f^{-1}(y)\right)$ is a homeomorphism between the boundaries of R_{1} and R_{2} then $\left(f(x), f^{-1}(y)\right)$ may be extended to a homeomorphism between R_{1} and R_{2}. In order to show this, I consider arbitrary homeomorphisms ($g(x), g^{-1}(y)$) and $\left(h(x), h^{-1}(y)\right)$ between R_{1} and σ_{n} and between R_{2} and σ_{n}. I then consider the following special homeomorphism $\left(k(x), k^{-1}(y)\right)$ between σ_{n} and itself: For each ξ on the boundary of σ_{n}, let

$$
k(\xi)=h\left(f\left(g^{-1}(\xi)\right)\right) .
$$

For each ξ in the interior of σ_{n}, let $k(\xi)$ be defined by first moving ξ along the radius on which it lies to the point ξ^{\prime} on the boundary of σ_{n} which lies on the same radius, then by moving ξ^{\prime} to the point $k\left(\xi^{\prime}\right)$, and finally by moving $k\left(\xi^{\prime}\right)$ along the radius of σ_{n} on which it lies to the point on the same radius whose distance from the center of σ_{n} is the same as the distance of ξ from the center of σ_{n}. The transformation $k(\xi)$ which is defined in this way is easily seen to be a homeomorphism between σ_{n} and itself. The transformation

$$
\varphi(x)=h^{-1}(k(g(x))),
$$

together with its inverse, constitutes a homeomorphism between R_{1} and R_{2}. This homeomorphism is an extension of $\left(f(x), f^{-1}(y)\right)$, for if x is on the boundary of R_{1}, then

$$
\begin{aligned}
\varphi(x) & =h^{-1}(h(g(x)))=h^{-1}\left(h\left(f\left(g^{-1}(g(x))\right)\right)\right) \\
& =h^{-1}(h(f(x)))=f(x) .
\end{aligned}
$$

I am now ready to prove a theorem on the extension of homeomorphisms.
Theorem 1. If P and Q are n-dimensional p-sets for $n \geqq 2$, and S and T are sectionally zero dimensional closed subsets of the interiors of P and Q, respectively, every homeomorphism $\left(f(x), f^{-1}(y)\right)$ between S and T may be extended to a homeomorphism between P and Q.

Proof. By Lemma 2, S and T have decompositions into disjoint closed sets $S_{1}, S_{2}, \ldots, S_{m_{1}}$ and $T_{1}, T_{2}, \ldots, T_{m_{1}}$, all of diameter less than 1 , such that $T_{i_{1}}=f\left(S_{j_{1}}\right)$, for every $j_{1}=1,2, \ldots, m_{1}$. By Lemma 1 , these sets are all sectionally zero dimensional, and so, by Lemma 4, there are disjoint p-sets $P_{1}, P_{2}, \ldots, P_{m_{1}}$ in the interior of P and disjoint p-sets $Q_{1}, Q_{2}, \ldots, Q_{m_{1}}$ in the interior of Q, all of diameter less than V_{n}, such that, for every $j_{1}=1,2, \ldots, m_{1}, S_{j_{1}}$ is in the interior of $P_{j_{1}}$ and $T_{j_{1}}$ is in the interior of $Q_{j_{1}}$. For every $j_{1}=1,2, \ldots, m_{1}$, the sets $S_{j_{1}}$ and $T_{j_{1}}$ have decompositions into disjoint sectionally zero dimensional closed sets $S_{j_{1} 1}, S_{j_{1} 2}, \ldots, S_{j_{1} m h_{1}}$ and $T_{j_{1} 1}, T_{j_{2} 2}, \ldots, T_{i_{1} m_{i_{1}}}$, all of diameter less than $1 / 2$, such that $T_{j_{1} j_{2}}=f\left(S_{1_{1} j_{2}}\right)$, for for every $j_{2}=1,2, \ldots, m_{j_{1}}$; and there are disjoint p-sets $P_{j_{1} 1}, P_{j_{1} 2}, \ldots, P_{j_{1} m_{j_{1}}}$ in the interior of $P_{j_{1}}$ and disjoint p-sets $Q_{j_{1}}, Q_{j_{1}}, \ldots, Q_{j_{1} m_{j_{1}}}$ in the interior of $Q_{i_{1}}$, all of diameter less than $\sqrt{n} / 2$, such that for every $j_{2}=1,2, \ldots, m_{f_{1}}, S_{j_{1} y_{2}}$ is in the interior of $P_{j_{1} j_{2}}$ and $T_{j_{1} j_{2}}$ is in the interior of $Q_{j_{1} j_{2}}$. By repeated application of the lemmas in this way, the following system of sets is obtained: First, there is a positive integer m_{1}; for every $j_{1} \leqq m_{1}$, there is a positive integer $m_{j_{1}}$; for every $j_{1} \leqq m_{1}, \quad j_{2} \leqq m_{j_{1}}$, there is a positive integer $m_{i_{1} j_{2}}$; and, for every positive integer k, having defined the positive integers $m_{j_{1} i_{2} \ldots j_{k-1}}$, there is for every $j_{1} \leqq m_{1}$, $j_{2} \leqq m_{j_{1}}, \ldots, j_{k} \leqq m_{j_{1} j_{2} \ldots j_{k-1}}$, a positive integer $m_{j_{1} j_{2} \ldots j_{k}}$. Now, for every positive integer k, for every $j_{1} \leqq m_{1}, j_{2} \leqq m_{j_{1}}, \ldots, j_{k} \leqq m_{1_{1} j_{2} \ldots j_{k-1}}$, there are sets $S_{j_{1} j_{2} \ldots j_{k}}$, $T_{y_{1} j_{2} \ldots j_{k}}, P_{j_{1} j_{3} \ldots j_{k}}$, and $Q_{1_{1} j_{2} \ldots j_{k}}$. The sets $S_{j_{1} j_{2} \ldots j_{k}}$ and $T_{j_{1} j_{2} \ldots j_{k}}$ are sectionally zero dimensional subsets of $S_{j_{1} j_{2} \ldots j_{k-1}}$ and $T_{j_{1} j_{2} \ldots j_{k-1}}$, respectively, all with diameters less than $1 / 2^{k}$, such that $T_{j_{1} j_{2} \ldots j_{k}}=f\left(S_{j_{1} j_{2} \ldots j_{k}}\right)$. The set $P_{j_{1} j_{2} \ldots j_{k}}$ is a p-set of diameter less than $\sqrt{n} / 2^{k}$ which contains $S_{j_{1} /_{2} \ldots j_{k}}$ in its interior and is in the interior of $P_{j_{1} j_{2} \ldots j_{k-1}}$, and $Q_{j_{1} j_{2} \ldots j_{k}}$ is a p-set of diameter less than $n / 2^{k}$ which contains $T_{i_{1} j_{2} \ldots j_{k}}$ in its interior and is in the interior of $Q_{i_{1} j_{2} \ldots j_{k-1}}$. Moreover, for every $j_{1} \leqq m_{1}, j_{2} \leqq m_{f_{1}}, \ldots, j_{k-1} \leqq m_{j_{1} j_{2} \ldots j_{k-2}}$, the sets $P_{j_{1} j_{2}} \ldots j_{k}$, as well as the sets $Q_{j_{1} j_{2} \ldots j_{k}}$, are disjoint for $j_{k}=1,2, \ldots, m_{j_{1} j_{2} \ldots j_{k-1}}$.

The desired extension of the homeomorphism $\left(f(x), f^{-1}(y)\right)$ between S and T to a homeomorphism between P and Q is now obtained by repeated application of Lemma 5 to the p-sets $P_{j_{1} j_{2} \ldots j_{k}}$ and $Q_{j_{1} j_{2} \ldots j_{k}}$. Designate the interiors of $P_{j_{1} j_{2} \ldots j_{k}}$ and $Q_{j_{1} j_{2} \ldots j_{k}}$ by $p_{j_{1} j_{2} \ldots j_{k}}$ and $q_{i_{1} j_{2} \ldots j_{k}}$, respectively. A homeomorphism $\left(\varphi(x), \varphi^{-1}(y)\right)$ is first effected between $P-\bigcup_{j_{1}=1}^{m_{1}} p_{j_{1}}$ and $Q-\bigcup_{j_{1}=1}^{m_{1}} q_{j_{2}}$ which takes the boundary of $P_{j_{1}}$ into the boundary of $Q_{j_{1}}$, for every $j_{1}=1,2, \ldots, m_{1}$. For every $j_{1}=1,2, \ldots, m_{1}$, this homeomorphism between the boundaries of $P_{j_{1}}$ and $Q_{j_{1}}$ may be extended to a homeomorphism $\left(\varphi(x), \varphi^{-1}(y)\right)$ between $P_{f_{1}}-\bigcup_{j_{2}=1}^{m_{j_{1}}} p_{j_{1} j_{2}}$ and $Q_{f_{1}}=\bigcup_{j_{2}=1}^{m_{j_{1}}} q_{j_{1} j_{2}}$ which takes the boundary of $P_{j_{1} j_{2}}$ into the boundary of $Q_{i_{1} i_{2}}$, for every $i_{2}=1,2, \ldots, m_{i_{1}}$. For every positive integer k, having defined the homeomorphism $\left(\varphi(x), \varphi^{-1}(y)\right)$ between $P-\bigcup p_{j_{1} j_{2} \ldots j_{k-1}}$ and $Q-\bigcup q_{j_{1} j_{2} \ldots j_{k-1}}$, where the union is taken over all $j_{1} \leqq m_{1}$, $j_{2} \leqq m_{j_{1}}, \ldots, j_{k-1} \leqq m_{j_{1} j_{2} \ldots j_{k-2}}$, the homeomorphism $\left(\varphi(x), \varphi^{-1}(y)\right)$ between the boundary of $P_{i_{1} j_{2} \ldots j_{k-1}}$ and the boundary of $Q_{i_{1} f_{2} \ldots j_{k-1}}$ may, for every $j_{1} \leqq m_{1}, j_{2} \leqq m_{i_{1}}, \ldots$, $j_{k-1} \leqq m_{j_{1} f_{2} \ldots f_{k-2}}$, be extended to a homeomorphism between

$$
P_{j_{1} j_{2} \ldots j_{k-1}}-\bigcup_{j_{k}=1}^{m_{j_{1}} j_{2} \ldots j_{k-1}} p_{j_{1} j_{2} \ldots j_{k}}
$$

and

$$
Q_{j_{1} j_{2} \ldots j_{k-1}}-\bigcup_{j_{k}=1}^{m_{j_{1}} j_{2} \ldots j_{k-1}} q_{f_{1} j_{2} \ldots j_{k}} .
$$

Since $S=\bigcap_{k=1}^{\infty}\left(U P_{i_{1} i_{2} \ldots j_{k}}\right)$ and $T=\bigcap_{k=1}^{\infty}\left(U Q_{i_{1} j_{k} \ldots j_{k}}\right)$, where the union is taken over all $j_{1} \leqq m_{1}, j_{2} \leqq m_{j_{1}}, \ldots, j_{k} \leqq m_{j_{1} j_{2}} \ldots j_{k-1}, \quad\left(\varphi(x), \varphi^{-1}(y)\right)$ is a one-one transformation between $P-S$ and $Q-T$. By letting $\varphi(x)=f(x)$ for every $x \in S,\left(\varphi(x), \varphi^{-1}(y)\right)$ becomes a one-one transformation between P and Q which is an extension of the homeomorphism $\left(f(x), f^{-1}(y)\right)$ between S and T. For every $x \in S$ and $\varepsilon>0$, there are $p_{j_{1} j_{2} \ldots j_{k}}$, and $q_{i_{1} f_{2} \ldots j_{k}}$ of diameters less than ε, such that $x \in p_{f_{1} j_{2} \ldots j_{k}}, \varphi(x) \in q_{j_{1} j_{2} \ldots j_{k}}$, and $q_{j_{1} j_{2} \ldots j_{k}}=\varphi\left(p_{j_{1} j_{2} \ldots j_{k}}\right)$, Accordingly, $\varphi(x)$ is continuous at x. For every $x \in P-S$, there is a k such that $x \nsubseteq \cup P_{i_{1} j_{2} \ldots j_{k}}$, where the union is taken over all $j_{1} \leqq m_{1}$, $j_{2} \leqq m_{f_{1}}, \ldots, j_{k} \leqq m_{i_{1} j_{2} \ldots j_{k-1}}$, so that it follows from the above construction that $\varphi(x)$ is continuous at x. Hence, $\varphi(x)$ is continuous on P. Similarly, $\varphi^{-1}(y)$ is continuous on Q. This shows that $\left(\varphi(x), \varphi^{-1}(y)\right)$ is a homeomorphism between P and Q which is an extension of the homeomorphism $\left(f(x), f^{-1}(y)\right)$ between S and T.

A result similar to that of Theorem 1 holds even if $n \neq m$. Of course, a given homeomorphism between sectionally zero dimensional closed subsets of an n dimensional p-set P and an m dimensional p-set $Q, n<m$, cannot now be extended to a homeomorphism between P and Q. However, it can be extended to a homeomorphism between P and a proper subset of Q. Constructions similar to the one which will be given here have been used by Nöbeling [11] and Besicovitch [12], in their work on surface area.

Theorem 2. If $1 \leqq n<m, P$ is an n dimensional p-set and Q is an m dimen sional p-set, and S and T are sectionally zero dimensional closed subsets of the interiors of P and Q, respectively, then every homeomorphism ($f(x), f^{-1}(y)$) between S and T may be extended to a homeomorphism between P and a subset of Q.

Proof. I shall dwell only upon those points at which the proof differs from that of Theorem 1. Lemmas 1,2 , and 4 remain valid for $1 \leqq n<m$. The families $S_{j_{1} j_{2} \ldots j_{k}}$ and $T_{j_{1} j_{2} \ldots j_{k}}$ of sectionally zero dimensional closed sets, $P_{j_{1} j_{2} \ldots j_{k}}$ of n dimensional p-sets, and $Q_{j_{1} j_{2} \ldots j_{k}}$ of m dimensional p-sets, for $k=1,2, \ldots, j_{1} \leqq m_{1}$, $j_{2} \leqq m_{j_{1}}, \ldots, j_{k} \leqq m_{i_{1} j_{2} \ldots j_{k-1}}, \ldots$, may, accordingly, be constructed just as for the case $n=m \geqq 2$. Let R be an n dimensional closed parallelopiped contained in the boundary of Q. Let $R_{1}, R_{2}, \ldots, R_{m_{1}}$ be disjoint n dimensional closed parallelopipeds contained in the interior of R, and for every $j_{1} \leqq m_{1}$, let $U_{f_{1}}$ be an n dimensional closed parallelopiped contained in the boundary of $Q_{j_{1}}$. Now, for every $j_{1} \leqq m_{1}$, the boundary of $R_{f_{1}}$ may be connected to the boundary of $U_{f_{1}}$ by means of a pipe lying in the interior of Q, whose surface $Z_{j_{1}}$ is an n dimensional closed polyhedron such that if $j_{1} \neq j_{1}^{\prime}$ then $Z_{j_{1}}, Z_{j^{\prime}, 1}$ are disjoint. There is a homeomorphism $\left(\varphi(x), \varphi^{-1}(y)\right)$ between $P-\bigcup_{j_{1}-1}^{m_{1}} p_{j_{1}}$ and $\left(R-\bigcup_{j_{1}-1}^{m_{1}} r_{j_{1}}\right) \cup\left(\bigcup_{j_{1}-1}^{m_{1}} Z_{j_{1}}\right)$ which takes the boundary of $P_{j_{1}}$ into the boundary of $U_{f_{1}}$, for every $j_{1} \leqq m_{1}$. For every $j_{1} \leqq m_{1}$, let $R_{f_{1} 1}, R_{f_{1} 2}, \ldots, R_{f_{1} m_{j_{1}}}$ be disjoint n dimensional closed parallelopipeds in the interior of $U_{j_{1}}$ and, for every $j_{2} \leqq m_{j_{1}}$, let $U_{j_{1} /_{2}}$ be an n dimensional closed parallelopiped contained in the boundary of $Q_{1_{1} j_{2}}$. For every $j_{2} \leqq m_{j_{1}}$, the boundary of $R_{j_{1} j_{2}}$ may be connected to the boundary of $U_{f_{1} j_{2}}$ by means of a pipe, lying in the interior of Q_{j}, whose surface $Z_{j_{1} j_{2}}$ is an n dimensional polyhedron such that if $j_{2} \neq j_{2}^{\prime}$ then $Z_{j_{1} j_{2}}, Z_{j_{1} y_{2}}$ are disjoint. The homeomorphism ($\varphi(x), \varphi^{-1}(y)$) between the boundaries of $P_{f_{1}}$ and $U_{i_{1}}$ may be extended to a homeomorphism $\left(\varphi(x), \varphi^{-1}(y)\right)$ between $P_{f_{1}}-\bigcup_{j_{2}-1}^{m} p_{j_{1}} p_{j_{2}}$ and $\left(U_{j_{1}}-\bigcup_{j_{2}=1}^{m j_{1}} r_{j_{1} j_{2}}\right) \cup\left(\bigcup_{j_{2}-1}^{m_{j_{1}}} Z_{f_{1} j_{2}}\right)$ which takes the boundary of $P_{j_{1} j_{2}}$ into the boundary of $U_{i_{1} j_{2}}$, for every $j_{2} \leqq m_{i_{1}}$. By repeating
the extension of the homeomorphism for all $k=1,2, \ldots$, as in the proof of Theorem 1, a homeomorphism is obtained between $P-S$ and a subset of $Q-T$. That this homeomorphism may be extended to one between P and a subset of Q which contains T and is such that $\varphi(x)=f(x)$, for every $x \in S$, follows by a slight modification of the argument used in the proof of Theorem 1.

For the case $n=m=1$, one can easily find one-one transformations between finite sets in I_{n} and I_{m} which cannot be extended to homeomorphisms between I_{n} and I_{m}. But every one-one transformation between finite sets is a homeomorphism, and every finite set is a sectionally zero dimensional closed set, so that Theorem 1 does not hold for this case.
3. Application to one-one measurable transformations. As stated in the introduction, a one-one measurable transformation, $\left(f(x), f^{-1}(y)\right)$, between an n dimensional open cube I_{n} and an m dimensional open cube I_{m} is one for which $f(x)$ and $f^{-1}(y)$ are both measurable functions. That is to say, for all Borel sets $T \subset I_{m}$ and $S \subset I_{n}$, the sets $f^{1}(T) \subset I_{n}$ and $f(S) \subset I_{m}$ are measurable.

A remark concerning this definition seems to be appropriate. That the measurability of $f^{-1}(y)$ does not follow from that of $f(x)$ is shown by the following example: Let I and J be open unit intervals $(0,1)$. Let $S \subset I$ be a Borel set of measure zero, but of the same cardinal number c as the continuum, and $T \subset J$ a Borel set of positive measure such that $J-T$ is also of positive measure. Then T contains disjoint non-measurable sets T_{1} and T_{2}, both of cardinal number c, such that $T=T_{1} \cup T_{2}$; and S contains disjoint Borel sets S_{1} and S_{2}, both of cardinal number c, such that $S=S_{1} \cup S_{2}$. Define $\left(f(x), f^{1}(y)\right)$ by means of a one-one correspondence between $I-S$ and $J-T$ which takes every Borel set in $I-S$ into a measurable set in $J-T$ and every Borel set in $J-T$ into a measurable set in $I-S$, and by means of arbitrary one-one correspondences between S_{1} and T_{1} and between S_{2} and T_{2}. The function $f(x)$ is measurable. For, let B be any Borel set in J. Then $B=B_{1} \cup B_{2}$, where $B_{1}=B \cap(J \Delta T)$ and $B_{2}=B \cap T$ are also Borel set. But $f^{-1}\left(B_{1}\right)$ is measurable and $f^{1}\left(B_{2}\right)$ is of measure zero, so that $f^{-1}(B)$ is measurable. The function $f^{-1}(y)$ is non-measurable, since S_{1} is a Borel set and $T_{1}=f\left(S_{1}\right)$ is nonmeasurable.

On the other hand, if $\left(f(x), f^{-1}(y)\right)$ is a one-one transformation such that $f(x)$ is measurable and takes all sets of measure zero into sets of measure zero, then $f^{-1}(y)$ is also measurable, and $\left(f(x), f^{-1}(y)\right)$ is a one-one measurable transformation. For, by the Vitali-Carathéodory theorem, there is a function $g(x)$, of Baire class 2
at most, such that $f(x)=g(x)$, except on a Borel set $Z \subset I$ of measure zero. Now $g(x)$ as a Baire function on an interval I, takes all Borel sets [13] in I into Borel sets in J. Let $B \subset I$ be a Borel set. Then B is the union of Borel sets $B_{1} \subset I-Z$ and $B_{2} \subset Z$. Since $f\left(B_{1}\right)=g\left(B_{1}\right)$ is a Borel set and $f\left(B_{2}\right)$ is of measure zero, $f(B)$ is measurable, so that $f^{-1}(y)$ is a measurable function.

The usual form of Lusin's Theorem [14] is that for every measurable real valued function $f(x)$ defined, say, on an open n dimensional unit cube I_{n}, and for every $\varepsilon>0$, there is a closed set $S \subset I_{n}$, whose n dimensional measure exceeds $1-\varepsilon$, such that $f(x)$ is continuous on S relative to S. Since every measurable function on I_{n} with values in an m dimensional cube I_{m} is given by m measurable real valued functions, and the continuous functions on a set $S \subset I_{n}$ relative to S, with values in I_{m}, are those for which the corresponding set of m real functions are all continuous on S relative to S, the theorem is readily seen to hold just as well for functions on I_{n} with values in I_{m}. Moreover, the following result is valid for one-one measurable transformations.

Theorem 3. If $\left(f(x), f^{-1}(y)\right)$ is a one-one measurable transformation between open n dimensional and m dimensional unit cubes I_{n} and I_{m}, where n and m are any positive integers then, for every $\varepsilon>0$, there is a closed set $S \subset I_{n}$ of n dimensional measure greater than $1-\varepsilon$ and a closed set $T \subset I_{m}$ of m dimensional measure greater than $1-\varepsilon$ such that $\left(f(x), f^{-1}(y)\right)$ is a homeomorphism between S and T.

Proof. It is known [15] that if ($\varphi(x), \varphi^{-1}(y)$) is a one-one transformation between a closed set $S \subset S$ and a set $T \subset \mathcal{J}$, where S and \mathcal{J} are subsets of compact sets, and if $\varphi(x)$ is continuous, then T is a closed set and $\varphi^{-1}(y)$ is continuous, so that $\left(\varphi(x), \varphi^{-1}(y)\right)$ is a homeomorphism. This assertion holds for the case $S=I_{n}, \mathcal{J}=I_{m}$, since their closures are compact sets. Since $f(x)$ is measurable, there is a closed set $S \subset I_{n}$, of n dimensional measure greater than $1-\varepsilon$, such that $f(x)$ is continuous on S relative to S. The set $f(S)$ is a closed subset of I_{m}, and $f^{-1}(y)$ is continuous on $f(S)$ relative to $f(S)$. The complement, $\mathbf{C} f(S)$, is measurable, and the function $f^{-1}(y)$ defined on it is measurable. Accordingly, again by Lusin's Theorem, there is a closed subset T of $C f(S)$, whose measure exceeds $m(C f(S))-\varepsilon$, such that $f^{-1}(y)$ is continuous on T relative to T. The set $f^{-1}(T)$ is closed and $f(x)$ is continuous on $f^{-1}(T)$ relative to $f^{-1}(T)$. Now, the set $S \cup f^{1}(T)$ is closed and of n dimensional measure greater than $1-\varepsilon$, the set $T \cup f(S)$ is closed and of m dimensional measure greater than $1-\varepsilon$. The transformation $\left(f(x), f^{-1}(y)\right)$ is a homeomorphism between $S U f^{-1}(T)$ and $T \cup f(S)$. For, the fact that $f(x)$ is continuous on $S \cup f^{-1}(T)$ relative to $S \cup f^{-1}(T)$
follows from the facts that it is continuous on S relative to S and on $f^{-1}(T)$ relative to $f^{-1}(T)$ and that S and $f^{-1}(T)$, as disjoint closed sets, have positive distance from each other. The function $f^{-1}(y)$ is continuous on $T \cup f(S)$ relative to $T \cup f(S)$ for similar reasons.

Theorem 4. The sets S and T of Theorem 3 may be taken to be sectionally zero dimensional closed sets.

Proof. Let $U \subset I_{n}$ and $V \subset I_{m}$ be closed sets, U of n dimensional measure greater than $1-\varepsilon / 2$ and V of m dimensional measure greater than $1-\varepsilon / 2$, such that $\left(f(x), f^{-1}(y)\right)$ is a homeomorphism between U and V. For convenience, I shall designate the intersection of a hyperplane π with the open cube I_{n} by π and shall refer to this intersection as the hyperplane. Among all hyperplanes π which are parallel to faces of I_{n}, there is only a finite or denumerable number for which the set $f(\pi)$ is of positive m dimensional measure. For, if the set of hyperplanes with this property were non-denumerable, then a non-denumerable number of them would be parallel to one of the faces of I_{n}. Then, for some positive integer k, an infinite number of these hyperplanes π would be such that the m dimensional measure of $f(\pi)$ exceeds $1 / k$. This contradicts the fact that $m\left(I_{m}\right)=1$, where the notation $m(S)$ will henceforth indicate m dimensional measure for subsets of I_{m} and n dimensional measure for subsets of I_{m}. It then follows that for every face of I_{n}, there is a denumerable set of hyperplanes parallel to the face, whose union is dense in I_{n}, such that $m(f(\pi))=0$ for every hyperplane π in the set. As the union of a finite number of denumerable sets, this totality of hyperplanes is denumerable in number, and so it may be ordered as

$$
\pi_{1}, \pi_{2}, \ldots, \pi_{k}, \ldots
$$

I associate with each π_{k} an open set G_{k}, as follows: For every positive integer r, let $G_{k r}$ be the set of all points in I_{n} whose distance from π_{k} is less than $1 / r$. Since $f\left(\pi_{k}\right)=\bigcap_{r=1}^{\infty} f\left(G_{k r}\right)$, the sets $f\left(G_{k r}\right)$ are non-increasing, and $m\left(f\left(\pi_{k}\right)\right)=0$, there is an r_{k} for which $m\left(f\left(G_{k r_{k}}\right)\right)<\eta / 2^{k}$, where $\eta=\varepsilon / 4$. Moreover, r_{k} may be taken so large that $m\left(G_{k r_{k}}\right)<\eta / 2^{k}$. Let $G=\bigcup_{k=1}^{\infty} G_{k r_{k}}$. Then $I_{n}-G$ is a sectionally zero dimensional closed set of n dimensional measure greater than $1-\eta$ such that $f\left(I_{n}-G\right)$ is of m dimensional measure greater than $1-\eta$. In the same way, there is an $H \subset I_{m}$ for which $I_{m}-H$ is a sectionally zero dimensional closed set of m dimensional measure greater than $1-\eta$ such that $f^{-1}\left(I_{m}-H\right)$ is of n dimensional measure greater than $1-\eta$. The
set $\left(I_{m}-H\right) \cap V$ is sectionally zero dimensional, closed, and of m dimensional measure greater than $1-(\varepsilon / 2+\eta)$; and $f^{-1}\left[\left(I_{m}-H\right) \cap V\right]$ is closed and of n dimensional measure greater than $1-(\varepsilon / 2+\eta)$. Then, the set $S=f^{-1}\left[\left(I_{m}-H\right) \cap V\right] \cap\left(I_{n}-G\right)$ is a closed, sectionally zero dimensional set of n dimensional measure greater than $1-(\varepsilon / 2+\eta+\eta)=1-\varepsilon$, whose image $T=f(S)$ is a closed, sectionally zero dimensional set of m dimensional measure greater than $1-\varepsilon$. Since $S \subset U$, the transformation $\left(f(x), f^{-1}(y)\right)$ is a homeomorphism between S and T.

The main results of this paper now follow:
Theorem 5. If $n=m \geqq 2, I_{n}$ and I_{m} are n dimensional open unit cubes, and $\left(f(x), f^{-1}(y)\right)$ is a one-one measurable transformation between I_{n} and I_{m}, then for every $\varepsilon>0$, there is a homeomorphism $\left(g(x), g^{-1}(y)\right)$ between I_{n} and I_{m} such that $f(x)=g(x)$ and $f^{-1}(y)=g^{-1}(y)$ on sets whose n dimensional measures exceed $1-\varepsilon$.

Proof. By Theorem 4, $\left(f(x), f^{-1}(y)\right)$ is a homeomorphism between sectionally zero dimensional closed sets $S \subset I_{n}$ and $T \subset I_{m}$, both of whose n dimensional measures exceed $1-\varepsilon$. Let $\left(g(x), g^{-1}(y)\right)$ be the extension of this homeomorphism between S and T to a homeomorphism between I_{n} and I_{m}, whose existence is assured by Theorem 1.

That Theorem 5 does not hold for the case $n=m=1$ is shown by the following one-one measurable transformation between $I_{n}=(0,1)$ and $I_{m}=(0,1)$:

$$
\begin{aligned}
f(x) & =x+1 / 2 & & 0<x<1 / 2 \\
& =x-1 / 2 & & 1 / 2<x<1 \\
& =1 / 2 & & x=1 / 2 .
\end{aligned}
$$

Suppose $\left(g(x), g^{-1}(y)\right)$ is a homeomorphism between I_{n} and I_{m}. Then $g(x)$ is either strictly increasing or strictly decreasing on I_{n}. If $g(x)$ is strictly decreasing, then $f(x)=g(x)$ for at most three values of x. If $g(x)$ is strictly increasing, then if there is a ξ such that $0<\xi<1 / 2$ and $f(\xi)=g(\xi)$, it follows that $f(x) \neq g(x)$ for every x such that $1 / 2<x<1$. In either case, the set on which $f(x)=g(x)$ is of measure not greater than $1 / 2$.

Theorem 6. If $1 \leqq n<m, I_{n}$ is an n dimensional open unit cube, I_{m} is an m dimensional open unit cube, and $\left(f(x), f^{-1}(y)\right)$ is a one-one measurable transformation between I_{n} and I_{m}, then for every $\varepsilon>0$, there is a homeomorphism $\left(g(x), y^{-1}(y)\right)$ between I_{n} and a subset of I_{m}, such that $f(x)=g(x)$ on a set whose n dimensional measure exceeds $1-\varepsilon$ and $f^{-1}(y)=g^{-1}(y)$ on a set whose m dimensional measure exceeds $1-\varepsilon$.

Proof. Just as in the proof of Theorem 5 except that Theorem 2 is needed instead of Theorem 1.

In Theorem 6, the subset of I_{m} into which I_{n} is taken by $g(x)$ is of m dimensional measure greater than $1-\varepsilon$. I show now that it cannot be of m dimensional measure 1. For, suppose $\left(g(x), g^{-1}(y)\right)$ is a homeomorphism between I_{n} and a subset U of I_{m} of m dimensional measure 1 . Then U is dense in I_{m}. Let $x \in I_{n}$ and $y=g(x) \in U$. Let $\left\{I_{n k}\right\}$ be the sequence of closed cubes concentric with I_{n} such that, for every k, the n dimensional measure of $I_{n k}$ is $1-1 / k$. The set $g\left(I_{n k}\right)$ is a closed subset of U which is nowhere dense in I_{m} since, otherwise, as a closed set, it would contain an m dimensional sphere, making an n dimensional set homeomorphic with an $m>n$ dimensional set. The sphere σ_{k} of center y and radius $1 / k$, accordingly, contains a point $y_{k} \in U$ such that $y_{k} \ddagger g\left(I_{n k}\right)$. The sequence $\left\{y_{k}\right\}$ converges to y, but the distances from the boundary of I_{n} of the elements of the sequence $\left\{g^{-1}\left(y_{k}\right)\right\}$ converge to zero so that the sequence does not converge to x, and the function $g^{-1}(y)$ is not continuous. This contradicts the assumption that $\left(g(x), g^{-1}(y)\right)$ is a homeomorphism. The following theorem should be of interest in this connection.

Theorem 7. If $1 \leqq n<m, I_{n}$ is an open n dimensional unit cube, I_{m} is an open m dimensional unit cube, and $\left(f(x), f^{-1}(y)\right)$ is a one-one measurable transformation between I_{n} and I_{m}, then, for every $\varepsilon>0$, there is a one-one transformation $\left(g(x), g^{-1}(y)\right)$ between I_{n} and a subset of I_{m} of m dimensional measure 1 , such that $g(x)$ is continuous, $f(x)=g(x)$ on a set of n dimensional measure greater than $1-\varepsilon$, and $f^{1}(y)=g^{-1}(y)$ on a set of m dimensional measure greater than $1-\varepsilon$.

Proof. By Theorem 4, there are sectionally zero dimensional sets $S \subset I_{n}$ and $T \subset I_{m}$ such that $\left(f(x), f^{-1}(y)\right)$ is a homeomorphism between S and T, and the n dimensional measure of S and m dimensional measure of T both exceed $1-\varepsilon$. The distance of S from the boundary of I_{n} is positive, so that there is a closed cube $I_{n 1}$ in I_{n} such that S is contained in the interior of $I_{n 1}$. The homeomorphism $(f(x)$, $f^{-1}(y)$) between S and T may be extended, by Theorem 2 , to a homeomorphism ($\left.g_{1}(x), g_{1}^{-1}(y)\right)$ between $I_{n 1}$ and a subset, E_{1}, of I_{m} whose boundary is the boundary of an n dimensional cube. Now, let $I_{n 1}$ be the first member of an increasing sequence

$$
I_{n 1}, I_{n 2}, \ldots, I_{n k}, \ldots
$$

of closed unit cubes whose union is I_{n}, each of which is contained in the interior of its immediate successor, and let

$$
\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}, \ldots
$$

be a decreasing sequence of positive numbers which converges to zero. The set E_{1}, as a closed homeomorphic image of an n dimensional set, is nowhere dense in I_{m}. Let $T_{1} \subset I_{m}-E_{1}$ be a sectionally zero dimensional closed set such that the m dimensional measure of $I_{m}-\left(E_{1} \cup T_{1}\right)$ is less than ε_{2}. Now, T_{1} may be taken to be the intersection of a decreasing sequence of sets each of which consists of a finite number of disjoint closed m dimensional cubes contained in $I_{m}-E_{1}$, so that the homeomorphism ($g_{1}(x), g_{1}^{1}{ }^{1}(y)$) between $I_{n 1}$ and E_{1} may then be extended, in the manner described by Besicovitch [12], to a homeomorphism ($\left.g_{2}(x), g_{2}{ }^{1}(y)\right)$ between $I_{n 2}$ and a closed subset $E_{2} \supset T_{1}$ of I_{m}, of m dimensional measure greater than $1-\varepsilon_{2}$, whose boundary is the boundary of a n dimensional cube. In this way, the sequence of homeomorphisms $\left(g_{1}(x), g_{1}^{-1}(y)\right),\left(g_{2}(x), g_{2}^{-1}(y)\right), \ldots,\left(g_{k}(x), g_{k}^{-1}(y)\right), \ldots$, each of which is an extension of its immediate predecessor, such that, for every $k,\left(g_{k}(x), g_{k}^{-1}(y)\right)$ is a homeomorphism between $I_{n k}$ and a subset E_{k} of I_{m} of m dimensional measure greater than $1-\varepsilon_{k}$, is obtained. The sequence $\left\{g_{k}(x)\right\}$ converges to a function $g(x)$ defined on I_{n} which has an inverse $g^{-1}(y)$. The one-one transformation $\left(g(x), g^{-1}(y)\right.$) evidently has the desired properties.

Theorem 5 has the following interpretation. For any two one-one measurable transformations $J_{1}:\left(f_{1}(x), f_{1}{ }^{1}(y)\right)$ and $\boldsymbol{J}_{2}:\left(f_{2}(x), f_{2}{ }^{1}(y)\right)$ between a given n dimensional open unit cube $I_{n}, n \geqq 2$, and itself, let

$$
\delta\left(\mathcal{J}_{1}, \mathcal{J}_{2}\right)=m(E)+m(F),
$$

where E is the set of points for which $f_{1}(x) \neq f_{2}(x), F$ is the set of points for which $f_{1}^{1}(y) \neq f_{2}{ }^{-1}(y)$, and $m(E)$ and $m(F)$ are their n dimensional measures. If J_{1} is equivalent to \mathfrak{J}_{2} whenever $\delta\left(\boldsymbol{J}_{1}, \boldsymbol{J}_{2}\right)=0$, the equivalence classes obtained in the usual way are readily seen to form a metric space. Theorem 5 may now be restated:

Theorem 5'. The set of homeomorphisms is dense in the metric space of all one-one measurable transformations between an n dimensional open cube $I_{n}, n \geqq 2$, and itself.

A different distance between transformations has been introduced by P. R. Halmos [16] in his work on measure preserving transformations. A metric similar to the one used by Halmos could be introduced here. Theorem 5^{\prime} could then be stated in terms of this metric δ^{\prime}, since it would follow that $\delta^{\prime} \leqq \delta$ for every pair of transformations.
4. Related results and questions. The theorem of Vitali-Carathéodory says that for every measurable $f(x)$ on, say, the open interval $(0,1)$ there is a $g(x)$ on $(0,1)$, of Baire class 2 at most, such that $f(x)=g(x)$ almost everywhere. I prove the following analogous theorem for one-one measurable transformations.

Theorem 8. If $\left(f(x), f^{-1}(y)\right)$ is a one-one measurable transformation between $I=(0,1)$ and $I=(0,1)$ there is a one-one transformation $\left(g(x), g^{-1}(y)\right)$ between I and J such that $g(x)$ and $g^{-1}(y)$ are of Baire class 2 at most and are such that $f(x)=g(x)$ and $f^{-1}(y)=g^{-1}(y)$ almost everywhere.

Proof. The proof depends upon the following relations between Baire functions and Borel sets (17]. A real function $f(x)$, defined on a set S, is continuous relative to S if and only if, for every k, the set of points for which $f(x)<k$ is open relative to S and the set of points for which $f(x) \leqq k$ is closed relative to S; it is of at most Baire class 1 relative to S if and only if the sets of points for which $f(x)<k$ and $f(x) \leqq k$ are of types F_{σ} and G_{δ} relative to S, respectively; it is of at most Baire class 2 relative to S if and only if the sets of points for which $f(x)<k$ and $f(x) \leqq k$ are of types $G_{\delta \sigma}$ and $F_{\sigma \delta}$ relative to S, respectively. Now, by Theorem 4, there are closed sets $S_{1} \subset I$, and $T_{1} \subset J$, each of measure greater than $1 / 2$, such that $\left(f(x), f^{-1}(y)\right)$ is a homeomorphism between S_{1} and T_{1}. Again, by Theorem 4, there are closed sets $S_{2} \supset S_{1}$ and $T_{2} \supset T_{1}$, each of measure greater than $3 / 4$, such that $\left(f(x), f^{1}(y)\right)$ is a homeomorphism between S_{2} and T_{2}. In this way, obtain increasing sequences $S_{1} \subset S_{2} \subset \ldots \subset S_{n} \subset \ldots$ and $T_{1} \subset T_{2} \subset \ldots \subset T_{n} \subset \ldots$, such that $S=\lim S_{n}$ and $T=\lim T_{n}$ are both of measure $1,\left(f(x), f^{1}(y)\right)$ is a one-one transformation between S and T, and for every n, S_{n} and T_{n} are closed sets and $\left(f(x), f^{1}(y)\right)$ is a homeomorphism between them. Moreover, the sets S_{n} and T_{n} may be taken to be zero dimensional, hence nowhere dense, so that S and T are sets of type F_{σ} which are of the first category. $f(x)$ is of Baire class 1 on S relative to S. For, by the Tietze extension theorem [18], the continuous function $f(x)$ on S_{n} relative to S_{n} may be extended to a continuous function $\varphi_{n}(x)$ on I. The functions of the sequence $\left\{\varphi_{n}(x)\right\}$ are all continuous on S relative to S and converge to $f(x)$ on S so that $f(x)$ is of at most Baire class 1 on S relative to S. Similarly, $f^{1}(y)$ is of at most Baire class 1 on T relative to T. Since S and T are of type F_{σ}, of measure 1 , and of the first category, the sets $I-S$ and $J-T$ are of type G_{δ}, of measure 0 , and residual. Since they are of measure 0 , they are frontier sets, and since residual they are everywhere dense. By a theorem of Mazurkiewicz [19], they are accordingly homeomorphic to the set of irrationals and hence to each other. Let $\left(\varphi(x), \varphi^{-1}(y)\right)$ be a homeomorphism between $I-S$ and $J-T$. Let

$$
\begin{aligned}
\mathrm{g}(x) & =f(x) & & x \in S \\
& =\varphi(x) & & x \in I-S .
\end{aligned}
$$

Then $\left(g(x), g^{-1}(y)\right)$ is a one-one transformation between I and J. For every k, the set of points of S for which $f(x)<k$ is of type F_{σ} relative to the set S of type F_{σ}, and so is of type F_{σ} relative to I; and the set of points of $I-S$ for which $\varphi(x)<k$ is open relative to the set $I-S$ of type G_{δ}, and so is of type G_{δ} relative to I. Hence, the set of points of I for which $g(x)<k$, as the union of sets of type F_{σ} and G_{δ} is of type $G_{\delta \sigma}$ relative to I. In the same way, the set of points of S for which $f(x) \leqq k$ is of type $F_{\sigma \delta}$ relative to I, and the set of points of $I-S$ for which $\varphi(x) \leqq k$ is of type G_{δ} relative to I, so that the set of points of I for which $g(x) \leqq k$, as the union of sets of type $F_{\sigma \delta}$ and of type G_{δ}, is of type $F_{\sigma \delta}$ relative to I. Hence, $g(x)$ is of Baire class 2 at most. Similarly, $g^{-1}(y)$ is of Baire class 2 at most.

The method used here does not seem to apply to higher dimensional transformations, and I have not found a way to treat this problem in such cases.

The following converse to Theorem 8 holds.
Theorem 9. There is a one-one measurable transformation $\left(f(x), f^{1}(y)\right)$ between open unit intervals $I=(0,1)$ and $J=(0,1)$ such that, for every one-one transformation $\left(g(x), g^{-1}(y)\right)$ between I and J for which $f(x)=g(x)$ and $f^{-1}(y)=g^{-1}(y)$ almost everywhere, the functions $g(x)$ and $g^{-1}(y)$ are both of Baire class 2 at least.

Proof. I first note that there is a Borel set S such that both S and its complement $I-S$ are of positive measure in every subinterval of I. For, if S_{1}, S_{2}, \ldots, S_{n}, \ldots is a sequence of nowhere dense closed sets, such that S_{n} has positive measure in each of the intervals

$$
I_{n 1}=(0,1 / n), I_{n 2}=(1 / n, 2 / n), \ldots, I_{n n}=(1-1 / n, 1)
$$

and, for every n,

$$
m\left(S_{n}\right)=1 / 3 \min \left[m\left(I_{n i}-\bigcup_{j=1}^{n-1} S_{j}\right) ; i=1,2, \ldots, n\right]
$$

the set $S=\bigcup_{n=1}^{\infty} S_{n}$ has this property. Now, let S be a Borel subset of ($0,1 / 2$) such that both S and its complement have positive measure in every subinterval of ($0,1 / 2$). Let $S+1 / 2$ be the set obtained by adding $1 / 2$ to all the points in S. Now, let

$$
f(x)= \begin{cases}x & x \in S \\ x+1 / 2 & x \in I-S \\ x & x \in S+1 / 2 \\ x-1 / 2 & x \in(I-S)+1 / 2 \\ x & x=1 / 2\end{cases}
$$

The function $f(x)$ has an inverse $f^{-1}(y)$. Suppose $g(x)=f(x)$ almost everywhere. Since every interval contains a set of positive measure on which $f(x)<1 / 2$ and a set of positive measure on which $f(x)>1 / 2$, the same holds for $g(x)$. Then $g(x)$ is discontinuous wherever $g(x) \neq \frac{1}{2}$ (i.e., almost everywhere) and so is not of Baire class 1. Similarly, if $g^{-1}(y)=f^{-1}(y)$ almost everywhere, it is not of Baire class 1 .

One might ask if whenever one-one measurable transformations are absolutely measurable or measure preserving the approximating homeomorphisms of Theorems 5 and 6 may also be taken to be absolutely measurable or measure preserving. I have not yet considered these matters.

Finally, I obtain a decomposition theorem for one-one measurable transformations analogous to the Hahn decomposition theorem for measures [20]:

Theorem 10. If $\left(f(x), f^{-1}(y)\right)$ is a one-one measurable transformation between I_{n} and $I_{m}, \quad 1 \leqq n \leqq m, I_{n}$ has a decomposition into three disjoint Borel sets S_{1}, S_{2}, and S_{3}, some of which might be empty, such that S_{1} is of n dimensional measure zero, $f\left(S_{2}\right)$ is of m dimensional measure zero, and $\left(f(x), f^{-1}(y)\right)$ is a one-one absolutely measurable transformation between S_{3} and $f\left(S_{3}\right)$.

Proof. Consider the set \mathcal{F}_{1} of all closed sets in I_{n} whose n dimensional measures are positive but which are taken by $f(x)$ into sets of m dimensional measure zero. Let $F_{1} \in \mathcal{F}_{1}$ be such that its measure is not less than half the measure of any set in $\boldsymbol{7}_{1}$. Consider the set \boldsymbol{Z}_{2} of all closed sets in $I_{n}-F_{1}$ whose n dimensional measures are positive but which are taken by $f(x)$ into sets of m dimensional measure zero. In this way, obtain a sequence of disjoint closed sets $F_{1}, F_{2}, \ldots, F_{k}, \ldots$ each of positive n dimensional measure, each taken by $f(x)$ into a set of m dimensional measure zero, such that for every k, the n dimensional measure of F_{k} is more than half the n dimensional measure of any closed subset of $I_{n}-\bigcup_{j=1}^{k-1} F_{j}$ which is taken by $f(x)$ into a set of m dimensional measure zero. Let $F=\bigcup_{k=1}^{\infty} F_{k}$. Obtain an analogous sequence $K_{1}, K_{2}, \ldots, K_{k}, \ldots$ of disjoint closed subsets of $I_{m}-f(F)$ and let $K=\bigcup_{k=1}^{\infty} K_{k}$. Now, $f(F)$ is of m dimensional measure zero and $f^{-1}(K)$ is of n dimensional measure zero. Let $S_{1}=f^{-1}(K), S_{2}=F$, and $S_{3}=I_{n}-\left(F U f^{-1}(K)\right)$. Let $E \subset S_{3}$ be a measurable set such that $f(E)$ is of m dimensional measure zero. Suppose E is of positive n dimensional measure. Then E contains a closed subset S of positive n dimensional measure. But the measure of S then exceeds twice the measure of F_{k}, for some k, and so S should appear in the sequence F_{1}, F_{2}, \ldots instead of F_{k}. Hence E must

18-533805. Acta Mathematica. 89. Imprimé le 31 juillet 1053.
be of n dimensional measure zero. Similarly, every measurable subset of $f\left(S_{3}\right)$ which is taken by $f^{-1}(y)$ into a set of n dimensional measure zero is itself of m dimensional measure zero. The transformation $\left(f(x), f^{-1}(y)\right)$ between S_{3} and $f\left(S_{3}\right)$ is, accordingly, absolutely measurable.

Bibliography.

1. W. Sierpinski, Démonstration de quelques théorèmes fondamentaux sur les fonctions mesurables, Fund. Math., vol. 3 (1922), p. 319.
2. C. Goffman, Proof of a Theorem of Saks and Sierpinski, Bull. Amer. Math. Soc., vol. 54 (1948), pp. 950-952.
3. N. Lusin, Sur les propriétés des fonctions mesurables, C. R. Acad. Sci. Paris, vol. 154 (1912), pp. 1688-1690.
4. H. Blumberg, New Properties of All Real Functions, Trans. Amer. Math. Soc., vol. 24 (1922), pp. 113-128.
5. H. Rademacher, Eineindeutige Abbildungen und Messbarkeit, Monatshefte für Mathematik und Physik, vol. 27 (1916), pp. 183-290.
6. C. Goffman, The approximation of Arbitrary Biunique Transformations, Duke Math. J., vol. 10 (1943), pp. 1-4.
7. E. J. McShane, Integration, Princeton, 1947, p. 237.
8. J. von Neumann, Functional Operators I, Princeton, 1950, p. 77.
9. W. A. Blankinship, Generalization of a Construction of Antoine, Annals of Math., vol. 53 (1951), pp. 276.
10. W. Hurewicz and H. Wallman, Dimension Theory, Princeton, 1941, Chapter 2.
11. G. Nöbeling, Über die Flächenmasse im Euklidischen Raum, Mathematische Annalen, vol. 118 (1941-3), pp. 687-701.
12. A. S. Besicovitch, On the definition and Value of the Area of a Surface, Oxford Quarterly Journal of Math., vol. 16 (1945), pp. 86-102.
13. W. Sierpinski, Sur l'inversion des fonctions représentables analytiquement, Fund. Math., vol. 3 (1922), pp. 26-34.
14. L. W. Cohen, A New Proof of Lusin's Theorem, Fund Math., vol. 9 (1927), pp. 122-3.
15. C. Kuratowski, Topologie II, Warsaw, 1950, p. 11.
16. P. R. Halmos, Approximation Theories for Measure Preserving Transformations, Trans. Amer. Math. Soc., vol. 55 (1944), pp. 1-18.
17. F. Hausdorff, Mengenlehre, Leipzig, 1927.
18. H. Tietze, Úber Funktionen, die aut einer abgeschlossenen Menge stetig sind. Journal für die Reine und Angewandete Math., vol. 145 (1915), pp. 9-14.
19. C. Kuratowski, Topologie I, Warsaw, 1933, p. 225.
20. P. R. Halmos, Measure Theory, New York, 1950, p. 121.

University of Oklahoma Norman, Oklahoma.

[^0]: 17-533805. Acta mathematica. 89. Imprimé le 6 août 1953.

