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1. Introduction 

Let  N and M be relatively prime integers. Le t  VN, M be the set of  all real valued 

functions ~p on Z •  satisfying ~p(n+N,m)=~p(n, m+ M)=~p(n, m). VN,~ is a vector  

space of  dimension N M  over R. Let  A and B be functions from an interval I=(a, b) to 

VN, M. A(n, m, t) will denote  the value of A(t) at the point (n, m) E Z•  In w 3, we will 

define two explicit real polynomial maps fN, M and gN, M on VN, MX VN, MxR 3 to VN,~. We 

will investigate solutions A(t) and B(t) to the following differential-difference equation: 

dA(t) - fN M (A(t), B(t), a, 13, 7) (I. 1) 
dt 

aB(t) 
dt - gN, M (A(t), B(t), a, fl, ~) (1.2) 

for fixed a, fl and 7. More  intrisically, one may think of fN, M and gN, ~t as defining a 

vector field on VN, ra• VN,~ depending on parameters a, fl and 7. Thus for any given t, 

fN~M(A(t), B(t), a, fl, ~) is a function on Z x Z ,  and this function evaluated at (n, m) is a 

polynomial in a, fl and 7 and the numbers A(i,j ,  t) and B(i,j, t) which will turn out to be 

of degree 4, and gN,~(A(t),B(t) ,  a, fl, 7) will turn out to be of  degree 5. Actually these 

polynomials enjoy certain homogenei ty  properties explained in w 3. 

These equations are derived from a certain algebro-geometric construction,  which 

is in some sense a variant of  a construction of Mumford and van Moerbeke (as will be 

explained in w 3). This construct ion starts with certain algebraic curves X with a 

distinguished point P (with certain additional structure). Using X and this structure, we 

(1) Partially supported by N.S.F. Grant DMS 89-04922. 
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will define a map �9 from an open subset U of the Jacobian of X, Jac(X), to V2v, uX VN, M. 
Let W be the canonical map from X to Jac(X), this map being canonical up to 

translation. Let T~, T2 and T3 be a basis of the osculating three space of the curve W(X) 

at the point ~(P).  We choose Tl to be a tangent vector to the curve at qJ(P) and T2 to be 

in the osculating plane of the curve at W(P). These vectors can be translated over the 

whole of Jac(X) to obtain vector fields again denoted by Ti. We will define fN, U and 
gN, m in such a way that the following holds: Suppose we start with a line bundle ~ E  U 

and allow it to flow along the vector field Ti for time t to a line bundle ~t. Then there are 

a, fl and ? (depending on i) so that if we let Y=~(~)  flow along the vector field on 

VN, MX VN, M defined above by (1. I) and (1.2) to Yt, then ~(.s Yr. Thus the complicated 

flow defined by the non-linear equations (1. I) and (1.2) can be 'linearized' to a straight 

line flow on a Jacobian. Conjecturally, the generic A and B come from such a curve and 

line bundle. We also write down explicit conserved quantities of these flows. 

Having derived these equations, we can ask about the behavior of solutions of 

these equations, especially with N and M large. One way of analyzing the behavior of 

such solutions is to try to construct a continuous model for these equations. Another 

way is to look graphically at numerical solutions of our equations. For an interesting 

account of these two ways, see [Z]. We have not attempted such an analysis in this 

paper. Instead, we will exhibit some solutions to our equations which do have interest- 

ing continuous models. Thus our results indicate that such an analysis would be 

interesting. One way of precisely defining these rather vague comments is the following 

rather ad hoc definition: 

Definition 1.1. ~ is the class of all functions f on R 3 satisfying the following 

properties: 

(i) f (x  + l, y, t)=f(x, y+ l, t)=f(x, y, t) for all (x, y, t) E R 3. 
(ii) Given e>0, there are (a, fl, ~,) E R 3, an integer N, a constant C and functions A(t) 

and B(O from R to VN.N2+~ SO that 

]f(N'N2+m 1' t ) - N A ( n ,  m, t ) - C  <e 

and so that A and B satisfy the equations (1.1) and (1.2). 

The main result of this paper (Theorem 2.5) is that ~g contains many of the 

solutions of the KP equation arising from algebraic geometry [D]. The definition of the 

class cr is quite restrictive in that we require the discrete NA(n, m, t) to be close to 

f(x, y, t) for all t. It would be interesting to know what further conditions on the class cg 
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would imply that an f E  cr satisfying these further conditions satisfies the KP equation. 

Another question unanswered here is whether a solution to the KP hierarchy (in three 

variables) belongs to some variant of the class ~. The definition of the class cr is (to be 

frank) based on what we can prove. 

w 2 reviews the theory of curves and their Jacobians defined over R. w 2 concludes 

with a precise statement of our main theorem. w 3 derives the expressions forfN, U and 

gN, M. We conclude w 3 with a few observations on the relation of this work to the work 

of Mumford and van Moerbeke [MM] on spectral curves. In w 4, we give a proof of the 

following theorem: 

THEOREM 1.1. If C is non-hypereUiptic and V is a generic three dimensional 

subspace o f  H~ ~), then the map from V|176 Q)--->H~ ~| is surjective. 

The proof of Theorem 1.1 was supplied by Lazarsfeld based on the ideas of [GL]. 

Green also supplied a proof, and Eisenbud provided a simpler proof by direct computa- 

tion for trigonal curves, and so for a generic curve. w 5 develops some Kodaira-Spencer 

type deformation theory. In w 6 we show that a certain class of 'good' curves exists 

using a monodromy argument as well as our Kodaira--Spencer theory and Theorem 1. I. 

w 7 gives the proof of our main theorem. 

The work in this paper was motivated by a hope of Trubowitz that understanding 

the spectral theory of lattice models of the KP equation might yield some insight into 

the transcendental spectral theory of the KP equation. 

2. Curves defined over R 

Let C be a non-singular curve defined over C, i.e. a compact Riemann surface. Thus we 

can find a holomorphic embedding of C into 1 ~ so that C is the locus of zeros of 

homogeneous polynomials with complex coefficients. We say that C is defined over R 

if we can choose the embedding so that the polynomials all have real coefficients. Note 

that 1 ~ has a natural antiholomorphic involution 

t(z0 .. . . .  zn) = (~0 .. . . .  ~n) 

and that t leaves C invariant when C is defined over R. We denote the restriction of t to 

C by t again. A function f on an t invariant open set of C is said to be defined over R if 

f(z')=f(z). A point or divisor is defined over R if it is invariant under t. A holomorphic 

one form co is defined over R if locally co=df, where f i s  defined over R. If  co is defined 

over R and ~ is a path on the surface, then 
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fy(D fy03~ t 

as we can readily see by dividing the path y into subpaths on which ~o is exact. 

Note that e acts on the cohomology H~(C, Z). Let A+(C) be the elements of 

H~(C, Z) fixed by L and let A- be the elements 9' of Hi(C, Z) with 7'=-~,. Note there is a 

natural integration map: 

f :  Hi(C, Z)--> H~ 9~)*, 

where H~ Q)* is the dual pace of the holomorphic one forms of C. Let H~ •)*(R) 

be the set of real points of H~ ~)*. Then A + maps to H~ g))* (R) and A- maps to 

iH~ fl)* (R). H~ fl)* (R) is a real vector space of dimension g, and the complex 

span of the vectors in H~ fl)* (R) is just H~ ~)*. H~(C, Z) maps to a lattice in 

H~ Q)*. Thus we see that A + maps to a lattice in H~ Q)*(R). The Jacobian of C 

has a natural real structure and the quotient of H~ •)*(R) by the image of A + is the 

component of the real points of the Jacobian of C which contains the identity of the 

Jacobian. 

We next discuss theta functions following [M]. We regard H~(C, Z) as a subgroup 

of H~ Q)*. The involution t extends to an antiholomorphic involution on H~ ~)* 
again denoted by t. Let C• be the set of all complex numbers of absolute value one. 

Choose a map 

so that 

and 

a: Hi(C, Z)---~ C~ 

a(u9 = a(u), (2.1) 

a(ul +u2) _ e~(Uv,2>. 
a(ul) a(u9 

There is a unique Hermitian form H on H~ Q)* so that 

ImH(x,y) = (x,y). 

We see that since 

(2.2) 

(x~,/) = - (x ,y ) ,  
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Then 

~2 
f (x ,  y, t) = ~x2 log O(xvl + Yv2 + tv3 + K O. 

c~ 2 

f (x ,  y, t) = --0x 2 log v~(xvj +YV2+tv3+K~l) 

3 2 
- logO(xvj+YV2+tv3+Kl+u), ax 2 

a 2 
- logO(xvl+YV2+tv3+KO ax 2 

=f(x ,  y, t) 

(2.3) 

H(x ~, y') = H(x, y). 

Let  0 defined on H~ ~2)* be the function satisfying the functional equation 

O(z + u) = a(u) e :~n<z' u)+ n~<., u)/21~(Z ) 

for zEH~ if2)* and uEHI(C,Z) .  The function 0 '  defined by 

O ' ( z )  = O ( z ' )  

satisfies the same functional equation as O. Since O is defined up to a constant multiple 

by its functional equation, we see that we can choose 0 to be real on the fixed set of  t, 

which is H~ f2)(R)*. Consider K1 ~-H~ ~)* and suppose that K'~ ~-KI+H~(C, Z). 

Choose a point P E C and a parameter  z around P. We can define linear functionals in 

H~ if2) (R)* by the formulas: 

( di-'~ ) 
v i(w)= dzi_l dz  z=0" 

The vi form a Frenet  frame for the natural map q~ of a neighborhood of  P in C to 

H~ f2)* defined by the formula 

f/ 4~(O) (~o) - -  ~o. 

We call the span of  Vl, v2 and v3 the osculating three space at P. 

Define a meromorphic  function f on R 3 by the formula 
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for some u E HI(C, Z). We have used that the second logarithmic derivative of the 0 

function is periodic, as follows from differentiating the functional equation. 

Let d~g, l be the set of all (C, P), where C is a curve of genus g and P is a point on C. 

d~g, ~ has the natural structure of an analytic space. Let .,fig, I(R) be the subset of d~g. 

consisting of all curves C defined over R and P a point of C defined over R. Let 

(c, e)   ag, ,. 

Definition 2.1. viEH~ ~((i+I)P))  for i from 1 to 3 are called adapted if the vi 
map to linearly independent elements of H~ ~)*. 

Define 

~: H~ ff2(-P))~H~ ~(-2P))~H~ ff/(-3P))--> H~ ~| 

by 

~((D 1 , 0) 2, 0)3) = U 1 (/)1-[-O2(/)2"{'O3 0)3, 

where H~ t)| is the set of quadratic differentials which have a pole at P. 

Definition 2.2. The vi are acceptable if the map ~ is injective. 

Let Vj be the annihilator of H~ V~(-jP)) in H~ f2)*, where H~ f2(-jP)) is 

the set of all one forms which vanishj times at P. We assume that V3 has dimension 3, 

which is the same as assuming that there is not a non-trivial function having a pole of 

order 3 or less at P. Let A+(R) be the real span of the vectors in A § Note that both 

A+(R) and H~ fl)(R) are in HI(c, C) and that cup product on HI(C, C) induces a 

perfect pairing between these two real vector spaces and hence that we have a natural 

isomorphism from A+(R) to H~ f~)* (R). Choose vl, v2 and v3 in A+(R) so that vie V i. 
H~ is also included in H1(C,C), since all the differentials in 

H~ f2((j+ 1)P)) are of the second kind. Further H~ f2((j+ I)P)) is the annihilator 

of H~ f~(-jP)) under cup product. It follows that vj E H~ f2((j+ 1)P)). 

Definition 2.3. (C, P) E d~g, I(R) is good if: 

(i) A + tq H~ f2(2P)) has rank one in A § 

(ii) A § N H~ f~(3P)) has rank two in A § 

(iii) There are adapted vie A + which are acceptable. 

(iv) The dimension of V3 is three. 

PROPOSITION 2.4. The good points of d~g, l(R) are dense (in the classical topology) 
if g>2. 
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We next state our main theorem. 

THEOREM 2.5. Suppose that K I - K '  I is in the image o f  Hi(C, Z) and that the pair 

(C, P) is good. Let the vi be an adapted acceptable set in A + and let Oi be the image o f  vi 

in H~ ~)*. Suppose that the function 

tg(xOl + yOz + tO3 + Kl) 

does not vanish on R 3. Let 

0 z 
f(x,  y, t) = ~x2 log d(xO l + yO2 +tO3 + Ki). 

Then f is in the class ~g. 

Under the hypotheses of Theorem 2.5, it is well known that there is a constant K 

so that f + K  satisfies the KP equation. 

3. Equations of motion 

Before deriving the formulas for f/v,u and gN, M, we define the homogeneity properties 

of these polynomials mentioned in the Introduction. Define an R* action on the space 

of all polynomials on VN,~x VN.MXR 3 by 

Pa<S)(A, B, a, fl, ~) = P(sA, s2B, sa, s2fl, s3?). 

We say P has weight r if 

p ~(s) = s r p .  

Thus the polynomial Pij  defined by Pi,j(A, B, a, r ,  7)=A(i,j) has weight 1. By abuse of 

notation, we will denote P;.j by A(i,j). Similarly, B(i,j) will denote the analogous 

polynomial of weight 2, while a, fl and y will denote the analogous polynomial of degree 

I, 2, and 3 respectively. We will show that our expressions for fN, U and gN, M will have 

weights four and five respectively. 

Let X be a smooth curve defined over R of genus g, and let P and Q be real points 

of X. Suppose that N ( P - Q )  is linearly equivalent to 0. Thus there is a function a on X 

having a pole of order N at P and a zero of order N at Q, and having no other poles or 

zeros. Let Ri and Si be points of  X for i=1 . . . . .  M so that Ri+Si is defined over R. 
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Suppose there is a function fl having divisor 

M 

M(P+ Q ) - ~  (Ri+Si). 
i=1 

For general i, we define Ri and Si by periodicity, Ri=Rii ~ and Si=Stij, where [i] is the 

positive residue of  i mod m. Le t  ~ be a line bundle of degree g on X. Let  

~',, m = ~ ( (n+m)  P + ( m - n )  Q+D,.). 

Here D0=0 and Dm+I=D,.-R, , ,+I-S"+r 

Definition 3.1. ~ i s  non-degenerate if H~ 5r 

The Riemann-Roch  theorem then implies that h~ ~n,m) = 1 if oY is non-dege- 

nerate. Assume ~ is nondegenerate.  Le t  z be a parameter  defined at P and choose a 

section s0,0 of  ~ .  There  is a nonzero section So, m of  H~ ~,,m), which is defined up to 

a constant,  and s, ,"  considered as a meromorphic  section of  ~ has a pole of  order  

exactly n+m at P. Le t  

fn ,.-- Sn' ,." 
' SO, 0 

We normalize s,,,. so that 

fn,,. zn+m(e) = l, 

i.e. the leading term in the Laurent  expansion of  f i n  terms of z is one. We can also 

normalize a and/3 so that (az N) (P)= 1 and (flz M) (P)= 1 

Given a non-degenerate line bundle LP and the parameter  z, we can form several 

functions on Z • Z, namely 

(difn, mZn+,.~ 
di (n ,m)= \ ~ - -~  / .  

In this paper, we will be mostly considering d~, d2 and d3. They are the coefficients of  

the Laurent  expansion of f , , , . .  

First, let 's  notice that we can write down a linear relation between Sn+l, m, sn,,.+l, 

s,,,. and Sn_l, m in terms of  the functions dl and dz. Such a relation must exist, since 

Sn+l,m, Sn, m+l, Sn, m and Sn_l, m are all in H~ and h~ by Rie- 

mann-Roch and our assumptions on non-degeneracy.  Fixing n and m for the moment,  
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afn+l,m.-~bfn,,.+ 1 = cfn, m-~-dfn_l,m. 

Both f.+l,, ,  and f., ,.+1 have a pole of order n+m+ 1 at P and f.+ 1,,./f.,,.+l has value 1 

there. Both f.,m andfn_l, m have poles of order less than n + m + l  at P. Thus we have 

a=b4=O. So we may choose a = - b = l .  Thus we may write 

Sn+l,m--Sn, rn+l = A(~,  n, m) s., , .+B(o~,  , n ,  m) s._l,,.. 

A and B are uniquely determined. We denote A(5r n, m) by A(n, m) when ~ is 

understood. By comparing the Laurent  expansions of the above equations around z--0, 

we see that we have the following recursion relations: 

dl(n+ 1, m)-dl(n,  m+ 1) = A(n, m) (3.1) 

d2(n+ 1, m)-d2(n, m+ 1) = a(n, m) dl(n, m)+ B(n, m) (3.2) 

d3(n + 1, m)-d3(n, m+ 1) = A(n, m) d2(n, m)+ B(n, m) dl(n, m). (3.3) 

The di also have periodicity properties with respect to translation by (N, 0) and 

(0, M). Specifically, let 

Ct = z - N  +a l  z-N+I + . . .  

and 

fl = z -M + b l  z - M + 1 + . . .  

be the Laurent  expansions of a and/3.  Note that OtSn.mEHO(,~n+N,m). So ash. m is a 

constant multiple of Sn+N, m. By our normalization, this constant must be 1 so 

as, , , .  = s,+N,,,. (3.4) 

Similarly, 

3s..,. = s., re+M" (3.5) 

Consider the Laurent  expansions of the equation (3.4). Comparing coefficients we see 

that 

d~(n+ N, m) = al +dl(n, m) 

d2(n+ N, m) = a2 +aldl(n, m)+ d2(n, m) 



228  D. GIESEKER 

and 

da(n+ N, m) = a3 +a2dl(n, m)+ald2(n, m)+d3(n, m). 

We have similar formulas for di(n, re+M). Note that A(n+N, m)--A(n, m)=A(n, m+M) 

and that B(n, m+M)=B(n, m)=B(n+N, m). 

The key observation here is that given the a~ for i from 1 to 3, we can compute the 

d~ and the b~ for i from 1 to 3 in terms of A and B by universal polynomials which depend 

only on N and M. Since f0,0=l, we have di(0,0)=0. Hence we can use the recurrence 

relation (3.1) to solve for dl(l, - l )  directly. Since N and M are relatively prime, by the 

Chinese remainder theorem for any n and m, we can find a and b so that 

and 

So 

We have 

n = l+aN 

m = - l+bM. 

dl(n, m) = dl(l, - l )+ala+blb.  

dI(NM, - N M )  = M a l - N b  r 

But d~(NM, - N M )  is expressed directly in terms of the A's. So we can determine bl in 

terms of the A's and a~. We see b~ and dt have weight I. Having determined dl, we can 

now determine d2(n, m) from the recurrence relation (3.2) and the Chinese remainder 

theorem. We can similarly find an expression for b2 in terms of the A's, the B's, and al 

and a2. Finally, d3 and b3 are determined in the same way. Note that these formulas 

only involve the a;, and A and B, and not X or .~. Further, the d,. and bi have weight i. 

Actually, one can continue this process and find that all the bi can be expressed in 

terms of the A's, the B's and the ai. If we allow the L~to evolve while fixing the curve, 

the points P, Q, and the Ri and Si as well as the parameter z, the bi will of course remain 

constant. This means that the b~ are conserved quantities of such an evolution. 

Let Do be a fixed divisor of degree g on X, and let Jg be the Jacobian of all line 

bundles of degree g on X. If z is a point of X close to P, we can define a linear functional 

~(z) on H~ ~) by the formula: 

fJ ~ ( z ) ( ~ o )  = o) .  
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Let 

d i-I to) 
vi(w)= "dz i-1 dz z=O" 

and 

and 

A',, m(f) = A(dP(f), n, m) 

forfEH~ ~)*. Our aim is to compute 

VA'n, m" v3, 

which is the directional derivative of A' in the direction v3, in terms of polynomials in 

the A's and B's. For t small, let D(t) be the divisor D~ +D2+D3 on X, where the z(Di) are 

the three cube roots of t. We first show that we have the formula: 

VA'n, m(f). v 3 = 2-~zA(CP(f) (D(z)- 3P), n, m)z= o. 

Let w(x) be the point of X so that z(w(x))=x for x small. Let ~(x)=f+r so 

that r162 (D(x)-3P). Then 

y)(x 3) = r f, (3.6) 

where r is a primitive cube root of 1. We have 

d 
---~z A(r  (D(z)-3P), n, m)z= o = VA'(f),, m" ~P'(0) 

vt=~'(0), 

v2=~"(0), 

v3=~"(o). 

so that ~(0)=~(D0), and so that ~(~(z)+a)=~(a)(z-P). The kernel of �9 is just 

H~(X, Z). On the other hand, we have the previously introduced linear functionals 

defined on H~ ~): 
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So our claim will follow from 

~"(0)=2~0'(0).  

However, this follows by differentiating the identity (3.6) three times and setting x=0.  

Note that sn, m, s~+l,m, Sn+2, m and s,+3, m are a basis of  H~ For  t small, let 

~ ,  m, t be the line bundle ~ ,  m ( 3 P - D I - D 2 - D 3 ) ,  where the z(D~) are the three cube roots 

of t. Note that  h~ for t sufficiently small, as ~.~n,m,t(-e)---->o~'n,m(-e) 
as t ~ 0 .  Let  sn, m, t be a non-zero section of  ~ ,  m, t varying holomorphically with t. We 

can write 

3 

S . . . .  t = E ai (n, m, t) Sn+i, m' 
i=0 

(3.7) 

where the a~ are all holomorphic in t and one is non-zero at t=0.  In fact, since 

Sn, m,t-->Sn, m as t----->0 modulo multiplication by constants,  we see that a0 is non-zero. 

Let  

ai(n, m, t) = E au(n' m) t j (3.8) 
J 

be the Taylor expansion of  ai (n ,m,  t), where we may assume that ao, o (n ,m)=l ,  We 

have the identity 

0 = Sn, m,, 3(t) '  (3.9) 

since Sn, m, t 3 vanishes at all the cube roots of  t 3, including t. On the other  hand, we have 

oo 

Sn+i, m (z) = E dj ( n + i ,  m )  z-n-i-m+Jso o" (3 .  I 0 )  
j=o 

Now substitute (3.10) and (3.8) into (3.7) and (3.7) into (3.9) and compute  the first 

few nonzero coefficients of  t. The coefficient of  t -n-m in Sn, m, t3(t ) is just  a3,1(n, rn)+ 

ao, o(n, m), since 

aa,0(n, m) = aE.0(n, m) = al,0(n, m) = 0. 

Thus a3.1(n , m ) = - l ,  since a0,0=l. We can replace sn, m, t by s . . . .  tt/a3(n, m, t) and as- 

sume that an(n, m, t ) = - t  for  all n and m. With our  new choice, we have 

Sn, m,t znWm 
( e )  = 1. 

S0,0, t 



A LATIICE VERSION OF THE KP EQUATION 231 

So we can write 

S.+l, m, t--S., m+ l,t = A('LPt, n, m) s., m, t+B("~t, n, m) s._ l, m, r (3.11) 

The coefficient of t -"- '+1 in Sn,.,,ts(t) is just  az, l(n, m) -d l (n+3 ,  m)+dl(n, m), so 

az, l(n, m) = ds(n+3, m)-dl (n ,  m). (3.12) 

So a2,1 has weight 1. The coefficient of t -"-m+2 in s ,.,z3(t) is just 

a L l(n, m)+a2, s(n, m) ds(n+2, m)-d: (n+3,  m)+d2(n, m), 

s o  

al, l(n, m) = - d l ( n + 2 ,  m)az, x(n, m)+dz(n+3, m)-d2(n,  m). (3.13) 

So al, l(n, m) has weight 2. The coefficient of t -"-m+s in f., m, t 3(t) is just  

ao, ~(n, m)+al, l(n, m) dl(n+ 1, m)+a2, l(n, m) d2(n+2, m)-d3(n+ 3, m)+ da(n, m), 

SO 

a0, s(n, m) = - a  L s(n, m) ds(n+ 1, m)-a2,  l(n, m) d2(n+2, m)+d3(n+3, m)-ds(n,  m). (3.14) 

So a0,1(n, m) has weight 3. 

Let ' s  look at the expression 

tit = s.+l,m,t-S.,m+l,t-A(~t, n, m) s . ,m , t -B(~  . n, m) Sn_l,m, r 

Equation (3.7) allows us to express the sa, b. t in terms of the ai(a, b, t) and in terms of 

the Sc, d. Further, 

Sn+i, rn+l = sn+i+l,m-A(n+i, m) s.+i,m-B(n+i, m) Sn+i_l, m. 

We can therefore express qJ as a linear combination of the sn+i, m. But the vectors Sn+i, m 

for fixed m are all linearly independent. Since W=0, all the coefficients of  this 

expresson for W must be zero. In particular, since the coefficients are power series in t, 

the individual terms in this power series are zero. If  Q(t)=E i Qi(t) sn+i, m, let p(Q) be the 

coefficient of t in the power series expansion of the coefficient of Q0 and let q(Q) be the 

coefficient of t in the power series expansion of Q-l- Note that p(s.+l,m.,)=O, since 

S.+l,m, t does not involve s.,,.. Next,  let 's compute p(S.,m+l,t). We have 

Sn, m+l, t = -tsn+s,m+l +a2(n, m+ 1, t) Sn+2, m+ 1 +at(n, m+ 1, t) Sn+l.m+ 1 +ao(n, m+ 1, t) S~.m+ 1. 
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The coefficient o f  s.,.. in s., m+l is - A ( ~ ,  n, m) and that the coefficient of  s., m in s.+~, m+1 

is - B ( ~ ,  n+  1, m) so 

--p(Sn.m+l.t) = al.l(n, m +  1)B(~,  n + l ,  m)+ao, l(n, m +  1)A(~, n, m). 

Let A(~,  n, m) denote 

d A ( ~ , ,  n, m),= o. 

Next  we compute  

p ( A ( ~ ,  n, m)  s,,, m, t) = fI(;LP, n, m)  + ao, 1 (n, m) A(,LF, n, m). 

We further compute  

p(B(X'  t, n, m)  s n _ 1, m, t )  = B ( ~ ,  n, m) al, l ( n -  I, m). 

So we obtain from p(W)=0,  

A(Sg, n, m) = a l. l(n, m + 1)B(~,  n + 1, m)+ a0. l(n, m + 1)A(~, n, m) 

-ao, l(n, m ) A ( ~ ,  n, m) 

- B ( ~ ,  n, m) al, l ( n -  1, m) 

thus A(n,  m) has weight four. Similarly, 

and 

SO 

q(s,, m+l,,) = - B ( . ~ ,  n, m)  ao, l(n, m +  1) 

q(B(..~ t, n, m) s n _ 1, m, t) = [i(n, m)+ ao, i(n-- I, m)B(..o~, n, m)  

(3.15) 

and 

VB'n, re(f)" v3 = -2/~(n, m). 

B(n, m) = -a0, ~(n-1, m)B(.~, n, m)+B(~, n, m)a0, i(n, m + 1). 

Taking into account  the formulas (3.12), (3.13) and (3.14) for aid, we have formulas for 

A(~,  n, m) and/~(~ ,  n, m). So we have formulas for 

VA ',, re(f)" V3 = -- 2A(n, m) 
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These formulas are the fN, M and gN, m referred to in the Introduction. Note that /~ has 

weight five. 

We can express the functions A and B in terms of t~ functions. For  simplicity, let us 

assume that all the R; are the same point R and all the Si are the same point S, and Q, s 

and R are all close to P. The formula 

e (z) 

always gives well defined element of Jg. If  {~=0} + K  does not contain the image of ~, 

then we get a well defined divisor ~x  on X by pulling back this divisor by ~ locally. This 

is well defined, since a choice of a different path from P to z would yield the same 

divisor. There is a constant K~eEH~ f~)* so that 

is the divisor of a non-zero section of ~g. Fix a divisor Do of degree g -  1. For  x near P 

let 

Notice that 

C x = K~(x+Do ). 

( - n - m )  Cp+(n-m) CQ+m(CIe+Cs)+Kx= Kz,,m. 

Consider the following meromorphic function on H~ f~)*: 

gn, m(Z) = o - n - m ( z  + cp) ~n-m(z"[-C Q) l~m(Z W CR) om(Z + Cs) l~(Z q- K ~., m) ( O(Z + K ~e) ) -1 

This function is periodic on H~ fl)* and so h.,,,,=g.,,,,o~ is a well defined rational 

function on X. The divisor of  h., z is just  the same as the divisor off . ,  z. So to compute 

dl(n, m) all we have to do is to compute the logarithmic derivative of h., z at P with 

respect to z. We have that the derivative offoq~ is just  Vf. vl. So we obtain 

dl(n, m) = C' + C  1 nWC 2 m + o  I V log v~(K~e.,m) 

for suitable constants C1 and (72 independent of ~ and a constant C' dependent on ~ .  

Thus we have 

A(n, m) = C+ v 117 log v~(K~e.+,,m)-v I V log O(K~e., m+,) 

for a suitable C independent of L~. There is a similar formula for B. 

16-928283 Acta Mathematica 168. Imprim~ le 24 avril 1992 
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Given A and B in VN, M, here is a conjectural construction of  a curve X, points 

P, Q, RI . . . . .  R M, SI . . . . .  SMEX 

and a line bundle on X which will give back A and B when we apply the construction of  

this section, at least for generic A and B. We can consider the following difference 

operator 

L(V2) = ~O(n+ 1, m)-~O(n, m+ 1)-A(n,  m) ~p(n, m)-B(n,  m) ~p(n- 1, m) 

on the space of  all complex functions on Z 2. If  a,fl E C*, let ~ta,~ be the set of  all 7: so 

that L(~0)=0 and ~p(n+N, m)=a~p(n, m) and ~p(n, m+M)=fl~p(n, m). Let  ~ be the set of  

(a, fl) so that the dimension of  ~ta,~ is positive. If  there is a curve X as in this section 

having associated A and B, let X'  be X - { P ,  Q, RI . . . . .  RM, $1 . . . . .  S~t}. Then there is a 

natural map ~: X'  ~ ~ by sending x E X' to (a(x), fl(x)). To see that the image of  ~r is in 

~ ,  we choose an isomorphism of  the fiber 5r with C and let lp(n,m)=Sn.m(X)E,.~Px. 

Further,  there is even a line bundle on the subset ~1 of  ~ on which the dimension of  

~ta,~ is exactly one. This suggests that for  generic A and B, that ~ = ~  and that ~ can 

be compactified to a curve X by adding points {P, Q,R~ .. . . .  RM, S~ ... . .  SM). Further  

extending the line bundle to a line bundle of  X and applying the construction of  this 

section will give back the original generic A and B. But we have not worked out here 

this conjectural correspondence.  

The construction of  this section is very close to that of  Mumford and van 

Moerbeke [MM], although we have not worked out the exact  relation here. Start with a 

complex function q~ on Z. Define ~p on Z 2 by the following inductive procedure  on m: 

~p(n, O) = q)(n) 

and 

~p(n, m +  l) = -A(n ,  m) V2(n, m)-B(n,  m) ~p(n- 1, m)+ ~p(n+ 1, m). 

Define LI(@)(n)=~p(n, M). Then ~ is the set of  (a, fl) so that there is a nonzero @ with 

dp(n+N)=adp(n) and Ll(~b)=fl@. Thus ~ is the spectral curve associated by Mumford 

and van Moerbeke  to the operator  L~. Note  that in Mumford and van Moerbeke ' s  

theory,  the operator  L1 can be reconstructed from the curve, the line bundle, and the 

points added to compactify,  while the construction here depends on a choice of  a 

decomposition of  the zeros o f f l  into M divisors of  degree 2. Note  that the case M =  1 is 

the classical Toda lattice case. 
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4. Proof of Theorem 1.1 

We will prove Theorem 1.1 following Lazarsfeld. We will show that there is a rank two 

vector bundle E on C with detE=f2,  h~ h~ and E is generated by global 

sections. Suppose that we are given such an E. Then setting H=H~ there is a 

canonical exact sequence 

0 ---~ ~ -  I ---~ H | ~---~ E---~ O 

Next, set V=H*, and dualize this to get: 

O--~ E*---~ V| Q'-'*O. (4.1) 

Twisting by f~ and take cohomology. 

H~174 V ---~" H~174 '--~ H1(E*| V| ---', O. 

Since h~174 we see that the map HI(E*|174 is an isomor- 

phism. On the other hand, (4.1) lets us view V as a subspace of H~ So the theorem 

will follow from the existence of such an E. 

To construct such an E, we fix a line bundle A on C so that the degree of A is g, 

h~ and A is generated by global sections. Indeed, let A = f 2 ( - P  1- . . .-Pg-2), 

where the Pi are chosen generically. Since the map of C to projective space via the 

canonical map is an embedding, A has the required properties. Note that there is a 

unique section of f~| which vanishes at the Pi. Consider the kernel K of the natural 
map 

a: Extl(A, f~| Hom(H~ HI(Q| 

which takes an extension 

0---~ Q | A *--~ E - .  A---. O, 

to the connecting homomorphism it determines. Extl(A, f~| is dual to H~ | and 

Hom(H~ Hl( Q|  A *) ) 

is dual to H~174176 *, and a is dual to the multiplication map 

H~174176 H~174 

The base point free pencil trick shows that the cokernel of multiplication has dimension 
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h~174 So K is a vector space of dimension g - 2 .  On the other hand, any 

non-trivial extension in K gives a vector bundle E satisfying the desired properties, 

except that E might not be generated by its global sections. 

We will show that if we choose a generic element of K, then the resulting E will be 

generated by global sections. Suppose E is not generated by global sections. The three 

sections of E do generate a subsheaf E' of E, which sits in a diagram of extension as 

follows: 

0--~ f~| *(-D)---} E'---~ A-'-'> O 

[ i l  
0 >ff~| ,E-->A-->O 

Since E is generated by global sections away from P~ ... Pg-2, we have that Dct.IPi. So 

if E comes from an element e E K that fails to be generated by global sections, then 

there is a point P among the P; and an extension 

0---> Q|  *(-P)---> E"--.~ A ~ O, 

so that e is induced from this extension. Note that then such extensions are necessarily 

surjective on global sections. But such extensions are classified by elements in 

ker(H ~ | ~ H ~ |  ~ 

Noting that h~ (since P E Pj +.. .  +Pg-2), the base point free pencil trick shows 

that the cokernel of 

H~174176 H~ | 

has dimension g -3 .  Hence the extensions in K which fail to be generated by global 

sections have codimension at least 1 and so an extension with all the required proper- 

ties exists. 

5. Kodaira-Speneer theory 

Suppose that U is a simply connected neighborhood of 0 in C". We will denote the co- 

ordinates on C" by z~ ... . .  z,. Let ~r:~---~U be a proper smooth map from an n + l  

dimensional ~ so the fibers ~s of x are smooth curves of genus g. Let Q be a section of 

Jr. Let ~1 .. . . .  yg be elements of H~(~, Z). Let to1 . . . . .  a~g be global sections of ~2~/v, the 

relative one forms on ~--->U. Let to~,~ denote the restriction of to~ to H ~  fl). We 
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assume that the toi,, form a basis of H~ f]) which is dual to the restrictions of  the yj 

to Hl(~s,  C).  

Let  W~ be the complex span of the y~ in Hl(~s, C). Let  us further assume that there 

are functions Aj on U for j = 2  . . . . .  g, Bj on U for j = 3  . . . . .  g and Cj on U for j = 4  . . . . .  g so 

that if we set 

j=2 

62(s) = ~'2 + s Bj(s) yj 
j=3 

63(s)=Y3+s 
j=4 

then for each s E U, 61(s) is a basis for the annihilator of H~ f~(-Q(s)) )  in W~, so that 

61(s) and 62(s) are a basis for the annihilator of H~ f~(-2Q(s))) in W, and so that 61(s) 

and 62(s) and 63(s) are a basis for the annihilator of H ~  Q(-3Q(s))) in W,. Our aim is 

to compute the partials of the Aj, Bj and Cj in terms of Kodaira-Spencer theory. In 

particular, we wish to know when the map (I) from U to C 3g-6 defined by sending s to 

the vector 

has maximal rank. 

and 

(A2(s) . . . . .  Ag(S),B3(s) . . . . .  Bg(s),C4(s) . . . . .  Cg(s)) 

To compute these partials, we introduce the following functions ai, bi and c i so that 

to~.~ = to2. ~-a2(s ) (i)1, s ~ H ~  f] ( -Q(s) ) )  

to~, ~ = to3,-a3(s ) to1,-ba(s ) 092, ~ 6 H~ ~2(-2Q(s))) 

%',, = %, s - a j  (s) wx, s-bj  (s) to2. s - c  i (s) to3, ~ E H ~ ~2(- 3Q(s))) 

for j > 3 .  By evaluating the identities 

(6() ' ) = o ,  1 S ~O)j, s 
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for j > 2  and 

(63(s) ,  = 0 

for j > 3 ,  we see that the ai, b; and c; can be expressed in term of the A;, B~ and C/. For 

instance, ci=Ci. On the other hand, the functions a/=(61(0),coj), b/=(62(0),coj), 

el= (63(0), coj) can all be expressed in terms of the functions a~, b~ and ci by expanding 

their definitions. So it suffices to determine when the map q~ from U to C 3g-6 defined by 

sending u to the vector 

p t (a~(s) ..... ag(s), b;(s) ..... be(s), c'4(s) ..... de(s)) 

has maximal rank. 

Let us assume for the moment that n=dim U is one and that z=z~ is the coordinate. 

By shrinking U, we can find a cover {Us} of ~f0 and holomorphic embeddings ha: 

Ua• U--*~F so that ~roha is just the projection of Uax U to U and so that if Q(0)E Ua, 

then Q(s)=ha(Q(O), s). Let O be the sheaf of holomorphic derivations on ~0, i.e. the 

dual of the sheaf of holomorphic one forms. If f is a function on an open subset V of Ua, 

define Ts(f) to be the function on ha(Vx U) defined by Ta(f)(h~(v, s))=f(v). There is a 

cocycle Ds,~ ~ H~ N U s, 6)) so that i f f i s  a function on a non-empty open V of ~0 then 

li~moz o (.T#(f)-_z Ta( f ) )  = Ds' #(f) '  

where both sides are defined. Thus we get a Kodaira-Spencer class 

KS ~. Hl(,~0, O ( -  Q(0))), 

which is easily seen to be independent of the choices of covers we have made. 

Let o~ be a meromorphic form on ~0 which is of the second kind, i.e. it is 

locally exact. By choosing the Ua simply connected, we can write w=dfs, where fa 

is meromorphic on Us. Then ca.~={fa-J~} defines a cocycle with values in C and 

gives a well defined element Lo, EHI(g~o,C)=HI(2~s,C). Let ~o' be a section of 

f2~/o((-k+l) Q(U)). So for each s E U, og's is a holomorphic one form on ~s vanishing 

k-1  times at Q(s). Suppose that 09 EH~ ff2(kQ(0))). We have a function defined on U 

by the following process: The product of Lo, and co~ is a well defined element denoted 

(co, co')~ of HI(~ Note that (w,w ' )0=0,  since Lo, maps to zero in 

Hl(6(k - 1)(Q(0))) (L,o is the coboundary of the {fa})- We have the following formula: 

(--~z )=KS( to) (og ' ) .  d (~o,~o,)z z=O 
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We have used the multiplication maps 

H ~ (O( -  Q(O))) • H ~ ~ H ~ (6 (k -  1)(Q(O))) 

to evaluate KS(w) and 

H~(C((k - 1)(Q(0)))) xH~ -k)(Q(0))))---> H1(Q) = C 

to evaluate KS(w)(to'). 

This formula is easily proved. For let 2a,~=Ta(f~)-T,(f~)-c~. ~ define a cohomo- 

logy class A in Hl(6((k  - 1)Q(U))). Note that the ).a,~ all vanish when z=0. So 

lim ~-~,b = Dc,,~(f,~), 
z---,O Z 

since 

Consequently, 

: r , ( L )  = ca ,  , . 

On the other hand, for z~=0, then A is the image of Lo~ in H~(~s, 6((k-1)Q(s))).  Thus 

(A,w')z=(co, W')z, and so our formula is established. 

Let us return to the case of U of dimension n. We can apply the analysis of the 

preceding paragraph to the curve C; defined by be setting all the zj=0 forj:l=i. This will 

give an element KS(O/Ozi)E Hl(~0, O(-Q(0))). We have 

f o r j > l  

for j > 2  

for j > 3 .  

OZi /I z=O 

Ozi / z=o 
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THEOREM 5.1. Suppose that the KS(a/azi) actually span Hl(~0, O(-Q(0))) and that 

the 6i are acceptable. Then the map dp defined above has maximal rank. 

Proof. By duality, the map from H~(;~0, O(-Q(0))) to 

H~(~0, tT(Q(0)))~)H~(~0, ~7(2Q(0)))~H~(~0, tT(3Q(0))) 

defined by 0-->E <~i0 is surjective. 

6. A monodromy argument 

There are smooth analytic manifolds U1 and ~ and a proper smooth morphism 

zc: ~--> Ul and a section Q of:r  so that the dimension of UI is 3 g - 2  and the dimension of 

;~is 3 g -  1 and so that the induced map G: U1-->~g ' 1 is surjective, where G is defined by 

G(u)---(y~-I(u), Q(u)). Further we may choose U1 and :r so that they are defined over R 

and so that for any point u E Ul, there is a coordinate system zi so that the Kodaira- 

Spencer classes KS(a/azi) generate H l ( ~ ,  O(-Q(u))).  In such a situation there is a 

monodromy map T: :q(U1, s)--->Sp(Hl(~, Z)), where Sp(Hl(;~s, Z)) is the group of sym- 

plectic automorphisms o f H J ( ~ ,  Z). We can assume that the image of  T is a subgroup of 

finite index in Sp(Hl(~s, Z)). We will establish the following later in this section: 

PROPOSITION 6.1. There is a dense set o f  points u ~ UI(R) so that if  vl, v2 and v3 are 

adapted and in A+(~)(R) ,  then the vi are acceptable. 

Let U2 be the set of all (u, A) so that u E Ui and A is a complex subspace of 

H I ( ~ ,  C) of dimension g. Note that U2 inherits the natural structure of a complex 

manifold of dimension 3 g - 2  so that the projection map P~ from U2 to U~ is a covering 

map. Indeed, let W be simply connected neighborhood of u E U1. Then Hl(;~w, C) for 

w E W form a local system of vector spaces on W, which is trivial, since W is simply 

connected. Thus we get an identification q~w of H~(~,, C) with Hl(~w, C). The map 

~p: w~-~(w, qtw(A)) is a section of Pi and defines a chart for the holomorphic Structure of  

U2, by definition. Note that U2 also inherits a real structure. Indeed ff (u, A) E U2, then 

the antiholomorphic involution on ~ restricts to an antiholomorphic map from 

~ t o ~ , .  Let A' be the image of A under this map. We define t on U2 by 

(u, A)'=(u', A'). In particular, if (u, A)E U2 is a real point, then A is invariant under t 

and so A = A + ( ~ ) . C .  

If (u, A) E Uz, there is a natural map from A to H ~  fl)* induced by cup product. 

Let U3=Uz be the set of all (u, A) so that this map is an isomorphism. Note that the real 
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points of [/2 are all in U3. Let U4 be the set of all (u, A) E Us so that there are adapted 

v; E A which are acceptable. [/4 is an open subset of Us whose complement is defined by 

analytic equations. 

We wish to show 

PROPOSITION 6.2. 04=03. 

Proof. Both U4 and Us are defined locally by the non-vanishing of analytic 

equations. If the proposition were false, there is a whole component U5 of 03 contained 

in the complement of/-/4. :h(Ub s) acts on Us, since the projection from Us to Ut is a 

covering map. If ~'E~h(Ubs), the image of (s, A) under ~,, which is just (s, T(y)(A)), 

would be in Us. Thus if (s, A') is any point in Us, then (s, T(~,)(A')) E [/5. In particular, if 

s is a generic point of Us, we would have that A(A) would not contain an acceptable 

adapted set for all A in some subgroup H of finite index in Sp(Hl(~,  Z)). But H is 

Zariski dense in Sp(H1(~, C)). It follows that for all A E Sp(HI(~,  C)), we would have 

that A(A) would not contain an acceptable adapted set. 

Consider the transvection 

Tw(v) = v+ (v, w) w, 

where w is a holomorphic one form on ~s. If v~ for i from one to three form a basis of 

H~ ~(4Q(s))) n A', the Tw(v~) form a basis of H ~  g~(4Q(s))) N T~(A'). We say that 

v~ for i from one to three satisfy a nontrivial relation if there are nontrivial wi in 

H~ ~(-iQ(s))) so that v' 1 0) 1 + v~ w2+ v~ e% =0. Let 's suppose that if wi E H~  ff~) are 

chosen generically, then the wi do not satisfy any relation and that (s, A) E (]5. Suppose 

the vi are an adapted set in A. We may choose the vi and the w~ so that (vl, w2)=O, 
(vl, ws)=O, and (v2, ws}=O, but that (Vl, Wl}~=0, (V2, W2}~=O, and (vs, ws):~O. Let 

S.=tZ(T t oT 1 o T ~ ) .Then 
t -  W 3 t -  W 2 ~ -  W 1 

S,(v 0 = tZvl + ( Vl, W l} Wl 

St(v2) = t2Vz+(V2, w 1 } wl+(v2, w2} w2 

S , ( v s )  = t2vs+(vs, w +(vs, w2) w2+(v ,  ws. 

The St(vi) are adapted and (s, St(A)) E Us, so St(vi) satisfy a nontrivial relation for all t. 

By taking the limit as t---~0, we see that the wi would satisfy a non-trivial relation. Thus 

if U5 is nonempty, w/chosen generically would satisfy a nontrivial relation. 

We know that the map ~o:H~ g2)s--~H~ g2 | defined by (wl,w2, w3)--* 
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W 1 (-t31-~W2 0)2-/-/Z~ 3 (/93 is surjective for generic s and wi. We may assume that w~ does not 

vanish at Q(s), that WE vanishes exactly once at Q(s), and that w3 vanishes exactly twice 

at Q(s). Since the vectors (w E, - w  I, 0), (w 3, 0, - w  0 and (0, w 3, - w  2) are in the kernel of 

W, these vectors generate the kernel of  7p. So if w t w~ +w 2 0)z+ws cos=0 is a nontrivial 

relation, we must have 

0)1 = aw2+bws 

0) 2 ~ - - a W I + C W  3 

09 3 = -bw~-cw2 .  

B u t  (.0 3 vanishes two times at Q(s), so b = c = 0 .  So a=0.  So U5 is empty. 

Proof  o f  Proposition 6.1. Note that Proposition 6.2 implies that U4(R) is dense in 

U2(R). Indeed, U4 is dense in U2 and the complement of U4 is defined locally by 

analytic equations. I f  U4(R) were not dense in U2(R), then the equations defining the 

complement of U4(R) would vanish of an open subset of U2(R) and hence on an open 

subset of U2. Further,  U2(R) actually maps onto ~g, I(R), and if (u, A) E U2(R), then A is 

the lattice fixed by the antiholomorphic involution of ~u. It follows that for a dense set 

of points (C, P) in ~g, I(R) so that if the v,-EA + adapted, then the vg are acceptable. 

Proof o f  Proposition 2.4. Let  u E U4(R). We can choose a basis Yi of A+(~u) so that 

for suitable choice of  ai, bg and cg we have that 

V~ = yl + ~ a:y: 
j=2 

g 

v2= bjyj 
j~3 

g 

v3 = r3+ ~ ,  c:,~ 
j=4 

are an adapted and therefore acceptable set vi. We can therefore find .4: (s), Bj (s), C: (s) 

locally as in section 3 so that Vg=6g(U), and so that the 6;(s) satisfy the condition in the 

first paragraph of section 5. The map �9 restricts locally to a map of maximal rank from 

U4(R) to R 3g-6. In particular, we can find points s near to u so Aj(s) and Bj(s) are 

rational. Thus we see that (~qs, Q(s)) is good. 
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7. Proof of Theorem 2.5 

We use the notation of w Assume that 7'1,72 and 7'3 are adapted at 0, i.e. that 

7i E H~ f l( i+ 1) Q(0)) and that they form a basis of H~ f~(4(Q(0)))). It follows that 

o92,0 E H~ and that ~o3,0 E H~ Assume the rest of  the 7'i defined 

over R and that (~f0, Q(0)) is good. Then we can assume that 7'1 and 7'2 are both in 

Hl(~0, Z). By replacing U by a smaller neighborhood of 0, we can find a neighborhood 

of Q(u) and a function z defined over R so that z=0 is the defining equation for Q(U) 

and so that dz=O)l as relative forms. If  sE U and R E ~ ,  so that z(R)--~ and o9~ is a 

holomorphic one form on ~ ,  we denote 

(s) 

by 

where the integral is to be taken on a path connecting Q(s) and R lying close to Q(s). 
If  e E C, there are e§ and e-(z) so that e+(z)+e-(z)=z and z2-(e§ 

2z2e for z small. Consider the following functions: 

A~(s ,  Z, e )  - S~ ~ 
Z 

where j =  2 . . . . .  g, 

Bj(s,z,e)= 1+ o ,-jo o ,-jo 

and 

C~= -~zE \ dz : dz -~z - dz---f \ dz / dz ~ z=0" 

These functions are defined on Ux(D-{O})xD, where D is some neighborhood of 

0 E C so that all the integrals above are defined. The significance of these functions is 

the following: Suppose we have a point (s, 1/N,e) with N E Z  with N > > 0  and that 

Aj(s, l/N, e)=0 f o r j > l ,  B~(s, l/N, e)=0 for j > 2 ,  B~(s, l/N, e)= I and Cs'(s, l/N, e)=0 for 

j > 3 .  Then there are points P,Q,S and R all in ~s so that z(P)=0, z(Q)=I/N, 
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z(S)=e+(1/N), and z (R)=e- ( I /N) .  Further ,  the divisor P - Q  is a point  of  order  N in the 

Jacobian of  ~ ,  and the divisor P + Q - R - S  is a point of  order  N2+ 1, since B~(s, z, e)= 1. 

Finally, the linear functional L on H~ 

d to 

vanishes on the span of to~, 0)2, to4 ... and so L must to a multiple of  

Note that L is in the osculating three space of  the curve ~s at Q(s). 

We claim that the A~ and Bj can be extended as holomorphic functions to U x D x D ,  

and that A}(s, O, e) and Bj(s, 0, e) can be computed in terms of e and the aj and bj of  w 3. 

We can write near Q(s) 

toi, ~ = ai (s) dz+fli (s) z dz+ I ei (s) z 2 d z+D i Z 3 dz, 
z. 

where the ai and fl; are functions on U and the Di are functions on ~ defined locally. 

Note that 

Similarly, we see that 

and that 

a 1 = l .  

fll  ---- ~1 = 0 ,  

a2 (0 )  = a 3 ( 0 )  = f13(0) = 0.  

Note that f12 is nonzero  near  s=0 ,  since the form to2,o is in H~ f~(-Q(0))),  but not in 

H~ f l ( -2Q(0))) .  Similarly, e3(0)=l=0. Since t o2 , s - -a2 (8 ) to l , s  vanishes at Q(s), we see 

that aE(s)=az(s). Similarly, to3,s-a3(s)tol,s-b3(s)to2,~ vanishes twice at Q(s), so 

a3(s)-  a3(s)- b 3(s) aE(s) = 0 

and 

fl3(s)- b3(s) fl~(s) = O. 

For i>3 we have 
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a i ( s ) - a i ( s ) - b i ( s ) a 2 ( s ) - c i ( s ) a 3 ( s ) = O  

and 

fli ( s ) .  b i (s) f12 ( s ) -  C i (S)  f l3(S)  = O, 

and 

e i ( s ) -b i ( s )e2(s ) -c i ( s )ea(s )=O.  

Further, we have 

lim Aj = aj 
z-'~O 

and 

lim Bj = eflj. 
z..--~O 

These can be seen by the formulas: 

o)i, ~ = ~ai,~ + fli,~ + . . . .  

Note that 

r 

By shrinking U, we may assume that f12 and e3 never vanish on U. Examining these 

equations, we see that the subvariety of U defined by the vanishing of ai for i > 1, the fli 

for i >2 and the C'>3 is contained in the subvariety of U defined by the vanishing of ai 

for i>1,  the bi for i>2  and the ci for i>3. Using the fact that the aj f o r j > l ,  the bj for 

j > 2  and the cj for j > 3  all have independent gradients, we see that the aj f o r j > l ,  the flj 

for j > 2  and the Cj for j > 3  all have independent gradients. Thus, Aj f o r j > l ,  the Bj for 

j > 2  and the Cj for j  >3 have independent gradients when restricted to the set z=0 near 

s=0. So if 

(00+) 
then the equations Aj=0 for j > l ,  Bj=0 for j > 2 ,  B~=I and Cj=0 for j > 0  defines a 
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smooth manifold W c  U x D x C  in a neighborhood of  R and that the function z defines a 

smooth map f rom W to D near R. We have established: 

PROPOSITION 7.1. I f (C,  P) is a good pair and vifor i from 1 to 3 is an adapted set 

with vl and v2 in A+(C) and o3 E A+(C)(R), then there is a family er: ~t,---~D, which is 

proper and smooth over D and sections Pi: D--* ~ such that i f  ~z denotes the fiber of  

over z, then (C,P)=(~o, Pi(O)). Further, if we denote by vi the element o f  H1(~z,C) 

obtained by transport o f  vi, then for  z*O, 03 is in the osculating three space o f  ~t z, and 

for all wEH~ f~), we have 

f f  = ol), 
i(z) 

f ez(z) co- / e3(z) co- ft,,(z) co= zZ(c~ - 
d Pl(z) -IPI(z) d Pl(z) "t- Z 2 

and 

Further, i f  z is real, then ~z is defined over R and the points PI(z), Pz(z) and the divisor 

Pa(z)+P4(z) are defined over R. 

Choose 7~ . . . . .  yg so that yi=vi for i from 1 to 3 and yiEA+(R) and choose 

a: H l (~ ,  Z)--,  C~ ' 

satisfying 2.1 and 2.2. Le t  Oz be the theta function on H~ ~)* attached to a.  Le t  

f (z ,  x~ . . . . .  xg;  K i )  = Oz( E Xi ~i + Ki ) , 
\ /  

where ~i is the image of  Yi in H~ *. We assume that we have chosen K1 so that 

K 1-K] ~ Hi(C, Z) and that f (0 ;  x 1 .. . . .  xg; Ki) never vanishes for (xl .... .  Xg) E R g. Define 

8 logf(z;  x 1 +Z, x2 . . . . .  xg; K l) 

z~x 1 

8 logf(z;  x I , x2+z2/(1 +zZ), x 3 . . . . .  xg; K 1) 

ZaXl 

8 2 log f(0;  x I , x 2 . . . . .  Xg; K 1) 

H(z;x t . . . . .  Xg; K l) = 

For  fixed K1, note that H(z;x~ . . . . .  Xg; KI) is periodic on R g for each z with respect  
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to a lattice in R g independent  of  z. Further ,  t - I ( z ' ~ x  I . . . .  ,xg;Kt) can be extended to an 

analytic function on D •  g, which vanishes on {0}xR g. Thus given e, there is a 6 so 

that if Izl<d, then IH(z;xj . . . . .  xg;Kj)l<e. Fix N E Z  so that 1/N<6. Let  ~ b e  the line 

bundle on C=~VN associated to K1. Le t  P=P1(1/N), Q=PE(I/N), R=Pa(I /N)  and 

S=Pg(I/N).  Choose a parameter  z around P so that the Frenet  frame associated to z is 

the image of  the vi. Le t  A(n, m, ~ )  be the functions introduced in section 3. The line 

bundle ~n, m is associated to 

n m 

K I +  "~Yl + N---~+ 1 Y2 = K~.m, 

and the equations say that ~ ( Q - P )  is associated to )q/N and t T ( P + Q - R - S )  is 

associated to 

Furthermore,  

Let  

8 log f ( l /N;  x 1 .... Xg; K 0 

3x I 

hi(x, y; K1) - 

Then we have the following formula: 

In particular, 

NA(n,  

~"2 
N2+l"  

3 z log f (0 ;  x, y, 0 . . . .  ,0; K 1) 

8x 2 

Fix K1 and apply the preceding discussion to K1+tV3, noting that 

IH(z, Xl . . . . .  xg; g I +tV3) I < e 

independent of  t.  Let  

h(x, y, t) = hl(x, y; Kl +tV3) = 
82 log(0; x, y, t . . . . .  0; K 1) 

8x 2 
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Let  Let be the line bundle associated to Kl+ty3. Then we have 

m  +lm 

Thus Theorem 2.5 is established. 
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