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1. Introduction 

Let X be a compact  Riemann surface and dhi, i= 1,2, 3, three real harmonic 1-forms on 

X satisfying 

fxdhiAdh:=O, 1,2,3, (1.I) i,j= 

fydhiEZ, for 1-cycle on x. (1.2) any F 

To this triple of  harmonic 1-forms, we associate a point in R/Z, denoted 

l(dh~,dh2,dh3), which can be defined in two equivalent ways: first, as an iterated 

integral 

y(h I dh2-r/,  2) mod Z, (1.3) 

where F is a path on X Poincar~-dual to the cohomology class of dh3, h~ is a function on 

obtained by integrating dh~, and r/12 is a 1-form on X satisfying drl12=dh,Adh2 (and 

orthogonal to all closed 1-forms); second, as a volume modZ:  namely by (1.2), we can 

integrate the dh~ on X to obtain hi: X---~R/Z which are harmonic. Then h=(h~, h 2, h~): 

X--->R3/Z3=T 3, and it follows easily from (1.1) that h(X), regarded as a singular 2-cycle, 

bounds a singular 3-chain c3 (unique mod integral 3-cycles); we can then take the 

volume of  c3 (mod Z) to define l(dh~, dh2, dh3): we call this a "harmonic  vo lume" .  

(!) Supported by NSF Grant No. MCS 79-04905 to Brown University. 
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Let ~z  denote the free abelian group of rank 2g spanned by all harmonic 1-forms 

satisfying (1.2), form its third exterior power A3(~z) and map it to ~z  by 

dhl A dhe A dh3---> [ fx(dh, A dhE) ] dh3 + [ fx(dh2 A dh3) ] dh, + [ fx(dh3 A dh,) ] dh2 

(1.4) 

and let A3(~'z)' denote the kernel of (1.4). Let v=2I: then we will show that v is a 

homomorphism, 

v: A3(~'z)'---~ R/Z, (1.5) 

Let J be the Jacobian variety of X, and let X be imbedded in J with a base point of 

X going to the identity element of J. Our constructions will be independent of the 

choice of  base point. If we identify ~z,  Hi(X; z) and Hl(J;Z)  then A3(~z) can be 

identified with Ha(J; Z) and the subgroup A3(~'z) ' is just the subgroup P of primitive 
cohomology classes. The homomorphism v of (1.5) can then be interpreted as a point 

on a complex torus, namely the compJex dual of  P |  with the correct complex 

structure, modulo the lattice dual to P: thus v is a point on an intermediate Jacobian of 

the manifold J(X). 

We next study the variation of I under change of conformal structure on X, i.e. we 

consider X as a point on Torelli space ff  (Riemann surfaces homeomorphic to X 

together with a homology basis). Fixing the integral cohomology classes of dhi, 
i=1,2,3,  makes l(dhl,dh2,dh 3) an R/Z valued function on ff  whose differential 

61(dh 1, dh 2, dh 3) is an R-valued linear function on the tangent space to 3" at X, i.e. the 

real part of an element of the complex linear cotangent space at X. Since this cotangent 

space is just the space of holomorphic quadratic differentials on X, we may regard the 

differential 61 of I as a function (A3A~z)'---~H~ K 2) (the last group denoting the vector 

space of holomorphic quadratic differentials). We show that, in fact, this function 

extends to the C-linear homomorphism of A3n(A0 ' given as follows: letting dhi, i= 1,2, 3, 
satisfy (I. 1) alone, then dhiAdhj=drl~j, where rh, J is as described following (1.3) (so r/i,j 

is a real non-harmonic 1-form). Now consider the non-holomorphic 1-form of type (1,0) 

l~i,j'~ i( *rli,j) = f,.j(z) dz 

as well as the holomorphic 1-form 

dhk + i( *dhk) = cpk(Z) dz 
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so that their (symmetric) product f~,j(z) ~(z) (dz) 2 is a non-holomorphic quadratic differ- 

ential form on X. Then it turns out that the sum of these non-holomorphic quadratic 

differentials over the 3 cyclic permutations (i,j, k) of (1,2, 3) 

(rio.+ i-~rlo.) (dh k + i-~dhk) (1.6) 

is a holomorphic quadratic differential whose imaginary part (up to a factor of 2:0 is 

just 6I(dhl, dh2, dh3). To sum up, we have constructed a complex-analytic family of 

complex tori over Torelli space such that 2I=v is a cross-section and the explicit 

formula (1.6) for the differential 61 shows that this cross-section is holomorphic. 

In the last section of the paper we give explicit formulas for calculating the variation- 

al map (1.6) for hyperelliptic Riemann surfaces: it turns out that while harmonic volume 

takes on only values 0 or �89 mod Z, i.e. is constant on the hyperelliptic locus in Torelli 

space, its differential (1.6) is injective on the subspace of tangent vectors to Torelli 

space normal to this locus (at least with an additional condition on the surface). 

My initial development of these results was based entirely on iterated integrals and 

the intermediate Jacobian, but Langlands remarked that the intermediate Jacobian 

suggested use of the cycle X in J and this stimulated me to give the harmonic volume 

definition of I. Later, Ron Donagi remarked that the results on 6I at hyperelliptic 

curves together with recent results of Ceresa [1] suggested a relation of I with the 

algebraic cycle X- i (X)  which is homologous to zero in J (where i is the map on the 

group J taking each element to its inverse). It was then immediate to prove that the 

Abel-Jacobi image v* of X- i (X)  in the intermediate Jacobian of J, and I defined as 

harmonic volume, are related by 

v* = 2/ .  (I .7) 

Ceresa shows that for a generic algebraic curve X the cycle X- f iX)  is not algebraically 

equivalent to zero in J, thus answering a question of Weil ([8], p. 331): the main point is 

to show that v is not identically zero as "normal function" on moduli space, which he 

does by evaluating it on a singular curve at the boundary of moduli space. The same 

result follows from my proof of the non-vanishing of 6v. However, the detailed study of 

I and hence v done above by iterated integrals allows one to go beyond the case of a 

"generic curve" and to study the same algebraic equivalence problem for a given 

curve, say defined over Q: the case of the Fermat curve x4+y 4= 1 will be done in 

another paper [9]. 

The map (I .6) giving 61 is generalized to automorphic forms of higher weight in [4]. 
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Iterated integrals of differential forms on general differentiable or Riemannian 

manifolds have been studied by K. T. Chen and by D. Sullivan (see [7] and references 

given there) but without conditions such as (1.1-1.3): their work leads to real nilpotent 

Lie groups. Iterated integrals of holomorphic 1-forms on a Riemann surface were 

studied by Gunning [3] and Hwang-Ma (Ph.D. thesis at Brown University and [5]) the 

latter in the context of complex nilpotent Lie groups. 

I would like to thank Professors Donagi and Langlands for their suggestions, and 

the referee for careful critical comments. 

2. Iterated integrals 

The aim of this section is to show that v = 21, with I defined by (I .3), as an R/Z valued 

function of certain triples dh 1, dh 2, dh 3 of real harmonic 1-forms (i.e. those satisfying 

1.1, 1.2), can be regarded as a homomorphism of a certain subgroup P of A3HI(X; Z) 

into R/Z. We identify real harmonic 1-forms on X with their cohomology classes in 

Hi(X) (coefficients Z or R), and will denote by x .  y the pairing (with values in Z or R) 

given by evaluating the cup product of the l-dimensional cohomology classes x, y on 

the fundamental 2-dimensional homology class r of X. Throughout we assume genus 

g~>3. 

Furthermore under inclusion XcJ=Jacobian variety of X, we may identify 

HI(X;Z) with HI(J;Z)  and AqH~(X;Z) with Hq(J;Z) for O<~q<~2g. The alternating 

bilinear form x .y  on H I extends to a bilinear form (non-degenerate, unimodular) on the 

whole of H*(J; Z) and corresponds to an element to of H2(J; Z) (imaginary part of the 

K~ihler metric). For q<~g, the subspace of primitive elements in Hq(J; Z) is defined as 

the kernel of the homomorphism L~-q+l:/-P(J; Z)--*H2S-q+2(J; Z) where L is cup prod- 

uct with to. 

We now assert: 

THEOREM. Let the homomorphism p:A3HI(X,Z)--~H~(X;Z) be defined by 

l~(xAyAz)=(x.y)z+(y'z)x+(z'x)y,  and let P denote the kernel o f  p. Then 

(1) P is generated by elements xAyAz (belonging to P) such that x 'y=y 'z=z .x=O.  

There is a unique homomorphism v: P---~R/Z such that v(xAyAz) is twice the iterated 

integral(1.3) for x, y, z= dhl, dh 2, dh 3. 

(2) I f  we identify A3HI(X; Z) with Ha(J; Z) then P is the subgroup o f  all primitive 

elements. 
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The rest of this section will give the proof of this theorem. We will first give a proof 

of  (2) of the theorem, then prove (I). 

The proof of part 2 is just  a review of Poincar6 duality in X, J. 

Let At, B ,  i= 1 . . . . .  g, be a symplectic basis of H~(J; Z)= V and denote cup product 

by A in H*(J; Z)=A*(V). Then to=EgBiAAi and 

(.o k 

k---( = Z Bi, A Ai ,  A . . .  A Bik A A i ;  ' 
i I < ... < i k 

First consider Poincar6 duality in X, given by cap product with ~x: let 

ai=A i N ~7 x, bi=B i N ~7 x be the Poincare duals in X of At, Bt, so that for all y E HI with 

Poincare dual F E H ~, 

fy A i - -  a i o  y -- f ? i  A F = A i �9 F 

and similarly for SBi, bt. In particular for y=bi, 

f b A i = a i o b i = A i ' B i = l  

and similarly, .[aBi=bi 0 ai=B i �9 A i=-  1. 

Next denote by h the inclusion of X in J. Cap products in X, J are related by the 

formula 

C N h.(x) = h.(h*C N x) 

for C E liP(J), x E Hr(X),p~r. Furthermore, since J is a topological group, its homology 

is a ring with product denoted again by A: in fact this is just the exterior algebra on 

Ha(J; Z). For C EH~(J), cap product with C will be denoted i(C) and is a derivation of 

the homology ring: 

C N (xp A yq) = i(C) (xp A yq) = [i(C) (xp)] A yq+(- 1)Pxp A i(C) (yq) 

where xp E lip, yq ~. H q .  In particular we can now check that as element of H2(J), 

h.( ~7 x) = ~ bj ̂  aj 
j f f i l  
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since on identifying Ai, B i with h*Ai, h*B i and ai, b i with h,  ai, h ,  b i w e  have 

A i n ~x = a ,  = i(Ai) (E bj A aj), 

B, n (fix = b, = i(B i) (E by A aj). 

Finally if we denote h,(~7 x) by ri, rig/g!=+CTj. 

The following proposition will now imply (2) of  the theorem: 

PROPOSITION. Let  ri=Y, biAai=h,(~Tx)EH2(J;Z) and let #: H3(J;Z)--->HI(J;Z) be 

defined as in the theorem. Then 

(1) For a E H3(j; Z), (Lg-2(a)/(g - 2) !) A (rig/g .9 = ( - 1 )gp(a) A ri. 

(2) Since A ri is an isomorphism o f  Hi(J)  with HI(J)  (corresponding to Poincar~ 

duality in X),  and since A (rig/g !) is an isomorphism (Poincar~ duality in J) the kernel o f  

1~ is the kernel o f  L g-2 on H3(J). 

Proof. Let  a E H  3, so we may assume a has the form CIACEAC 3 where C i E H  l, 

since it suffices to prove (1) for a basis of  H 3. 

Lg-2(a) O -~ a A (D g - 2  17 a f) O 
(g -2 ) !  g! (g -2 ) !  g ! -  \ ( g - 2 ) !  g! " 

Since 

O)g -2 A A 
(g_2)-------~ =/~<j B, AA, A ... A B i A A i A  ... A B j A A j A  ... A B g A A g  

(where ~ denotes  omission of  the symbol  B A A  under it) and rig~g! = b I Aa I A...  Ab~Aa 8 

we find that 

tog-2 ~ + ~ b' A ai A bj A aj " 
(g-2)'---~ A ~ = + = ,<J 

Finally, 

Tjg 2 
L~-:(a-----~) n +_a n ~. 
(g -2 ) !  g! - 

N o w  replacing a by C1AC2AC3 we get 
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ct f~ ~ = i(Ci) i(C 2) i(C 3) 

by the associativity of the cap product. By the derivation law, 

i(C2) i(C3) ~ = i(C2) [i(C3) (r/) t/] = [i(C2) i(C3) (~/)] r/-i(C3) (tl) A i(C2) (r/), 

i(C1) i(C2) i(C3) = [i(C2) i(C3) (r/)](i(C1) (r/))-i(C,) i(C 3) (r/) A i(C2) (r/) 

+ i( C3) (~I) A i( C I) i( C 2) (~I). 

Since i(Cj) i(Ck)= -i(Ck) i(Cj), we get 

(~2)= ~ [i(CI)i(C2)(~I)]i(C3)~I (sum over 3 cyclic permutations). i(CI) i(C2) i(C3) 2[ 
\ /  (1,2,3) 

However i(CI)i(C2)(~I)=(CIAC2)NtI=CI.C 2 (this can also be checked directly by 

taking each of CI, C2 to be an A; or Bi). Thus the sum over 3 cyclic permutations is just 

P(CIAC2AC3) n ~I, proving the proposition. 

We now proceed to (I) of the theorem, and begin by obtaining a basis for P 

consisting of elements xAyAz where x,y, zEHI(X;Z) and their Poincare duals in 

Ht(X; Z) are represented by three disjoint simple closed curves. Thus consider the 

following 3 sets of elements of/-/3: 

(a) CiAC:AC k where l<~i<j<k<~g and each Ct=A t or B r It is clear that such ele- 

ments are as described above, are linearly independent, belong to P, and there are 23(~) 

of them. 

(b) (Ai+AI)A(Bi-Bt)AC k where i, k are distinct and > I. The curves corresponding 

to Ai+A I, Bi-B I can be taken as, respectively, surrounding both the Ist and ith hole, or 

going around a "handle" separating these two holes (imagined next to one another), 

while Ck is again Ak or Bk and is attached to a third hole. There are 2(g-I)(g-2) such 

elements. 

(c) (Ai+A2)A(Bi-B2)AC I. Here C 1 =A I or B I, and i >2. These are of the same type 

as (b), and there are 2(g-2) of them. 

It is clear that the type (a) elements are linearly independent among themselves, 

and span a direct summand of H3(j; Z). Modulo type (a) elements we may replace a 

type (b), (Ai+At)A(Bi-Bt)ACk by (AiABi-AIABI)ACk, i4:k, i,k>l, and similarly for 

7 -  838282 Acta Mathematica 150. Imprim~ le 30 Juin 1983 
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type (c) we take (AiABi-A2AB2)AC I (i> 1). These new elements just defined are still in 

P and belong to the subspace of H 3 spanned by "monomials" CiA CjACkwhere each C 

is A1 or Bt and two of the indices l are equal: thus they lie in a subspace linearly 

independent of that of the type (a) elements, in which each monomial involves three 

distinct indices. This shows that the type (a) elements are linearly independent of those 

of types (b) and (c). Now looking at types (b), (c) and replacing them mod type (a) by 

new elements as above, we see easily that the new elements are linearly independent 

among themselves and span a direct summand of P. Finally we have the desired basis 

of P, since we have a total of 23(~)+2(g - l ) ( g -2 )+2 (g -2 )= (2# ) -2g  elements in P 

which are a basis for a direct summand of P; furthermore the homomorphism 

,0: H3--~H l is surjective (for instance, I~(A2AB2AAI)=AI) and H 1 is free over Z of rank 

2g, while H 3 is free of rank (~0. Incidentally, this basis is easily checked to lie in both 

the kernel of/5 and the kernel of L g-2 which gives an independent proof of the fact that 

these kernels are equal, since they are easily seen to have the same rank. 

The rest of the proof will go as follows. We will first prove that iterated integral can 

be considered as a homomorphism I: (HI|174 where H l is HI(X; Z), and 

(HI|  ' is the kernel of the intersection number homomorphism HI| 

however I will depend on a base point in X. This dependence on the base point is 

eliminated by restricting I to a subgroup of (HI |174  namely the kernel of the 

homomorphism ~: HI |  ... HI|174 I given by ~(x|174 

( y ' z ) x ~ ( z ' x ) y .  Let the kernel of/~ be denoted (Ht |174  Within K we have 

elements x | 1 7 4  corresonding to the xAyAz  which are a basis for P. Further we have a 

commutative diagram 

P (Ht |174  ' > HI |174  I ~ H I , H I g H  I 

P ~ A3H I > H i 

where J2 is the natural homomorphism of tensor product onto exterior product, 

j3(at~bO)c)=a+b+c and sincej3#=#j2,J2 maps the kernel of/5 into the kernel of/~ thus 

defining Jl. Finally Jt is surjective since we have exhibited a basis xAyAz  of P and 

corresponding pre-images x | 1 7 4  z in ( HI | H~ | H1) ' . 

Next we will obtain a set of generators for (H 1 |  I |  ', study the values of I on 

these and finally show that v=2I on this group factors through the homomorphism Jl 

onto P thus defining v on P. 
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We begin with a discussion of  iterated integrals. Let dhi, i= 1,2 be harmonic, as in 

the introduction and satisfy (1.1), (1.2), and let rh, 2 be the 1-form uniquely specified by 

the two conditions: drll,2=dhlAdh2 and 

fxril,2 A (-x-a) = 0 for all closed 1-forms (2.1) a. 

(We are considering real forms and functions here.) We define iterated integrals as in 

[7]: consider a closed path y on X given as a function y(t), 0~<t~< 1 with values in X. The 

iterated integral fy h I dh2=fl[ftodhl(y(s)) ] dh2(y(t)) is not an invariant of the homotopy 

class of  y (with fixed base point) since hi dh2 is not a closed 1-form, but h I dh2-~h, 2 is 

closed and so fy(h I dh2-rll,2) gives a well-defined function on :rl(X, Xo), to be denoted 

l(dh l, dh2; ~). If Y=Y'3" then it is easily verified that 

l(dh,,dh2;Y')')= l(dhl,dh2;y')+l(dhl,dh2;)/')+(f~,,dhl) ( f  dh2). (2.2) 

(This is valid even if the paths y', )," are not closed.) Imposing condition (I.2) gives us 

then that for fixed dhl,dh2 satisfying (1.1) and (1.2), I(dhl,dhE;y')modulo Z is a 

homomorphism of :t~ into R/Z, and consequently it can be regarded as a homomor- 

phism of the abelianized nt(X, Xo) into R/Z. Under change of base point from Xo to xl, 

this homomorphism is altered by addition of another homomorphism: let I denote any 

path from xl to x0, y a closed path based at xo, lyl-lone based at x~, then 

l(dht,dh2,1yl-t)= l(dh,,dh2, Y)+ ft [ (f~ dh2) dhl-(fvdhl) dh2] 

This is proved as follows: first, use the formula (2.2) with y '=l ,  ),"=l -z and note that 

l(dh I,dh2;l.l-I)=O since l.l -I is nullhomotopic, obtaining l(dh I,dh2;l -I)= 
-l(dht,dh2;l)+Stdhlftdh 2. Next, use (2.2) again to expand the integral over the 

product l.),-l -~, and use the last formula for l -~. 

Poincar6 duality assigns to each ~, E H~(X; Z) a harmonic 1-form dh E ~z  satisfying 

f dh= f fxdh^dh'= '~ 
where y' corresponds to dh' and y o y '  is the intersection number. Thus, our formula on 

change of  base point reads as follows if we write Y=y3 and let yi, i= 1,2, 3 correspond to 

dhi (SO)'! o)'2=0): 
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l(dh I , dh 2, ly 31 -I) = l(dhj, dh 2 , ~'3)+ f [(Yi O~/2)dh3-1"-(~/30)pl)dh2+(~/2o~'3)dhl]. 

It is immediate that we can also define iterated integrals not just for pairs dhl, dh2 
in ~z  satisfying (1.1) but more generally for bilinear combinations Eidhji| in 

~ z |  satisfying the analogue of (1.3), namely fxEdhilAdhEi--O. We define /']12 to 

satisfy dr/12= ~ dhliAdh2i, and for a path y let I(E dhli| )/)= S~, [(~,hlidhEi)-r]12] �9 Then 

all our formulas remain valid if we merely replace the indices 1,2 by li, 2i and sum over 

i. Let (~z |  be the subgroup of ~ z |  which is the kernel of the homomorphism 

to Z given by dh| Then we have shown that for fixed ),Exl(X, x0), 

dhli| dhli| defines a homomorphism of (~z |  ~z)'--->R/Z. 

Further, if we keep the same base point x| but vary yExj(X, xo), then for fixed 

(E dhji| E ( ~z |  ~z)', I(E dh~i| ~,) gives a homomorphism of :t1(X, x0) into R/Z 

which of course factors through the abelianized group x~(X, Xo) ~ (formula (2.2)). 

To summarize, l(dhl, dh2; ~,) is bilinear in dh~ and dh 2 if (1.1), (1.2) are satisfied, 

i.e. if (~z| is the kernel of the intersection number homomorphism ~z| 

then I is a homomorphism 

(~z| ~z)'| Xo) +-'" R/Z 

and we may replace xl(X, x0) ab by ~z by Poincar6 duality getting 

t: (~z |  ~ z  (2.4) 

which still depends on the choice of base point. To eliminate the base point, we restrict 

the domain o f / i n  (2.4) as follows: first note that the domain of (2.4) is the kernel of the 

h o m o m o r p h i s m  il2: aqt~z|174 z given by il2(dhl|174 
Now let ( ~ z O ~ z |  be the kernel of 

,6: ~z | ~z| ~z ~ ~ z ~ z ~ z  (2.5) 

so that this kernel is contained in the kernel of i12 and I is defined on (~z | 174  

Then I is independent of base point. 
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(2.6) Special condition on a triple dhl, dh2, dh3 of elements of  ~z: 

ffxdh,^dhFO if j=2 ,3  

and dh2, dh3 are Poincar6 duals to simple closed curves D such that 72, 73 are either 

disjoint or meet transversely at just one point. 

LEMMA 2.7. Let dhl, dh2, dh3 satisfy (2.6). Then I(dht|174 

l(dh3|174 I f  the dhi, i= 1,2,3 are Poincar~ duals to three disjoint simple closed 

curves, then l(dhl|174 is invariant under cyclic permutations, changes sign 

under transposition, and vanishes if two dhi are equal. 

Proof. Let dhi be dual to the simple closed curve 7,. If X is cut along Yi giving a 

surface Xi with two boundary components y;, ~.', there is a harmonic function hi on the 

bounded surface which takes values differing by 1 at corresponding boundary points: 

aXi=Y ~ O (-y"), hi(p")-hi(p')= 1. 

We prove first that, if d111,2=dh~ Adh 2 then 

f 311,,2-- - f fx3h3dh, ̂ dh2 (2.8) 

note first that -x-11 n is exact and dh 3, . d h  3 are closed, so ffx(-~1112)A(qc~dh3)=O = 

ffxllnAdh3 since aAf l=*aA. f l  for 1-forms. Then 

ffxh3dhl^dh2=ffxh3d11,.e=ffx3dh ^11,.2+h d ,.e=ffxd(h311,.9 
=ff  h31112 = -fy 1112, 

the desired formula (2.8). 

Now let X2, a denote X cut along both 72 and 73. Then h 3 dh1-113, l i s  closed on X2, 3 

and 

f fx2.  dh2A(h3dh')=ffx~.dheA(h3dh1-113,')=ffx~., d(h2h3dh'-h2113,') 
t "  

JO')) u (-~) u ~,; u (-r'~) (hE h3 dhl -h2113' I) 
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Rearranging terms, we have 

f fx2 h3dh' A dh2-l h2dhl = fr (h3dh'-rl3")" 
,3 *~Y3 2 

Using (2.8), we get 

- f~3(h2dhl +rll2)= f~2h3dhl-r]3,1. 

But }~i,2=--/~2,1 SO w e  have 

-1(dh2, dhl, dh3) = l(dh3, dhl, dh2). 

Since 

l(dhl, dh2, dh3) = -l(dh2, dh I, dh3). 

Thus, l(dhl, dh2, dh3)=l(dh3, dht, dh2), cyclic invariance, as well as skew-symmetry in 

the first two arguments, proving Lemma 2.7. 

We return now to the commutative diagram involving jI:(H ~ |  ~ | Write 

V for H I and x.y for the alternating product. Write T for V ~3 and T' for (V| - 

nel of I~:T--~ V ~3. 

LEMMA 2.8. (1). The kernel T' of  p is generated by two types of  elements: 
(a) x|174 where x, y, z are Poincar~ duals of  three disjoint simple closed 

curves. 
(b) Elements on which both Jt and 21 vanish. 

(2) 21=vojl for a unique homomorphism v:P---~R/Z. 

Proof. ~:T--~ V ~3 is equivariant relative to Z3 acting on T by signed permutations, 

t--*(sgn a)o(t), and acting on V ~3 by (unsigned) permutations. We define a cross- 

section S:V~3--.T (so/~ o S=identity), which commutes with cyclic permutations: let 

A.  Bi, i= I ..... g be a standard symplectic basis for V, let Ci=Ai o r  Bi, and let 

~ A I | 1 7 4  i, i f i > l  
S(C i ~ O ~ O ) = [ A  2 | 1 7 4  ' i f i = l  
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(with S on 0 t~Ci~0  or O~O~Ci by cyclic permutation). For  any basis {~} of T, a set of 

generators for ker ,6= T' is given by all ~,-S#(~'). We take the basis of T as ~=x~|174 

where x, or Yr or Zr is either Ar or B, (indices from 1 to g). 

Now we distinguish several cases: 

(1) y=xi|174 and either (i, j ,  k) are distinct in which instance we are in case (a) 

of the lemma, or else whenever  two of  the indices i, j ,  k are equal then the correspond- 

ing letters x~ or yj or Zk are also equal: e.g., Ai@Ai(~B k (i4=k), o r  Ait~Ai(~A i. For these 

latter elements it is clear that they are annihilated by Jl; furthermore, they satisfy (2.6) 

and Lemma 2.7 and are annihilated by I: e.g., 

l(Ai |174 ) = I (Ai. Bk) (Ai. Bk) = O. 

(2) Suppose exactly two indices are equal but the corresponding elements are 

distinct: typically, A~|174 k, or A~|174 i, with i, k, 1 distinct. 

Ait~ B i~  Z k -  Sp(Ai(~ B i~  Zk) = (Ait~ B i - A  I ~ B I){~ Z k 

--- (Ai + A I)(~(Bi-BI)~ Zk + Ai(~ BI ~ Z k - A  I ~ B i~  Zk. 

Each of  the tree terms in the last sum is of  type (a) of  the lemma. 

Ai(~ ZI~t~ Bi-  S~(Ait~ Zk @ Bi) = Ai(~ Zk @ Bi +(BI t~ Zk (~) A I) 

= Ai| k| I| k|174174174174 

= (Ai+AI)~Zkt~(Bi-B1)+Ai| 

+A~|174 ~ +B~|174 ~ 

The first three terms are each of  type (a). 

AI~Zkt~Bt +BIt~Zk| = (AI +BI)|174 +BI)-AI|174 | Zk | BI. 

The last three terms are again of type (a) (or l(Al(~Zk~Bi) = 

-I(Zk| I |  L e m m a  2.7)-I (B I |174 i)). 

Zk|174 i-  SI~(Z~|174 = Zk|174174174 1 

both terms are covered by (2.6) and Lemma 2.7, and we can apply cyclic permutation 

to I to reduce to Bi|174174 

(3) i=j=k. If  xi=Yi=Zi we are in case (1). Otherwise typical terms are 

Ai~Bi~Ai ,  A i~A i~B i ,  Bi{~Ai~A i (i>1). 
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A i ( ~ B i t ~ A i  - S l S ( A i ( ~ B i ( ~ A i )  = A i ( ~ B i ( ~ A i - A  I |  I ~ A i + A i @ A  I | 

= ( A i + A I ) ~ ( B i - B I ) ~ A i + A i ( ~ B I ( ~ A i - A I ~ B i ~ A i + A i ~ A I ( ~ B I  . 

On applying I, each term falls under Lemma 2.7 so can be cyclically rotated to 

bring the last letter to the first position: this gives 

I[Ai@ B~| S[~(A~@ Bi@Ai) ] = I[ Ai@ Ait~ B~-Ai@ A l t~ B I +B l @Ait~ Al ]. 

Again by Lemma 2.7, I of the last two terms gives 0 and I(Ai|174 �89 Thus this last 

term is in the kernel of v=21. Similar calculations apply to the other cases. This proves 

part (1) of Lemma 2.8. Part (2) follows from this and from Lemma 2.7: the invariance of 

I under the Y3 action on type (a) elements shows that I on the subgroup of T' generated 

by type (a) elements factors through the quotient by this ~:3 action, which is not yet 

P=(A3) ' but an extension of (A3) ' by elements of order 2, and then 21 annihilates these 

elements of order 2 as well as the type (b) elements which give the rest of the 

kernel o f j l .  

3. Volumes 

Let dh 1, dh 2, dh 3 satisfy (1.1) and (1.2), and let the homology dual of dh3 be a simple 

closed curve ?'3 (which does not divide X). Let X3 be X cut along Y3, with boundary 

y~ U (-~'~), as in the proof of Lemma 2.7, with h3(P")-h3(p')= 1 where p'  E y;, p" E y'g 

correspond to p E Y3. We may regard (h i, h 2, h3)=h as a map X ~ T  3, and similarly, as a 

map H:X3--~T2xR which gives h after mapping X3 to X and T2xR to Tzx(R/Z)=T 3. 

First we will "close up" H(X3) to a 2-cycle in T2xR which bounds a 3-chain, then 

show that this 3-chain projects to a 3-chain with the same volume in T 3 whose 

boundary is h(X). Finally we compute the volume of the 3-chain in T 2 x R and show it is 

just I(dhl, dh2, dh3). 

The boundary of H(X 3) is H(y~)t3 H(-?'~). To show that the singular l-cycle H(yJ) 

bounds in Tex R, it suffices to see that fH~y;)dxi=O for dx~, i= 1,2, the invariant l-forms 

on T 2 with period 1 over the two factors T I. But H*(dx~)=dhi and 

Lr;)dxi= fr dhi= fy dhi= f fxdh~A dh3=O" 
t ~ t t t t  _ _  t Let now H(Y3)-Od2, d 2 a 2-chain in T2xR. Since H(Y3)-H(),3)+(0,0, 1) in T2xR, 

H(~')=~d'~ where d'~=d~+(0, 0, 1). Now, using addition of singular chains (not addition 
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in T2xR), H(X3)-d~+d~=Y is a 2-cycle in T2xR which, under the covering map 

T2xR---~T2xR/Z goes into h(X3) (since d'~, d~ differ only by translation by (0, 0, 1)). We 

will show Y bounds a 3-chain c 3 in T2x R, so the image c3 of  c~ in the 3-chains on T 3 has 

boundary h(X), the image chain of H(X3), and the volume of c3 is by definition 

f dhl A dh2 A dh3 = fcc dh, A dh2 A dh3. 
3 3 

Ybounds in TExR since 

frdx, Adx2=f dh, Adhz-~ dh, Adhe+f dh, Adh 2. 
J X 3 J d~ J ar~ 

The last two terms give 0 since dhlAdh 2 is translation invariant and d~ differs from d~ 

only by translation. The first term is just fxdhlAdh2=O. 
Now Y= ac~, and the volume of c3 is 

3 c3 3 Jd~ .,~ 

The first term is - fy3 rh. 2 by (2.8). Since h3(p")=h3(p')+ 1, and dhlAdh 2 is the same on 

d~ and d~, the last two terms give just f~dhlAdh 2, and we want to show this equals 

fy3hldh2. The 2-form dhlAdh 2 on T2xR arises by pulling back dhlAdh 2 on T 2 by the 

projection p, thus f~dhlAdh2=fp~te~)dhlAdh2 where p~,(d'29=d~2 is the 2-chain on T 2 

obtained by projecting d'~ to T 2. Furthermore, the boundary 0(ar~2)=p~,0,'39=image of ~3 

under the map (h l, h2) : F3-+T 2. This map (hi, h2) on Y3 lifts to a map /tl.2 : ~3 -'*R2since 

fy3dh~=O, i=1,2.  Thus, if d2 is any 2-chain on R 2 with boundary HL2(~3)then 

f dh|Adh2-fddhlAdh 2 modZ 

(since projection of d 2 on T 2 and d~ are 2-chains on T z with the same boundary 

(hi, h2) 0'3)). However,  on R 2 dhlAdhz=d(h I dhz) sO 

fd2dhlAdh2= ff  1 h|dh 2 modZ 
l, z % )  

= I hI dh2" 
3 
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This concludes the proof that l(dh z, dh 2, dh3) defined as iterated integral equals the 

volume bounded by (h 1, h 2, h 3) (X) in T 3. 

Consider now the cycle X - f i X )  in J discussed in the introduction, which is clearly 

homologous to zero since i acts as - 1 on H~(J). The inclusion a of X in J is given by 

(h i . . . . .  h2g) for a basis hi of harmonic integrals with periods in Z, with (hi, h2, h3)as 

above. Let x:J---->T 3 be the projection on the first three coordinates, and let [ denote 

inverse in T3: then : t o i=[o: t  and : t o a = h .  Let X - i ( X ) = a D 3 ,  D3 a 3-chain in J. Then 

O(xD3) = ~t(aD3) = ~(X)-xi(X) 

= :r (X) - :x (X)  (where X means a(X)) 

= h(X)-/-h(X) 

= Oc3-[Oc 3 = O(c3-fc3). 

Thus xD3=(c3-[c3)mod 3-cycles. 

Now v* is the linear function on P defined (mod periods) by integration over the 3- 

chain D3 in J, and 

v*(dk I A dk 2 A dk 3) = volume of ~ D  3 (mod Z) 

= volume of (c3-[c 3) 

= 2. (volume of c 3) 

since r acts as -1  on the volume form of T 3. This shows that v*=21. 

4. Complex tori 

In this section we discuss complex structures on the vector spaces H3(j;R) and 

P R = P |  and show that the homomorphism v: P--+R/Z can be regarded as a point on 

the complex dual space of Pn modulo a lattice (dual lattice to P), so we obtain an 

interpretation of v as a point on a complex torus: an intermediate Jacobian of the 

Kfihler manifold J. One choice of complex structure make this complex torus into an 

Abelian variety, namely the primitive part of Weil's intermediate Jacobian which does 

not vary holomorphically with moduli of the Riemann surface X. Another complex 

structure is not an Abelian variety but gives the complex toil studied by Griffiths [2] 

and'shown" by him to vary holomorphically. In later sections we will use the second 

complex structure. We finally define an R-linear map 

D: H3(J; R)--~ Ht'~ C) | H I' t(j; C) 
c 
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which is in fact C-linear for both of the complex structures on H3(J; R). The restriction 

of D to P will be related in the next section to the variational formula for I. 

The real vector space HI(X; R) is given a complex structure Jl by identifying it 

with ~a, the space of real harmonic 1-forms, and takingjl(dh)=-*dh. Further ~ltis 

put in 1-1  correspondence with the complex vector space HJ'~ of holomorphic 1- 

forms by letting dh correspond to --~dh+idh=jt(dh)+idh (i.e. dh is the imaginary part 

of the holomorphic 1-form). Under this correspondence, multiplication by Jl = - ~ -  on 

~lt correspond to multiplication by i on H 1'~ i.e. this is a complex-linear isomorphism. 

We may also then identify Hl(X;R),Hl'~176 Of course 

HI(X;R) | is a direct sum of two subspaces H I'~ and H ~ on which j l  | acts as 

multiplication by l |  1 |  respectively. Next we consider A3HI(J;R)=H3(J;R), 
and consider two complex structures j~ and J3: 

J; =Jl  Ajj Aj I 

J3=�89 =�89 AJl Ajl+(J,  A 1 A 1+1 A jl A 1+1 A 1 Ajl) ] 

(thus ~(AABAC)=j,(A) ABAC+AAjI(B) AC+AABAjI(C)). J3,J3 are complex structures 

(i.e. satisfy j ~ = - I d )  hut j~ is not. On the complexification H3( j ;R ) |  = 

H3'~ I~Hl 'e~H~174 1, which we will abbreviate as j~, acts as multiplication by 

t ~-b on/.p,b, so as i on H e " ~ H  ~ (and - i  on H3'~ These subspaces H2 ' J~H ~ 

yield Weil's Jacobians. Similarly j3 acts as i on H3'~ (and - i  on Hl'2~H~ this 

is the decomposition used by Griltiths and will be the one we need. 

Each of the operatorsj~, J3 could thus have been defined as multiplication by i or 

- i  on e a c h / P '  b. Since the primitive subspace P was defined as the kernel of multiplica- 

tion by tog-eonH3(j ;R) ,  where co EHe(j ;Z) ,  there are primitive subspaces 

PR=P| and P c = P |  defined in the same way, and Pc=~,bPclqtP 'b since co has 

type (1,1) and multiplication by co commutes with decomposition into bigraded sum- 

mands /P '  b. In particular if we set 

H2+~ +l= ~ H', ~ 
r+sf 2q+l 

r>$ 

then multiplication by co sends these subpsaces into one another so that, for 2q+ I =3, 

P| if)P_ where P+ is the projection of P| on/-/3+ and P_ is the projection on 

the complementary subspace. Further Pn---,P+ is an isomorphism of real vector spaces, 

and of complex vector spaces as well if we use the complex structure J3 on PR. 
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Griffiths has shown that the periods of the 3-forms in P+ vary holomorphically 

with the complex structure on J and hence with that on X: we recall now the precise 

meaning of this statement. Consider the group Homz(P, Z)=P* (it can be considered a 

subgroup of H3(J; Z)), and fix a basis cv, dv for P*, v= 1 . . . . .  n, such that the c~ are a C- 

basis for the C-dual of Pl~ (PR is isomorphic to P+ since we are using J3 on Pi0. If 

toa, a = l  . . . . .  n, is a set of harmonic 3-forms on J which are a basis for Pa+=P3'~ 

then the period matrix is F =  [w~(c~);w~(d~)] a matrix with n rows and 2n columns in 

which the left hand half is invertible since the c~ are a C-basis for the dual of P+. We 

call F normalized if the submatrix [to~(c~)] of F is the identity matrix. The Pliicker 

coordinates of F are the ratios of n rowed minors of F, and so are given by the entries 

o f F  and polynomials in them i f F  is normalized. Now consider a holomorphic family Xs 

of compact Riemann surfaces where the parameter s varies in a polydisk (say contained 

in Torelli space, as in the next section), and s=0 corresponds to a fixed reference 

surface Xo=X, namely the one we were considering above. Then the integral cohomo- 

logy of Xs or J(X)=J, may be considered as fixed but the complex structure on J,  and 

in particular the differential forms wa(s) are smooth functions of s. The theorem of 

Griffiths [2, II;Theorem 1.27] in particular asserts that the mapping * from the com- 

plex s-polydisk to the Grassmannian of complex n-dimensional subspaces of the fixed 

2n complex dimensional space H300; C) which assigns to s the subspace P3+(J s) is 

holomorphic: in terms of coordinates this subspace is the subspace of C 2n spanned by 

the rows of the period matrix F(s). If the left hand half of the matrix F(0) is non- 

singular, the same will still be true for F(s) for s near 0. We may then replace the basis 

wa(s) by a new basis which makes the period matrix of to~ over c~ the identity matrix 

for all s near 0, thus normalizing F(s) to have the form [IZ(s)] where Z(s)= [w~(dv)] is 

holomorphic in s, since the definition of �9 to be holomorphic is that the Pl0cker 

coordinates are holomorphic. 

Now the equations to~(c~)=6~,~,to~(d)=Z~,~(s) imply that in the dual space of P+ 

we have 

d~= X c~Z~,~(s) (4.1) 

and 

Zo, v(S) ca=X,,,v(S)Ca+ Vo.v(s)(j, ca); Xa, v, Yo.vr 
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Let 

such that 

Then 

so that 

0, be the complex linear isomorphism of the dual space (P§ of P§ with C n 

Os(c) is the standard basis vector e~ of Cn, v= l  .. . . .  n, where p+=p3+(j,). 

O~(d,) = ~ eaZa,~(s) (4.2) 
a 

0 s takes the lattice in (P+)* spanned by the cv, dv to the lattice in C n spanned 

by the 2n column vectors of [I n, Z(s)]. This then gives us a specific picture of the family 

of  complex tori (P+)*(s) modulo lattice { c~, d~} in terms of the family Cn/{lattice of 

column vectors L Z(s)}, where Z(s) is holomorphic in s. Furthermore a map q0 from the 

parameter space {s} to the family Cn/(lattice I, Z(s)) such that q0(s) E Cn/(lattice L Z(s)) 

for each s will be holomorphic if its lift to a map into C n (which exists locally) has the 

form 

tp(s) = ~ q~(s)e~ with q0~(s) holomorphic in s. 

Suppose now for each parameter value s we are given a homomorphism f~ of the 

abelian group P into R/Z: we will writef,(A)=f(A;s)E R/Z for 2 E P. We want to identify 

f,  with a point on the complex torus (P+)*/{c~, d~} and then to give a simple criterion for 

this point to vary holomorphically with s. Since Hom (P, R/Z)= Hom (P, R)/Hom (P, Z) 

where Hom(P ,Z)  is the lattice P*, we just have to identify Hom(P ,R)  with 

HomR(PR;R) where PR=P|  has complex structure j~ depending on s, and then 

identify HomR (PR, R)with Hom c (Pn; C). The latter identification will make l: PR--*R 

correspond to/~ PR---~C via f(p)=l(j~p)+il(p). 

So now f~EHom a(PR,R) /Hom(P,z) .  Choose a coset representative 

f,  E Hom R (PR, R). Using 0,: HomR (PR, R)--+C n, 0s(cv)=e~ as before, let 

O,(f~) = ~f~(s) e,. 
V 

For 2 EP, write f,(A)=fl~.; s) E R. 

We state the following criterion for the C-valued functionsfv(s) to be holomorphic 

in s: 

PROPOSITION 4.3. Let  s vary in a one-complex-dimensional disk with center s=O. 

Suppose that for  s=O we are given a C-linear homomorphism QI: P| relative to 
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the complex structure jo on P|  such that (O/Og)j~A;s) l~=o= QI (~) for all 2 EP| 
Then (OlO$)fv(s)ls=o=O. 

Proof. Let  O~ r be the transpose of  0,, i.e. a C-linear map (C")*---~P| Let  C u, D~, 

be the Z-basis of  P dual (over Z) to c., d~ and let e* be the basis of  (C")* dual to the 

basis % of C". For  vE C", let e~v)=ev(iv)+ie.(v), so e~-Ime~. Then 

o~r(ev) (C#) = ev(O s r = ev(eu) = 0 

o:r(ev)(du)= e v ( ~  Z~,e(s)ep) = Ya, v(s) 

(by (4.2), and the definition of  e v as the imaginary part of  e*). 

Similarly writing (evot~ (v)=ev(iv), 

o~r(ev~ = e~(i ~ Zu, e(s)eo) = Xu,~(s) 

O~(e~ o z) (c u) = e~(ie u) = 6u, ~. 

Expressing O~(ev), Ostr(e, o i) in the R-basis C u, D u of P |  

0~,(~) = 7_, o~ Y#.,(s) 
# 

o:r(e,, o i) : C~+ E D# Xu,~(s). 

Since 0 s, 0 3 are C-linear, o~r(evoi)=js tr Os (ev), sO that 

c~= -7__, (x,,.~-v,,,, j,)0,, =-Y__, z~.~(s)0,,. (4.4) 

We had defined 

o,~,) = ~ L(s) ~. 

Applying the C-linear function e~ with real and imaginary parts e u o i and e u respective- 

ly we get 
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Ref~(s) = (e/, o i) (0~ f~) = fsfo~r(e/, o O) 

Imf~(s) = t~,(O~f~) -- f~(O~t~t~) 

f~(s) = Re fu(s)+iImfu(s) = fs(Cu)+ ~ Z,,/,(s)f,(D,). 
V 

Now take a/ag at s=O and use the hypothesis 

~sfS(~,) Is=o at(A) for 2 c~, a = , = Dv,--~-Z~,j,(s) = O. 

 (,)lso0 = e,(cT+  zv,(0) 
It 

Since Qi is C-linear (relative to Jo acting on P|  

fig fu(s)l~=o = Qt(C~,)+ ~ Z,,~,(O) Qt(D,) 
F 

=0 by (4.4). 

Thus we have proved that if the complex structure of the tori considered above varies 

holomorphically, i.e. the matrix Z~,,v(s) is holomorphic in s, and if at all points a, 

(a/ag)fs(2) is given by a C-linear function Ql(;t) as in the proposition then fs varies 

holomorphically with s, or in other words defines a holomorphic section of the 

holomorphic family of tori over the parameter manifold. In the next section such a 

function Qt(2) will be obtained by combining integration over the Riemann surface X 

with the following linear map D: H3(J; R)--->Ht'~174 Ht' t(j). 

Identifying H3(J; R) with A~Ht(J; R) and Ha(J; R) with the space of real harmonic 

1-forms denoted dh,  and further making correspond to dh the (1,0) form 

w = ( -  ~ d h ) + i d h  =j~(dh)+idh  
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and the (0, I) form 

0) =j~(dh) - idh  

we define D(dh,Adh2Adh 3) as the expression 

• 0)1 ~)(0)2 A (/)3-0)3 A 0)2) (sum over 3 cyclic permutations of indices 1,2 ,  3) 
(1,2,3) C 

which we will also write as a 3 x 3 determinant 

0)1 0)2 ~3 

0)1 0)2 0)3 

~1 0)2 ~3 

(4.5) 

The above expression is clearly R-trilinear and alternating in the dh i or equivalently in 

the 0)i. Furthermore the operator j73 on A~HI(j; R) which was defined as 

j~(dh I A dh 2 A dh3) =jl(dhl) A dh 2 A dh3-~-dh I A jl(dh2) A dh3"~'dh I A dh 2 A jl(dh3) 

(wherejl=---x- andj l (0))=j l[(-*dh+idh]=i0) , j l (0))=-i0))  is related to D by the equa- 

tion 

Do j ~ = i D .  

To prove this we have to take the determinant (4.5), apply j ,  to each column in turn, 

and add the 3 determinants: this gives us 

D(f~(dh ! A dh 2 A dh3)) = i[0), @(0) 2 A 0)3--0) 3 A 0)2)+0)2 ~)(-0)3 A 0),-0)1 A 0)3) 

+0)3 (~)(0)1A 0)2+0)2 A 0),)+0)1 (~)(0)2 A 0)3+0)3 A (f)2) 

+0)2 | A 0)1-0)1 ^ 0)3)+0)3 |  A 0)2-0)2 ^ 0~,) 

"1-0)1 ~(--0)2 A 0)3-0)3 A 0)2)-1-0)2 ~)(0)3 A 0),--I-0) I A 0)3) 

+0)3 | A 0)2-0)2 A w,)] 

-----/[tO, ~)(0)2 A 0)3-0)3 A 0)2)"I'0)2 (~) ((..0 3 A 0),-0), A 0)3) 

+ %  @(0), A 0)2-0)2 A 0),)] 

= iD(dh I A dh 2 A dh3). 
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Also, if j~(dhlAdh2Adha)=jl(dhl)Ajl(dh2)Ajl(dh3) then Dj;=iD: this is clear since j~ 

multiplies each w in the determinant by i and each o3 by - i .  The complex structurej3 

was defined as �89 so that we also have Doj3=iD. D can be extended to 

H3(j; R)| as D|  l: if we continue to denote D|  1 as D then we note that D is zero on 

H a'b if(a, b)4:(2, l) (if a+b=3).  The last statement follows from the fact that H 2'1 is the 

only one of the spaces/_p.b on which both j3 andj~ act as i. D can also be defined, by 

using the multiplication m: JxJ--->J, as D=(projection on H)'~ I' I(J))om*. 

We can also use D to obtain a C-linear map 

/): A3RHl(X; R)---> HI'~ | A I' l(x) 
c (4.6) 

where A I' l(x) denotes the space of differentiable 2-forms on X of type (I, 1), simply by 

composing D with the complex-analytic map h: X--->J. Since in A(X) we have 

-~dhjA-~dhk=dhiAdh k and consequently 

o~j A o~k-wk A ~j = 4 dh~ A dh k 

we can write/9 as the following determinant 

l~(dhlAdh2Adh3)= 2 dh I dh 2 ~.HI,O| I (4.7) 

I dhj dh 2 dh3 

(remembering that terms in the top row multiply others terms by | product). Of course 

we can restrict the domain of D to the primitive subspace P|  and can continue to 

use the same formulas since P |  has a basis of elements of the form dhlAdhEAdh 3. 

5. Variational formula 

We study now the variation of harmonic volumes I when we vary the conformal 

structure on the Riemann surface X: more precisely, X varies within Torelli space if, 

which is defined as the set of pairs (X, canonical homology basis for HI(X; Z)) modulo 

conformal homeomorphisms preserving the canonical homology basis. Teichmtiller 

space is a covering space of Torelli space, but the latter is more convenient for us since 

we use only homology and not the fundamental group of X. 

According to Bers (Bulletin Amer. Math. Soc., Vol. 67, 1961) the normalized 

holomorphic differentials of the first kind dWk are holomorphic functions on Teich- 

8 - 838282 Acta Mathematica 150. Imprim~ le 30 Juin 1983 
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m011er space, as are their integrals wk and their periods. The real harmonic differentials 

dhi, i= 1 . . . . .  2g, Poincar6 dual to the homology basis are obtained from the real and 

imaginary parts of the d w  k by a non-singular matrix determined by the period matrix of 

the dWk, thus, the dhi are real analytic functions on Teichm011er space, and on Torelli 

space as well. Finally, if we fix 3 integral l-dimensional homology classes with mutual 

intersection numbers zero on the surface X, then the corresponding harmonic volume I 

varies real-analytically as X varies in Torelli space, and to compute its differential, it 

suffices to choose a suitable set of tangent vectors to Torelli space at X and compute 

these partial derivatives of I. We will do this using variational formulas given in [6], 

Chapter 8, Section l ("Schiffer variations"). Thus, we recall the notation of this book 

(mainly Chapters 3 and 8): 

K 1 . . . . .  K2g denote a canonical basis of 1-cycles: K2i_ 1 o g2i= I, g p o g q = o  if (p, q)~= 

(2i-1,2i) or (2i ,2i-I) .  ai is the real harmonic 1-form dual to K~, so S x a i = K i o K j .  

Qq0.q, (p) is a multivalued analytic function of p whose real part is single-valued, 

and  d~qo,q ~ (p) is the elementary differential of the 3rd kind with simple poles at qo, ql of 

respective residues - 1, + 1. dwj, j=  1 . . . . .  g are the holomorphic differentials of the first 

kind, normalized by 

fxu_, dwj = rJ, k ' fx~ dwj = Sj, k + i rJ, k 

Xj, k, Yj.k are both real (real and imaginary parts of the period matrix). 

dtOqo ' q, (p) is the elementary analytic differential of the 3rd kind with the same poles 

and residues at q0, ql as d~"~qo, q I (p) but normalized by .f x~_, dt~ qo, q,=O, i= 1 . . . . .  g. Then 

j -  I \ " q o  / 

The change of conformal structure of X is described in [6], Chapter 8, w 1: fix a 

point r E X  and fix a local coordinate z in a neighborhood of t, with z(t)=0. Let z* be a 

local coordinate in a region of X which overlaps the domain of z in an annulus but 

which excludes the disk [zl~<0. X is obtained by identifying the domains of z and z* on 

their overlap by the identity map z*=z,  while a new surface X* is obtained by the new 

identification z*=z+s/z  where s =  e2i*Q 2 is any sufficiently small complex number (so X 

corresponds to s=0). A vector field in a neighborhood of the point t, i.e. of z=0, is 

given by a/aslsfo=(1/z)d/dz: this can be regarded as an element of HI(X, K-I), K=can- 
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onical (i.e. cotangent) bundle of X, which is the dual vector space to H~ K2)=space 

of holomorphic quadratic differentials q(z)(dz) 2, the dual pairing being 

(q(z) (dz) 2,1-~-z ) = Rtes q(z)(dz)21d=z dz Rest q(z) dZ=q(t)'z 

i.e. just "evaluation at the point t"  of the holomorphic quadratic differential written in 

the coordinate z. 

Now for the two surfaces X and X*= X* we have real harmonic 1-forms au, a~ 

dual to the canonical homology basis K~, (supposed to be the same for X, X*). Let q be 

any point on X distinct from t, and regard %,, a/~ as 1-forms in the variable q. Out first 

aim is the following formula: 

a*(q)-a~,(q) = Re [2s dq Q'q, qo(t) a~(t)] +o(s) (5. l) 

where a'/,(t)=(aJdz)(t), aJdz is a function denoted a~ which is evaluated at t: if 

a~+i.a/,=dA~ is a holomorphic differential, then aJdz=�89 Similarly, if dq 
denotes differential with respect to the variable q, then dq flq, q0 (z)is a differential in q 

and a function of z and dq ~'q, qo(t) d e n o t e s  the value of its derivative with respect to z, 

evaluated at t, which is then a differential in q. The proof of (5.1) uses the following 

formulas, in which we denote quantities such as w2(q)-w~,(q) by 6w~,(q) (formulas 

8.1.4, 8.1.5 loccit.; 8.1.5 as given there is missing a minus sign): 

6w,(q)-6w~(q o) = sw'~(t) W'q, qo(t)Wo(s ) (5.2) 

and if y/,,,=X/,,,+i Y~,,, is the period matrix 

6y~,, ~ = - s" 2~ti w'~(t) w'v(t) +o(s). (5.3) 

With these formulas, the proof of 5.1 is easy: let dw~,=du~,+ido~, g=  1 .. . . .  g; we have 

dw~, = -a2/, + ~ Y~,,v a2v-i 
v 

v 

do, = r , , ,  as,_, 
v 
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so that 

~_, = ~ r A do~ 

, i ~ y~,~ w'~(t) 1 dv,~ - T  ' 

a2~_,(t ) = ~ Y~,~--~z (t) = 

a~-- -du,+~, (xr'),.~ do~ = -du,+~, X, ja~_, 
j 

] a2a(t) = - -~  (t)+i (xy-l)/t,2 w ~ ( t )  . 

(5.4) 

Since 6 may be treated as a derivation (mod o(s)), we will temporarily drop the 

term o(s) from our formulas: 

2 2 
(using (5.2) and taking imaginary parts) 

= E Y-/',,~ Im[sw'~(t)dqw'q, qo (t)]-E (Y-"6Y)~,rYTlr, a dv~ 
2 y,2 

=Im[~  Y~,lw'~(t)sdqto'q, qo(t)-(Y-IdY)~AaZa_l] 

(using 5.3 now and taking imaginary parts) 

=Im[s(~Y~,~w'~(t))(dqw'q,%(t)+~2~riw'y(t)a2y-,)] 

= I m  2isa~ ,(t) [ - dq•'q.qo(t) ] 

which proves (5.1) for odd indices 2/~-1. The proof for ~(a2~ ) is the same, starting with 

(5.4), so we omit it. Finally, (5.1) is valid, not just for the basis a, of ~z, but for any 

linear combination of the a~ as long as the coefficients in the linear combination are 

independent of the conformal structure. 

We can now consider a general infinitesimal variation of the conformal structure of  
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X: consider not just one point t in X, but 3g -3  general points ti such that any 

holomorphic quadratic differential vanishing at all these points must be identically 

zero. Further let si be a suitably small complex number at ti (so that the various disks 

do not overlap), and form X* by using the gluing map z~'=zi+si/zi near ti for all i. This 

gives us a 3 g - 3  dimensional family of deformations of X parametrized by 

s=(s I .... , s3g_ 3) (see Kodaira-Morrow, "Complex Manifolds" Chapter 2, Section 3). 

The tangent space to this parameter space at X consists of all tangent vectors 

Evcv(O/Osv), and the value of such a tangent vector on a holomorphic quadratic 

differential q(z)(dz) 2 on X is just Evc~q(t~), v= 1 .... , 3g -3 .  Thus the tangent space to 

the parameter space S of this family is mapped isomorphically, by the Kodaira-Spencer 

map, onto HI(X,O),O=K -~. By the Kodaira-Spencer completeness theorem, this 

family contains all deformations of X sufficiently near X (loc. cit.), so can replace a 

neighborhood of  X in Torelli (or Teichmiiller) space. 

We may now calculate the infinitesimal variation of harmonic volume 

l(dh~, dh2, dh3) where the homology classes of the dhi are fixed but the conformal 

structure of X varies (and so the dhi vary). Recall that h=(hl,  hE, h3)is a map of X into 

R3/Z3=T 3. The element of area dA on this surface in T 3 is �89 (cross-product of 3- 

dimensional vectors together with wedge product of 1-forms giving a vector-valued 2- 

form). If now h* denotes the corresponding vector for X*, then for h* close to h, the 

volume between the surfaces X and X* is a sum of volume elements ~(h*-h).(dhxdh) 

(triple product of vector analysis) representing the volume of a small parallelepiped 

with base dhxdh  in h(X). Thus we get as change in volume 

x�89 (dhxdh). (5.5) 

For h * - h  we may use (5.1) integrated with respect to q, namely 

h~q)-h,(q) = Re [2s~'q.qo(t) h~(t)] +o(s) (5.6) 

(where ~'q, qo(t)=(dflq, qo/dz)(t). Inserting (5.6) in (5.5), we get the integral over X (with 

respect to the variable q) 

f 1 
-2 Jq~X f~q'q~ (dh• (q). 

Now �89 has components dh2Adh 3, dh3Adh I, dhlAdh 2, and dhiAdhj=drli J. Let 

g~d be the real function on X defined (up to addition of a constant) by dg~d=*r/id, so 
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-d-~dgi, j=dhiAdh j. Thus gi,j is the function whose Laplacian (in any metric in the 

conformal class of X) is the function corresponding under * to dhiAdh j (it is not 

actually necessary to introduce a metric, since * on 1-forms suffices here). It is 

classical that gi,j is obtained from d h i A d h  j by integrating against the kernel 

(1/2:0 Re flq, q0: 

1 
Jq Re [Qq qo(p)-~q q0(p0)] dh, A dhj(q) gi'J(P)-gi'J(P~ = ~ r " ' 

(P0, q0 fixed on X). Taking differentials with respect to p, 

f~ Re (d~q qo ).dh i A dhj(q) 
1 

dgu=-2-~ ex 

d~'~ q, qo" dhi A dhj(q) = -~ rli, j -  irh, j = - i(rh, j + i-~rli,j). dgi'j+i-~dg~ = ~ eX 

Thus the change in volume (5.5) can be written as follows, using determinant notation 

and replacing 2h:(t) by F:(O=dFi/dz(t), where 

Re 

= I m  

d F  i = d h i + i - ~ d h  i 

[F~(t) F~(t) F~(t) ] 

2 f q  n'q'q~ dh'(q) dh2(q) dh3(q) 
ex Idhl(q) dh2(q) dh3(q) (5.7) 

Now define a quadratic differential depending on dhj, dh2, dh 3 by 

Q( dhl' dhv dh3) = X (dhl +i'x'dhO (r]2, 3+i-x-r]23) 
(I,2,3) 

this sum of 3 differentials each of the form q~(z) (rig) 2 is in fact a holomorphic quadratic 

differential, as is easily checked. Furthermore the formula for Q as an integral of a 

determinant shows that Q is obtained as the composite of the map /) of (4.7), 

namely the determinant, integration with kernel df~q, qo which maps a subspace 

Al'l(X)'ofAl'~(X)toAt'~ and finally the symmetric product of differentials 

AI'~174176 (quadratic differentials on X). The properties proved in Section 4 for 

the maps D and /5  now yield 
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THEOREM 5.8. (1) Q: P|176 K 2) is a complex linear map i f  we use the 

complex structure J3 on P |  R), and the induced map Q|  1 on P |  vanishes 

on (P|  nHa'b(J) i f (a ,  b)=l=(2, I). 

(2) Let  A=dhlAdh2Adh3EP and consider the harmonic volume l(2;s)= 

l (dh t, dh 2, dh3; s) f o r  s=(s  I . . . . .  s3g_ 3) near s=0. Then 

J=l S j ~ ( t j )  +o(s) 

(where zj is the complex coordinate on X =  X o near tj). 

(3) Harmonic  volume I varies hoiomorphically with s. 

Proof, (1) follows from the remarks just before the statement of the theorem. 

(2) is a restatement of formula (5.7) and the definition of Q, in the general case of a 

variation at 3g-3  points at each of which Q(2) is evaluated. 

(3) is a restatement of Proposition 4.3, in which we considered a l-complex 

variable variation, say s i at t i, and Qi0-) then denotes (Q(Z)/(dzi) 2) (ti). 

6. Hyperelliptic Riemann surfaces 

Let X be hyperelliptic, with involution o. Then 0 = -  1 on ~z. The images of X in T 3 

under h=(hl ,  h2, h3) and under h o or---h are the same (as singular 2-chains) and so the 

volumes bounded are the same (mod Z). On the other hand, the volume form on T 3 

reverses sign under x~-~-x, so we conclude that l(dh I , dh 2, dh3)= - l ( d h t ,  dh 2, dh3) rood Z 

or: I takes values 0 or �89 rood Z for  hyperelliptic Riemann surfaces. 

Next we discuss the map 61 for hyperelliptic surfaces. Let the surface be given by 

the equation u2=H~(z-ei) ,  n=2g+2,  ei distinct in C. Put z=re  i#, z - e j = r j e  iej in the z- 

plane. We assume H~ r i is an even function of 0 (which holds if the ej are symmetrically 

distributed about the real axis). 

A basis for the holomorphic l-forms is 

dw k = zkdz (k = O, 1, n 
"k/(z--el).. .  ( z -e~)  .... -~- -2)  

_ ~ eikOe-i(ol+...+on;/2eiO(dr+irdO). 
(rl ... rn) 1/2 
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Then 

( d w k +  d w  k )  (dwt+ dWl ) 
Re dw k A Re dw t -  2 A 2 

1 (dwk A dw t - dw t A dw~ 

- ( -  2 0  (r dr dO) 
177 ri 

rk+t 
- - -  (sin (k-l) O) rdrdO, 

r I . . .  r n 

which is a 2-form on the Riemann sphere pl pulled up to X by the projection p: X-->P 1. 

Thus since this projection has degree 2, 

( rk+t O) rdrdO fxRe(dwk)ARe(dWl)=2f~ l \ r l . . . rn  sin(k-l) 

= 2 - - s i n ( k - l )  OrdrdO. 
J r ~ 0 . 1 0 = 0  rl "'" In 

The ri are functions of both r and 0 and their product will be assumed to be an even 
function of 0, thus integrating first in 0 gives zero: 

fxRe A Re = 0. (dwk) (dw t) 

Now consider the elementary differential of the third kind 

d~q, qo = 2~(dUq, qo + idVq. qo) 

on X (beginning of Section 5) with poles at q, qo with residues - 1 ,  +I .  Choose 

qo to be a fixed point of  the involution o (qo lies over some el). Then 

d~q, qo+d~otq;,qo=d~q, qo+o*d~q,% has poles at q,o(q), qo, o(qo)=qo and is invariant 

under the involution, and also is determined by its poles and residues (since its periods 

are pure imaginary). Thus it equals the image under p* of a differential on P~, namely 

d~.]q, qo+O.d~-~q.qo= p.  [ dz dz ] 
z-z(q o) z-z(q) " (6.1) 

Let dr/k,t=(Re dwk)A(Re dwl), then from Section 5 

i ( dflq q0(Re dw k A Re dw l) (q). ~lk't+i~lk't = ~ JqEX " 
(6.2) 
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However,  since RedwkARedw t is invariant under o, so is r/k,t and therefore so are 

both sides of  (6.2). Thus in the integral on the right hand side of (6.2), we may replace 

dQq, qo by �89 (df]q, qo+O*df~q, qo) which is given by (6.1). Furthermore,  since we integrate 

with respect to the variable q, the term dz/(z-z(qo)) is constant as function of q and so 

contributes zero to the integral since fxRedwkARedwt=O. Thus (6.2) becomes,  on 

putting z(q)= re i~ (which is the variable of integration and not to be confused with z) 

r]k,l+i_~r]k,l=_~d z 1 rk+tsin(k--l)O rdrdO. (6.3) 
=0 =0 (Z -rei~ rt "" rn 

We defined the quadratic differential as 

gl(dh i, dh 2, dh 3) = 2~ E (dhj+i-~dh) (rlk, l+i-~lk, t) 
cyclic 

which, in our case, gives, if dwTz~dz/~/(z-el) . . .  (z-e~) 

61(Re dwj A Re dw k A Re dw t) 

= - i  (dz)2 f r |  2n(Ezjrk+tsin(k-l)O)rdrdO 
~ / ( z -e  I) ... (z-e~) =0 =0 (z -rei~ rl ... rn 

The cyclic sum in the numerator is a determinant 

r / sin j0  r k sin kO = ---~ ~ 
I ~ c o s j 0  r ~cosk0 r tcosl0 ~j ~ ~t 

where ~= rei~ in the special case k=j+ 1, l = j + 2  this equals 

- 2  (r162 (~-z)  (~-~)  = -z / r~(~-z)  (~-z)  sin 0. 

Thus 

61(Re dwj A Re dwj+ l A Re dwj+2) 

z/(dz) 2 ~|176 
= - i  ~/(z-e-~i) ]~iz-en) J,=oJo=o rl ""r~ 

Breaking up the integral into a sum of 3 terms corresponding to 

re-i~ cos O-ir sin O-z and noting that symmetry in 0 of r l . . .  r n makes the first and 

third vanish, gives us 
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6l (Re  dwj A Re dwj+ t A Re dwj+2) 

= zJ(dz) 2 ((| 

%~(z-el)... (z-en) \Jo Jo rl... rn / 
(6.4) 

where the integral is >0,  n = 2 g + 2  andj~<g-3 .  We can state now: 

THEOREM 6.5. Let X be the hyperelliptic Riemann surface o f  the function 

"~/(z-el)... (z-en), n = 2 g + 2 ,  g~3 .  Assume that the (distinct) complex numbers 

e I .. . . .  e, satisfy the condition: 

n 

I-~ [z-eil is a symmetric function o f  O = Argz. 
i = l  

Then 61: (A~ a%e)'--~H~ K 2) has as image the whole (-1)-eigenspace o f  the hyperellip- 

tic involution. 

Proof. This (-1)-eigenspace has as basis the quadratic differentials listed in (6.4) 

with O~j<~g-3. The map 61 commutes with automorphisms of X and in particular with 

o which acts as - l  on A3~ ~ thus its image lies in the (-1)-eigenspace of o. This proves 

(6.5). 

We may sum up our results on hyperelliptic X now: I takes only values 0 or �89 in 

R/Z, and is thus constant  as X varies in the 2 g -  1 dimensional hyperelliptic locus. The 

space of tangent vectors to Torelli space at X which are normal to the hyperelliptic 

locus is g - 2  dimensional and dual to the ( -  1)-eigenspace in the quadratic differentials. 

The differential of  Is regarded as a linear function on this (-1)-subspace of the tangent 

space to S is injective i.e. its transpose 61 is surjective (at least in the special case where 

e~ . . . . .  ezg+2 satisfy a symmetry property). 
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