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Introduction

Let G be a reductive Lie group with maximal compact subgroup K. The Paley-Wiener
problem is to characterize the image of C(G) under Fourier transform. It turns out to

be more natural to look at the X finite functions in C;(G). This space, which we denote
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2 J. ARTHUR

by C7(G, K), is sometimes called the Hecke algebra in analogy with p-adic groups. The
goal of this paper is to characterize the image of C_ (G, K)under Fourier transform. The
problem was solved for real rank one by Campoli in his thesis [1]. This paper represents
the generalization of Campoli’s results to arbitrary rank.

If f€ CJ(G, K) and 7 is an irreducible representation of G on a Banach space Uy,

let

a(f) = j Sx) n(x) dx.
G

Then
n— a(f)

is a function whose domain is the set of irreducible representations of G, and which for
any (r, U,) takes values in the space of operators on U,. The problem is to character-
ize which functions m—F(x) are of this form. For our introduction we shall fix a
minimal parabolic subgroup B with Langlands decomposition NyA,M;. Then we will
have the (nonunitary) principal series, a family of representations Iz(o, A) of G induced
from B, indexed by quasi-characters A of Ay, and irreducible representations ¢ of M(').
By a well known theorem of Harish-Chandra, any x is equivalent to a subquotient of
some Ig(0, A). This means that n(f) will be completely determined by the map

i@, A= fa(o, Ay =Is(0, A, ).

We will call £ the Fourier transform of f.

What should the image of the Fourier transform be? The function fg(o, A) will
have to satisfy certain growth conditions. It should also be an entire function of A.
However, there is another, more complicated condition. It is that any linear relation
among the matrix coefficients of the representations Iz(o, A) will have also to hold for
the matrix coefficients of the operators fz(0, A). An adequate understanding of these
linear relations would include a complete knowledge of all the irreducible subquotients
of the principal series. Since this is not available, the third condition on fz(g, A) is not
very explicit. In any case, following [1], we will define PW((, K) to be the space of all
functions

F: (o, A)— Fg(o, A)

which satisfy the three conditions above. Then our main result (Theorem III.4.1) is that
the map f—f is a topological isomorphism from C;(G, K) onto PW(G, K).
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An interesting consequence of our main result is the construction of an algebra of
multipliers for C_ (G, K). By a multiplier we mean a linear operator C on C; (G, K) such
that

C(f*g)=C(f)*xg=f*C(g)

for all fand g in C;(G, K). If C is such an operator, and 7 is an irreducible representa-
tion of G, there will be a scalar C, such that

A C(f)) = Can(f),

for every function f€ CJ(G,K). In Theorem II1.4.2 we will obtain an algebra of

multipliers {C} by constructing the corresponding algebra of scalar-valued functions
{n—C,}. It is an analogue for real groups of a result (unpublished) of I. N. Bernstein,
in which all the multipliers for the Hecke algebra of a p-adic group were constructed.
We envisage using the theorem in the following way. Suppose that we happened to
know that a given map

x— F()

was represented by a function in C7 (G, K). Then we could construct many other maps,

each also represented by a function in C; (G, K), by taking
n— C, F(m).

If one studies the contribution of Eisenstein series to the trace formula, one is
confronted with this very circumstance. In fact, the trace formula was our original
motivation for working on the Paley-Wiener problem. In another paper, we will use
Theorem I11.4.2 to overcome a nasty convergence problem connected with Eisenstein
series.

This paper is divided into three chapters. The first chapter is a collection of various
results which are required for the proof of our main theorem. Much of the chapter
contains familiar material, and discussion proceeds rather briskly. Chapters II and 111
contain the main body of the proof. It is a question of studying successive residues of
certain meromorphic functions of A, in the spirit of Chapter 7 of Langlands’ treatise
[11b] on Eisenstein series. The reader might find it easiest to start this paper at the
beginning of Chapter 11, referring to the sections in Chapter I only as they are needed.

We shall conclude the introduction by attemting to sketch the salient features of
the proof of our main theorem. The theorem will actually be proved for C; (G, ), the
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space of smooth, compactly supported functions which are spherical with respect to a
two-sided representation, r, of K. Associated to T we have the Eisenstein integral

Eyx,®,A), x€EG, DE oy, A€t

o is the (finite dimensional) space of m,, spherical functions on M;, while af ¢ is the
space of quasi-characters on Ay, a complex vector space of dimension n, say. In this
setting, PW(G, 7) will be defined as a certain space of entire functions from af . to .

The most difficult part of the theorem is to prove surjectivity. Given FEPW(G, 7) we
have to produce a function in C;(G, 7). If fis such a function, we know from Harish-

Chandra’s Plancherel theorem that there will be a decomposition
f= Zf ?
P

of finto components indexed by classes of associated standard parabolic subgroups of
G. The component from the minimal parabolic subgroup will be

F{B)(x)=|W0|"1f Eg(x, ug(A) F(A),A)dA, x€G,

in*
i}

where ug(A) is Harish-Chandra’s u function and W is the Weyl group of (G, Ag). We
must somehow construct the other components and the function f.

Let Ao(B) be the chamber in A, associated to B. If a €Ao(B), Eg(a, ,A) can be
written as a sum

> Egg (a,®,A)

SEW,

of functions indexed by the Weyl group. For any s, Epp (-, ®, A)is the unique function

on Ay(B) whose asymptotic expansion has leading term
(cpa(s, A @) (1)-a*V (@)™,

where 05 is the modular function of B and cps(s, A) is Harish-Chandra’s ¢ function.
We will extend EBIB,:(' , P, A) to a 7 spherical function on

G_=KA\B)K,
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an open dense subset of G. It will then turn out that for FEPW(G, r) and x€EG_,
Epg ((x, ug(AYF(A), A) = Egjg |(x, ug(sA) F(sA), sA).

As a function of A this expression will be meromorphic with poles along hyperplanes of
the form (8, A)=r, for 8 a root of (G, Ag) and r ER (Corollary 1.6.3). We shall also show
that only finitely many of these poles intersect the negative chamber, —a3(B), in o
{Lemma 1.5.3). For this introduction, let us assume that none of the poles meet the
imaginary space iaj. Then for x€G_,

Fipx)=| Egg (x, us(A) F(A), A)dA.

ia§

Let X be a point in general position in the chamber —a¥(B) which is far from any of the

walls. In Theorem I1.1.1 we will show that the function

F'(x)= Egp (. uA F(A), A dA, xEG_,

X+iaj

is supported on a subset of G_ whose closure in G is compact. It will be our candidate
for f(x).
The difference

F'(®)~F5(®)

will be a sum of residues. Each one will be an integral over an affine space Xr+ib,
where X, € af and b is a linear subspace of aj of dimension n—1. (T will belong to some

indexing set.) We will group the residual integrals into sums corresponding to the W,-
orbits among the spaces b. Now for any Wg-orbit of spaces b there is an associated
class 2 of parabolic subgroups of G, of parabolic rank n—1. We might expect that the
corresponding sum of residual integrals should equal f»(x). However, to have any hope
of this we will need to replace each X7 by a vector which is orthogonal to b. Let Ay be
the vector in Xr+b which is orthogonal to b. Let Fy(x)be the sum of all the residual
integrals, taken now over the contour Ar+ib, for which b belongs to the Wy-orbit
associated to ?. (Again, we make the simplifying assumption that each residual
integrand is regular on A;+ib.) Then

F'W—-Fp0—- > Fyw
{P:prk P=n-1}
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will be a new sum of residual integrals, each over an affine space of dimension n—2. We
can repeat the process. In the end we will arrive at a formula

F'(x) =Y Fyx), x€G_,
4

where now 2 ranges over all classes of associated parabolic subgroups.
The difficulty is that we do not yet know that F"(x) extends from G_ to a smooth
function on G. Suppose that for every P+{G} the functions Fy(x) could be extended

smoothly to G. We could then use an argument of Campoli to extend F; to a smooth

function on G. From this, we would be able to conclude that the function
FY(x)= > Fy(x)
e d

belonged to C;(G,7) and that its Fourier transform was the original function F(A).

Clearly, then, an induction hypothesis is in order. If P is any proper, standard parabolic
subgroup of G, with Levi component M, we will assume that our main theorem holds
for C;(M, 7). In Lemma II1.2.3 we will show that there is a natural injection

F-—)Fp

of PW(G, t) into PW(M, 7). By induction we will obtain a function Fj in C;(M, 7). Let

Ap be the split component of P and let ap be the Lie algebra of Ap. If A€ia} let
Fp .usp(4) be the function which maps any point mEM_ to

f FF o (ma) el(HP(ma))da'
Ap

It will extend from M_ to a cuspidal, 7, spherical function on M. We would be able to
establish our main theorem for G if we could prove the formula

F;,(X) = lg’l-l z IW(aP)I_If EP(x' ,“p('l) FP, cusp(l)’l) d)" (1)
iog

PEP

for any class ?+{G} and x €G. Indeed, the function on the right is a wave packet of
Eisenstein integrals and certainly extends to a smooth function on G. We would
complete the argument as outlined above.

However this last formula turns out to be quite difficult. It hinges on a recent
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theorem of Casselman. Let Z,, be the algebra of left and right invariant differential
operators on M. In Chapter I, § 7 we will define a space (M _, 1) of Zfinite, 7
spherical functions on M_. (It seems likely that it is the space of all such functions.)
M_, 1) will contain .sp(M, 7), the space of functions which extend to cuspidal,
Ap invariant functions on M. The essence of Casselman’s theorem is that the Eisen-
stein integral Ep(x, @, 1), defined by Harish Chandra for ¢ € #.,,(M, 7), can actually
be extended to the space /(M _, ). Then

Epx, 9,0, XEG_, A€ ¢, pEAM_, 1),

becomes a meromorphic function of 4 with values in the space of linear maps from
AM_, 1) to HG_, v). We will state Casselman’s theorem formally in Chapter II, § 4.
Then, in § 5 of the same chapter, we derive some consequences of the theorem. It turns
out that all of the J, ¢ and x functions, defined by Harish-Chandra in [7 €] as linear maps
on Hc,sp(M, 7), can also be extended to the space #(M_, 7). In particular the map

@— Ep(x, up(A) @, 1)

can be defined for ¢ € AM_, 7). This will aliow us, in Theorem 11.7.1, to prove a
version of the formula (1). We will then combine it with the induction hypothesis in
Chapter 111 to establish the main theorem.

A number of authors have proved Paley-Wiener theorems for particular classes of
groups. The case of SL,(R) was solved by Ehrenpreis and Mautner [5 a], [Sb]. For the
K bi-invariant functions on a general group the main problem was solved by Helgason
[8a], [8b] and Gangolli {6]. They developed techniques which allowed for changes of
contours of integration. To them is due the analysis on which sections 1.5 and II.1 of
this paper are based. The case of K bi-invariant functions is simplified by the fact that
no residues are encountered during the necessary contour changes. Further results in
this direction were later obtained by Helgason [8c], [8d]. We have already mentioned
Campoli’s contribution {1] for groups of real rank one. A Paley-Wiener theorem for
complex semisimple groups was announced by Zelobenko in [14]. More recently,
Delorme [4] established a Paley-Wiener theorem for any groups with one conjugacy
class of Cartan subgroups. His techniques are algebraic in nature, and are completely
different from ours. Finally, Kawazoe [10a}], [10b] made significant progress in han-
dling the residues on groups of rank greater than one. In particular, he established the
main theorem for the group SU(2,2).

1 am indebted to W. Casselman for many enlightening discussions. His theorem,
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which is crucial for this paper, will be described in the forthcoming paper [2 b]. I would
also like to thank N. Wallach for conversations on asymptotic expansions and J.
Millson for telling me of some of Campoli’s results.

Notational conventions: If H is any Lie group, we will denote the real Lie algebra of H
by Lie (H), and universal enveloping algebra of Lie (H)®C by U(H).

Our method for cross reference is as follows. Theorem 111.4.2 means Theorem 2 of
Section 4 of Chapter III. However, we will omit the numbers of chapters when
referring to lemmas, theorems or formulas of a current chapter.

Chapter 1
§ 1. The group G

Suppose that G is a reductive Lie group, with a fixed maximal compact subgroup K.
We shall assume that G and K satisfy the general axioms of Harish-Chandra [7 e, § 3].
Then both G and its Lie algebra can be equipped with an involution 6 as in [7 e, § 3].
Any parabolic subgroup P of G has a decomposition P=NpMp, where Np is the
unipotent radical of P and Mp is a reductive subgroup of G which is stable under 6
([7e, § 4]). We shall call Mp the Levi component of P; we shall say that any group is a
Levi subgroup (of G) if it is the Levi component of a parabolic subgroup of G.

Suppose that M, =M are two Levi subgroups of G. We shall denote the set of Levi
subgroups of M which contain M, by £(M,). Let us also write $¥(M,) for the set of
parabolic subgroups of M which contain M,, and PY(M,) for the set of groups in
FM(M,) for which M, is the Levi component. Each of these three sets is finite. If
M=G we shall usually denote the sets by AM,), AM,) and P(M,). (In general, if a
superscript M is used to denote the dependence of some object in this paper on a Levi
subgroup, we shall often omit the superscript when M=G.) If R€P"(M,) and
Q€ P(M), we will let Q(R) denote the unique group in P(M,) which is contained in Q.

For the rest of this paper, M, will denote a fixed minimal Levi subgroup of G. If
MEAM,), let Mg=Mn K. For induction arguments it will often be necessary to apply
the notation and results of this paper to the group M. This poses no problem, for the
triplet (M, K4, M,) satisfies the same hypotheses as (G, K, My).

Suppose that M is a group in A M,). Let Ay, be the split component of M ([7e,
§ 3]), and set ayp=Lie(Ay), the Lie algebra of A,,. Then a,, is canonically isomorphic
with

Hom (X(M), R),
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where X(M) is the group of all continuous homomorphisms from M to R*. As usual, we
define a surjective homomorphism
H,,: M— 253
by setting
PO — Iy (m)|,  y EX(M), mEM.
(In case M=M,, we shall always write A=y, A0=AM0 and H,=H Mo.)In general, M is

the direct product of the kernel of H,,, which we denote by M!, and A,,;. Suppose that
A is an element in aj; ., the complexification of the dual space of a. Then A defines

quasi-characters
H— A(H) s HEan M
and

a—at, a€Ay,

on each of the abelian groups a,s and A,,. They are related by

AH ()
a = ”("), a€A,,.

Suppose that P € P(M). We shall sometimes write Ap=A,, and ap=a,,. Associat-
ed to P are various real quasicharacters on these two groups. One arises from the
modular function dp of P. Its restriction to Ap equals

2 (H @)
Spla) = a’% = "D g€eA,,

for a unique vector gp in afy. There is also the set X, of roots of (P, Ap), and the
subset Ap of simple roots. We shall write Z(Ap) for the abelian subgroup of a}
generated by Ap, and Z*(Ap) for the subset of Z(Ap) consisting of nonnegative
integral combinations of elements in Ap.

If P is any group in #HM,), we know that

G=PK=NPMPK.

For a given point x in G, let Np(x), Mp(x), and Kp(x) be the components of x in Np,
Mp and K relative to this decomposition. We shall write

Hp(x) = Hy (Mp(x)).
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It is convenient, although not really necessary, to fix a G-invariant, symmetric
bilinear form (,) on Lie (G) such that, as in [7 ¢], the quadratic form

—(X,6X), XE€ELie(G),

is positive definite. We will also write (,) for the C-linear extension of the bilinear form
to Lie(G)®C. Suppose that fc is a Cartan subalgebra of Lie(G)®C such that
bcnNLie (G) is a @ stable Cartan subalgebra of Lie(G). Then (,) is nondegenerate on
bc, and

H— —(H,6H), HE€hcn Lie(G),

extends to a Hermitian norm ||-|| on bc. From the nondegenerate bilinear form on h¢
we can define a bilinear form, which we also denote by (, ), on the dual space h&. We
also obtain a Hermitian norm ||-|| on h§.

From now on we will take

be=bx.c®ao,c,
where b is a fixed Cartan subalgebra of Lie(K)NnLie(M,). Then by restriction we
obtain a bilinear form (, ) and a Hermitian norm ||-|| on both a; ¢ and af ¢. Suppose that
M€ AM,). Then there are embeddings a, c=a, ¢ and aj; c<ag ¢, S0 we can also

restrict (,) and ||-|| to these smaller spaces. As is customary, a singular hyperplane in
a}y will mean a subspace of the form

{A€a};: (B, 4) =0}
for some root 8 of (G, Ay). If P€ A(M), we shall write

af(P)={A€ak;: (B, 4) >0, BEZp),
ap(P) = {HEap: f(H) >0, BEZRY,
and

Ap(P)={a€Ar:a’>1, BEZL).

Finally, we should say a word about Haar measures. From time to time we will
want to integrate over various unimodular groups. Unless specified otherwise, the
integrals will always be with respect to a fixed, but unnormalized, Haar measure. There
will be two exceptions. On the compact group K,s, M € AM,), we will always take the
Haar measure for which the total volume is one. The second exception concerns groups
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connected with the spaces a,,. On a,, we will take the Euclidean measure with respect
to the fixed norm ||-||. The exponential map will transform this measure to a fixed Haar
measure on the group A,,. Finally, on the real vector space ia}, we will take the
measure which is dual to the measure we fixed on a,,. Observe that if {v,,...,v,} is
any orthonormal basis of af;, and & is a function in CZ (iafy),

J’h(x)d,1=(_‘__)'j f hu, v, oot v) du, ... du,.
iat, 27i) J_iw —jo0

§ 2. Eisenstein integrals and associated functions

Throughout this section, and indeed for most of the paper, t will be a fixed two sided
representation of K on a finite dimensional vector space V.. This is the setting for
Harish-Chandra’s Eisenstein integral as well as his J, ¢ and u functions, which play
such a central role in the harmonic analysis on G. We shall list some of the basic
properties of these objects.

Fix a Levi subgroup M in L(M,). Let ,,(M, 1) be the space of 75, spherical
functions on M/A;, which are cuspidal. This is the same as the space of square
integrable, %\ finite functions

p:M-V,
such that
(i) @k, mky) = t(k)) p(m)t(k,), k,k,EK,, mEM,
and
(ii) p(ma)=q@(m), mEM, a€Ay.

Here %, is the algebra of left and right invariant differential operators on M. The space
HAcusp(M, 1) is finite dimensional, and in fact equals {0} unless M/Ay, has a discrete
series. Indeed, if w is an equivalence class of square integrable representations of
MiAy, let &,(M, 1) be the space of functions @ in Hcusp(M, 7) such that for any
&* €V, the function

m— EX(p(m)), mEM/Ay,,

is a sum of matrix coefficients of w. Then

HAopM, 1) = DA (M, 7).
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Let g€, (M, 1), PE P(M), x€EG and A€ af; .. The Eisenstein integral is defined to
be

Ex(x, @, )= f (k") gplkx) e(l+gp)(HP(k_x))dk’

Ky \K
where @p is the function on G such that
@p(nmk) = p(m)t(k), n€Np, mEM, kEK.
Then the function
Ep(p,A):x— Ep(x, p, 1)

depends analytically on A, and is a =% finite, t spherical function on G.

Let W, be the Weyl group of (G, Ap). It is a finite group which acts on the vector
spaces ag and af. Suppose that M, is another Levi subgroup in AM,). As is custom-
ary, we will write W(a,,, C‘M,) for the set of distinct isomorphisms from a,, onto Qpy,
obtained by restricting elements in W, to a,,. (Recall that any two groups P € ?(M) and
P, € P(M,) are said to be associated if this set is not empty.) If € W(a,,, aMl) we shall
always let w, denote some representative of ¢ in K. Now, suppose that X is any subset
of M such that Ky, ZK,=2, and that ¢ is a 1 spherical function from = to V. If
t€ W(ay, ay, ), define a 7), spherical function on =,=w,Zw;' by

(e (m)=1tw) pw; 'mw)rw), mEZ,.

If PE P(M) let tP be the group w,Pw; "' in PAM,). Then if ¢ € A.,p(M, 1), it is easily
shown that

Ep(@, 2) = E,p(tg, t3). Q2.1

More generally, if L is any Levi subgroup which contains both M and M,, and
R € PX(M), there is an identity

tEg(@, A) = E,p(t@, tA) (2.1)

for Eisenstein integrals on L and tL=w, Lw;".
Suppose that P€ Z(M). If T is a Cartan subgroup of M, let (G, T) be the set of
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roots of (G, T) whose restrictions to A, belong to 5. Suppose that P’ also belongs to
P(M). Then the number

ﬂP'IP = (@.a) a)) "

a€24G, )N Ep(G, T) < 2

is independent of T. (As usual, P stands for the group in (M) opposite to P.) Let dX be
the Euclidean measure on npz=Lie (Np') associated to the norm

IX]I? = —(X, 6X), XEnp.

We can normalize a Haar measure dn’ on Np' by

f @(n")dn’ = f plexpX)dX, @EC(Np).
Np»

Np

The same prescription gives us a Haar measure on the subgroup Np:N Np. From these
two measures we then obtain an invariant quotient measure on the coset space
NpANp\Np. Now if p €L, (M, 1), A€} . and mEM, define

e 9 () =By f 2K pn) @(Mp(n) m) 7P gy,
Np 00 Np\Np.
and
(J;"]P(A) ¢) (m) = ﬂpﬂlpf (p(mMP(n)) 7(KP(H)) e("*‘?p)(Hp(n)) dn.
Np 1 Np\Np:

The integral converges if
(ReA+gp, a)>0

for each root a in Z,NXy. Because the factor fp)p is built into the definition, the

integrals are independent of the measure on Np: and of the form ().

Both J’,,,u,(/l) and Jpp(4) can be analytically continued as meromorphic functions
from ajy, . to the finite dimensional space of endomorphisms of Hcusp(M,7). They
satisfy all the usual properties of intertwining operators. In particular, let d(P’, P) be

the number of singular hyperplanes which lie between the chambers a,(P) and a(P’).
If P is a third group in (M) such that

d(P", P)=d(P’, P')+d(P', P),
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one has
J‘,,lp(ﬂ.) = J;,,,,(A) J;,.l,,(/l), t=1r. 2.2)

Suppose that M, is a Levi subgroup which is contained in M, and that R, R’ € PM(M,).
The functions

T, A€ay o, i=Lr,

associated to M and M, (instead of G and M) can certainly be defined. They depend
only on the projection of A onto the orthogonal complement of aj; ¢ in a3, . We have

the formula

Togyp D) = Teg(A), t=1r. 2.3)

If A,€a}; ¢ and P, P} € (M), the operators Ji’{ll’.(}‘l) and Jpp(A) commute. They also
both commute with %,,. Finally, we should recall that

detJppB), =11,

does not vanish identically in 4; the inverse fP‘I ,r,(}.)'l therefore exists as a meromorphic
function of 4.

Actually, the J functions defined by Harish—-Chandra in [7e¢] are intertwining
operators between induced representations, rather than operators on & ,s,(M, 7). It is
in this context that the results we are discussing were proved, ([7¢]). The difference,
however, is minor and purely notational. For the convenience of the reader, we will
spend § 3 reviewing the relations with induced representations.

Suppose that s € W(a,,, au,)- Suppose that P€ P(M) and P, € PM,). The groups
s~1P, and s~'P, both belong to P(M). Define

Cppls, A) = STy ST i J(A)- 2.4)

It is a meromorphic function of A€ ay; . with values in the space of linear maps from
.szicusp(M, 1) to A, . (M,,7). By [7d, Lemma 18.1] and the corollary to [7e, Lemma

cusp
18.1], it is just Harish-Chandra’s ¢ function. Harish-Chandra has defined other ¢
functions

c?,ll,,(s, A) = cppls, A cppll, 7! (2.5)
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and
oc,,ll,,(s, A)= CPI'PI(I’ sA)! c,,l,,,(s, A). (2.6)

These also are meromorphic functions on a3 - with values in the space of linear maps

from of (M, 7) to &, (M), 7). The following functional equations are satisfied:
C(})’zlp(sl s, A) = copz|Pl(s]:SA) C(})JlIP(SJ /1)’ (2.7)
ocp2|p(s| 5,A)= ocpz|pl(s1 s §4) ocpl|p(s: A), (2.8)

Cpyp(518,4) = Cpp (51, SA) Cp 1p(5, 4)
= Cpp (51, 54) OCPI'P(s, A), 2.9)
Epx, 9, )= Ep (x,°cp p(s, D @, 54, (2.10)
for s, € W(aMI, aMz) and P, € (M,). Suppose that t€ W,. If M’ € AM,),
M'=wMuw"

is another Levi subgroup; if P€ P(M'), then tP€ P(tM'). The restriction of ¢ to au,.
defines an element in W(a,s, a,»), which we will denote also by ¢. It is an easy matter
to show that for P’, PE PM),

o) 7' = Toppl2), 1=1,r. @.11)

One also has
1cp p(s, A) = C,p pl1s, A), (2.12)
cppls, M) 17" = cp st 1A), (2.13)

and similar formulas for C?’,IP and °c,,l,,,. From (2.11) one can also deduce alternate

formulas
Chie(s, D) = 5Ty 1y W7 ip (D) Q.14)

and

Pppls, A= 5Ty My p (D)7 2.15)

for the supplementary c¢ functions.
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Finally, let us recall the definition of Harish-Chandra’s u functions. It is easy to
see that for any P and P’,

I} (A -ﬂi"u’a) = Jpp(A) Jpip(4).

Let up)p(1) be the inverse of this operator. It is a meromorphic function of A with
values in the space of endomorphisms of s/, (M, 7). For any 4, #pp(A) commutes with

any of the operators
J;,l,,Px(Al), A €ay ¢, P, PLEPM).

Therefore ,uP,,P(A) also commutes with /4,,],,,,[(,1,). Analogues of (2.2) and (2.3) follow

easily; one has

,“P'|P(}*) =HUpip ) #p'|p(}~) (2.16)
if

d(P", Py=d(P", P')+d(P', P),

and

:uP(R’)|P(R)(A) = ﬂR'|R(/\), Q.17
if A, P, R and R’ are as in (2.3). Now, for any P € (M), define

up(d) = :“P]P('l).

It follows from the properties above that up(1) depends only on M and G, and not the
group P. Moreover, for any € W(a,,, a),) and P, € A(M)),

upld) = pp (12).

LEMMA 2.1. Suppose that M, €M), REP"(M,) and PEPM). Then if
A€(ay )t and 2€a}, ¢,

MowipeA+A) = tpg(A+A) (A
Proof. By (2.16) and (2.17) we have
Up R A+ = Uppypr (A+2)
= My e A+A) Bpmpr (A1)

= ,uRlR(A+2.) #P(R)|P(R)(A+A)'
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But
,“R|R(A+A) = ﬂR|R(A) = ug(A),

and this operator commutes With g pr)(A+4). The lemma follows. Q.E.D.

§ 3. Relation with induced representations

We shall remind ourselves of the connection of Eisenstein integrals with the theory of
induced representations. The reader who is experienced in such things or who does not
wish to track down the facts of § 2 in Harish-Chandra’s paper [7e], could easily skip
this section

Again, we fix a Levi subgroup M€ AM,). Let @ be an equivalence class of
irreducible square integrable representations of M/A,,, and let (o, U,) be a representa-
tion in the class of w. (U, is the Hilbert space on which o acts.) Suppose that P € P(M).
Define #{(0) to be the Hilbert space of measurable functions

y:K— U,

such that

(i) y(mk)=o(m)y(k), m€EKy, kEK,

and

i) vl f oI dk<so.

Ky \K
If A€ aj}; ¢, there is the usual induced representation

U0, 2, x) ) (k) = eX P E N a1 (k) w(K k),

Y € Mo), x€ G, which acts on H(0).

Suppose that (z, V) is an irreducible representation of K. Let (o), be the finite
dimensional subspace of vectors in #(0) under which the restriction of Ix(g, ) to K is
equivalent to 7. Suppose that S € HomKM(V, U); that is, S is a map from V to U, such

that
S(t(m) &) =o(m)S(E), EEV, mEKy,.
If £€ V, the function

Ws(8):k— Sk &), kEK,

2 — 838282 Acta Mathematica 150. Imprimé Je 30 Juin 1983
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belong to (o). By Frobenius reciprocity, the map
S e ‘I’ s

is an isomorphism from HomKM(V, U, onto Homg (V, #(0)). Notice that #{(0), is the
space spanned by

{W(&): S€Hom, (V, U,), EEV).

It is isomorphic to Hom, (V, U)®V. Now, if S€Hom, (V,U,), and P’ is another
group in M), set

JP’IP(G’ A) S= ﬁprlpf g(MP(n)) ST(KP(H)) e(""o?)(ﬂp(n))dn'

Np 00 Np\Np

Defined a priori only for thosed € aj;  for which the integral converges, Jp (0, 1) can
be continued as a meromorphic function from aj; - to the space of endomorphisms of
HomKM(V, U,). The map

lps(‘f)“" lpjp,lp(a,;,)s(g), S€ HomKM(V, Ua), EEV,

which we can also denote by Jp/p(0, 4), is just the restriction to (o), of the usual
intertwining operator from Ip(c, 1) to Ip.(0, A).

The contragredient representation of T makes the dual space V* of V into a K-
module. Similarly, the dual Hilbert space U} is an M-module under the contragredient
o* of 0. As above, we have an isomorphism

Hom, (V*, UY)=Hom (V*, #(0*)).
Ky a K

On the one hand, the transpose gives a canonical isomorphism between
HomKM(V"‘, U%*) and HomKM(Uo, V). On the other hand, the K finite vectors in #(o*)

and o) are in duality under the pairing

f (p(k), p*(k)) dk, € Ho), y* € Ha*),
K N\K

so that Homg (V*, #0*)) is canonically isomorphic to Homg (#{(0), V). It follows that
there is a canonical isomorphism

L HomKM(Ua, V)SHomg (#(0), V).
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It is given by

Wi(y) = f (k)™ S*(y(k)) dk,

Ky \K

for S*EHomKM(Ua, V) and o€ 2(0). Notice that J{0)¥ is the space spanned by
compositions

{£* W3 S*€Homy (U, V), E*EV*).

It is isomorphic to HomKM(Ua, VI®V*,
Suppose that

(T,‘, Vi), i= 19 2’

is a pair of irreducible representations of K. We shall now take 7 to be the double
representation of X on

V.= Homc (Vy, V),
defined by
t(k2) Xt(ky) = 12(k2) 0 X 0 14 (Ky),

for ky,k; €K, and X€Homc(V,, V,). Any double representation of K will be a direct
sum of representations of this form. If §,€Homy (V,,U,) and §3€Homy, (U,,V))
then

@(m) = S3o(m)S,, meEM,

is a function in &,,(M, 7). The J functions we have just defined are related to those of
§ 2 by the formulas

€ pp)@(m)y={J pplo, )*SHolm) S, @G.1)
and

TR @) (m) = S30(m) U pp(0, 1) S)). 3.2)
Next, we shall show that for any x€G,

Wi Ip(0,4, x) W5 = Eplx, @, . (3.3)
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Indeed, the left hand side is a composition of three operators, and is an element in
Hom (V,, V,)=V,. Its value at any vector £§,€V, is

f T, (k") S3(Upl0, A, x) W ())) (k) dk
K)\K
= f 7(k™") (S§o(Mp(kx)) S,) (K plkx)) £,) €477 g
Ky \K
=f ok ™) gplhon) () 7 k.
Ky \K

This is just the value of Ep(x, @, A) at &;.

Formula (3.3) provides a relation between Eisenstein integrals and matrix coeffi-
cients of Ip(o, A). There is a slightly different way to express it. We have seen that the
space of operators

Hom (#0),,, #(0), ) = #o0), ® #o);,
is canonically isomorphic with
Hom, (V,,U,) ® V,®Homg (U,, V) ® V7.
Now the correspondence
S8, 5)—9
defines an isomorphism between

Hom, (V,,U,)® Homy, (U, V)

and $4,(M, 1), while V,;® V¥ is isomorphic to V¥. Let End,; be the double representa-
tion of K on the space

End (V;) = Homc¢ Ve, Vr)
given by
(End, (k) F- End, (k) (X) = t(k2) F(X) t(ky),

ki, k€K, FEEnd(V,) and X€V,. Then ¥, ,M,7)®V* equals 4, ,M,End,). We
therefore have an isomorphism

T-yr



A PALEY-WIENER THEOREM FOR REAL REDUCTIVE GROUPS 21

from Hom(?’t’(a),z, %’(a),l) onto $,(M,End,). This mapping is essentially the one
defined by Harish-Chandra in [7 ¢, § 7]. Formula (3.3) leads to

tr(Ip(o, 4, x) T) = tr (Ep(x, Y1, 4)), TE€Hom (o), , #o),),

where the first trace is on the space (o) while the second is on V,. The relations
between the J functions can be written

TpipD) yr= YU ppio )
and

oD Yr=19;, 007

It is actually through these relations that we can extract formula (2.4) from the papers
of Harish-Chandra.

§ 4. Asymptotic expansions

From now on 7 will be as in § 2, a fixed two-sided representation of K on a finite
dimensional vector space V,. For the results on asymptotic expansions that we shall
quote the reader can refer to {7 a], [7b] or [13].

If €20 and B € PA(M,), set

A{B)={a€Ay  a(Ha))>¢, a€Ag}.
By a neighborhood of infinity in G we shall mean a set of the form
G,=K-AyB)-K.

It is an open subset of G which is independent of B. If ¢ =0, we shall write G_ for G,.
Suppose that ¢ is a function defined on a neighborhood of infinity with values in V,
which is Z-finite and t-spherical. It has a unique asymptotic expansion in any chamber
Ao(B). There is an £ such that

pa@)=, > eA,a)a",
=1 tez*(Ap
for all a € Aj(B). Here {A;} is a finite set of linear functions on ay, ¢ such that for any

i*j, the function A;,—A; does not belong to Z*(Ag). For each i
a—ep (A, a), EEZ'(Ap), a€A,,
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is a family of functions from A, to V, which are polynomials of bounded degree in
Hy(a) and such that

(m) €5 (A, @) T(m) ™ = &5 (A, @)

for all m € Myn K. The functions {A;—¢} are called the exponents of ¢ (with respect to
B) while {A,} are called the principal exponents. Suppose that

B'=tB, tE€EW,,
is another group in P(M,). We leave the reader to check that there is a bijection
Ao A
between the two sets of principal exponents such that
) Aj=1tA;
and

(i) &g (A}, waw]") =t(w,) e (A, @) (w,)™" for all LEZ¥(Ap).

Suppose that M is a Levi subgroup in £(M,) and that PE P(M). If RE PM(M,) the
group B = P(R) belongs to P(M,) and the set Z*(Ag) is contained in Z*(Ag). For ¢ as
above, and a point a in Ay (R), define

EP(a’ q)) = Z z £g, C(Ai’ a) a(/\;‘§+0r).

=1 rez*(ag

If ¢t is an element in Wy, tB equals (¢tP) (tR), and we have
Ef(w,aw;", ¢= z Z &g, (A, w,aw;") (w, aw,")’mrhw
i=l rez*(Ap)
= 7(w,) Ef(a, <p)t(w,)".
Taking ¢ to be an element in W2, the Weyl group of (M, Ao), we see that EX(a, ¢)

extends to a tp-spherical function, E (¢), on M,. If ¢ is a general element in W,, the
formula above is just

E"(p) = tEF(g). “.1
Recall that there is a natural injective map

VYar: - Zut.
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Indeed, suppose that P€ P(M) and that n and #i are the Lie algebras of the unipotent
radicals of P and P respectively. For zE€ %, let yp(z) be the unique element in U(M)
such that z—yp(z) belongs to nU(M) fi. Then as a left invariant differential operator on
M,

Y1) = 0p(m) " 0 yp(2)0,(m), mMEM.
Now if ¢ is a function as above, we have differential equations
ym(D EF(9) = EP(zg), zEZ. 4.2)

For the case that M=M, this formula is in the proof of [13, Lemma 9.1.4.5]. For
general McG we refer the reader to [7a] or the discussion in [11a, pp. 91-97]. In any
case, since %y, is a finite module over y,(%), the function EF(¢) is Zfinite.

For any M € AAM,), the abelian algebra

be=bx c®agc,

introduced in § 1, is a Cartan subalgebra of Lie M)®C. Let WM be the Weyl group of
(Lie (M)®C, h¢) and let

1—p, €%,

be the canonical isomorphism from %), onto the W™-invariant polynomial functions
on h&. Then

p::,(z) =p;
for all z€ ¥=%,. Recall that any homomorphism from & to C is of the form
1->piW)=p ), €%,

and is uniquely determined by the orbit under W=W?¢ of the linear function v € h¥.
Suppose that ¢ is a Zpfinite, 7p-spherical function defined on a neighborhood of
infinity in M. Since y(%) is a subalgebra of Z,,, the vector space generated by
{z@: 2Eya(%)} is finite dimensional. Let {g;} be a basis of this space. We can assume
that each ¢; is a generalized eigenfunction of y,(%); that is,

(Z"Py(v,))d% = 09 Z e yM(my

for a positive integer d and a function v, € h¢. Let us write o;(¢) for the union over i of
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the orbits under W of the points v;. It is a finite set of linear functions on fc. Suppose
that M, € £(M,) and that R € P*(M,). It follows from (4.2) that

06(p) = 06(ER(9))- (4.3)
For convenience, we will denote the finite dimensional space &, (M,, 7) by . If
P € o, and A €af ¢, we have the function

A(Hy(m))

Ep (@, A): m— E,, (m, ®,A) = ®(m) e mE€ M,

Let og(r, A) denote the union, over all ®€ s, of the orbits oG(EMo(CD,A)). It is

precisely the set of W orbits of points #+A, where 7 is one of the finitely many linear
functions on h, ¢ such that

2®=p (M ®, zEZ,,

for some ® € of,. From formula (4.3) we have

LEMMA 4.1. Suppose that @ is a Zprfinite, tprspherical function defined on a
neighborhood of infinity in M. Let A,, ..., A, be the principal exponents of ¢ along a
chamber Ao(R), RE PM(M,). Then for each i, o{@)Nog(r, A;+or) is not empty.
Moreover,

o4 = ~';J| (0g(@ Noglr, A+og)-

The #-finite functions on G of most interest in this paper are the Eisenstein
integrals associated to minimal parabolics. For B, B’ € ?(M,) consider the expansions
of the functions

Ej(x, ®,A), ®ESA, A€at,

along the chamber Ay(B’). If ¢ is a small postive number and a € A{(B’), Eg(a, ®,A) can

be written

2 E (Car,g,c(s,A)(b)(l) a(sA—C—e.,.)’

SEWore2*(Ap)

where Chs, (s, A)isa meromorphic function of A with values in End (&), the space of
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endomorphisms of <. The functional equations for the Eisenstein integral give rise to
the formulae

tCB'|B, ;(s) A) = CRB']B, ,C(ts, A), (4.4)
Chip, (s, M = cpp (587, 1A, 4.5)
CB"B,C(S‘ S, A) = cB'\Bl, ‘:(sl, SA)OCBllB(s, A), (4.6)

for elements ¢, s; € Wy and B, € #(M,). Suppose that x is an element in G,. Then
x=k ak,, k, k,EK, a€A{B’).
Define

Epp (6, @, N =1(k) D, (caipels, A1) a** (k).
ZEZY(Ap)

Then Epp (P, A) is a z-spherical function on G,. It is meromorphic in A, and

Epx,®,A)= > Epp (x,®, A).

SEW,

From the three functional equations above, one obtains

Epp (x, ®,A) = Epp ,(x, @, A), 4.4
EB’[B,S(x’ (1), l)=EB'|tB.sl“'(x’ td:o, tA), (451)
Epp s (X, @, A)=Epp (x, oca,m(& A) @, sA). (4.6)

These functions are all Z-finite. Indeed, if z € Z let yMo(z, A) be the differential operator
on M obtained by evaluating yMo(z) at A. Then the equation

ZEB'w,;(xy DA = EB'lB, s(x; 'VMO(Z, AN D, A) 4.7)

follows from the analogous formula for Eisenstein integrals. Since ® is %, finite,
Eg)p (P,A) must be Zfinite. Another consequence of (4.7) (or alternatively, of

Lemma 4.1) is that the orbit DG(EB’|B,3((D’A)) is contained in og(z, A).

We shall prove a lemma for use in Chapter II. It is, I am sure, known to experts.
Fix M € AM,). We can, of course, define the functions

Epir, (P, A), r€ WY, R,R' € PM(M)),
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on a neighborhood of infinity in M. (W{)” is the Weyl group of (M, Ay).) Fix
RE PM(M,). Also take groups P, Q € P(M). We shall show that for a point A in general
position in af ¢, the function

Egr 1\ ompa™) T amipa(A) @, A) 4.8

can be expressed in terms of a Z-finite, r-spherical function on G,. Let B=P(R). There
is a unique coset s in W,/ W¥ such that the group P,=sQ contains B. If M,=w, Mw,"

then P; belongs to (M,). Let s be the unique representative of s in W, such that
sg(a) is a root of (B, Ag) for every root a of (R, Ag).

LEMMA 4.2. If A is a point in af ¢ in general position, the function (4.8) equals

sT'E" ' (Epp,, (D, A)).

Proof. Let Ry=BnM,. Notice that
s5' B=s5'P((R) = Q(R).
Also, s3'(B) equals Q(R). Now the leading term in the asymptotic expansion of
E"(a,, Egy , (D, A)
along Aq(R)) is
(Caplsp A @) (1) @ 7%,

Therefore, the leading term in the expansion of the function
STE"Epp , (®,A)) at a€AYR) is-
(55" cpp(sp A) @) (1)-a" %
= (AT (A D) (1) a7

s3'BlB BB

= Pyrype ) Tosypin N @) (1)-a" %,

by (2.4). On the other hand, the leading term in the expansion of the function (4.8) at
a€AYR) is

Uz geaoppey ) T apay (D) @) (1) a7,
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which by (2.2) and (2.3) also equals
gy Tpipa (D) @) (1)-a" %",
It follows that if ¢ is the function

sT'E" (Eppp, s, (P, A))—Egp,1(J 0P W) Jomypr(A) @, A)

the coefficient of a" % in the expansion of @(a) along Ay(R) vanishes.

Our aim is to show that g itself vanishes. Suppose that this is not so. From what we
have just shown, the principal exponents of ¢ along Ay(R) are all of the form A—&—ox,
for nonzero elements {€Z*(Ag). By Lemma 4.1 any point in 05(¢@) is contained in a
set 0g(7, A—L) for some £=+0. On the other hand,

06(s'E (Egyp, , (®, AN)= 0G(E (Ep , (P, A)))

= DG(EB|B, s,((p’ A)

by (4.3). As we observed above this set is contained in og(r, A). Applied to the group
M, the same observation tells us that

0G(Eg, ey o®PR ) Toryp)(N) @, A))

is contained in 04(7, A). Thus, og(@) is contained in 05(z, A). It follows that there are
elements 7;,7,€h%, tEW, and {EZ*(AR), {+0, such that

A—C+iﬂ1 = f(A+i7}2).

Since A is in general position, ¢ must leave af ¢ pointwise fixed. This contradicts the
fact that € is a nonzero vector in af c. It follows that ¢ vanishes. Q.E.D.

§ 5. Estimates

We will eventually want to study contour integrals of the functions Ep (a, ®,A).In
this section we collect the needed estimates. We will assume from now on that the
representation (z, V) is unitary. In particular, V. is a finite dimensional Hilbert space.
The spaces o.usp(M, 1), and particularly s, will also be Hilbert spaces with the inner
product

(@, p)= (@)(m), p(m))dm, @, 9, € A\ )(M, 7).

MiA,,
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The leading term in the expansion of

Epp (a, ®,A), a€AyB'),

is the function
(5,008, A) @) (1)- a7,

The operators cpp o(s, A) on & are just the c functions, cgs(s, A) discussed in § 2.
What about the other terms? For any {€Z*(Ag/) it turns out that

cB’lB, C(s; A) = FBF’ C(sA_QBI) CBVIB(S, A),

where I' prisa rational function on af o with values in End (). (See [13, § 9.1.4}.)

LEMMA 5.1. Fix A, €ad and Hy€ ag(B). Then we can find a polynomial (A) and
constants ¢ and n such that

(AT (A< c(1+]IA]D" S

for all L€EZ*(Ag) and A€ af ¢ such that Re(A) belongs to A—a¥(B).

Proof. An estimate of this sort, without the dependence on A, was first proved by
Helgason [8a). (See also [13, Lemma 9.1.4.4].) It was derived from the recursion
relations obtained from the radial component of the Casimir operator @ on G. This
radial component, denoted 6'(@), is a second order differential operator on Ay, with
values in End (&), such that if

¢A(epo) — 2 rB,c(A_QB) e(A—C—OB)(H)’
tEZ*(Ap

then
©'(@) @) (exp H) = D, (exp H) v, (@, A).
It has been computed explicitly in Corollary 9.1.2.12 of [13], and is of the form
6'(0) = E+01+60,

in which E is the Laplacian on Ay and 6 and 07 are differential operators on A, of
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respective orders 0 and 1. A closer inspection of the formula in [13] (at the top of p. 279)
reveals that the function d¢ has an expansion

D, die’®™, HEay®B),
LEZH(Ap)

where the coefficients are endomorphisms of sfy whose norms have at most polynomial
growth in . The differential operator ¢, on the other hand, is scalar valued and is
actually independent of <, (i.e. of the representation 7).

With the presence of the first order term ¢} it is difficult to obtain uniform
estimates. (!) It is necessary to use the technique of Gangolli, as elaborated on p. 38-39
of [8b]. Let A"?(expH) be the product over all roots a of (B, Ao), repeated with
multiplicities, of the functions

(e®H—e™ )12 HE ay(B).

The differential operators E and 4] are independent of 7, and we can eliminate the first
order term exactly as in the K bi-invariant case [8b, p. 38]; we obtain

A'/Zd’(a‘)) o A--IIZ - E+(50,

where J is a function with values in End (s). As in [8 b} there are expansions

A" (exp H) = ¢ %™ 2 b, e *"
LEZT (AR

172 _ esH ~L(H)
A“(expH)=¢e 2 cce ,
LEZH(Ap
and
So=0y(exp )= D d e™¥®,
LEZH(Ap)

where {b;} and {c;} are complex numbers, while {d;} are endomorphisms of <. The
norms of all the coefficients have at most polynomial growth in £. The function

W, (expH)= A (expH)Dp(expH)= D, aA)eA 0@
LEZ*(Ap)

(") 1 thank J. Carmona for pointing this out to me. My original proof was wrong.
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where

afA) = > ¢, Tp - (A—0p),

(MEZ*(A: E-pEZ (AR}
satisfies the differential equation

E¥ , (exp H)—W , (exp H) y), (@, A)+0y(exp H) WA (exp H) = 0.

Regarded as an endomorphism in End (), yMo(a'), A) equals the sum of (A, A) and an

endomorphism which is independent of A. Since E is the Laplacian on s, it follows
readily that the coefficients {a:(A)} satisfy recursion relations

QA D-C O+D @ A)= > d,a_(A),

{U*0,5-uEL*(Ap)

where L is a linear transformation on the vector space End (sf,) which is independent
of A and .
If

&= Z n,a,

a€Ag

set
me=yn,

as in [8a] and [13]. Then the number

12(A, ©)—(E, D)

is bounded below by m,, for all A whose real part belongs to A;—a3(B) and all but
finitely many {€Z*(Ag). Thus, for all such A and all but finitely many ¢, the linear
transformation

2A,0-E +L

of End (s4) has an inverse, whose norm is bounded by m; ! This means that

lla(A)]| < m;! > ld,|lla_ (A
(2 *0.L-u€EZ*(A)
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for all such A and all { with m; greater than some constant N. Now each ai(A) is a
rational function of A. We can therefore choose a polynomial I(A) and constants ¢ and
n such that

1(A) aC(A)” <c(l+ ”A”)neC(H,,)

for all A with Re(A) € A;—a¥(B) and for the finitely many { with

m, < max {N, ( Z Idu|e"”("°))}.
HEZ*(Ap

This inequality then holds for all {EZ*(Ap) and all such A by induction on mc.
However,

Ty A-gp)= >, b,a_ M),
{u:t-p€Z*(Ap)

We therefore obtain the required estimate for the functions {I'p ¢}. Q.E.D.

The singularities of the rational functions I'p (A) lie along hyperplanes of the
form (&, A)=r, for E€EZ*(Ap) and r€R. That is, for every Ag€aj c, there is a
polynomial p(A) which is a product of linear forms (£, A)—r such that p(A)Tp «(A) is
regular at A,. Moreover, only finitely many of these linear forms vanish in any region
A, —ad(B). (See [13, p. 287].) We see from the proof of Lemma 5.1 that I(A) can be
taken to be a product of such linear forms.

Define

rB(x, DA = EB|B, ](xr /‘B(A) D, A)

for ® € oy, A€ad ¢ and x in a neighborhood of infinity in G. This function will be of
particular concern to us. The leading term of its expansion along Ay(B) is

(cpp1, NN B) (1) a" ™, a€A,,

LEMMA 5.2. The singularities of the functions cpig(1, A) and ug(A) all lie along
hyperplanes of the form (8, A)=r, where B is a root of (G, Ag) and r is a real number.
Moreover, for every A, € af we can find a polynomial I(A) and constants ¢ and n such
that

1A cgp(1, A (M| < c(1+]|A]D"
whenever Re (A) belongs to A,—a¥(B).
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Proof. 1t follows from (2.2), (2.3) and (2.4) that cp;p(1, A) can be expressed as a
product of operators ch,Bﬂ(l ,A), where S is a root in £ and Bg=B N Mg for a group My
in AM;) which modulo the center has real rank one. In particular, Csﬁwﬁ(l ,\) depends
only on (8, A). As observed in [12], any matrix coefficient of an operator cﬂﬂwﬂ(l, A)can
be expressed as a linear combination of functions of the form

LB, N +m) T¢'B,A)+my)
L', A+n) TC7'B, A +n)

where my,my,ny,n, and r are real numbers, and r is positive. The poles of the
functions

l"(r'lz+m,.)

= » z€C,
I'r~"z+n)

all lie on the real axis. Similarly, ug(A) is a product of u funictions yaﬂ(A) associated to
Mj. Each function ,ugﬂ(A) depends only on (8,A), and we know from its explicit
formula ([7 e]) that it has poles only when (8, A) is real. Therefore, the singularities of
both cpp(1, A) and ug(A) are of the required form.

Now

cpp(1, A) up(A)
is a product of operators

Caya,(1s A g (A),

where f is a root of (B, Ag). It is enough to prove the estimate if G is replaced by Mp.
An estimate of the sort we need appeared in {1], but the proof was omitted. Write

CB,eIBp( 1,A) ,uaﬂ(A) = ﬂgﬂ(A) J;}ﬂwﬂ(/\)
~ T A

= ngwﬂ(l, A)_l.

We need to estimate the norm of this operator when (8, Re (A))<(8, A,). This is the
same as estimating the norm of cBﬂIBp(l, A)~!in any region

(B, ReA)>b, bER.
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It follows from the results of [3] that the inverse of the determinant of cpyp (1, A) isa
constant multiple of a product of functions

('@, A)+w)
T '8, A +v)’

with 4, v € C and r a positive real number. Therefore by the result we quoted above, any
matrix coefficient of CB,,IB,,(I’ A)~!is a linear combination of such products. It is known

that

m [(z+a) e—alogz=1,

i argz| sm—9
e T(2) larez|

for any a € C and 6>0. It follows easily that for any b we can find constants ¢ and »
such that
[(r'z+w)

< c(1+)z))",
T 'z+v) (1+[zD

whenever || is sufficiently large and Re(z)>b. Since T'(r~'z+u)/T(r~'z+v) has only
finitely many poles in the region Re(z)>b, we can choose a polynomial I(z) and
constants ¢ and » such that

I“(r"z+;4)

I
& Tzt

< c(1+)z))",

whenever Re (z)>b. The lemma follows. Q.E.D.

LEMMA 5.3. Fix £>0 and A, €ad. Then we can find a polynomial (A), which is a
product of linear forms

(6, A)—-r, LEZ"(Ap), r€R,

and constants ¢ and n, such that
KA) rala, @, M| < c(+]|A]) ||| ™"
for all ® € o, a€ AY(B) and A€ af ¢ such that Re A€ A, —aj(B).

Proof. We can choose H, such that for any a € Agz, a(Hy) equals &/2. Then for
LEZ*(Ap) and m; as in the proof of Lemma 5.1, &M
Ai(B),

lem
equals ¢* . If a belongs to
em, - e—%em;.

a‘tefM <™,

3 — 838282 Acta Mathematica 150. Imprimé le 30 Juin 1983
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It is clear that

—Lem
5, o

tez*(ap

is finite. Now, if a is any point in A¢(B), we have

lIrs@, @M< D liCap, 1, A pg(A) D) (1)]| a7
ezt (Ap

(Re(A)—pp) _
<|legp(1, A || [@]]- a7 > |IT5 (A—ep)|a™*.
¢

Our result follows from Lemmas 5.1 and 5.2. Q.E.D.

Suppose that B, B’ € Z(M,) and that s € W,. The first part of the proof of Lemma
5.2 can be applied to cps(s, A) to show that the singularities of this function also lie
along hyperplanes (8,A)=r, for 8 a root of (G, Ag) and rER.

LEMMA 5.4. Suppose that C is a compact subset of Ay(B’), that C* is a compact
subset of a¥.c and that s € Wy. Then there is a polynomial I(A), which is a product of
linear factors

(C! A)_r) CGZ(AB)v reR’

such that the series

(A Egip @@, M) = D, KA (cyp (s, A D) (1) 57

L€EZ*(Ap)
converges absolutely uniformly for a € C and A€ C*. In particular, the function
IA)Epp J(a, P, A)
is defined and bounded for a€ C and A €C*.
Proof. We know that

Cp'B, ;(S, A)= FB’, C(SA_QB') CB'|B(S, A).
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We can certainly estimate I'p: {(sA—gp’) on C* by Lemma 5.1. The lemma is then
proved the same way as Lemma 5.3. Q.E.D.

This last lemma tells us that the functions Ep (x, @, A) are defined for all x in
G_=K-A¢B) K.

§ 6. Further properties of the functions Epp

Let J(sf) be the space of meromorphic functions from af ¢ to sf whose
singularities lie along hyperplanes of the form (8, A)=r, where 8 is a root of (G, Ag) and
r€R. Suppose that B, B’ € P(M,) and s € W,. We are going to study the class of Z-
finite, z-spherical functions on G_ obtained by differentiating functions

Egp (x, P(A),A), DP(A)E M),
with respect to A. For most later applications it will suffice to take B'=B and s=1.

LEMMA 6.1. Suppose that ®(A)EM(y). The meromorphic function
Epp ((x,®(A), A) is regular at A=A, if and only if each of the functions

o (s, AV BQA), LEZ*(Ap),

is regular at A=A,y. Suppose that this is the case and that D=D, is a differential
operator on of c. Then for a€ Ay(B’),

lim D, Epy (a,®(A),A)
A—Ay
equals

> lim Dy(cpp, (s, A @A) (1) a7,

A
EEZT(Ap)

Proof. The poles of the functions cpp (s, A)®(A) all lie along hyperplanes
(&,AN)=r, for EEZ(Ap) and r€ER. By Lemma 5.4, the same is true of the function
Egp,{(x, ®(A), A). Suppose that A is a point in general position on the hyperplane

(&, A)=r. Set

A, =uE & ?E+A, u€cC.
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Let I be a small, positively oriented circle about the origin in the complex plane. The
function E B3, ;(x, ®(A), A) will be regular along the hyperplane in question if and only if

f “"Es'w, sa ©AY),A)du
T

vanishes for all a € Ao(B’) and all nonnegative integers n. By Lemma 5.4 this integral
equals

z ”"(Cmn, (5, A) P(A)) - 2t g
LEZY(Ag) YT

By the uniqueness of the asymptotic expansion, the first integral will vanish if and only
if each term in the second series vanishes. This happens for all n=0 if and only if each
function Cpp, (s, A) ®(A) is regular along the hyperplane in question. The first state-

ment of the lemma follows. The second statement follows without difficulty from
Lemma 5.4 and Cauchy’s integral formula. Q.E.D.

Functions of the form

@(x) = lim DAEB'[B's(x,CD(A),A), x€EG_,
A—b/\o

with ®(A) and D, as in the lemma, will arise later. It is an easy consequence of
formula (4.7) that the orbit o5(¢) is contained in o4(r, Ag).

N. Wallach has shown that the only singular hyperplanes of the functions
Cpyp,¢(s, A) are actually of the form (8, A)=r, where 8 is a root of (G, Ap). His proof (not
yet published) uses Verma modules. We will need this result, so we shall include a
different proof which is based on the differential equations (4.2).

LEMMA 6.2. Suppose that ®(A) is a function in M(y). Then the singularities of
the function

EB"B,;(xr (D(A)’ A)
lie along hyperplanes of the form (8, A)=r, where 8 is a root of (G, Ag) and rE€R.

~ Proof. Fix a singular hyperplane of the function. It is of the form (§, A)=r, for
EE€EZ(Ap) and r€R. We must show that & is a multiple of a root of (G, Ag). Suppose
that this is not so. Let A be a point in general position on the hyperplane; define A,,,
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u€C, and I' as in the proof of the last lemma. Then there is a nonnegative integer n
such that the function

@lx) = f “"Ea'w.s(x’ DA, A)du, x€G_,
r

does not vanish. Suppose that a € Aq(B’). In view of Lemma 5.4 we can write @(a) as

2 un(cs'w, ;(S, Au) <I>(Au)) 1) a(‘”\u_g—ggr) du.
tez*(a) JF

Remember we are assuming that & is not a multiple of a root of (G, Ag). Neither of the
functions cg5(s, -) or ®(-) has a singularity along the hyperplane in question, so that

(ca(s, A) DAY (D

is regular at u=0. It follows that the first term in the expansion for ¢(a) vanishes.
Therefore the principal exponents of ¢ are all of the form sA—{—gg for nonzero
elements {EZ(Ap). Then by Lemma 4.1 any point in o5(@) is contained in a set
0(t, sA—§), for some 0. This latter set can also be written as oq(r, A+¢&;) for
another nonzero element ¢, in af.

On the other hand, we can write

— 2mi _‘j_ ko k1
o) = lim 2 ( du) W E gy (5, B(A), A),
for any large integer k. By the remark following the last lemma, og{(¢) is contained in
og(tr, A). It follows from this that there are elements 7,7, €Eb%, t€EW and {,€aj,
£,7#+0, such that

A+§1+iﬂ1 = t(A+l772)

Now we can write
A=X+A

where A is a point in general position in the subspace of af ¢ orthogonal to £, and X is a
vector parallel to £. The fact that 4 is in general position means that ¢ must leave the
subspace pointwise fixed. Since the subspace is of co-dimension 1 in a ¢ and & is not a
multiple of a root, r must leave af ¢ pointwise fixed. In particular, A=tA. Therefore

Gitin, = itn,.
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Since &, is a nonzero vector in af, while itn,—in, belongs to ih% we have a contradic-
tion. The vector £ must then be a multiple of a root. Q.E.D.

COROLLARY 6.3. Suppose that Fg(A) is an entire function from af ¢ to sdy. Then
the singularities of the function

re(x, Fp(A), A)
lie along hyperplanes of the form (8, A)=r, where § is a root of (G, Ag) and rER.
Proof. This follows immediately from Lemmas 5.2 and 6.2. Q.E.D.

In fact, it follows from Cauchy’s integral formula that the polynomials /(A) in
Lemmas 5.1, 5.2, 5.3 and 5.4 can all be taken to be products of linear factors

B, A)-—r,

where once again 8 is a root of (G, Ao) and r€R.

§ 7. The space H(G_, 1)
Suppose that for a function ®(A) € M(sf) and a group B € P(M,), the function

A— Egjg (x, D(A),A), A€afc,

is regular at Ag. Then if D=D, is a differential operator (with respect to A) on af ¢,
the function

@)= lim D, Eg, (x, P(A),A)
I\—on

is a #finite, r-spherical function from G_ to V,. Let #(G_, t) be the space spanned by
functions of this form. It is infinite dimensional. However, suppose that o is any finite
union of W-orbits in h¢ and that d is an integer. Let o, AG_, 1) be the space of
functions of the form

Q1 +... T,
where for each i, @; is a function in #(G_, ) with the property that

(z—p. W) @i=0, zEZ,
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for some point v; in 0. It is a finite dimensional space. If ¢ is as above, and d=degD,
then @ belongs to &, (, 5, AG_, 7).

The space &/(G_,7) is independent of B. Suppose for each i, 1=<i<n, that
D(A) € M(sdp), that D; is an analytic differential operator on af ¢, that B;, B}€ P(My)
and that s;, s;€ W,. Suppose they are such that the function

D (DYpEppp, [, RLA), sIA), AEapc,

is regular at Ay. We shall show that its value at Ay belongs to s/(G_, ). Fix B € P(M,).
Then in view of (4.4’) and (4.5'), we may assume that B;=B and that s;=1. But

> D,Egy ,(x, ®{A), A)

equals

z D;Epp, ((x,°cpp (s, A) R{A), A).

Let I[,{A) be the product, over all roots 8 of (B, Ag), of the factors (A—Ay,A)". For
every positive integer N there is a differential operator Dy such that

lim D(L(A) F(A)) =£(Ay)
A=Ay

for every function f which is regular at A,. (For example, if (u;, ..., ;) is a system of
co-ordinates on a ¢ around A, and cu'l" uz* is the lowest term of In(A) relative to

the lexicographic order on the monomials in (u,, ..., 4x), we could take

) _ o " ) L
Dy=c"'((n)!...(n)Y '(Efl) (a_uk) )

If D is an analytic differential operator of degree no greater than d,
D=1 A)Dol,_/A)"

is an analytic differential operator. Choose d=max {deg D;}. Then

lim > (D)AEy, ,(x, ®{A), A) (7.1)
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equals

Alin/io > (DyDYnEgs, (X, Iy_fN) chip (5 A) DA, 5,A).

The function whose value at s; A is
Iy-d) cpp (s, A) @A)
certainly belongs to #(sfy). If N is sufficiently large

Epgp (x, Iy_/A) ocew,.(s 0 A PLA), 5;A)

is regular at A=A,. This means that the function (7.1) belongs to /(G _, 7), or more
precisely, to o, 55 4(G_, 7).

As a particular case, we have

LEMMA 7.1. Suppose that ®(A) is an analytic function from af ¢ to o. Then if
D=D, is a differential operator (with respect to A) on af c, and BE PM,), the
Sunction

@(x)= lim D, Eg(x,P(A),A), x€G_, (7.2)
A=Ay

belongs to HG_, 1).

Proof. The function ¢(x) equals

lim D, ( > Egg,,(x, d>(A),A)).

A=Ay SEW,
The lemma follows from the discussion above. Q.E.D.

The function @(x) defined by (7.2) is the restriction to G_ of a Z-finite, t-spherical
function on G. Let (G, 1) be the space spanned by functions on G of this form.
Lemma 7.1 tells us that by restricting functions in &G, 1) to G_ we obtain an
embedding of (G, 1) into G_, t). We can define

A, AG,7) = G, )N A, (G_, 7).

One would expect (G _, 7) to be the space of all Z-finite, r-spherical functions defined
in a neighborhood of infinity in G, while /G, 7) ought to be the subspace of such
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functions whose domains extend to all of G. However, we will not investigate this
question here.
There is the third space, #.usp(G, 7), which we introduced in § 2.

LEMMA 7.2. Any function @ € Hoysp(G, 7) is a sum of functions of the form
EB(X, Qa A)7 Be@(Mo), (De‘gg07 Aea&c.

Proof. The lemma is essentially Harish-Chandra’s subquotient theorem. We can
assume, as in § 3, that V.=Hom (V,, V,) for irreducible representations (z,, V,) and
(15, V,) of K. We can also assume that

@(x) = s¥7(x) 51,

for an irreducible square integrable representation (7, U,) of G/As, and maps
s1€EHomg (Vy, U,) and s$€ Homg(U,, V,). Then 7 is equivalent to a subquotient of
Iz(o, A), for some B, o and A. More precisely, if g=Lie (G), there is a (g, K) isomor-
phism A from the (g, K) module associated to  and a subquotient of the (g, K) moduie
associated to Iz(o, A). It follows that if k€K and XE g,

ss(kyn(X)s, = s;‘A"IB(o, A k)Y Ig(o, A, X) As

=Z3,(0, A K L0, A, X) Z,,

for elements X, € Homg (V,, #5(0)) and £3€ Homg (¥p(0), V,). By taking exponen-
tials we obtain

@(x) = s¥a(x) sy
=3%Ig(0, A, x) Z,.

In the notation of §3 we have Z,=W; and Z3=W}, for unique elements
S,€Hom,, (V, U,) and $3€ Hom,, (U,, V). It follows from (3.3) that
(p(x) = EB(x’ q)y A)’

if ® € o, is defined by
O(m)=S¥o(m) S, mEM,. Q.E.D.

Thus, Hcysp(G, 7) is a subspace of (G, r). We have inclusions

Heusp(G, 7) = MG, 1) =« HG -, 7).
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If M € AM,) we can of course define the spaces (M, 7) and (M _, t). They each
consist of Zfinite, tp-spherical functions on M. We can define the Eisenstein
integral of any @ € (M, 7) by the familiar formula

EP(x’ P, A) = f T(k)_l%(kx) e(;'+9p)(Hp(kx)) dk,

Ky \K

for PEPM), x€EG and A€aj; c. Suppose that M, is a Levi subgroup which is
contained in M, and that R € ?Y(M,). Then P(R) € #(M,). The Eisenstein integral has
the transitivity property

Ep(Eg(®,4,),A) = Epry(x, @, A, +2),

for p € (M, 1), A, €afy, c and A€afy c. If we let M, =M,, and look back at the last
lemma (with G replaced by M) we see that the definition of Eisenstein integral is
consistent with the definition for the subspace fcup(M, 1) of H(M,1). The integral
formula, however, will not extend to functions @ E€EA(M_, 7). Nevertheless, a theorem
of Casselman, which we will discuss later, gives another method of extending the
definition to functions /(M _, 7). It will be crucial to us.

LEMMA 7.3. Suppose that @ is a function in c.sp(M, 1) which equals Eg(®, A),
for some RE P¥(M,), ®E ofy, and A€af c. Then if A is a point in aly ¢ in general
position and P, P' € M), we have

Jp1p(A) @ =Eg(Upryprf A+ P, A), =11

Proof. In the notation of the proof of Lemma 7.2 (but with G replaced by M), we
can assume that

o(m) = ‘I’}‘;IR(U, A, m) ‘Psl, meEM.

Now Ix(0, A) is of course a representation of M. By the transitivity of induction,
IP(IR(O’ A)’ A') = IP(R)(O) A+A’)

for any PEPM) and A€a}; c. Moreover, for the intertwining operators between
induced representations, described in § 3, we have

Jp'|P(IR(U’ A)y l) = JP’(R)|P(R)(0’ A+A)

This is an immediate consequence of the integral formula for the intertwining opera-
tors. The lemma follows from formulas (3.1) and (3.2). Q.E.D.
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Chapter 11
§ 1. A function of bounded support

We are now ready to begin the discussion which will eventually culminate in the Paley-
Wiener theorem. The main problem will be to prove surjectivity of the Fourier
transform. By means of a kind of inverse Fourier transform we will have to produce a
smooth function of compact support. In this section we will verify the compactness of
support. The proof of smoothness will have to wait until Chapter III. (The natural
domain of the function obtained in this section will be G_. The task of Chapter III will
be to show that the function has a smooth extension to G. The support in G_ will
actually only be bounded, in the sense that its closure in G is compact.)

Suppose that BE P(M,). We shall say that a point Xg € af is sufficiently regular in
—a}(B) if for each a € Ag the number —(a,Xp) is sufficiently large. Recall that the
function rg(x, @, A), introduced in I, § 5, is meromorphic in A. By Lemma 1.5.3 it has
only a finite set of singular hyperplanes, independent of x and @, which meet any
translate of —a¥(B). It follows that rg(x, ®, A) is analytic for all A such that Re(A) is
sufficiently regular in —a#(B). Suppose that

FB:aacﬁ‘%

is an entire function which is rapidly decreasing on vertical cylinders. By this we mean
that for every pair of positive integers A and n,

sup (IFMNA+]AD" < ce.
{A€a} c:IRe(A)|| <A}

Let X5 be a point in af at which rg(x, ®, A) is analytic. Then the function is analytic on
Xg+iaf, and for any x € G_ the integral

j rg(x, F5(A), A) dA
Xg+iad

converges, by Lemma 1.5.3. It follows from this lemma and Cauchy’s theorem that as
long as X is sufficiently regular in —ad(B), the integral is independent of Xp.
Now suppose that

F={Fp(A): BEP(Mp)}
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is a collection of entire functions from af ¢ to & indexed by P(M,). Assume that each
function is rapidly decreasing on vertical cylinders. Define

FFe= D, |2My™! f rg(x, F3(A),A)dA, x€EG_,
X

BE P(My) +ial

where for each B, X is a point in af which is sufficiently regular in —a3(B). (We let
|P(M,)| denote the number of elements in the set $(My).) Then FY is a smooth z-
spherical function from G_ to V,. It is independent of the points {Xp}.

If N is a positive number, let G(N) denote the subset of G consisting of all points

kl'CXpH'kz, k],szK, Hea(),
for which ||H||<N.

THEOREM 1.1. Suppose that F={Fg(A): BE (M)} is a collection of entire
Sfunctions from af ¢ to . Assume that there exists an N such that

IFlly..=  sup  (IFp)l| e ™ReAla+Al)Y
’ {A€a} o, BE PMy)}

is finite for every integer n. Then the support of the function F" is contained in G(N).

Proof. Fix BEPM,). Let H be any point in ag(B) such that ||H||>N. Since
G_=K Aq(B) K, the theorem will be proved if we can show that the function

f rglexp H, Fg(A), A)dA (1.D
Xg+ial

vanishes. Here Xz can be any point in af which is sufficiently regular in —a§(B). By
Lemma 1.5.3 there are constants ¢y and ng such that the norm in V, of the expression
(1.1) is bounded by

coe . f (1+]|A[D™||F 5(A)|| dA.
X8+ia3

This expression is in turn bounded by

CollFlly, e o2 @ Ml f (A+[A]D™ " dA,

Xgtiad
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for any n. These inequalities are true uniformly for all points X sufficiently regular in
—ad(B). We can choose n such that

f (1+[IAD™"dA
Xpg+iag

is bounded independently of Xz. Now, if ag were identified with its dual space af by
means of the inner product (,) we could always choose X to be a large negative
multiple of H. Then we would have

Xp(H) = —||Xp||-||HI|

By taking this negative multiple to be large enough we could ensure both that Xj is
sufficiently regular and that the norm is as large as we want. It follows that the norm of
(1.1) is bounded by a constant multiple of

ellXall(N—IIHlI).

Since ||H||>N, and ||Xj|| can be made arbitrarily large, the expression (1.1) van-
ishes. Q.E.D.

§ 2. The residue scheme

The function FY¥(x) is a sum of integrals over contours Xgz+ia%. Our aim is to deform
these contours to new contours, ¢g+iaf, where ¢ is a point in af which is very close
to the origin. In this section, we shall set up a formal procedure for doing this. We will
obtain residues of the functions rg(x, F(A), A), new functions which could reasonably
be called Eisenstein systems, in analogy with Chapter 7 of {11b]. The procedure we
follow does bear some formal resemblance to that of Langlands. However, ours is
much the easier, for here there are few of the serious analytic difficulties that arise in
the theory of Eisenstein series. Moreover, we will eventually be able to appeal to
Harish-Chandra’s spectral decomposition of LXG, 1), whereas the main purpose of
Chapter 7 of Langlands’ treatise is to establish the spectral decomposition of the
underlying Hilbert space.

Let us call a subspace b of af a root subspace if it is of the form a}; for some Levi
subgroup M€ AM,). Then the root subspaces of af are precisely those subspaces
which are intersections of hyperplanes of the form {A € af: (a, A)=0}, for a root a of
(G, Ap). If b is a root subspace, we shall write b* for the orthogonal complement, with
respect to (,), of b in a§. As always, we shall write bc and bg for the complexifications
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of b and bL. We shall also write cham (b) for the set of chambers in b; these are the
connected components of the complement in b of the hyperplanes {A €b: (a, A)=0},
where now a is a root of (G, Ag) which is not orthogonal to b. (Let us denote the set of
such roots by Z4(G, Ag).) For each pair (b, ¢), ¢ € cham (b), there is a unique parabolic
subgroup P € A M,) such that b=a}{‘,P and c=a1’{‘,P(P).

We will be defining meromorphic functions on the spaces bc with possible poles
along hyperplanes (a, A)=0, a being a root which lies in (G, Ag). This will prevent us
from integrating over the imaginary spaces ib. We are therefore forced to fix, for each
root subspace b, a finite nonempty set €(b) of points in b. We assume that each point in
&(b) is very close to the origin in b, but does not lie on any of the hyperplanes (a, A)=0.
Assume also that each chamber in b contains an equal number of points in %(b).
Finally, suppose that the sets are such that if b’=sb for some s € Wy, then &(b’)=s&(b).
For a typical example, take &(aj) to be the orbit under W, of a regular point in af of
very small norm. We could then define &(b) in the following way. Given a chamber ¢ in
b, let ¢co be a chamber in af whose closure contains c. Let . be the projection onto b of
the unique point in €(ad) N ce. It belongs to ¢ and does not depend on cy. Take &(b) to
be the set of points {¢.:c€cham(b)}. This example would almost suffice. We have
taken a more general definition of the sets {#(b)} only to accommodate a later
induction argument.

In addition to the sets {#(b)}, our procedure will depend on a group B in P(M,)
and a point X=Xp in af. We do not yet need to take X to be a sufficiently regular point
in —ad(B), as in § 1. We will insist, however, that it be in sufficiently general position in
b, in a sense to be made precise presently. For every root subspace b we are going to
define a finite collection Jg(b, X) of triplets T=(A+, X1, ry). We shall first describe the
triplets and then give their definition. The first component of T will be an affine
subspace

%[T= AT+b,

of ag, the translate of b by a point A7 in b*. The second component will be a point X7
in %7. The third component will be a function

rT=rT(x:q)9A)

with values in V,. The variable x belongs to G_, A belongs to Uz, c=Ar+bc, and @
belongs to Hom (S(bg), &,), the space of linear maps from the symmetric algebra on b

to . This vector space is infinite dimensional. However, let S (bg) be the space of
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symmetric tensors of degree at most d. We will be able to choose d, independent of x
and A, so that ry{x, ®, A) depends only on the projection of ® onto the finite dimen-
sional space Hom (S (b¢), &,). The function will be linear in ® and meromorphic in A.

Its singularities will lie along hyperplanes of the form
{AE€EUL(a,A)=r}, a€ZH G, Ag), rER.

As a function of x, r#{x, ¥, A) will belong to HG_, 7).
Our definition will be one of decreasing induction on dimb. We take Jz(af, X) to
consist of the one triplet,

(agerrB(x’Q’A))’ xeG—’ q)e‘ﬂo,/\ea())k,c-

In general, let us write Jg(k, X) for the union over all spaces b of dimension £ of the
sets Jz(b,X). Assume inductively that Jg(k+1,X) has been defined, and that each
function

rTl(x, D,,A), T,€Tk+1,X),

has the properties described above. Then Jg(k, X) is defined to be the disjoint union
over all root spaces b, of dimension k+1, over all triplets T, € (b, X) and over all
points ¢ in &(b,) of certain sets. The set indexed by by, T, and ¢ will be the collection of
all triplets T=(Ar, X1, r7), in which U7 ranges over the singular hyperplanes of

rr (x5, ®, A, AED

which meet the line segment joining X, and Az +¢, X7 is the intersection of A7 with
this line segment, and rr is the residue of —|%’(b,)|"r,l along A, at X;. More precisely,
suppose the singular hyperplane % equals A,+b, for a root subspace b of dimension
k. Let v be the real unit vector in b,, orthogonal to b, whose inner product with the
vector Ar +e—X is positive. It defines a basis of the one dimensional complex vector
space bg/bj ¢, and allows us to identify any vector ® in Hom (S(bg), ) with a formal

power series in one variable,

oo
> @,
n=0
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with coefficients @, in Hom (S(blfc), ). If A is a point in general position in U7 ¢,
ri(x, ®,A) is defined to equal

— 18O @ri) " >, | 2, @, A+v2)dz, Q.1

n=0JI

where I' is a small positively oriented circle about the origin in the complex plane. It is
clear that the series is actually finite. It is also clear that the new functions rH{x, ®, A)
possess the properties described above.

The points in each set #(b) were assumed to be regular, and very close to the
origin. In view of the nature of their singularities, the functions

rT(x1¢’A)1 TegB(b’X)y

are all regular at each point in #(b). Notice that a small perturbation of X will induce
corresponding small perturbations in each of the points X7. The precise property that
we will require of the general position of X is that each of the functions r;(x, ®,A) be
regular at A=X7, and that all the singular hyperplanes which meet the line segments
joining X7 and Ar+¢, € € é(b), do so at distinct points.

For any T€ J(b, X) there is an integer d such that the function

r{®, A x> rix,®,A), x€G_,
belongs to 4, 4, AG_, 7). Notice also that

rr(xa, ®,A) = ri(x, ®, A) a?, Q.2)

for any a in Ag, the split component of the center of G. We can give estimates for these
functions. With the aid of the positive definite form (,), we can define the norm, ||®|,,
of the projection of any vector ® € Hom (S(b¢), £,) onto Hom (S,(6¢), ;). Then we

have

LEMMA 2.1. Suppose that C is a compact subset of G_, and C* is a compact
subset of r. Then we can find a polynomial I(A), which is a product of linear factors

(a,A)—r, a€ZG, Ag), rER,
and constants ¢ and n, such that
1A rrx, @, A)|| < c(1+{| A" || D]la,
Sor all ® €Hom (S(bf), o), x€C and A€ C*+ib.
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Proof. The lemma is a consequence of Lemma 1.5.3, the remark following Corol-
lary 1.6.3, and the inductive definition of r;(x, ®, A). Q.E.D.

§ 3. The functions Fy

The notion of residue we have adopted was copied from [11b]. At first glance it might
seem odd, but it is designed to accommodate the residues of functions rg(x, Fa(A), A)
where, asin § 1,

FB: (I&c—) &40

is an entire function which is rapidly decreasing on vertical cylinders. Given
T€ Jp(b,X) and A€EU, ¢, we can expand the analytic function

n— Fy(y+A), n€Bg,

on bg as a Taylor series about #=0. This results in a vector in Hom (S(bg), #y), which
we denote by (drFp)(A), or simply by dFg(A). Suppose that as in the inductive
definition of § 2, T is obtained from a singular hyperplane of the function rTl(x, D,A)
which meets the line segment joining Xz, and Ap +e. Then if ®=(d;yFs)(A), the
residue (2.1) is just

~|&®)|™ Qr)™! f rr(x,(dg, Fp) (A+v2), A+v2) dz.
r

Any derivative of Fg(A) can be estimated by the Cauchy integral formula in terms
of Fg(A) itself. It follows from Lemma 2.1 that for a given T€ Jg(b, X) and a positive
integer N, there exists a constant ¢, such that

(A re(x, dFg(A), A)|| < el +||AlD~Y, 3.1

for any x € C and A €EC*+ib. Here C, C* and l(A) are as in Lemma 2.1. We can assume
that I(A) vanishes only on the singular hyperplanes of r; which meet C*. In particular,
if T; is as above, and ¢ € (b,), the integrals

f rTl(x, (dT, Fp)(A),A)dA,
Xr,"“'bx

4 —838282 Acta Mathematica 150. Imprimé le 30 Juin 1983
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and

f rr (6, (dr, F) (A, A dA,
1\Tl+e+ibl

both converge. Their difference, when divided by |€(b,)|, is a sum of integrals

f ri(x, (dr Fg) (A), A) dA, (3.2)
Xp+ib

the sum ranging over the T€ J3(k, X) indexed as in § 2 by b,, T; and «.
Now suppose that

F={Fg(A): BE P(My)}

is a collection of entire functions, each rapidly decreasing in vertical cylinders. For
each B, choose a point X to be both suitably regular in —a(B) as in § 1 and in general
position as in § 2. We have defined the function

FYe) = |2y >, f rg(x, F(A), A)dA, x€G._.
BEPMy JXy+ial

In this expression, and in the subsequent residues as well, we shall move the contours
of integration. We will be left with a profusion of integrals over contours Ar+&+ib.
Suppose that 2 is a class of associated parabolic subgroups in #(M,). Write prk (%) for
the dimension of Ap, P being any group in 2. Let rt (%) be the set of root spaces b such
that b=a;",r for some group P€ 2. For any x€G_, define Fy(x) to equal

AR DY () R f ri(x, dF (A), A) dA.
Ap+etib

BE P(My) bEN(P) TE Ty(b, Xp) £€ #(b)
Then Fy is a t-spherical function from G_ to V..

LEMMA 3.1. For any integer n, F¥(x) equals the sum of

>, F3w (3.3)

{P: prk P>n}
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and

|P(M)| ™! 2 2 2 f re{x, dFg(A), A) dA. (3.4)
Xp+ib

B {b:dimb=n} T€ JTy(b, Xp)

(In the summations, P stands for classes of associated parabolic subgroups, and b
stand for root spaces.)

Proof. The lemma is established by decreasing induction on n. If n=dim a, the
first of the two given terms vanishes, while the second one, (3.4), is by definition equal
to FY(x). Suppose then that n<dimaf and that the lemma holds with n replaced by
(n+1). In expression (3.4) (with n replaced by (n+1)), decompose the integral into |€(b)|
equal parts, one for each point ¢ in &(). In each of these, change the contour of
integration from X;+ib to Ay+e+ib. The contribution to (3.3) from integrals taken
over the new contours equals

> Fyw.

{P:prk(P)=n+1}

The residues, terms of the form (3.2), just add up to the expression (3.4) (with the
original 7). The lemma is proved. Q.E.D.

If we take n<dim ag, the expression (3.4) vanishes. We obtain

COROLLARY 3.2. F'(0) = > Fy(x).
P?

It follows from (2.2), and the classical Paley-Wiener theorem applied to Ag, that
for any 2 and x € G_, the function

a— Fy(xa), a€Ag,

is of compact support. Define

Foupld, x) = I F {G)(xa)e_l(ﬁa(m»da, A€af .
Ag

In the formula

Ig’(Mo)I“Z 2 || Z f rixa, dF @A), A) dA
Artetiod

B TET,as Xy € F(od)
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for Fy; (xa), we can replace each contour Ay+e+iaf by Ar+iag. We obtain

Fig(xa) = |P(Mp)|™" ; > rexa, dF4(A), A) dA.

T JAp+iog

It follows from the Fourier inversion formula on Ag that

Fouph 0 =|PMY Y, > rdo dFy(Ar+2), Ap.

B TETyal Xp)
In particular, the function

F,  A):x—-»F_ (A,x), x€EG_,

cusp cusp

belongs to H(G_, 7). It is also invariant under Ag.

The notation, however, is only a promise of things to come; at the moment,
Feusp(A) does not extend to a smooth function on G_, so it does not belong to
Heusp(G, 7).

All the discussion so far in Chapter 1I can be applied to any Levi subgroup M in
AM,). A root space, b, for M is just a root space for G which contains aj,. We have
already fixed the sets &(b) of points in b, so for R€ P¥(M,) we can define the
collection Tg(b, X) of triplets T=(Uy, X7, ri{m, ®, A)) exactly as in § 2, but associated
to M. Suppose that P € FHMg). Given the collection F={Fg(A): B€ P(M,)}, let

Fp= {Fg(A) = Fpg(A): RE P (M)},

the subset of F indexed only by those B € (M) such that BcP. We can then define the
function Fp(m) on M_ as in §1. Similarly, we can take the subset

{Xg=Xpg):RE M "(My)} of {Xp: BE P(My)}. For each associated class R of parabolic
subgroups of My we have the functions Fy 5. We also have the functions

F,

P, cusp

1), AEia;{;P,
on A(M_,1).

§ 4. The theorem of Casselman

Suppose that M is a Levi subgroup in AM,). The Eisenstein integral provides a natural
lifting of functions in s#(M, 7) to functions in &G, 7). A recent theorem of Casselman
generalizes this lifting to one between the spaces (M _, 1) and HG_, 7).
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Let s be a coset in W,/ WQ’ and let P be a group in AM). Choose any group

B € P(M,) which is contained in P and let R=BnM. Then B=P(R). Let sp be the
unique representative of s in W, such that sg(a) is a root of (B, Ag) for every root a of
(R » AO) .

THEOREM 4.1 (Casselman). (i) Suppose that ®(A) € M(sdy) is such that the func-
tion

A— Epe ((m, ®(A),A), A€ag., mEM_,
is regular at A=Ay. Then if A is a point in general position in a}y, ¢ the function
A—’EB|B,JB(x’ q)(A)v A+A), Aea:{c, x€G_,

is also regular at A=A,.

(ii) If D=D, is any differential operator on af c,
Ep g (x, @, A= lim D\ Epy  (x, D(A), A+4)
/\—»Ao
depends, as the notation suggests, only on the function

p(m) = Alm/{ DAER|R, {(m, D(A), A), @.1

and not on its realization in terms of ®(A).
(iii) The map
@— EP, B, s(xr ®, A)
extends to an injective linear map from S(M_,t) to the space of meromorphic
Junctions of A with values in sH(G_, ).

The usual treatment of asymptotic expansions of Eisenstein integrals via recursion
formulas ([13]) does not seem to lead to the theorem. In fact, from this point of view the
theorem is quite surprising. Casselman actually finds a new formula for the asymptotic
expansion of the Eisenstein integrals

EB(a’ ¢’ A+A)9 aEAO(B)9 (bed()v

in terms of the asymptotic expansion of Eg(a, ®, A). The leading terms of his formula
are just the analytic continuations of the Knapp-Stein intertwining integrals. The other
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terms are obtained from more general integrals. If A is allowed to approach Ay, the
formula for Eg(a, ®(A), A+4) makes it possible to express the function E, 5 ((x, @, Din

terms only of the function ¢(m), and not its realization (4.1). (See [2a], [2b].)

Suppose that o is a finite union of W*-orbits in §&. If A €a}y, ¢, let 05(0, 4) be the
set of orbits under W of the points v+A, where v is a point in o. It is a finite union of W-
orbits in h&. If @ belongs to , AM_, 1) then the function

Epp (@9, A:x—>Epp (x,90,4, x€EG_,

belongs to &, (, 5, LG, 7).

Suppose that ¢ is an element in W,. Retaining the notation of the theorem, we set
M,=tM. Then tst™" is a coset in W,)/W,"'. We shall show that

EtP, 1B, m“(t(p’ 1= EP, B,s(‘px A. 4.2)
For if ¢ is given by (4.1), tg equals

fim Dy(tEgg, (®(A), A) = lim D, E gy ((1B(A), 1A),
A—»Ao ) A—»A0

in view of (I1.4.4’) and (1.4.5'). (See also (1.2.1').) Now,

(tst™ Vg =tsgt™?,

so that

L(D(A), tA+1R)

IB|(B, tsp ¢

E p w19 D= lim D, E
= AlinzoDA ng' SB((D(A)! A-{-A) = EP'B,“‘(¢, A),

again by (1.4.4’) and (I1.4.5'). This establishes (4.2). Consider the special case that 7 is an
element of WY. Then tgo=g, tA=A, and the coset tst~! equals ts. We have

Epp (@, A=Ep 5, (@, A. 4.3)

Thus, the map E, 5 ; does actually depend on the minimal parabolic subgroup B, and
not just on P.

We have agreed that of(M, 7) is a subspace of H(M_, 1), so Ep g (@, 1) is defined
for ¢ € (M, 7). In this case, the Eisenstein integral Ep(@, ) is also defined. They are
related by the next lemma.
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LEMMA 4.2. If ¢ € 4(M, t) we have

Ef@ A= D Epp (@2,

SEW WY
Jor any group B € P(M,) with B<P.

Proof. Let R=MnB. We can assume that

@(m) = lim D, Eg(m, ®(A), A)
A—hy

= llm DA( Z ERlR,r(m’ (D(A)’ A))

A-4g r€ Wﬁ’

In the notation used in the discussion prior to Lemma 1.7.1 (but with G replaced by M),
this equals

> lim (Dy D)y Egg, (. ly_f(A) chpp(r, A) @(A), FA).

r€ Ws’ A

Then
Z EP,B.s(xn ‘P; }')

SE W/ W

equals

> Alinio (DyD)p Epps o (%, Ly_d(A) *cyypr, A) D(A), rA+2)

= Ali"A'o (DyD), (2 Egp,,, %, ly_ &) ©(A), A+/1)>,

by (1.4.6'). This is just
lim ((Dy), © [(A) 0 D) E(x, ®(A), A+4)
A—»Ao

= lim D, Eg(x, ®(A), A+2)
A=Ay

= lim D, Ep(x, Eg(®(A), A), )
A=A,

=Epx, ¢, M.
The lemma is proved. Q.E.D.



56 J. ARTHUR
Motivated by the lemma, we define for each 9 € (M _, 1),

EP(x, (P,ﬂ.)= Z Ep'B_s(xy (PJ-),

SEWy/wh

for any group B € #(M,) with BcP. It is independent of B. For any other group
B, € #(M,), with B,cP, will equal ¢B for some € Wy. By (4.3),

Z Ep g, (%, @, A= E E,, ,x@H.

SEW/WH sEW WY

A change of variable in the sum over s shows that this is just Ep(x, ¢, 2). Thus, the
Eisenstein integral can be extended to a map on (M., 7). However, if ¢ € (M _, 7),
Ep(x, ¢, A) will in general have poles in A, unlike the Eisenstein integral. They lie along
hyperplanes (a, A)=c, where a is a root of (G, Ay) and c€C.

§ 5. Some definitions

In this section we shall unravel some interesting consequences of the theorem of
Casselman. It turns out that all the maps defined in I, § 2 on os,(M, 7) can be
extended to the space s#(M_, 7). Fix groups P and P’ in P(M). The first step is to show
that the operators

Topl): oM, D) Aoy o(M, 1), 1=1r,

usp
can be extended to the space H(M_, 7).
THEOREM 5.1. (i) Suppose that ®(A)€ M(sdp) and RE PM(M,) are such that the

function

A—Egp ((m, ®(A),A), A€af., mEM_,

is regular at A=Ay. Then if 2 is a point in general position in af; c, and t=1 or r, the
Junction

A= Egg (M, Jogypn A+ D ®(A), A), A€afc, mEM_,

is also regular at A=A,.
(ii)) If D=D, is any differential operator on af c,

U @ (m) = Alirrllo Dy Egjp, (1, Jogypi(A+2) @(A), A) (5.1)
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depends, as the notation suggests, only on the function

@(m) = AlinAl D, Egpg 1(m, ®(A), A) (5.2)

and not its realization in terms of ®(A).
(iii) The map

9= Upppd) 9 (m)

extends to an injective linear map from A(M_,7) to the space of meromorphic
SJunctions of A with values in (M _, 1).

Proof. We shall prove the theorem first in the special case that P'=P. Define
another group Q € A(M) by

_{13 if (=1
P if =1
Then the function

Egg,(m, J;(R)l rR(A+TA) P(A), A)

—A(H ()

is the product of e with the value at m of

Er, 1V e/ A+ ) Toygypi A+2) D(A), A+1). (5.3

Let B=P(R). There is a unique coset s in W,/W» such that the group P,=sQ contains
B. Then if A+ is in general position, (5.3) equals

sT'E (g, (P(A), A+1)) (5.4)

by Lemma 1.4.2. Theorem II.4.1 tells us that for A in general position,
Egp , (P(A), A+2) is regular at A=A,. By Lemma 1.6.1 each of the terms in the

asymptotic expansion of

Egp . (a, (A),A+1), a€A(B),

is regular at A=A, It follows from the definition of E'that the function (5.4) is regular
at A=Ay. This proves the first statement of the theorem in the special case under
consideration.

Suppose that A, is a linear function on a,s, c. Let s(M_, 7, Ay) be the subspace of
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(M _, 7) generated by functions ¢ of the form (5.2), for which the restriction of Ay to
ay is Ag. Define a map Jyp(4) from H(M_, 7, Ao) to itself by setting

Ty =57 EEp 5y, 1) e,

for 9 € A(M_, , Ag). From Theorem I1.4.1 and the definition of E’'it follows that the
map is well defined and injective. We would like to show that it is linear. This is not
trivial, for although E, ; (v, 1) is linear in y, the map EMis in general not linear.

Suppose then that

Y= v,
i=1
where for each i,

w,(m) = }ln}\ (Di),\ ER|R, 1(m, q),'(A)’ A)

is a function in (M _, 7, Ao). Let M\=w M w;'. Then P, € (M,). We shall show that
for A in general position, the restriction of any principal exponent of Ep g (y,4) to Oy,
equals s(/10+/1)—g,,|. The case that n=1 will of course be included, so the principal
exponents of Ej 5 (;, 1) will also all restrict to s(4,+4)—0p on a,, . With these proper-

ties, the formula

f'(Ep,B,J(w, )= 2 EPI(EP,B,J(wi’ A)
i=1

will be an immediate consequence of the definition of E™.
Any principal exponent of Ep B_J(q:,l ywill be of the form

u=sg(\+A)—t—0p, 1<isn, CEZ*(Ap).

By Lemma 1.4.1 the set og(t, u+gp) intersects oG(Ep, p, (1, 1)). However, according
to the remark following Lemma 1.6.1, 0(E, 5 ,(, A)) is contained in the union over j of

the sets 05(z, A;+4). It follows that there are elements #;, 17;€ bk and t€ W such that

ﬂ+QB+i77,‘ = SB(A,+/1)—C+"7, = t(AJ+A+"]J)
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Since 4 is a point in general position in afy ¢, t~'sp must leave aj, pointwise fixed.
Now suppose that H, € Ay, Then H,=tH=sH for a unique point H € a,;. We have

,u(Hl) = (t(Aj+j'+i77j)) (Hl)_(93+i77i) (H1)
= (Aj+A+in) (H)—op (H))
= G+ 1) (E)—0p (H,)

= (S(10+/1)—Qpl) (Hl)

Therefore the restriction of 4 to a,, does equal s(A,+4)—p, . It follows that J% (1) is a
M, 0 P PP

linear operator on (M _, 1, Ag). It clearly extends to a linear operator on

AM_,1)=DAM_, 1, A).
"0

Finally, suppose that ¢ is the function (5.2). We must verify the relation (5.1). By
the discussion above, (5.1) is equivalent to the formula

E"(Ep 5 (@, H) = lim DyE"(Egp , (®(A), A+A)). (5.5
Ay

If a€Ay(B), Ep, p s(a, ¢, 1) equals

2 Alim DA(CBIB,C(sBr A+ DA)(1)- a(%(/\*’l)‘C‘(’B),
tez*ap 7

by Theorem II.4.1 and Lemma 1.6.1. Then (5.5) follows from the fact, just proved, that
for A in general position the principal exponents of Ep g (@, 1) have the same restric-
tions to Qy, as the function sgz(Ao+ A)—Q,,l. This completes the proof of the theorem

when P'=P,
The proof of the theorem for general P’ can be deduced from this special case. For

suppose that P" is a third group in (M) such that
d\pP’, P)=d(P", P')+d(P', P).
Then

d(P"(R), P(R)) = d(P"(R), P'(R))+d(P'(R), P(R)),
SO

Tewip@ (A +4A) = Tpgypr ) A+A) Tp gy (A +4)-
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We therefore need only consider the case that d(P’, P)=1. As a bonus, we will obtain
the usual functional equations

Tonp(@) = T 1) T p(4).

However, if d(P’, P)=1 there will be a maximal parabolic subgroup P, in (M), for a
Levi subgroup L € AM), such that

i A+A) = Tp myp, (A +4)

(see (1.2.3)). Thus, we are reduced to the case that P'=P (but with G replaced by L),
which was established above. Q.E.D.

COROLLARY 5.2. If P, P'€ P(M) and 1=l or r, J}.l,,(,l) is a meromorphic function

of A€afy c which for any o and d takes values in the finite dimensional space of
endomorphisms of s, AM -, ). It is independent of the group R € P*(M,) used in the
definition. Moreover, if P" is also in A(M),

Jtpnlp(l) = J;’"lP'(A') J;flp(l).

Proof. If Q is any group in (M), it follows from the proof of the theorem that for
any g,

(Jl Q|p(l) J'le(l) o (m)

~AMHm) with the value at m of

equals the product of e
s'E"(Ep 5 (@, D). (5.6)

Suppose that R was replaced by R, for some r€ Wa'. Then B, s, and P, would all have

to be replaced by rB, rs and rP, respectively. The expression (5.6) would have to be
replaced by

s—lr—lE’Pl(EP.rB,rs(‘p' A'))
By (1.4.1) and (I1.4.3), this equals
S_lEPI(Ep'B_S(¢, A)),

which is just (5.6). Therefore J’QlP(A) J’le(l) is independent of R. The independence of
Jpp(4) from R follows from the arguments used to prove the theorem. The functional
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equations and all the other statements of the corollary follow also from the proof of the
theorem. Q.E.D.

For any o and d we can take the determinant of the restriction of J;.“,(/l) to

My AM_,7). It is a meromorphic complex valued function of A. In view of the
injectivity assertion in the theorem, the determinant will not vanish identically. Thus,
the inverse, J;"I ,,(A.)'1 is defined; as with J;,,P(/l), we regard it as a meromorphic function

which for any o and d takes values in the finite dimensional space of endomorphisms of
oy, M_, 7). We can proceed merrily to define all the funcitons of I, § 2:

cPllP(s! A) = SJZ—IP”P(A) J:—lpllp(l)’
C?:”p(s, A= CP;IP(S’ A) Cp|p(1 , A)_l = SJIPI_‘—IP](A)—l-’:—lpllp('l),
O 5, 0) = Cpyp (L, A Cpypls, AV = ST STy D7,
and
— J’ -1 -1 _ yr -1y -1
,“p(l) = p,p(l) p|p(1) =J p|p(/1) J P|p(l) .

Here s is an element in W(ay, &, ); cp (s, ), 3 p(s, 4) and °cp (s, 1) all map M _, 7)
to (M), 1), while up(1) maps A(M_,7) to itself. In each case, if @ is of the form
(5.2), the value of the operator at ¢ can be expressed by a formula akin to (5.1). The
only such formula we will need is for the operator up(4).

LEMMA 5.3. Suppose, as in Theorem 5.1, that Egg,(m, D(A), A) is regular at
A=Aq and that

@(m)= lim D, Egg (m,®(A),A), mEM_.
A=Ay
Then if A is a point in general position in afy c, and P€ PM), the function

A— Epp ((m, upgpy(A+A) UR(A)TTD(A), A)

is also regular at A=Ay, and

)P ) = lim Dy Epye (1 A+ D) M) D), ).
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Proof. By Lemma 1.2.1 we have

Hpr(A+A) TRONEES HUprypr(AtA)

=Towyp A+ D) pgypr A+
Our lemma then follows from Theorem 5.1 and the definition of up(4). Q.E.D.

We should point out that the restriction to f,s,(M, 7) of any of the operators
defined in this section equals the corresponding operator defined in I, § 2. This follows
from Lemma 1.7.3. All the functional equations of I, § 2 hold for these more general
operators. As functions of A, their poles all lie along hyperplanes (a, 1)=c, where a is a
root of (G, Ay and c€C.

§ 6. Application to the residues

We want to use the theorem of Casselman to compare the functions r;{x, ®, A) with
analogous functions on Levi subgroups. Fix a Levi subgroup M in AM,), a coset
sEW,/WH and a group P€ P(M). Fix also a group BE P(M,), BcP. Then the group

R=BnM belongs to ?Y(M,) and B=P(R).

Suppose that b is a root subspace of aj such that b,=s;' b contains af,. Let X be a
point in general position in af. Then X ,=s;'X will also be a point in general position in
a. We are going to construct a bijection between Jg(b, X) and Tx(by, X,). Suppose
that Fp is an analytic function from af ¢ to &. To make the notation simpler, we will
assume that

Fg(sgA) ="cpp(sg, A) Fs(A), A€ajc.

LLEMMA 6.1. There is a bijection
T-T,, T€Tp(,X),
Jrom JTg(b,X) onto Tr(b,,X;) such that
(i) Ay =s5'U;
(i) X;=s3'X;
(iii) Ep p ,pA)ry (@4, Ay), 1) = r( @, s5(A,+4)),
where A, € ?’IT,’ A€ay, ¢, and for any Fg(A) as above,

@ = (drFp) (sp(A1+4))
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and

@, = (d;, Fp) (A, +4).

Remarks. (1) The third equation is of course an equality between meromorphic
functions in A| and A.

(2) Since sg(a) is positive for each root a of (R, Ag), there is no singular hyperplane
of either %cpy(sy, A) or "cpp(sg, A)™' which contains afy,c. In other words, if we first
fix A; and then fix a point A€af,c in general position, 0c5|3(sB,A1+l) and
%cpp(sp A +A4)™" will both be defined. It follows that given a positive integer d and any
vector ® € Hom (S(6¢), &), we will be able to choose a function Fp as above such that
® and (d;Fp)(sg(A;+4)) both have the same projections onto Hom (S (bS), ).
On the other hand, if it is ®, € Hom(S(b; o), %) that we are given, we can choose
Fy; as above so that &, and (d,l Fp)(A,+A) both have the same projections
onto Hom (Sd(bt o) dp). In particular, ®—®, defines an isomorphism between
Hom (S (b¢), &,) and Hom (Sd(b,l_c),&fo). There is a d such that the functions in (iii)
above depend only on the projections of ® and ®, onto these respective spaces. It
follows that the map T— T, is uniquely defined by the conditions of the lemma.

Proof of Lemma 6.1. Suppose that T; € Tg(b,, X;). Fix A € Az and A€aly c. As
always, we assume that these points are in sufficiently general position. It follows from
the inductive definition of Tx(b;, X,) that there is a nested sequence of root subspaces

bl c bz c...c br+l = C(K,
and for each i a triple T; € Jg(b;, X,) such that r{{®,, A,) is obtained from the function
re(Fg(A+2), A) = Egp {(1g(A) Fg(A+1), A)

by successive residues along the hyperplanes ‘ZITi. More precisely, for each i, 1<i<r,
there is a unit vector v,€b,_,_,, orthogonal to b,_,,, such that if

A, =ANruw+. +uv, u=Wy,...u)€C,

then
’1,(’”’ ®,A), meEM_,
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equals the product of
|80 ... |E(,, )| ai)~
with

(p(m)=f j re(m, Fg(A,+A),A)du, ... du,.
r, T,

Here TI'y,..., T, are small positively oriented circles about the origin in the complex
plane such that for each i the radius of I'; is much smaller than that of I';,.,. We shall
find a formula for Ep g ,(ug(d) ry (@, A)), ).

Let

IMA), A€adc,

be the product, over the roots 8 of (R, Ag), of the factors (8, A—A,)". For every
positive integer N there is a differential operator Dy on af ¢ such that

lim DN(IN(A)f(A))=f j f(A)du,...du,
A=A r, Jr

for every meromorphic function on af ¢ such that [\(A) f(A) is regular at A=A,. (For

example, if cu(,"'”) cui"’H) is the lowest term in Ip(A,) relative to the lexicographic
order on the monomials in («,, ..., 4,), we could take Dy to be the differential operator
which in the co-ordinates (u,, ..., u,) is

- r - a "I n’
c~'@uiy((n)!...(n)"Y 1(5;) (8?4,) )

We will take N so large that
IN(A) rr(m, Fg(A+4), A)
is regular at A=A,. Then

@lm) = Ahn/t (DN)A ERIR, 1(m» ®(A), A),

where

P(A) = IMA) ur(A) Fp(A+2).
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By Lemma 5.3, (up(4) @) (m) equals

llm (DN)A ERIR, l(my q)I(A)9 A)’

A-A,
where
D'(A) = ug(A+2) ug(A) ' D(A)
= \(A) ug(A+2) Fg(A+A).
Therefore
Ep g, s(x, up(A) @, 2)
equals

lim (Dy)s Epp, ., (6 @'(A), A+4)
A—A
= f f Epp , (6 (A +A) FyA,+2), A, +2) duy ... du,.
rr I-‘l

By (1.4.6'), the integrand here equals
Egp ((x, “cpp(sp, A, +A) ug(A,+2) Fg(A,+4), s5(A,+4))
=Epp (X, up(A,+2) Fy(sg(A,+1)), s5(A,+4))
=rg(x, Fg(sg(A,+1)), sg(A,+1)).

Therefore

Ep p (6, upR) ry (@), A)), 1)
equals the product of
|80 7" ... |8(B,, DI Qi) = |&(spb,)| " ... |B(s5b,, )| Qui)"
with
j j rg(x, Fy(sg(A,+2), sg(A,+A) du, ... du,.
T, T,
This function is obtained from successive residues along the hyperplanes

spUr =spAp+sph;.

5—838282 Acta Mathematica 150. Imprimé le 30 Juin 1983
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From the injectivity of the maps up(4) and E; 5 [(-,1), we know that it does not vanish.

It follows from the inductive definition of Jg(b,X) that there is a triple T€ J5(b, X)
such that

Ap=spUr,,
Xr=15X7,
and

rA®, s5(A+A) = Ep 5 (up) rr. (@1, A), 2).

On the other hand, suppose that T is any triple in J3(b,X). We can follow the
argument backwards to produce a T, € Ig(b,,X,). This gives us the required bijec-
tion. Q.E.D.

§ 7. Application to the functions F

Suppose that F is a collection of entire functions
Fg:.af c— sy, BEPMy),

each rapidly decreasing on vertical cylinders. We will assume in addition, that the
collection has the symmetry property

Fyp(sA) ="cgp(s, A) Fg(A)

for s€ W, and B, B’ € #(M,). Then if P=NM is a parabolic subgroup in #(M,), the
collection

Fp={Fg(A) = Fpry(A): RE P"(M,)}

has the same symmetry property for M. As in 11, § 3, we choose for each BE P(M,) a
point Xz which is both suitably regular in —a3(B) and in general position.
If M is any group in AM,), we shall write W(a,,) for W(a,s, auy).

THEOREM 7.1. (i) If P=NM is a parabolic subgroup in FH M,) the function
Fp usp(A) is independent of any of the points {Xg}.
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(ii) For any class P of associated parabolic subgroups in H M) the function Fy(x)
equals

P Y Wep)|™! j Ep(x, up(A) Fp ¢ ip(1), 1) dA,
PEP eptial

where ep is any point in the chamber a’(P) of sufficiently small norm. In particular,
F3(x) is also independent of the points {Xg}.

Proof. Assume by induction on dim G that the theorem holds if G is replaced by
any proper Levi subgroup. If P=NM is a parabolic subgroup in FAMo), Fp 5(4) is
defined in terms of the collection {Fp} associated to M. Then if P+G, the function
Fp .5p(A) is independent of the points {Xg}. Now Fp (1) equals the sum over
{B€ P(M,): BcP} of the product of |g’M(M‘o)|_l with

cusp

D rdFs(AAD), A, (7.1)

T€ Ty padaiy Xp)

If we change one of the points {Xj}, it will change at most one of the terms in the sum
over B. It follows that the expression (7.1) is independent of the point Xp.

Suppose that 2 is a class of associated proper parabolic subgroups in F{M;). Then
Fy(x) equals the sum over B€ P(M,), bErt(P), TE Tp(b, Xp) and € € E(b) of

|PMy)| ™" | 8(0)] f rix, dFg(A), A) dA.

Ap+ibte

Consider a summand, indexed by B, b, T and ¢. The point ¢ belongs to a chamber in b.
There corresponds a certain group in &, which is in turn conjugate to a unique group
P=NM in ®? which contains B. There is also a unique element s € W,/W¢ such that
s~ 'b=a}, and such that the point £;=s"'¢ belongs to the chamber af{(P). We can
therefore write Fy(x) as the sum over BE P(M,), {P=NME P:. PoB}, s€ W, /My and

&, € €ai) naf(P) of

|PM)| B D, f rix, dF(A), A) dA.
Ag+s(e +iag)

TE Fglsay, Xp)
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For each T let 7, be the unique triplet in Iy, ,(al, s3'X;p) given by Lemma I1.6.1.
Since A;=s5 A; we can make a change of variables in the integral over A. The integral

becomes

f rix,(drFp) (s,,(ATl +1)), sB(AT, +1))dA.
£ +iay,
By Lemma I1.6.1, this in turn equals

f Ep,g,s(x; ,up(/l) "r,((dr., FB) (ATl+;l)’ A‘Tl), /1) dA.
£y +ing,

The correspondence T—T), is a bijection, so we may replace the sum over T by a sum
over T,€ Ty, [ak, s3'Xp). Since the maps Ep 5 . and up(4) are linear, we will be

confronted with an expression

2 rr(dFg(Xp +2), Ag). (7.2)

T,€ Tgnmlaiy -‘E'xn)
If a is a root of (BNM, Ay),
(a,55' Xg) = (sp0, Xp)

will be a large negative number. Thus, s;' X, is a suitably regular point in —a§(BNM) in
general position. It follows from our induction assumption that the expression (7.2)
equals (7.1). In particular it is independent of s. The only thing which does depend on s
is the map E, 5 ;. When we sum over s € W,/ W, we will obtain the map Ep, which is in

turn independent of B.
Up to this point, we have shown that Fy(x) equals the sum over P=NM in # and ¢,

in g(afy) N ai(P) of the product of |P(Mo)| ™" |#(aky)|~" with

f | E,,(x,,u,,().)[z > r,(dFB(A,+A),AT)],A) di.

BcP TE Ty (0t Xp)
The expression inside the square brackets is just equal to

|W(M0)I FP, cusp(}‘)'
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The function Ep(x, up(A) Fp,
a}dP) of sufficiently small norm. Therefore, we can deform each contour £;+iaj; to
the contour g,+iaj,. It follows that Fy(x) equals the sum over P € 2 of the product of

cusp(/l), A) is regular for all A in the tube over the elements in

f Ep(x, tpA) Fp x4, 1) dA,
eptiap

with
|PM)| ™ | (My), 7.3)
and

|&ap)| ™" |8(ap) na(P)|. (7.4)

Now the reciprocal of (7.3) equals the number of groups in 2 which are conjugate to P.
The reciprocal of (7.4) is just equal to the number of chambers in af. When divided by
the order of W(ap), this equals the number of conjugacy classes within the associated
class 2. Therefore the product of (7.3) and (7.4) equals

|2~ [Weap)| ™.

We have obtained the required formula for Fy(x). In particular Fy(x) is independent of
the points {Xjp}.

We saw in II, § 1 that the function FY(x) is also independent of {Xp}. It follows
from Corollary 11.3.2 that

Flg®=F'(@- D, F3(x)
P+ (G)

is itself independent of the points {Xp}. Therefore

Fg uplh, x) = f Fig(xa)e ¥ Pda, re€al
AG

is independent of {X3}. This completes the proof of part (i) of the theorem. The only
thing remaining in part (ii) is the formula for Fi;(x) in terms of F (4, x). This
follows from the formula just quoted by Fourier inversion on the group Ag. Q.E.D.

cusp
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Chapter 111
§ 1. A review of the Plancherel formula

The Plancherel formula for reductive groups is due, of course, to Harish-Chandra. The
version we will use pertains to 6(G, r), the space of t-spherical Schwartz functions
from G to V. (see [7c]). The results we recall here are well known, and can be
extracted from ([7c], [7d], [7eD.

Suppose that 2 is an associated class of parabolic subgroups in #M,). Suppose
that for each P € P, we are given a Schwartz function Fp g, on iaj; with values

FP, cusp(l): m-— FP, (J-; m), AE ia;{‘,r, MEMP,

cusp

in the finite dimensional vector space .szicusp(M p» 7) of functions on Mp. Then for x€G,

the function

Ig)'-l z IW(aP)I_lf EP(xhuP(l)FP,cusp(A)’}‘)dz’ (11)

PEP

belongs to (G, t). The closed subspace of 4(G,r) generated by such functions is
denoted by 4x(G, ). Then there is a decomposition

4G, 1) = DG, 7).

Let %4(G, 7) be the space of collections
F= {Fl".cusp:Pe ‘ai(Mo)}

of Schwartz functions Fjp ., from ia; to &

(Mp, 7) with the following symmetry

condition: if 7 is an element in W(ap, ap'), for groups P, P’ € AM,), then
FP’, cusp(t}') = OCP'IP(t’ '1) FP, cusp(l)'

Given FE¥(G, 1), let F »(x) be the function in €5(G, r) defined by (1.1), and let
F'@) = F3w.
®

The Plancherel formula can be taken to be the assertion that F—F" is a topological
isomorphism from %(G, r) onto 4(G, 7).
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Suppose that f€ 4(G, 7). There is a unique F € 4(G, 7) such that F¥(x)= f(x). For
any class 2, set

folx) = Fg(x).
It is the projection of f onto €x(G, 7). If P € FHAM,), set
fP, cusp(ﬂ’) = FP, cusp('l)’ A e "a}'&,-
It can be recovered from f by the formula

P, cusg @), ) = f (fx), Exlx, ¥, M) dx, (1.2)
G

valid for any y € & (Mp, 7). The collection

usp

{fP, cusp(l) = FP, cusp('q’): P € g(MO)}

can be regarded as the Fourier transform of f. We shall usually write £, (1) for
f, cuspd)- Then we have

f::usp(l’ x) =f f(G)(xa) e_l(HG('\'a))da.
AG

Similarly, we will write F,s,(1) for the function

Fg,cuspd) = j Fig)(xa) ¢ MHD g,
AG

Suppose that P € HM,). There is another interpretation of the function f,,, aspB)- If
SFE€(G, v), define

felm) = ,(m)"? f fimn)dn, mé€M,,
NP

where Jp is the modular function of P. Then f—fp is a continuous map from 4(G, 7) to
%(Mp, 1) (see [7c]). On the other hand, if F€ %(G, 1), consider the collection

Fp= {Fg) = Fpg(d): RE F7(M))}.
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It is clear that F—Fp is a continuous map from 4(G, ) to €(Mp, r). It is not hard to
show that if F is the Fourier transform of f, then Fp is the Fourier transform of fp. That
is,

(FY)p(m) = (Fp)" (m). (1.3)

We shall write Fy(m) for this common value. It is clear that f, aspA), as defined above,

is also equal to the function
(fp)flp’ CUSP(A') = (fP)cAusp(j')'

Incidentally, there are no proper parabolic subgroups of My, so if B € (M,) there is no
need to include ‘‘cusp’’ in the notation. We shall write

f B(A) =f B, cusp(A) s
and

FB(A) = FH, cusp(A)

for A €iag.
We have been a little bit compulsive with the notation. Our aim has been to make it
mesh with the notation for the collections

F={Fg(A):BE P(M,), A€af,c}

introduced in Chapter I1.

§ 2. The space PW(G, 1)

If N is a positive number, let C3(G, ) denote the space of smooth, z-spherical functions

from G to V, which are supported on the set
G(N) = {k,-expH kj: k1, k2 €K, HE ay, ||H|| < N}.

It is a complete topological vector space with the usual seminorms. Let C;(G, t) be the

space of all smooth, -spherical functions from G to V, which are compactly supported.
As a topological space it is the direct limit, as N approaches =, of the spaces Cy(G, 7).

Our main problem is to characterize the image of C:"(G, 7) under Fourier trans-

form. For a compactly supported function the Fourier transform will be defined as a
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collection of functions indexed only by the minimal parabolic subgroups B € P(M,).
Suppose that f€ C(G, 7). If @ € o, define

(fB(A)’ ¢) = f (f(-x)a EB(xJ ¢” _A)) dx: A€ a(,;,C'
G

Then fg(A) is an entire function from af ¢ with values in &, which is rapidly
decreasing on vertical cylinders. Unfortunately, the image cannot be described very
explicitly. The reason is that any identity between Eisenstein integrals will show up in
the collection

{f(A): BE P(M,)}.

Indeed, suppose that for all x€ G and v€ V, a relation

D, Dyv, Ey (x, @, —A)) =0 @.1)
k=1

holds, for groups B, € P(M,), vectors &, € o, points A, € af ¢ and differential opera-
tors D, of constant coefficients on a§. Then it is obvious that the relation

>, Difs (M), @) =0
k=1
will also hold. (In each case, D acts through the variable A;.)
Suppose that N is a positive number. Let PWa(G, 1) be the space of collections
F = {Fg(A): BE P(M,)}

of entire functions Fj from af ¢ to &, which satisfy two conditions. First, whenever a
relation of the form (2.1) holds, the relation

D, DyFy (A, ®) =0
k=1

must also hold. Secondly, for every integer n, the semi-norm

IFlya= _ sup  (IFA)]le™MRMa+|IAl)Y
{AEa} o BE P(My))

is finite. With these semi-norms, PW(G, t) becomes a topological vector space. We
define PW(G, ) to be the direct limit, as N approaches =, of the spaces PWp(G, 7).
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Observe that as a special case of a relation of the form (2.1) we have the functional
equation

Eg(x, ®, —A) = Eg(x, “cpp(s, —A) @, —sA)
for any s € W,. It implies that

Fp(sA) ="cggls, A) F5(A) (2.2)

if F={Fg(A)} belongs to PW(G, 7). In particular, all the results of Chapter II hold for
collections F in PW(G, 7).

Suppose that for each j in a finite indexing set J, S; is a finite dimensional subspace
of S(af ¢)- Suppose also that for each jE€J, we are given a group B;€ P(Mp) and a point
Ai€age. If F,,j is an analytic function from af ¢ to sf we shall write dstBj(Aj) for
the projection of the vector

dFy (A) € Hom (S(a3. o), sby)

onto the finite dimensional vector space Hom (S}, ).

LEMMA 2.1. Suppose that F={Fg(A): BE P(My)} is a collection in PW(G, ).
Then the vector

Ddg Fy(A)

belongs to the subspace

U= LE@J ds, f,j(A,): fECI(G, r)}
of ®je,;Hom (S, o).
Proof. If v€EV, and x€ G, define a vector eg(x, v, A) in &, by

(eg(x, v, A), D) = (v, Eg(x, D, —A)).
Then

ex,v)= Dd; e5(x,v,A)
j€J e
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is a smooth function from GxV, to ®;Hom(S;, ). Suppose that f; is any smooth,
compactly supported function from G to V.. Then the function

f)= f f o)y k) vek) ke,
K JK
belongs to CJ(G, 7). We have
f (eg(x, fo(x), A), ®) dx = f (fo&), Eglx, @, —A)) dx
G G

= j (f(x), Egx, @, —A)) dx
G

=(f5(A), D),

for any ® € f,. Therefore,

f e(x:ﬂ)(x))dx =@ dsfg.(Aj)-
¢ jes 7%

It follows that U, is the subspace of @;Hom (S, ) spanned by

{e(x,v):x€EG,vEV,}.
Now s, is a (finite dimensional) Hilbert space, so there is a nondegenerate pairing

between @;Hom (S}, ) and @®;(S;® ). When e(x, v) is paired with the vector

J

@(Z X, ® ‘1’0)' X,ES; €, 2.3)

the result is

>, DX, (v, Eg(x, @, ~A)), 2.4)
iJj
where D(X;) is the differential operator on af associated to X;. Now, suppose that
(2.3) is an arbitrary vector in the annihilator of U; in &;(S;®). Then (2.4) will

vanish. It follows from the definition of PW(G, ) that

> DX, (Fy(A), @ =0.
ij
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In other words, the vector (2.3) annihilates

©ds Fy(A).

It follows that this latter vector belongs to U;. The lemma is proved. Q.E.D.

This lemma gives another interpretation of the first condition in the definition of
PW(G,1). The condition is equivalent to demanding that for each finite set
{(S;, B;, Aj):JEJ)} there be an f€ C(G, r)such that

ds F(A) =dg f3(A), JEJ.

In other words, F={Fp(A)} must locally be a Fourier transform of a function in
C2(G,1).
The following corollary is the form of the lemma we will actually need to apply.

COROLLARY 2.2. Suppose for each jEJ that the point A; belongs to (a})¢, and
that S; equals S £(a%)¢), the space of symmetric tensors on (a)¢ of degree at most d.
Then for any F € PW(G, 1) there is a function h€ C;(G, t) such that

@y iy +H) = Odl Fy(A+)
4 J

Sor every point A€ a¥ c.
Proof. G is the direct product of A; and
G'= {xEG: Hg(x) =0}.

It follows that
C2(G,1)=CI(Ay) ® C2(G',7)
and
PW(G, ©) = PW(Ag) ® PW(G', 7).

Moreover,

U= {Jg—%dsj(f')gj(Aj):fl EC:’(G',r)}.
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Applying the lemma to G!, and recalling the classical Paley-Wiener theorem, we see
that

@dg Fp(A+A), A€af .,

Jj€J J J !
is the Fourier transform (on Ag) of a smooth, compactly supported function from Ag
to the finite dimensional space U;. The corollary follows. Q.E.D.

Suppose that P € F(M,). We can certainly define the space PW(Mp, 7). It consists
of collections of functions from af ¢ to &, indexed by the groups in ol (My). The next

lemma will prepare the way for a key inductive argument.

LEMMA 2.3. Suppose that F={Fg(A): BE P(My)} belongs to PW(G, t). Then the
collection

Fp={Fg(A) = Fpg(A): RE P""(M,))
belongs to PW(Mp, 7).

Proof. Suppose that we have any identity

D, Dyv, Eg (m, @, ~A)) =0, mEM,, vEV,,
k=1

between Eisenstein integrals on Mp. If Ep (-, Dy —A)is extended to a function on G in

the usual way, then

Epr,(x, -A)= f t(u)"ERk(ux, ®,, —A)du.
KnMp\K

It follows that

D, Dyv. Eppx, @, ~A)) =0, x€G, vEV..
k=1

Since FEPW(G, 1), we will have
D Dilfery(A, @) =0= . D(Fg (A, B
k=1 k=1

Therefore Fp belongs to PW(Mp,1). Q.E.D.
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§ 3. The main theorem

We are now ready for our main result. We shall show that the Fourier transform maps
CZ (G, 7) isomorphically onto PW(G, 7).

LEMMA 3.1. The map

f={fs: BEPM}, fECHG,1),
is a continuous, injective map from Cy(G, v), to PW (G, 7).

Proof. If fECYG, ) and ®E A, ( fs(A), ®) is the integral over x of the inner
product of f(x) with

f ¢B(kx) e(—/'\+g,,)(H,,(kx))dk‘
K

The integral will vanish unless
x=ky-expH -ky, ki, k€K, |H||<N.
It is known that the point
Hyg(kx) = Hg(kk, exp H)
lies within the convex hull of

{sH:s € Wy}.

Consequently
le-i\(n,(/a», < e"Re/\"'"”n("-")"

< ReAIIH

< VIReAll
It follows that there is a continuous seminorm || ||y on C{(G, 7) such that

I(F5(A), @) < |1l D]} eMReA,
for all fand ®. Now, for any n it is possible to choose an element z in &g such that

A+[IAD" I fMl < G
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for all A€ag c. But

=1 llw

is a continuous seminorm on Cy(G,7), so f—{fz} is a continuous map from
CMG, 1) to PW\(G, 7).

If G is compact modulo A the injectivity of the map follows from the classical
Fourier inversion formula on As. Suppose then that G/A¢ is not compact. We will
assume by induction that the lemma holds if G is replaced by Mp, for any proper
parabolic subgroup P of G. Let f be a function in C; (G, 7) such that fs(A)=0 for every

B and A. If P is a proper parabolic subgroup of G, we have

for any group R€ PMr (M,). It follows from our induction assumption that the function
Sfein C7(M,, 7) vanishes. In particular,

fP, cusp(}‘) = 0’ }b e ia;‘lP.

From (1.1) and (1.3) we see that if 2 is an associated class of parabolic subgroups,
P+{G}, the function

750 =10 T, WG [ Bt i f .

PEP

equals zero. Therefore
)=, f30 =fi6,(0).
4

Applying a Fourier transform on Ag, we obtain

f::usp(l’ x)= f f(xa) e_A(HG(m» da.
AG

As a function of x, the expression on the right has compact support modulo Ag;. The
expression on the left, however, is a Z-finite, 7-spherical function on G. In particular, it
is analytic. Since G/A¢ is not compact, both functions must vanish identically in x and
A. By Fourier inversion on Ag, f(x) vanishes. This establishes injectivity. Q.E.D.
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The next theorem is the culmination of everything. It tells us that any collection
FEPW(G,1) can be extended to a collection in 94(G,7) so that the functions
Fp cusp(/1, x), F¥(x) and Fy(x), which we defined differently for PW(G, 1) and G, 1),

actually coincide.

THEOREM 3.2. For every F={Fg} in PW(G,t) there is a unique function
JEC(G, ) such that

fo(A)=Fp(A), BEPM,), A€af c.

It has the additional properties
@) fp, cuspP=Fp,cusp@), PEFMy), A€ i,
(i) fO)=F"(x),
(iii) f5(x)=Fg(x),

for each associated class P.

Proof. The uniqueness of f was established in the last lemma so we can concen-
trate on its existence. If G is compact modulo Ag, the theorem is an immediate
consequence of the classical Paley-Wiener theorem.

Suppose then that G/Ag is not compact. We will assume by induction that the
theorem holds if G is replaced by Mp, for any proper parabolic subgroup P in #HM,).
By Lemma 2.3 the collection

Fp={Fx(A) = Fpg)A): RE P"*(M,)}

belongs to PW(Mp, 1). Then Fy, the associated tMP-spherical function on (Mp)_ de-
fined in II, § 1, extends to a function in C;(M,, t) with the properties demanded by the
theorem. By (1),

F, P, cusp(;l') =(F, ; )é\\,sp(l)

In particular, Fp (1) belongs to o, (Mp, 7). Now suppose that & is associated
class, P+{G}. We shall use the formula for Fy(x) in Theorem II.7.1. Since
Fp p(2) belongs to o, (Mp, ), for PE P, the function Ey(x, Fp ,,,(4),4) is entire in
A. Therefore

Ep(x , .uP()*) F P, cuspa)’ 4)
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is holomorphic in a neighborhood of ia}. We can therefore change the contour in the
integral in the formula for Fy(x) from ep+ia} to ia}. We obtain

=l S L
P = o 5, TR o 0 1 8D e

Thus Fy belongs to 65(G, t). In particular, it extends across G_ to a smooth function

of G.
Suppose, given what we have shown so far, that we were able to find a function
fECZ(G, v) such that fg(A)=Fz(A) for each B. We will show how the other conditions

of the lemma follow. We must first check a compatibility condition. If P is a proper
parabolic subgroup of G we have two functions in CJ(M,, 7); the function F} given by

our induction assumption above, and the function

felm)=6,(m)"? I f(mn)dn.
NP

We must show they are the same. If R € 27 My,

(f p);Q(A) =f p(R)(A) =F p(R)(A)~

However, Fy is by definition the unique function in C.(M,, ) with this property, so

the two functions are in fact the same. Now, if PG,
fP, cusp(}') = (F\I;):usp(l) = FP, cusp(}’)'

This is property (i). It follows from (3.1) that if P+ {G}, fa(x) equals F}(x). Therefore if
x€EG_,

FO=F ()=, f500)= D, F3x)
® ®
=fi0/)—Fg)).
Applying a Fourier transform on A;, we obtain

Fossploo )= F oy (4, x) = f (f(xa)-F" (xa)) e #" gq.
AG

As a function of x, the expression on the right has compact support modulo Ag. The
expression on the left, however, is Z-finite and r-spherical, and is an analytic function

6~ 838282 Acta Mathematica 150. Imprimé le 30 Juin 1983
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on G_. Since G/Ag is not compact, both functions must vanish identically in x and A.
Therefore

Lrsp@r X) = F oy (A, %)

for all x and A. In particular, F(4) belongs to (G, 7) for each 1. By Fourier
inversion on A¢, we see also that f(G)(x)=F {G)(x) and that f(x)=F"(x). This verifies all
the conditions (i), (ii), and (jii) for f.

However, we have not yet proved the existence of f. To proceed, recall that there
is an integer d, independent of A and F, such that the function

Fcusp(j') -x) = lg)(Mo)l—l z 2 r,(x, dFB(AT“‘l), AT)

BE P(My) TE Tytal. Xp)
depends only on the projection of the vector

DD(d Fyp (Ar+D), A€a%c, (3.2)

onto the finite dimensional vector space

®®Hom (SMad)e), ). (3.3)

It follows from Corollary 2.2 that there is an 4 inC_ (G, ) such that for all A € a§ ¢, the

vector

@®(drhy) (Ar+A)
BT
has the same projection onto the space (3.3) as does (3.2). Therefore, F.,s,(4, x) equals

1PMY™ D, D ritx, dhg(Ar+), Ay

BEPM) T
From the discussion above, (with f replaced by h), we obtain

h. (A x)=F

cusp cusp

A, x),
and then by Fourier inversion on Ag,

h(G)(x) = F{G)(x).
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In particular, F {G)(x) extends to a function in %(G)(G, 7). Therefore the function
F'()=, Fy(x),
P

defined, a priori only for x€G_, extends to a function in €(G, 7). This will be the
required function f. Since it has bounded support, fbelongs to C_(G, 7). For any 2, F},

is just the projection of f onto 6x(G, 1), so it equals fz.
Let Py=%P(M,), and take a group B € %,. It follows easily from (1.2) that if 2 is an
associated class distinct from 2, and A is a point in iaj,

(fp)g(A)=0.
Therefore,
FA) = (f3)5(A).
Consider the collection

Fg = {F 2, P, cuspA): P € FAM)}

in whichFg_p .., €quals Fp if P belongs to %, and equals 0 otherwise. The collection

belongs to %G, 7); in fact it is the Fourier transform (in the sense of § 1) of fg,o. That is,

FQ’O.P, cusp(’l) = (f?o); (A),
for each P € #AM,). It follows that

fo(A) = Fg(A)

for each B € P(M,), and all A €ia3. By analytic continuation the formula is true for all
A€af . Thus, fis the function required by the lemma. Q.E.D.

If we combine Theorems 3.1 and 3.2 of this section with Theorem I1.1.1 we obtain
THEOREM 3.3. The map
f={fs:BEPMp)}, fECIG,T),

is a topological isomorphism from C_(G, t) onto PW(G, ). For any N, the image of the
space Ci(G, 1) is PW\(G, 7).
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§ 4. The Hecke algebra and multipliers

It is a simple matter to reformulate our results for complex valued K-finite functions on
G. Suppose that N is a positive number and that T is a finite set of classes of irreducible
representations of K. Let Cy(G)y be the set of smooth complex valued functions on G,

which are supported on G(N), and whose left and right translates by K each span a
space which under the action of K is a diréct sum of representations in I'. Define
C:(G, K) to be the direct limit over N and I' of the spaces Cy(G)y. It is just the space of

K finite functions in C;(G), but it is a complete topological vector space under the

direct limit topology.

We shall let Rep (G) denote the set of irreducible admissible representations of G.
Suppose that N and T are as above. If (0, U,) belongs to Rep (My/Ay) and B € P(M,),
let #g(0)r be the sum, over all irreducible representations v of X which belong to an
equivalence class in I, of the spaces #3(0), defined in I, § 3. Let PWA(G)r be the
space of collections

F = {Fg(0): BE P(My), 0 ERep(M/Ao)}
of entire functions

Fp(0): A—> Fg(o,A), A€ajc,

from af ¢ to #p(o)r which satisfy two conditions. First, suppose that for all x€G a
relation

> D (0 Ap )W, W) =0 @.1)
k=1
holds, for differential operators D, of constant coefficients on af ¢ and vectors W,,
W,, in %, (0))r- Then the relation

> DF5 (0, AW, ¥y =0
k=1

must also hold. (As in III, § 2, it is understood that D, acts through the variable A,.)
Secondly, for every integer n the semi-norm

Flly,. = Sup (IF5(a, A)|| e MReAl (14| A"
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is finite. With these semi-norms, PWx(G)r becomes a topological vector space. Define
PW(G, K) to be the direct limit, over N and I, of the spaces PW{(G)r.
If f€E CJ(G, K), set

fB(at A) = IB(U’ A,f) = ff(x)lg(ay A9 x) dx-
G
Then the collection

f={fa(0, A): BE P(My), 0 ERep (My/Ag)}

belongs to PW(G, K). It will be called the Fourier transform of f.
InI, § 3 we gave a dictionary between Eisenstein integrals and matrix coefficients
of induced representations. The translation of Theorem II1.3.3 is

THEOREM 4.1. The map
f—7, fECIG,K),

is a topological isomorphism from C;(G, K) onto PW(G, K). For any N and T, the
image of Ci(G)y is PW\(G)y.

The space C;(G, K) is an algebra under convolution. It is sometimes called the
Hecke algebra, in analogy with the theory of p-adic groups. It is clear that PW(G, K) is
also an algebra, and that the isomorphism of the last theorem preserves the multiplica-
tion.

The space C;(G, K) also has the structure of a left and right module over the
universal enveloping algebra %(G). Let Endy, (C7(G, K)) be the algebra of left and
right %(G) endomorphisms of C; (G, K). It is just the algebra of linear operators C on
C: (G, K) such that

Cf%xg)=C(f)*xg=f*C(g

for all f, g€ CJ(G, K). We shall see how to explicitly exhibit a large number of such

operators.
We have introduced the Cartan subalgebra Hc=hx c@ay, ¢ of Lie (G)®C. Set

h=ihx ® ao.

It is a real abelian Lie algebra, which remains invariant under the Weyl group W of
(Lie (G)®C, §c). Let €(H)Y be the space of compactly supported distributions on §
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which are invariant under W. It is an algebra under convolution. Any y € €(§)" has a
Fourier-Laplace transform

(), vEDRE.

It is an entire, W invariant function on h¢. There exist integers N, and n, such that the
semi-norm

~N,IRe -,
sup (PO e A+ph ™ “4.2)

is finite. Here Re (v) stands for the real part of v relative to the decomposition
5E=b*+ib*.
An example of a function

), yEEDH)Y, vERE,

is a W-invariant polynomial function on h&. Such a function is of the form p,, for a
unique differential operator z in &. There corresponds an operator

f=z3 fECIG, K),

in End%(G)(C:’(G, K)). If & belongs to Rep (G), let {v,} be the W-orbit in h¢ associated
to the infinitesimal character of 7. Then by definition

nzf) =p,v)n(f), fECI(G,K).

The function zf is uniquely determined by this formula. The next theorem, which is the
second major result of this paper, is a generalization of this example.

THEOREM 4.2. For every distribution y in $(§)¥ and every function f€ C;(G, K),
there is a unique function f, in C;(G, K) such that

(f,) = P 7(f)
for any n€Rep (G).

Proof. 1t is clear that f, is uniquely determined by this condition. We need only
establish its existence. Fix f€ C3(G),. Define a collection

F={Fg(o,A): BE HM,), 0 € Rep(My/Ap)}
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by setting
FB(G, A) = ?(VO+A)fB(0; A)’ AE aa,c-
We shall show that it belongs to PW,,, N,(G)r'
The growth condition is easy. For any n, the semi-norm ||F}|,, N, 18 bounded by

the product of (4.2) and ||f ||N,n+,,y, and is in particular finite. Next, suppose that for all
x, the relation (4.1) holds. We must show that

D DF5 0, AW, ¥y =0.
k=1

Now 7 is an entire function on bg; its Taylor series converges uniformly on compact
subsets. Since 7 is W-invariant, its Taylor series will be a sum of W-invariant polynomi-
al functions on h¢. It follows that there is a sequence {z J‘.’;lof operators in Z such that

Pv) = E. p.(v), vEDE,
i=
with absolutely uniform convergence on compact subsets of hg. If r is the representa-

tion Is(o, A), {v,} will be the W-orbit of the point v,+A. It follows that

Fy(0, A)=7(v,+A) f5(0, A)

=2 P+ N 0, A, )

j=1

IB(U’ A) Z_,f)-
j=1

Since any Taylor series can be differentiated term by term,
n ~
> DyF5 (0, A) %, ¥
k=1

equals

{EDkIBk(ok,Ak,zjf)}.
j=1 Lk=1

J =

The expression in the brackets will vanish, by virtue of the relation (4.1). We conclude
that F does belong to PW,,, N,(G)r-
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Let f, be the unique function in Cy +NV(G)I‘ whose Fourier transform is F. Any

nERep (G) will be equivalent to a subquotient of some representation Iz(g, A). Then
7(f,) will be equivalent to the action of the operator

Ig(o, A, f,) = Pvo+A) Ig(o, A, f)

on an invariant subquotient of #z(0). It follows that
7(f) = P, +A) n(f)
= P(v,) 2(f).
This proves the theorem. Q.E.D.

In the proof of the theorem we observed

COROLLARY 4.3. If f belongs to Cy(G)y, f, will belong to C;‘}+Ny(G)r.
The following is also clear.

COROLLARY 4.4. Define
C(f)=f, vEEBY, fECI(G,K).

Then the map
y—') C)” ye g(b)wr

is a homomorphism from the algebra €(§)¥ to the algebra Enda:(C(G, K)).
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