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1. Introduction

This paper is a study of the complex Monge—-Ampere operator (dd)”. Let 2 be an open
and bounded subset of C™. If u;€C?(Q), 1< <n, then the Monge-Ampere operator
operates on (uy,...,u,) and equals dd®u; A...Add°u,, where d=8+0 and d°=i(0-0).
If also each u; is plurisubharmonic, then dd®u; A...Add°u, is a positive measure. This
operator is of great importance in pluripotential theory, where it plays a role similar
to that of the Laplace operator in classical potential theory. The Laplace operator
is a linear, second-order differential operator and thus is defined on all distributions
on 2, while the complex Monge—Ampére operator is non-linear and cannot be defined
on all plurisubharmonic functions on Q, cf. [14], [20] and [8]. Moreover, the operator is
discontinuous in the weak*-topology, cf. [9].

On the other hand, it was shown by Bedford and Taylor [2] that (dd®)™ is well-
defined on all locally bounded plurisubharmonic functions. The problem of extending
the domain of definition beyond PSHNL{?. and describing the corresponding range has
been studied by several authors: [2], [3], [8], [13], [15], [16] and [17]. See [1] for a survey
on pluripotential theory. In particular, §4 of that paper contains a discussion of the
domain of definition for (dd®)". In this paper, we define certain classes £, and 7, of
plurisubharmonic functions, and study the complex Monge—Ampere operator (dd®)™ on
them.

We prove:

(1) &, and F, are convex cones (Theorem 3.3).

(2) (dd°)™ is well-defined on &, (Theorem 3.5).

(3) The comparison principle is valid in F, (Theorem 4.5).

Our main result is to be found in §5, where we study the Dirichlet problem and give
a complete description of (dd°F,)", p>1 (Theorem 5.1).

The remaining sections are based on the results from §5.
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In §6, we consider the Dirichlet problem for £, and also prove a decomposition the-
orem for positive and compactly supported measures. The last two sections are devoted
to the Dirichlet problem with continuous boundary data.

It is a great pleasure to thank Eric Bedford, Norman Levenberg and the members
of the pluricomplex group in Umea for many fruitful comments.

2, The classes £, and 7,

Let Q be an open, bounded, connected and hyperconvex set in C™, n>2, i.e., there is
a continuous plurisubharmonic function h on © with {z€Q:h(z)<c} relatively compact
in  for all c<0. We denote by & the class of negative and bounded plurisubharmonic
functions ¢ on  such that lim,_,¢ ¢(2)=0, VE€OR, and [(dd°p)™ <+oco0.

Then & is a convex cone, for if p, €& then [ (dd®(p+1))"=0 for some a,

p=ay
I<a<?,
[aaror=[  @@erors [ @)
Q wp—ap<0 ayp—p<0

(dd(o+))" + / (p+0))"

= / (dd°
La gty (1+a)p<p+v

<3n /Q (dd°p)" +(dd°y)™,

by the comparison principle. Cf. [3], [7].

Remark. Integration by parts in the class & is justified by the finite-mass assump-
tionm, cf. [12].

Definition 2.1. Given a Borel subset E of 2, we define the relative extremal plurisub-
harmonic function for E (relative to 1) as the smallest upper semicontinuous majorant
%(z) of
he(z) :=sup{p(2) EPSH(R?): —1< ¢ <0, ¢<—1on E}.

Remark. The set {hg<h};} is pluripolar, cf. [3].

Definition 2.2. For every p>1, we define &, (=,(£2)) to be the class of plurisubhar-
monic functions ¢ on Q such that there exists a sequence @;€& with ¢;\ @, j—+00,
and sup; [(—g;)P(dd°p;)™ <+oco. If also p; can be chosen so that sup; [(dd®p;)™ <400,
we say that p€F,.

Note that & CF,C&,p, Vp>1, and that Fy CF, if ¢>p by Holder’s inequality.
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In the unit ball, the classical energy of a function p€&; is

/ A= 47 / —p(dd®p) A(dd(|2*~ 1)),

By Theorem 3.2 below, this can be estimated by a power of [ —p(dd®p)™, so all func-
tions in &; are of finite classical energy. We may say that the functions in &; are the
plurisubharmonic functions of finite pluricomplex energy.

Ezample 2.3. Consider Q=B(0, 3), the ball of radius 3, and va=—(-log|z|)*+
(log 2)*, 0<a<1. Then 0>v,€PSH(f) and

(dd°ve)"™ =na™(1—-a)(—log |z|)"* V-1 dlog | z| Ad°log || A(dd® log |z]) 2,

where dlog |z| Ad®log |z|A(dd¢log |z|)" "1 =cdV/|z|*", c a positive constant.

Thus v, €&, if and only if

/1/2 (—logr)"‘pr2n_1
o

—_ log ,,-)n(l—a)+1,,.2n

dr < 400,

which is true exactly when
n{l—a)+l—ap>1.

Thus vo €€, & n/p+n>a.

3. The operator (dd°)™ is well-defined on &,
In this section, we extend the domain of definition of (dd®)™ to &p.

LemMmA 3.1, If veé; then

[ty < )t pup-o)” [Coraaer, voet

Proof. Cf. [4]. O

THEOREM 3.2. Suppose u,v€&. If p=1 then
/ (—u)P(ddu)! A(dd®v)™ ™7

B P
<Dy [tuptarny )™ ( [iopazor ], o<icn
where D; , equals p(p+j)(n—3)/(p—1) for p>1, and 1 for p=1.
Proof. Cf. [12], [18]. O
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THEOREM 3.3. The classes £, and F, are conver cones.

Proof. If a>0 and ue&,, then obviously au€&,.
If u,v€&, we have to prove that u+ve&,. Suppose that u;\u, v;\\v as in the
definition of £,. We have to estimate

[ o)
Using Hélder’s inequality, it is enough to estimate terms of the form
/(—uj)p(ddcuj)s/\(ddcvj)"_s, 0<s<m,

and
/(—vj)”(ddcuj)s/\(ddcvj)"_s, 0<s<n.

These terms can be estimated by
/(*’U,j)p(ddc’u,j)n and /(—”Uj)p(ddc’vj)n

using Theorem 3.2.

But these two sequences are uniformly bounded by assumption. The statement
about F, follows now from the calculation in §2.

The proof of Theorem 3.3 is complete. a

LEMMA 3.4. Suppose that u€&, (or Fp), 02vePSH(Q). Then w=max(u,v)€&,
{or Fp).

Proof. Suppose that u;\u as in the definition of &£,. Put w;=max(u;,v). Then
Jwprawy < [ oy

<Phs (/ (ﬁuj)p(ddcuj)n);% (/ (—wj)? (dd'“‘wJ')n)ﬁ_n

by Theorem 3.2. Therefore
[ cwpptaaeuyy < D [(—upypiaiu).

Since u€&,, the right-hand side is uniformly bounded, which proves the lemma. O



PLURICOMPLEX ENERGY 191

THEOREM 3.5. Suppose y>u;\u, j—+o0, and

sup/(—uj)p(ddcuj)"<+oo.
J

Then (dd“u;)™ is weakly convergent and the limit is independent of the particular se-
quence.

Proof. Let e>0and 0<x€C8°(R) be given. Define §=sup,,,, %1 (which we assume
to be <0). For each j, find 0<r;<r;_; so that

r; <dist({u; < 36},0Q)

and

‘/X(ddcurj)"——/x(ddcuj)" <k, (1)

where u,, (2)= [ u;(z+7;€) dV (£) (and where dV is the normalized Lebesgue measure on
the unit ball).
Then u;<ur; and u,, is continuous and plurisubharmonic on {u;<36}. Define

i (z)=max(u,,+86,2u;). Then {a;} is decreasing, #;€&, by Lemma 3.4 and
su_p/(—ﬂj)”(ddcﬂj)" < 4-00.
j

We now claim that lim;_, ;o [ x(dd;)" exists. If we can prove this, the proof of
the theorem is complete, since £>0 in (1) is arbitrary.

We first note that 4=Ilim;_, ., @;#—oc. For let h be an exhaustion function in &
for Q. Then

[araany = im [ araanr

< Do psup ( / (—aj)P(ddcaj)")#" ( / (—h)”(dd%)”)ﬁw < +o0.

Now, since 4; is continuous near supp X,

(2)

| [ sty [ xtad maxta, )y

/ x(dd®i;) + / x(dd°fi;)"
a<—k a>—k

[ xt@dmaxas, k) [ x(ddemax(as, -0
aL—k

a>—k
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k
< Sl;;x const~sup/(—ﬁj)”(ddc'&j)"

by Theorem 3.2. This completes the proof of Theorem 3.5, since we have by [2] that
(dd°max(i;, —k))™ converges weakly for each k.

Definition 3.6. For ue&,, we define (dd°u)™ to be the non-negative measure found

in Theorem 3.5.

THEOREM 3.7. If u;€&,, u; /u, j—+oc, then u€&, and

(dd®u;)" — (dd°u)", j— +oo.

Proof. Since u=max(u,u;), u€E, by Lemma 3.4. We can now use the ideas of
Theorem 3.5, together with the monotone convergence theorem in (3}, to prove Theo-
rem 3.7. a

THEOREM 3.8. If u€&y, then [u(dd®u)*>—oo, and if v;€PSH(Q2), 02v;\u,
j—+00, then [v;(dd®v;)™\ [u(dd®u)”, j—+oo.

Proof. Since u€&,, it follows from Lemma 3.4 that v;€&;, VjEN, and there is a
decreasing sequence u; €& with

lim w;=u and sup/—uj(ddcuj)”=a<+oo.
J—+oo j

Then
/max(uj, v ) (dd®max(uj, vg))™ > / u;(dd°u;)" 2> —a, Vj,k€EN,

so it is enough to prove that

lim uj(ddcuj)”z/u(ddcu)".

Jj—+o0

We have for k27,
/—uj(ddcuj)"s/—uj(ddcuk)"
=/ —Uj(dchk)n+/ —Uj(ddc’u,k)"
’U.jZ—E

uj;<—€
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for £>0. Here

/ —u;(dduk)" = / — sup(u;, —€)(ddux)™
Uj2—€ UjZ—E

n

S (/Q — sup(u;, —¢)(dd* sup(uy, —5))")1J+n (/Q —uk(ddcuk)n>m

e
< <a /(ddcuj)") o™ () 0, £—0.
It follows from the proof of Theorem 3.5 that

lim —uj(ddcuk)"g/ —u;(ddu)".
Q

k—+o0 uj;<—¢€

On the other hand, since —u; is lower semicontinuous,

lim —'U/j(ddCUk)n>/ —uj(dd°u)".
k—+o0 JO Q

Therefore, [u;(dd°u)"=limy_ ;o [u;(dd“ur)™, Vj.
Now

i (ddu > i . e Am
. u; (dd®u;) jEElook_l.rfoo u;(dd®ug)

:/u(ddcu)"> lim [ w(dd®ux)®

k—+4o00

= lim lim uj(ddcuk)">_lir_’{1 /uj(ddcuj)".
j—+oo

k—+00 j—+o00

Hence lim;_, o fu;(dd°u;)™=fu(dd°u)™, which completes the proof.

193

O

Remark. The analogue of Theorem 3.8 for p>1 will be given in Theorem 5.6. The

main difference is that for p=1, when —u<—w, integration by parts gives

[wdaur < [ oy,

i.e., the constant Dy ; in Theorem 3.2 equals 1, but for 1<p<oo, we only know that

Dy p>1.

We conclude this section with a few additional properties of &,.
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LEMMA 3.9. Suppose h; €&y,
/ hi(dd°h;)* =0, j—oc.

Then there is a subsequence {h;} such that

thjegl.

Proof. Suppose that hy;, 1<j<N, are chosen such that

/i i, (dd° 3 b, | > 1.
j=1

Choose hg, ., such that

N+1 N+1 n
/ Z hkj (ddC Z hkj) > -1,
i=1 i=1

that is,
N+1

N n N+1 n
/thj (ddc > hkj> +/hk~+1 <dd° > hkj) >—1.
j=1 i=1 j=1

Note that the first term is the sum of [ Zjvzl hy, (dd® Zflzl hi,;)" and terms of the form
J Z;\;l hi,; (dd® Ejvzl hi; )" "PA(dd®hiy,, )P, p=1. The first term is strictly greater than
—1 by assumption and all the others together with the second term can be choosen as
close to zero as we wish by Theorem 3.2.

In particular, we can choose hx; so that

N+1 N+1 n
/ > ha, (ddc > hkj) >-1.
j=1 j=1

It follows that h=2;i1 hi,€&:. O

PROPOSITION 3.10. Suppose that E is a pluripolar subset of ). Then there is a
Ye& such that EC{yp=—o0}.

Proof. Choose a sequence of relatively compact open subsets #; such that every
point of E is in all but finitely many 8, and such that

1
[tdhay <z, jeN,
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where hg, is the relative extremal plurisubharmonic function for 6;. We extract a sub-
sequence of (hg;)32; such that h=3 he, € €1, which is possible by Lemma 3.9. Tt follows
that EC{h=—0c}. d

Ezample 3.11. We construct a function y€&\Fp, Vp>1. Let Q=B be the unit ball
and define v;=max(log |z|,—~1/2%). Then [ —v;(dd°y;)"=c/2/, where 0<c= [(dd®y;)"
and y=3 7., max(log ||, —1/27%)€&; for some subsequence (ji)$>, by Lemma 3.9.

Note also that f(dd®(> "y, max(log |z|, —1/27%))"=mc by Stokes’ theorem, so v ¢ F1.
Since 0>v>—1, it follows that ye &\ Fyp, Vp21.

LEMMA 3.12. Suppose that u€&, where Q is a strictly pseudoconver domain. Then

Tim u(z) =0, V¢eom.

z—€

Proof. Define lim,_,¢ u(z), £€09.

Then 7 is upper semicontinuous and less than or equal to zero. If there is a point
&o where v(€p)<0, then we can find a continuous function h on 8Q such that y<h<0
and k(&) <0. Then there is a unique plurisubharmonic function v continuous up to the
boundary, with vanishing Monge—Ampére mass and equal to h on 0Q. Let u; €&, uj—u
as in the definition of u.

Then lim;_, ; o max(u;,v) €&, 50 lim;_, 4o max(u;, v)=max(u,v)=v€E,. By The-
orem 3.8,

lim [ —max(u;, v)(dd°max(u;,v))" =0,
j—oo
but
0 S/—max(uj,v)(ddcmax(uj,v))"
is increasing in j, so max(u;,v)=0, Vj, which is a contradiction. O

4. The comparison principle is valid

Here, we prove that the comparison principle is valid in F,. In particular, this means
that we have uniqueness in F, for the Dirichlet problem we are going to study in §5.

LEMMA 4.1. Let U be an open subset of ) and assume that u,v€E,, u=v near OU.

Then
/U (dd°u)" = /U (dd°v)".

Proof. Choose U'CCU so that u=v near 8U’, and consider the usual regularizations
ue and ve. If £>0 is small enough, v.=u, near U, and if x€C§(U’) with x=1 near
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{uc#v.} then [x(dd°uc)™= [ucdd°xA(dduc)" = [v.dd°xA(dduc)™ = [ x(dd°vc)"
since dd®yx=0 where v. #Au.. Hence

[ xtaaur = [ xiazor,
/U (dd°u)" = /U (dd°v)™. O

LEMMA 4.2. If u,v€F, and if u<sv on , then

/ (dd°u)" > / (ddev)™.

Proof. Let u; and v; be as in the definition of F, and let h€eENC(). Then

SO

/ —h(dd°v;)" < / —h(dd°u;)"
Q Q

g/ h(dd°u)™+ lim —h(dd‘u;)™
Q

Jotoo Jps g
< / —h(dd°w)"+¢ Tm / (dd°u;)™.
0 j—too Jo

If we let £ tend to zero, we get that

/Q —h(dd*v)" < /Q —h(dd°w)".

To complete the proof, we let h decrease to —1. O

LEMMA 4.3. Suppose that we have w€Ep, wj\w, j—+00, as in the definition of &,.
If 02u,vePSH(Q) then

/ (ddw)y < lim [ (ddw;)", 3)
{u<v} j—o0 J{u<v}
and if u>2v near 02 then

/ (dd°w)™ > lim (dd°w;)™, Ve>0. (4)
{utego} J—=to0 Jlutego}

Proof. Let 6>0 be given. Since u and v are quasicontinuous ([3], [7, p. 37]), and

since

sup/(——wj)”(ddcwj)"< +00,
j JQ
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it follows from Proposition 3.10 that there is an open set Os with sup; f05 (ddw;)" <6,
and there are two continuous functions @ and ¥ such that {u#4}U{v#%}C Os. Therefore

{u<v}C{ﬂ<ﬁ}U(’)5C{u<v}U05

and
{ute<v} C{i+e<T}UO0s C{u+e<v}uUOs,
and so
/ (dd°w)™ < / (dd°w)" < lim (dd°w;)™
{u<v} {a<d}UO0, j—r+oo J{a<t}uOs
< lim (dd°w;)" < lim (dd°w;)™+6.
j—+oo J{u<v}uOg j—+oo J{u<v}

Also, if u>v near the boundary of 2 then

{ut+e<v}cch
and
lim dd°w;)* < lim ddw;)"+ 6
j—+oo {u+€<v}( J) Jj—+oo {ﬁ+€<5}( J)
< / (dd°w)"+ 6 < / (ddw)™ + 26.
{u+egv} {u+egv}
Therefore
/ (dd°w)" < lim (dd°w;)"+6
{ute<v} J—+oo J{ute<v}
< lim (ddw;)™+6 < / (dd°w)™+ 36. a
I+ J{utego} {ute<v}

LEMMA 4.4. Let p2>1 and suppose u,vEF,. Then

/ (dd°v)" < / (dd°u)™.
{u<v) {u<v}

Proof. Let v;\\v, u; \ u as in the definition of F,, and choose an open set O5 as
in the previous proof with sup; [, [(dd°u;)"+(dd®v;)"]<é. Using (3) of Lemma 4.3, we
get

/ (ddv)" < lim (dd°v;)"
{u<wv}

j—+oo J {u<v}

< lim lim (dd°v;)" < lim lim (dd®v;)™.
jortoo k=400 Jry, <v} j—+oo b=+ Sy <v,}
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By Lemma V:3, p. 42, in [7], this can be estimated by

lim lim (dd°ug)” < lim lim (dd u)™
j—otoc k—+oo {ug<v;} j—r+o00 k—+oo {u<gv;}
< lim lim (dd®ur)"+6

j—+o0 k—+o00 {u<w; INCOs

< / (dd°w)"+26+ lim / g(ddu)™
{ugw} k—+oo Jo

< / (dd°u)"™ +26
{uso}

+ lim (g—l)(ddcuk)”+/ (dd°u)™
k—+o00 Q Q

< / (dd°u)" + 26+ / g(ddeu)",
{ugv} Q

where g is any non-negative and continuous function which is bounded by 1 and equal
to 1 close to the boundary of Q. In the second last step, we have used the estimate

/ (dd°u;)" < / (dd°u)™,
Q Q
which follows from Lemma 4.2. To complete the proof, we let g tend to zero. |

THEOREM 4.5 (the comparison principle). Let p>1 and suppose that u,veF, with
(dd°u)*<(dd°v)™. Then v<u on Q.

Proof. Since Q2 admits a continuous exhaustion function in &y, there is to every
point zp€ a continuous exhaustion function P so that (dd°P)">dV near zp, where
dV denotes the Lebesgue measure. If there is a zo€ 2 with u(2p)<v(zp), take >0 so
small that u(z9)<v(29)+7nP(29). Then the Lebesgue measure of T={z€Q:u<v+nP}
is strictly positive, and so is f.(dd°P)™.

By Lemma 4.4 we have that

/T (dd°(v+nP))" < /T (dd°u)",

but the right-hand side is assumed to be smaller than or equal to f,.(dd°v)". Hence
Jr(ddv)" +0" [(dd°P)"< [.(dd°v)™, so [,.(dd°P)"=0, which is a contradiction. ~ O

Remark. Except for the above result, Lemma 4.4 is sometimes also called “the com-
parison principle”. There is also a comparison principle for bounded plurisubharmonic
functions: Suppose that u and v are bounded plurisubharmonic functions which are con-
tinuous and equal at the boundary of the domain €. If (dd®u)™ < (dd“v)™ on 2 then uzv
on . Cf. [6].
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5. The Dirichlet problem
We now prove the main theorem of this paper.

THEOREM 5.1. Let © be a bounded and hyperconvez set in C", n>2, p=1 and
a positive measure with finite total mass on Q. Then there is a (uniquely determined)
function u€F, with (dd°u)"=p if and only if there is a constant A such that

/ (—p)Pdpu< A( / (—<p)”(dd”so)">"%, Vg€ &o. (5)

Remark. Note that if y is a measure satisfying (5) for some p>1, then p puts no
mass on pluripolar sets.

LEMMA 5.2. Suppose that u is a positive and compactly supported measure satisfy-
ing (5) with p>n/(n—1). If u;€&NC(Q), u;—uePSH(Q), j—+o00, a.e. dV, and if
sup; [(dd®u;)"<+oo, then lim;_, 4o fu; du=[udp.

Proof. Note that lim;j_ 400 [u; du< fudy, so it is enough to prove that [udu<
lim; ., [u;dy. For each NEN, write A{vz{ZESuppu:uj<—N}. Then

==
[ s [ehgran<a( [@eng )
N

where hg(z) is the relative extremal plurisubharmonic function for £. By Lemma 4.4,

/Q (dd°hyy )" = / (ddhyy )" < L (dd°hy )"

Ay N "j/N<hA;’V

" il
< — c JRE.
N /(dd )" S e

where a=sup [(dd°u;)". Hence

(6)

ngyp/tntp) L
/ dp<A(2) Nl Tp)

Since p>n/(n—1), y=np/(n+p)>1. Therefore

o ok+1
2
/A —ujdu= E / —ujd,USA(Q"a)”/("'H”) E 2T7—’0’ N —+o0.
Ay 2R+l Cu -2 Py

Thus
/_Uj d,u:/ —u; du—i—/ —u; dp
Q u;2—2N uj<—2N

Ve

o0
/QNdquA (2"a NeN.
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In particular, sup; fQ —u;dp<+o00, and we see that it is enough to prove that
J —max(uj, —N)du— [ — max(u, —N) du, j—+oo. In other words, we can assume that
{u;} is uniformly bounded.

In this case, since sup; [ u? dp <400, there is a v€L?(du) and a subsequence u;,
so that (1/M) M u;,—v in L?(dy). Then there is a subsequence M, such that f,=
(1/My) Etﬂi"l uj, —v a.e. du, g—+o0. But fo—u in L*(dV) so (sup,, fr)*\u every-
where, and

/(SUpr)*du=/SUPfrdu—*/vdu, q— oo,

r2q r2q

from the remark above and the fact that f,—wv a.e. du. Thus we have [udp= Jvdp=
lim [u;, dp. g

LeMMA 5.3. If we have that us,eENC(N), uePSH, u;—u, s—+o00, a.e. dV,
sup [ —us(dd®u,)"<+o0 and if [ |u—us|(dd°us)"—0, then (dd°u,)"— (dd°u)™.

Proof. We can assume [ [u—u,|(dd®u,)"<1/s?. Then, for 0<x€C§(N),

} [ sty [ xtaacu,y

_ ‘ / xl(ddeu)™ — (dd (max(us +1/3,u)—1/s))"

+(dd®(max(us+1/s,u)—1/s))" —(dd°us)"]

< ‘/x[(ddcu)"—(ddcmax((us-kl/s, u)—1/5))"]

-+

/ x[(dd®(max(us+1/s,u)—1/8))" —(dd°us)"]
us+1/s€u

< ‘ / x(ddew)™ = (dd° max((uy+1/s, )~ 1/8))"]

/ (dd°us)™|.
us+1/sgu

+2sup x

Since

/ (ddus)™ gs/ lu—us|(ddus)™ —0, s— 400,
ug+1/s<u

it is enough to prove that

(dd°(max(us+1/s,u)—1/s))" — (dd°u)", s— +o0.
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Define gs=max(us+1/s,u4)—1/s. Then
[y < [uan)
gs<—N N
Hence fgs - n{(dd°gs)™—0 uniformly in s when N —+00, so it is enough to prove that
(dd°max(gs, —N))" — (dd°max(u, —N))*, s— +oo, VNeN.
It follows from the construction of g5 that
max(gs, —N) — max(u, —N)
in Cy,-capacity (cf. [21]). We can therefore apply Theorem 1 in [21] to conclude that
(dd°max(gs, —N))" — (dd°max(u, —N))*, s— +o0,

which completes the proof of Lemma 5.3. il

LEMMA 5.4. Suppose that w€&, and that 1 is a negative, continuous and plurisub-
harmonic function on Q. Then

xa(ddu)"™ = x 4(dd° max(u, ¥))",

where A={2€Q:u>}.
In particular,
xa(dd°u)" < (dd°max(u, )™

Proof. The lemma is trivially true when u is continuous. Let K be a given compact
subset of €2, and O a relatively compact open subset of  containing K. Following the
proof of Theorem 3.5, given §<0, choose v;€E,, v; decreasing to max(u+6,2u) on £,
and v; decreasing to u+6 on O, and v; continuous on O. Given >0, choose O; open
in O, containing K, and K; compact in ANK, such that

/(ddchol\Kl)n <e.
Then, with
Al ={z€0:v; >p+6},

we have
X 45 (dd° max(v;, P+6))" = x 45 (dd°v;)".
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So
xkna(dd®v;)" = xkna(dd®max(v;, ¥ +6))",

and therefore,
xAnk (dd° max(vj, Y+6))" = xo,(dd“v;)" +(x ank — X0, ) (dd°v;)".

Here,
/ (X0, —xank)(ddv;)" < / —ho\k, (dd°v;)"
B _n_
n+p c n n+p
< Doy [@thonr ) ( [oriany)
< const-eP/(*+P),
Since xo, is lower semicontinuous, we can now use

X0, (dd°v;)" +(xank — X0, ) (dd°v;)™
= XAmK(ddC max(vj, 'lfl-‘f-(s)"
= XK, (dd°max(v;, ¥ +6))" +(x ank — Xk, ) (dd° max(v;, +6))"

to conclude that

xo, (ddu)" < x, (dd° max(u+6,¢¥+86))" +du,,

/d“‘r:l SE

Xank (dd°u)™ < x ank (dd°max(u,¥))"

where

Therefore,

and the reverse inequality can be obtained in a similar way using

X £, (dd°v;)" +(x ank — XK, )(ddv;)"
= XA{‘]K(ddcvj)n = XAnK(ddcma.x(vj, 1,[)+(5))n
= X0, (dd°max(v;, Y +8))" +(x ank — X0, )(dd° max(v;, +6))". O

Proof of Theorem 5.1. Suppose first that p>n/{n—1) and that x has compact sup-
port in Q. For each s large enough, we consider a subdivision I® of supp i consisting of
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c-3%"¢ isomorphic, semi-open cubes I¢ with side (3)°, 1<j<c3?"*. By [6] or [11] we can

find u,€ePSH(Q)NC(N) with
lirré us(2)=0, VEe€0Q,

and

1
o= [ ) e
i 8

J
where dg=( %)sz length of side of If, and where dV is the Lebesgue measure. Using the
super mean-value property for superharmonic functions, we have

/—us(ddcus)" <c0nst-/ —ug dy,

which is uniformly bounded since [(dd°us)"=p(1)<+o0, as already noted in (7) in the
proof of Lemma 5.2. It follows from (2) that

sup/ —usdV <400, VQ CCQ,
Ql

s

so we can pick a subsequence (us;)32;, again denoted by (us), us—u€PSH(Q), s—+o0,
a.e. dV. Since u=lim;_,(sup,; us)* we have that u€F;. Define

1
V@)= 5o /mnds'“(””*@‘“s(”f)'dV’

where B(r) is the volume of the ball with radius r. Then

[-wlazuyr =3( [ du) &% [ ju—uilav

M

< Z Bgzljs) HVé,(x) dp(z) < const~/ Vs(z) du(z).

Now,

1
V)= /lgl@ds'“(”f)—“s(“é)f av

1
:B(nds) /[glsndju(x‘i‘f)*supUj($+5)+supuj(a;-l—E)—us(ac+§)|dV

jzs jzs
),
e — sup u;(z+€)—u(z+£)) dV
B(nd,) |§|$nd5(j>s (@) —u( )

| ),
+ = supu;(z+&€)dV — ——— ug(z+£)dV
B(nds) Ji¢|<nd, j?ls) 1(@+) B(nds) Ji¢1<nd, (@+6)
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1 *
S B(nd,) /§|<nds[(sup uj(@+§)) —ulz+§)]dV

jzs

Blnd )/ (sup u;( x—+—§)) dV —us(x).

|€l<nds 25

It follows now from monotone convergence and Lemma 5.2 that
/ Vi(z) du(z) -0, s—+o0,

and then from Lemma. 5.3 that
(dd°u;)™ — (dd°u)™, j— +o0.

But (dd°us)™—pu, s—+o0, by construction, so p=(dd“u)™.
It remains to prove that u€&,. Define xn as the characteristic function for

{zeQ:uz N}
By what we have just proved, we can find oy €F; with
(dd°pn)"™ = xn(dd°u)™.

By Lemma 5.4, ¢n >max(u, —N), so it follows from Lemma 4.2 and from Theorem 3.3
in [10] that pn€&. Thus

Jconriadony = [ompxntaznr
< [Cconparor<a( [ (—w)ﬂ(ddw)")#

[Conpaaony <amin

so limy_, 40 pNEFp and u=limy_, 4 ¢~ by Theorem 4.5.

Therefore

Suppose now that p>1. Fix ¢>n/(n—1) and choose

wta
E>Dq,0(/(dd°hx)"> ,

where K is the support of y. Define

s
M= {y}O:suppuCK, /(—@)QdySE(/(—w)q(ddcgo)") ,chESo}.
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If LCK then, by Theorem 3.2, (dd°hr)"€M, so if G is any Borel subset of K with
v(G)=0 for all veM, then G is pluripolar.
Fix 0#1v9p€M and define

R={V20:V(1)=1,suppVCK,

Jeora<(F+255)(/ (—w)q(dd%)”)ﬁ_q,\fsoet‘?o},

where T'=sup{v(1):v€M}. Then
(T-v(1))vo+m(l)v
Tvy(1)
for all ve M. Obviously, R is a weak*-compact convex set of probability measures. By a
generalization of the Radon-Nikodym theorem in [19], there is a v€R, f€L*(dv) and a
positive measure v which is orthogonal to R, such that

€R

p=fdv+uvs,.

Note that if ¥(G)=0 for all v€R, then G is pluripolar.
From the remark after Theorem 5.1, x4 has no mass on pluripolar sets, so vs=0 and
p=fdv. We have already proved that there is, to every N, a unique

uN€.7:q

with (dd°un)"=fndv where fxy=inf(f, N). Then uy=un+1 by Theorem 4.5, and re-
peating the corresponding argument above, we conclude that limuy€F,, which com-
pletes the proof if u has compact support.

Finally, if only x(1)<+oo0, consider x,  u, where

kv ={z€Q:dist(z,00Q) > 1/N},

and repeat the argument above.
The “only if” part of Theorem 5.1 follows from Theorem 3.2, which completes the
proof of Theorem 5.1. a

COROLLARY 5.5. Suppose that i is a positive and compactly supported measure such
that

p/n
w(K) <A(/(dd°hx)”> , VKCC,
for some p>1 and some A. Then there is a u€F; with (dd°u)"=p.

Proof. With notations as in Lemma 5.2, it follows from the inequality (6) and the

assumption that
1

ngyp/tnte) L
/A A< A2") N/

J
N
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Therefore, the crucial inequality (7) holds true and the proof of the corollary can be
completed using the first part of the proof of Theorem 5.1. a

We can now prove a generalization of Theorem 3.8.

THEOREM 5.6. Suppose that ueF; and p>1. If [(—u)P(dd“u)"<+oo then ueF,,
and conversely, if u€F, then there ezists a decreasing sequence u; €&y with limu;=u
and

lim (—uy)P(ddeu,)" = / (—u)P(dd°u)"™ < +oo.
j—+oo
Furthermore, if {v;} is any sequence of functions in &, decreasing to u€&,, then

sup [ (~0;)7(dd,)" <-+cc.
J

Proof. The last statement follows from the proof of Lemma 3.4. Suppose u€F,.
Since (—u)? is lower semicontinuous, [(—u)P(dd°u)™<+oco.

Suppose that u€F; and [(—u)P(dd°u)"<+oo. With notations as in Lemma 5.4, we
use Theorem 5.1 to find un €&y, (dd°un)"=x4,(dd“u)™. Since u€Fy, un decreases to
u by Theorem 4.5. Now,

/ (—un)?(ddun)™ = / (—un)Pxapy(dd°u)™ — / (—w)P(dd°u)”, N — +oo,

by monotone convergence. Therefore, ueF, and the theorem is proved. O

THEOREM 5.7. Suppose that p is a positive and compactly supported measure on
QCC™, n22. If there is a constant A so that for some p>1,

[oraus A( / (—so)(dd%o)"f%, Ve o,

then there is a ueF, with
(dd°u)™ = p.

Furthermore, if 0K feLP/®=1)(dy) then there is a vEF, with

(ddv)™ = £ dp.

Proof. 1t follows from Theorem 5.1 that there is a u€F; with

(dd°u)™ = p.
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Now,
P _

/ (—w)P(dd°u)” < A ( / (—u)(ddcu)")"“ < A( / (—u)”(dd%)")ﬁ < / du>

by Theorem 3.8 and Hélder’s inequality. It follows that

3
i

/ (—u)P(dd°u)™ < ( / du)L;_IA("“)/”,

s0 u€F, by Theorem 5.6. Now, if 0< fe L?/(P=1)(dy),

p=1

Jiosme(feora ([
cor( o) ([0

So another application of Theorem 5.6 completes the proof.

6. Some applications

207

PROPOSITION 6.1. Let 2 be a hyperconvex domain. Suppose that u is a positive measure
with finite mass on Q such that u<(dd“y)™, where ¥ is a bounded plurisubharmonic
function on Q. Then there is a uniquely determined bounded plurisubharmonic function

wEF1 with (dd°p)"=p.

Remark. This is Theorem A in [15] in the case of boundary data zero. See also

Theorem 8.1.

Proof. 1t is no restriction to assume —1<<0. Consider hy=max(1, Nh) where
he&, is an exhaustion function for §. It follows from Theorems 3.2, 3.4, 4.5 and 5.1 that

there is a uniquely determined y¥ny€&y with (dd°yn)"=xa4,du, Wwhere
AN={Z€Q : Nh<-1}.

Then
0= wN 2 hN P 1/)’
80 impy — 400 WNEF1NL™ since we have assumed that p has bounded total mass.

Next, we extend Theorem 5.1 to &, p>1.

O
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THEOREM 6.2. Let Q be a hyperconver domain and suppose that p is a positive
measure on § such that (5) holds for some p>1. Then there is a uniquely determined
ue, with (dd°u)"=p.

Proof. Let (K;)?2, be an increasing sequence of compact subsets of £ with
U;‘;l K;=Q. It follows from (5) that there is a uniquely determined u;€F, with
(dd°uj)"=xk,; dp. Then u; is a decreasing sequence of functions in F, and it follows
from Theorem 5.6 that

/(_uj)p(ddcuj)n =/(—uj)”XK,- du< /(—uj)l’ duSA(/(—uj)P(ddCuj)"yﬁ_”.
Therefore,

jl{gloou_j =u€é,

and (dd®u)™=p.
Let now h be a continuous exhaustion function for Q in & and define

Am={2€Q:v>-—m(—h)/?},
where ve€, and (dd°v)"=p. We have then by Lemma 5.4,
XK, XA 0t < (47 max(v, ~m( —h) /)"

Thus
U(XKJ XAm’ 0) > ma‘x(v7 _m(—h)l/p)’

where U(xk,X4,,d#,0) denotes the unique function in & with
(dd°U(xx; X Am i, 0))"™ = XK; X Am QL.

(See §7 for this notation.)

Therefore, U(xk,XA,, @, 0)2u;2v for all m, so u>v. In other words, if veE,,
(dd*v)"=du, then u>v. It remains to prove the reverse inequality.

We know from Lemma 5.4 that

(dd® max(v, —m(—h)l/”))" =x4,,{(dd°v)"+ x{vs_m(_h)l/p}(ddcmax(v, —m(—h)l/”))n.

Write
B = X{vg—m(—h)t/»}(dd°max(v, —m(~h)1/P))"
and g, =U(tm,0). Then by the comparison principle,

max(v, —m(—h)}/P) > u+g,, forallm>1,
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and it is enough to prove that
lim ¢g,=0 ae. dV.
m—o0

Define Uy, =(sup{g;: j=>m})*. Using Theorem 3.4, we have for any j>m,
Uy <m [(hyaaevny <me [(-h)dug
mY mY
< (7) /(—v)p(ddcmax(v, —j(—h)}P))™ < const - (7) .

Therefore, (dd°Up,)"=0, so since U,, is a bounded plurisubharmonic function with
boundary values equal to zero, U,,=0, which completes the proof of the theorem.

We conclude this section with a decomposition theorem for positive and compactly
supported measures.

THEOREM 6.3. Suppose that p is a positive and compactly supported measure in a
hyperconvez domain Q. Then there exist Y&, 0K fFEL((dd°yY)™) and a positive mea-
sure v, carried by a pluripolar set, such that p=f(dd*y)"+vs. In particular, if p van-
ishes on all pluripolar sets, then there is an increasing sequence of measures (ddu;)™
tending to p as j— o0, where u;€&.

Proof. 1t follows from the last part of the proof of Theorem 5.1 that there exist
pEFp, 0K FEL((dd°p)™) and vs, carried by a pluripolar set, with p=f(dd®p)"+vs.
Since p has compact support, it is no restriction to assume that (dd°p)™ has compact
support. Consider

9=(~p) € PSH(Q)NLEZL(Q).

Then a calculation shows that (—¢)~2"(dd°p)"<const-(dd°g)", and since (dd°p)™ has
compact support, we can modify g outside the support of (dd°p)™ so that ge&. By
Proposition 6.1, there is a €& with (—p)~2"(dd°p)"=(dd°y)", which gives u=
F(=@)?™(ddy)"+vs.

Finally, if p vanishes on all pluripolar sets, v,==0. Use Proposition 6.1 to solve

uj €8,  (ddu;)" =inf(f(~)?", j)(dd"w)". O

7. The Dirichlet problem with smooth boundary data

In this section, we use the results from the previous sections to study the Dirichlet
problem with smooth boundary data.
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Let € be a bounded pseudoconvex domain and assume that f is a continuous real-
valued function on 8§2. We are going to define classes F,,(f) of plurisubharmonic func-
tions and study the problem when there is a ve Fp(f) with

T, ¢ v(z) = f(¢), VE€aQ, ®)
(dd°v)*=p on .

In particular, we will prove that if € is strictly pseudoconvex, then there exists a uniquely
determined ve F,(f) satisfying (8) if and only if u satisfies (5).
Suppose first that u is a positive measure on {2 such that the class of plurisub-

harmonic functions
B(p, f) = {vePSHNL.(Q) : (dd°v)™ > u, h—rnf v(z) < f(£), VE€ 89}
is non-empty. Then

U(u, f)=sup{v:ve By, f)} € By, f),

cf. [10]. Sometimes we also write U(u,0) for the solution obtained in Theorem 5.1. Also,
if Q) is strictly pseudoconvex and if u=gdV, where 0<ge L?(52), then U(gdV, f) solves
(8) and is continuous on Q, cf. [11]. If Q is smoothly bounded and strictly pseudoconvex,
feC>=(Q), and if 0<e<geC™(Q) for some £>0, then U(gdV, f)eC>=(Q), cf. [5]. Then,
by Lemma 4.2

[ @we. n+ue,-mr< | @@, n+u@v. -y <o
so U(0, f)+U(0,—f)€&s, and if g€&, u<(dd®p)™, then
[ @V 1)< [ @+ v0,0)" < [ @0+ U0, 1)+U0, ) <-+o0
Q 9] Q

since & is a convex cone. Thus, if pe& and (dd°p)">u, we have U(0, f)=2U(u, f)>
e+U(0, f) and U(p, f)+U(0,—f)€&. This leads us to the following definition.

Definition 7.1. Suppose that Q is a hyperconvex domain. We consider functions
FeC(09Q) such that lim,_,e U(0, f)(2)=f(£) for all £€9Q. For such functions we then
denote by & (f) (or Fp(f)), p=1, the class of plurisubharmonic functions u such that
there exists p€& (or F,) with

U(0, f) 2u>e+U(0, f). 9)

This can be thought of as a type of analogy with the Riesz decomposition theorem
of a subharmonic function as a sum of a potential and a harmonic function.

Remark. Note that since & (or F,) is convex, so is £(f) (or Fp(f)).
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THEOREM 7.2. The Monge—Ampére operator (dd°)" is well-defined on Fp(f) for
all p>1.

Proof. It is no restriction to assume that f<0. Let u€F,(f) be given. Then there
exists w&€F, such that

U, f) 2uz o+ U(0, f).

The sequence of functions max(u,p;+U(0, f)) in &(f) decreases to u, where ¢; de-
creases to ¢ as in the definition of F,. Let now {u;}C&(f) be any given sequence
decreasing to u as j——+oo. Let K be any given compact subset of {2 and choose ¢ so
large that U(0, f)>cp on K. Then u>(c+1)¢ near K, so vj=max(uj;, (c+1)p;)€&
and v; decreases to max(u, (c+1)p)eF,, j——+oo. It follows now from Theorem 3.5 that
(dd°v;)™ converges weakly, j—+o0, and since K is an arbitrarily chosen compact set,
(dd°u;)™ converges weakly, j— 400, which proves the theorem. O

To make sure that lim, ¢ U(0, f)(2)=£(&), Uy, f)+U(0, — f)€& and to avoid reg-
ularity problems, we assume in the rest of this section that € is a smoothly bounded
strictly pseudoconvex set and that feC°(Q).

LEMMA 7.3. Let p>1 and assume that u,veF,(f) satisfy u=v near 0Q. Then

/ (dd°w)" / (dd°v)",

Proof. The proof of Lemma 4.1 applies. O

LEMMA 7.4. Let p>1 and assume that u,veF,(f) satisfy u<v on §2. Then

/ (dd°u) / (dd°v)™.

Proof. Suppose that u;<vj, u; \u, v;\v, j—+o0, as in the definition of F(f),
and assume that he&.
If 1<p<n, then

/ h(dd®u;)PA(dd°v;)™~ / (dd®u; )P~ IA(ddev;) P,

so in particular, [ h(dd®u;)"< [ h(ddv;)™.
For, by Stokes’ theorem,

0= [ hdu;A(dd°u;)P~A(dd";)" P
o0

- / dhAdEu; A(dd°u;)P~ A (dd, )P+ / h(dd®u;)P A (ddCv;)"~.
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Thus,
/h(ddcuj)”/\(ddcvj)”—”z—/ du; Ad°hA(dd®u; )P~ A (ddv;)" P
Q Q
:/ Ujddch/\(ddcu]')p_l/\(ddc’vj)n—p
Q
—/ u;d°hA(ddu;)P~ ' A(dd°v;)™ P
o)
_ / w; dd°h A (dd®u; )P~ A (ddv, )P
Q
- / v;d°h A (dd°u; )P~ A(ddv;)" P
a0 :
_ / w; dd°h A (dd°u; )P~ A (ddCv, )P
Q
- / dv; AR A (ddu;)P~ A (ddou;)" P
Q
- / v;dd°h A (dd®u; )P~ A(dd®v;)" P
Q
<—/dvj/\dch/\(ddcuj)”_l/\(ddcvj)""’
=/h(ddcuj)”‘l/\(ddcvj)""’“,
where we have used that u;=v;=f on 9Q. Hence,
/ —h(dd°v)" < lim / —h(dd°v;)" < Tim / —h(ddeu;)"
< / —h(ddu)™+ ¢ lim (ddu;j)™
—e<h
</ —h(dd°u)™+esup /(ddcuj)”.
Q J

But since we are assuming that sup; [(dd°u;)"<+oo0, it follows that [ ~h(dd°v)"<
J —h(dd°u)™, so letting h\,~1, we get the desired conclusion. a

LEMMA 7.5. Let p21. If u,veF,(f), then

/ (dd°0)™ < / (dd°u)™.
{u<v} {u<v}
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Proof. The proofs of Lemmas 4.3 and 4.4 go through without changes. We only
need to observe that u+U(0, —f),v+U(0, —f)€F,, so Theorem 3.2 gives

A
nt+1

[+ @y < const- [ —w(ddcw)") | Vet o

THEOREM 7.6. Let p>1 and suppose that u, v€ Fp(f) satisfy (dd°u)"<(dd°v). Then
v<u on Q.

Proof. The proof of Theorem 4.5 goes through if we use Lemma 7.5 instead of
Lemma 4.4. |

THEOREM 7.7. Let Q be a smoothly bounded, strictly pseudoconvex domain in C",
n>=2, p=1, p a positive measure on Q with finite mass and feC*>(9Q). Then there is a
uniquely determined ueFp(f) with (dd°u)™=p if and only if there is a constant A such
that

Jeorassa( | (—so)%ddcw")ﬁ, Vet )

Proof. Suppose u€Fy(f), (dd°u)"=p. Then U(0, f)Zu>¢+U(0, f) for some p€F,
so 02u+U(0,—f)29+U(0, f)+U(0,—f). By Lemma 3.4, u+U(0,—f)€F,, since we
have p+U(0, f)+U (0, —f)€F,. Therefore, (dd°(u+U(0,—f)))" satisfies (5), and since
p=(dd°u)"<(dd*(u+U(0,—f)))" so does p. Thus (5) is a necessary condition for the
Dirichlet problem (8) to have a solution. To be able to complete the proof of Theorem 7.7
we need two lemmas. O

LEMMA 7.8. Suppose that 1 is a positive measure with compact support in Q such
that u satisfies (5) for some p>n/(n—1). Assume that u;€E(f)NC(Q), u;—»ucPSH(Q)
a.e. dV, j—+o0, and that sup; [, (ddu;)"<+oo.

Then lim;_, ;o [u;dp=[udp.

Proof. Since u;€&(f), we have already found that (dd°(u;+U(0, —f)))" satisfies
(5) and so does (dd°u;)". It follows then from Theorem 5.1 that (dd°U((dd°u;)",0))"=
(dd°u;)™. Again,

[+ v~ < (@ +U0, -+ U0, N

<3 [ Jawy [arwe.n+voe-nr|

SO

sup / (dd®(u;+ U (0, — )))" = a < +00.

J
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It follows from Lemma 5.2 that
Jim / (ug+U(0, — ) du= / (WU (0, - f)) du,
j—o0
which proves the lemma. a
Note also that it follows from (7) in Lemma 5.2 that
oo 2k+1

[ w00~ pydusz [aur 2@y Y S,
k=1

where y=np/(n+p).

LEMMA 7.9. Suppose that u,€&(F)NC(Q), us—uePSH(), a.e. dV, s—+oo,
sup, [ —us(ddus)™ <400, and that [, |u—us|(ddus)" —0, s—+o0.
Then (dd®us)™ tends weakly to (dd°u)®, s—+oo.

Proof. The proof of Lemma 5.3 applies. O

End of the proof of Theorem 7.7. Assume that p>n/(n—1) and that g has compact
support. We can then copy the proof of Theorem 5.1 to find us€ PSH(R2), us—uePSH((Q),
a.e. dV, s—+00, (dd°us)™ converges weakly to u,

sup / ~—us(ddus)™ < const
8

and
U(0, f) 2 us 2 U((ddus)",0)+ U (0, f),

where lim,_, 1o U((dd°us)", 0)=weF,. Therefore, u=lim,_, o us€Fp(f) and U(0, )=
uzw+U(0, f). If we form

1
V@)= o /|€ e 47,

as in the proof of Theorem 5.1, then it follows from monotone convergence and Lemma 7.8
that [, V,(z)du(z)—0, s—+o0, and then from Lemma 7.9 that (dd°u,)™ tends weakly
to (dd°u)™, s—+o0.

Assume now that p>1. Let K; be an increasing sequence of compact subsets of
Q with Jj2, K;=Q. By Theorem 6.3 there exist 1;€&o such that xx, du=g;(dd;)"
for some 0<g;€L'((ddy;)™). We have already proved that there exist u€&o(f) with
(dd°uf)"=inf(g;, s) (dd;)™. Then

U@, f) 2w 2U(u,0)+U(0, f),
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80 limg, oo uj=u; € Fp(f), and finally u=lim;_, | u;€F,(f) since we know from The-
orem 5.1 that U(u,0)€F,. Since (dd°u;)"=xk, dp, it follows that (dd°u)™=du, which
completes the proof of Theorem 7.7. O

Remark. It follows from Lemma 3.12 that lim,_,¢ U(u,0)(2)=0, VE€S, so we have
solved the Dirichlet problem (8).

8. The Dirichlet problem with continuous boundary data

In this last section, we consider the Dirichlet problem (8) for continuous boundary data
on hyperconvex sets.

First, we prove that Theorem A in [15] can be deduced from Theorem 7.7.

THEOREM 8.1. Suppose that € is a bounded pseudoconvexr domain, feC(09), and
that p is o positive measure on Q, such that U(u, f)€PSHNL>(Q) and such that
lim, ¢ U(y, f)(2)=lim,_.e U(O, f)(2)=f(£), VE€OQ.

Then for every positive measure v dominated by u, (dd°U(v, f))"=v and U(v, f)
satisfies the inequality U(0, f)2U (v, f)2U(y, f).

Proof. Suppose 0<v<u. It is no restriction to assume that v has compact sup-
port, since v can be approximated by an increasing sequence of compactly supported
measures. Assume first that Q is smoothly bounded and strictly pseudoconvex, and
that feC>®(0Q). Then, by considering U(v, f)+U(0, —f) we see that B(v,0)#, so
U(v,0)€& and v<(dd°U(v,0))", and so v satisfies (5) for any 1<p<-+oo, by Theo-
rem 3.2. By Corollary 7.10, there is a uniquely determined v, namely v=U (v, f), with
(ddv)"=v and lim,_¢ v(z)=f(£), V€€

Assume now that {2 is pseudoconvex and let (£2;)52; be an increasing sequence of
smoothly bounded strictly pseudoconvex domains with U;’il Q,; =0, where supprCC§};.
Since each f;=U(0, f)|an; is upper semicontinuous, there exist f;r€C*(08);) with
fix \fj, k—400. By the first part of the proof, there exist uniquely determined functions
u;x €PSHNL™(Q;) with (ddu;x)"=v and lim,_¢ ujr(2)=fjx(§), VE€09Q;.

Also, U(v, f)|a, <ujk since

Em U, £)(2) <Em U, fix)(2) = fx(€), V€€ 9.
Since u;x \u;, k—~+00, we have (dd°u;)"=v and U(y, f)<U(v, f)<u; <U(0, f;) on ;.

Finally, uj+1le0,<U(0, f;)|oa,=U(0, f)laa, = f;, so (u;)$, is a decreasing sequence;
since (dd°u;)"=v and U(0, f) 2u; 2U(y, f), the proof of the theorem is complete. O
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THEOREM 8.2. Let Q be a bounded hyperconvexr domain in C", n22, p>l,
K a positive measure with finite mass on Q. Then, to every feC(0Q) such that
lim,,¢ U(O, f)(z)=f(&) for all £€8Q), there is a function u€F,(f) with (dd°u)"=p
if and only if there is a constant A such that

/ (—w)”du<A< / (—so)”(dd%)");%, Voe k. %)

Proof. By choosing f=0, it follows from Theorem 3.2 that (5) is a necessary condi-
tion. To prove that (5) is sufficient, we first note that it follows from Theorem 5.1 that
there is a p€F, with (dd°p)"=p. Define, as in Lemma 5.4,

An={z2€Q:9>—-N}

and
kn={z€ Ay:dist(z,0Q) > 1/N}.

Then there is a uniquely determined ¢y €&y with
(dd°pN)"™ = xay dp-

Thus
(ddc(QoN‘}‘U(Oa f)))n > XAN dﬂ

and lim,_¢(on+U(0, f)(2)=f(£), for all £€0Q. It follows from Theorem 8.1 that
(dd°U(xay dp, f))"=xaydp. Thus

and since U(x 4, du, f) is a decreasing sequence of functions in &, it follows that
1\}1—?100 U(XAN dy, f) =u E.Fp(f)

and (dd°u)"=p by Theorem 7.2. a
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