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Much is known about the topology and geometry of the quotient of hyperbolic 3-space 

t l  3 by  the action of a group F of isometrics which has a fundamental  polyhedron with 

finite volume or (more generally) with a finite number  of faces.(1) On the other hand, if 

the group F is merely assumed to be finitely generated, the 3-dimensional fundamental  

polyhedron may  be of in/inite geometrical complexity (Greenberg, 1966) and few general 

results about  Ha/F are known. 

Salient among the known results is the Finiteness theorem of Ahlfors (1964) which 

describes how the 3-dimensionM fundamental  polyhedron of a finitely generated Kleinian 

group intersects the domain of discontinuity at  infinity in a /inite polygon. The inter- 

section of the fundamental  polyhedron with the limit set at  infinity was shown to have 

spherical measure zero for the case of a finitely generated Kleinian group in Ahlfors (1965) 

and for the case of a general finitely generated discrete group in Sullivan (1978). 

Conjecturally much more is true about this intersection: the/undamental polyhedron 

o/ a ]initely generated group should intersect the limit set in only/initely many inequivalent 

points. For this conjecture to be true it is necessary tha t  Ha/F have finitely many  cusps. 

The finiteness o/the number o/cusps will be proved in this paper. 

By definition a cusp of F or of Ha/F is a conjugacy class of non-triviM maximal  para- 

bolic subgroups. There are two types, rank one cusps and rank two cusps. Each (torsion 

free) rank one cusp determines a par t  of the manifold Ha/F homeomorphic to a cylinder • 

ray. Each (torsion free) rank two cusp determines an end of the manifold H3/F homeo- 

morphie to a torus • ray. This is due to Margulis and is discussed in Thurston's  notes [7], 

section 5.10, 

Our analysis begins with the simple fact tha t  the inverse image in H a (thought of as 

the unit ball B in Euclidean 3-spaces) of the various cusps in Ha/F consists of a disjoint 

collection of horoballs (smaller balls in B tangent to the boundary). 

(1) For a good survey see Marden (1977) and Thurston (1978). 
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We follow Ahlfors [2] and construct Borel series ~ an(z-bn) - 1  where bn is the base of 

the nth horoball (after stereographic projection of the ~B to C) and an is a complex number 

whose size in the Kleinian case (Part I) is the volume of the horoball. These Borel series 

are used to determine crossed homomorphisms of F into fourth degree polynomials and F 

invariant automorphic forms of degree - 2 .  

These objects are treated using the finite generation of 1", the Ahlfors finiteness theo- 

rem [1], the tangent ergodic theorem in Sullivan [6], and an elementary packing estimate 

for disjoint spheres resting on a plane, Proposition 2. 

We arrive at the following restriction on the number of cusps, Let  F be a discrete 

group of isometries of H a with N generators. 

THEOR~.~ (finiteness of cusps). The number Nc o/cusps o /F is/inite and satis/ies 
Nc<SN-4. 

Acknowledgement. The paper was directly inspired by  a conversation with Fernando 

C. Rocha about the proof that  Ha/F has only finitely many topological ends (F finitely 

generated, see Addendum). 

Also hidden behind the construction of ~fa(~) (Part II) is an interpretation of Ahlfors 

calculation [2] in terms of holomorphic quadratic vector fields which arose from a con- 

versation with Bill Thurston. 
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Finally, the reader of Ahlfors [2] will realize the great debt  owed to the argument  of 

page 11 there. This argument  has intrigued me for some time. 

Added (February 1981). After writing this paper  I received an announcement of Bill 

Abikoff in which he describes a sharper inequality (the 5 becomes a 3) vahd under a topo- 

logical regularity condition on the three manifold. Abikoff's proof is based on topological 

work of Scott and the geometrical work of Thurston. 

Demonstration of the theorem 

We represent I t  a as the unit ball B in Euclidean 3-space and write lit'ell for the linear 

distortion of the Euehdean metric by  ? E P at  ~ E S ~ =aB.  By the Marguhs decomposition 

of an arbi t rary hyperbolic manifold M each cusp (=eonjugaey  class of maximal  parabolic 

subgroups) determines a certain region in M which lifts to a family of disjoint horobaUs 

in hyperbolic space. Furthermore these famihes are disjoint for the different cusps. (See 

Thurston [7], section 5.10.) We may  suppose tha t  the center of the ball B lies outside all 

the horoballs ([7], section 5.10). 

O" ~ " ".. .~ . 

0 

Horoballs on the plane 

Figure 2 

H z~ in S 8 represents one cusp stabilized by  the parabolic group P~, let 1~ denote the 

coset space F/P~. Note tha t  II~'(z~)ll only depends on the coset of r in F~. 

PROPOSITION 1. oo. 

Proo/. The Euclidean volumes of the horoballs at  z~ and 7z= aro in the ratio [[7'za][ a 

(up to a universal factor). Since all these horoballs are disjoint, the sum of their volumes is 

finite. These horoballs are labeled by  P:  so the series converges. Q.E.D. 
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Now we want an estimate about how close the disjoint horoballs can pack around the 

base of a given one, B 0. Let V(n) denote the volume of those horobaUs which are based at 

points whose distance from the base of B 0 lies between 1/(n+ 1) and 1In. 

P~OPOSITION 2. There is a constant c and an integer N O depending on the radius o/ B o 

so that V(n)<~c/n 5 for n > N  0. 

Proo/. 

Figure 3 

1/(n+ 1) 1/~ 

Any such ball for n sufficiently large has radius <~cdn ~. The total available volume 

under B 0 is that  of a circular solid ring like region whose width is no more than ( 1 / n -  

1/(n+ 1))+2coin 2 and whose height is no more than (1/~+co/n~) ~. Since each of these has 

order l /n  2, and the circumference of the ring has order l[n, this volume is less than c/n 5 

and the proposition is proved. 

We transform the group by stereographie projection to the complex plane. In  the 

Kleinian case ( ---the domain of discontinuity in S 2, D r + ~ )  we assume oo corresponds to 

a point of D r. 

Part I (The Kleinian case, Dr~=O ). We now follow the calculation of Ahlfors [2] for 

Kleinian groups, and then show how it may be extended to the case of discrete non-Kleinian 

groups. Let 7'z denote the complex derivative of z ~-~ 7z. The first step of the proof is to form 

the Borel series 
q~(~) = ~ - (r'(z~))~ 

r~ ~z~-  

where F~ as before is the eoset space of the parabolic group fixing z~. 

PROPOSITIO~ 3. 1] ~n lanl <0% then the series 

a n 

~ b . - z  

converges a.e. in C. On every compact disk the series converges in L 1. I /  the l imit /unction 

equals zero a.e. and the b n are distinct then all the a~ are zero. 
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Proof. The first par t  follows f rom the  proof of the second. Since the  integral 

of ]a/ (z -b)]  over a fixed disk is less than  a constant  t imes ]a] ,  the  L 1 convergence of 

~]a~/ (bn-z ) [  is clear. Then by  monotone  convergence we have absolute convergence a.e. 

I f  6(x) denotes the  uni t  dirac mass at  x, in the  sense of distributions, 

Applying dominated  convergence yields 

in the sense of distributions. This proves the a~ are all zero if ~ .  a J ( z - b ~ )  equals zero a.e. 

and the bn are distinct.(~) Q.E.D. 

COROLLARY. The series for q)r converges a.e., and in L 1 of every compact disk 

{Iz[ <R}. 

Proof. Stcreographie projection has bounded distort ion in the compact  limit set so the 

absolute convergence of ~r~ (7'z~) 3 follows f rom Proposi t ion 1. Then the  corollary follows 

from Proposi t ion 3. Q.E.D. 

The second step of Ahlfors a rgument  [2] is to consider the difference (or coboundary)  

1 1 (7'z~) a (7'z~) 3 

(~)2 

PROPOSITIO~ 4. For each ~] eF, A~(~) agrees d.C. with a polynomial in ~ of degree <4. 

Proof. Since a(b-~1~) -1 has a pole at  ~ =~- lb  with residue -a f i l ' (~- lb)  we see the term 

in the parenthesis has a pole at  ~-17(za) with zero residue, namely,  

[(7'zo~)3/(V'(~]-17(zoc))2~]'(v-lv'(~]-1yz~) ] -- [ (V -17 )  ' (Z~)] 3. 

Thus the 8/85 distributional derivat ive of A~(}) is zero. Since 1/(~]'(~))2=(c~§ 4 and 

q~(~) =0(1/]~[)  near o% A~(~) is 0(~') near infinity. Since A~(~) is holomorphic it mus t  be 

a polynomial  in ~ of degree ~< 4. Q.E.D. 

(1) Ahlfors [2] could appeal to Denjoy's theorem for this uniqueness. This requires ~Y [ an[flog a n [ < co 
which causes a difficulty for us in ease the limit set is all of S 2. 
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Ahlfors third step is to interpret ~->A~(~) as a crossed homomorphism from F into the 

vector space P4 of 4th degree polynomials. Namely F acts on Pa by p(~)~->(p(~))~= 

p@~)/@'~)2. The expression for A~ is formally the coboundary of ~0~ and so satisfies the 

cocycle or crossed homomorphism condition A~ =A~ + (A~)n. 

Since crossed homomorphisms are determined by the values on generators, the dimen- 

sion of the space of all such is ~< 52/if  F is generated by  2/elements. Thus we have 

PROPOSITIOI~ 5. I /  a K l e i n i a n  group has 2 / g e n e r a t o r s  and more than 5 N  cusps  
k t 2 Zl , z 2 . . . . .  za, ..., a non-tr iv ial  l inear combination ~v = ~ ~= 1 c ~ q) a sa t i s f ies , /or  a l l7  E F,  qJ(~ ~ ) / ( ~ ~ ) = 

~(~) a.e. 

Now we show the set of ~ satisfying q~(7~)/(7'~) ~ =~(~), 7EF,  is limited. 

P R o  I" o S I T I 0 • 6. Le t  F be a n y / i n i t e l y  generated discrete group o /hyperbo l ic  isometries,  

and let q~ be a n y  complex valued measurab le /unc t ion  de/ined a.e. on the l imi t  set which saris. 

/ ies ~(y~)/(y'~)a=~o(~), ~ EI ~ (/or a n y  integer d~=O). Then  q~ vanishes a.e. on the l imi t  set. 

Proo]. Actually we wilI prove a stronger assertion. By first taking absolute values 

and then taking arguments we obtain two systems of equations. Each of these systems 

is contradictory. 

The absolute value equations are impossible for any positive real d. For if we have a 

solution l~01 let ~v(~)= [~(~)l -~/~. Then y~(~)]7'~12=~(~) or in other words, the measure 

~(~) • (Lebesgue measure) is invariant by F. This contradicts section VI of [4] which 

asserts there is no a-finite measure on the limit set which is F invariant and absolutely 

continuous with respect to Lebesgue measure. 

The argument equations are also impossible. Define a d-ray to be d-symmetrical rays 

at a point. Extend the argument of ~ at each point to a field of d-rays. The argument 

equation 
arg ~@~) + d a r g  @'z) = a r g  ~(~) (mod 2~r) 

implies the field of d-rays is F invariant. Such a field is impossible for any integer d by 

the second corollary, section VI of [6]. 

Remarks .  (1) The argument of [6] only require that  F be any discrete group so 

that  the action on the limit set has no fundamental set of positive measure. Thus Proposi- 

tion 6 is valid in this more general case. 

(2) The appeal to [6] could be avoided here in the Kleinian case by using an argument 

like Ahlfors [2] to bound the dimension of the space of solutions. 

To study ~ on the domain of discontinuity D r we have 
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PROPOSlTIO~ 7. The Borel series q)~(t) are holomorphic in the domain of discontinuity 

Dr. 

Proof. The poles are in the limit set and the convergence is uniform on compact subsets 

of the domain of discontinuity. 

PROPOSITIO~ 8. I f  Dr/F is compact any holomorphic function q~ on D r satisfying 

~(Tt)/(7't)2=~(t), 7 eF, m u s t  be identically zero on Dr. 

Proof (well-known). Such a ~ determines a holomorphic cross section of the square of 

the tangent line bundle. (If there are elliptic elements we pass to a finite branched cover.) 

Since the Euler class of this bundle is negative the cross section must be zero, for other- 

wise the intersection with the zero section would be ~> 0. Q.E.D. 

Now we consider the case when Dr/F has punctures. Let c denote a parabolic cusp 

associated to one of these punctures. Choose a disk D tangent at c lying in Dr  so that  the 

parabolic group fixing c stabilizes D and so that  the further images by elements of F are 

disjoint. 

Figure 4 

Such a disk is constructed by lifting a neighborhood of the cusp in Dr/F. 

We consider the growth of T~(t) along the radius r from the center of D to c. 

PROPOSITIO~ 9. Along the radius r o/ D approaching c (thought of as the origin of 

t-plane) l~a(t) J ~<C/It]- 

Proo]. At a point x of distance d from c all the poles of ~,(t) are at least distance d 

from x because they lie outside D. Thus the absolute value of T~(t) is no more than 1/d • 

(total mass of the poles) ~<constant/d. Q.E.D. 

So consider linear combinations of the T~(t) satisfying ~(~t)/$'(t) ~ =~(t).  Let Dr/F 

denote the Riemann surface Dr/F compaetified by adding in the punctures. 
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P~OrOSlTION 10. Such a cp determines a holomorphic section o/ the square of the tangent 

bundle over D/F.  

Proo/. If  t is the variable around a puncture and ~ is the variable near the corresponding 

cusp c, we can write ~ = 1/log t -1. Then 

~v($) (0/0~) ~ =~0(l / log t -x) (0/0(1/log t-x)) 2 = ~(1/ log t -1) (log t-~)4t~(O/Ot)~. 

So the absolute value is ~< I logt-als]tl~. A holomorphic function in the punc- 

tured disk satisfying such an inequality has a zero at the origin t = 0  and is holomorphic 

there. Q.E.D. 

P ~  oP o s ITI  0 N 11. Such a q~ satis/ying ~(F$)/(F'~)~ =~(~) must be identically zero on Dr.  

Proo/. qD determines a holomorphie section of the square of the tangent bundle over 

Dr/F.  Thus it must  be zero by  Proposition 8. Q.E.D. 

Now we can finish the proof of the theorem for the Kleinian case. 

T ~ O R ~ M  1. Let F be a Kleinian group with N generators. Then the total number o/ 

cusps/or  F does not exceed 5 ( N - l ) .  

Proo]. The Borel series ~0a(~) generate a linear space of dimension equal to the number 

of cusps using Proposition 3 and its corollary. This linear space maps into the space of 

crossed homomorphisms from F into Pa, the space of 4th order polynomials, using Proposi- 

tions 4 and 5. The kernel consists of linear combinations of the ~0a(~), ~(~) satisfying 

~(~)/(~'~)~ =~($). 

Such functions vanish a.e. in the limit set by  Proposition 6. I f  there are no punctures 

in Dr/[ '  (namely t=0)  such a ~0 is zero on D r  by Propositions 7 and 8. Otherwise, their 

restrictions to D r  vanish by  Propositions 9, 10, 11. Thus if there are more than 5N cusps 

we violate the third par t  of Proposition 3; applied to the ~(~) .  

To improve 5N to 5 ( N -  1) we add the space of 4th degree polynomials to the space of 

Borel series generated by  the cusps. Their coboundaries generate a 5-dimensional space of 

cocycles. Q.E.D. 

Part I I  (The limit set is all of S~). i~ow we consider finitely generated groups discrete 

groups whose limit set is all of S 2 (or C (3 ~ ) .  

We assume stereographic projection has been chosen so that  0 and c~ are cusps equi- 

valent by F. Let  a~ = (~'zc,/~,z~) a and form the Borel series 

~ ( ~ )  = ~ a~, 
r~ ~(z~) - 4" 

Convergence a.e. is assured by  the following. 
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PR 0 P 0 S I T I 0 ~ 12. The series ~r(~)av is absolutely convergent. 

Proof. Break the series into (a) the part  near the origin, (b) the part  near infinity and 

(c) the rest. 

For par t  (c) the terms are comparable in size to the cubes of the spherical derivatives, 

]]y'(z~)H3. So Proposition 1 yields absolute convergence. 

For the terms between distance 1/(n + 1) and 1/n of the origin we have the estimate of 

Proposition 2 which yields 

l a ,l < n V(n) < n /n 
l l(n+l) 4l~z~l<lln 

We have used the fact tha t  spherical and planar derivatives are comparable near the 

origin. So for part  (a) the terms are less than ~n 1/n2 < ~ .  

For the terms whose corresponding points on the sphere are at  a distance between 

1/(n § 1) and 1In from the north pole, we can again apply Proposition 2. The planar deriva- 

t ive has a size equal to n 2 times the size of the spherical derivative. The denominators of 

these a~ have size l l n  3. Thus all in all these terms are no more than 

~3 1 n 6 1 
(n ) -~ V(n) <<. n~ = ~. 

So we have absolute convergence for par t  (c), the terms near infinity. Q.E.D. 

COROLLARY. The Borel series q~a(~) converges a.e. and in L 1 of any compact disk. The 

distributional derivative ~(~0a(~))/~ is the measure ~r~ a~(~za).  

Proof. This follows from Propositions 3 and 12. Q.E.D. 

l~ow consider the function y~(~)=~3~0~(~), and form the coboundary as before 

1 
hi(S) = ~(~$) ( V ~ -  ~(~)" 

P R 0 P 0 S I T I 0 ~ 13. The function A~(~) agrees a.e. with a polynominal o/degree at most 4. 

Proof. At ~-lyz~ the second term on the right hand side has a pole with residue 

(~- ly(z: ) )3a_lr  = ((~-ly)'(z~))3. The first term on the right hand side has a pole at ~]-l~z~ 

with residue 
# 1 2 # 1 3 [l lv (V- yz~)] [a~l v (V- ~z:)] (yz~) = [llv'(V-l~z~)]3[y'(z~)]3. 
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These cancel just as before in Proposition 4. We see ~ ( ~ )  is a sum of polynomials of degree 

4. Namely, 

~ [ ( ~ ) s [  a~' '~ 1 ~a~ a,~-lr '~ 

Since we have a sequence of 4th degree polynomials converging in L 1 (any disk) and 

pointwise a.e. to A~(~) an application of the Cauchy integral theorem shows A~(~) must  be 

a 4th degree polynomial. Q.E.D. 

T ~ v. o R ~ M 2. Let F be a discrete group o/isometrics o /H a which is generated by N elements 

and whose limit set is all o / S  ~. Then the number of cusps is ~ 5 N - 4 .  

Proo/. I f  there are more than 5N cusps (not counting the orbit containing 0 and c~), 

some nontrivial linear combination yJ of the yJa will satisfy ~v(~)/(~l'~)~-y~(~)=0. Such ~p 

must  be zero a.e. by  Proposition 6. By  the corollary to Proposition 12 the distributional 

derivative ~/~=~(~3~0)/~$=~3~0/~5 would be a locally finite measure which is nontrivial 

because the atoms are disjoint (if there are enough cusps). 

This is impossible if y~---0 (a.e.). We conclude there are no more than 5N cusps besides 

the one whose orbit contains 0 and oo. 

As in Theorem 1 we subtract  5 from this upper bound by  adding the space of 4th 

degree polynomials to the space generated by  the yJa(~). Q.E.D. 

Addendum. (1) The argument above shows more generally that  the number  of cusps 

of F is finite if 

(i) the domain of discontinuity satisfies Dr/F is a countable union of finite type 

Riemann surface, 

(ii) there is no wandering set of positive measure in the limit set, 

(iii) the cohomology group H 1 (P, 4th degree polynomials) is finite dimensional. 

(2) A homological argument shows a 3-manifold with a finitely generated fundamental  

group and a contractible covering space has only finitely many  topological ends. (By Scott 

there is a compact submanifold with the same homotopy type. In  particular Hu(M, Z) is 

finitely generated. But  if the number of ends is/~ § 1 the rank of H~ is at least/c.) 
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