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In this paper we prove that B(), the space of all bounded linear operators on a
Hilbert space, does not have the approximation property {abbreviated throughout AP).

The first example of a Banach space which does not have AP, was given by P. Enflo
[2]. Following the work of Enflo, several other counterexamples to the AP have been
constructed.

B(3) is the first Banach space appearing naturally in analysis which is proved to
fail AP. B(H) is also the first known example of a C*-algebra without AP. Our result
implies, of course, the existence of a separable C*-algebra without AP (cf. Corollary on
p. 92). Approximation problems in the context of C*.algebra theory have been considered
by several authors (cf. [1], [4], [5], (8], [9]). Let us mention two of these results:

In [4], U. Haagerup proved that the C*.algebra generated by the left regular re-
presentation of the free group on two generators, does have the AP. For some time this
C*.algebra was a candidate for a “natural counterexample” to the AP.

In [9], S. Wasserman proved that B(3{) is not nuclear, thus failing the “completely
positive approximation property’”’. The latter property, much stronger than AP, is a
C*.algebra analogue of the AP.

Let us now briefly describe the contents of the present paper. It is divided into 5
sections.

In Section 1 we present a criterion for a Banach space not to have the AP. This criterion
is a modified version of Enflo’s original one. We show how it is related to the ideas of
Grothendieck [3], using the tensor product notation, which was originally used in [3] for
the purpose of AP but has been neglected since. It seems to the author that the use of this

notation makes an essential simplification in several computations.

(1) Supported in part by the Danish Natural Sciences Research Council.
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The proof of our main result requires a rather complicated construction which is
gradually presented in Sections 2, 3, 4, 5. In our presentation we apply a “gliding hump”
approach of repeated reduction of the main problem at hand to a number of “technical
lemmas” which are proved later on. The whole construction is geared specifically to B(H).

A preliminary exposition of our result appeared in [7]. The presentation of [7] is

perhaps more heuristic than the present one.

Acknowledgement. During the initial phase of work on this paper the author benefited
greatly from the cooperation of Joram Lindenstranss. I am indebted to him for numerous
stimulating discussions.

I would also like to thank J. S. Szarek and G. Pisier for their critical comments on

the earlier versions of this paper.

Notation. Given a set A, 1, denotes the indicator function of 4, |4| denotes the
number of elements of 4 (if A is finite); |2| denotes also the absolute value of a complex
number z.

A partition of A4 is a family of pairwise disjoint sets, which cover 4.

If H is a Hilbert space, then B() denotes the space of (bounded, linear) operators
from U to ; otherwise, the space of bounded linear operators from a Banach space X to
a Banach space Y will be denoted by L(X, Y).

Given a sequence X, X,, ... of Banach spaces, (X;®X,®...), denotes their /,-sum
(for the notation on Banach spaces, cf. [6]).

We shall also use the following tensor production notation:

Let X, Y be Banach spaces, X® Y denotes the algebraic tensor product of X and Y;
X & Y denotes the projective tensor product of X and Y, i.e., the completion of X®@ Y

in the norm

def .
1€l = inf {3 l2all 2all: & = S 2,09,

For a bilinear form & on X® Y we denote
€llv =sup {|é(, )|: x€X, y€Y, |l«|| <1, |ly|| <1}
To every £€ Y* & X we assign a functional &, on L(X, Y) defined by

Ex(T) =2 yn(Tw,) for TEL(X, Y) (0.1)
where £=3 yF @,
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Section 1

A Banach space X is said to have the approximation property (abbreviated AP) if
the identity operator on X, denoted Iy, can be approximated uniformly on every compact
subset of X by finite rank operators.

Let us recall briefly the approach of Grothendieck [3] to the AP. We find it convenient
to use the tensor product notation, as used in [3]; otherwise our presentation follows
closely that of Lindenstrauss and Tzafriri ([6], Chapter 1.e).

Let X, Y be Banach spaces. Let us denote L=L(X, Y). In L we have the locally

convex topology 7, generated by the seminorms
7l = sup {|| T=||: w€ K},

where K ranges over all compact subsets of X. Grothendieck discovered that the
dual space (L,7) can be identified with ¥Y*$@X by the natural isomorphism
EEY*QX—~E,€ (L, 7) where &, is defined by (0.1) (for the proof, see [6], p. 31).
Now, let X =1Y; for B€X*® X let us denote
trf=Pulz) (=2 @ulx,)if f= E Pa®T,)-

By the Hahn-Banach theorem, X does not have AP if and only if there exists

BE(L, Ty = X*& X such that
trf=1, (1.1)

Bu(T)=0 if 1k T=1. (1.2)
Since every one dimensional operator on X is of the form 2*®x with 2*€X*, x€X,
(1.2) is clearly equivalent to
sup {f4(2*®a): [ <1, [|=f| <1} =0.
It is easy to see that the last supremum is equal to |||, . Therefore, (1.2) is equivalent to
I8llv =0. (1.3)

In other words, X has the AP if and only if the formal identity map from X*& X into

X*® X is one-to-one.

Remark 1. A u: X—Y is called approximable if it can be approximated uniformly on
every compact subset of X by finite dimensional operators. The above argument shows

that v is not approximable if and only if there exists a §€ ¥* & X such that

Bu)=1 and |B|, =0. (14)
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Remark 2. Suppose that B€X* & X satisfies (1.1) and (1.3) and let =1 ¢,®x, be a
“good” representation of B, i.e., >, ||@.|| [|2,]| < c°. Then every subspace of X which contains
all z,’s fails (obviously) the AP.

COROLLARY (of our main result). There exists a separable C*-algebra without AP:

take the C*-algebra generated by the corresponding x,’s from our construction for X = B(H).

Let us now present Enflo’s idea leading to his construction of a space without AP.
It can be seen as a development of Grothendieck’s idea (although, as is apparent from [2],

Enflo discovered his new approach to the AP independently of [3]).

The Enflo’s criterion. Suppose that there exist §,€X*Q X for n=1, 2, ... such that
Qtef,=1 for n=1,2, ..

(i) ”5:;“\/ -0 as n->oo

o0
(111) 21 ”ﬂn - ﬁn+1” A< oo
Then X does not have the AP.

The proof is immediate: let us define

ﬁ=ﬂ1+ nzl(ﬂnﬁ-l_ﬁn): iggﬂn

Then B€X*& X, by the first equality and by (iii) and it satisfies (1.1) and (1.3), by the
second equality and by (i), (ii), respectively.

In spite of formal similarity, conditions (ii), (iii) are much easier to handle than the
condition (1.3): condition (1.3) is, in a way, an extrinsic condition, depending on the
whole space X rather than on f alone. Consequently, it is very difficult to control. The
corresponding condition (ii) is usually quite easy to control. To illustrate this let us look

at a typical situation where
N
B =N—1j§1y;!‘®yj with  ||y7|| = lgsll =97 (y;) =1 dor j=1,..,N

(for some N which depends on # and goes to oo with n).
Using a very simple estimate (4.5), p. 103, we see that
I

N

<

2 &Y
jo

1Bl < N~ max
|ei|=1
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Thus, unless || 21 &,4;|| ~ N for some choice of signs ¢,, then ||,/ is small. In concrete
applications we usually obtain || 371 ¢;4,|| =0(N) quite automatically.

Therefore, the whole difficulty is usually concentrated in the condition (iii). Here the
problem is intrinsic, i.e., it is enough to exhibit a single representation 8, —f,.1 =2 ¢, ®%,
which is “good”’.

The rest of the paper is devoted to the construction of a sequence 8, € B(#)*& B(H),

satisfying the conditions (i), (ii), (iii).

Section 2

In this section we shall define a Hilbert space # and g, € B(H)* & B(H).
Notation. Let A be a finite set. We define the measure u, on 4 by
pal{a})=14|1 for every a€A.

Let us denote Ly(4)=L,(u,). For B A we denote by pp the projection in L,(A4)
defined by pgf=f-15.

By M(A) we denote the set of all A x 4 matrices. For o, €4 we denotee, s=1,,® 14
(i.e., it is the matrix which has 1 on (e, §)-th place and zeroes elsewhere). We denote also
M(q)=M({1, ..., q}). We identify M(A) with the algebraic tensor product L,(4)®L,(A4),
in the usual way. For x € M(4) let

"x”w = ”x"LM)éLe(A)’ =l = ”96"1,2@)@2(,4)-

We shall denote M(A)=Ly(4)®Ly(4), M(A) - Ly(A)® Ly(4); let us recall that
Ly(A)®Ly(A) is naturally isometric to B(L,(A)) and that L,(4)&Ly(4) is naturally
isometric to B(L,(A4))*.

For an € M(A4) we shall denote by z and g the corresponding elements of B(L,(4))
and B(L,(4))* respectively.

We shall use the following ad hoc definition.

Definition. Let x € M(A) and y € M(B). We shall say that & and y are strictly equivalent

if one can be obtained from another by applying the following four operations:

(1) permutations of rows and columns,
(2) multiplication of rows and columns by numbers of absolute value one,
(3) deleting some rows and columns consisting entirely of zeroes,

(4) transposition.

Needless to say, if « and y are strictly equivalent, then ||z|,= |||, for p=1, .
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Now we pass to our construction.
Let K, K,, ... be some finite sets (to be specified later on). Let yu denote the product
measure 4 = @51 fx, on | i1 K,.

Let us denote

B — B(Ly(u).
We define  as the Hilbert sum of countably many copies of the space Ly(u), i.e.,

H= (Lz(ﬂ)@Lz(:“)@ )2

The I ,-sum (BB ...),, is embedded in a natural way in B(}). Formally, given a sequence
21, 22, ...€B such that sup ”x""3< oo, we define ®y.1 "€ B(H) by

0
(&) Gt )= @ hoatf
Obviously we have
@ a"
n=1

=sup [|2"||s. (2.0)

B(3#)

Moreover, (B@B®...),, is complemented in B(H) by the natural projection R, the restric-
tion.

Let N denote the set of natural numbers, let U be a fixed free ultrafilter in N. Given
a sequence ¢, ¢2% ...€B*, we define Lim,¢"€B()* in the following way: let
PE[(BO®BD...)]* be defined by

o0
¢( & x") =lim ¢"(z");
n=1 nel
we set then
Lim, ¢"= R*¢.
Obviously,
| Lim,, ¢"|| g+ < lim sup|/¢”||g+- (2.0)*

Now we proceed to define 8, € B(H)*®@ B(H)forn=1, 2, .... Let us denote D, =K, x ... x K,,.
For a€ D, let us define the projection 7, in Ly(u) (or in Ly(D,) for k>n) by

T,=p for n<k< oo,

k 3
{ie TI Kp:Qi....ig)=a}
m=1

Given a € D,,, b€ D, let us define

Qup® =7z, for z€B,
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and given !, % ...€B and ¢!, ¢2, ... €B* we set

@8

Ta, b

Qa.bxk’ (pa.b:Lim Qz.b(Pk:

k=1

ﬂnzﬂn(xk’ <Pk) = Z P, 5%, 6

a,beD,

and

‘We shall also denote
x’;,b =Qa.bxk: ‘P’ci.b ’—‘Qj,b‘Pk-

It still remains to define the «*, ¢*, which will be used in our construction.

We shall first formulate a lemma which is the main combinatorial ingredient of our
construction.

Let ¢ be the square of a natural number, say g=m?. A partition V of the set {1, ..., ¢}
will be called regular if |V|=m and if every member of V has m elements. Let §, be a

fixed regunlar partition of {1, ..., ¢}.

Lemwma 1. Let g be a number of the form 2% where p is a natural number.(*) For j=
1,2, ..., ¢* there exist regular partitions V§ of {1, ..., ¢} and Hadamard matrices v]€ M (q) so
that for every SE€S$,,

|psvfpally =42  for every A€EVY, (2.1)
|50 P allco <1532 for every A€V with i ==j. (2.2)
Moreover, ,
q q
> v¥a,b)=¢"%= > v{(b,a) for every a. (2.3)
b=1 b=1

(by an Hadamard mairiz we mean a square matriz whose all entries have absoluie value one

and whose columns are mutually orthogonal).

We postpone the proof of this lemma to Section 5.

Let now ¢, be a sequence of natural numbers such that:

g, are of the form 2% where p is a natural number, (2.4)
g, goes to oo faster than any power of n, (2.5)
Qnia <g¢> for every n. (2.6)

We set K,={1, ..., ¢x} x{1, ..., ¢,}. By (2.6}, |K,| <gz, therefore we can find |K,|+1
Hadamard matrices v§* and vf for j € K, such that they satisfy the conditions of Lemma 1

for q:=q,.

(*) Clearly, this p is unrelated to the p of (2.1).
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For i€ K, we denote its coordinates by ¢® and ¢', respectively.

From now on 1, and 5, will always denote elements of K,,.
Let us set
wn(7’n7 n+1; jn’ jﬂ'i'l) = qgl vg,?ﬂ(ﬁw 7’2) v}z;.;.l(":%’ 72);
Ynlins Gn) = g™ 6§, 88) 643, n)-
Notice that
|92llc =1 for every m.

For n<m let us define u, ,€M(K,) by

n—-1 m
U, (T, J) = kl:Ilwk(ik, Ut 1} i jk+1)k];[ Yiel s ) -

By u™ let us denote the product measure p™ = Q541 fig, o0 [ [roms1 K,
Clearly, y, is an isometry of L,(K,) onto itself. Moreover, by (2.3), ¢,(1)=1 (here 1
denotes the function constant 1), consequently, the infinite tensor product ®%.,, ¥ is

well defined and thus defines an element of B(Ly(u™)):

ndef @
yr = Y
k=m+1
We have, obviously,
9" | sczagomy = 1. (2.7)

Let us pick for m=1, 2, ... a £"€ B(Ly(u™))* which is a Hahn-Banach funectional of y™, i.e.,
E"y™) =1, ”EmHB(Lz(Hm))* =1 (2.8)
Now we define the desired 2, 3, ... and ¢, ¢2, ... by
& =t w®Y" ¢ =| D] Mt m DE™,
where we make the natural identifications
B =M(D,,) @ B(Ly(u™),
B* = M(D,,) & B(Ly(u™))*.
Let us notice that we have, for every n=>m,

2=u, Y. 2.9)

As follows from the proposition on p. 102, ||%p allew=1, ||%m.xll1=|Dx| and therefore

@m-1 2™ and Lim,, ¢™ will be well defined.
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Section 3

In this section we shall concentrate on the crucial condition (iii). We want to prove

that, for every »,
182 —Brsall » < 242V, (3.0)

which, in view of (2.5), clearly implies (iii).
From now on # is fixed.

In proving (3.0), it will be convenient to introduce an intermediate step. Let

y= Z (pa,c®xa.0'

a€K, ceK, 1

We shall prove that
”ﬁn_7" A S q;1/32 and ”V _ﬂn+1” A S q;1/32~ (3.1)

Let us first notice that, for @, b€ D, c€D, 4,

Pav = Z Pavhs Pae= z Pa,n;c
heKy 1 heKy 1
(here and everywhere else b, b denotes the element of D,,,; whose coordinates are by, ..., by, h.
The same about a, h ete.).
Therefore, if we denote for a, b€D,, c€D, 1, g€K, .,

Ya:v,0= Z Za;o,hy Ya,gic™ Z Lo, nic >
h¥g,he K, 4 h¥g. hek, 1
we obtain
ﬂn_'}/= Z Po;c@Ya,c»

a€D,,ceDp 1

y_ﬁn+1= Z Pa;c ®Ya;c -

a,ceDy
Now we shall make an appropriate grouping in these sums. In the sequel let:

gEK, 1, 1<e,f<q,, A4,8<{1,..,¢,}, « PBED,,
and let us denote

6=6g.e.f,A,S.a,£: z Do, ®Yq, by

(a,b)eH

6,=5;.e,f,A,s,a,ﬂ: Z Ca, b @Ya,vs

(a.byeH'

7 - 812901 Acta mathematica 147. Imprimé le 11 Decembré 1981
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where

def
H=H0.e.f.A.S,a.ﬂ = {(a? b)e‘Dn X Dn+1: (ab LRXE] an—l) =, (b]_: ey bn—l) /37

0% = e, b} =, ah €8, BLE 4, bris =g},

, , det
H =:Hg,e,]‘,A,S,at,ﬂ = {(a’a b) €Dy 1 X Dy (b17 veey bn~1) =, (al, cves Op_1) =ﬁ:

b =e,ah=1,b1€8, ah€ 4, ani1=g}.

The proof of (3.1) will be based on the following two lemmas.

LeMma 2. We have

IBla<ll 2 @asllaaell 2 #aollsans
(a,b)eH (a,0)eH

”5'”A<“ > ‘Pa;b"Bm)*" > ya;b”B(w-
(a,b)e H’ (a.b)eH

Let us denote
(Dm: Z (Pg‘.by (D:n= z @zﬁb:

(a,)eH (a,bye H’

sz Z yzln.b: Y;nz Z y;n,b'

(a,b)eH (a,b)eH

LrvMma 3. We have
1O,lles = | Pnlle: < (@1 .- @) P gaiallps i pally  if m>m, (3.2)

1.+ Qn)_l max ”pSv;IL”PA”co if m>mn,
ha+g

| Znlle =1 Yaulls = (3.3)

(¢ - qn)‘lllpsvg"p‘q"w if m<n.
With these estimates we easily obtain (3.1) and hence (3.0): by (2.1) and (2.2), if A€V
and S€$,,, then
”(Dm“B* = ”q)m”B* < (91 . qn)‘gq;-%l qim for m >n

1Ylle=1Ynlla<(gy..-q.) " g for all m.

Since
Z Pa, 0= LlInm (Dm: Z Pap= Lim,, (D;m

(@, b)e H (a,b)e H’

Y ©
Z Yo, 0= 6_)1 Ym’ z Yo, 0= ®1 Yo,

(a,byeH (a,b)e H’
Lemma 2 and (2.0), (2.0)* imply that for every tuple (g, ¢, f, 4, S, «, B) such that

g€K, 1, 1<e[<q, A€Vy, S€f,, «p€D,,, (3.4)
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we have

) @ <
180.e.7,4.5.. 4ll } (oo ) h V2 g2y (3.5)

I'éé.e,f.A.S,a, ,3”/\ <
Let us now observe that
Bo=v=20crasess ¥V=Pr1= > 6;.e.f,A.S.a.ﬂ

where the summations range over all tuples satisfying (3.4). The number of such tuples is

obviously equal to

1/2

| Knsa] ¢, 60 2% 2% Dua| - | Do = gRsa- G- (91 - gu1)®

A glance at (3.5) convinces us that (3.1) holds.

Proof of Lemma 2. Let E denote the set of all functions from D, into {—1, 1} and let
F denote the set of all functions from D, ,, into {1, 1}. We have the following identities:

=|B[E S 2 [(Z &(@) 1(6) Pa:s.0) ®(Z &@) 71(0) Ya:v.0)] (3.6)
€€E nekE
o' =B F|” 1“2 EE[(Z a)N(0) Pa.0:0) @ (HZ &(@) 7(0) Ya.0:0)] 3.7)

(we adopt here the following notational convention: we write

> instead of > ;> instead of .
H {(a, b):(a:b,9)e H} H {(a, b):(a, g: )6 H'}

These formulas are simple applications of the invariance of trace. For example

ngngF[Z “)ﬂ(b)%gb) (Z, 8(0)77( ycgd]_‘ % g Z n(b)n(d))(pagb@ycgd
" (3.8)
Notice now that
_ }E’f if a=c, _ }F} if b=d,
2,500 —{ 0 it ate, 07D "{ 0 if b+d.

Therefore our sum in (3.8) equals

’Ei IFI g P, 0.6 @Y. 00

which gives (3.7). The proof of (3.6) is completely analoguous.
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To complete the proof we shall show that, for all e€E, n€ F,

"g &(@) 1(b) Pa, g: || pew = ”g P gi0l| B
”g 8(“)’7(b)ya,a:b”3<u): "g ya,a;b”B(u)

and that analoguous formulas hold in the case of H.
This is true because of “strict equivalence”. More precisely, let us define operators
T:B—=B, T, (B&B®...)u>(BEB&...), and T: B(H)—B(H) by

Tiz=( 2 ela)m)owo( 2 n(b)ms),

aeD, beDy 41
To(at, 22, ...)=(T,a', Ty 22, ...), T=T,oR.
Obviously [|7'|| =1 and we have

T(2 Ya.g:0) = Z &(a)1(b)Ya.s:0 and vice versa,
H "

T*(> Qo 0:0) =2 (@) (b)) Po.s:»  and vice versa.
=

I3

This gives (3.9). The case of H is completely analoguous.

Section 4
Proof of Lemma 3. Throughout this section let
»% =max (m, n+1).
For h€K, , let us define sets £, F= D, by
E={a€D, (.., 0, 1) =, ad=e, a,ﬁES},
Fo={b€D,: (by, ... by_y) =B, bp =1, bh€A, b,,; =h},
and let us put
Wy, = PgUpm, . Pry» w;z = Pp U, PE

(recall that w,, ,=wy ... Wy 1+ Yu ...+ y, — coordinatewise multiplication of matrices).
It should be clear that

®,=|D,|"0,®&", ®,=|D,| 0;®&", form>n,

Y,=(2 @)Qy* Y,=(2 w,)®y* forallm.

h¥g g

The following sublemma will be proved in the end of this section.
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SusLEMMA 1. || 3 op)le<max |oyflo, || D @il < max joi)le
h+g nag hag h*g

(actually, equalities hold).

Let us notice that w,=(w,)* (transposed). We also have ||&"|au,qumy=1 and

llo7 || czagury = 1. Thus we get
[®@nllse = I Pinllme = Don| 7 o]
)l = | ¥os = max
Now we proceed to compute the norms of e,’s. It will be convenient to consider three cases:

Case 1°. m>n. Let us denote for I<m

m—1

OVt eves b3 D1y oees ) = IIz Wiy Ter15 Tis Trei 1) Yo Jim)- 4.1)
o=

Let us now define 2, EM(K,,; % ... x K,;), s,€ M(K,) and a constant C by

. . . . via:+1(f, 6) 0:2”+1(7;n+1, ey im; jn+1; envy 7m) lf jn+1=k
xh(@n+1, eey 'l'm; 7n+1, [EXS] 7m) = 0 otherwise
.. Wn_1(%n-1, tn Brt, Jn) Ui(ins ) if in=e,jn=f, i1 €S, €A
sh(zn, In) = . (4:2)
0 otherwise
n--2
C= Hl Wi, %aer1; By Prsn) T -
fo=
It is easy to see that
o, = Oty g ®5, 2%y, (4.3)

Theretore {|wy|l,=|C|||ss]l» |2:]l, for p=1, co. The inequalities (3.2) and (3.3) follow now

immediately from the following two sublemmas, proved at the end of this section.
SUBLEMMA 2. (|24l =1, |[@a]l1 <(@nsz - gm)®.

SUBLEMMA 3. s, is strictly equivalent (in the sense of the definition on p. 93) to the

matrix:
def

b = %7«11 - Ps VPP,
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Case 2°. m =n. This time we define £, € M (K, ,) and a constant D by

yn+1(in+17 jn+1) if jn+1 = h:

0 otherwise

Ch('én+1, jn+1) = {

n—2

D= kHl W0y G+ 15 B Bresn) - v8(f, €) - g3
We have now (here s, is defined by (4.2) with A =0)

oy = Dey s @8R E),. (4.4)

Now we see immediately that ||{,[,=1 and (3.3) follows immediately by Sublemma 3
(in the case £k =0).

Case 3°. m <a. Here everything is simpler. Let us define ¢ € M(K,,) and a constant E by

o) = v(’,ﬂ(iﬁ, iy if i9=e, j}, =/, L€S, 7‘2 €4
n In 0 otherwise
m-1 n—

1

1
E= kITl W%, %15 Brs ﬂlﬁ-l)k Yo, Byver(f, e) - gzt

We have o, = E¢, s;Q06®C, and (3.3) obviously holds.
To complete the proof of Lemma 3, we should prove Sublemmas 1, 2, 3. We shall
need the following

ProrosIiTION. The mairices OF, defined by (4.1), are orthogonal for every l<m.

Proof. For I <n<m let us define I', e M(K, x ... x K,,;) by

-1/2 «q 7.1 0 - <1 -0 . .
. .. . q vy (7, tn) if 4= In and ¢,= % for k=+n
P‘n(zl,-..,'lm;yl;-.qjm):{ " +1 y

0 otherwise.
We also define T€ M(K, % ...x K,;)) by

. L . Ynlbms §)  if to=7: and jr=ip forl<k<m,
Ty eyl Trs ones Im) = .
0 otherwise.

We see that I', is a direct sum of orthogonal matrices ¢; 12 vi ., therefore I, is orthogonal.

For similar reasons, 7' is orthogonal. On the other hand, we have the identity
O =T,0ly0...0 0T oIl oIt _40..0I%,

therefore O is also orthogonal.
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Proof of Sublemma 1. We shall use the following general fact which is very easy to prove:
Let X, Y be Banach spaces, let  xy, ..., 5, €X, yy, ..., €Y. Then

12 2@l xer< T‘??’;’l‘ 12 &l m?x ll;1l- (4.5)

1

A glance at the formulas (4.3) and (4.4) convinces us that it suffices to show that

| > enznlloo = max |2yl for every |g,|=1. (4.6)
h¥g heg

To prove this, let us notice that x ¥ 3., ¢,2, is strictly equivalent to the matrix

def
0 = 0n+1°p{:ieK,,+1x...me::i,,+1$g}'
Indeed, z is obtained from O by multiplying its ith row by »{» _(f, ¢) and its jth column by
Similarly,

81n+1'

. . . def
x, is strictly equivalent to O, = 0719 Dije Ky 1% I 4 1=H1 (4.7)
Now, since 07+, is an orthogonal matrix (by the proposition),

[0%s1lle = |Onlle = 1, (4.8)
which implies (4.6).

Proof of Sublemma 2. The first equality is contained in (4.8) and (4.7). For the norm

|l =]|On))1 We use the following obvious estimate:
for every matriz x, ||x|, < sum of the norms of the columns of x. 4.9)

In our case, the last number is (¢,,q .. ¢n)2-
Proof of Sublemma 3. The matrix s€ M(K,) defined by

. ofr(in, ja) if in=e,jn=f, i1 €8, €4,
8(tn, Jn) = .
0 otherwise,
can be obtained from ¢, by permutations of rows and columns and by adding some zero
rows and columns, whence s, is obtained from s by multiplying its i,th row by the number
ofr-1(B3_1, %n-1) and its j,th column by the number vf*-1(ak_y, f3_1), all these numbers

having absolute value 1.
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Seetion 5

Now we are going to prove the remaining conditions (i) and (ii) as well as Lemma 1.
Condition (i). First let us notice that, for a, b€.D,,
o, 5%, 5) =0 unless (a,b)=(c,d). (5.0)
Indeed, we have @, ,(%,4) =limyey 0n. 5 (0., 4 #¥) and

(00, » ") if (a,b) =(c,d)
0 otherwise.

0 o PX(0c, a ¥°) = @F(m, 7, P 70, 70,) = {

This gives (5.0). Now we can write

ﬂns z (pa.b(xa,b)z( z (pa‘b)( z xc,d)=}ci£¢k(xk)-

a,beD, a,beD, c,deD,

By (2.7) and (2.8) we have

¢H(@") = | Dy a2, 1) E°9) = 1,
which proves (i).

Condstion (ii). We are going to prove that

I bz &(a, b) @q ollsan <1 for every |e(a, b)| =1, (6.1)

a,beD,,
ll%a.olls = (@1 - ¢z)*  for every a, bED,. (5.2)
By (4.5), this yields ||,/ zas¢s00 <(4; - ¢,)! and obviously implies (ii).

Proof of (5.1). By (2.0)*, it suffices to prove that || e(a, b)@%, o|[s+ <1 for every k>n.

For a, b€ D, let us denote W% , =z, u, 7, thus
2 &a, 0)gi = Dy (3 ela, b) W5, ) ®E,

12 e(@, )@t ollme = | Diel 7|2 e(@, b) W ol

Since all the entries of the matrix > (e, b) W%, have absolute value (g; ... ¢,)~*, each
column of it has norm 1. Consequently, by (4.9), || (e, b)) Wi 5|, < | D;| and this yields
(5.1).

therefore

Proof of (5.2). We shall prove that for every m,

"x(rln b“B = (QI Qn)_l’ (53)

which obviously implies (5.2), by (2.0). We shall use the matrices O as defined by (4.1).
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If m<n, then 23 ,=C¢, ,®y" where

m—1 n

C= Hl Wy, Are 13 Bygs Brer1) 11 Yl O, by
k= k=m

and (5.3) follows, because |C| =(gy ... ¢,)™% |l€a.s]l0=||#"|=1-
It m>n, then 27, =D ¢, ,@x,,,®y" where y, ,€M(K, , x...x K,) and the constant
D are defined by

xa,b(in+17 ooy /er jn+1’ ey 7m) = wn(a'na 7:n+l; bn: jn+1) 0;7,"+1(':n+1y RS zma jn+1> sy 7m)>
n—1
D = [T wy(ag, @s1; by, bsa).
k=1

The argument of the proof of Sublemma 3 in Section 4 shows that y, , is strictly equivalent

to gt Ofyq, thus {|ja.slleo=g+"- Since | D| =(q; ... ¢,_;)™?, we obtain (5.3).
Proof of Lemma 1. The proof will be based on the following combinatorial

SuBLEMMA 4. There exist regular partitions V{, =1, ..., ¢* of {1, ..., ¢} such that
|ANB]<q"™® for every A€VY, BEV with i =j. (5.4)

Proof. Let K be the (abelian) field of order 27, i.e., K =GF(27). We identify {1, ..., ¢},
as a set, with the vector space K'%. It is a standard fact that, given a 2P-dimensional
vector space V over a field of order r, there are at least »** different P-dimensional sub-
spaces of V. (To see this, let us choose a basis for V, say e, e,, ..., €, and to a tuple j=

(Jo.pt 1 <o, f<P) with j, ;€K let us assign the P-dimensional subspace of V,
detf o
E, 2 span { D Juplptepiga=1, ...,P}.
B=1

It should be clear that B,=E; only if ¢=j and there are obviously +** different j’s like
above.)

In our case this means that there are at least 2%%7—¢? different 8-dimensional sub-
spaces of K16, say K,, E,, ..., E,. Let V{ be the partition of K into 8-dimensional hyper-
planes parallel to E;. Then V{ are, obviously, regular partitions of K*®={1, ..., ¢}. If
A€V{ and BEV], then either AN B= or AN B=E,;N E;+x for some z. In either case

we have
]AﬂB| <|E,.nE,.|.

If i=Fj, then E;=+E;, and thus dimg (£, N E;) <7 and therefore | E; N E,| <277 =¢"%. This
implies (5.4).
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Now we are going to construct a Hadamard matrix w € M(g) which has the following
properties:
for every 8, U €3, the matrix p;wp,, has rank 1, i.e., there exists
a vector o ;; such that every non-zero column of pywpy is of the (5.5)
form z-og ; where |z| = 1. Moreover,
ogprogp it U=T.
a
121 w(a,b) =1 =b§1 w(b,a) for every a. (5.6)
Let us first notice that, without loss of generality we can take as §, any regular partition
of {1, ..., ¢}. It will be convenient to regard {1, ..., g} as {1, ..., m} x {1, ..., m} (here m = I@:
2%7) and to let $, to be the partition of {1, ..., m} x {1, ..., m} into the sets

deﬁf{j} x{1,...,m} forj=1,...,m.

To construct w, let us start by defining matrices U, € M(4"):

1 1 1-1
1 1-1 1
U,= 121 1 1) U,=0,0U0,®...0U,.
-1 1 1 1 r times

The matrix U,, is an m x m-matrix. We set now

W(ty, 95 I35 J2) = Usplis, 72) Unplta, J1)-

We see easily that w fulfills (5.5) and (5.6).

We shall also need the following, entirely trivial, remark:

If 4 and Z are arbitrary regular partitions of {1, ..., ¢}, then there exists

a permutation g of {1, ..., ¢} which carries A4 onto Z, (8.7)
i.e., such that for every 4 €A, p(4)€Z.

Now we define of. Let V{, j=1, ..., g%, be the partitions of {1, ..., ¢} from the sublemma
and, for j=1, ..., ¢*, let g; be a permutation of {1, ..., ¢} which carries V{ onto $,. We define
vf by

vf(e, ) =wle, o,1),
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i.e., 9§ is obtained from w by applying ¢; ' to its columns. It is evident that (2.3) holds. Let
us check (2.1) and (2.2). We shall use the following standard facts: Let z, y € M(Z), where
Z is any finite set. We have:

if rkz=1, then |2|;=|2|o=(2 |, b)|?)2, (5.8)
a,beZ

if D(x) L D(y) and R(x)1 R(y) (where D, R denote

the domain and the range of an operator, respectively), then (5.9)

2+ 9lloo = max (|| e, |9]}-o)-

Let S€§,, let =1, ..., ¢* be fixed. We see that, for every B€EV}, psvfpy is obtained from
DsWP,p by a permutation of columns. On the other hand, g;(B)€S;. Therefore, by (5.5),

rk psvips =1 for every BeV] (5.10)

and, moreover
R(psvipp) L B(psvfpc) if B, C€V], BC. (5.11)

Now, (2.1) follows from (5.10) and (5.8).
Let i=1, ..., ¢ be fixed, let 4 €V{. For every B€EV] let us denote

Up = PsViPans
We have, obviously,
PsVipa= 2 Up.

Bev}

By (5.11), Ruy L Rugif B==C. Since, obviously, we also have Duyg 1 Du, it B==C, by (5.9)

we obtain

"ps o] pA“w =max “'”'B“oo-
Be V;I

Clearly, up has ¢*/2-|A N B| non zero entries, all of them of absolute value 1. Therefore

by (5.10),
y ( ) uuB”oo :q1/4IA n Blll2‘

If now i=j, then, by (5.4), |4 N B| <g'™® and this yields (2.2).
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