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0. Introduction
0.1. Preface

(1) Preface. In this paper we prove de Boor’s conjecture concerning the Lo-spline pro-
jector. The exact formulation is given in §0.2. Since the proof is rather long, it is divided
into three chapters, with an outline given in §0.3. For the same reason, all the comments
(historical notes, motivations, analysis of other methods, etc.) are moved to the end of
the paper. The proof is almost self-contained, we cite (without proof) only some basic
spline properties and determinant identities, and two somewhat more special lemmas

(accompanied by known simple proofs).

(2) Notation. There is some mixture of notations. We use the familiar 7,7 both as
single and multivariate indices, and we use p as p:=k—2 when dealing with k&, the order
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of the splines, while in other cases p is just an integer.

(3) Acknowledgements. I am grateful to W. Dahmen for giving me the opportunity
to work at the RWTH in Aachen, and for his constant inspiring encouragement of my
studies. Thanks are extended to H. Esser, who took a lively part in discussions and
provided many constructive suggestions. It is a pleasure to acknowledge that C. de Boor,
in spite of some consequences for his finances, took an active part at all stages of the
proof’s evolution. To him I am obliged for a lot of hints and remarks, in particular, for

essential simplification of some of my arguments and notations.

0.2. Formulation of Theorem 1

(1) For an integer k>0, and a partition
A:=An I:{a=t0<t1<...<t1\[=b},

denote by
S:=8,(A):=P(A)NC*2[a, b]

the space of polynomial splines of order k (i.e., of degree <k) with the knot sequence A
satisfying k—1 continuity conditions at each interior knot.
Consider Pg, the orthoprojector onto S with respect to the ordinary inner product
(f.9):=]; fg, e,
(f,s)=(Ps(f),s) forall se8S.

We are interested in Pg as an operator from Lo, to L, i.e., in bounds for its norm

1Bl

[|Psloo := sup
T Ml

In this paper we prove the following fact.

THEOREM 1. For any k, the Lo -norm of the La-projector P onto the spline space
Si(A) is bounded independently of A, i.e.,

Slip | Ps,(a)lloo < Ck- (0.2.1)

This theorem proves the conjecture of de Boor of 1972 made in [B2], see also §3.10
for details.

Earlier the mesh-independent bound (0.2.1) was proved for k=2, 3,4.

For k>4 all previously known results proved boundedness of ||Ps|s only under
certain restrictions on the mesh A. (See §4.1 for a survey of earlier and related results.)
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(2) Some of the earlier restrictions on A included spline spaces with multiple and/or
(bi)infinite knot sequences. Therefore two corollaries of Theorem I are worthwhile to be
mentioned.

The first extends the result to the splines with a lower smoothness, the so-called
splines with multiple knots. For k and A:(ti){)v as given above, we introduce a sequence
of smoothness parameters m:=(m;)Y where 0<m;<k~1, and denote by Si(A, m) the
space of polynomial splines of order k with the knot sequence A which, for every i, have
m;—1 continuous derivatives in a neighbourhood of ¢;. If all m; are equal to m, then

Sk’m(A) =8Sx(A, (m,...,m)) = Pk(A)ﬂCm‘_—l[a, b, Sk(A)=Skr_1(A).
COROLLARY 1. For any k,

sup “PSk(A,m)”oo < Ck- (0.2.2)
A,m

’

The second corollary extends Theorem I to the splines with (bi)infinite knot sequence
A :=(t;) and with smoothness parameters m..:=(m;). We denote the space of these
splines by Si(As, Moo).

COROLLARY II. For any k,

sup IIPS;C(Am,moo)”oo < ck. (0.2.3)

o0, Moo

0.3. Outline of the proof
The proof is divided into three parts.

(1) The first part (Chapter 1) describes the main ingredients of the proof.

Let (M,), (V) be the Ly- and the Lo,-normalized B-spline basis of Si(A), respec-
tively {see §1.1). Our starting point (§1.3) is the observation that if ¢ is a spline such
that

(Ao) 9€8K(A);

(A1) (—1)“sign(¢, M, )=const for all v;

(A2) (¢, M,)|>cmin for all v;
(A3) [[4lloo <Cmax;
Cmax

| Ps,.(a)lloo < di .

min

This is an analytic version of de Boor’s rather simple algebraic lemma (§1.2) on the
inverse of a totally positive matrix applied to the Gram matrix {(M,, Ny)}.
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Our main idea (§1.4) is the choice
pi=0"1 geSy_1(A), (0.3.1)

where ¢ is the null-spline of the even degree 2k—2 such that
o(t,}=0, v=0,...,N;

J(l)(to):U(l)(tN)ZO, l=1,...,k'—-2; (032)

O'(k_l)(tN) =1.

(k—1)!

The main claim, Theorem ® of §1.4, is that ¢ so defined satisfies the properties (Ag)—(As)
given above.

As we show in §§1.6-1.8, the choice (0.3.1) makes the most problematic property
(A1) almost automatically fulfilled and provides also (Ag) quite easily. To prove (As),
we use for the components of the vector

z,= (2, .., 220y 0. %a(”(t,,)~|h,,|l‘1_p, pi=k-2, (0.3.3)
(where |h,|:=t,+1~1t,), the estimate
|20 < e, ifIzp+l, v<SN—k. (0.3.4)

This estimate forms the content of Theorem Z in §1.9. The rest of the proof (Chapters 2
and 3) consists of deriving (0.3.4).

(2) In Chapter 2, we show that, for each v, the vector z, in (0.3.3) is a solution to
a certain system of linear equations and provide intermediate estimates for it.

The known linear equations (§2.2) connecting derivatives z, of a null-spline at the
neighbouring knots are of the form

2p41=-D(0,)Az,, v=0,..,N.

Here 0,:=h,/hy41 is the local mesh ratio, D(g) and A are some special matrices. For a
fixed v, this gives the equations

Bz, =2y, Cz,=2n,

with the matrices B’, C being products of A and D(gs) in certain combinations. Our
choice (0.3.2) of the null-spline ¢ provides the boundary conditions

20 = 0,...,0,z(p+1),...,z(2p+1) , ZN= O,...,O,1,z(p+2),...,z(2p+1) .
0:=( 0 0 ) N = N N )

P p+1
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They allow us to determine the vector z,, as a solution of the linear system of equations

r B'[p,:]
MZ,,:(O,...,O,I) s M= )
— Clp+1,:]

2p+1
where the matrix M is composed of the first p rows of B’ and the first p+1 rows of C

(see §2.2). We solve this system explicitly by Cramer’s rule,

ap+141 det MY
det M
and then apply the Laplace expansion by minors of B’ and C to both determinants.

) =(-1)

Some elementary inequalities yield then (§2.3) the first estimates:

C(p,i')
D« Al
|2u l = Ilré%)l( C(p+172,) ’

Here, J,J! are the sets of (multi)indices of the form

I=1,..,2p+1. (0.3.5)

J:={ieNP:1<i1<...<ip <2p+1}, Ji={icT:i; #1};
bold n stands for the index (1,2,...,n); i’ and ¢* are two different complements to i€ J!,
iU =2p+1, iUit=(2p+1)\{l},
and C(i, ) are the corresponding minors (see §2.1 for detailed notation).

The orders of the minors on the right-hand side of (0.3.5) differ by one. We use
some relations to equalize them and obtain (§2.5) the second estimate:

il
|Z(l)|<C maxC(p’l),
v Pier Clp, i)

Here i*€J is the index symmetric to i€J', i.e., i=2p+2—ip41s.

I=1,.., 2p+1. (0.3.6)

(3) In Chapter 3, in §§3.3-3.7, we find a necessary and sufficient condition on the

indices 7, j denoted
iXj, i,j€d,
for the inequality
C(p,7) < C(p,J)-
In §3.8 we verify that depending on [ the indices ¢* and i* satisfy this condition, namely
that
2=, L<p+1<y,
which gives
C(p,i') <, C(p,i*), I>p+1.

Combined with (0.3.6) this proves (0.3.4) and hence Theorem I

This part of the proof is a bit long and technical, and it would be interesting to find
simpler arguments (see §§4.3-4.4 for a discussion).



A PROOF OF DE BOOR’S CONJECTURE 65

1. Main ingredients of the proof
1.1. B-splines and their properties

As before, for k, NéN, and a knot sequence
A:{a=t0<t1<... <tN=b},

the notation
Sk(A):=P(A)NC*2[a, b]

stands for the space of polynomial splines of order k (i.e., of degree <k) on A.
‘The subintervals of A and their lengths will be denoted by

L=t tie), Mhyli=t -ty
Let A(’“):(t,-)f; Jr_kk;ll be an extended knot sequence such that
a=t_pp1=.=tg<t1<..<ty=..=tnyr-1=0.

By (N J)jv: __1k 41 We denote the B-spline sequence of order k¥ on A®) forming a partition

of unity, i.e.,
Nj(z) = N; p(@) = ([tj51, s i) — [0 oo irn—a ) (- —2) 571,

and by (M;) the same sequence normalized with respect to the L;-norm:

k
Livk =t

M;j(x) = Mj i (x) = k[t ..., tjae] (- =)= N;(z).

The following lemmas are well-known.

LEMMA 1.1.1 [B4, (4.2)-(4.5)]. For any k and any A%®), one has

suppsz[tj,tj+k], Nj}(), ZNj:l’ (111)
k titk
MJ($)= N]‘(JI), Mj(t) dt=1. (112)
Li+k—1; 4

LEMMA 1.1.2 [B4, Theorem 3.1). The B-spline sequence (N;) forms a basis for
Sk(A).
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LEMMA 1.1.3 [B4, Theorem 5.2]. For any k, there exists a constant »y, the so-called
B-spline basis condition number, such that, for any a=(a;) and any A,

i ol <[ Y e[ <llale (1.13)
j oo

LEMMA 1.1.4 [Schu, Theorem 4.53]. Any spline s€ Sx(An) has at most N+k—2
zeros counting multiplicities.

LeMMma 1.1.5 [B4, (4.6)].

M (z)=————, z€[titis1), i=0,...,N—1; (1.1.4)
' tit1—t;
k .
z’/,k(z):_—_——-t_ Tt [Ali,k—l(l')"A[i+1,k—1($)]a 7,=—k+1,...,N—1. (115)
i+k T Ly

We will need two more lemmas.
LEMMA 1.1.6. Let M;eS,(A) be the L,-normalized B-spline. Then
sign Mi(k—l)

)=(—1)"‘1, v=1,..,k. (1.1.6)

(titv—1tivy
Proof. Follows by induction from (1.1.4) and (1.1.5).
LeEMMA 1.1.7. Let I be a largest subinterval of supp M;=[t;,t;4x]. Then

IM¥ V()| = const > |hy |75, z€ (b, tis1). (1.1.7)

Proof. By induction. For k=1 due to (1.1.4) the lemma is true. Let z€1;. From
(1.1.5) and (1.1.6) we obtain
k

MV ()| = ——

k-2 k-2
tion—ts IMi(.k—l)(m) —Afi(+1’k)_1(x)[

k - -
= (M @IHME @)
1 - -
> oy Al Y = e ™

1.2. La-projector and the inverse of the B-spline Gramian

Consider Pg, the orthogonal projector onto Sx(A) with respect to the ordinary inner
product, i.e.,

(f,s)=(Ps(f),s) forall seSi(A).
For N'=N+k—1, let G be the (N'x N')-matrix

G={(M;, N} irr-
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LEMMA 1.2.1 [B1]. For any k, A, one has

IPs,a)llLee <IG e

Proof. Let f€ Lo, and Ps(f)=3_. a;(f)Nj;, so that for a=(a;(f)),

J

(Ga)i:=y_ (Mi, Ny)ay(f) = (f, Mi) =:bi(f)-

J

By (1.1.3),
1Ps(N)|2o < Nla(Hli»

and by (1.1.1)~(1.1.2),
1B/ ens == max |(f, M)l <1 fl| o max | Mill 2, = |l fll 2oc -
Thus

IPs(Fltes o Mol _ NG 0(F) e

sup I |G| o

”PS”oo:Sl;p ”f“Loo \Sl;pm— f “b(f)”loc

as claimed. 0

LEMMA 1.2.2 [B1]. The matriz G is totally positive, i.e.,
G(il,...,ip> 0.
j17 ~--7jp
LEMMA 1.2.3 [B1]. The matriz G‘l:z(gfj_l)) is checkerboard, i.e.,
lgi; V1= (=1)"* g Y.

Proof. Let Gj; be the algebraic adjoint to g;;. By Cramer’s rule,

det Gji

(=1 _ itq
g =0 g

and by Lemma 1.2.2 both determinants det G, det G;; are non-negative. O
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LEMMA 1.2.4 [B1]. Let H~' be a checkerboard matriz, and let a,be RN be vectors
such that Ha=b and

(a1) (—1)*signb;=const for all i;

(a2) min; [b;]>emin;

(23) llalloc <Cmax-
Then

c
H oo < 2
min

Proof. Let a,b satisfy (a;)—(a3), and let
-1._(p(=1) (=1, = it (-1
—(h‘ij )? Ihij I"(“l) ]hz’j .

Then

Jas| = (H"b) i-izh‘ Dby =37 1hG V| > min [ ZW &t

Therefore,

o += e as] > min |b;]-max 3 oy =min b1} o =
J

1.3. Analytic version of de Boor’s Lemma 1.2.4

Let acRY" and let @€ Sk(A) be a spline of order k£ on A that has the expansion
o= Z a;N;
J
Then, since G:={(M;, N;)}, one obtains

b; == (Ga); Z(M,,N)a, (M;, 9).

By Lemma 1.1.3, we also have

lallipe < 221l Lo

where i is the B-spline basis condition number.
Using these two facts, Lemma 1.2.4 applied to the matrix G combined with
Lemma 1.2.1 implies
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LEMMA 1.3.1. Let ¢ be any spline such that

(Ao) P€SK(A);

(A1) (=1)isign(¢, M;)=const for all i;

(A2) I(¢1 Mz)|>cm1n(k) fo'f‘ all 1,,

(A3) H¢||00 gcmax(k)-
Then
Cmax (k)
Cmin(k) ’

| Psi.a)lloo < 2k

1.4. Main idea: definition of ¢ via a null-spline o. Formulation of Theorem &

Definition 1.4.1. Define the spline ¢ as the spline of the even degree 2k—2 on A, i.e.,,

o€ Sar_1(A), (1.4.1)
that satisfies the conditions
o(t;)=0, i=0,...,N; (1.4.2)
o) =aW(ty)=0, I=1,.. k-2 (1.4.3)
(kil)! o D(ty)=1. (1.4.4)

The spline o defined by (1.4.1)—(1.4.4) exists and is unique, see [Schu, Theorem 4.67].
This fact will follow also from our further considerations where we show that o results
from the solution of a system of linear equations with some non-singular matrix.

Our main idea is to define ¢ as follows.

Definition 1.4.2. Set
o(x) =0 V(). (1.4.5)

Ezample 1.4.3. For k=2, o is a parabolic null-spline, and its first derivative ¢=0’
is the broken line that alternates between +1 and —1 at the knots, i.e.,

=Y (-1)N;, k=2

Our main result is
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THEOREM ®. For any k there exist constants cmax(k), cmin(k) such that for any
An with N2>2k the spline ¢ defined via (1.4.5) satisfies the relations

(Ao) $€SK(AN);

(A1) (—1)'sign(¢, M;)=const for all i;

(A2) (¢, M;)|>cmin(k) for all i;

(A3) 1l Lo ttistizr) <Cmax(k) for all i.

Remark. The restrictions N >2k is needed only in the proof of (As).

Proof of (Ag). Since 0€82x_1(A), clearly ¢:=c*F~DeS;(A).

1.5. Proof of Theorem I and its corollaries

Proof of Theorem 1. From Theorem ®, by Lemma 1.3.1,
1 Psan)lloc Sk, N22k.
To complete the proof, it remains to cover the case N<2k. As is known (see, e.g., [S1]),

IIPSk(AN)IIQO < C(k?N)a

hence
| Pscanylloc Sk, N<2k,

and finally
| P, a)lloc <cy forall A. 0O

Proof of Corollary 1. Let (M;), (N;) be the B-spline sequences for the space Si(A, m)
of splines with multiple knots defined on the extended knot sequence

(7‘0, ...,TN/) = (to, ...,to, ceey ti, ...,ti,..., tN, ...,tN).
N —— S’ N —

k—mO k——mi k—mN

Further, let (]Wl-(")), (Ni(")) be the B-spline sequences on the knot sequences A(")z(tg»"))
chosen so that

<), tim (=7,
Then, as is known,

lim (M™, N™) = (M;, Ny),

n—roc

whence, for the corresponding Gramians, we have

IG™ oo = lim |G ™) e < e,
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where that last inequality is due to Theorem I. Thus,

“PSk(A,m)HOO<HG_1“OO<C’C' 0

Proof of Corollary II. Let (M;), (N;) be the B-spline sequences for the space
Sk (Aco, M) of splines with multiple (bi)infinite knot sequence. Then also

P8, oo lloo SNGAL oo

where Ga_ :=(M;, N;) is the corresponding (bi)infinite Gram matrix. By Corollary I, all
of its finite principal submatrices Ga, are boundedly invertible. This implies that Ga__
is invertible, too, and

HGEio“oog HGZII\,”oogck- O

lim
N—ooco
1.6. Proof of Theorem &: proof of (A1)

LEMMA 1.6.1. The spline ¢ changes its sign ezactly at the points (ti)f]:‘ll, i.e.,

(—1)iSigﬂ0|(ti_1,t@) =const, ¢=1,...,N.

Proof. By the definitions (1.4.2) and (1.4.3), the spline 0€Sg;_1(A) has at least
N+1+42(k-2) zeros counting multiplicities, and by Lemma 1.1.4 any spline from
Sok—1(A) has at most N+(2k—1)—2 such zeros. Therefore, o has no zeros different
from (1.4.2) and (1.4.3). O

PROPERTY (A1). Let ¢ be the spline (1.4.5). Then

(—1)*sign(¢, M;) = const  for all i.
Proof of (A1). Integration by parts yields

(6 M) := / 00 a1 it (1.6.1)

t;

titk
ti

titk k-1
=(-p+t / oMMED(y b+ (1) D @) MV ()
b =1

At the point x=t; we have

o* 1) =0, ti=t, I=1,...,k—1;
M () =0, ti>to, L=1,. k1,
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and similarly for =%, s,

o 1 D(ti4x) =0, tigk=tn, 1=1,. k=1
Mi(l_l)(tiJrk):O, tivu<tn, =1, k-1

Thus, the sum in (1.6.1) vanishes and

(6, M;) = / o0 M (1) dt = (<1 / oMV dt. (1.6.2)

t;

t;

Since both ¢(t) and Mi(k_l)(t) alternate in sign on the sequence of subintervals of [t;, ;1.x),

we have
i - 3 —~1 . k—1
(—1)sign(¢, M;) = (=1)*-(~1)* ISIgnol(ti,tiH)mgan )(ti,tlﬂ)
=(=1)"(=1)*"1.(=1)*const 1
= (—~1)¥"1.const.
Hence,

(—1)*sign(¢, M;) = const, i=—k+1,..,N—1. a

1.7. An invariant

For the proof of (A3) and for some further use in §2.4, we will need the following consid-
erations.

Definition 1.7.1. For two functions f,g and n€N, set
n+1
G(f,g:2):=3_ (~1) fO(z) g+ ~D(z),
1=0

whenever the right-hand side makes sense.

LEMMA 1.7.2. Let p,q be two polynomials of degree n+1 on I. Then

G(p,q;x)=const(p,q) forall z€l.

Proof. 1t is readily seen that G’(p,q; z)=0 for all z€ R, hence the statement. [
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LEMMA 1.7.3. Let s1, 82 be two null-splines of degree n+1 on A, i.e.,
Sl,SQESn+2(A), Sl(ti)ISQ(ti)—':O, 1=0,...;N. (171)
Then

G(s1, 82; T) = const(sy, s2), z€la,b). (1.7.2)

Proof. By Lemma 1.7.2 the function G(s1, $2) is piecewise constant.
On the other hand, since the continuity conditions on s, $2€S,42(A) imply the
inclusion s1, s2€ C™{a, b], we have

(1) ((n+1-0) — W (n+1=]) —
8178y |ti_0—s1 £ |ti+0’ I=1,..mn,

and due to the null-values of s1,s5 on A also
Sgl)sgzﬂ—l)lti_(]:S(ll)sémrl—l)ltiw___07 =0, l=n+1,

i.e., the function G(s1, s2) is continuous. O
As a corollary, we obtain

LEMMA 1.7.4. Let 0€8So,-1(A) be the null-spline defined in (1.4.1)~(1.4.3). Then

H(z):=[c* " V(x)]?+2 ki (=) o * 17D () g B4 () = (K —1)12. (1.7.3)
=1

Proof. The function H is obtained from G(sy, s2) if we set s;=s2=0¢ and n+1=
2k —2, precisely
H(z)=(-1)*"1G(0,0;2).

Therefore, by (1.7.2), it is a constant function.
The boundary conditions on ¢ at ty are

oO(ty)=0, 1<k=2,
o*D(tn) = (k—1)1,

and therefore for z=ty the sum in (1.7.3) vanishes, i.e.,
H(ty)=[o®D(tn))? = (k—1)1

Thus,
H(z)=H(ty)=(k—1)!* for all z€a,b]. 0
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LEMMA 1.7.5. We have
1
(k=1

e * D (ko)) =1. (1.7.4)

Proof. The boundary conditions (1.4.3) on ¢ at ¢y are
oW(te) =0, 1<k-2.
Therefore, for x=ty, the sum in (1.7.3) vanishes, i.e.,
H(to) = [0*~V(t0)]*.

On the other hand, by (1.7.3),
H(to) = (k—1)!%. O

1.8. Proof of Theorem ®: proof of (As)
For the proof of (Az), we need the following estimate.
LEMMA 1.8.1. There exists a positive constant ¢y such that the inequality
Noll ey e tina) = ck lRal* (1.8.1)
holds uniformly in 1.
Proof. By (1.7.3), we have
(k—=1)12=H(t;)

k-2
=) 42 Y ()Tt (E) g ETH (1)
m=1

k—2
- [O,(k-—l)(ti)]2+2 Z (—l)m[U(k_l—m)(ti)'Ihil—m]'[U(k_1+m)(ti)‘Ihilm]-

From the latter equality follows that

|mrln<a;c)f-2 Ia(k—1+m)(ti)l . Ihilm Z Ck,

or, equivalently,
DN |has| Y = ex [halF. 1.8.2
(max (o)l > cx |hil (1.8.2)
By the Markov inequality for polynomials,
Il Lyt tsra) = Bl TN L ti,6isa) For all L,

so that, making use of (1.8.2), we obtain

k
“U“Ll[ti,tz+1] ZC;‘:lhll . a
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PROPERTY (A3). There exists a positive constant cmin(k) depending only on k such
that, for any A, the spline ¢ defined in (1.4.5) satisfies the relation

(¢, M) > eimin(k), i=—k+1,..,N—L
Proof of (A2). Let I;» be a largest subinterval of supp M;:=[t;, t;4x|. Since

sign o(t)-sign Mi(k~1)(t) =const, t€[ti,tivk],

we have

(¢, My)|:=

/ %Hka(k“l)(t)Mi(t) dt[

t;

/t tHka(t)Mi(k_l)(t) dt' (by (1.6.2))

3

titk
= [TemE )

t;

L k—1)
> / lo(t)MED(1)] dt
ti’
= ME D @i o oo

i’+1]’

and due to (1.8.1) and (1.1.7),

|(¢7 Ml)l ?Ckcgc = Cmin(k)~ O

1.9. Vectors z,. Formulation of Theorem Z

Theorem 7 formulated below enables us to verify in the next section the last condition
(As) of Theorem ®.

Definition 1.9.1. Set
2= (2, 2B eR*3 i=0,.., N—1, (1.9.1)

with )
zl(l):=l—‘o(l)(ti)-|hi|l‘k+1, I=1,..,2k-3. (1.9.2)

In the rest of the paper we are going to prove
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THEOREM Z. There exists a constant ¢, depending only on k such that, for N 2k,
the estimates
120 <ex, I2k-1,i=0,..,N—k, (1.9.3)

hold uniformly in i and 1.
This theorem almost evidently implies the estimate
||¢||Loo[ti-,ti+l] = “U(k-l)“lzoo[tuti-ul < C;c’ 1< N—k7

which coincides with (Aj3) except for the indices >N —#%. In the next section we prove
this implication and show how to cover for N >2k the case i> N~k of (A3).

1.10. Proof of Theorem ®: proof of (Aj)

PROPERTY (Ag3). There exists a constant cmax(k) depending only on k such that, for
any Ay with N >2k, the spline ¢ defined in (1.4.5) satisfies the relation

NPl Lo ftertons] < Cmax(k)  for all 4. (1.10.1)

Proof of (As). (1) The case N>2k, i< N—k. In this case, by (1.9.3) of Theorem Z,
and by the definitions (1.9.2) and (1.4.5), we have

1 m m 1 —_ m m
%W( ()| k] Zﬁla(k ()] bl

_ (k—14m)! lzl(k-um)l <,

' m=0,..,k-2.
m!

On [t;, t;41] the spline ¢:=c*~1) is an algebraic polynomial of degree k1, and by Taylor

expansion,
k=1
tiv1)= ) (8,)- | b )™
tusn) = 3 o)™
Hence,
k—2
|p* V(&) hal* ! < [b(tiga |+Z—|¢<m> o) ha|™ < ke,
m=0
and finally
k=1
m
1) L ftitinn) < D =3 16 (E)]- IR
m=0

<(2k—1)-¢, =t cmax(k), i<N—k, N>2k.
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(2) The case N 22k, i2N—k. Let ¢ be the null-spline that is defined by the same
interpolation and boundary conditions (1.4.2)—(1.4.3) as o, but with the normalization
at the left endpoint

Accordingly, we set
F=50D.

Then, due to symmetry, by Theorem Z applied to &, we obtain

||¢;“Loo[ti7ti+1] < Cmax(k}), izk.
On the other hand, we established in (1.7.4) that

(k—_ll—)!a(to) .y

This implies the equality

¢==0,

and, correspondingly, the estimate

”¢)||Loo[ti7ti+1] gcmax(k)v izk.

If N>22k, then N—k>k, and thus
NPN Lootstisn] < Cmax(k), 2 N-—k, N=>2k. O

This completes the proof of Theorem ®.

Remark. The size and the structure of the proof of Theorem Z (i.e., of (A3)) given
in the next two chapters are in a sharp contrast with the short proofs of (A1) and (Az)
given above. We conclude this chapter with a conjecture which probably could be useful
in finding a simpler proof of (Ajz).

CONJECTURE 1.10.1. Let ¢:=0*=1) be the spline (1.4.5). Then it takes its mazimal
absolute values at the endpoints, i.e.,

|p(2)| < ld(a)] (=1¢(b)| = (k—1)!)  for all z€]a,b].

In particular, the sum in (1.7.3) is always non-negative, and zero only if x is a knot of
high multiplicity.
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2. Proof of Theorem Z: intermediate estimates for z,
2.1. Notation and auxiliary statements

Let U be any (nxmn)-matrix. We denote by

g, ...,ap]

Brs s By

the submatrix of U (not necessarily square) whose (s,¢)-entry is Ulas, 8;] with o and

Ula, §]:= U[

3 sequences (indices) with increasing entries. The default sequence (:) stands for the

sequence of all possible entries. So, Ula,:] is the matrix made up from rows oy, ...,

of U. The sequence (\s) stands for all entries but one numbered s. For example,

U[\1,\l+1] is the matrix made up from rows 2, ...,n and columns 1,...,[,14+2,...,n of U.
The notation

0y, ...y Op ayp, ..., Qp
U i=det U =U
o=t = (G5

(now with #a=4+/3) stands for the corresponding subdeterminant.
A matrix U is called totally positive (TP} if

U(a,B) 20 for all a, 8.

As was already mentioned, by indices we mean sequences with increasing entries.
For convenience we will also view indices as sets when writing, e.g., aC [ to express that
the components of a appear also in 5.

For neN, the bold n denotes the index (1,2,...,n). Further,

La={iCn:#i=p}:={(is)- 1 1<i1<... <ip<n}.
For the special case n=2p+1 we set
Ji=T, 0,41, Ji={i€J:{{}¢i}, [=1,.,2p+1

For i€1, ,, its complement ¢’ and its conjugate index i* are given, respectively, by

Ve L pn, i :=n\1,

el ,, ifi=(n+1—ip,...,n+1—-14).
For i€J!, we define also the I-complement

itedt, =\ {1}

Finally, for two indices 7, €1, ,, we denote

i<j ® iy<Js foralls, [i:=) i,
s

The following lemmas will be used frequently (see [K, pp. 1-6]).
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LEMMA 2.1.1 (Cauchy-Binet formula). If U, V,WeR"*" and U=V W, then for
any %, €1, ,,

UGd)= Y V(i,)W(a,j).

a€ly, n

This relation will be referred to as ‘the CB-formula’ for short.

LEMMA 2.1.2 (inverse determinants). If V=U"!, then for any i,j€1, , we have

o i U jl,i/
V(i,j)=(-1) ﬂl_d%t_iz‘

LeEMMA 2.1.3 (Laplace expansion by minors). For any fized index i€l ,,, we have

det U= Y (=) U, a)U, o).

agly ,
We will also use the following estimate.

LEMMA 2.1.4. Let qeN and as,bs,¢c520. Then

q
bs <Z£ﬂs—bs-<maxb—s. (2.1.1)

= q
s Cg Zs:l AsCs s Cs

Proof. Let

Then ¢, <bys<Ec, and

2.2. Reduction to a linear system of equations

2.2.1. Derivatives of null-splines at knots. Let g be a null-spline on A of degree n+1,

ie.,
gE€Snt2(A), q(t,)=0 forall v
Set
=W, . ..¢dMeR", V.= %q(l)(t,,), 1=0,...,n+1.
On [t,,tu+1], ¢ is an algebraic polynomial, and by Taylor expansion of ¢ at x=t, we
obtain
n+l nt1 .
F0) = 5 3 s b =Y (s ) )

j=i g=i
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ie.,

: iy A 4
hoint =5 (D)o o

i=

Since q£°)=qﬂl=0, we have

gt Ry | = — Z 4D h, P,
j=1

and hence

(%) . i__ - ] - n+1 (])h ¥ =1
St =3 ()- ("), =1

j=i

For the vectors q, we have therefore the equality

DO(hV)qu—H = _ADO(hV)QV’

where A is the (n xn)-matrix given by
¢ v )i =

Do(h) =diag [h, h?, ..., h"].

and

By Taylor expansion of q at z=t%,4, we conclude that

Do(~hy) gy =—ADo(~hv)qu+1,

so that in view of (2.2.1)
A™'= DgADs,,
with
DO = Do(——l) :dla,g l-—'l, 1, —‘]., 1, J

(2.2.1)

(2.2.2)

(2.2.3)

(2.2.4)

(2.2.5)

It is more convenient to employ another scaling of ¢, in (2.2.1), namely by the matrix

Dy :=D(h):=h~"/271/2Dq(h)

= diag l—h‘n/2+1/2, h—n/2+3/2, ey hn/z—l/ZJ)

which satisfies
det D(h)=1.

(2.2.6)



A PROOF OF DE BOOR’S CONJECTURE

Then we also have the equality

D(hu)QU+1 = “AD(hu)Qm

which may be rewritten as

D(hu+l)QU+l = *D(hu+l/hu)AD(hu)QV-

2.2.2. The matrices B, B',C. Set

yu::D(hV)q'/a v<N,
yn :=D(hn_1)qn,

i.e., for a null-spline ¢€S,12(A), we define the vectors
v =W, ..., yM)eR",

with the components

v

1
O .= Z o Y| R (- (nt1)/2 _ B
=54 (t,)-|hy| , v=0,..,N—1,
1 —(n
U 1= 500t a2,

Set also
hv+1

Oy = h,

Then from (2.2.7) follows that the vectors y, are connected by the rules

Yosy1=—D(0,)Ay,, v=0,..,N-2,
yn=—AYn-1,

and

yu-lz_DOAD(l/Qu—l)Doyua Vzla"'aN—l)
Yn-1=—DoADoyn.

Now fix an index v. Then we have two systems of equations

Cy,=(-1)"""yn, By, =(~1)"yo,

81

(2.2.7)

(2.2.8)
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with
C:=Cn_,:=AD(on-1)AD(on_-2)... AD(0,) A,

B:=B,:=AD(1/00)AD(1/01) ... AD(1/p.-1), (2.2.9)
BII= Bl,, = DoBDo.

2.2.3. Linear system for z,. Now we rewrite formula (2.2.8) for our special null-
spline 0 €8Sg;-2(A) defined in (1.4.1)-(1.4.4). For the sake of brevity, set

p:=k-2.
Then the corresponding vectors are
2= (2, ., 2Py e R b =0,..., N,
with
W= %a(l)(t,,)-lh,,fl“(“l), v=0,..,N—-1,
2= l—l!o(l)(tN)-th_l |I=(p+1) =N,
Moreover, by definition (1.4.2)-(1.4.4) of o, we know that

zo=(0,...,0, zép"'l), zépH), .y z(()z”H)),
e’

p=k—-2

v =(0,...,0, 1,z Z£L2p+l))’
N’

p=k—2

By (2.2.8), we have two systems of equations,
Blzu:(_l)uzm CZV:(—I)N_VZI\“

or in view of the prescribed values of the first components of 2g, 2y,

0 0
oo p=k=2 :
0 o [ Pri=k-1
+1
B'z, =(-1)" z((Jp : , Cz, =(-1)N7 1 , v>0.
z(()p+2) z}(5+2)
z(()2p+1) Z(2p+1)

N
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According to the notation introduced in §2.1 the upper half of these equations could be
written as

0
B'p,:]xz,(:)=(=D"| i |3 p, Clp+1,:]x2,(:)=(-1)N7" 0 pt1.
0
1
For v=0 we have
CNZQ =(—1)NZN,
or
0 0
p=k—2
0 0 p+1l=k—1
Crzy:=Cx 2 =(-)¥ 1 , v=0.
z(()P+2) 31(\1,7+2)
zé2p+1) z](?”“)

In terms of the unknowns %p:= (z(()p+1), 2D 26210 +1)) and in our notation, the upper
half of this system is equivalent to

Clp+1,p'|xZ = (-1)N pH1.

0
1

In summary, we can form one system with a known right-hand side and obtain the
following result.

THEOREM 2.2.1. Let

1
7, = (z,(jl), . zf,2p+1)), 20 .= ﬁa(l)(t,,)-lh,,V‘(”H), 30 = (z(()p+1), zépﬁ), . z(()2p+1)).

Then, the vector z,€R**1 is a solution to the system

B'[p,:]
Mz, =(-1)""7(0,...,0,0,...,0,1), M::{ ’ ] v>0, 2.2.10
P p+1
and the vector 3 RPT! is a solution to the system
MOEOZ(“l)N(Oaaovl)’ MO:C[p‘[—l,p'] (2211)
N i

p+1
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2.3. First estimates for z,
2.3.1. Total positivity of the matrices A, B,C. By definition (2.2.9),
C:=Cy_,:=AD, AD,,..AD,, A,
B:=B,:=ADs; ADs, ... AD;,,
B':= B! := DyBD,,
where s, §s are some positive numbers.
LEMMA 2.3.1. The matriz A is totally positive.
Proof. See e.g. [BS]. We present another proof in §3.2.2. 0
LEMMA 2.3.2. The matrices B and C are totally positive.

Proof. By Lemma 2.3.1, the matrix A is totally positive, and so is D(7y), as a diagonal
matrix with positive entries. By the CB-formula, the product of TP-matrices is a TP-
matrix. 0

LEMMA 2.3.3. For any v€N, we have

B (i,5) = (-1 B, (1, 5). (2.3.1)

Proof. By definition, we have
Do = diag [(-1)'],
and thus, by the CB-formula,
B, (i, 5) = Do(i, 1) By (4, 5) Do(4, 3)-
But since
Do(i,i)= (-1, Do(4,7)= (-1,
the statement follows. .

2.3.2. First estimate for zp.

THEOREM 2.3.4. The solution Eoz(zép“), ...,z82p+1))T to the problem

Moz =(0,..,0,1)", My:=C[p+1,p] (2.3.2)
N ——
p+1
satisfies the relation
{
0= CBR) L apL (2:3.3)

C(p+1,p')’
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Proof. From (2.3.2) we infer

20 = (Z(()p+1)’ n.’z(()ZP‘F].)) __:]\40—1(07 ”.70, ]-)T:M(S-l[: ,p+1],

pt+1

i.e., Zp coincides with the last column of My !, By Cramer’s rule, we obtain

det M{' 7P

) =2 P =My [l-pp] = () M,y

where Mél_p ) is the algebraic adjoint to the element My[p+1,{—p]. The formulas

det M{™ = My(\p+1,\l—p) := Mo(p, \I-p) := C(p, p'),
det My := C(p+1,p’)

follow from definitions and prove the theorem. O
2.3.3. First estimate for z,.
THEOREM 2.3.5. The solution z,ER?*PT! {0 the problem
B'[p,:
Mz,=(0,..,0,1)T, M:= [ [p,:] ] € RZpH1x(2p+1) (2.3.4)
—— Clp+1,:]
2p+1
admits the estimate )
C(p,J°)
W< S AL A 2.3.5
z,’| < max —. 3.
2] je3t C(p+1,5') (235)
Proof. (1) First we derive an expression for z,. Note that
B'[p,:]
B'[p,: ’ =:M[2p,:
M::[ [p,:] ]:: C[p,:]} 2p.:1] (2.3.6)
Clp+1,:]
Clp+1,:]
From (2.3.4) we infer that
2, =M71(0,..,0, )T = M~1:, 2p+1],
i.e., the vector z, is equal to the last column of M ~!. By Cramer’s rule we obtain
0 -1 ap+141 det MO
2y =M1, 2p+1] = (~1) —_— (2.3.7)

det M ’

85
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where M) is the algebraic adjoint to the element M 2p+1,1], ie.,
det MW := M(\2p+1,\l) = M(2p,\1).

(2) Next we estimate det M (). Expanding the determinant M (2p,\!) in (2.3.6) by
Laplace expansion by minors (Lemma, 2.1.3) of B'(p, \!) and C{p, \!), we obtain

det MY :=M(2p,\l)= > (-1)*YB'(p,5)C(p, '),
jed

where ¢;(j) are some integers. From (2.3.1) it follows that
B'(p,j) = (~1)*"B(p, )
for some integer £(f). Therefore

|det M| < Y B(p,5)C(p,5")- (2.3.8)
jeJ!

(3) We also need an expression for det M. Expanding the determinant det M in
(2.3.6) by Laplace expansion by minors (Lemma 2.1.3) of B’ and C, and using (2.3.1),

we find
det M=) (-1)PHIM(p,j)M(p',J")
jed
=Y (-1)PHB(p,5)C(p+1,5')
jed
=" B(p,j)C(p+1,j'),
jed
ie.,
det M =" B(p,/)C(p+1,7). (2.3.9)
j€d

(4) Now we are able to bound z,. From (2.3.7)-(2.3.9), it follows that

|det MD)| _ S ien B(p,7)C(p, ") . Y ien B(p,5)C(p, ")
IdetMl = Z]’GJ B(p,])C(p-{-l,.],) = Zje.]l B(p7.7)C(p+17.]l)

Applying Lemma 2.1.4 to the latter ratio we obtain

2=

C(p,j")
D) < max 2 P2I) O
AN YT YS WD)
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2.4. Properties of the matrices C

The orders of the minors of C' on the right-hand side of (2.3.3) and (2.3.5) differ by
one. In this section we establish some relations between minors of C' which allow us to
equalize these orders.

Definition 2.4.1. Define Fe R™*™ as an anti-diagonal matrix with the only non-zero

—1
Fli,n+1—1] = (”f) .

elements

Recall that by definition (2.2.5)
Dy = [—1, +1, _|
LEMMA 2.4.2. There holds the equality

C™'=(DoF)~1C*(DyF). (2.4.1)

Proof. Consider two null-splines sq, s5 of degree n+1 on A,
81,82 € Sp+2(A), s1(t,) =s2(t,)=0 forall t,€ A,
and the vectors z,,,y, €R"™ of their normalized successive derivatives,

1 ¢ _ 1 ¢ _
2= 5 s 0(0)- [ T2y = 56 [T (2.4.2)

We proved in Lemma 1.7.3 the equality

n+1
G(s1,89;) = Z (—l)lsgl)(x) sénH-l) (z) = const(s1,52), z€][a,b] (2.4.3)
1=0

It follows, in particular, that
G(815527 ) G($17 527tN) (244)

Notice that due to the null-values of s1, s2 on A we can omit in the sum (2.4.3) the terms
corresponding to =0 and I=n+1, i.e., we have

G(s1, 823ty Z l (l) (t,)sS (n+1— l)(t ).
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Using the equalities (2.4.2) we may rewrite the latter expression in terms of the vectors
z,y as

1 ~ L
mc(51152§tu)22(-1)l( ] ) 2y 1Y, (2.4.5)
) =1

With the help of matrices Dy and F one obtains

~1
(—1)z(n71) =(DoF)int1-1-

Hence,

n+1 ]
(—1>’( z )yi 0= (DoFy,)?,

so that (2.4.5) becomes

1
L 1,) = (20, DoFy.)-
(n+1)!G(sl7$21tlI) (I oLy )

Now, from (2.4.4) we conclude that
(zv, DoFy,) = (zn, DoFyn). (2.4.6)
Recall that we defined the matrix C in (2.2.8)—(2.2.9) through the relations
(-D)N"Ygn=Cz,, (-1 Yyn=Cy,.
Thus, from (2.4.6) it follows that
(zv, Do Fy,) = (Cz,, Do FCy,) = (2., C* Dy FCy,).

Since we have not made any assumptions on z,,y,, the latter equality holds for any
z,, ¥, €R™. Hence,
DoF =C*DyFC,

and therefore
C =(DgF) 1C*(Do F). O

LEMMA 2.4.3. For any i,j€1, ,, we have the equality

C(@,3') = flir3)-C(E", 5%, (2.4.7)

where ]'[” ("_H)
.. F i, * §= s
finl= F((J;)) )

s=1\ 14,
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Proof. From
C'=(DoF)~1C*(DyF) (2.4.8)

it follows that det C=det C*=det C~!, and since C is a TP-matrix, we have
det C'=1.
Therefore, by the inverse determinants identity (Lemma 2.1.2), we obtain
C(E, j) = (=D C=1(44). (2.4.9)

To estimate the minor C (4, 1) we apply the CB-formula to the right-hand side of (2.4.8).
Since the matrix Dy (resp. F') is diagonal (resp. anti-diagonal), it follows that

Dy(a,3)#0 if and only if a=g,
F(a,8)#0 ifand only if a=g".

Thus, the CB-formula gives the equality
C7(4,8) =F~1(4,5*) D5 (5%, ) C*(5°,8") Do(i*,8*) F (i*, 4).
Due to the relations

Do, ) = (=)l = (—1)(rHDp—lel
Fhl(a,a*) — [F(oz,a*)]—lz [F(a*,oz)]—l,
C*(a, 8)=C(8,0),

the latter formula for C~1(4,4) is reduced to

i il F,0%) o
CY(j,4) = (1) 22 0%, 5.
() =(=1) F(j,5%) (
Combining this expression with (2.4.9) gives (2.4.7). O

LEMMA 2.4.4. For any p,neN we have

C(n-p,p')=C(p,p"), (2.4.10)
and there exist constants c,, c,, such that

enC(p, 7)< C(n—-p,j' )<, C(p,5*) foral jel,,. (2.4.11)
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Proof. By definition,

p:=(1,..,p)=(n—p+1,..,n)",
n-p:=(1,..,n—-p)=(n-p+1,..,n)".
Thus by (2.4.7) we obtain
C(n-p,j)=flp,jlC(p,j")- (2.4.12)

The equality (2.4.10) follows now if we take j=p, since f[p,p]=1. The inequalities
(2.4.11) follow with

Cp = min {f[p,]] M 1 Spgna jeIPv"}’
¢, :=max {f[p,j]: 1<p<n, j€L,n}. O

With n=2p+1, Lemma 2.4.4 takes the following form.
LEMMA 2.4.5. For any p with n=2p+1 we have
C(p+1,p')=C(p,p"), (2.4.13)
and there exist constants ¢y, ¢, such that

& C(p,j*) < C(p+1,5) <, C(p,3*) forall j€J. (2.4.14)

2.5. Second estimates for z,

THEOREM 2.5.1. The components of the vector 2, satisfy the relations

C !
Izél)l C((pp’pp*;, ! p 1712p 17 (251)
C(p,j')
P AT 1 =1, ... 2p+1. 2.5.2
2 C”rjlg?l( C(p,5*)’ i ( )

Remark. Since for =p+1 we have p!=p*, it follows that

C(p,p"*') _
C(p,p*) ’

+1
2=

in accordance with (1.7.4).
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Proof. By Theorem 2.3.4 we have

C(p,p')

(o
27| = . l=p+1,..,2p+1,
0’| C(p+1,p) P P

and by (2.4.13),
C(p+1,p")=C(p,p"),

which implies the first equality (2.5.1).
Similarly, by Theorem 2.3.5 we have

C(p jl)

(l) —_ ’ P

2,/ < max —, 1=1,...,2p+1,
1271 jext C(p+1,5)

and by (2.4.14),
C(p+1,5') 2 ¢, C(p, "),

which leads to the second inequality. a

3. Proof of Theorem Z: final estimates for z,
3.1. Preliminary remarks

To estimate the ratio )
C(p,1)
C(p,J)

for specific ¢, j€J, in particular, for those given in (2.5.2), we may split the whole product

N—v
C:= [[14D,]-A
r=1
into two arbitrary parts,
q
C=KR,, R,:=]]lAD,]-4, (3.1.1)
r=1

and use the CB-formula keeping the total positivity of the matrices involved in mind.
This gives

C(p,i.) < max Rq(a,i.)

C(p,j) ~ aed Ry(o,j)’
so that it is sufficient to estimate R,(a,1)/Rq(a,j) for some g. Clearly, the smaller the
number ¢ of the factors of R, in (3.1.1), the simpler the work to be done. It would be
ideal if we could take

(3.1.2)

q=0, R():A.
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Unfortunately, A, though totally positive, is not strictly totally positive, i.e.,
A(a,B8)=0 for quite a lot of indices o, € J.
But fortunately, A is an oscillation matrix, and we prove in the next §3.2 that
Ao, 8)>0 ifand only if g < Bst1. (3.1.3)
As we show in §3.3 this implies that
R,_1(B3,i)>0 forall 8,i€d.

Thus, it suffices to estimate the ratio

Q(8,4) e
S, Q:=R, 1:=]|[AD,]-A.
Q(8B,5) P 11 "

This will be done in §§3.6-3.8.

3.2. The matrices S and A
3.2.1. The matriz S.

Definition 3.2.1. Set

() (3 A

Ezample 3.2.2.

111 11 11
s 1 1 g 01 2 5, — 0 1 2 3
201’3_001"‘_0013
0 0 0 1
LEMMA 3.2.3. The matriz S in (3.2.1) is a TP-matriz, i.e.,
S(a,8) =0 forall o, €L, . (3.2.2)

Moreover, we have
S(a,3)>0 if and only if a<p. (3.2.3)
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Proof. The first part (3.2.2) of the lemma, i.e., the total positivity of S, was already
proved by Schoenberg [Scho]. We present an alternative proof by induction which gives
(3.2.3) as well.

(1) Let S,, be a TP-matrix (as it is for n=2). Since

> (12)- ()

it follows that

j—l n+1
Sn+1 = {(l—l)} = S;L+1'In+17 (324)
1,j=1
where
1 | 0 e 0 1 1 1
0 1 .. 1
S:l-l—l = O Jl’_2 n+1 , In+1 =1. . .. N (325)
s {( S
0 ing'=2 0 .. 0 1

The matrix I, is totally positive (all its minors are either 0 or 1), and hence, by the
CB-formula and the induction hypothesis, the total positivity of S,1 follows.
(2) Let us prove (3.2.3).
(A) If
as > Bs for some s€{1,...,p},

then the entries of the matrix
T:= 8o, 8],

which is a (pxp)-submatrix of the lower triangular matrix S, satisfy
T\ p]=Slax,ju] =0, A=s>pu.
Hence the rows {T'[A,:|}}_, are linearly dependent, i.e.,
det T:=S5(e, ) =0.
(B) Suppose that for any v, €1, , we have the equivalence
Sp(7,6)>0 ifand only if <4

Now let
o, B€Tpny1, as;<f, forall s=1,..,p. (3.2.6)
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We assume also that p<n, since for p=n+1 by definition we have det S,1=1. From
(3.2.4) and (3.2.5), by the CB-formula, we conclude that

aq, ... Ay .eey 51,...,5
Sn ’ S ( )In ( ”). 3.2.7
+1(ﬂ17' 75]7) Z +l 617"'7 1 /617"'7/6}7 ( )
We distinguish two cases.
(B1) If @1>1, then, by (3.2.6) we also have 3;>1. Hence

, (al,...,ap> _g (al——l,...,ap—l)
"M\ B,y Bp "\B-L . Bp=1)
Taking from the sum (3.2.7) only one term with §=0 we obtain
a1, ..., al—l,...,a -1 ,81,...,,8
e N
+1(/317"'7ﬂp " IBI_la"pr_l n 1317-">/Bp
1,.,a,—-1
=5, P ) >0,
(:61 7 ":Bp-l
where the last inequality holds by the induction hypothesis.
(B2) If a3=1, then

S/ (1,&2,...,0;,) B O, . . if ﬁ1>1,
"B B o) | (20T ) ot
1,72 P n Ba=1, .0 fp—1 , if By
In this case taking from the sum (3.2.7) the term with
61:17
5S=/BS’ 8227
we obtain
1,ag,...,« as—1,...,a,~1 1,82,...,0
() s G
i 1317/82)"')[3]) " ﬂQ—l)"'yﬂp‘_l + ﬁl,ﬂzy“')ﬁp
ag—l,...,ap—l)
=5, > 0. ]
”(ﬂz—l,...,gp—1

3.2.2. The matriz A. The matrix A was defined in (2.2.2). We recall this definition.
Definition 3.2.4. Set

n n+l j
A':An:(a1])1,3217 0,13=< 2 )—(Z). (3.2.8)
Ezample 3.2.5.
4 3 21
3 2 1

(Y acle s 3] a-fw0 974
7\ 2/ 3‘443’ ““l10 10 9 6
5 5 5 4
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LEMMA 3.2.6. The matriz A in (3.2.8) is a TP-matriz, i.e.,

Ale, 3) 20 for all a,B€X, p.

Moreover,

Ala,8)>0 if and only if «as5< Bsyr forall s=1,...,p—1.

95

(3.2.9)

(3.2.10)

Proof. The following considerations are due to [BS]. For the matrix S defined in

(3.2.1), consider the matrix S~ obtained from S by subtracting the last column of S

from all other columns. We have

This implies that for o, B€1, n,

S<0, a1, ...,ap_l,ap> —-S- (0,0(1, ...,ap_l,ap)
/317/625"‘7ﬁp7n+1 ,8171827"'7ﬂp)n+1
= (1) + det(-Ala, 5))

— (_1)(p+1)+1 (=1)P A(a, B)
= A(e, §),

S<0,a1, ...,ap_l,ozp> :A(al’ ...,ap>.
ﬁl)/BQ)"‘jﬂp)n+1 /Blv"wﬁp

By (3.2.2), S is totally positive, and by (3.2.3) one has

ie.,

0<ﬂ17

S(O,al,...,ap_l,ap
161,1327 "'7ﬁp)n+1
op<n+l.

) >0 if and only if s < PBs41 forall s=1,...,p-1,

This is equivalent to (3.2.10), since the condition «,f€l,, implies that $;>1 and

Qp <M.

a
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3.3. The matrices Q
Definition 3.3.1. Set
p—1
Q,=AD, AD,, .. AD,,_,A=]][AD,,]-A (3.3.1)
r=1

where

A=Agpr1, D, :=D(v.):=diag[|y|?, .., [%w[P), A, D,eREFPFIXCEPHD (33 9)

In this section we establish a relation between indices 3,4, j€ J of the form
Eg) CEg g,
which implies the estimate

Qy(8,1) <y Q4(B,5) for all y=(71, ..., 7p-1) ERP™".

Here ¢, is a constant that is independent of v, i.e., independent of the knot sequence
(we recall that in (3.3.1) 4, stands for the local mesh ratio g, =h, /h,4+1 with some v).
Let
aMel, r=0,..,p,

be a sequence of indices with
a®:=3 o=

From (3.3.1) and the CB-formula, we infer

p—1
Qa0 = 3 [ T] A(@®9,a0) D, (), )| A(a®=D, o),

aM),.. alP-1)cJ r=1

(3.3.3)
Since by definition (3.3.2) we have

D, (e a7y = 7;‘;’:1[a§’)-(p+1)] :7T’P(p+1).'yla“)|,

we may rewrite (3.3.3) as

p—1 p—1
Q@@ ) [+ = T [H A(a“-l),a(’))%{a‘”l] A(®D, o)

r=1 al), . alP-1eJ

-1
- Y A T (33.4)
r=1

a) | alrP-DeJ r=1

r=1
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By Lemma 3.2.6 the condition
A" Y oMy >0
is equivalent to the inequalities
ar V< s=1,.,p-1 (3.3.5)

This means that in (3.3.4) we could restrict the sum to the non-vanishing minors of A,
i.e., to the sequence of indices that satisfy (3.3.5) for all r=1, ..., p simultaneously.
Set

p—1
cyim T b,
r=1
This is the factor on the left-hand side of (3.3.4) that is independent of § and ¢. Then
from (3.3.4) we obtain
p—

p—1 1
e ) &)
& > T el < ey @0(8,0) < 5 <71, (3.3.6)
1

o), ap=Ded  T=1 D), LalP~Ded 5, T=

where for a fixed S=:0(9 and i=:a®), the sum is taken over the set J3,4 of sequences
(P of indices o"e J which satisfy the condition (3.3.5) simultaneously.
Precisely, we formulate

Definition 3.3.2. For given 3,i€J, we set
=3, aP:=q.

Further, we write
= ()2 €dp,,

r=1

and we say that the sequence « is admissible for the pair [3,1] if

aMel, r=1,...,p—1,
(—1) (3.3.7)
oy éag), r=1,..,p, $s=2,...,p.

Definition 3.3.3. For given 3,i€J, we write
.= (61, ey Ep_l) (S E[g,i],
and we say that the path ¢ is admissible for [8, 1], if there exists a sequence of indices

o= (a(l), ...,Oz(p_l)) EJ[ﬁﬂ;]
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such that
er=a|, r=1,..,p-1.

With such a definition, (3.3.6) becomes

p—1 p—1
g > [l <e,@8a<d > [[hI (3.3.8)

€€E ) r=1 c€Bg,q) =1

where the sum is taken over all different paths € Eg ;.
Set

r—1
Quam= Y. J[h-I (3.3.9)

e€B ;) T=1

The next lemma follows immediately.

LeMMA 3.3.4. There exists a constant ¢, such that if
EpiCEpj, B.4,5€d, (3.3.10)
then for any y=(11,...,Yp~1) we have

Qi5,:1(M) < Qs 51(7)s

and consequently

@+ (B,1) < cpQ~ (5, 7)-

3.4. A further strategy
(1) The function

p—1
Quam:=Y_ [l

e€E(z, =1

defined in (3.3.9) is a multivariate polynomial in 7. All the coefficients of this polynomial
are equal to 1. We want to find whether, for special i, j€J, the inequality

Qis,a(7) < Qp.51(7) (3.4.1)

holds for all yeRE™! (all y’s are positive). The condition (3.3.10) in Lemma 3.3.4
provides, of course, this inequality, but we need to find a way to check its validity.
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(2) A trivial necessary condition for the inequality (3.4.1) to be true is that

(A) the minimal degree of Qg ;)(7) > the minimal degree of Qg ;1(7),

(B) the maximal degree of Q[ (7)< the maximal degree of Qg ;1(7)-

This gives rise to the minimal and the maximal paths which we define in §3.5. These
paths are nothing but the corresponding degrees of the monomials in Qg4

As we show in §3.5, the set of admissible paths e€Eg (i.e., the set of monomials
of the polynomial Qg (7)) has the properties:

(a) the minimal path (degree) ¢/l depends only on 3,

(b) the maximal path (degree) 2!l depends only on i.

Hence, among the conditions (A) and (B), only (B) will remain under consideration.

(3) For two arbitrary multivariate polynomials, the condition (B) is not sufficient to
provide (3.4.1). For example, for

Pi(z,y):=1+2%y, Py(z,y):=1+2%7,

Py can not be bounded by (const- P,) for all positive values z,y. Therefore, we will prove
in §3.6 that for our particular polynomials the condition (B) for the maximal degrees, or
equivalently the condition

(B’) the maximal path z[% < the maximal path zU]
for the maximal paths, implies that

{the set of all monomials of @z} C {the set of all monomials of Q3 }-
In the path terminology it looks like
el = EypycEp,

Then, by (3.3.10), the inequality (3.4.1) trivially follows.
(4) To prove the last implication, we establish in §3.6 a criterion for the inclusion

£

Y= €Q,q (), or equivalently, e€Eg ;.

With Q.. being the polynomial of the highest maximal degree w (with the highest
maximal path l“1), the criterion is

YEQupu(), e<EY & T eQup ()

In words, a monomial 7* belongs to the polynomial Qg () if and only if
(i) it belongs to the highest polynomial Qg .;(7),
(ii) its degree & does not exceed the maximal degree 1Yl of the polynomial Qz.i1(7)-
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In the path terminology this can be rephrased as
S E[B,w]7 e< E‘M & E€ E[ﬁ,i]-

Only sufficiency needs to be proved, i.e. the implication =>.
(5) The latter will be proved by the iterative use of the following “elementary” step:
for any i’ which differs from 4 only in one component %,,, the same implication holds:

IS E[ﬁ,i’]» €< 5[11 = €€ E[ﬁl]

All of §3.6 is devoted to the proof of this latter statement.

(a) We have a path £'€ E(g ;) (a monomial = Qz,(7)) with e/ <ell,

(b) It is defined by a sequence (a’(r))EJ[B.i/] with |o/(M)=¢’.

(c) Since i’ >1, this sequence may not be admissible for |3, 1].

(d) But we can modify it to a sequence (a”(") such that (a"(M)€J(s, and
|a//(r) ‘:g;-

These modifications are treated in Lemmas 3.6.1-3.6.3. The statements of these

lemmas are summarized then in Lemmas 3.6.4-3.6.5.

3.5. Minimal and maximal paths

In this section we define the minimal and the maximal admissible sequences (™, alne
Ji5,5)» and respectively the minimal and the maximal paths 1%, 2V €Eg ;.

We start with examples of what the admissible sequences (™€l (3,i] look like.
According to definition (3.3.7) we have two strings of inequalities,

1<a§?1<ay)<2p+1, r=1,..,p—1, s=2,...,p,
air__ll)éag’"), r=1,...,p, s=2,..,p.

In order to analyse these strings, we will frequently express them in the following matrix

form.

Ezample 3.5.1. (1) p=2, (a(l))EJ[,@*,i]l

- O -
{ (21
a(ll) < 19
6 < Ot(zl)
L ﬂz .
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(2) p=3, (&M,a®)edjg,:

1

i3

e
|
™
af a(12) <
oV < ol <
B < of < off
B2 < aé”
L B3
(3) Arbitrary p, (ot .., aP~D)eJ5
a(P—2)
3
o®
L o™
a®
1
of! <o < < PP
B < o) <af < .o<alPfP?
B2 < af)y < af
ﬂp—l < Otél)
L B
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In such a representation, each column is an index from J, i.e., the following “vertical”

inequalities are also valid:

In particular, it follows that

1< oz(lr) <. < az(,r) <2p+1.

s<alV < p+l+s,

s=1,..

» D-

(3.5.1)

(3.5.2)
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LEMMA 3.5.2. For any §3,i€J the set Jiz ;) is non-empty.

Proof. The following sequence (a(7) is always admissible:

¥ a1 ]
4 i1
alP—2)
I 1 < 12
a®
1 1 < 2 < i3
JES)
b
1 < 2 <« < p-2 < p—1 <1 0
P
B < p+3 < p+Hd < < 2 < 2p+1
Bp—2 < 2p < 2p+1
/31,_1 < 2p+1
[ 5 ]
LEMMA 3.5.3. For any (3,i€J, and any (a(r))eJ[ﬁ,i], we have
aM<am, (3.5.3)
where
min(i, 15, p+1+8), s<r, r=1,..,p—1,
& = (ip—rss:p+1+3) (3.5.4)
p+1+s, s>r, r=1,...p—1.

Proof. In view of (3.5.2), Table 1 presents the admissible sequence (@")) whose

entries take the maximal possible values. O

LEMMA 3.5.4. For any 3,i€J, and any (a(r))EJ[gJ;], we have

g(r} <a™, (3.5.5)
where
8, s<r, r=1,...,p—1,
oM=< (3.5.6)
max(Bs—r,8), s>r, r=1,..,p—1

Proof. In view of (3.5.2), Table 2 presents the admissible sequence (a(™) whose
entries take the minimal possible values. O
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-1
\ i
-2
1 min(iz, p+2) < ig
e
{ min(zz, p+2) < min(is,p+3) < i3
a®
b e
min(ip, p+2) < min(ip, p+3) < ... < min(iy, 2p—1) < min(é,, 2p) < ip
f1 < p+3 < pHd <. < 2p < 2p+l
Bp—2 < 2p < 2p+1
Bp-1 < 2p+1
5

Table 1. The maximal sequence (&(").

g(p—l)
4 i1
oP—2)
) { 1 < 12
g(2)
1 1 < 2 < i3
g(l)
b
1 < 2 <. < p—2 < p-1 <

B < max($1,2) < max(B,3) <. < max(f,p—1) < max(5,p)

ﬁp—? < max(ﬁp—?ap_l) < ma'x(ﬂp—%p)
ﬁp—l < ma'X(/Bp—lap)
| 5

Table 2. The minimal sequence (a(™)).
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Definition 3.5.5. For 3,i€J define the maximal path [/ and the minimal path ol
as follows:

T P
eleBy,, &l:=1a®|= min(ip_risptl+s)+ Y (p+1+s), (35.7)
s=1 s=r+1
r P
leBp,, == s+ Y max(Bi-s). (3.5.8)
s=1 s=r+1
LEMMA 3.5.6. For any (,i€J, we have
ePl<e<eld  forallee Egs.;:. (3.5.9)
Proof. Follows directly from Lemmas 3.5.3-3.5.4 and Definition 3.5.5. O

3.6. Characterization of E(g

Here we will prove the equality
Es={c€Ep,. :e<el} forall B,icd,

where w:=(p+2,...,2p+1) is the index from J with maximal possible entries. The latter
will be proved by the iterative use of the following “elementary” step: for any ¢’ that
differs from ¢ only in one component ,,, the same implication holds:

g€ E[ﬂ,i’], I gl = ce E{,B,i]~

In this section exclusively, for i€J we denote by i',¢”€J some modifications of ¢ which

have nothing to do with unfortunately the same notation for the complementary index.
LEMMA 3.6.1. For any given me{1,...,p}, let i,5'€J be such that
le = isy s 7é m,
i =im+1.
If for a given Be€J we have
e E[ﬂ,i’]a e'< [:_‘[i],
then for the same 3 there exists a path €, and a number [€{1,...,p}, such that

e r=1,..,1-1,
(3.6.1)

ecE 2] Er =
(84 {54_1, r=1,..,p-1L
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Proof. Let
ge E[,@’i/], < glil,

By definition, there exists a sequence o€ Jiz ;1 which satisfies the inequalities
18,4]

11
a’I(P—l) < ig

- 2 Hp—1 .
;.(P m+-2) < . < 'n(Lp ) < f_1

(1) H(p—m+1) 1(p—m+2)
< - < Oép—m+1 < p—m+2

" 1(p—m+1 I(p—m+2 "(p-1
B < az( IPES ap(fm+2 ) € ap(ferg V<. < ap( )

and moreover

o' =e'<ell, r=1,..,p-1.
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..................................................................... . (3.6.2)

To produce a required sequence a€Jg ), we change the values of the components of

a'€J3,i, only in the mth row:
P Lo/ PV L = 1

For '’s in this row we have two possible relations.

(1) The first one is the inequality
alP D < 1

Then

- —1
a'l(p m+1)<...<a'(p ) Py

m—1

N

Therefore, o' € J( 3, hence
= E[g’i],

and (3.6.1) is satisfied with [=p, i.e., we do not have to do anything.
(2) The second possibility is that for some t€{1,...,mm—1} we have the relations

m—1

A P P A A AT e R ST T (3.6.3)

m—1
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In this case we set

aPTF) = o/ PTmE) =4 s=t,..,m—1,
s (3.6.4)
ol :=a{" otherwise;

thus, changing by —1 only the last m—t entries of the mth row.
(2a) By such a definition, the second part of (3.6.1) holds evidently with {=p-—-m+t.
(2b) To show that e€ E(g;, we need to prove that

Since the changes are restricted to the mth row we need to care only about the inequalities

where the changed values are involved, i.e., about the inequalities

—mt -1 .
aE’:lm ) af,’:_Q) fm—1
A A A (3.6.5)
alf 7Y ol < < aPTD <

(2c) From (3.6.3) and (3.6.4) it follows that in the mth row we have

(p—m+i-1) (p—m+t) __  __ _(p-1) _ .
;i <oy =.=0,_{ =im,

i.e., the “horizontal” inequalities in (3.6.5) are valid.

(2d) In the columns (a®~™+%))™! we have

pomts) _ ip—mts) _ T
ag_l )= as(—l Clm—1<1m -'a_(gp S)7

i.e., the “vertical” inequalities in (3.6.5) are also true. O

LEMMA 3.6.2. For some l€{1,...,p~1}, let € be a path such that

E eggé?], r=1,..,01-1, (36.6)
XS iy . Epi= 5 6.
(5] 6’T—1<E,U, r=1,..,p-1
Then there exists an 1" >1 and a path
= E[B,i] (367)
such that )
el gl r=1,..,0"~1,
& = " (3.6.8)
‘ g-1<g, r=0",..,p—1.
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Proof. By definition, there exists a sequence a={a("} such that

srgs[z] r=1,..,0—1,

a€cdigq, a(r)|=€r::
ol | 1<zl r=1..,p-1

We will change now by +1 a non-zero number g+1 of successive elements of a€Jg; in
a certain row starting from an element a( ) in the /th column.

(A) By such a change the equality {3.6.8) holds automatically.

(B) The task is to find a starting element so that the new sequence o’ would still
be in Jg 4. Since the changes are restricted to a certain row we need to care only about
the inequalities where the changed values are involved, i.e., about the inequalities

1{l n(l+1 {1+ I4q+1
Ols*() < o (+1) S o < a;*(+qq) < ag*—fq-H)
A A A A (3.6.9)
(1) 1{1+1) 1{l+q)
s* 41 Qgryo Qgrfahy-

Consider the index a®. Since
agl) < &gl), s=1,...,p,

and by assumption (3.6.6),

Zam — la®] <= a0 = 3" a0,

there exists a number s’ such that

Set
s :=max{se{L,..,p}: oM <a}. (3.6.10)

(1) If s*=p, then we set
az(,l) = ag) +1,
and the lemma is proved with I"=1[+1.

(2) Let s*<p. Then, by definition of s*,

o <a®<a®, =al,,

ie.,
P +1<a¥, . (3.6.11)
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Set

1" = ma.x{H‘tG{l, .yp—1}: af.)—aglt_tt)}ﬁ-l,

and let
I"=:14+q+1, q€{0,..,p—1-1}.

Then we have the following three possibilities for the position of I” in the table.

(a) The case [+g<p—1, s*+q<p:

o _ U+ _ _ U+ (I+g+1)
LK oy = any = = aghy <o <
® (1+1) (I+q9)
P S 0 S ey S S Qeelgyr S

(b) The case (I4+q)<(p—1), s*+q=p:

O 1+ _ _ (4+g-1) _  _(I+9)
. < s = Qgei] = .. = Oy = ap

1 I+1 l+q—1
<ol < a§,+2) < ... < offtey

(¢} The case (I+g)=(p—1) (then s*+g=m—1<p):

ol = oD = (r-1)

. £ = Qg ] = o0 = Oy S im
) (+1) (P—1)
LR oy € oy €0 K an

Set (I+t) (1+t)
1
Qe =g +1, t=0,..,q,
+t e (3.6.12)

o/s’(” = agr), otherwise;
thus, increasing by +1 the elements in the upper row of the above subtables.
(2.1) Let us verify the “vertical” inequalities in (3.6.9). Since, by (3.6.11),

(l)+1 < agl)ﬂ,

and since, for the upper and lower row of the above subtables, the relations

L+t) ol ! (L+t) _
i +t+1_— )+1) ~(9)+1<a5 LR B} t-—O,...,q,

are valid, we have

l+t z 1 L+)

le.

1+¢) (1+t)
altl+1<altly
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According to the definition (3.6.12), this gives

n(+t), _ (l+t) (l+t) _n(l4t) _
s*4t - Qs +t+1< st 4t41 — Oge i1 t—O,...,q,

17{i4+t 17{I+¢
asf+t ) a55+t£1, t=0,..,4q.
This proves the “vertical” inequalities in (3.6.9).
(2.2) Let us prove the “horizontal” inequalities in (3.6.9). It is clear that, due to the
equalities

RN S )
the definition (3.6.12) implies
ol = a's'*(lfll) =..= a's'fﬂ::lQ).
Also in the case (a) we have
L5l <ol et

and that completes the “horizontal” part of (3.6.9) for this case.
Further, since by definition (3.6.10) we have

a®41<a®,

it follows that
ot r1=0 r1<aW<altty.
This implies
LA =altri<aly).
i.e., the values of the modified ¢ lie in the admissible intervals. In particular, in the
case (b),

QZ(H“I) < al()l-HI) =2p+1,

and in the case (c),

;:L(pzl) 64 11)=min(p+m,im)<im.

This finishes the proof of the “horizontal” part of (3.6.9), and of the lemma. |
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LeEmMA 3.6.3. For some l€{l,...,p—1}, let € be a path such that

€ géli] r=1,..,1-1,

/

T ’
Vi -
r

eeE ils Ep = i
(5.1 {s —1<5L], r=1,..,p—1

Then
e'e E[gﬂ‘].

Proof. An iterative use of Lemma 3.6.2. O
We summarize Lemmas 3.6.1-3.6.3 in the following two statements.

LEMMA 3.6.4. For any given me{l,...,p}, let i,i'€J be such that

If €' is a path such that

then
g'e E[ﬁ,i]- (3.6.13)

Proof. By Lemma, 3.6.1, for such a path &', there exists a path ¢, and a number
le{l,...,p—1}, such that

e, r=1,...,1-1,

e€E g, &=
(5.1 " {e’r—l, r=1{,..,p—1

And, by Lemma 3.6.3, we have then the inclusion (3.6.13). O

LEMMA 3.6.5. For any given me{1, ...,p}, let i,i'€J be such that

-7 .
iy=1s, SFm,

i =im 1.

Then
E[ﬂ,i] = {66 E[g’,‘r] < §[i]}.

Proof. For 1,1’ so defined, the inclusion

{e€E e <} CEpy
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is just a reformulation of Lemma 3.6.4. On the other hand, since i<#’, it is clear that
Efsi C Ejg i,

and it remains to recall that, by (3.5.9), for e€Eg ;) we have el O
Set
w:=(p+2,...,2p+1), weld.

Then w is the index of J with the maximal possible entries, i.e.,
1<w forall iel.
PROPOSITION 3.6.6. For any (,i1€J, we have

E[ﬁﬂ'] = {E € E[ﬁ,w] e g[i]}.

Proof. Since i<w, i.e.,
s Sws, s$=1,..,p—1,

N

there exists a number N, a sequence of indices (i),

and a sequence of numbers
(m,)N_;, such that

iO=q, M=y,

and

() i‘(su—l)’ sFEmy,

1 =

3 ig"_l)—i—l, s=m,.
Since

i<W <L <GV D,
we have

gl < g™ <..< gl Y] <&,
and, by iterative use of Lemma 3.6.5, we obtain

Epq= {ee Epm:e< g['i]}
={€€Bg@:e< é[i(l)], e < gl
[8,i(2)]
={e€Ep,»:e< gll}

={ce E[ﬁ_’i(zvfn] re< E[i]}
={6EE[,@7W]:E§E‘[“}. O
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PROPOSITION 3.6.7. If
gl < bl i,jeld,

then
EpgCEp; for all Bel.

Proof. By Proposition 3.6.6, we have
Ejgq={c€EBg:e <}, Ep,={e€Bp:e<el),
and it is clear that

elgell o {eeBp, e <El)c{ee By e<al}. O

3.7. Relation between the minors of @ and C

Definition 3.7.1. For i,j€J, we write

i<j o eilgell (3.7.1)
or, equivalently,
p—t p—t
iXj & Y min(ig,p+1+s) <Y min(jsye,p+its), t=1,..,p—1 (3.72)
s=1 s=1

Let us show the equivalence. By Definition 3.5.7,

T r
el<el o Y min(porps,pt14s) <Y min(Gp-ris,p1+s), r=1.,p-1
s=1 s5=1

(3.7.3)
To see that the inequalities (3.7.2) and (3.7.3) are equivalent, one should set r=p—t.

PROPOSITION 3.7.2. For any peN, there exists a constant c, such that if
i,jed, 1=,
then

Q(B8,%) <, Q(B,j) for all Be. (3.7.4)

Proof. By Definition 3.7.1, by Lemma 3.6.7 and by Lemma 3.3.4, we have the im-

plications

izj = el<ell = By cEp; = QBi)<cQ(8,)) foral gel. O
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PROPOSITION 3.7.3. For any peN, there exists a constant ¢, such that if
,j€Jd, =<7, (3.7.5)
then for any v<N —p+1 we have

CN—u(p7 1) < CpCN—u(p7j)'

Proof. It v<N—p+1, then N-—1>v+p—2 and we find that

N-1 v+p—2 p—1
On-vi= ][ 1AD(es)]- A= K- [] [AD(e:))- A=K -[[IAD(0vss1]- A= K-Q,

with some totally positive matrix K. By the CB-formula, making use of (3.7.4), we
obtain

Cn-u(P,) =) K(p,B)Q(B,i)<cp y_ K(P,B)Q(B,4)=Cn-u(p,f). T

BeJ BeJ

3.8. Index relations

3.8.1. The statement. Recall the definitions from §2.1:
2p+1:=(1,..,2p+1), J:={jC2p+1:#j=p},
Jh={€d:{1}¢j}, 1=1,..,2p+1.
For i€ J! we defined its I-complement i* and its conjugate index i* as
ited', dt=2p+1\{1}\i,
*ed, i*=(2p+2—ip, ..., 2p+2—i1).
In this section we will prove

PROPOSITION 3.8.1. Let icJ'. Then
==, L<pHlLy,

or, equivalently,

p—t p—t
> min(il,,p+1+s) <Y min(il,, ptl+s), t=1,.,p-1, [>p+1, (38.1)
s=1 s=1
p—i p—t

D min(il,,,p+14s)> Y min(il,,p+1+s), t=1,..,p-1, I<p+l. (3.82)

s=1 s=1
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We will prove this statement in another equivalent formulation. It is clear that we

may compare the sums of the shifted values
min(jsiye,s), Js:=js—(p+1).
We define, therefore, the sets of the shifted indices
mp:=(=p,...0), Jp:={JjCmp: #j=p},
J,={jed:{i}¢j}, l=-p..p.
For jelJ i, its [-complement and conjugate index are defined respectively as
jedy,, i=m\INg (3.8.3)
ired,, jri=-7
For jeJ, we set also
P
lil:=" Js- (3.8.4)
s=1
Thus, Proposition 3.8.1 follows from
PROPOSITION 3.8.2. Let i€J.. Then
Rt A NN Y

or, equivalently,

1

p—t

> min(il,,,5) <> min(i},,,s), t=0,..,p—1, >0, (3.8.5)
s=1 s=1

p—t p—i

> min(il,,,s) =Y min(ily,,s), t=0,..,p—1, I<0. (3.8.6)
s=1 s=1

Remark 3.8.3. We have added also the inequalities with t=0.
Now we start with the proof of Proposition 3.8.2.
3.8.2. Proof: the case 1=0.

Definition 3.8.4. Let any pe N and any j€J, be given. For t=0, ...,p—1 define the
indices
j[t]e‘]p—h .]Lt] = min(js+t7s)7 5:1’-~-,P_t7

(3.8.7)
e, Y =max(Ge, ~(p-t)+(s=1)), s=1,..p—t.
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.7[0] :=( jla j?) ey jp—2>

Table 3. The indices 5.
Since the components of j€J, satisfy
—p+(s—1)<Jjs <,

we have

j[‘Ol :j[o] =j.

For s=1,...,p—t, due to (3.8.8), we also have

jp—la
jM = (min(jz,1), min(js,2), .., min(jp_1,p—2), min(jp,p—1))
N e’ | S iy —
1] (1] [1] (1]
J1 J2 Ip-2 Jp—1
7= (min(js, 1), min(js,2), .., min(j,,p-2))
N — N — ——————
12] [2] 12]
7 32 Jp—2
jlp_l]::(min(jp,l))
N ——
[[p—1]
L N

_(p—t) < min(js—{—t, S) < p_t7
—(p—1t) <max(js, —(p—1)+(s—1)) <p—t,

i.e., the inclusion j[t],j[_t]EJp_t in (3.8.7) really takes place.
Tables 3 and 4 show what the indices 5/ and ;=% look like.
In notation (3.8.7) and (3.8.4), we have the equality

p—t
Z min(js+t7 S) = |.7[t] |7
s=1

so that (for [=0) the statement (3.8.5) to be proved is

@)1 =@, £=0,...,p—1, for all i€ IC.

LeEMmMA 3.8.5. For any j€J,,

R G el Gy g pea,

Proof. Clear from Tables 3 and 4.

115

i) |

(3.8.8)

(3.8.9)

(3.8.10)
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3O := (41, g, Js» o Jpet I )
jH= (max(ji, —p+1), max(jz, —=p+2), ..., max(jp-2, ~2), max(jp-1,-1))
i Y sy Pl
4§20 = (max(ji, —p+2), ..., max(jp_3, —2), max(jp_2, 1))
Pl it i3
jl=rl .= ( max(jy, —1) )
- e i

Table 4. The indices j{~4.

LEMMA 3.8.6. For any given p and any i€J9, we have
Heds (3.8.11a)
(=10 = (0111, (3.8.11b)
=1y = (). (3.8.11c)

Proof. We prove first the equalities (3.8.11a) and (‘3.8.11b). By definition, for ing
we have
#i=#i"=p, U=m\{0}, in’=2.
Let
iy =1, i?-{-p =T
Then we have two cases:

(1) ipz—lv
(2) ip>0.

Case 1: i,=—1. In this case i{=1 and the only possible entries of i and ® are

oS

’ill i ”zp[ |i?'...‘ig_1‘z
[—p]—p+1‘...|—1|0[1|...’p—1’

3

In this case we have
i =(—p+1,..,-1), @OMU=Q,..p-1),

and the equalities (3.8.11a) and (3.8.11b) are evident.
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Case 2: i,>0. In this case i{<0 and the entries of 4,i° are located as follows:

|11|‘ ir ‘2(1)" \‘zl,‘zgﬂ“@gi
\—p’...l—p-i—r—ll-p-l-r‘ lO‘...'q'q—Fll...ip"

In this case,
_‘p+sv S=1,...,T‘,

il = max(is, —p+s) =
fs, s=r+1,..,p—1;

9., s=1,..,q9-1,
()M = min(is4q, s) = { A

s, §=¢q,...,p—1.

Briefly, it can be written as

=N N\ (i), (O = 0,1\ (P (D).

It follows that
N =g, -UuE@)M =x, \{0},

what is equivalent to (3.8.11a) and (3.8.11Db).
The equality (3.8.11c) is straightforward:
@z = =il o= — max(ip—o, ~(p—1)+(p—5—1)) = — max(ip_,, —s)
=min(~ip_s, $) = min(—ip41_(541), s) = min(i;,, s)

=: ()01, a

LEMMA 3.8.7. For any peN, any i€J) and any t=0,...,p—1, we have

(a) i-9ed)_,,

(b) (=)= (i),
(@) ) =),

Proof. Follows from Lemmas 3.8.5 and 3.8.6. a
LEMMA 3.8.8. For any peN, and any jng,
13 =15"1.
Proof. Since jUj%=m,\{0}, and j*=—j, we have
31+15° = mp| =0, 1j]+]5*1=0,

ie., 17°1=157. O

Now we are ready to prove the case =0 of Proposition 3.8.2.
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LEMMA 3.8.9. For any i€J),
% =%, (3.8.12)

or, equivalently,
p—t p—t
> min(il,,,s)=> min(il,,,s), t=0,..,p-1 (3.8.13)
s=1 s=1

Proof. By Lemma 3.8.7, for any ing and any t=0,...,p—1, the index gr=il=t
satisfies the relations
@M =5° @)WM=5, jedp_,

By Lemma 3.8.8, we have
[7*|=15% forall jeJo_,.
Thus
@) =G*)H], ¢=0,...,p-1,
and that is equivalent to (3.8.13). O
This finishes the proof of Proposition 3.8.2 for {=0.

3.8.3. Proof: the case 17#0. It is clear that the following implications are valid:

(a) i<j = 127,

(b) i=j = ixj.

Case 1: i€{JLNJY}. This is the case if {0}¢i. Since for i€ J, by definition (3.8.3)
we have

&= mp\i\{!},

it is easy to see that
<0 if <0<y,

and respectively
i< <ih if <0<y

Since 7€ J), we have by Lemma 3.8.9

and therefore,
i2<i*<i if <0<y, i€{IJNIW}.



A PROOF OF DE BOOR’S CONJECTURE 119

Case 2: i€J., i¢J9. This is the case if {0}€7. Then we have the inclusions

Il o0
vEd,, TEJ,.

Set
g = i\{0ju{l}.
Then
(1){‘76‘]2’ (2){j<i’ H< (3.8.14)
jO=14t, i<j, 1>0.

From the first part of these relations, by Lemma 3.8.9, it follows that

A 0
i =g =g*.

From the second part one obtains
< i 1<0, i*=<4* if 1 <0,
{j*<i* if 1>0, - {j*ji* if {1>0.
Thus,

i<t i <0<y, i€l

i¢do.

Proposition 3.8.2, and hence Proposition 3.8.1, are proved.

3.9. Completion of the proof of Theorem Z
THEOREM Z (§1.9). There exists a constant c, depending only on p such that the in-
equalities

1
il le®t) =12V < cpy, I=p+1,..,2p+1, v=0,...., N—p+1,

hold uniformly in v, 1.

Proof. By Theorem 2.5.1, we have

Izl(/l)| < max CN—V(pajl)

L 1=1,..,2p+1.
j€dt Cn_u(p,j*) P

By Proposition 3.8.1,
=T i izptl, jedt,

and by Proposition 3.7.3, this implies

Cn—v(p,j) <Cn_y(p,j*) if yS N—p+1. O
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3.10. Last but not least

In [B2] C. de Boor wrote:

“... I offer the modest sum of m—1972 ten-dollar bills to the first person who
communicates to me a proof or a counterexample (but not both) of his or her
making for the following conjecture (known to be true when k=2 or k=3):

CONJECTURE. For a given n and t, let (A;¢;) be the (nxn)-matriz whose

entries are given by
Nik Nji
L
¢i tivk—t;
Then
sup [ (4:6,) oo < 00.

n,t

Here m is the year A.D. of such communication.”

Added in proof. The cheque has been received. With m=1999, and, to a nice sur-
prise, doubled, the modest sum turned out to be not that modest. Regarding the origin
of the factor 2, C. de Boor replied: “... well, about 5-6 years ago, I stated at some oc-
casion that, given inflation and all that, I was doubling that rate. In fact, Jia was kind
enough to remind me of that.”

4. Comments
4.1. A survey of earlier and related results

Earlier the mesh-independent bound (0.2.1) was proved for k=2,3,4 (the case k=1 is
trivial). For k>4 all previously known results proved boundedness of || Ps||oc only under
certain restrictions on the mesh A. This included, in particular, meshes with multiple
knots which correspond to the spline spaces

Skm(A) = Pe(A)NC™ a,b], Sk(A):=Skr1(A)

We summarize these results in two theorems. The number in the square brackets indicates
the year of the result.
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THEOREM A. Let K be one of the mesh classes given below. Then

sup sup || Ps, ,.(a)lleo <ck(K) for all k€N.
ACK m

(K2) strictly geometric

i

" Domsta [72],
(K1) quasi-uniform hmﬁ*x < M or like | Douglas-Dupont-Wahlbin [751],
- de Boor [763], Demko [77]
h.
(K1) quasi-geometric ;Zil <l+sgg de Boor [763]
i
hit1 Feng-Kozak [81], Hollig [81],

=0, 0>0

Mityagin [83], Jia [87]

THEOREM B. If k,m are

sup
A

as given below, then

1 Psy () lloc < k-

m=k-1|k=2 Ciesielski [63]

m=k—-1| k=34 de Boor [68], [79]

m=0 k>1 trivial

m=1 k>2 de Boor [763], Zmatrakov—Subbotin [83]
m=2,3 | k>(m+1)? | Shadrin [98]

4.1.1. Lgy-projector onto finite-element spaces. The arguments used by Douglas,
Dupont, Wahlbin [DDW1}, de Boor [B3] and Demko [Dem] for proving the boundedness
of ||Ps|le for the quasi-uniform meshes revealed that such a boundedness has nothing

to do with the particular spline nature. The essential structural requirements on a

subspace S needed for these proofs can be summarized as follows:
(Bo) S=span{¢;},
(B1) supp ¢;<oo, #{;: ;¢ #£0} <k,

(Bg2) the local condition number (®) of ®:={¢;} is bounded, i.e., 3(P)<d for

some d,

(B3) partition of the domain is quasi-uniform.
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A general result (for quasi-uniform partitions) including also the multivariate case
was proved by Douglas, Dupont and Wahlbin in [DDW2], and in fact in an earlier paper
by Descloux [Des].

To this end, a natural question is whether the mesh-independent bound of Pg could
be extended to (and perhaps more simply derived for) general finite-element spaces. The
answer is no.

More precisely, denote by Sk 4 the set of all finite-element spaces S that satisfy
(Bg)—(B2). Then, for k=2 and any d>36, we have

sup || Ps|lp = oo,

|1_1' 3
S€Sk.a

- > —.
21" Vd
This result shows that the mesh-independent L_..-boundedness of the Lo-spline projector
is based on some peculiarities of the spline nature.
On the other hand, one can show that, for any k€N, deR, d>k,
1 i 1

1
P d —_—— | <,
S:t;r;dll sllp <elk,d), Ip 21~ 2kd?Ind

i.e., the L,-boundedness of the spline projector Pg for p in some neighbourhood of p=2
(proved earlier in [S2]) is not something extraordinary.
See [S5] for details.

4.1.2. A general spline-interpolation problem. C. de Boor’s problem is a particular
case of a general problem concerned with spline interpolation.

For pell, o], and f from the Sobolev space Wll,[a, b], let s:=s2x a(f) be a spline of
the odd degree 2k—1 which interpolates f on A, i.e.,

SESQk(A), S]A:fIA.

To obtain uniqueness, one should add some boundary conditions, e.g.,
(@) |zmap = FO@)|omapy =1, k=1

A general problem is to estimate the Lg-norm of such a spline-interpolation operator,
i.e., to find

L(k,t,m,p,q, K):=sup  sup [|f™ =s5PA(f)llgs
ACK | fi,<1

where K is a class of meshes, see [B7], [H], [S1], [Ma].
A particular problem is to determine whether the value

* l
L*(k,L,p):=sup sup s} A(f)llp (4.1.1)
A F®)p<1
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is bounded (independently of the mesh). A necessary condition was found to be
L*(k,l,p)<oco = Wie{Wi ' Wk witl} (4.1.2)

It was conjectured that this is also a sufficient condition. For =k this particular problem
is known to be equivalent to de Boor’s conjecture, since

s$h a(f) = Ps,a)[f ™). (4.1.3)
Now, by our Theorem I, due to (4.1.3), a particular converse of (4.1.2) follows:
Wi=w} = L*(k1,p)<co.
The question whether such a converse is also true for two other cases in (4.1.2),
Whe {WEL WYY S L*(k,1,p) < oo,

remains open.

4.1.3. A problem for the multivariate D*-splines. The univariate splines can be de-
fined through a variational approach. Now the question is that perhaps the variational
nature of splines determines the mesh-independent boundedness of the spline orthopro-
jector. The answer is no, too.

For another class of variational splines, the so-called multivariate D*-splines on a
domain of R", the analogue of de Boor’s conjecture is false, see [S4], [Ma]. In particular,

in terms of the previous subsection, we have

L*(k,l,p)<oo & I=k, p=2, ifn>4

4.2. On de Boor’s Lemma 1.2.4

4.2.1. Gram matriz and de Boor’s Lemma 1.2.4. A simple intermediate estimate
I1Pslloo <N1G™ oo

stated in Lemma 1.2.1 is a kind of folklore and has been used in most (but not all)
papers on the subject cited in Theorems A and B above. C. de Boor [B2] proved that
the converse (not so simple) inequality

IG™ oo <kl Pslloo
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is also valid, i.e., to quote [B6], “in bounding || Ps|| in the uniform norm, we are bounding
|G~ |0, Wwhether we want to or not”.
For k=2, G is strictly diagonally dominant, and the direct estimate by Ciesielski [C]
was
1G™ oo <3 (4.2.1)

For k>2, G fails to be diagonally dominant, so a different argument has to be used.

For k=3,4, de Boor [B1], [B6] proved the boundedness of G~! making use of his
Lemma 1.2.4. Namely, he found that the following “comparatively simple” choice of the
vector (a;) works:

(tiga—tiy1)?
(tize—ti)(tipzs—tiz1)’

(tivz—tiy1)?
(tivz—ti)(tiza—tiy1)’
This choice clearly provides the fulfillment of

(aS) ”a”oo <Cmax,
but makes the verification of (a;) and (az) “comparatively” problematic. (The proof of

k=3, (=1)'a;:=1+ supp M; = [ti, tiya),

(4.2.2)

k=4, (—1)'a;:=3+4 supp M; = [t;, tival-

k=4 announced in 1979 has never been published.)
In this sense our proof is of an opposite nature. We offer a construction which gives
a simple proof of (A1) and (Az), but encounter the problems with (Ajz) instead.

4.2.2. On the choice of the null-spline o. The main difficulty in using Lemma 1.2.4
for estimating ||G™!|| is the problem of finding a vector a=(a;) satisfying the condition
(a1) of this lemma, or, respectively, the problem of finding a spline ¢=>_ a; N; satisfying
the condition (A) of Lemma 1.3.1.

(1) Since the Gram matrix G is an oscillation matrix, a candidate for the vector
a could be the eigenvector corresponding to the minimal eigenvalue. (By a theorem of
Gantmacher-Krein such an eigenvector is sign-alternating.)

(2) Consider

S ={t_ 1= =tg=0<1=t;=...=tx},

the mesh with the so-called Bernstein knots. In this case the B-spline basis reduces to

("“;1) o (1-z)F 1

For the Bernstein Gramian Gy the explicit expression for the “minimal” eigenvector

a=(a)in, ai=(-1) (’;:;)

the polynomials

is available, namely
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Also, it is known that the corresponding polynomial ¥(z):=3" a; N;(z) is the Legendre
polynomial
P=cO* D g(g):=[z(1-z)]*Y,

i.e., the (k—1)st derivative of the null-spline ¥ of degree 2k —2.

Our null-spline ¢ may be viewed as a generalization of ¥.

(3) However, it turned out that the coefficients of the spline ¢:=c¢(*~1) have nothing
to do (and could not have something to do, see below) with the “minimal” eigenvector.
Nevertheless, this choice provides the fulfillment of (A;) in a simple and natural way.

(4) Remark in retrospect. The “minimal” eigenvector {a;) of G can not be used in
de Boor’s lemma. Recall that in order to use this lemma, one should have the relations

b=Ga, max|a;/bj|<c.
[
For the “minimal” eigenvector (a;) of G they should therefore be
-
|amax/amin| <cCg-

This is, however, not true, as the following lemma shows.

LEMMA 4.2.1. Let (a;) be the eigenvector of Ga corresponding to the minimal
eigenvalue. Then, for k>2,

Sgp |amax/amin| = 0.

Proof. Let A=(t;)Y, and h;=t;,;—t;. Then, e.g., for k=3,

6 4
G*:= lim lim ... lim GAZi 6 4 )
hn-1—0 hy_2—0  hy—0 10 6 3 1
3 4 3
1 36

L J

the limit minimal eigenvalue is A%, =15, and the corresponding limit eigenvector is

a’*:((—_"E)N_lv(—x)N_2a""x2y"1:317—291)7 6(E—4=.’E, Tr=

SIS

Thus,
N-1
SUP |@max/@min| 22-(2) .
#A=N
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4.3. Simplifications in particular cases

The most elaborate part of the proof of Theorem I, viz. Chapter 3, is concerned with the

estimate

R,(a,1) z
Ry =1][AD,,]- A,
max Ry(a,J) <¢, Ry 71=—[1[ e

with g=p—1. The analysis would be simpler if we could take
q:07 R0=A7 (431)

but we were forced to take g=p—1, since A in general has vanishing minors.

We indicate here the cases when considerations from Chapter 3 starting with
§83.3-3.5 can be omitted.

In Cases 1 and 2 below, the choice (4.3.1) works. Case 3 uses g=p—1, but the only
ingredient taken from Chapter 3 is non-emptiness of the set J(3;, proved in §3.5.

Case 1. Knots with multiplicity k—m with m<1(k+1). Consider
Sk.m(A):= Pr(A)NC™ Ya, b],

the spline space with the B-spline basis defined on the knot sequence A with knot multi-
plicity k—m. The following particular case of Theorem I does not rely on the analysis
made in §§3.3-3.6.

PROPOSITION 4.3.1. If m<i(k+1), then

Sup I Ps,, () oo < C-

The last step of the proof. For this space, the null-spline ¢ is a spline with (k—m)-
multiple zeros on A. The matrix A which connects the vectors z, of the non-zero deriva-
tives of o at ¢, by the rule 2,1 =Az, has the lower order

Ac R(Zm—l)x(2m—1) )

It could be obtained from the matrix S by k—m successive transformations similar to
those in §3.2.2. This gives the criterion

A((;lv ”',gq) > O lf a,nd Only lf Qg < /88+k—m7 8= ]_’ ,q_(k_m) (432)
1s---y Mg

Here a, 8 are indices from Iy 2,,—1; in particular, we have

s<a;<(2m—1)—(g—s). (4.3.3)
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If k—m>gq, then the condition on «, 3 in (4.3.2) is void. Now let

(i) m<$(k+1).
Then

(4.3.3) (ii) () (ii) (4.3.3)
as € 2m—-1)—(q—s) < k—qg+s <s+m—1 < s+k-m < Bstikom,

i.e., the condition on «, in (4.3.2) is fulfilled. Thus,
Aa,8)>0 for all o, 8, if m< 3(k+1),

and accordingly,

C(p,i') A(e, )

W] < max =———~ < < ey O
|z, | \IEEa:]X C(p, ") \a{%%y)fé A(7,0) %6

Case 2. The estimate of zp. For v=0, the estimate |z((]l)|<cp of Theorem Z (see §3.9)

can also be proved without analysis of §§3.3-3.8, but with making use of properties of
the matrix A only.

LEMMA 4.3.2. There exists a constant c,, depending only on p, such that the in-

equalities
1
ﬁ‘ (l)(tV)|: 'zl(/l)|<CP7 l:p+1772p+17 V:Oa

hold uniformly in 1.

Proof. From (2.5.1), making use of the CB-formula we obtain
|zgl>|=&(§_$gggg§%, I=p+1,..,2p+1. (4.3.4)
The criterion (see Lemma 3.2.9)
Ale,i)>0 if and only if o, <44y for all s
easily gives the implication
i<j = Alo,i)<cpA(e,j) forall ael. (4.3.5)
It is not hard to see that, for two different I-complements of 1€ J, we have

il i <y,

in particular,

p'<pPtl=p* ifI>p+1. (4.3.6)
Altogether, (4.3.4)—(4.3.6) proves
120 1< ep, I=p+1, ., 2p+1. 0

Case 3. The estimate in terms of a local mesh ratio. The next particular case of
Theorem I does not need more than non-emptiness of the set J(z ), proved in §3.5.
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ProPOSITION 4.3.3. Let L(M) be the class of meshes with the bounded local mesh
ratio, i.e.,
L(M):={A: max h v/hy <M} (4.3.7)

V ”|
Then
sup ”Psk(A)”oo < cp(M).
A€L(M)

The last step of the proof. In §3.3 we proved the inequalities (3.3.6):

Cp Z H I ||a(r)| < Q4 (8,19) Z H| ||a(r)|

a€dig, =1 aEJ[B i T=1
We recall that +, stands for the local mesh ratio o, with some v, i.e.,
Yr =0y = h,,/h,,+1,

that c, is a constant independent of 3 and 7, and that the set Ji5 ; is always non-empty
(see §3.5). On account of (4.3.7), this yields the estimate

c1(M,p) < e, Q~(B,1) <co(M,p) forall 8,icd,

max g((z;)) cp(M) foralli,jed. O

4.4. Additional facts

Here we present some additional facts which we have not used at all in our proof of
Theorem I, but which could be useful in finding a simpler proof.

4.4.1. Orthogonality of p€Si(A) to Si_1(A). For the Bernstein knots, ¢ being the
Legendre polynomial of degree k—1 is orthogonal to the polynomials of smaller degree.
The following lemma generalizes this property to any A.

LEMMA 4.4.1. The spline ¢ of degree k—1 on A defined via (1.4.1)—(1.4.5) is ortho-
gonal to all splines of degree k—2 on A, i.e.,

(¢,5)=0 for all s€Sk_1(A).

Up to a constant factor, ¢ is the unique spline from Si(A) which possesses this property.
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Proof. Tt can be shown (e.g., by integration by parts) that if any function fe
WFEa, b] satisfies the conditions

) =0, v=0,..,N,
d (t)_o Y (4.4.1)

FOte) = fD(tn) =0, I=1,..,k=2,
then
(f*1 5)=0 for all s€S;_1(A).

Since o satisfies (4.4.1) (they are the same as (1.4.2) and (1.4.3)), and since ¢:=c*~1,
the statement follows. O

4.4.2. Null-splines with Birkhoff boundary conditions at ty. Let i€J be any index,
and let §€Sy;,_1(A) be the null-spline that satisfies the conditions

6(t,)=0, v=0,...,N,

50 () =6 (tn) =0, s=1,... k=2,
1
(k—1)!

(4.4.2)

&(k_l)(tjv) =1.

In comparison with the null-spline o defined in (1.4.2)—(1.4.4) we have changed at the left
endpoint tp the Hermite boundary conditions (1.4.3) into Birkhoff boundary conditions.
The spline ¢ also exists and is unique.

LEMMA 4.4.2. We have the equalities

1. B . C(p,i') .
16O (to)|- ol FH = 5 = 20 (1) ¢ 4.4.3
7116 (0)![hol % =iy (B# (4.4.3)

Proof. Let p:=k—2, and let

1:= (il, ...,ip)

be the index whose components are the orders of the derivatives involved in (4.4.2). Then
we can find Zg as a solution to the system of linear equations similar to (2.2.11), and, as
in the proof of Theorem 2.3.5, one obtains

.

)= Ced) 0

C(p+1,i’)

Lemma 4.4.2 is of some interest for the following reasons. In Theorem 2.3.5 we
established that

C(p,i)
D < B o R
|2 l\?é%)f ot 1)
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Therefore, by (4.4.3), we have the estimate

A
|2 < max| 557,

where the maximum is taken over all null-splines & with various Birkhoff boundary
conditions in (4.4.2). Maybe it is possible to obtain an easier proof of the inequality

|2§”| <cp, lzp+1,

for the left endpoint, as was the case for lz(()l)| in Lemma 4.3.2.

4.4.3. Further properties of the matrices C. For r=(z(¥)eR", S~(z) and S*(z)

denote respectively the minimal and maximal number of sign changes in the sequence z.
LEMMA 4.4.3. For any v, the matriz C:=Cn_, is similar to its inverse.
Proof. By (2.4.1), we have C~1=(DyF)~'C*(Do F). O
The fact that C is an oscillation matrix permits the following conclusion.

LEMMA 4.4.4. For any v, the spectrum of Cn_, € R?P*! consists of 2p+1 different
positive numbers
O< <. . < /\2p+1.

Moreover, by Lemma 4.4.3,

1

Ao=
Aop+2—s

) /\p+1 =1

If {u, s} is a corresponding sequence of eigenvectors of Cn—,, then
S (uvs) =St (ups)=s—1, s=1,...,2p+1.
The fact that, for any v, a solution z, of the equations
Cn-vzy=2N
remains bounded at least in the second half of its components indicates that in the

expansion
2p+1

2y = g AsUy s
s=1

the eigenvector u, p4+1 corresponding to the eigenvalue 1 dominates in a sense. Here is

one more evidence for this “dominance”.
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LEMMA 4.4.5. For any v, we have
57 (z)=8%(z) =p [=S(uvps1)]-

Proof. By the Budan—Fourier Theorem for Splines [BS], with p:=k—2 we obtain

Z,(a,b) < Z v (a,b)+S " [o(a+), ..., 0P (a+4)]

(4.4.4)
— St (b=), ..., (b)),

where Z;(a,b) stands for the number of zeros of f on the interval (a,b) counting multi-
plicities. Also, by Lemma 1.6.1,

Zo(ty,ty) =Zgapin(tu, t,) for all v, p,
and the boundary conditions (1.4.2)—(1.4.3) say that
S” [U(to-{-—), erey 0.(2p+2)(t0+)] <p+1 < S+ [U(tN—)7 ey 0(2p+2)(tN_)]'

Taking now (4.4.4) with
(1) a=tg, b=tn,
(2) a=ty, b=t,,
(3) a=t,, b=ty,

successively, we obtain
SHo(t,—0),..,aPPD (¢, —0)] = S [o(t, +0), ..., 2P+ (t,+0) =p+1 for all v.

Since
o, —0)=0c®(t,+0), 1=1,..,2p+1,

and since
o(t,~0)=0(t,+0)=0, signoc@*D(t,—0)=—signo?(t,+0),

we conclude that
Slo'(ty), .., d®PTV(,) ] =p  for all v.

This, in view of the relations
2 =const-oW(t,), 1=1,..,2p+1,

proves the statement. O
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4.5. On the constant ci

There are two constants in de Boor’s problem:

(a) the norm of the orthoprojector
ck[P):= Slj\ka,A[P], cx.a[P]:=Ps,(a)lloos
(b) the norm of the inverse of the B-spline Gramian
ck[G]:=supci A[G]. cx.alGl:= | Ga loo-

Our method based on properties of the spline ¢:=¢a:=>_ ey (¢a)N; provides also
(c) the constant

|a;(¢a)l
crl¢]:=supec . Ck. = max .
Al up kol ckald] R ATEYACON]
These constants are related by the inequalities
cx[P] € ek [G] < ekl[4)], (4.5.1)

and we proved in Theorem I that
cilo] < ek

It is possible of course to estimate all the constants involved in the proof, hence the final

constant ¢, but we find it more useful to give a comparative analysis of the constants
in (4.5.1).

(1) Lower bounds for cx[G] and ck[¢]. Consider
5(k) = {t_k+1 =.=t=0<1l=t1=...= tk},

the mesh & with the Bernstein knots. In this case the corresponding B-splines are simply
the polynomials

Ni(x)z(k; >xi(1—x)k-1~i, M;(z) =kN(z),

k-1 k—1

. (0
99 = 9k 1’ 2%k 2 '
(i)

and the Gram matrix G is given by

Gs:={(M;, Nj)} = (955720,
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The first values for the constants are as follows:

k 2|3 4 5 6 7 8 9

koG] [ 313|412 | 171 | 583% | 23641 | 83735 | 337372 (4.5.2)

ck,s[®] | 320 | 105 | 756 | 4620 | 34320 | 225225 | 1701700

They satisfy the relations

1/2k 2k
crslG)~ET24E, o ( k ) < cxs[G] < <k)

crald]~ k8%, cnald] = (2:__ 11) | ([;k_—lnl)

To find ¢k 5[¢], we have used the formula

-1 a;
Ck,6[¢] = )\min.rril%{X a_l.7
’ J

where Ap;, is the minimal eigenvalue of G, and

w=((i)

is the corresponding eigenvector.

The first values and the two-sided estimates for ¢ s5[(G] were obtained with the help
of the MAPLE package. It is possible to find an explicit expression for this constant,
too.

(2) Lower bound for cx[P]. For the Bernstein knots, Ps is simply the orthoprojector
onto the space P}, of polynomials, and in this case

C2’5[P]=1%, Ckv(;[P]N\/E.
For k=2, K. Oskolkov [O] improved the lower bound 12, and showed that
c2[P]>3. (4.5.3)

His method is easily extended for arbitrary k.

LEMMA 4.5.1. For any k,
ck[P) = 2k-1. (4.5.4)
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Proof. For fe Ly, let its orthoprojection Ps(f) onto Si(Ay) have the expansion

N
Ps(f, :L‘) = Zaj(f, AN)N]'(.”E).
j=1

Then, the value of P(f,z) at the left endpoint x=t%; of Ay is equal to the first coefficient

of this expansion, i.e.,
Ps(f.t1) =ai(f, An).
Therefore,

I Ps ()l 2 lar(f. AN)I]

and it follows that

| Ps,amyll > K(AN), K(An):= sup lai(f,An)|
[flle<1

Now let
ANZ(ti)f/, AN+1={to}UAN, h:=t1—to.

Then, for the corresponding Gramians G and Gy.; we have the relation

bI‘bQ]OI...IO

Gn

In the same way as in [O], one can prove the inequality

1 bs
i >4 = .
}lllrll()K(AN+1)/bl bl K(AN)

This implies the estimate

1 b
KN+12—+—2KN, Ky:= sup K(An),
by b #AN=N

and as a consequence

] 1 o= (b\ 1/t 1
lim Ky>—% (2] = = .
N K blsgo(bl) 1—by/b;  bi—bs

For any k, the corresponding values by, by are easily computed as

1
k k-1

_ k=1, k-1 5 _ e —p =
bl—k/Oz x dx—zk_l, by=1-b TR
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so that
lim Ky >2k—1. (]
N-ooo

(3) Upper bounds. For k=2, the exact values of all constants are known:
k?:2, CQ[P]:CQ[G]:CQ[¢]:3.

Two further estimates of de Boor are available:

k=3, c3]G)<30,

k=4, cdG]<812.

(4) Ezpectations. Symbolic computations with MAPLE for k, N<5 give evidence
that

k|Gl =cr 5G], ck[d] = cx 5[0

These relations are also supported by theoretical estimates for the classes
Ay:={A:h,/h, 1=0p for all veN}

of strictly geometric meshes. They are [H]

)",

Qk_lzgli_g}ock’Ag[G] <Ck,AQ[G] < £1>l-+m1 ck,Ag[G] ~ (%

In view of these inequalities and (4.5.4) it is plain to make the following

CONJECTURE. For any k€N,

SXP ||PSk(A) oo = igf Hngl(A)Hw =2k—1.
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