
Acta Math., 182 (1999), 105-142
(~ 1999 by Institut Mittag-Leffier. All rights reserved

Clique is hard to approximate within n 1-C

by

JOHAN HASTAD

Royal Institute of Technology
Stockholm, Sweden

1. I n t r o d u c t i o n

The basic entity in complexity theory is a computat ional problem which, from a math-

ematical point of view, is simply a function F from finite binary strings to finite binary

strings. To make some functions more intuitive these finite binary strings should some-

times be interpreted as integers, graphs, or descriptions of polynomials. An important

special case is given by decision problems where the range consists of only two strings

usually taken to be 0 or 1.

A function F should be realized by an algorithm and there are many ways to mathe-

matically formalize the notion of an algorithm. One of the first formalizations which is

still heavily used is that of a Turing machine. However, since we in this paper do not

deal with the fine details of the definition, the reader might as well think of a s tandard

computer with a s tandard programming language. The only idealization needed is that

the computer contains an infinite number of words of memory, each of which remains of

bounded size. The algorithm has some means of reading information from the external

world and also some mechanism to write the result. Time is measured as the number of

elementary steps.

A finite binary string x in the domain is simply called the input, while the output

is the final result of the computat ion delivered to the outside world. An algorithm

solves the computat ional problem F if, when presented x on its input device, it produces

output F(x). A parameter that is important to measure the performance of the algorithm

is the length of the input which simply is the number of binary symbols in x.

In complexity theory the basic notion of efficiently computable is defined as com-

putable in t ime polynomial in the input length. The class of polynomial-t ime solvable

decision problems is denoted by P. Establishing that a problem cannot be solved effi-

ciently can sometimes be done but for most naturally occurring computat ional problems

of combinatorial nature, no such bounds are known. Many such problems fall into the

106 J. HASTAD

class NP: problems where positive answers have proofs that can be verified efficiently.

Standard problems in NP are satisfiability (given a formula ~ over Boolean variables, is

it possible to assign t ruth values to the variables to make ~ true) and the clique problem

(given a graph G and an integer k, are there k nodes all of which are connected in G).

These problems are traditionally, in computer science, denoted by SAT and CLIQUE,

respectively. It is still unknown whether NP=P, although it is widely believed that this

is not the case. It is even the case that much work in complexity theory, and indeed even

this paper, would have to be reevaluated if NP--P.

There is a group of problems in NP, called the NP-complete problems and introduced

by Cook [14], which have the property that they belong to P if and only if NP=P. Thus

being NP-complete is strong evidence that a problem is computationally intractable,

and literally thousands of natural computational problems are today known to be NP-

complete (for an outdated but still large list of hundreds of natural problems see [21]).

SAT and CLIQUE are two of the most well-known NP-complete problems.

Many combinatorial optimization problems have a corresponding decision problem

which is NP-complete. For instance, consider the following optimization problem: given

a graph G, determine the size of the largest set of nodes which are all pairwise connected

in G. Since solving this problem implies solving CLIQUE, a polynomial-time algorithm

always giving the correct optimum would imply that NP=P. Optimization problems

with this property are called NP-hard (not NP-complete since they do not fall into the

class NP as they are not decision problems). Solving NP-hard optimization problems

exactly is thus hard, but in many practical circumstances it is almost as good to get an

approximation of the optimum. Different NP-hard optimization problems behave very

differently with respect to efficient approximation algorithms, and this set of questions

forms a research area in its own.

In this paper we study the possible performance of a polynomial-time approximation

algorithm for the optimization version of CLIQUE, traditionally denoted Max-Clique but

here we use the abbreviation MC. We demand that the algorithm, on input a graph G

with n vertices, outputs a number that is always at most the size of the largest clique in G.

We say that we have an f(n)-approximation algorithm if this number is always at least

the size of the largest clique divided by f(n). The best polynomial4ime approximation

algorithm for MC achieves an approximation ratio of O(n/(logn) 2) [12], and thus it is

of the form n 1-~ This is not an easy result but note that an approximation factor of

n is trivial since the clique cannot contain more than all n nodes and any set of a single

node is a clique. On the negative side, there has been a sequence of papers, [11], [17],

[2], [1], [8], [18], [9], [7], giving stronger and stronger inapproximability results based

on very plausible complexity-theoretic assumptions. The strongest lower bound is by

C L I Q U E IS H A R D T O A P P R O X I M A T E W I T H I N n 1 107

Bellare, Goldreich and Sudan [7] who prove (under the assumption that N P # Z P P (1))

that, for any e>0, MC cannot be efficiently approximated within n 1/3-~. We strengthen

these results to prove that, under the same assumption, for any s>0 , MC cannot be

efficiently approximated within n 1-~. Thus, MC is indeed very difficult to approximate.

As in previous papers we use the connection, discovered by Feige et al. in their seminal

paper [17], between multiprover interactive proofs and inapproximability results for MC.

Let us briefly describe this connection.

NP can be viewed as a proof system where a single infinitely powerful prover P tries

to convince a polynomial-time verifier V that a statement is true. For concreteness let

us assume that the statement is that a formula ~ is satisfiable. In this case, P displays a

satisfying assignment and V can easily check that it is a correct proof. This proof system

is complete since every satisfiable ~ admits a correct proof, and it is sound since V can

never be made to accept an incorrect statement.

If ~ contains n variables, V reads n bits in the above proof. An interesting question

is whether we could restrict V to read fewer bits, the fewest possible being a number

of bits which is independent of the number of variables in ~. It is not hard to see that

this is impossible unless we relax the requirements of the proof. The proof remains a

finite binary string, but we allow the verifier to make random choices. This means that

given ~ we can now speak of the probability that V accepts a certain proof ~. When

V was restricted to be deterministic this probability was either 0 or 1 while now it is a

number in the interval [0, 1]. In this paper we assume that if ~ is satisfiable then there

is a proof that makes V accept with probability 1 while when ~ is not satisfiable then

there is some constant s < 1 such that for any proof 7r the probability that V accepts

is bounded by s. The parameter s is called the soundness of the proof and a 0-sound

proof is a proof in the original sense of the word. Note that this soundness probability is

only taken over V's internal random choices and is true for any nonsatisfiable ~ and any

attempted proof w. This implies that we can decrease this false acceptance probability

to s k by using a verifier V (k) that runs the original verifier k times using independent

random choices.

It is an amazing fact, proved by Arora et al. [1], that any NP-statement has a proof

of the above type, usually called probabilistically checkable proof or simply PCP, where

V only reads a constant, independent of the size of the statement being verified, number

1 Apart from being an amazing proof of bits of the proof and achieves soundness s = ~ .

system this gives a connection to approximation of optimization problems as follows (for

(1) ZPP is that class of problems which can be solved in expected polynomial time by a probabilistic
algorithm that never makes an error, i.e. only the running time is stochastic. The faith in the hypothesis
NPCZPP is almost as strong as in NP~P.

108 j. HASTAD

details on the connection to MC we refer to [17]).

Fix a formula ~ and consider the P C P by Arora et al. We have a well-defined

function acc(~), the probabili ty that V accepts a certain proof 7. Consider max~ acc(~).

If ~ is satisfiable this opt imum is 1, while if ~ is not satisfiable then the opt imum is at

most s. Thus, even computing this opt imum approximately would enable us to decide

an NP-complete question. It turns out that by choosing a suitable coding one can make

max~ acc(~) be proportional to the size of the maximal clique in a graph G~. It follows

tha t approximating MC within a factor 1/s implies solving an NP-complete problem,

and hence the former must be NP-hard.

Since we are aiming at rather exact quanti tat ive results, all parts of the above argu-

ment have to be carried out in detail and optimized to identify the crucial parameters to

obtain the best possible results. This has already been done and, somewhat surprisingly,

for clique the situation is not very complicated.

The construction of G~ uses all the possible random choices made by V, and hence

it is essential that this number is polynomial, or, in other words, that V only flips a

logarithmic number of binary coins. Apar t from this requirement, the only parameter

that mat ters is the amortized free-bit complexity. To explain this concept let us give a

small example. A common "subroutine" in a P C P is to check that a function g given by

a table is a low-degree polynomial; in the simplest case a linear function. To be specific,

assume that the proof requires tha t g is a linear function over GF[2] from {0, 1} n to {0, 1}

and is thus given by 2 '~ bits. To check this, V can generate two random points, x and y,

and check that g(x)§ Thus Y reads the bits g(x) and g(y) recording

their values and then checks tha t g(x§ has the correct value. One can prove (see [6])

that any g that passes this test with high probabili ty is close to a linear function. This

essentially means that one can assume tha t g is a linear function, and this can be used

to prove correctness of the overall PCP.

Now consider a general PCP. During the verification procedure V looks at a number

of bits. Sometimes V has no idea what the value of the bit should be (as when reading

g(x) and g(y) in the example) while some other times it is in a "checking mode" (as

when reading g(x§ above) and knows what to expect, and when the value is not as

expected, V rejects the input. The number of questions of the first type is the number

of free bits, and if we denote this number by f , the number of amortized free bits is

f / l o g 2 s -1 where s is the soundness. One indication that this is a natural parameter

can be seen from replacing V by V (k) as discussed above, i.e. running V k times with

independent random choices. In this case f is replaced by k f while s is replaced by s k.
Thus the number of amortized free bits is preserved.

The connection between inapproximabili ty and amortized free bits is now the fol-

C L I Q U E IS H A R D T O A P P R O X I M A T E W I T H I N n 1 109

lowing [17], [18], [9], [341: Suppose tha t any NP-s ta tement admits a P C P which has a

polynomial-t ime verifier which uses logarithmic randomness and uses k amortized free

bits. Then for any s>0 , unless N P = Z P P , MC cannot be approximated with n 1/(k+1)-~

in polynomial time.

Bellare, Goldreich and Sudan [7] proved that in fact we essentially have an equiva-

lence in that if it is NP-hard to approximate MC within a factor n 1/(k+l) then NP has

a proof system with essentially k amortized free bits.

In this paper, for any ~>0, we give a proof system which uses 5 amortized free bits.

As discussed above, this gives an inapproximabili ty factor for MC of n 1-~ for any s>0 .

This paper is the final version of the results announced in [24] and [25].

Related results. The framework of PCPs has lead to a number of strong inapprox-

imability results. For a good survey of the results we refer to [7], and let us here only

mention a couple of the strongest results on some problems of general interest. Feige and

Kilian [19] have used the results of this paper to derive the same strong, i.e. factor n l -e ,

inapproximabili ty results for chromatic number. Chromatic number is the problem to

color the nodes of graph G with the minimal number of colors such tha t no two adjacent

nodes have the same color.

Set cover is another central problem and an instance of this problem is given by a

family of sets Si contained in a universe X. The task is to find the minimal size subcollec-
S k tion (i j) j=l tha t covers X, i.e. such tha t each x E X is contained in some S~j. A greedy

strategy approximates this number within approximately l nn (see, for instance, [27])

where n is the cardinality of X. This was proved by Feige [15] to be the best possible

performance for an efficient approximation algorithm.

There are many NP-hard optimization problems which can be efficiently approxi-

mated within some constant cl but such that there is another constant c2 for which the

approximation problem is NP-hard. For some problems, the gap between cl and c2 can

be made arbitrari ly small. The latter is true for Max-E3-SAT (the problem of satisfying

the maximal number of clauses in a CNF formula where each clause is of length exactly 3)

and Max-Lin-2 (satisfying the maximal number of equations in a linear system of equa-

tions mod 2) where the cl and c2 both are essentially s and 2, respectively [26]. There are

other problems where a gap remains between the two constants. Examples of such prob-

lems are Max-Cut (given a graph, parti t ion the nodes into two sets such that a maximal

number of edges go between the two sets) and Max-E2-SAT (analogous to Max-E3-SAT

with the difference that clauses are of length 2). For Max-Cut, c1~1.074 [22] and

22 1 7 - e ~ 1 . 0 6 2 5 [26], c 2 = s f - s ~ 1 . 0 4 7 [26], while for Max-E2-SAT, c1~1.138 [16] and c 2 = ~

both for an arbi t rary e>0 .

110 J. H/~STAD

Organization of the paper. In w we give some basic definitions and statements of

prior works that are essential to us. In w we take the first steps towards the desired

PCP and recall the long code introduced in [7]. It is important to test the property that

a given string is a correctly formed long code and in w we give such a test. It turns out

to be essential that this test can take into account side conditions, and thus the main

result of this section is given in Theorem 4.17. In w we show how to use the constructed

test as a subroutine to get the desired PCP for an arbitrary NP-statement.

2. Def in i t ions a n d f o r m a l s t a t e m e n t s o f p r io r w o r k

We consider binary strings. The length of a string x is denoted by Ixl and we also

use absolute values to denote the size of other natural objects. In particular ITI is the

cardinality of a set T. The notation O(f(n)) denotes any function which is bounded by

cf(n) for some absolute constant c and all sufficiently large values of n.

An assignment on a set U is an element of {0, 1} U. For two sets UCW and an

assignment y on W we let Ylu be the induced assignment on U. For a set/~ of assignments

of W we let 7rv(~) be the set of assignments on U that contain exactly Ylu for all yE~.

A function f defined for assignments on U is automatically extended to assignments on

W by letting f(Y)=f(Ylv).
A Boolean formula is a CNF formula if it is a conjunction of disjunctions of literals,

where a literal is a variable or a negated variable. Such a disjunction is also called a

clause, and a formula is a 3-CNF formula if each clause is of length at most 3.

We introduce some more notation as needed later but right now we turn to some

basic definitions.

2.1. Complexi ty classes

To define complexity classes we need to fix one formal model of computation. We let

this be the Turing machine (for a definition see [30]), although any other formal model

would do as well. Time is measured as the number of elementary steps of the machine.

A language is simply a set of finite binary strings. An example is the set of satisfiable

Boolean formulas under some suitable encoding. When speaking of Turing machines in

connection with languages we say that a Turing machine M accepts an input x if and

only if it outputs 1 on this input and otherwise we say that it rejects. We say that M

accepts a language L if it accepts exactly the elements of L. The most basic complexity

class is P.

C L I Q U E IS H A R D T O A P P R O X I M A T E W I T H I N n 1 - e 111

Definition 2.1. A language L belongs to P if and only if there is some constant c

such tha t there is a determinist ic Turing machine M tha t on every input x runs in t ime

O(Ix] c) and accepts L.

Other classes of interest in this paper are NP and ZPP. A probabilist ic Turing

machine has the ability to select a r andom bit. This has become known as "flipping a

r andom coin" and we use this terminology. The ou tpu t of a probabilistic machine is in

general a r andom variable. For ZPP, however, the ou tpu t is de termined by the input

only.

Definition 2.2. A language L belongs to ZPP if and only if there is some constant

c such tha t there is a probabilist ic Turing machine M tha t on input x runs in expected

t ime O(Ixl c) and ou tputs 1 if and only if xEL.

Thus for Z PP the answer of the machine is always correct while the running t ime is

relaxed to be t rue only in the expected sense. The class N P is usually defined in terms

of nondeterminis t ic Turing machines. Since we do not need the definition of nondeter-

ministic computa t ion while proof systems play an essential role here, we choose to define

NP in terms of proof systems, and hence we need a detour.

A proof system is defined th rough a verifier V. It is an efficient a lgori thm and thus a,

possibly probabilistic, polynomial- t ime Turing machine. It needs some mechanism to

access the proof, and we allow V to have access to one or more oracles. An oracle r can

be thought of as a bit string, and the quest ion "i?" is s imply answered by the i th bit

of 7r. W h e n we want to emphasize the fact t ha t V uses a part icular oracle 7r we write V ~.

Once the input x and 7r are fixed we get a well-defined probabi l i ty t ha t V '~ accepts the

input x. If V is determinist ic then it is either 0 or 1, while if V is probabilist ic it is a

number in the interval [0, 1].

Definition 2.3. A language L belongs to NP if and only if there is a determinist ic

polynomial- t ime verifier V such tha t for some constant c the following is true. On each

input xEL there is a proof 7r such tha t V '~ accepts x in t ime at most O(IxlC). If x~L
there is no 7r such tha t V ~ accepts x.

It is not difficult to see tha t PC_ZPPC_NP, and it is not known whether any o f the

inclusions is proper. It is s t rongly believed tha t Z P P c N P , while the relation between

P and Z PP is more open to speculation. For a more complete discussion of complexi ty

classes and related concepts we refer to [30].

112 J. HASTAD

2.2. Probabilistic proof systems

As discussed in the introduction we are interested in proof systems where the verifier is

probabilistic. The simplest variant is a probabilistically checkable proof.

Definition 2.4. A Probabilistically Checkable Proof (PCP) with soundness s for a

language L is given by a verifier V with the properties:

(i) For xEL there is a proof 7r such that V ~ outputs 1 on input x with probability 1.

(ii) For x~L and all 7r the probability that V" outputs 1 on input x is bounded

b y s .

We are interested in efficient PCPs and hence we assume that V runs in worst case

polynomial time. There are many other parameters of V of interest. We here only discuss

the parameters relevant to our paper, and for a more complete discussion we refer to [7].

Definition 2.5. The verifier V uses logarithmic randomness if on each input x and

proof ~r, V ~ flips O(log Ixl) random coins.

When discussing the acceptance probability of V as a combinatorial problem it

is natural to discuss all possible executions of V. The only parts of V that are not

predictable are the random coins and the answers that V gets from the oracle. These

parameters completely determine whether or not V accepts. We call a sequence of oracle

answers and random coins a pattern. We are only interested in patterns that cause V

to accept. The key concept we need is that of amortized free bits but first we need to

define free bits.

Definition 2.6. A PCP uses ~ f free bits if for each sequence of random coins of V,

there are at most 2 / different sets of oracle answers that complete an accepting pattern.

In our protocols, the number of free bits is in fact rather simple to calculate. When

V reads bits in the oracle, either he has no idea what to expect or he is checking that a

certain bit has a given value. The number of free bits is then simply the number of read

bits of the first kind. We now proceed to define amortized free bits.

Definition 2.7. The amortized free-bit complexity of a PCP with soundness s is

defined as
f

l og (I / s) '

where f is the number of free bits.

As mentioned in the introduction amortized free bits is the key to inapproxima-

bility of clique. The basic construction is from [17] while the current statement of the

CLIQUE IS HARD TO APPROXIMATE WITHIN n 1 - e 113

connection is from [7],(2) but at least Theorem 2.8 can be extracted from [11], [34].

THEOREM 2.8 [7]. Suppose that any language in NP admits a PCP with a probabilis-

tic polynomial-time verifier that uses logarithmic randomness and f amortized free bits.

Then, unless N P = Z P P , for any ~>0, Max-Clique cannot be approximated within
n 1 / (l + f + ~) in polynomial time.

If one is only willing to believe that N P C P then we have the following variant.

THEOREM 2.9 [7]. Suppose that any language in NP admits a PCP with a probabilis-

tic polynomial-time verifier that uses logarithmic randomness and f amortized free bits.

Then, unless N P = P , for any ~>0, Max-Clique cannot be approximated within n 1/(2+/+~)

in polynomial time.

We also need what is generally called a two-prover one-round interactive proof. Such

a verifier has two oracles but has the limitation that it can only ask one question to each

oracle and that both questions have to be produced before either of them is answered.

We do not limit the answer sizes of the oracles which we denote by P1 and P2.

Definition 2.10. A probabilistic polynomial-time ~ r i n g machine V is a verifier in

a two-prover one-round proof system with soundness s for a language L if on input x it

produces two strings ql(x) and q2(x) such that

(i) for xEL there are two oracles P1 and P2 such that the probability that V accepts

(x, Pl(ql(x)), P2(q2(x))) is 1,

(ii) for x ~ L and for any two oracles P1 and P2, the probability that V accepts

(x, Pl(ql(x)), P2(q2(x))) is bounded by s.

Let us be more specific on the order of the quantifiers. The provers P1 and P2

depend on x but must be fixed before ql(x) and q2(x) are produced, and hence the answer

Pl(ql(x)) only depends on x and ql(x), and in particular it is independent of q2(x). The

similar statement is true for P2(q2(x)).

Brief history. The notion of P CP was introduced by Arora and Safra [2]. It was a

variation of randomized oracle machines discussed by Fortnow, Rompel and Sipser [20]

and transparent proofs by Babai et al. [4]. Multiprover interactive proofs were introduced

by Ben-Or et al. [10], and all these systems are variants of interactive proofs as introduced

by Goldwasser, Micali and Rackoff [23] and Babai [3].

(2) In [7], only t he conclusion t h a t N P C c o R P is given. It is no t difficult, as in [34], to get t he
conclusion NP----ZPP.

114 J. HASTAD

2.3. E s s e n t i a l p r e v i o u s w o r k

The surprising power of interactive proofs was first established in the case of one prover

[28], [33], and then for many provers [5]. After the fundamental connection with approx-

imation was discovered [17] the parameters of the proofs improved, culminating in the

following result [2], [1].

THEOREM 2.11 [1]. For any integer k>~3 there is a constant ek<l such that any

language in NP admits a P C P with soundness ck and a probabilistic polynomial-time

verifier V that uses logarithmic randomness and reads at most k bits of the proof.

Note tha t the soundness of any V can be improved by making d independent runs.

This implies, in particular, that Cdk~C d, and hence the constant ck can be made to go

to 0 when k increases. The number of bits read cannot, unless P - - N P , be decreased to 2

preserving the property tha t V always accepts a correct proof of a correct NP-statement .

This follows from the fact that one can decide whether a 2-CNF formula is satisfiable in

polynomial t ime (for a formal proof see [7]).

Properties described by reading 3 bits of a proof can be coded by a 3-CNF formula

where the variables in the formula correspond to the bits of the proof. The acceptance

probabili ty of a proof is closely related to the number of clauses satisfied by the corre-

sponding assignment, and in this case Theorem 2.11 can be rephrased.

THEOREM 2.12 [1]. There is a universal constant e < l such that, given an arbitrary

NP-statement, we can, in polynomial time, construct a 3-CNF formula ~ such that i f

the NP-s tatement is true then ~ is satisfiable, while i f the NP-s tatement is false, no

assignment satisfies a fraction larger than c of the clauses.

Subsequent work, [26], has shown that this universal constant can be set to any

constant larger than ~; however, we do not use this fact here. On the other hand it

is convenient to work with a very uniform-looking formula ~. The following extension,

based on results in [31], is found as Proposit ion 1 in [15].

THEOREM 2.13 [15]. There is a universal constant c< 1 such that, given an arbitrary

NP-statement, we can, in polynomial time, construct a 3-CNF formula ~, in which each

clause is of length exactly 3 and such that each variable appears exactly 5 times, such

that i f the NP-s tatement is true then ~ is satisfiable, while i f the NP-s tatement is false,

no assignment satisfies a fraction larger than c of the clauses.

Let us now turn to two-prover interactive proofs. Given a one-round protocol with

soundness s we can repeat it k times in sequence improving the soundness to s k. This

creates many round protocols, whereas we need our protocols to remain one-round. This

can be done by what has become known as parallel repetition, and this simply means

C L I Q U E IS H A R D T O A P P R O X I M A T E W I T H I N n 1 - e 115

that V repeats his random choices to choose k pairs of questions (q~i), q(i)~k and sends 2]i=1

ql)i=1 to P1 and (q2) i= to P2 all at once. V then receives k answers from each prover

and accepts if it would have accepted in all k protocols given the individual answers. The

soundness of such a protocol can be greater than s k, but Raz [32] proved that , when the

answer size is small, the soundness is exponentially decreasing with k.

THEOREM 2.14 [32]. For all integers d and s< l , there exists Cd,s<l such that

given a two-prover one-round proof system with soundness s and answer sizes bounded

by d, then, for all integers k, the soundness of k protocols run in parallel is bounded

above by c k
d , s "

In fact it is sufficient for our main theorem tha t the acceptance probability, for fixed

s and d, tends to 0, arbitrari ly slowly, when k increases. We do not know of a simple

proof of this fact and hence we might as well use the powerful Theorem 2.14.

Finally, we need standard Chernoff bounds to estimate the probabili ty that we have

large deviations. Constants are of no great concern and we use Theorem 4.2 and Theo-

rem 4.3 of [29].

THEOREM 2.15. Let p 4 �89 and let X1, X2, ..., Xn be independent Bernoulli random

variables with Prob[Xi=l] =p for each i. Then for all 5, O~5~p, we have

1 n Prob[p nJ4p

3. F i r s t s t e p s t o w a r d s a g o o d p r o o f s y s t e m

We want to construct a proof system for an arbi trary language in NP. The basic steps in

constructing such a proof system are rather simple and let us give an overview.

We star t by a simple two-prover one-round protocol which is obtained more or less

immediately from Theorem 2.13. We improve the soundness of this protocol by running

several copies of it in parallel and using Theorem 2.14. It is possible to t ransform this

improved two-prover protocol to a P C P simply by writing down prover answers of P1

and P2 to all possible questions. The answers are, however, rather long and since the key

quantity we want to keep small is the number of (free) bits read, we write the answers

in a more useful form by asking the prover to supply the value of all Boolean functions

of these answers. This is the long code of the answers as defined in [7]. This enables

V to access complicated information in a single bit. The fact that we allow the proof

to contain the answers of the provers in expanded form puts the extra burden on V to

check that the these parts of the proof are indeed a correct code of something. Once this

1 1 6 J. H A S T A D

is established, though in a very weak sense, we prove that this something would have

enabled P1 and P2 to convince the verifier in the parallelized two-prover protocol with a

substantial probability.

We follow the above outline and start by describing the two-prover protocols. We

are thus given an arbi t rary NP-sta tement .

We translate, using Theorem 2.13, the NP-s ta tement to a 3-CNF formula 99 with

the properties given in that theorem. Assume that the resulting formula has n variables

and hence m = h n clauses each of length exactly 3. Suppose 99-=CIAC2A...ACrn, where

Cj contains the variables Xa~, Xb~ and xcr Consider the following one-round two-prover

interactive proof.

Simple two-prover protocol. (1) V chooses j E [m] and kC{aj, bj, cj} both uniformly

at random. V sends j to P1 and k to P2.

(2) V receives values for x~j, Xbj and xcj from P1, and for xk from P2- V accepts if

and only if the two values for xk agree and Cj is satisfied.

Before we proceed let us make an observation. Since each clause is of length exactly

3 and each variable appears in exactly 5 clauses, if V first chooses a random variable

xk to send to P2 and next a random clause containing Xk to send to P1, he generates

questions with exactly the same probabili ty distribution.

PROPOSITION 3.1. If any assignment satisfies at most a fraction c of the clauses

of 99, then V accepts in the simple two-prover protocol with probability at most �89

Proof. The answers by P2 define an assignment x ~ to all variables. Since the provers

coordinate their strategies, P1 knows x ~ and it is now not hard to determine the optimal

s trategy for P1. Whenever V chooses a clause tha t is satisfied by x ~ P1 answers according

to x ~ Whenever V chooses a clause not satisfied by x ~ to have any probabili ty of V

accepting, P1 should not answer according to x ~ and to have minimal probabili ty of his

answer being found inconsistent with the answer of P2, he should change the value of
1 exactly one variable. The probabili ty of V rejecting in this case is exactly 5, and since

x ~ (as well as any other assignment) satisfies at most a fraction c of the clauses, the

probabili ty that V rejects is at least � 8 9 The proposition follows. []

We now concentrate on the game consisting of u parallel copies of this basic game

which we call the u-paraUel two-prover game. In this game V picks u variables (xik)~=l,

and then uniformly at random for each k he picks a clause Cjk tha t contains xik. The

C u u (Jk)k=l are sent to P1 while (Xik)k=l are sent to P2. The provers return values for

the queried variables and V accepts if the values are consistent and satisfy the chosen

clauses. The verifier can again be made to always accept when 99 is satisfiable, while the

C L I Q U E IS H A R D T O A P P R O X I M A T E W I T H I N n 1 - e 117

acceptance probability in the case where it is only possible to satisfy a constant fraction

of the clauses is, by Theorem 2.14 and Proposition 3.1, bounded by c u for some suitable

constant c. Combining with Theorem 2.13 we get a result that is central to us and hence

we state it for later reference.

THEOREM 3.2. There is a universal constant c< 1 such that, given an arbitrary NP-

statement, we can, in polynomial time, construct a 3-CNF formula ~ such that when the

u-parallel two-prover game is executed on ~ the following is true. I f the NP-statement

is true then the verifier can be made to always accept, while if the NP-statement is false,

no strategy of the provers can convince the verifier with probability larger than c u.

We reserve, for the rest of this paper, c to denote the value of the constant in this

theorem.

To fix notation, let U= {xi~, xi2,..., x~ } be the set of variables chosen by V and sent

C to P2, and W the set of variables in (Jk)k=l and thus the set of variables to which PI is

supposed to give a value. Typically, provided no variable is chosen twice, U is of size u

and W of size 3u and we always have UC_ W.

As discussed in the introduction to this section we want to replace this two-prover

interactive proof by a PCP consisting of the answers of PI and P2 given in a more

redundant form.

Definition 3.3 [7]. The long code of a string x of length w is of length 2 2~. The

coordinates of the code word are identified with all possible functions f : {0, 1}w~-* {0, 1},

and the value of coordinate f is f (x) .

The long code is extremely wasteful but in our applications we have wE3u, and

since u is a constant, the size of the code word is also a constant. Consequently, the size

of proof is just a constant times larger than the size that would have been required to

simply write down the answers of P1 and P2.

To see how useful this coding can be, let us give a simple test to check the PCP

we have constructed. Thus the PCP is supposed to be constructed from a satisfying

assignment x ~ and for each U and W as constructed above, it contains the long code of

x ~ restricted to the set in question. Let us denote by AT the supposed long code on the

set T.

The simple PCP test(l). (1) Choose U by choosing u variables with the uniform

distribution. For i = 1, 2, ..., l, choose a set Wi by uniformly selecting, for each variable xi~,

a random clause Cjl containing xi~, and letting Wi be the set of variables in the u clauses.

The constructions of the different Wi are done independently.

118 J. H/~STAD

(2) Choose a random function f :{0,1}v~-*{0,1} and let gi=CjIACj~A...ACj~ ,.
Accept if Av(f)=Aw,(f) and Aw,(gi)=l for all i=1 ,2 , . . . , / . Remember tha t f can

be interpreted as a function on Wi by ignoring the coordinates not in U.

It is easy to see that the simple P C P test always accepts a correct proof. Also note

tha t the simple P C P test uses only one free bit, as determined by Au(f), independent

of the value of l. Now suppose that the proof is correctly formed in the sense that , for

every T, AT is the long code of some string x T, and that the simple P C P test accepts

with probabili ty p. We claim that for sufficiently large I this gives strategies for P1 and P2

that make the verifier accept with probabili ty at least i p Since the latter is at most c ~
5 "

we get that the soundness of the P C P is at most 5c ~, and thus the number of amortized

free bits would be O(1/u) which can be made arbitrari ly small.

The mentioned strategy for the provers is almost what one expects. P1, when

asked W, answers x W. Note that , since by assumption l=Aw~ (gi)=gi(x W) whenever V

accepts, we can assume that x W satisfies the clauses used to construct W. The s t rategy

for P2 is the optimal s trategy given the s t rategy of P1- In other words, given U, P2 con-

siders all W that could be asked in the same conversation. He knows the answer of P1

in each case and simply chooses the assignment that maximizes the probabili ty that the

verifier accepts. For completeness we analyze this s t ra tegy in Appendix A.

The assumption that each AT is a correct long code is extremely strong and crucial

in the above analysis; there are incorrect proofs that do not satisfy this description and

are always accepted. One such incorrect proof is the proof where each bit is equal to 1.

We conclude tha t the property of being a correct code word is a crucial one. We

next design a test to test exactly this property.

4. T e s t i n g a s u p p o s e d long c o d e

Let us first make some minor changes of the notation used so far and also introduce some

new notation. We want to analyze a supposed long code A: C0,1} 2"~ HC0 , 1}. We replace

C0,1} by C - l , 1} with - 1 taking the place of 1. With this correspondence exclusive-or

turns into multiplication. Other logical operators, like A, remain defined (but note that

the A is not multiplication). Thus from now on, A: { -1 , 1} 2~ ~-*C-1,1}. The inputs to A

are thought of as functions C - l , 1} ~ H C - 1 , 1}. A typical function is denoted by f and we

also use vectors of functions denoted by ~ s f--(fi)i=l for some s. To distinguish a function

f from the string of length 2 w which we use as an input to A, we denote the latter (f) .

We let A operate on a vector of functions and we let A((f)) be the vector (A((fi)))i=l.
We are also interested in functions B: C - l , 1) ~ H { - 1 , 1} which we think of as Boolean

C L I Q U E IS H A R D T O A P P R O X I M A T E W I T H I N n 1 119

predicates. Combining A and ; a s above we get B (A ((; })) which is a bit, and B o ; w h i c h

is the function which on input x takes the value B(fl(x) , f2(x), ..., f , (x))=B(;(x)) .

We are interested in the property that A describes a correct long code, i.e., tha t

A((f))=f(z~ for some x0 and each f . In other words, a long code is simply a point

evaluation. When probing a supposed long code we use the terminology "A looks like a

point evaluation at x ~ to denote the fact that A((f))= f (x ~ for all queried f . Thus a

correct long code always looks like a point evaluation at the input which it codes. Our

main test of a long code is now rather straightforward.

The complete nonadaptive testis). (1) Pick, with the uniform distribution, s random

functions fi: { - 1 , 1}w~-*{-1, 1} and ask for (A((fi}))~=l.

(2) For all Boolean predicates B of s bits ask for A ((B o ;)) and check that

A ((B o ; }) = B(.4((;})) .

First note tha t for A to have any chance to pass the test it must be correct on the

constant functions. This follows, since if B is identically one then B (A ((;))) = I , and

hence A((Bo;)) must also take this value and B o ; is the function which is constant one.

Similarly for B being identically - 1 .

We refer to the test as the CNA test(s) and we claim that it uses s free bits, as given

by the queries for (A((fi)))~=l. This follows since the values of A((Bo;)) are known

before the corresponding query is asked.

When accessing an oracle a question is called nonadaptive if the decision to ask

the question is independent of previous answers. In the CNA test, the verifier asks

all possible non-adaptive questions to which it knows the answer given the information

A((f }). Note, however, that there are other questions one might ask since if A ((f)) = l

then we should have A ((f A f ')) = l for any function f ' . These questions are, however,

adaptive and seem harder to analyze, and we do not know how to use them to simplify

the current analysis.

Let us first show that if the test accepts then the outcome looks like some point

evaluation.

LEMMA 4.1. Suppose that the CNA test(s) accepts using a specific set of random
choices ;. Then there is an input x such that A looks like a point evaluation at x.

In other words, A((f))=f (x) for all tested functions f .

Proof. Since, in case of accept, all values are determined by A((f)), it is sufficient

to find an x such that f i(x)=A((fi)) for i=1 , 2, ..., s. Suppose that there is no such x.

Let ai=A((fi)) and consider the Boolean predicate Ba(z)A(A~= 1 (z i=a i)) . Then B ~ o ;

120 J. H/~STAD

is a function which is identically false. This follows since, by our hypothesis, for each

x there is an i such that f i (x)~A((f i)) , and this causes the i th term in the expression

for B(f (x)) to be false. B~(A((f))) is, however, true and hence A ((B ~ o f)) = l while

B ~ (A ((f))) = - 1 and the test rejects. This is a contradiction. []

Before going into the analysis consider the following example.

Example. For any three specific assignments x ~ x 1 and x 2 let

A((f)) = f (x~ f (x l)G f(x2).

This is not a correct long code and in fact it is not difficult to see that any correct long

code takes the same value as A for exactly half of the possible f . Now consider what

happens when we do the CNA test. Suppose that f i (x~ 1) for i=1 , 2, ..., s. Then

this is also true for any B o f a n d hence A ((f)) = f (x 2) for all queried functions f . Thus,

with probabili ty at least 2 - s the test accepts and the result looks like the long code

for x 2. Similarly it is possible to get results that look like the long codes for x ~ or x 1,

respectively.

Since we want an arbitrarily small number of amortized free bits we cannot afford

a failure probabili ty of 2 - s when we are using s free bits (since this gives at least one

amortized free bit). Thus, we modify the acceptance criteria by allowing the supposed

long code to look like a small number of different correct long codes. The important

proper ty is tha t this set S of possible long codes is small and that it can be specified in

advance before performing the test. In the above example we have S = { x ~ x 1, x2}.

Let us return to the main path. In the following theorem, C~,k (resp. De,k,s) is a

constant depending on only ~ and k (resp. s, k and s).

THEOREM 4.2. For any E>0 and positive integer k, for s~C~,k and w~D~,k,s, the

following is true. For any A: { - 1 , 1}2~--~{-1, 1} there is a set S containing at most 2 ~s

points in { -1 , 1} w such that when the CNA test(s) is performed, except with probability

2 -ks, the test either rejects or the outcome is consistent with being a point evaluation at

an element xES .

The probability is taken over the random choices of the verifier performing the test,

i.e. over the choice of random functions fi.

Proof. Decreasing s only strengthens the conclusion since it decreases the allowed

size for S, and hence we can assume tha t ~<�89 We do not only assume tha t s is

sufficiently large compared to k and s but also compared to constants 1 and m to be

introduced later. This can be done since the latter constants are made to depend only

CLIQUE IS HARD TO APPROXIMATE WITHIN n 1 - e 121

on k and e. A constant denoted by cz,m depends in some way on parameters m and 1

but not on other parameters. The value of cz,,, might change from line to line.

The proof relies on Fourier transforms and we assume that the reader is familiar

with the basic concepts. In our setting,(3) the Fourier coefficients are defined by

^ 2 TM

As = 2 - E A((f)) H f(x), (1)
f:{--1,1I'v ~-+{--1,1} xec~

where aC_{-1, 1} ~ and we also have Fourier inversion given by

A(<:>)= E J~ H:(-)-
~ C (- - 1 , 1 } w x e a

By Parseval 's identity and I A ((f)) l = l for all f, we know that E ~ A ~ = I .

First we note tha t whenever the test asks A about a function f it also asks about the

function - f . This implies tha t it is optimal for the adversary to have A((f))=-A((-f))
since any violation of this causes immediate rejection. From this point on we assume(4)

that indeed A((f))=-A((-f)) is true for all f . This implies that A ~ = 0 for all c~ with

I< even. This follows since the terms for f and - f cancel each other in the defining

sum (1).

The set S is taken to be the points tha t are elements in Fourier coefficients tha t

have a large absolute value and correspond to small sets. To be more exact,

S = {x [3a , a ~ x , such tha t I~1 ~< ZAA~/> t 2 - ~ } , (2)

~ 2 where l is a parameter (depending only on k and E) to be specified later. Since ~ ~=1 ,

at most 2~s/-1 different a have ^2 -~s A~>>.12 , and since each a contributes at most 1 points

to S, it follows that S contains at most 2 ~ points as required by the theorem.

4.1. C o n c e n t r a t i n g o n a spec i f ic p o i n t e v a l u a t i o n

We want to analyze the probabili ty that the CNA test accepts and is not consistent

with a point evaluation at any point of S. Recall that whenever the test accepts it is

(a) The se tup might look a little bit unfamiliar. Normally, we deal wi th functions f : { - 1 , 1}n~--*
{--1, 1}, and then

= E II and = E]o II x,.
x iCc~ aC[n] l e a

In this familiar case we can view x as a function from In] to {--1, 1}. In the present si tuation, however,
the argument to A is a function from { - 1 , 1} w to { - 1 , 1}, and thus it is na tura l t ha t { - 1 , 1} TM takes
the place of In] in the definition of the Fourier t ransform.

(4) Technically this is justif ied by modifying A to satisfy this proper ty and then working wi th t he
modified A.

122 J. HASTAD

consistent with some point y (cf. Lemma 4.1). It is easier to analyze the probabili ty that

for a fixed point y ~ S the test is consistent with a point evaluation at y but not at any

point of S.

Whenever the outcome of the test is consistent with a point evaluation at x it is also

consistent with a point evaluation at any point x I such tha t f i (x) = f i (x ~) for all i. Since

the f i ' s are random functions we expect about 2 ~-~ such x' . Thus, arguing informally,

if we have probabili ty p of the test accepting and not being consistent with a point

evaluation at any point S, there should be a point y such that the probabili ty of being

consistent with a point evaluation at y but not at any point in S should be around p2 -~.

Since p anyway is of the form 2 -ks for an arbi t rary k we lose little by replacing 2 -k~

with 2 -(k+l)s while the advantage of working with a specific y is significant. We make

this argument formal.

LEMMA 4.3. Let f = f l , f 2 , . . . , f~ be uniformly and independently selected random

functions. The probability that there exists a vector b=(b l , ..., b~) such that

f{x f = b)l < 2

is bounded by 2s+12-2"~-(s+4).

Proof. Fix any value of b. The probabili ty that x satisfies f (x) = b is 2 -~ and it is

independent for different x. Thus we can apply the Chernoff bound (cf. Theorem 2.15)

with n = 2 ~, p = 2 -~ and 5=2 -(~+1). Summing over all possible b', the result follows. []

Now assume tha t we have probabili ty p of the CNA test(s) accepting while not being

consistent with any point in S. Then if p > 2 -k~, by Lemma 4.3 we can conclude that , for

sufficiently large w (e.g. w > s + 6 + l o g (ks)), we have probabili ty ~pl of the test accepting,

not being consistent with any point in S and being consistent with 2 w-(s+l) different

points. Now for any point y ~ S let P~ be the probabili ty that the CNF test is consistent

with y but not any point in S. It follows that

1 ~ , ~ w - (s4-1)

Y

as each accept event described above is counted in at least 2 ~-(~+1) different Py's and it

happens with probabili ty at least ! p Hence for some y we must have
2 "

Pu ~>P 2-(s+2) ~> 2-(k+2)s"

We state this for future reference.

C L I Q U E IS H A R D T O A P P R O X I M A T E W I T H I N n 1 - E 123

LEMMA 4.4. Assume that w>~w~,k. If for any fixed y ~ S the probability that the

outcome of the CNA test(s) is consistent with a point evaluation at y but not with a

point evaluation at any point in S is at most 2 -(k+2)~, then Theorem 4.2 follows.

Fixing y~S, we proceed to estimate the probability that the CNA test(s) is consis-

tent with y but not with any point of S. We represent the first event (i.e. the consistency

of the test with point evaluation at y) by

~ 4(<Bo/>)=0, (3)
B

where Iy is an indicator function defined by Iy((f>)= 1 if A((I))# f (y) and 0 otherwise.

For technical reasons we only sum over those B which are unbiased, i.e. take the value

one at exactly 2 s-1 points. This makes the sum only smaller and corresponds to allowing

only unbiased B in the CNA test. Note that for such a B, the function B o f is a random

function with uniform distribution. Of course, different B do not give independent ran-

dom functions, but each function in itself is random. Denote by Y the random variable

defined by the sum (3). Using

ly((f}) = �89

we show (below) that the Fourier coefficients i~,y of Iy satisfy

I o , y 1 ^ = ~(1-A{y}), (4)

I c~ ,y - - 1 ^ ----sA~A{y}, for any c ~ O , (5)

where /S denotes symmetric difference of sets. A basic fact that we will use many

times is that for a uniformly chosen function f , the f (x) ' s are identical and independent

random variables, each uniformly distributed in {-1, 1}. Thus, •y [Ixe~ f (x) = 0 for

every nonempty set a, and (4) and (5) follow. For example, for a # O ,

]~,Y = 2 - 2 ~ ' ~ E (1-A((f>)f (y)) H f (x)
f : { - l , l }W~-~{-1,1} xea

=-2-2w'12 E A((f>) H f (x)=-~A~z~{v} .
f : { - - l , I } ~ H (- - l , 1 } mesA{y}

Now

Y = S] = io, II 8(;(x))
B B a x 6 ~

1

B ~ x6~

124 a. HASTAD

We divide this last sum into three pieces. The first sum, E 1, is over those c~ with I~[~>/,

the second, E 2, is over those (~ with [c~l</ and 4 2 >~12 -e*, and E 3 is over the rest, ~A{y}
i.e. over ~ with]c~l</ and fi2 <12 -~*. The random variable Y can now be writ ten

as
1

Y = ~ 2~_ ~ --~(YI+Y2+Y3),

where Yi corresponds to the sum E i. In order for y to be a possible point of evaluation

we need Y=O, and hence

Y /) ~ 2~_1 for i = 1 , 2 or 3.

Recall that we are actually interested in the intersection of the event Y = 0 and the event

that the test is not consistent with any point evaluation in S. Thus, we may analyze the

partial sums, the Y,'s, assuming that the latter event holds (i.e. inconsistency with S).

Actually, we take advantage of this liberty only in the analysis of]I2- Specifically, we

use the fact that in this case for every x C S there exists a query fi of the test so that

fi (x) r f~ (y). In other words, for f~ selected by the test we have f (x) ~ f (y) , for every x �9 S.

4.2. Estimating Y1

It is not difficult to bound

Y1 ~ E E Ac, A{y} I-[B(?x))

since we can compute the second moment almost immediately.

LEMMA 4.5.
(2 s ' ~ 2

E(Y?) < (2 - ' s /n+2e-2S/~- ') . \ 2 s _ 1) I

Before we prove this lemma let us state the immediate corollary we really need.

COROLLARY 4.6. For each integer k there is a constant Sk such that for / > 4 k + 9

and s>.sk we have

Prob I I 1) g" 2s_ 1 ~ 2-((k+2)s+1).

Proof of Corollary 4.6. By Markov's inequality (applied to Y~), the probabili ty that

YI>~X is at most X-2E(Y~) . Substi tuting

X = g - 2~_1

CLIQUE IS HARD TO APPROXIMATE WITHIN n 1-e 125

and the bound for E (Y 2) given by Lemma 4.5, and doing a calculation, establishes the

corollary. []

Proof of Lemma 4.5.

z
(for notational simplicity we skip the condition lal ~>l in the calculations)

) = E A~,A{y}Ao~=A{y} H BI(J~x)) H B2(f(x))
B 1 , B 2 1, 2 xEot l xEot2

OLI~ O~2 B l a B 2 1 xC~

(6)

is bounded by 2e -k22 (~+4).

E 2~2 E E (H Bl(/ (x))B2(/ (x))) ~p,{y}
c~ B 1 , B 2 xCot

To estimate this we first establish

LEMMA 4.7. For any function G that maps {-1 , 1} 8 to {-1 , 1}, the probability,

over a random unbiased predicate B, that

a(z)B(z) > k
zr s

Proof. We opt for a simple proof rather than the best bounds. Think of choosing an

unbiased predicate B as first pairing the elements of { -1 , 1} 8 into 28-1 disjoint pairs and

then giving the value 1 to exactly one element in each pair. If both the pairing and the

choice which variable gets the value 1 in each pair are done with the uniform distribution,

we select a random B with the uniform distribution. Now fix any pairing and analyze

the event in the lemma using only the randomness of the choice within the pairs. For

a pair (x 1, x 2) the contribution to the sum in (8) is always 0 when G(xl)=G(x2), and

otherwise it is either 2 or - 2 depending on the choice within the pair. Thus, the sum in

(8)

(7)

We claim that whenever Oll~Ol 2 the inner expected value is 0. To see this assume that

x~ and x~ Then Bl(f(x~ has expected value 0 and is independent of all other

variables that influence the product. The case x ~ and x~ is of course symmetric.

The remaining terms are

126 J. HASTAD

(8) is the sum of t random variables taking the values 2 and -2 with equal probability,

where t is the number of pairs (xl, x 2) with G(xl)=-G(x2) . The lemma now follows

from Chernoff bounds (Theorem 2.15). Specifically, letting X~E{+2} denote the value
of the i th pair, and using 1 r Xi = ~ (X i + 2), we have

Prob [~-~X~i=l >7 k] = Prob [i~l_lr _t Xi - ~1) ~k]2"e-[(k/4t)2tl/[41/2]K2"e-k22-(8+4)< ,

where the last inequality uses t ~ 2 ~-1. []

Let us resume the analysis of (7). Assume that for some (fixed) B1 and B2

E BI(Z)B2(z) <23s/4. (9)
z e { - - 1 , 1 } s

Then this is just another way of saying that for each xCa

]E(B1 (f(x))B2 (f(x)))] ~< 2 - s / 4 ,

and since we have independence for different x we have

E (x n B l (/ (x)) B 2 (/ (x))) <~2 -'~

For fixed B2, the fraction of B1 violating (9), is, by Lemma 4.7, bounded by 2e -2s/2-4.

Since lal ~>l for any term in (7) we get

s 2 ^2 {9_ls/4 +_gp__2~/2-4.~ ~ 2
E (Y 1 2) < . E A ~ { y } ' ~ /~2s--1] '

a

2 s
since (2~-~) is the number of unbiased B's and each term in (7) is bounded above by 1.
Using }-].~ ^2 A s ~< 1, Lemma 4.5 follows. []

4.3. Estimating Yz

Our second term Y2, which sums over a 's of size at most l which correspond to large

Fourier coefficients, is estimated by a worst case estimate, using the hypothesis that any

element x E S we have f (y)~f i (x) (see above). The key fact is that since we only use

Fourier coefficients that contain elements from S (defined explicitly to contain only the

a 's considered here), the summation over B creates a lot of cancellation.

C L I Q U E IS H A R D T O A P P R O X I M A T E W I T H I N n 1 - ~ 127

LEMMA 4.8. For any integer l and c>O, there is a constant st,~ such that, for

s>st,~ and any choice of f such that f (x) r for any x e S , we have

IY21 ~ ~ \2 ~-1] < 3 \2~-1]"

Proof. Remember that

Y2: I I B(?x)). (lO)

Since y r by the definition of S, for all a in the above sum y r and hence y c a .

We now have the following lemma.

LEMMA 4.9. Let zl, z2, ..., z ~ e { - 1 , 1} ~ be any values such that z ~ z j for i ~ j . Then

if we sum over all unbiased predicates,

B(z) = (-1) I-[2 +1-2i 2 ' (11)
B i = 1 i = l

if r is even, and otherwise the sum is O.

Proof. The s ta tement for odd r is obvious since the terms for the predicates B

and - B cancel each other. For even r, think of the sum in (11) as an expected value

over a random unbiased B. Again pick a random B as in the proof of Lemma 4.7 by

first randomly picking a pairing and then randomly giving one element in each pair the

value 1 and the other the value - 1 . If the r elements do not pair up, the expected

value over the second random choice is 0, while if they do pair up, it is (- 1) ~/2. To

analyze the probabili ty that the elements pair up we put the elements zi into pairs one

by one. The element zl goes into some pair. The probabili ty that its mate is one of the

z~ is (r - 1) / (2 ~ - l) . This follows since there are 2 ~ - 1 possible partners of which r - 1

are allowed. Assume that zz did pair up with zj and consider any remaining zi. The

probabili ty tha t it pairs up is by a similar reasoning (r - 3) / (2 ~ - 3) , and we continue in

this way until all elements are paired up. The probabili ty that this happens is

r/2
r + l - 2 i

~I 2 ~ + 1 _ 2 i '
i = 1

and the lemma follows. []

Now, for any a in the sum (10) consider the set of values f (x) for x E a . Make these

values pairwise distinct by simply erasing both elements of pairs tha t are equal (this does

128 J. H/~STAD

not affect the product), resulting in a set cdC_ct. Since f (y) # f (x) for any xEc~ where

x Cy and y C c~, we get I~'1)2 (remember that l a A {Y}] is odd since otherwise A~zx{~} =0)

and clearly I~'l~<t. Using Lemma 4.9 we see that the maximal value (assuming l<~s) of

]~B H~e~ B(f(x))l is obtained for c~'=2, and we get

~B 1 (2 s) 2 1 - s ' (2 s)
H B(Bx)) <. 5 : : - i < "
xEt~

Substituting this in (10) gives

]Y21~< E '2~a['21-s(2s)2s-1 < E /~2"21+ss-s()

and Lemma 4.8 follows. []

4.4. Estimating Ya

To estimate Y3 we calculate a high-order moment. As when calculating the second

moment of I/1, many terms in the Fourier expansion do vanish due to the expected value

being 0. The remaining sum is somewhat nontrivial and we use the properties of functions

with the Fourier support concentrated on small sets. (Recall that Y3 is the sum over c~'s

of small size which correspond to small coefficients.)

LEMMA 4.10. Let m be an even integer. Then for any integer l there is a constant

Cl,m such that

E(y~n)~Cz,m.(e_2s/2_4§ 2s ~m
\2~-1] "

Again we have an immediate corollary that gives us what we really want.

For any integers k,l, and e>0, there is a constant Sk,l,e such COROLLARY 4.1 i.

that for s>~sk,l,~
1

Proof of Corollary 4.11. Analogously to the proof of Corollary 4.6, for any X, the

probability that Y3>>.X is bounded by X - m E (Y ~) for any even integer m. Now set

1(2s
X = 3 \2 s - l] and m > m a x (4 . (k + 3) . E -1, 16.(k+3)),

apply Lemma 4.10, set s sufficiently large and make a calculation. []

CLIQUE IS HARD TO APPROXIMATE WITHIN n 1-e 129

Proof of Lemma 4.10. We have

E (Y ~) = ~A{y} E Bi x , (12)
c~l,c~2,-..,~m\i=l ~ B1,B2,...,Bm \ i = 1 xEc~i

where the sum ranges over all ai satisfying [ai[< l and .~2 A r . ~< 12-~s.
ai lY~

m To analyze a generic term, set T = Ui=l ai. We first claim tha t if there is some xC T

that belongs to exactly one ai then the inner expected value is 0. This follows since in

this case Bi(f (x)) is an unbiased random variable that is independent of all other factors

in the product. Thus, we are interested in sets a i tha t form a double cover (of T). By

this we mean that each xCT appears in at least two different ai's. From now on we only

sum over a i ' s which form a double cover.

LEMMA 4.12. If ai form a double cover of T, then

E E(f i n Bi(f(x))) ~ (2-'T's/4-~-2m@le-2S'2-4)~ 2s ~m
BI,B~ Bm i=l~e~, \ 2 ~ - 1] "

Proof. This result is again based on the fact that , for almost all B1,B2,.. . ,Bm,

E (H { i l x c ~ } Bi(f (x))) is exponentially small, and that it is independent for different

xCT. Consider any nonempty subset C of {1, 2, . . . ,m}. The probabili ty (over random

unbiased B1, B2, ..., B,~) tha t

E nBi(z) ~ 2 3s/4 (13)

zc{-1,1}~

is bounded, by Lemma 4.7, by 2e -2~/~-4. Thus the number of Bi such tha t (13) is violated

for any C is bounded by
2m+1e-2~/2 4~ 2s ~m

"

For any other sequences of Bi 's we have

for any xET. Since the values of f at different points are independent we have

0:
The lemma follows by summing the two terms. []

130 j HASTAD

We proceed to bound (12). We first est imate that sum over even covers, i.e. those

collections of ai such that each x is a member of an even number of a~. For an arbi t rary

function F: { - 1 , 1 } 2 ~ H R denote the sum

m

E H &
O i l Or2 m ~ 1 7 , . . . ~ C t " ~

by dcm(F) when we sum over double covers, and by ecm(F) when we sum over even

covers. We later apply the estimates with F ((f }) = f (y) A ((f }) which has F~=A~A{y}.

LEMMA 4.13. For any func t ion F such that F ~ = 0 for I(~l>l, we have ecm(F)~<

cm,~llFIl~'.

Proof. Let F ' be the function with Fourier coefficients I/~1. Since

Eft H:(x>:, '~
f i = l xEcti

when a~ form an even cover, and this sum is 0 otherwise, we have

ec,~(F) : 2 - ~ E E ,s H s(~) : 2 - ~ ,s H s(x)
f Ot 1 , O r 2 ~ . . . , O t m - - :]g E Clt i z X E O t

2 -2`" ~ - ~ F ' ((f }) ,n F ' m
= = II lira,

f

where we are using the s tandard Lm-norm. However, when considering functions whose

Fourier support are on sets of constant size, the various Lp-norms are all related (this is

Proposition 3 in [13]):

LEMMA 4.14 [13]. For every constant 1 and m there is a constant Cl,m such t h a t

for all funct ions F with F a = 0 for](~l>l, we have

IIFIIm <- c~,m" IIFII2.

Lemma 4.13 now follows from Lemma 4.14, IIF'II2 = IIFII2 and the above reasoning. []

Next we do a similar est imate for double covers (remember that constants Cm3 might

change their value):

LEMMA 4.15. For any func t ion F such that F ~ = 0 for Ic~l>/, we have dcm(F)~<

Cm,~ llFIl'~.

Proof. From the function F we probabilistically construct a different function F '

such tha t each te rm in the sum for dcm(F) has a constant (depending on l and m)

CLIQUE IS HARD TO APPROXIMATE WITHIN n 1-e 131

probabili ty of occurring in the sum for ecm(F') . We make sure that [IF[[2 = [[F'[[2 while

the sizes of the nonzero Fourier coefficients only increase by a factor of 2.

The construction is as follows: Replace each x E { - 1 , 1} w by two inputs x 1 and x 2.

For each a we construct a r by, randomly and independently for each xEa , letting a ~

1 each. For example, a = { x , y } may contain only x 1, only x 2, or both with probabili ty

be replaced by either of the nine sets {xl, yl}, {x2,y l} , {al, x2,yl} , {xl, y2}, {a2,y2},

{al, x2,y2}, {xl, yl, y2}, {x2,yl , y 2} or {xl, a2,yl , y2}. The mapping a l i a ' is injective

and we define the function F ~ by its Fourier coefficients. We have

f [F~[i f / 3 = a ' ,

/ 0 otherwise,

and, in particular, F~ =0 for every/3 of size greater than 21. We claim tha t each te rm in

the sum for dcm(F) has a probabili ty at least (~_)mt/2 to appear in the sum for ec,~(F') .
m m Namely, suppose that for a te rm Hi=I Fa~, (Oti)i=1 form a double cover of T. Clearly

IT[1 T t ~rnl. Let be obtained from T by replacing each element x by the two elements
I m x 1 and x 2. We claim that the probabili ty tha t (ai) i= 1 form an even cover of T ~ is at least

(_~)mt/2. Since replacement is done independently for each x, we just need to establish

that the probabili ty that both x I and x 2 are covered an even number of times is at

least 2 Take any two sets that contain x (assume that these are a l and a2, and let

a3, aa, ..., ar be all other sets containing x). Now there are four cases to consider, and

for let us for brevity only consider one, the other cases being similar. Suppose that a i

i/>3 contain x I an odd number of times, and x 2 an even number of times. Then if a t

contains both elements, and a~ only x 2 (or the other way around), both x I and x 2 are

covered an even number of times. This happens with probabili ty 2

To wrap up the proof, note that , by Lemma 4.13, for any F, ec,n(F')~cm,2t [[F '[[~=

Crn,2t [[FII~ n, and by the above argument

dcm(F) ~ (~)mt/2"E(ec~(F')).

Thus adjusting the value of the constant ct,m, the lemma follows. []

Lemma 4.15 and Lemma 4.12 can be used to bound the part of the sum (12) when

[T] is large (see below). Next we address the case when]T[is small.

LEMMA 4.16. We have
m

E I~]fil~z~{~} [<~cm,l,t2-(m-~t)~/2' (14)
Ot l~Ot21. . .~Otrn i = l

where the sum is over all (ai)i~l that form a double cover of some set of size t and such

that [ai[<l and fl 2 <12 - ~ for i = 1 , 2 , . . . , m . a~A{y}

132 J. HASTAD

Ol m Proof. The key to this proof is that there are few such collections of sets (i)i=l
^

while Ac~A{y} are small, and as there are many factors in each product this makes the

total sum very small.

Consider the sum
2 t

O~ 1 >Or2 ~ - . . ,13~2t i = 1

where the sum is over all 2t (ai) i= 1 that form a double cover of some set of size t. By

Lemma 4.15, with e(</))=I(y)A(</)), this is bounded by a constant et,z. Now for

each double cover with m elements choose a double subcover of the same T with 2t

elements. This is always possible. Since each A~zx{~) tha t we are considering is bounded

by (12-~) 1/2, the original double cover has weight (i.e. the value of the corresponding

product) which is at most (12-~*) (m-2t)/2 times the weight of the double subcover. Each

subcover of size 2t can occur for at most (~/i=0 (~)) m-2t original covers of size m. This

follows since there are at most y~]i=0 (ti) subsets of T of size at most l, and hence at most

tha t many choices for each (~i- Hence we get the total bound for the sum in (14):

' (:) ; (12-es) (ra- 2t) /2 " (E Ct'l < Ct'l'm 2-es(m-2t)12'
" i=O

and the lemma follows. []

Let us now conclude the proof of Lemma 4.10. We divide the sum (12) according
T m to the size of =LJi=lC~i. Summing over T with ITl>>.lrn, we use Lemma 4.12 and

Lemma 4.15, again with F({f))=f(y)A(<f)) (and y~ fi2 ~A{~} ~<1), to get the bound

C le-2~/2-4+2-rns/16'(2s ~rn (1 5)
, ,m ,

for that part of the sum. Summing over T with ITI < lm, Lemma 4.16 gives, together

with the trivial estimate

) E E g i (f (x)) <<. t 2 s _ l f f ,
B1,B2,...,B~ i = 1 C

the bound

c 2-r~s~/4 (" 2~ '~ m
Z,m \ 2 s _ 1) �9

Combining (15) and (16), Lemma 4.10 follows.

(16)

[]

C L I Q U E IS H A R D T O A P P R O X I M A T E W I T H I N n 1 -~ 133

4.5. C o n c l u d i n g T h e o r e m 4.2 a n d e x t e n d i n g it

We have already done all the work to prove Theorem 4.2. If Y = 0 and the CNF test is

not consistent with any point in S, by Lemma 4.8, we need either

Y l ~ 2 s _ 1 o r I/3/> 5 2~_] .

The sum of the probabilities of these two events is, by Corollary 4.6 and Corollary 4.11,

bounded from above by 2 -(k+2)s. By Lemma 4.4 this is sufficient to prove the theorem. []

Theorem 4.2 is a powerful theorem as it stands but we require slightly more. In a

protocol, establishing that a table describes a correct long code is just testing a syntactic

property, and what we really care about is to establish that the input for which we

have this long code satisfies some properties of interest. In our case we are interested

in establishing that the input satisfies the chosen clauses and that we have consistency

between different long codes. It turns out that we can get these extra, and essential,

properties by adding some extra probes to the table A. These extra probes are not free

(in the technical sense of the word), and hence do not cost us anything.

We formalize the extra property that we want to test as h (x ~ (i.e. h(x ~ is true)

for some function h. It turns out that it is sufficient to make sure that A((f))=A((g))

for all queried f and all g with g A h = f A h . We now give the extended test.

The CNA test(s) with side condition h. (1) Pick, with the uniform distribution,

s random functions fi: { -1 , 1}w~-*{-1, 1} and ask for A((fi)) .

(2) For all Boolean predicates B of s bits ask for A ((B o ;)) and check that

A ((B o f }) = B (A ((f))) .

(3) For any queried function f ask for A((g)) for any g such that f A h = g A h . Reject

unless A((I))=A((g)) for all such g.

We now establish that Theorem 4.2 remains true even in the presence of side condi-

tions.

THEOREM 4.17. For any ~>0 and integer k, for s>~C~,k and w>~DE,k,s, the fol-

lowing is true. For any A: { -1 , 1}2~-~{-1 , 1} there is a set S containing at most 2 ~

points in { -1 , 1} w such that, for any h, when the CNA test(s) with side condition h is

performed, except with probability 2 -ks, the test either rejects or the outcome is consis-

tent with being a point evaluation at an element x E S with the additional property that

h(x) is true.

134 J. H/~STAD

The probability is taken over the random choices of the verifier performing the test,

i.e. over the choice of random functions fi.

We stress that the set S is independent of the side condition h.

Proof. The proof only requires a rather simple argument on top of the proof of

Theorem 4.2. Again define the set S by (2) and define

A'((f)) = 2 -H E A((g)), (17)
{g[gAh=fAh}

where H is the number of points satisfying h(x)=l, and thus 2 H is the number of

functions g appearing in the sum (17). Thus A' maps into [-1, 1] and the verifier rejects

whenever it gets a value not of absolute value 1. The CNA test(s) with side condition

h can be viewed as querying the function A'.(5) Thus we can repeat the proof of Theo-

rem 4.2 and conclude that the outcome is, except with probability 2 -ks, either that the

test fails or the outcome is consistent with a point evaluation at a point yES' where

S'= {x l 3a , a ~ x, such that Io~1 ~ lAA~ ~ 12-~s}. (18)

From Lemma 4.18 below it follows that S'C_SN{xlh(x)=-l} , and this completes the

proof of Theorem 4.17. []

^' ^ if aU xC(~ satisfy LEMMA 4.18. The Fourier coefficients of A' are given by A~=Aa
h (x) = - l , and ^' A~=0 otherwise.

Proof. Using (17), the definition of the Fourier transform and the Fourier inversion

formula we have

A'~' = 2-2~ E A'((f)) H f(x')
f x 'E~ '

=2- (:~+H) E E A((g}) H f(x')
f {g[gAh=fAh} x'Ccd

(19)

Now suppose that we have an x~ with h (x ~ Consider a pairing of the functions g

and g' where g'(x~ ~ while g'(x)=g(x) for all x r ~ Then either both g and g'

(5) We have to ex t end t he C N A tes t by allowing the values of t he func t ion A to be in [- 1 , 1], wi th
t he u n d e r s t a n d i n g t h a t t he tes t rejects whenever it sees a value which does not have abso lu te value 1.
Th i s changes no t h i ng since be ing cons is ten t wi th a poin t eva lua t ion at the poin t y is still equivalent to
Y = 0 .

C L I Q U E IS H A R D T O A P P R O X I M A T E W I T H I N n 1 - e 135

belong or both do not belong to the sum (19), and hence their contributions cancel each

other and

{glgAEh fAh}(x~c g(X)) =O.
We can thus drop the terms with a containing an x such tha t h (x) = l . If, on the other

hand, h (x) = - i for each xEc~ then, since g (x) = f (x) for all such x,

E If (xl =2= II f(xl, {glgAh=fAh} xfc~ xGa
and the sum (19) reduces to

2-2"ZEro II f(x,),
c~ f x ' E ~ A a '

where we only sum over a ' s with h (x) = - i for each x C a . Now using the fact that

2 - 2 ~ E H f (x ') = l
f x 'Gc~/ka '

if a ~ = a , and 0 otherwise, the lemma follows. []

5. M a i n t h e o r e m

We want to prove

THEOREM 5.1. For any 5>0 there is a P C P for NP which uses logarithmic ran-

domness and 5 amortized free bits.

By Theorems 2.8 and 2.9 we have two immediate corollaries.

THEOREM 5.2. For any s > 0 , unless N P = Z P P , there is no polynomial-time algo-

rithm that approximates Max-Clique within a factor n 1-~.

THEOREM 5.3. For any s > 0 , unless N P = P , there is no polynomial-time algorithm

that approximates Max-Clique within a factor n 1/2-E.

Proof of Theorem 5.1. We can clearly assume 6~< 1 The P C P follows closely the

simple test discussed in w The modifications needed are tha t we choose many functions

on U and that we use the CNA test(s) with appropriate side conditions to test the

supposed long codes on the sets Wi. We call it the FAF test as in Few Amortized Free

bits. The test is applied to a 3-CNF formula ~, as given by Theorem 2.13, which has

exactly 3 variables in each clause and such that each variable appears 5 times. I t tries

136 J. HASTAD

to distinguish the case when P1 and P2 can convince the verifier in the u-parallel two-

prover game with probabili ty 1, and the case when they can only convince the verifier

with probability c ~. The formula ~ is given by the clauses (Ci)iml and has n variables.

The writ ten proof consists of, for each set T of size at most 3u, a table AT of size 2 21TI

which, for a correct proof of a satisfiable ~, is the long code of the restriction to T of a

fixed satisfying assignment. The value of the constant u is specified below.

The FAF test(5). (1) Setting of parameter .

�9 Set 1=[5-1] .

�9 Set k=40/2.

�9 Set s sufficiently large compared to 1 and k. In particular, s>C1/2,k where C1/2,k
is the constant of Theorem 4.17, and s>sz where sl is the constant from Lemma 5.5

below.

�9 Set u sufficiently large compared to l, k and s. In particular, we need Theorem 4.17

to be true with w=3u (so w~D1/2,k,s), and we also need c~<2 -a~ where c is the

constant from Theorem 3.2.

(2) Choose U by choosing u variables with uniform distribution. For i=1 , 2, ..., 10/,

choose a set Wi by, for each variable xik in U, picking, with uniform probability, a random

clause Cj~ that contains xik, and letting Wi be the set of all variables in the clauses. The

constructions of the different W~ are done independently.

(3) Choose lOls random functions gj: { -1 , 1}g~-~{-1, 1}, j = l , 2, ..., lOis, with uni-

form distribution, and read 10is (Au((gj}))j=l.
(4) Apply the CNA test(s) with side conditions, to the supposed long code Aw~ on

Wi for i=1 , 2, ..., 10/. Tile side conditions are given by (gj(x)=Au((gj)))~~ and tha t

(Cj~)~=I are all true. The functions gj are extended to Wi by ignoring all coordinates

not in U.

(5) Accept if and only if all tests accept.

Note that for a correct NP-s ta tement we can easily construct a correct proof, i.e. fix

one satisfying assignment x, and for each set U and W simply write down the long code

of x restricted to that set. It is not difficult to see tha t in this case the verifier always

accepts. Note also that the amount of randomness used by the verifier is logarithmic.

Most of the randomness is used to choose the set U, and after this only a constant

number of random bits is needed to choose each Wi and the gj. We next turn to the

free-bit complexity.

LEMMA 5.4. The FAF test(5) uses 20ls free bits.

A lois Proof. Reading (u((gj)))j=l constitutes lOls free bits and the free bits in the 10/

applications of the CNA test(s) total another lOls free bits. []

CLIQUE IS HARD TO APPROXIMATE WITHIN n 1 - e 137

The other crucial (and hard) part of the proof of Theorem 5.1 is the soundness, and

it is given below.

LEMMA 5.5. For any integer 1 there is a constant sl such that for s>sz, if the

FAF test(5) accepts with probability at least 2 -2~ then there are strategies for P1 and

P2 in the u-parallel one-round two-prover protocol that makes the verifier accept with
probability at least 2 -3~

We first claim tha t Theorem 5.1 follows by Lemma 5.4 and Lemma 5.5. Note first

that , by our choice of u, the soundness error of the u-parallel one-round two-prover

protocol is smaller than 2 -3~ and thus the conclusion of Lemma 5.5 implies that ~ is

satisfiable. Thus it follows that the soundness error of the FAF test(5) is at most 2 -2~

Using Lemma 5.4, the amortized number of free bits is at most 201s/(2012s)=1/l<~5, and

Theorem 5.1 follows. []

Proof of Lemma 5.5. For each Wi we have, by Theorem 4.17 (with ~=�89 and

k=4012), a set Sw~ of assignments on Wi of cardinality at most 2 ~/2 such tha t if the

test does not fail then, except with probabili ty 2 -40/2s, the outcome of the test is consis-

tent with a point evaluation at some yESw~ tha t also satisfies the side conditions, i.e. it

~g ~101~ The satisfies the chosen clauses and takes the correct value under the functions ~ J J j= l .

latter conditions, forcing Aw~((gj})=Au((gj)), play a key role below. We define a set

which measures the amount of coordination among the different Sw~.

Definition 5.6. For a set U let common(U) be the set

{x[P r w [3 y c SwAy[u = x] >~ 2-2~

where W is chosen with the probability distribution tha t is used to pick Wi in the FAF

test((~). Here we only consider yESw tha t satisfies the clauses used to construct W.

Before we continue, let us give some intuition. We want to check consistency between

the long code on U and the long code on W. As proved in [7], two-way consistency

requires one amortized free bit. To get around this lower bound we use here one-many

consistency. We have many tables (e.g. the long codes on W/ for i=1 , 2 , ..., 10l) which

should be consistent with some other (i.e. the long code on U). We can now read a

few bits (10ls) in the long code on U and check it against the many tables. If there

were no consistency among the many tables, say that they were random long codes, the

probabili ty of acceptance would be around (2-1~176176176 which is smaller than

we are aiming to prove. Thus, to have a good probabili ty of success, the long codes on

Wi should have some common properties, and this is what we use.

138 J. H/~STAD

Note that the long code on U merely produces a reference point and hence plays no

essential role in the argument. This is natural since changing it to the long code of a

random assignment changes the acceptance probability by at most a factor 2 -l~ Thus,

the important parameter is not the behavior on U but rather the properties that the

long codes on Wi have in common. This reflects the central role of common(U). After

this detour let us return to the main path.

LEMMA 5.7. Suppose that common(U) is empty. Then the probability that the FAF

test(5) accepts, given that U is chosen, is bounded by ct2 -4~

Proof. Remember that if the test accepts then, except with probability 10/2 -4~

it is compatible with some yiESw, for all i=1, 2, ..., 10l. Thus we analyze the probability

that this happens and the test accepts given that common(U) is empty. In this case

there must be a collection i 10t (Y ESw,)i=l such that for s o m e b j ' s ,

gj(y~)=bj for all l~<i~<10l and l<.j<.lOls. (20)

We denote the vector of yi's by ~7, and we always assume that yiESw~. We analyze the

probability of (20) by first fixing ~7 and then analyzing the probability that this particular

$7 satisfies (20) for a random choice of functions gj. Consider the set

n ~ i "~10l
K(~) = (y u)i=l

of projections onto U, keeping only one copy of each assignment if the several yi give the

same projection. The condition (20) says exactly that every chosen gj is constant on the

set K(g) . The probability that this happens for an individual j is 2 -(IK(y)I-1), and thus

the probability that (20) is true for this g is 2 -l~ Thus the key is to analyze

the size of K(~7).

LEMMA 5.8. Suppose that common(U) is empty. Then

Probw1,w2 w~0~ [min Ig(~) l ~< 5/] ~< ct2 -95~2s.
L ~TE Sw1 x. . . x Sw lo ~

i - 1 Proof. Let us first analyze the probability that 7~u(Sw~) intersects Uj=I 7lu(Swj).
The latter contains at most 1012 s/2 elements (since]Swjl<~2s/2). The probability of

any single element occurring in 7rv(Sw~) is bounded by 2 -2~ (by the definition of

common(U) and using that this set is empty), and hence the probability of a nonempty

intersection is bounded by 10/2 -191~. For there to exist a ffESw1 x... x Sw~o~ giving at

most 51 different projections, it must be the case that for 51 different i, ~rg(Sw~) (i.e.

the set of possible projections of the i th element in if) has a nonempty intersection with

CLIQUE IS HARD TO APPROXIMATE WITHIN n 1-e 139

i--1
U j = I 7fU(SWj) (i.e. the possible projections of prior elements). The probability of this

event is bounded by

(10l~ (c12_19ls)51 = C12_9512s,
5z /

and the lemma follows. []

Let us return to the proof of Lemma 5.7. There are at most (2s/2) 1~ ways of

picking ~ESw1 • ... x Swlo~. Assuming that]K(~)I ~>5/+1, the probability that an indi-

vidual choice is compatible with the functions gj is bounded, by the reasoning above, by

2 -1~ =2 -5~ Thus the probability that any ~ is compatible with the choice

of the gj 's is bounded by 25z~2 -5~ ~<2 -4512~. Since, by Lemma 5.8, the probability that

any ~ satisfies IK(/~)I~5I is bounded by cl 2 -951~, we just add the two probabilities and

Lemma 5.7 follows. []

To wrap up the proof of Lemma 5.5, let us now define a strategy for the provers in

the u-parallel two-prover game.

P~ simply answers with any element in common(U), while P1 answers with a random

element of Sw. If either of these sets is empty the corresponding prover gives up. As-

suming that the FAF test(b) accepts with probability 2 -2~ then, in view of Lemma 5.7,

common(U) is nonempty with probability at least 2 -2~ - c l 2 - 4 ~ and let us analyze

the probability that the verifier accepts when this is the case. Suppose that P2 answers

with x U. Then, by the definition of common(U), the probability that S w contains an

element y such that y l u = x U and such that y satisfies the clauses Cjk is at least 2 -2~

The probability that /'1 answers with such an element, given that it exists, is at least

i S w l - l > 2-~/2. Thus in the two-prover game we have an overall success probability that

is at least
(2-2012S--c12-4012s).2-201s.2-s/2 > 2 -30/2s

provided s>st , and the proof is complete. []

Acknowledgment. The input from Oded Goldreich has benefited this paper in several

ways, and in particular it has greatly improved the presentation of the paper. I am also

grateful to Gunnar Andersson, Mihir Bellare, Muli Safra and Madhu Sudan for comments

on and discussions about this paper.

A p p e n d i x A. Ana lys i s o f t h e idea l i zed p r o t o c o l o f w

Set l=d logp -1 where d is a constant to be determined.

By assumption, Aw, is the long code of an assignment x W~ on Wi. We may assume

without loss of generality that x W~ satisfies the picked clauses (i.e. g~ (x W`) = 1), or else the

140 J. HhSTAD

I)i=~, where W=(W1, . . . , Wz). test rejects anyhow. Let us consider the set Xu, W=(xW* v l
The acceptance condition of the test (i.e. Aw,(f)=Ag(f) for i=1 , ...,1) implies that f

is constant on Xu, ~. The probability of this happening, for a random f , is 2/21xu, ~l.

Thus the probability, p, that the test accepts is at most

2.Eu, w[2-1xv, wl 1. (21)

Now for a fixed U let Pu denote the value

max Prw [xWlu = x], (22)
X

where W is a random set constructed as in the simple test (i.e. a random extension of

U to clauses). We claim that Ev[Pu] is a lower bound on the acceptance probability of

the two-prover proof system. This is shown by letting P1 answer according to the x W~'s,
and P2 answer with the x which gives the maximum in (22). Thus, all that remains is to

lower bound Eu[Pu] as a function of p. Towards this end let us analyze the probability

of acceptance in the simple test as a function of Pu.
It is natural to study the size of Xu, W, and we analyze this by fixing U and picking

the sets Wi at random one by one, investigating how the size of Xu, W grows. We define

i (zw, i
Xu, w = I u) j = l ,

i.e. the part of Xu, ~ obtained from the first i sets W/. Clearly i+1 _ X / [Xu, w I -] v, w l + l unless

X i ~ already contains x W~+~ Iv, in which case the two sets are equal. Since the probability
U,W

that xw~+l[v take any fixed value is bounded from above by Pu, the probability that

X i+1 - X / is at most X i u,W'- v,~ [u, W I.pv , which is smaller than �89 when [Xu, w[<~ l/2pv. We

claim that

Pr~[lXu, wl<~min(1,2-~u)J<~ 2-c'

for some absolute constant c. This follows since for this event not to be true, events of
X i+l X i the form , u,W,=, u,~" each occurring with probability at most �89 must happen at

least 31 times in l tries.

Thus, Ew[2-1x<~vl]<~2-d+max(2 -t/4, 2-1/2pu). Now, using (21), we have

�89 ~ E ~ [2-IXu, w 11 < 2 -c/q-2 - l / 4 q - E u [2-1/2pu],

and setting the constant d (in the definition of l) sufficiently large, we conclude

Eu[2-1/2PV]>p/2.5. Finally, using x>2 -1/~ for all x>0 , we have

E~[pu] > �89 "Eu[2 -1/2pv] > �89

and the proof is complete.

CLIQUE IS HARD TO APPROXIMATE WITHIN n 1-e 141

References

[1] ARORA, S., LUND, C., MOTWANI, R., SUDAN, M. & SZEGEDY, M., Proof verification
and the hardness of approximation problems, in 33rd Annual IEEE Symposium on
Foundations of Computer Science (Pittsburgh, PA, 1992), pp. 1~23. To appear in
J. ACM.

[2] ARORA, S. & SAFRA, S., Probabilistic checking of proofs: a new characterization of NP.
J. ACM, 45 (1998), 70 122.

[3] BABAI, L., Trading group theory for randomness, in 17th Annual ACM Symposium on
Theory of Computing (Providence, RI, 1985), pp. 420-429.

[4] BABAI, L., FORTNOW, L., LEVIN, L. &: SZEGEDY, M., Checking computations in polyno-
mial time, in 23rd Annual ACM Symposium on Theory of Computing (New Orleans,
LA, 1991), pp. 21 31.

[5] BABAI, L., FORTNOW, L. &: LUND, C., Nondeterministic exponential time has two-prover
interactive protocols. Comput. Complexity, 1 (1991), 3 40.

[6] BELLARE, M., COPPERSMITH, D., HASTAD, J., KIWI, M. & SUDAN, M., Linearity testing
in characteristic two. IEEE Trans. Inform. Theory, 42 (1996), 1781-1796.

[7] BELLARE, M., GOLDREICH, O. ~ SUDAN, M., Free bits, PCPs and nonapproximability--
towards tight results. SIAM J. Comput., 27 (1998), 804 915.

[8] BELLARE, M., GOLDWASSER, S., LUND, C. & RUSSELL, A., Efficient probabilistically
checkable proofs and applications to approximation, in 25th Annual ACM Symposium
on Theory of Computing (San Diego, CA, 1993), pp. 294 304.

[9] BELLARE, M. ~ SUDAN, M., Improved nonapproximability results, in 26th Annual ACM
Symposium on Theory of Computing (Montreal, 1994), pp. 184-193.

[10] BEN-OR, M., GOLDWASSER, S., KILIAN, J. & WIGDERSON, A., Multiprover interactive
proofs. How to remove intractability, in 20th Annual ACM Symposium on Theory of
Computing (Chicago, IL, 1988), pp. 113-131.

[11] BERMAN, P. ~= SCHNITGER, G., On the complexity of approximating the independent set
problem. Inform. and Comput., 96 (1992), 77 94.

[12] BOPPANA, R. ~ HALLDORSSON, M., Approximating maximum independent sets by ex-
cluding subgraphs. BIT, 32 (1992), 180-196.

[13] BOURGAIN, J., Walsh subspaces of LP-product spaces, in Seminaire d'analyse fonctionnelle
(1979 1980), pp. 4.1-4.9. t~cole Polytechnique, Palaiseau, 1980.

[14] COOK, S.A., The complexity of theorem proving procedure, in 3rd Annual ACM Sympo-
sium on Theory of Computing (1971), pp. 151 158.

[15] FEIOE, U., A threshold of lnn for approximating set cover, in 28th Annual ACMSymposium
on Theory of Computing (Philadelphia, PA, 1996), pp. 31~318. To appear in J. ACM.

[16] FEIGE, U. & GOEMANS, M., Approximating the value of two-prover proof systems, with
applications to MAX 2SAT and MAX DICUT, in 3rd Israel Symposium on the Theory
of Computing and Systems (Tel Aviv, 1995), pp. 182-189. IEEE Comput. Soc. Press,
Los Alamitos, CA, 1995.

[17] FEIGE, U., GOLDWASSER, S., Lovs L., SAFRA, S. ~: SZEGEDY, M., Interactive proofs
and the hardness of approximating cliques. J. ACM, 43 (1996), 268 292.

[18] FEIGE, U. ~: KILIAN, J., Two prover protocols--Low error at affordable rates, in 26th
Annual ACM Symposium on Theory of Computing (Montreal, 1994), pp. 172 183.

[19] - - Zero-knowledge and the chromatic number, in 11th Annual IEEE Conference on Com-
putational Complexity (Philadelphia, PA, 1996), pp. 278-287.

[20] FORTNOW, L., ROMPEL, J. ~ SIPSER, M., On the power of multi-prover interactive proto-
cols, in 3rd IEEE Symposium on Structure in Complexity Theory (1988), pp. 156-161.

142 J. HASTAD

[21] GAREY, M.R. &: JOHNSON, D. S., Computers and Intractability. A Guide to the Theory of
NP-completeness. W.H. Freeman, San Fransisco, CA, 1979.

[22] GOEMANS, M. (~ WILLIAMSON, D., .878-approximation algorithms for Max-Cut and Max-
2-SAT, in 26th Annual ACM Symposium on Theory of Computing (Montreal, 1994),
pp. 422 431.

[23] GOLDWASSER, S., MICALI, S. (~ RACKOFF, C., The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18 (1989), 186 208.

[24] HASTAD, J., Testing of the long code and hardness for clique, in 28th Annual ACM Sym-
posium on Theory of Computing (Philadelphia, PA, 1996), pp. 11-19. ACM, NewYork,
1996.

[25] - - Clique is hard to approximate within n 1-~, in 37th Annual IEEE Symposium on Foun-
dations of Computer Science (Burlington, VT, 1996), pp. 627 636. IEEE Comput. Soc.
Press, Los Alamitos, CA, 1996.

[26] - - Some optimal in-approximability results, in 29th Annual ACM Symposium on Theory
of Computing (1997), pp. 1-10.

[27] JOHNSON, D. S., Approximation algorithms for combinatorial problems. J. Comput. System
Sei., 9 (1974), 256-278.

[28] LUND, C., FORTNOW, L., KARLOFF, H. ~ NISAN, N., Algebraic methods for interactive
proof systems. J. ACM, 39 (1992), 859-868.

[29] MOTWANI, R. ~ RAGHAVAN, P., Randomized Algorithms. Cambridge Univ. Press, Cam-
bridge, 1995.

[30] PAPADIMITRIOU, C., Computational Complexity. Addison-Wesley, Reading, MA, 1994.
[31] PAPADIMITRIOU, C. ~: YANNAKAKIS, M., Optimization, approximation and complexity

classes, g. Comput. System Sci., 43 (1991), 425-440.
I32] RAZ, R., A parallel repetition theorem. SIAM J. Comput., 27 (1998), 763-803.
[33] SHAMIR, A., IP=PSPACE. J. ACM, 39 (1992), 869-877.
[34] ZUCKERMAN, D., On unapproximable versions of NP-complete problems. SIAM J. Corn-

put., 25 (1996), 1293 1304.

JOHAN HASTAD
Department of Mathematics
Royal Institute of Technology
SE-10044 Stockholm
Sweden
johanh@nada.kth.se

Received August 20, 1997

