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1. Introduction

Let X be a semisimple symmetric space. In previous papers, [8] and [9], we have defined
an explicit Fourier transform for X and shown that this transform is injective on the space
C>(X) of compactly supported smooth functions on X. In the present paper, which is
a continuation of these papers, we establish an inversion formula for this transform.
More precisely, let X=G/H, where G is a connected semisimple real Lie group
with an involution ¢, and H is an open subgroup of the group of elements in G fixed
by 0. Let K be a maximal compact subgroup of G invariant under o; then K acts on
X from the left. Let (7,V;) be a finite-dimensional unitary representation of K. The
Fourier transform F that we are going to invert is defined as follows, for 7-spherical
functions on X, that is, V,-valued functions f satisfying f(kz)=7(k)f(z) for all k€K,
z€X. Related to the (minimal) principal series for X and to 7, there is a family E(¢): A)
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of Eisenstein integrals on X (cf. [5]). These are sums of 7-spherical joint eigenfunctions
for the algebra D(X) of invariant differential operators on X; they generalize the elemen-
tary spherical functions for Riemannian symmetric spaces, as well as Harish-Chandra’s
Eisenstein integrals associated with a minimal parabolic subgroup of a semisimple Lie
group. The Eisenstein integral is linear in the parameter 1, which belongs to a finite-
dimensional Hilbert space °C depending on 7, and it is meromorphic in A, which belongs
to the complex linear dual a}s of a maximal abelian subspace aq of pNq. Here p is the
orthocomplement in g (the Lie algebra of G) of t (the Lie algebra of K), and q is the
orthocomplement in g of h (the Lie algebra of H). In [8] we introduced a particular
normalization E°(1:A) of E(1:\) with the property that as a function of X it is regular
on the set ia of purely imaginary points in asc- Now Ffis defined as the meromorphic
°C-valued function on @} such that

(FFO ) = /X (@) | E°(: \:2)) da (11)

holds for all ¥€°C, A€ia;. Here dz is an invariant measure on X, (-|-) denotes the
sesquilinear inner products on °C and V;, and f belongs to the space C°(X:7) of com-
pactly supported smooth 7-spherical functions on X. The Fourier transform on K-finite
functions in C°(X) can be expressed in terms of the transform F with suitable 7 (see
[8, §6]), and an inversion formula for F thus amounts to an inversion formula for K-finite
functions. Expansion over all K-types then yields an inversion formula for all functions
in C°(X). From now on we shall therefore concentrate on the inversion problem for F
with a fixed K-representation 7.

At first glance, a good candidate for the inverse of F would be the wave packet map
J defined as follows, for ¢ a °C-valued function (of reasonable decay) on iag:

Jol) = / () x:2) X (1.2)

here d is a suitably normalized Lebesgue measure on the Euclidean space ia;. In the
case of a Riemannian symmetric space it is indeed true that JF =1 (cf. [23, Chapter III]
and [9, Remark 14.4]), but in general this is not so. In [9] we showed that (taking
appropriate closures) the operator JF is the orthogonal projection onto a closed subspace
of the space L%(X:7) of all 7-spherical L2-functions on X. The subspace is the so-called
most continuous part of L?2(X:7). In general the functions JFf, f€C®(X:7), do not
belong to C°(X:7); they are smooth functions of L2-Schwartz type, but not of compact
support. A central result in [9] asserts the existence of an invariant differential operator
Dy (depending on 7) on X that is injective as an endomorphism of C2°(X) and satisfies

DoJFf=Dof (1.3)
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for all feC¥(X:7) (see Theorem 2.1). The injectivity of the Fourier transform is an
immediate consequence, but as we do not know an explicit inverse to Dg, (1.3) does not
give the inversion formula we want.

The inversion formula that we obtain involves not only the function F f on iag but
also its meromorphic continuation. In order to describe it, we must introduce some more
notation. Let X denote the system of roots for aq in g; the corresponding Weyl group W
can be realized as the normalizer modulo the centralizer of a4 in K. Let ¥* be a positive
system for ¥ and let Al =exp af, where af is the corresponding open Weyl chamber. For
simplicity of exposition, we assume in this introduction that the open subset X, =K A{H
of X is dense (in general, a finite and disjoint union of open sets of the form KA wH,
we€ K, is dense). The normalized Eisenstein integral E°(1): A) has an expansion (see [10])

E°(:Xiz) =Y E.(sh:z)C°(s: N, (1.4)
sEW

valid on X, that is a generalization of Harish-Chandra’s expansion for the spherical
functions on a Riemannian symmetric space. Here C°(s:A) is an endomorphism of °C,
and E_(sA:x) is a linear operator from °C to V;. Both of these objects depend mero-
morphically on A. For 4/€°C and A generic, the function z+— E,_(A:z)% is defined on X,
as the unique 7-spherical annihilated by the same ideal of D(X) as E°(%: A) and having
the leading term a*~¢y(e) in the asymptotic expansion along A}. It can be shown (see
5] and [10]) that if neay; is sufficiently antidominant then F f(}), as well as E, (A:z), are
regular for A€n+iay. Moreover, these functions of A have decay properties that allow us
to conclude that the expression

'];,ff(x)::|W|f E . (Z:z)Ff(X)dA, (1.5)
7]~}—ic;:‘1

is defined for z€ X, and (by Cauchy’s theorem) independent of 7, provided the latter
quantity is sufficiently antidominant (|| is the order of W). We then denote it 7.F f(z)
and call it a pseudo-wave packet. As a function of z€ X, it is smooth and 7-spherical,
and by moving 7 to infinity one can show that 7 F f(z) vanishes for = outside a set with

compact closure in X. Our main result in the present paper is the following (Theo-
rem 4.7).

THEOREM 1.1. Let feC®(X:7). Then TFf(z)=f(z) for all z€X,.

Since X is dense in X this provides the desired inversion formula for F on C°(X:7).
The proof of Theorem 1.1 is carried out in §§5-9, but it rests on results from several
previous papers. In particular, the papers [11] and [12] have been written primarily for
this purpose. We shall now indicate some important steps in the proof. Inserting the
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expansion (1.4) in (1.2) (for this introduction we disregard the fact that A—E, (A:z)
can be singular for A€iay), and using simple Weyl group transformation properties for
the involved functions, one sees that the wave packet JF f is identical with 7o F f, the
expression (1.5) for n=0. We would like to identify this expression with the pseudo-
wave packet 7F f, but because there are singularities between =0 and the sufficiently
antidominant 7, the difference between the two expressions involves residues. In order to
study closer these residues we invoke (in §5) the residue calculus for root systems that
we have developed in [11]. According to this calculus, the difference is a finite sum of

expressions of the form

/ ulrE, (-:z)F fl(sv)dy, (1.6)
Atiah,

where F' is a non-empty subset of the set A of simple roots for L+, af, its orthocom-

s(Fycx+, 7rqis a suitable polynomial such that 7E, (-:z)Ff is regular on a neighbor-
hood of Ad(s)(A+af,c), and ue S(Ad(s)a}y) serves as a constant-coefficient differential
operator on Ad(s)a*Ft. These objects (i.e. A, s, m and u) can be chosen independently
of f and z. We denote by Tr f(z) the sum of all the contributions of the form (1.6) for

a given non-empty FCA. The function Tr f is T-spherical and smooth on X,. We now

plement in a¥, and A a point in R, FC a}t. Furthermore, s is an element of W with

have

TFf=JFf+Y Trf=Y Trf,
FcA FCcAa
F#£g

where we have set JF f=Tgf, and the result in Theorem 1.1 can be expressed as follows
(Theorem 7.1).

THEOREM 1.2. Let feCX®(X:7) and z€X,. Then
fl@)=">" Trf(x). (1.7)
FCA

The main step in the proof of this result consists of establishing the following prop-
erties of the operators Tx. In order to simplify the presentation, we assume in the
second statement of the following theorem that the map A— -\ belongs to W (see
Corollary 10.11 for the general statement).

THEOREM 1.3. The function Trf on X, extends to a smooth function on X, for
all feCP(X:7), FCA. Moreover, the operator f—Trf is symmetric, that is,

/ (Tr £1(2)] folx)) do = / (f1(2) | Trfa(z)) da
X X

for all fi1, foeCP(X:7).
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Theorem 1.3 is first proved under the assumption (which is sufficient to derive The-
orem 1.2) that f and f are supported on X_. This is done (in §9) by induction on the
number of elements in A. The derivation of Theorem 1.2 from Theorem 1.3 is given
in §7. We shall now outline the proof of Theorem 1.3, which is a central argument for
the paper.

We first derive the statements in Theorem 1.3 for F#A. This is done by a careful
analysis of the asymptotic expansion of the integral kernel corresponding to the opera-
tor Tr. The principal term in the asymptotic expansion along the standard parabolic
subgroup Pr associated with F' can be identified in terms of the Ta for the Levi subgroup
of Pr. Invoking the induction hypothesis and a result from [12] (see Appendix B), the
symmetry of T is obtained. The smooth extension is a consequence of the symmetry.

Next, we consider the function g:=f—> A Trf on X,. The statement in The-
orem 1.2 is that g=0; we know already that g vanishes outside a set 2 with compact
closure in X, since both f and 7Ff have the same property. Knowing also that TF f
extends smoothly to X for F'#£A we are able to deduce that g is annihilated by any invari-
ant differential operator on X that annihilates Ta f. Here the result (1.3) from [9] plays
an important role. It follows that the annihilator of g in the algebra D(X) of invariant
differential operators on X is a cofinite ideal. Since g is 7-spherical, g is hence analytic
on X, and since it vanishes outside £ it must then vanish identically. Equation (1.7) is
thus proved for functions supported in X, . From this the statements of Theorem 1.3 for
F=A finally follow (with supp f, faCX_.), and the induction is completed.

The part of the proof of Theorem 1.3 outlined above is given in §§8-9. In §10 we
define some generalized Eisenstein integrals and derive a formula for Tr in terms of these.
Theorem 1.3 in its full generality follows from this formula.

The inversion formula that we have derived in this paper is an important step towards
the Plancherel formula for X. What remains for the Plancherel formula is essentially to
identify the contributions T7f in terms of generalized principal series representations.
For example, Taf should be identified as being in the discrete series for X. These
identifications will be given in a sequel [13] to this paper, but since it is an important
application we outline the argument here. For F=g the identification is inherent already
in the definition of F and J by means of the minimal principal series—an important
ingredient is the regularity (from [8]) of the normalized Eisenstein integrals on iaj. This
regularity is, in turn, based on the so-called Maass—Selberg relations from [6], according
to which (cf. [9, Proposition 5.3]) the adjoint of the C-function is given by

C°(s:\)*=C°(s: =) L. (1.8)
For the non-minimal principal series, analogues of 7 and J have been defined and the
Maass—Selberg relations have been generalized, by Carmona and Delorme (see [14], (18],
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(19], (15]). Using these generalized Maass—Selberg relations we obtain the necessary
identifications of T f for F#A. In particular, these functions are tempered. As a conse-
quence of Theorem 1.2 it follows then that Ta f is in the discrete series, and the Plancherel
formula is established. A different proof of the Plancherel formula, also based on the gen-
eralized Maass—Selberg relations, has been obtained independently and simultaneously
by Delorme (see [20]). Later, we have found a proof of these generalized Maass—Selberg
relations based on the results of the present paper. This proof will also be given in [13].

For the special case that G/H has but one conjugacy class of Cartan subspaces the
Plancherel formula is easier to obtain than by the argument described above. In this
case the contributions Tr f for F#@ all vanish; we prove this in §11, using [25]. Hence
in this case we have JF =I as in the case of a Riemannian symmetric space (which, in
fact, is a subcase).

Another important application of the results presented here is to the Paley—Wiener
theorem for 7-spherical functions on X, that is, the description of the range F(C°(X:7)).
A conjectural description was given in [9, Remark 21.8], and based on the results of
the present paper we are able to prove this conjecture. The first step is given here in
Corollary 4.11; the further steps will be given in [13]. The Paley—Wiener theorem for X
generalizes Arthur’s theorem for G (which is a semisimple symmetric space by itself), [1],
the proof of which has been a substantial source of inspiration for the present work. In
particular, the inversion formula of Theorem 1.1 is in this special case a consequence
of Arthur’s result. There are some important differences, however, to Arthur’s treatise.
First of all, Arthur appeals to Harish-Chandra’s Plancherel theorem in his derivation
of the Paley-Wiener theorem, whereas eventually we shall derive both theorems from
the present results. In this respect our proof is very much in the spirit of that given by
Rosenberg and Helgason for the Riemannian symmetric spaces, see [22, §7 in Chapter IV].
Secondly, Arthur uses in the inductive argument a lifting theorem due to Casselman (see
[1, Theorem 4.1 in Chapter I1]). The use of this result (the proof of which seems as yet
unpublished) is here replaced by Theorem 1.3 and the induction of relations of [12], which
is explained in Appendix B of this paper.

In the final §12 we generalize our inversion formula 7F f=f to rapidly decreasing
functions f on X. The space S of these functions has been studied, for example, in [21].
For G it is introduced in [29, §7]; it plays an important role in the theory of completions
of admissible (g, K)-modules, developed by Casselman and Wallach (cf. [30, §11], [16]).
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both authors were at the Mittag-Leffler Institute for the 95/96 program, Analysis on Lie
Groups. We are grateful to the organizers of the program and the staff of the institute
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2. Notation and preliminaries

In this paper we use the same notation and basic assumptions as in [9, §§2-3]. In par-
ticular, and more generally than what was assumed in the introduction, G is a reductive
Lie group of Harish-Chandra’s class. As before we write Al=expaf where aj is an open
Weyl chamber in aq. The simplifying assumption, that KA} H is dense in X=G/H, is
abandoned. However, the open subset X, of X defined by the disjoint union

X,= U KAjwH (2.1)
weW

is dense in X (see [9, equation (2.1)]). The map
(k,a,w)— kw lawH (2.2)

induces a diffeomorphism of K/(KNHNM)x Af xW onto X . Notice that X, does not
depend on the choice of the Weyl chamber ag.

Let (7,V;) be a finite-dimensional unitary representation of K, and let °C=°"C(7)
be the finite-dimensional Hilbert space defined by [9, equation (5.1)]. For $€°C, A€a¢
and z€X we define the Eisenstein integral E(¢:A:2)€V, and its normalized version
E°(1):A:x) asin [9, §5]. These are T-spherical functions of z, and they depend meromor-
phically on A\. We view E°(A:z):=E°(-:A:z) as an element in Hom(°C,V;) and define
E*(A:z)eHom(V,, °C), likewise meromorphic in A, by

E*(\:zx)=E°(-X:2)*, zcX. (2.3)

Here the asterisk on the right-hand side indicates that the adjoint has been taken. Then
E*(A:kz)=E*(A:z)o7(k)~! for k€K, and the T-spherical Fourier transform (1.1) of a
function feCo°(X:7) is conveniently expressed as

FFO) = / E*(Mia2)f(z) dz € °C. (2.4)
b'e
In the same spirit we write the definition (1.2) of the wave packet as

Je()= | E°(A\:z)p(X)dr (2.5)

ia*
zaq
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for p:ia;—°C of suitable decay; it is a smooth function of z€X (see [9, §9]). In these
expressions measures are normalized according to [9, §3].

Recall from [9, equation (5.11)] that there exists a homomorphism g from D(X) to
the algebra of End(°C)-valued polynomials on aq such that DE°(A)=E°(X)ou(D:A) for
all DeD(X). Moreover,

F(Dfy=w(D)Ff, DIp=JT(u(D)p) (2.6)

for f and ¢ as above (see [9, Lemmas 6.2, 9.1]).

THEOREM 2.1 [9]. There exists an invariant differential operator DoeD(X) such
that Dg:CX(X:17)—C®(X:7) is injective and such that Do JFf=Dof for all fe
Ce(X:7). In particular, if Ff=0 then f=0.

Proof. Choose Dy from the set D}, defined in [9, Lemma 15.3]. By [9, Theorem 14.1,
Proposition 15.2] it has the required properties. The final statement (which is [9, Theo-

rem 15.1]) is an immediate consequence. O

The Eisenstein integrals allow certain asymptotic expansions that we shall now recall
(cf. [10]). Let PEP™M™ be the o-minimal parabolic subgroup of G that corresponds to
the chosen chamber af; then there exists (see [8, §§4-5]), for each s€ W, a unique mero-
morphic End(°C)-valued function Ae»C°(s: A)=C

pip(8:A) on aic (called the normalized
C-function) such that

E°(\:aw)p ~ Z a**7e[C°(s: \) 9w (€)

seEW

for each weW and all Acia, as a—oco in AF. Here [-]w(e) e VENMNMwHw™ ipdicates
the evaluation at e of the w-component of the element from °C inside the square brackets
(see [8, equations (17)—(18)]). In fact, for a€ A7 and A€a’¢ generic, there is a converg-
ing expansion for £°(¢): A:aw) as a function of a on A}. This expansion is conveniently
expressed by means of the End(VX"MMwHw ™) valued functions ®p,,(A:-) on A¢ intro-

duced in [10, §10]. Let the function E, (A): X, —Hom("°C, V;) be defined by
E, (A kawH)Yp=7(k)®Pp . (A:a)[]w(e) (2.7

for k€K, a€Al, weW, $e°C. It is easily seen from (2.2) that E,()) is well defined
for generic A€aic, and that it belongs to the space C°°(X,:7) of smooth T-spherical

functions on X, . It satisfies

E,(A:aw)p~a "2y, (e)
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for weW, as a—oo in A}. Furthermore,
DE, (M) =E . (A)op(D:X) (2.8)

for DeD(X), by (10, Corollary 9.3], and E, ()) depends meromorphically on A€a}q as
an element of C*°(X, :7). The expression (1.4) now follows from [10, Theorem 11.1].
It will be convenient to rewrite this as follows. Let

E, s(A\:z)=E, (sA:x)oC°(s: ) eHom("C, V,); (2.9)
then
E°(\:z)= Z E, s(\:z) (2.10)
seW
for ze X,.

The Eisenstein integrals satisfy an invariance property for the action of the Weyl
group (see [8, Proposition 4]). Expressed in terms of the notation introduced above it
reads

E°(A:z)=E°(sA:z)oC°(s:X), E*(sh:z)=C°(s:A\)oE*(\:z) (2.11)

for s€ W, where the Maass-Selberg relations (1.8) are used in the passage between the
two identities. For the Fourier transform of a function feC2(X:7) the property (2.11)
implies that

Ff(sA)=C°(s:A)Ff(N). (2.12)

3. The singular hyperplanes

In this section we study the singular set for the normalized Eisenstein integral E°(A:x),
as a function of A. Our aim is to prove that E°(X:z) is singular only along real root
hyperplanes in aq, that is, hyperplanes of the form {\|(}, a)=c} with a€¥. and c€R.
Part of the proof will, however, be deferred to an appendix.

For SCa;c\{0} we denote by IIs=IIs(aq) the set of complex polynomials on a4
which are products of affine functions of the form A— (A, £)—c with £€S and ceC. We
agree that 1€llg. For SCaZ?\{0} we define Il r CILs similarly, but with c€R.

For ReR we define

a;(P,R):={ e a’c|Re () a) <R for ae¥*} (3.1)

and denote by a3 (P, R) the closure of this set.
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PRrROPOSITION 3.1. Let ReR. Then there exists p€lly g such that the map
A p(A)E*(A) eC®(X:7)
is holomorphic on an open neighborhhod of the set a;(P, R). Moreover,
A= p(A)Ff(N)e’C

is holomorphic on this neighborhood for all fECX(X:T).

Proof. We must prove, for each R, the existence of p€lly g such that A
p(A)E°(A:z) is holomorphic on

{re€aic|Re(N a)>—R forae X'}

It is known (from [5], see {8, Lemma 14]) that there exists p€lly with this property. It
remains to be seen that the singularities of E°(A:z) are along real root hyperplanes. The

main step is contained in the following lemma, in which notation is as in [9, §2].

LEMMA 3.2. Let fE]/W\H. There exists, for each RER, a polynomial p€lls r
such that the map A—p(A)j(P:£: A\)neC~>°(K:&) is holomorphic on ay(P, R), for each
nev().

Proof. See Appendix A. |

It follows immediately from Lemma 3.2 and [8, equation (25)] that E(y: \) is singular
only along real root hyperplanes for all 1¥»€°C. In order to establish the corresponding
result for the normalized Eisenstein integrals, we recall that the standard intertwining
operator A(Q':Q:£: 1)) is singular only on real root hyperplanes for all Q,Q'€P (see
[24, Theorem 6.6]). The same holds for the inverse of the operator (cf. [9, proof of
Lemma 20.3]). Moreover, by Lemma 3.2, also the operator B(Q':Q:&:A)€End V(£)
defined by [4, Proposition 6.1], as well as its inverse, is singular only along real root
hyperplanes (cf. also [9, proof of Lemma 20.5]). Finally, it then follows from [8, Lemma 3
and equations (47), (49)] that the normalized Eisenstein integral has only real root hyper-
plane singularities. This completes the proof of Proposition 3.1. 0

Let w€l1ly be the polynomial defined in [9, equation (8.1)]. It is characterized (up
to a constant multiple) by being minimal subject to the condition that A—m(A)E*(A)
is holomorphic on a(P,0), and hence also on aj(P,¢) for some £>0, cf. [9, Lemma 8.1].
Hence by Proposition 3.1 we have 7 €Ily, g. The map A—m(A)F f(A) is holomorphic on
ag(P,e) for all feCP(X:T).

The function A—FE, (A:x), defined in the previous section, has a singular set which
is similar to that of E*(\):
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LEMMA 3.3. There exists, for each ReER, a polynomial pr€lls r such that A—
Pr(A) E(A:2) is holomorphic on a neighborhood of &;(P,R), for all z€ X, .

Proof. See [10, Theorem 9.1, Proposition 9.4]. a

4. Pseudo-wave packets

Let p:a}—°C. For n€a} we define a V;-valued function on X, by
Tpl@)=IW| [ B.(uz)e)dr (4.1)
n—i—iu;‘

provided the integral converges. We shall see that this is the case when p=Ff for
feC(X:7). First we need an estimate of E,()A:x) as a function of A\. For u€U(g) and
f a smooth function on X, we denote by f(u;x) the value at z of the function obtained
from f by application of u from the left.

LEMMA 4.1. Let ReER and let pr be as in Lemma 3.3. There exists for each
ucU(g) a constant dEN with the following property. Let wCal(P,R) and QCX, be
compact sets. Then

sup A+A) PRV Ef (X 45 2)|| < oo (4.2)
A€Ewiay

Proof. By sphericality it suffices to prove this result for the case that ) is contained
in AT, the set of regular points in Aq. By the infinitesimal Cartan decomposition g=
t+aq+Ad(a)h, for a€ ALE, we may as well assume that u€U(aq) (use [2, Lemma 3.2]).
For the present €2 and u, the function E, (A:u;a), a€$2, may be computed by termwise
differentiation of the power series [10, equation (15)] that defines the functions ®p,,(A:a)
in (2.7). The coefficient ', ()) in this series is thus replaced by I'},(A\)=p(A—v)T,()),
with p a polynomial depending on u. Let d be the degree of p; then there exists a constant
C>0 such that |[p(A—v)[<C(1+|v)*(1+|A]))? for all Aea}; and all vENA. It follows
that the coefficient I',,(\) of the differentiated series satisfies an estimate analogous to
the estimate for I',(A) in {10, Theorem 7.4]. The desired estimate is now obtained as in
[10, Theorem 9.1]. O

LEMMA 4.2. Let ReR, let wCay be open and contained in aj(P,R) and let pe
IIx r. Let ¢ be a meromorphic °C-valued function on w-tiay with the following property:
The map A—p(X)(A)€°C is holomorphic on w-ia} and satisfies

sup (1+[A])"[[p(A)e(M)]| < o0 (4.3)

ew—Ha;
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for all neN. Let new with p(n)#0, and assume in addition that pgr(n)#0, where pr is
as in Lemma 3.3. Then the integral in (4.1) converges absolutely. The V. -valued function
T,p on X, is T-spherical and smooth, and it is locally independent of n. Moreover,

DT,0=T,(1(D)p) (4.4)

for DeD(G/H).

Proof. Tt follows from (4.2) and (4.3) that

sup (1+[A])"|E, (A u; 2)p(A)]| < oo (4.5)
A€ntiag

with a bound that is locally uniform in 5. The convergence and the smoothness of (4.1)
follows immediately. The local independence on 7 results from a standard application of
Cauchy’s theorem, and (4.4) is a consequence of (2.8). O

In order to see that the Fourier transform of a compactly supported smooth function
satisfies the required estimates (4.3) we first recall the estimate for the Eisenstein integrals
in the following lemma. For M >0, let BarCaq be the closed ball of radius M, and let

Xy=KexpByyHCX

and Cip(X:7)={feC>(X:7)|supp fCXm}.

LEMMA 4.3. Let RER and let p be as in Proposition 3.1. Let ucU(g). There
erists a constant NEN such that

sup  (1+]A]) " Ve MR |Ip(A) E* (X :u; 2) | < oo

z€EX M
A€al(P,R)
for all M>0.
Proof. See [5, Proposition 10.3, Corollary 16.2] and [8, equation (52)]. O

LEMMA 4.4. Let RER and let pells, r be as in Proposition 3.1. There erists for
each M >0 and for each n€N a continuous seminorm v on C3(X:7) such that

I FFONI < (LA MR A (f) (4.6)

for all Aeay(P,R), feCR(X:T).

Proof. This follows from Lemma 4.3 in the same manner as [9, Proposition 8.3]. O
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Let wCay be open and bounded, and choose ReR such that wCaj(P, R). It follows
from Lemma 4.4 that the functions w=Ff satisfy (4.3). Hence the results of Lemma 4.2
hold for these functions. Notice that it easily follows from (4.6) and (4.2) that f—T7,Ff
is a continuous linear operator from Cg°(X:7) to C*(X,:7), for generic n€ay.

Let welly be as in the text preceding Lemma 3.3. We define the space P(X:7) as
the space of meromorphic functions ¢: a}— °C having the following properties (a)-(b).

(a) ¢(sA)=C"(s:A)p(A) for all s€W, Aeca}c.

(b) There exists a constant £>0 such that 7y is holomorphic on ag (P, ¢); moreover,
for every compact set wCag(P,e)Nay and all n€N,

sup  (1+AN)"[m(A)e(M)]] < oo (4.7)
A€wtial
Furthermore, for M >0, we define Py, (X :7) to be the subspace of P(X:7) consisting
of the functions ¢ that also satisfy the following condition (c).

(c) For every strictly antidominant n€ay; there exist constants t,, C,>0 such that
()| < Cy(1+]A])~ dimea=tetMin!

for all t>t, and )\th—i—z’aj;.

Notice that the Fourier transform F maps C$3(X:7) into Pp(X:7), by (2.12) and
Lemma 4.4. It follows from Lemma 4.2 that if p€P(X:7) then T, is well defined for
all generic 7 in af(P,0)Naj.

LEMMA 4.5. Let peP(X:7). Then T,y is defined for n regular and sufficiently
close to 0 in aj. Moreover, the wave packet (2.5) is defined and satisfies

1
Jo=rr Y Ty (4.8)
|W| seW
for n regular and sufficiently close to 0. If A—E,(A:x)p(A) is reqular along iay, then
To is defined and Jp="Tgp.

Proof. Fix R>0 and let pgp be as in Lemma 3.3. Since pr€lls g there exists a
W-invariant open neighborhood w of 0, such that (4.7) holds and pg has no zeros in
wNag 8. Moreover, by [9, Lemma 8.1(a)] we may assume that 7 has no zeros in w. For
n€wna; ™ the pseudo-wave packets Ty, @, s€ W, are well defined in view of (4.7) and
Lemma 4.2.

It follows from (2.5), the estimate [9, (8.2)] and Cauchy’s theorem that

o= [ BRaem d
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for n sufficiently close to 0. The result, (4.8), now easily follows from insertion of (2.10)
and (2.9) in this expression.

Moreover, if A—E, (A:x)p()) is regular along ia, then it follows from (4.2) and
(4.7) that (4.5) holds uniformly for i in a neighborhood of 0. It then follows as in
Lemma 4.2 that 7, ¢ is defined and independent of 7, for all  in a neighborhood of 0.
Hence J =Ty follows from (4.8). U

Choose R<0 such that 7(A)#0 for Aca} (P, R), and let n€aj(P, R). Let p€P(X:7).
We define Tp:=7,¢ and call this function on X, the pseudo-wave packet formed by .
It is independent of the choices of R and 7, by the statement of local independence in
Lemma 4.2.

LEMMA 4.6. Let M >0 and p€Pp(X:7). The pseudo-wave packet T is a smooth
T-spherical function on X, . The set {xeX, | Tp(x)#0} is contained in Xpr.

Proof. The first statement is immediate from Lemma 4.2. Let z€ X ,\ X3s. We claim
that 7p(z)=0. Let r=kawH, where k€K, a€ A}, weW; then |loga|>M. Since the
inner product on a is the dual to that on aq, we may fix n€ag,
such that |n|=1 and n(loga)<—M. Then Tp=T;,p for teR sufficiently large. The

estimate

strictly antidominant,

|E,(tn+X:z)|| <Ca®, Ae€ial, >0,
follows from [10, Theorem 9.1]. Hence
17 ()] < W] Ca'lp(N)]| dA < C'a*"e,
tn+iag
by (c), and we conclude by taking the limit as t—oo that T¢(x)=0. a

We can now state the main result of this paper, the inversion formula for the -

spherical Fourier transform.
THEOREM 4.7. Let feC®(X:7). Then TF f(z)=f(x) for all z€X,.

The proof will be given in the course of the next five sections. In the proof we shall

use the following result, which is a consequence of Theorem 2.1 and its proof.

LEMMA 4.8. There exists DoeD(X) such that det u(Dy)#0 and such that
DoT ¢(z) = DoJ () (4.9)

forall ze X, p€P(X:7). For every M >0 and every p€Pp(X:7), the function DoT ¢

on X, has a smooth extension to a function in C33(X:7); the Fourier transform of this
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extension is given by
FDoT o= pu(Do)e. (4.10)

Moreover, for every feC®(X:1) we have DoT Ff=Dyf.

Proof. Let pg€lly r be given by Lemma 3.3 with R=0, and let Do€Dpr, cf.
[9, Definition 10.3 and Corollary 10.4]. Then det u(Dp)#0 and pom divides p(Dp) in
S(aq)®End(°C). Moreover, let ¢€P(X:7) and put g=p(Dg)p. Then geP(X:7) (use
19, equation (5.13)]), and E,(A:z)@(A) satisfies an estimate of the form (4.5) for all
neag(P,0)Nay. We infer as in Lemma 4.2 that 7, is defined and equal to 7¢ for all
n€ay(P,0)Na;. By Lemma 4.5 we conclude then that 7¢=7% on X, and (4.9) follows
from (2.6), (4.4).

By a standard application of Cauchy’s integral formula the restriction of ¢ to the
Euclidean space 7a; is a “C-valued Schwartz function. Therefore, by [9, Theorem 16.4],
the wave packet J¢ belongs to the Schwartz space C(X:7) (see [9, §6]) and its Fourier
transform FJ¢ equals ¢ by [9, Theorem 16.6]. Assume now that p€Pp(X:7). Then
DyT ¢ has a smooth extension to a function in C3(X:7), by (4.9) and Lemma 4.6.

Moreover,
FDoTp=FDoJp=u(Do)FITp=p(Do)ep,

where the second equality is a consequence of |9, Lemma 6.2]. This establishes (4.10).
Let feCy(X:7) and put p=Ff. Then p€Pp(X:7), and it follows from the pre-

vious statements that Do7 FfeC(X:7) and FDoT F f=p(Do)F f=F (Do f). Since F

is injective (cf. Theorem 2.1), the final statement follows. O

COROLLARY 4.9. Let M>0 and @oePu(X:7). Assume that Ty has a smooth
extension to X. Then this extension belongs to CS3(X:7) and its Fourier transform is
gwen by FTp=op.

Proof. Tt follows from Lemma 4.6 that the extension of Ty belongs to C52(X:7).
Hence its Fourier transform F7¢ makes sense, and we obtain from (4.10) that
w(Do) FTo=u(Dy)p. Since det u(Dg)#0 it follows immediately that F7 po=¢. O

COROLLARY 4.10. Let feC>®(X:7) and assume that TF f has a smooth extension
to X. Then this extension equals f.

Proof. There exists a constant M >0 such that feC§Q(X:7). Now FfePy(X:7),
and hence it follows from Corollary 4.9 that 7Ff€C®(X:7) and that FTFf=Ff.
Since F is injective we conclude that 7Ff=f. O

The preceding corollaries have been established without use of Theorem 4.7. On
the other hand, it follows from the conclusion of this theorem that 7Ff really has a
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smooth extension to X, for all feC(X:7). Thus we obtain from Theorem 4.7 and

Corollary 4.9 the following (weak) Paley-Wiener theorem:

COROLLARY 4.11. Let M >0 and let P}, (X:7) denote the set of functions g€
Pu(X:7) for which T has a smooth extension to X. The Fourier transform F maps
Cip(X:7) bijectively onto Py, (X:T); the inverse map is given by T followed by the

extension to X.

5. Residue operators

In order to study closer the pseudo-wave packets 7F f we apply the residue calculus
from [11]. We first recall some basic notions from this reference. A subset of V=ay
of the form H, s:={A€aj|({a, A)=s} for some aca;\{0} and s€R is called an affine
hyperplane; if a€¥ it is called an affine root hyperplane. A locally finite collection of
affine hyperplanes in V is called an affine hyperplane configuration; if it consists of affine
root hyperplanes it is said to be ¥-admissible. Moreover, if its elements are given as
above, with a€X* and with a uniform lower bound on s, then it is said to be P-bounded.
Let H be an affine hyperplane configuration in a, and let d: H—N be a map. For
any compact set wCag we denote by m, 4 the polynomial on ajc given by the product
of the functions ({a,-)—s)%H=s) where H, , is any hyperplane that belongs to H and
meets w. We then denote by M(aj, M, d) the space of meromorphic functions ¢: a;c—C
for which 7, 4¢ is holomorphic on a neighborhood of w+iag, for all compact sets wCay.
Furthermore, we denote by P(aj,H,d) the subspace of those p€ M(ay, H,d) for which

sup  (L+[A])"[mw,a(A)p(A)] < oo
A€wtiag

for all w and all neN. The unions over all d: H—N of these spaces are denoted
M(ag, H) :=UM(ag, H,d), P(a3,H):=UP(ag, H,d).
d d

Let L be an affine subspace of aj, that is, L=A+V. where A€a} and V[, is a linear
subspace of V'=ag. The set LOVLl consists of a single point ¢(L), called the central point
in L. The map A—c(L)+A is a bijection of V7, onto L; via this map we can view L as a
linear space. The set

Hp={HNL|HeH, @ HNLG H}

is an affine hyperplane configuration in L. We may then define the sets M(L,H) and
P(L,Hr) similarly as M(a}, H) and P(a}, H) above; they consist of functions that are
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meromorphic on the complexification Le=c¢(L)+ (VL) of L. If d: H—N we denote by
qr,a the polynomial on a} given by the product of the functions ({a, - ) —s)#"=), where
H, , is any hyperplane that belongs to H and contains L. The restriction (qr,4%)|zc
then makes sense and belongs to M(L,Hy), for all p€ M(a,H,d). More generally, a
linear map

R: M(a%, H) —» M(L, Hr)

is called a Laurent operator if there exists, for each d: H—N, an element ugz in the
symmetric algebra S(Vi-) of Vi such that, for every o€ M(a%, H,d), the image Ry is
the restriction to Lc of ug(gr,q49). The space of Laurent operators from M(ag, H) to
M(L,Hy) is denoted Laur(aj, L, H). A Laurent operator R€Laur(a, L, H) automati-
cally maps P(ay, H) into P(L,Hy) (cf. [11, Lemma 1.10]).

Let H denote the set of affine hyperplanes in aj along which A—E (A:z) or A—
E*(X:z) is singular, for some z (in X, and X, respectively). It follows from Proposi-
tion 3.1 and Lemma 3.3 that H is a P-bounded Y-admissible hyperplane configuration.
Moreover, by Lemmas 4.1 and 4.4 the functions A— E, (\:z) F f()\), where feC®(X:7)
and z€ X, belong to the space P(a}, H)QV;.

Let R denote the set of root spaces in a4, that is, the set of all subspaces bCaq of
the form b=a;'(0)N...Na; *(0) with oy, ..., €Y, and for bER let

sing(b,X)= (J bNa~!(0), reg(b,¥)=">b\sing(b,X).
alob

Furthermore, let P(b) denote the set of chambers in b, that is, the connected components
of reg(b, ), and let P=|Jyr P(b). There is a natural 1-1 correspondence between the
set P, of all o0-stable parabolic subgroups of G, containing A, and P. Thus, a parabolic
subgroup Q€ P, with o-split component exp agq corresponds to the element ag,, € P(agq)
on which its roots are positive (in particular, elements in P™" correspond to chambers
in ag).

Let ACX denote the set of simple roots for X%, and let FCA. Let also apq=
Nacra ' (0)€R, and let 054E€P(arq) be the chamber on which the roots in A\F are
positive. This chamber corresponds to a o6-stable standard parabolic subgroup which
we denote Pr (see [4, §2]). Furthermore, we denote by Wr the subgroup of W generated
by the reflections in the elements of F', and by W¥ the set {s€ W |s(F)CX*}, which is
a set of representatives for the quotient W/ Wpg.

For beR we identify the dual space b* with a subspace of af by means of the
extended Killing form B.

Let ¢ be a W-invariant residue weight for 3, that is, a map from P to [0; 1] such
that EQGP(a) t(Q)=1 for all aeR, and t(wQ)=t(Q) for all QeP, weW. Starting from
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the data X, P,t we defined, in {11, §3.4], for each subset FCA and every /\Ea}L:CL1 a
unwersal Laurent operator Resfja}q. This operator encodes the procedure of taking a
residue along the affine subspace A+a% ¢ of a3c; it induces a Laurent operator {(denoted
by the same symbol) Resf;fa%qeLaur(a;, Atagy, '), for each E-admissible hyperplane
configuration H’. Define

A(F)y:={)e a}t | Resffa;q(goos) #£0 for some scW¥, pe M(ag, H)}- (5.1)

Then by [11, Corollary 3.18] this set is finite and contained in —R , F, the negative of the
cone spanned by F. Moreover, from the same reference it follows, for n€ay sufficiently
antidominant and for e a point in the chamber a3, sufficiently close to the origin (and
ea=0), that

/W;so(A)dA:Zt(a;q) >

FCA AEA(F) Ateptiap,

Resffa;q( > (pos) dur (5.2)

sEWF

for all cpE’P(a;,H). Here dX\ denotes the choice of Lebesgue measure on the real lin-
ear space iag, specified in [9, §3], as well as its translation to n+ia;. Furthermore,
dp,F::d,uc,;,q denotes a compatible choice of Lebesgue measure on the subspace iaj,
of tag, as well as its translation to A+e F-{-ia’;,-q. The required compatibility is as follows.
Let (ip,1v)—cB(u,v) be the positive definite inner product on the real linear space ia,
with respect to which the normalized Lebesgue measure is dA. Then dur is normal-
ized with respect to the restriction of this inner product. In particular, d)\:dp,g:d,ua;.
Moreover, if apq={0}, so that A+ep +1aj, Just consists of the point A, then the integral
IN tea +éa;qd”A in (5.2) represents evaluation in A, for each A€ A(A).

Applying the identity (5.2) on components we generalize it to V,-valued functions;
hence, in particular, the identity holds for p(A\)=E, (A:z) Ff(\), where feC®(X:T)
and z€ X,. We conclude

TFi@ =W Y tah) 3 /

Fca AeA(F) Y AterHiagg

Res} ) q: ( 2 Eu(s:2)Ff (8')) R

seWF
(5.3)

The estimate that ensures the convergence of the integral over At+ep-+iak, follows
from estimates (4.2), (4.6) by general properties of the Laurent operators (see [11,
Lemma 1.11}): Let neN. There exists, for each u€U(g), a constant C >0 such that

I Resf’ja}q(f@(s' s ) Ff(s- ) J(A+ep+i)|| S CA+p))™" (5.4)

for all veay,, AeA(F), s¢ WF. The constant C is locally uniform in z€ X, . It follows
that the integral over A+ep+iak, in (5.3) is a smooth function of z. The constant C' is
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also locally uniform in er and in feC®(X:7) (cf. (4.6)). Thus, each integral in (5.3)
represents a continuous linear map from C°(X:7) to C*°(X,:7).

We now define for each F'CA a continuous linear operator T% from C°(X:7) to
C™(X,.:7) by

Pf(@)=Wltlaky) > / Resfja (Z E+(s.:x)}'f(s.)) dita;,; (5.5)

AEA(F) Ateptiag, SEWF
as mentioned convergence follows from (5.4). Then
TFf=) Thf. (5.6)

FcA

The operator T% is independent of the choice of e (provided the latter is sufficiently
close to 0). We also define the kernel K% (v:z:y)€End(V;) for v€af o, z€X,, y€X by

Kilv:iz:y)= Z Res/\+u ( Z E+(s-:x)oE*(s-:y))(/\+y)‘ (5.7)
AEA(F) sSEWF

Clearly this is smooth as a function of (r,y)€ X, x X and meromorphic as a function
of v. Note that by (2.9) and (2.11) we can rewrite the expression (5.7) as

(v:iz:y)= Z Resl\ﬂ ( Z E, s(-:z)oE*(- :y))()\+1/). (5.8)

AEA(F) SEWF

LEMMA 5.1. Let FCA, ueU(g), z€X, and feCX(X:7). Then

sup (1+[v])"

*
uEzqu

[ Keter vz ) i <oo (5.9)
X
for each neN. The bound is locally uniform in z, ep and f. Moreover,

Tefwa) =Wtk [ [ Ke(iuea)f@)dydues,  (310)
eptiay
Proof. Let RER and let wCag(P, R) be compact. It follows from Lemmas 4.1 and
4.3 that there exist NeN and C>0 such that
IpR(A)P(A) B (A:u;z)o E*(A:y)|| SCA+ADY

for all A€w+iag. Moreover, this estimate holds locally uniformly in z€ X, and y€X.
From [11, Lemma 1.11] we obtain a similar estimate for all derivatives with respect to A
of the expression inside || -||. This implies that for f€C2°(X:7) the expression

/X prN)PON) By (Miu; 7)o B*(A:y) f(y) dy
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can be differentiated with respect to A before the integration over y. It follows that

/ Ka(viwsz:y)f Z Res)\“ ( Z E+(s-:u;x)o.7:f(s-))()\+u), (5.11)
X AEA(F) SEWF
and (5.9) is obtained from (5.4), with the stated uniformity. It follows from (5.4) that
differentiations with respect to x can be carried under the integral sign in (5.5). Then
(5.10) follows from this equation and (5.11). 0

Consider the operator T% for F=2. We have agq=a, and W2 =W. Since all the
chambers of a, are conjugate, a Weyl invariant residue weight necessarily takes the value
1/|W| on each chamber. Moreover A(@)={0} and ResP * is the identity operator. Hence

T4, f(z) /+ S B, (sX:2) Ff(sX) dA IWlZﬂmff D) =JFf(z) (512)

a sEW

by Lemma 4.5, since the expression is independent of the choice of £z. Moreover, by
(2.10) and (2.11),

Ky(v:z:y)= Z E,(sv:z)oE*(sv:z)=E°(v:z)E*(v:y). (5.13)
sEW

Remark 5.2. Consider the special case when G is compact. In this case K =G and
ag={0}. It is easily seen from the definitions that °C=C>(X:7) and that the Eisen-
stein integral E(z)=E°(z):°"C—V; is the evaluation at z, for each z€X. In particular,
E(e) is an isomorphism of °C onto V#. It follows easily that E(e)oE*(e)€End(V;) is
the orthogonal projection Pg: V; —=V.H. Then E(x)oE*(y)=7(z)oPgor(y~!) for z,yeG
by sphericality, and it follows that the kernel K%.(z:y) for F=A= is given by the same

expression K4 (z:y)=7(z)-Pgor(y™!).

6. Some properties of the residue operators

Let FCA and let t be a W-invariant residue weight. We shall determine some further
properties of the operator T% and its kernel K%.

LEMMA 6.1. Let wCak, be bounded. There ezists a polynomial q€lls r with non-
trivial restriction to a%, for every u,u’'€U(g), a number NEN, and for all z€ X, , yeX
a constant C'>0, locally uniform in x,y, such that

lg() K (v:u;z: 05 )| <C(1+ )Y
for all VEWw+iag,.

Proof. This follows from Lemmas 4.1, 4.3 and [11, Lemma 1.11]. O



FOURIER INVERSION ON A REDUCTIVE SYMMETRIC SPACE 45

LEMMA 6.2. Let F,F'CA and assume that apq=wapq for some weW. Then
Ki(wr:z:y)=Ka(v:z:y) (6.1)

for all generic VEUp,c, and all z€X,, yeX.

Proof. The set wF is a basis for the root system spanned by F’; hence there exists
w'€Wpr such that w'wF=F’. Since w’ acts trivially on ap.q we may thus assume that
wF=F'. Notice that then s—sw™! is a bijection of W¥ onto WF'. It follows from
[11, Proposition 3.10] that

P, _
Reswfﬂa (c,oow 1) Res,Aer (cp)ow 1

for all Aeajy and peM(aj, H). Hence A(F')=wA(F), and (6.1) follows easily from

(5.7). O
LEMMA 6.3. Let FCA and let v€af o be such that K& (-:3:y) is regular at v.
The set
I'={DeD(X)| DK%(v:-:y)=0,Vye X}

is an ideal in D(X) of finite codimension.

Proof. From (2.8) we obtain

DKp(viziy)= Y Resile (By(-:@)on(D:-)oE*(-:y))(A+)
AEA(F)
for the action of D in the variable x. The endomorphisms p(D:A) of °C are simultane-
ously diagonalizable for all DeD(X), A€a} ¢ (see [8, Lemma 4]). Let v,(D: A), i=1,...,m,
be the eigenvalues, and let I; \CD(X) for i=1,...,m, A€a;, be the ideal generated by
all elements of the form D —~,(D:A) where DeD(X). This is a finitely generated ideal of
codimension 1. Let A€ A(F). If k is sufficiently large then the polynomial p(D) vanishes
at A+ to sufficiently high order, for De[[~, (I; »+.)*. Hence, for sufficiently large ,

Resy s (B (-:2)op(D:-)oE* (:y)(Atv) =
and thus T[]y cp¢m [Tiz1 (Zinv)". The latter ideal is cofinite, since it is a product of
finitely generated cofinite ideals, so I is cofinite. O

COROLLARY 6.4. Let F, v and I be as in Lemma 6.3. A function in C*°(X,:7)
or C°(X:1) that is annihilated by I is real-analytic.

Proof. This is a standard application of the elliptic regularity theorem (see [27,
p. 310]). 0
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In particular, for generic v, the functions K% (v:z:y) (for ye X) are real-analytic
on X,. A similar argument shows that y—K%(v:z:y) is real-analytic on X (for z€ X, ).
Let C(X,:7) be the space of functions in C°°(X,:7) that are supported by a
compact subset of X,. The rest of this section is devoted to the determination of the
adjoint of the operator T%: C°(X:7)—C>(X,:7) with respect to the sesquilinear form

(flg):= /X (f(z)] 9(c)) dz

on CP(X:1)xC¥(X,:7). The following definitions and lemmas will be helpful.
Define
Et(\:z)=E,(-A:2)"

for ze X, in analogy with (2.3). Furthermore, let
E; (\:z)=E, s(-A:z)"=C"(s: )Tl EY (sA:z),

cf. (2.9) and (1.8); then
E*(A\:x)= Y El (A:z) (6.2)

seW
for zeX,.

LEMMA 6.5. Let FCA and let v€ag,c be generic. Then

Ka(v:z:y)* Z Res/\Jrn ( Z Eo(—S'Iy)OE:(—S-IJJ))(/\-f-l_/) (6.3)

ACA(F) SEWF
Z Res/\+u ( °(—-1y)o Z Ei’s(—-:x)) (A7) (6.4)
AEA(F) SEWF

for xe X, , yeX.

Proof. The Laurent operators Resf;:a,.p are real (see [11, Theorem 1.13]). It follows
a
easily that

Resf\:fa (<p)V = Resfjfa;q(wv) (6.5)

for all peM(a3;, H), where Vivs (D). The identity (6.5) generalizes to End(V;)-
valued functions ¢ if we replace the definition of ¢Y by ¢V:vrp(i)*. We apply (6.5)
with
p(r)= Z E (sv:z)oE*(sv:y).
SEWF
Then

Z E°(—sv:y)oE}(—sv:z);

seWF
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for A€ A(F) we thus obtain
[Resf;:u} (o)) = Resffa}q(cpv)()\—i-f/).
Applying this termwise to (5.7) we obtain (6.3), and using (2.11) we then obtain (6.4). O
For feC°(X,:7) we define, in analogy with (2.4),
.7-"+f()\):/X E}(A:xz)f(z)dz€°C, (6.6)
for generic A€ajc. Then F, fis a OC—V;Iued meromorphic function on aj¢.
LEMMA 6.6. Let RER and let pg be as in Lemma 3.3. Let wCag(P, R) be compact.

Then

sup (L+A)™ PR, f(=A)] < o0
A€w+iag

Jor all neN, feC>®(X,:1).
Proof. This follows from Lemma 4.1 in the same manner as [9, Proposition 8.3]. O

LeEMMA 6.7. Let FCA, and let w and g be as in Lemma 6.1. Let ucU(g), neN.
Then

sup (1+]v))"la(w)-| /X Ki(v:2:u;0)"g(w) da| < o0 (6.7)

vEw+iay
for every geC®(X,:7) and all yc X, with a bound that is locally uniform in g and y.
If geC>(X,:7), then the function

g Shg(y) = W] Hak,) / Ki(-2:9)g(c) dodpia, €V, (68)
—ertiap, J Xy

belongs to C°(X:7) and is independent of the choice (sufficiently close to 0) of ep.

Proof. Let neN and u€U(g). In analogy with (5.4) it follows from Lemmas 4.3
and 6.6 that

lg(v) Resf, (B°(=s-:u;y)e Fy g(=s ) ) Av)| < CL+ ) (6.9)
for all vew+iag,, AeA(F), seWF, with a constant C locally uniform in geC° (X, :7)
and y€ X. From Lemma 6.5 we obtain, as in the proof of Lemma 5.1,
/ Ka(v:z:y)*g(z)dz = Z Resf;:a}q( Z E°(—s-:9)oF, g(—s )) (A+2),
X+ AEA(F) SEWF
and the estimate (6.7) follows from (6.9). The final statement of the lemma is an imme-
diate consequence. |

Let FCA and let F'CA be given by F'=—woF, where wy denotes the longest
element in W (with respect to A). Then —a}qzwoa}, o Recall that a residue weight
t is called even if t(Q)=t(—Q) for all QeP. If t is even (and Weyl invariant) then

tah)=t(ah)-
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LEMMA 6.8. Let FCA and F'=—woF. Assume that t is even (in addition to being
W -invariant). Define S&. as in Lemma 6.7. Then

(T} f|9) = (fISk9)
for all feC®(X:7) and geC(X,:T).
Proof. By (5.9), (5.10) and Fubini’s theorem,
(Terlo)=Witer) [ [ - [ Ketwiz:0) 1) 0(@) dy v

(6.10)
“Witr) [ [ [ Kewies)lge) dydean

Similarly, by (6.8) and (6.7),

s =Wittapy) [ [ [ G@IKh ) o) deasay

=Wittapy) [ [ [ @Kz @) deayar

We have apq=wpapq, and we may assume that —ep=wgep. Hence by the change of
variables v'=wgr and by Lemma 6.2,

Uisko=wier) [ [ [ @b swls@) daa. @)

Finally, the expressions (6.10) and (6.11) are equal, since the order of the inner integrals
can be interchanged by continuity of the integrands, cf. Lemma 6.1. O

7. Main results

With the notation introduced in §5 we can rewrite our main result as follows. By (5.6)
the following theorem is equivalent with Theorem 4.7.

THEOREM 7.1. Let t be a W-invariant residue weight for ©. Then

fl@)=> Thf(z) (7.1)

FCA
forall feC>(X:7) and r€X,.

When stated as in (7.1) the inversion formula depends on the choice of a residue
weight. We shall see in [13] how this dependence can be eliminated from the formula.

The proof of Theorem 7.1 is based on the following result, which is the second main
result of our paper.
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THEOREM 7.2. Letl t be a W-invariant even residue weight for ¥ and let FCA.
The End(V;)-valued kernel defined in (5.7) satisfies the following property of symmetry:

Kb(viz:y)* =Kh(-v:y:x) (7.2)

for all x,ye X, and generic VEARqc-

For F= this result is a direct consequence of (5.13) and (2.3). For the case of a
general set F it will be proved in the course of the following two sections.

The symmetry of the kernel K% is related to a similar property of symmetry for the
operator T%. The following lemma will be used in an inductive argument in the proof of
Theorem 7.2.

LEMMA 7.3. Let t be a W-invariant even residue weight for X, and let FCA.
Assume that K% is symmetric, i.e. (7.2) holds for z,yc X, and v€a},c generic. Then
the following holds. Let geC>® (X, :T).

(i) The function x—Thg(z), X, —V;, estends to a smooth 7-spherical function
on X.

(i) Let F'=—woFCA. Then z—T%, g(x) extends to a smooth 7-spherical function
on X, and (T%f1g)=(f| T4 g) for all feCX(X:T).

Later (after Theorem 7.2 has been proved) we shall see that (i), (ii) actually hold
with ge C®(X:7) (see Corollary 10.11).

Proof. It follows from (7.2) that the operator S% defined in Lemma 6.7 is identical
with the restriction of T% to C°(X,:7) (apply the substitution of variables v——7 in
the outer integral). Hence (i) follows from this lemma. Notice that the symmetry of K%
expressed in (7.2) implies that K%., satisfies the same kind of symmetry (by Lemma 6.2),
and hence (i) holds for T%, g as well. Now (ii) follows from Lemma 6.8. O

We shall now derive Theorem 7.1 from Theorem 7.2.

Proof of Theorem 7.1. We assume that Theorem 7.2 holds. We see from (5.6) that
Theorem 7.1 is equivalent with Theorem 4.7, in which the residue weight ¢ is absent, and
we may therefore assume that ¢ is even (cf. [11, Example 3.3]).

Let first feC®(X,:7). Since (7.2) holds by assumption, it follows by application
of Lemma 7.3 (i) that T4 feC>(X:7) for all FCA. Hence TFfeC>®(X:T) by (5.6),
and Corollary 4.10 shows that TFf=f.

Let now feC®(X:7), and let g6 C> (X, :7) be arbitrary. Then from (7.2) together
with Lemma 7.3 (ii) it follows that (T%f|g)=(f|T% g). Since F—F" is a bijection
of the set of subsets of A, we conclude by summation and application of (5.6) that
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(TFflg)=(f|TFg). The expression on the right-hand side of the latter equation equals
(f1g) by the first part of the proof. We conclude (cf. [9, Lemma 11.3]) that TFf=f
on X,. ]

In the proof of Theorem 7.2 we shall need the reformulation of (7.2) given in the

following lemma.

LEMMA 7.4. Let z,y€X, and FCA. Let vEagp,c be generic (or more precisely,
such that Ki(v:z:y) and K& (~v:y:x) are both regular at v). Then (7.2) holds if and
only if

Z Res)\+u (

AEA(F)

S ()b () ()

sEWF

= 3 Rl (B0 B B 00

AEA(F) sEWF

(7.3)

In particular, if F=A and aaq={0}, then this identity simplifies to the following identity
mn Vi
Z Res crx)o B (- Z Res (—-:z)oE(—-:y)). (7.4)

A€A(A) AeA(A)

Proof. By means of (5.8) and (6.4) the two sides of (7.3) are identified as K% (v:z:y)
and K% (—7:y:x)*, respectively. For F=A we have WF={1}, so that (7.3) simplifies
o (7.4). g

LEMMA 7.5. Let z,y€X,, FCA. Let A be any finite subset of aj containing A(F).
Then the identity (7.3) is equivalent to each of the identities resulting from it by replacing
A(F) by A on either one or both sides.

Proof. Tt suffices to show that the residues

Resfﬁu ( E. (-:x)oE*(-:y))

and
Resyo; (E°(=-:2)° B} (= 1Y)
vanish for Aeaj;\A(F) and s€ W¥. We note that
E, (p:x)eE*(u:y)=E (sp:z)oE*(sp:y)
and
E*(~ )0 B}y (—piy) = (B, (shi:a)o E* (si:y))"-

It is easily seen that the functions u— E, (u:z)oE*(p:y) and p—(E, (G:x)oE*(f:y))*
both belong to M(a;, H)®End(V,), with H defined as in the beginning of §5. The
assertion now follows from the definition of A(F), see (5.1). O
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8. Application of an asymptotic result

In this section we shall apply the theory of [12], as outlined in Appendix B, in order
to prove the following Proposition 8.2, which will be crucial for the induction in the
following section.

In order to prepare for the mentioned induction we must introduce some notation.
Let Q=MgAqNg€P, with the indicated Langlands decomposition. For each element
vE Nk (aq) we consider the symmetric space

Xgw=Mqg/MgnvHv™1;

this is a reductive symmetric space of Harish-Chandra’s class, and its vectorial part is
trivial. If FCA and @ is the corresponding standard o-parabolic subgroup Pp, then
we write Mp=Mg and Xp,=Xg . In particular, Py is the fixed o-minimal parabolic
subgroup P, and Xz, is the compact symmetric space M/MNvH vl

Let FCA be fixed. For the symmetric space Xg, the role of aq is played by
the orthocomplement afq of apq in a4, that is, this is a maximal abelian subspace
of mpNpNAdv(q). As before we identify the elements of the dual a}t with the linear
forms on a, that vanish on apq. Then £f=%*Na}s is a positive system for S(azy, mr),
and F is the corresponding set of simple roots. We denote by *P the parabolic subgroup
MpNP of Mp; it is the analog for Xg, of P. In the following, when we consider
Eisenstein integrals on Xp,, we relate them to X} and *P, and consider these latter
data as fixed. Similarly, the open chamber af{; is defined relative to X}.

As in [8, §8] we fix a set WpCNank(aq) of representatives for the two-sided
quotient Zpr.nk (ag)\Nmrnk(0q)/Nypnknu(aq). The set Wy is the analog for Xp=
Mp/MpnH of the set WC Nk (aq); we recall that the latter set has been chosen as a set
of representatives for Zk(aq)\ Nk (6q)/Nknm(aq) (or, equivalently, for W/Winp). We
define

Cr= @ C®*(M/MNwHw :1y),

weEWF
where 73, =T7|pmnx- Then °Cr is the analog for Xr of the space °C, which, we recall, is
given by

C= @ C®(M/MnwHw :1y). (8.1)

weW
In particular, the Eisenstein integrals on Xp, E(Xp:1¢:\)€C®(XFp:T|mpnk), are para-
metrized by ¥ €°Cr and A€aty.

More generally, for each v€ Nk (aq) we fix a set Wk, C NMrnk (aq) of representatives
for Zppnk (09)\Naenk (8q)/Narpnxnvmv-1(8q); then Wg, plays the role for X, of W.
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We put
Cro= @ C®M/MnwvHv 'w:7p); (8.2)
WEWEF,»
this is the analog for Xp, of (8.1). Then we have the Eisenstein integrals E(Xp,:9: )
on Xp,, where €°Cp,,, )\ea}t. Similarly we introduce E°(Xpy:19:A), E*(Xpo:9:A),
E,(XFp:9:A) and E¥(Xp,:9:)). The latter two functions are defined on

Xrv,= U (MpNK) *A;qw(MFﬂvHv_l),
wEWF

where *A}q:exp a#;.
Let “W be a (fixed) subset of Nk (a,) that is a complete set of representatives for
Wr\W/Wgkng. The proof of the following result is straightforward.

LEMMA 8.1. The union

LkJ WEv (8.3)
veFW

in Nk(aq) ts disjoint and forms a complete set of representatives for W/Wxnp.

In the following we shall assume (with F' fixed) that W has been chosen such that it
equals the set (8.3). Since the basic definitions, for example of the Eisenstein integrals,
are essentially independent of the choice of W (cf. [8, equation (27)]), this assumption
is harmless (although in general it cannot be realized simultaneously for all F'). Then,
corresponding to the injection of Wg, in W by (8.3) and the assumption just made,
there is a natural injection if, of °Cr, into °C, simply given by the identity on each
component of (8.2). We denote by pry,, the corresponding orthogonal projection of °C
onto °Cg,. It follows from Lemma 8.1 that

C= @ iru(Cro) (8.4)
veFW

Given a residue weight t for X, we define a residue weight *¢ for £ as in [11, §3.6].

Let )\ea}fl and peM(ay, H), where H is any Y-admissible hyperplane configuration
in aj. Then, according to Lemma B.5 with V and L as described below the proof of
the lemma, the function z—¢(v+2) on aj;c belongs to M(A, Xr), for %eneric VEap,c-
Moreover, according to Remark B.4, the universal residue operator Res )\P’ “on cl.}‘,:(L1 can
be identified with an element in M(A, XF)},,,- Then, by Lemma B.5 the function v+—

Res;P "*p(v+ - )] is meromorphic on fqc- It now follows from [11, Theorem 3.14] that
[Resf\);fu;q ©l(v+A) :ReS;P,*t[¢(y+ )] (8.5)

as an identity of meromorphic functions in v.
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PROPOSITION 8.2. Fiz FCA and assume that for each vEFW the identity (7.4) in
Lemma 7.4 holds for the symmetric space Xp,, for all x,y€Xp, .. Then (7.2) holds
(for the symmetric space X) for all x,y€ X, and generic VEAEC-

In particular, if F=g, then the hypothesis in Proposition 8.2 amounts to the sym-
metry, for each veW, of the kernel K& (X4 ,:m:m’) for the compact symmetric space
Xopw=M/MNvHv~!. This hypothesis is easily seen to be fulfilled (cf. Remark 5.2).
The conclusion, on the other hand, is the symmetry of the kernel K& (v:z:y) for X; this
symmetry was however already verified below Theorem 7.2.

Proof. Let ve¥W. The assumption (7.4) for Xz, reads

Z ReSj\P’*t (E+ (XF,v . ::C)OE* (XF,U Tel y))
AN X P, F) (8 6)
= > Res (B (Xpu:—:2)oBL(Xpwi—+:y))
AEA(XF,v, F)

for all z,y€Xp,, . Here A(Xp,, F) is the analog for X, of A(A) (see (5.1)), that is,
A(Xpp, F) ={€aj; | Res,, " p#0 for some p & M(ajh, Hro)}, (8.7)

where Hp, is the set of affine hyperplanes in a}t along which A~ E (XFy:-:z) or
A—E*(Xf,:-1y) is singular for some z,y.

Note that, by Lemma 7.5, an equivalent form of the identity (8.6) is obtained if we
replace on both sides the set of summation A(XF,, F') by any finite subset A of a*FJ;l that
contains A(Xr,, F). Likewise, in order to prove (7.3) (which, by Lemma 7.4, is sufficient
for our goal) it suffices to prove this identity with A(F) replaced on both sides by any
finite subset A of a}t that contains A(F). We shall apply these observations with the
following set A:

A=] LFJW A Xy, F)JUA(F). (8.8)

We shall now apply the induction of relations of Appendix B. We first apply it in the
version of Theorem B.6. According to the discussion before (8.5), the linear functional

Lip— Z Resj\P’ttgo
AEA
on M(a}tc, Y r) is a Laurent functional in M(a}tc, L) aur- We define the Laurent func-
tionals L1, L2€ M(a55cs EF )iaur BY L1()=L(p(—-)) and Ly=L. For fixed y€Xro,
and a€V;, we define the functions ¢1, ¢2: ac—°Cr,, by ¢1(v+A)=E}(XFpu:A:y)a and
$2(v+A)=E*(Xp,:A:y)a, for generic )\Ea*FngC and v€af,c- Then ¢; and ¢z belong
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to M(a;C’ Y)®°Cr,. From (8.6) we now obtain, by applying Theorem B.6 with £y, Lo,
®1, ¢2 as mentioned, that

ZRes;P"t( Z E+,s(1/+.::c)oip,voE*(XF,v:-:y))

AEA SEWF (89)

= Z ReS;P’*t(EO(I/— ix)elpy o B (Xpyi— 1Y)
A€A

for all y€ X, ,, € X, and generic v€ak,c-
We apply the induction of relations once more, this time in the dual version of
Corollary B.7, and obtain, with z€ X, fixed,

Z Res:\P’*t< Z E, s(v+-:z)oipyoprp, o E*(v+- :y))

A€A seWF

:ZRGS;P’%(EO(V—':m)OiF’vOer’UO Z E:,s(y—qy))

A€A SEWF

for all ye X, and generic v€a} . Summing over veFW, cf. (8.4), we obtain

S hes? (3 Bt 2Bt o)

AEA seWF
= Z Res:\P"t(Eo(l/— “ix)o Z E} (v—-:9)).
AEA SEWF
By (8.5) we can replace the residue operators Res:\P"t by Resffu} and, as remarked
q
above, A by A(F). We thus obtain the desired identity (7.3). O

9. Proof of Theorem 7.2

The proof is by induction on the rank of the root system ¥. We assume that the statement
of the theorem holds for all reductive symmetric spaces for which the corresponding root
system is of lower rank than ¥ (this is definitely true if the rank of ¥ is zero). Then the
hypothesis in Proposition 8.2 is valid for all FG A, and we conclude that (7.2) holds for
such F. Hence the statements in Lemma 7.3 are valid for all FGCA. In order to complete
the proof we must establish (7.2) for F=A.

Let T denote the set of continuous homomorphisms x: G—R., for which x(h)=1 for
all he H, and let

‘G= x7'(1).

X€EY
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Then HC°G, and the pair (°G, H) satisfies the same general assumptions as we have
required for (G, H). Moreover, we have

G/H~°G/H x Aaq.
Let z,y€°G/H, a,b€ Anq. Then it follows easily from the definitions that
Ki(v:za:yb)=(ab!)" “Ki\(2:9) (9.1)

for v€aj o, Where °KY is the kernel defined as K%y, but on °G/H. It follows that in order
to establish (7.2) it suffices to consider °K% on °G/H; in other words, we may assume
that aaq={0}. Moreover, we may assume that X is not compact, since otherwise the
symmetry of Ka(z,y) follows easily from Remark 5.2.

Let feC>(X,:7) be fixed and consider the function g:=f—7T Ff on X,. We shall
first prove that g=0 on X, as would follow from Theorem 7.1 if we could use it at this
stage. Afterwards we derive Theorem 7.2. Notice that g vanishes outside a bounded
subset of X, since f has compact support and Lemma 4.6 applies to TFf.

In Lemma 6.3 take F=A and let D belong to the corresponding ideal I (the para-
meter v is not present because of our assumption that aaq={0}). Then DT f=O0.
Hence

Dg:D(f—T]—‘f):D(f— > Tpf),

FCA
and it follows from Lemma, 7.3 (i) that Dg extends to a smooth function on X. Moreover,
it has compact support because as mentioned g has bounded support on X,. Thus
DgeC(X:7). Let DoeD(X) be as in Lemma 4.8. Then Dog=Do(f—7 Ff)=00n X,
and hence, since D(X) is commutative, DyDg=0. As D, is injective we conclude that
Dg=0. Thus ¢ is annihilated by I, and we conclude from Corollary 6.4 that g is real-
analytic on X,. However, we saw that g has bounded support, hence g=0 on X, as
claimed.

From the above it follows that the identity f=>".T%f holds on X, for all fe
C(X,:7). Isolating T% f and applying Lemma 7.3 (ii) for all FGCA we obtain that the
identity

(Taflg)=(fITa9) (9-2)
holds for all f,geC° (X, :7). Hence we conclude from Lemma 9.1 below that (7.2) holds
for F=A. This completes the proof of Theorem 7.2. 0

LEMMA 9.1. Let t be a W-invariant even residue weight. Assume that anq={0}
and that (9.2) holds for all f,geC*(X,:7). Then

Ka(z:y)* =Kha(y:2) (9-3)
forall z,yeX,.
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Proof. Note that A'’=A. We conclude from (9.2), Lemma 6.8 and [9, Lemma 11.3]
that T% g(2)=S4 g(z) for all ze X, g€ C>®(X,:7), that is,

[ ’5G 9w dy = / K (z:2)" g(c) da.
X4 X,

Now (9.3) follows by means of [9, Lemma 11.3]. O

10. A product formula for the residue kernels

Fix a subset F'CA and an even and W-invariant residue weight € WT(X). Furthermore,
fix an element v€aj., ¢ for which the kernel K (v:z:y):=K&(v:z:y)€End(V;) is regular.
This kernel is real-analytic as function of (z,y) in X, x X. However, as we have seen in
Theorem 7.2 that

Kv:z:y)=K(-v:y:z)" (10.1)
for all z,ye€ X, it follows that (z,y)— K (v:x:y) extends real-analytically to (X x X,)U
(X, xX). Let

C,=Span{K(v:-:y)v|yeX,,veV;} CC®(X:T). (10.2)

LEMMA 10.1. The space C, is finite-dimensional and consists of real-analytic
D(G/H)-finite functions.

Proof. 1t was seen below (10.1) that z— K (v:z:y) is real-analytic on X for yeX,.
The functions in C, are annihilated by a cofinite ideal in D(X) by Lemma 6.3; from this
the finite-dimensionality follows as in [3, Lemma 3.9]. O

LEMMA 10.2. The function (z,y)—K((v:z:y)=K%(v:z:y)eEnd(V;) ertends to a
real-analytic function on X xX. It satisfies (10.1) for all z,yc X.

Proof. For x€ X, veV, we define the linear functional &, , €C}; by &, . (f)={(f(z)|v).
If an element of C, is annihilated by all &, ., then this element is zero. It follows (by
the finite-dimensionality of C, ) that the &, , span C;. Let n=dimC,. Then there exists
a collection (x1,v1), ..., (Tn,vn)€X, xV; such that the &, o
f1, .-, fn. be the dual basis for C,. Then

n

; form a basis for C;. Let

f=) (f@j)lvi)f;

=1

for all f€C,. In particular,

n

K(V:x:y)vzz(K(V:zj:y)v|vj)fj(z) (10.3)

j=1
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for € X, ye X, and veV,. The right-hand side of (10.3) is real-analytic on X x X since
y—K(v:z;:y) and f; are both real-analytic on X.
The identity (10.1) is valid on X x X by continuity. O

Define e(z)=e,(z)eHom(C,, V), for z€X, by
e(z)u=u(z); (10.4)
then e is spherical for the T®1I-action of K on Hom(C,, V;)=V,®C;, and it is a real-

analytic function of x.

LEMMA 10.3. Assume in addition that vEiap,, and let a Hilbert space structure
(<] )e, on the finite-dimensional space C, be given. Then there erists a unique endo-
morphism o of C, such that

K(v:z:y)=e(zx)oace(y)” (10.5)

for all x,yeX,. Moreover, o is self-adjoint and bijective.

Proof. Let (x1,v1), ..., (Tn,vn)E€X, XV, and f1,..., fn€C, be as in the proof of
Lemma, 10.2. Define

Z (FIK(v:-:z5)vs)c, fi(z)

for feC,, ze X, ; then afeC, and a€End(C,). Moreover, for z,yc X, veV;,

k13

e(z)ae(y) v = (ce(y) Z (e(yY v|K(v:-:z;)vj)c, fi(x)
:Z<”|e(y) -1z5)v5) fi () :Z v|K(v:y:z;)v;) fiz)
Jj=1 j=1

7

(K(=7:2;5:y)v]v;) f;(2);

.
Il
_

in the last equality we have used (10.1). Since —z=v, it follows from (10.3) that the
latter expression equals K(v:z:y)v. This shows (10.5), that is, the existence of o has
been established.

Assume that e(z)oB0e(y)* =0 for all z,y€X,, for some operator S€End(C,). By
(10.4) this means that (Bce(y)*)(x)=0 for all z, y, and hence S-e(y)*=0. Taking adjoints
we conclude that e(y)o3*=0 for all y, and hence 8*=0 by (10.4). Thus 5=0. The
uniqueness of a follows.
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That « is self-adjoint is an immediate consequence of {10.1) and (10.5), by means of
the uniqueness just established. We have K(v:-:y)v=ae(y)*v, so if  was not surjective,
a contradiction with the definition of C, would arise. Hence the bijectivity of a. O

Remark 10.4. Let F=@ in Lemma 10.3. If {v, 3)#0 for all S€X then it follows easily
from (5.13) and [9, Lemma 16.14] that ¢—E°(¢:v) is a linear bijection of °C onto C,.
Moreover, if C, is given the Hilbert structure so that this is a unitary isomorphism, then
(5.13) shows that « is the identity operator.

Remark 10.5. Let F=A and assume that aaq={0}. In this case we denote the space
C, defined in (10.2) by Ca. It will be shown in [13] that Ca is contained in L?(X:7)
(as the discrete series). It will then be natural to use for (- |-)¢, in Lemma 10.3 the
inherited Hilbert structure. Then e is square integrable on X, and it follows from (10.5)
that K4 (z:y)=e(z)oace(y)* is the kernel of an integral operator on L#(X:7). It is easily
seen from the definition (10.4) of e that this integral operator is the orthogonal projection
onto Ca followed by «. However, it will also be shown in [13] that Ta is the restriction
to C°(X:7) of the orthogonal projection of L2(X:7) onto Ca; by (5.10) this orthogonal
projection is the integral operator with kernel |W|KY (z:y). We conclude that with the

present choice of Hilbert structure on Ca then a is |[W|~! times the identity operator.

For F#A the product formula for K(v:z:y)=K%(v:z:y) obtained in Lemma 10.3
has the drawback that its dependence on v is obscure. Moreover, it is only valid under
the assumption that v€iap,. We shall now give a different construction of a product
formula which does not have these disadvantages.

Fix FCA and vefW (see §8), and let K(m:m')=K#(XF,:m:m'), m,m'€Xg,,
be the analog for X, of the kernel K%, on X. Using the symmetry of this kernel we
have (cf. (10.1), (6.3))

K(m:m/)= Z Res;P’*t[Eo(Xp,v i—im)e B (Xpy:—-:m')] (10.6)
AEA(Xp,0, F)

for me Xp,, m'€Xp,, .. Let the space Cp, CC™(Xp,:7) be defined as (10.2), but for
K(m:m'), that is,

Crv=Span{K(-:m )vg|m € Xp o 4, o€V, }; (10.7)

it is thus the analog for Xr, of the space Ca discussed in Remark 10.5. Let ¥ €Cr,;
then

P(m)=>_ K(m:m;)v; (10.8)

=1
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for some pairs (m;,v;)€Xp .y, X V7. Equivalently

Pp(m)= > ResE(Xpy:—-:m)®(-)] (10.9)
)\EA(XFYU,F)
where
)\):ZE:(XF’UZ—)\Z’ITLJ')’UJ‘ EOCF,U, )‘eanC (1010)

Let v be a generic element in a}qc and consider the V,-valued function on X given by

zo > Resy HE(v—-:3)oip, (4)]; (10.11)
AEA (X P, F)
this function clearly belongs to C*°(X:7) and depends meromorphically on v€agp,c
(cf. Lemma B.5).

LEMMA 10.6. The expression in (10.11) is independent of the choice of the pairs
(my,v;) that represent 1 in (10.8). It depends linearly on Y €Cr,. Moreover, it remains
unchanged if we replace the set of summation A(Xp., F) by any finite subset of a}t
containing AM(Xp,, F).

Proof. For the first statement it suffices to prove that (10.11) represents the trivial
function if ¥=0. The latter assumption amounts to

> Res B (Xpp:—-1m)B(-)] =0 (10.12)
PYEV
for all me Xg,, where A=A(Xp,, F).
We shall now apply the induction of relations of Appendix B. We define a Laurent
functional EleM(anC, Yr) e by

laur

Li(p)=) Res) " p(—), peM(aiic, Zr)-
AEA

Applying Theorem B.6 with Lo=0 and ¢ (v+A)=®(—) for generic A€ajc, VEE, s
we conclude that
> Res B (v— - 1z)oip, B(+)] =0 (10.13)
AEA
for all z€ X, . By continuity, (10.13) holds for all z€ X. Thus indeed (10.11) represents
the trivial function if ¥=0.
Let y=a/¢'+a"¢", where o/, o' €C, ¢/, 9" €CF., and let ¥/, 9" be represented as
in (10.8) with pairs (m/ M5, V5) =1,k and (m],vJ )j=1,....k, respectively. Then 1 is repre-
sented by (10.8) with k=k"-+k", (m;,v;)=(mj},a'v}) for j=1,...., k', and (mp- 1, vkr+5)=
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(mf,a""v}) for j=1,...,k". The corresponding functions ®, ¢’ and " in (10.10) are then
related by ®=a’®'+”’®", and the similar relation then holds for the functions in (10.11).
This proves the linear dependence of (10.11) on .

To establish the final claim we must prove that (10.13) holds whenever ACu}t is
finite and disjoint from A(Xg,,, F). This follows by the same argument as above; indeed
(10.12) holds for such sets A since all its terms vanish by the definition of A(Xfy, F)
(see (8.7) and the proof of Lemma 7.5). O

Definition 10.7. We denote by Ep  (v:x)€Hom(Cr,V;) the operator that takes
Y&Cr,y to the element of V; given by (10.11). The functions Eg (v :v):=Ep  (v)¢€
C>=(X:1), for ¢€Cp, and generic VEap,c, are called generalized Eisenstein integrals.
Furthermore, we define the finite-dimensional vector space Cr as the formal direct sum

Cr= @ Cro,
vefw
and we define Ep(v:z)eHom(Cr, V,) by

Ep(v:o)p= Y Ep,(v:e)dy
veFW
for =3, ey Yv€Cp. The functions E}. (v :v):=En(v)yYeC>®(X:7), Y€CF, are also
called generalized Eisenstein integrals.

The generalized Eisenstein integral E(¢:v:z) depends meromorphically on the
parameter v€ay . Notice that for F'=& we obtain, by application of Remark 5.2 to
the symmetric space M/MNvHv™ !, that Cg ,=C®(M/MnNvHv ™ :75). Hence Co="C
(cf. (8.1)). Moreover, in this case the generalized Eisenstein integral Eg (1):v) coincides
with the normalized Eisenstein integral E°(y:v).

Arguing as in the proof of Lemma 6.3 we see that E}.(v:z) is annihilated by an ideal
of finite codimension in D(G/H) (the product over ve W, A€ A(Xp,,, F) and i=1,...,m
of the ideals (I; ,—»)*CD(G/H) for k sufficiently large).

Both factors E°(-:z) and Ef(XFy:-:m;) in (10.11) allow suitable estimates. It
follows that the generalized Eisenstein integral En(y:v:x) allows an estimate of the
following form. Let 3,.(F) denote the set of non-zero restrictions to apq of roots from 3,
and define the set Iz () r(arq) of polynomials on a ¢ similarly as the set Ils r was
defined in §3.

LEMMA 10.8. Let wCaj, be compact. There ezists a polynomial p€lly, (ry r(arq),
for every weU(g) a number NEN, and for every z€X, Y€Cr, a constant C such that

Ip(v) Ex(y v us z)| < C(L+ N

for all vew+tiagp,. The constant C can be chosen locally uniformly in x.
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Proof. This follows from the estimates in Lemmas 4.1, 4.3 and [11, Lemma 1.11]. U
We fix a Hilbert space structure on Cg, for each veFW, and equip Cr with the
direct sum Hilbert space structure. Let

Ep(v:z)=Ep(-v:z)* ¢ Hom(V,,Cp).

For each veFW, let apy€End(Cr,) denote the operator given by Lemma 10.3 for the
kernel K} (XF,:m:m') for Xp, and the given Hilbert structure on Cro, and let ape
End(Cr) be given by [ap¢],=ar, 1, for veFW.

ProrosiTION 10.9. Let xeX,, yeX. Then
Ep(v:z)oap-EnR(V':y)

= Z Resffa;‘q( Z E+,5(I/+~:z)oE’*(y’+.;y))()\), (10.14)

AEA(F) sEWF

as an identity between meromorphic functions in v,v'e Opqc- In particular,
Ep(v:z)oap-Ep(v:y)=Kh(v:z:y). (10.15)

We remark that by application of Remark 10.5 to each of the symmetric spaces Xz ,,
it follows (from results to be seen in [13]) that Cr can be equipped with a natural Hilbert
space structure with respect to which ar is a constant times the identity operator.

Proof. Let vefW. For me Xp, we denote by e(Xp,:m) the linear map Cr,— V>
given by evaluation at m; this is the analog of (10.4) for Xr,. By the definition of ag,,
we have

K#(Xpy:m:m')=e(Xpy,:m)oap,oe(Xp,:m')*

for meXg,, m'€Xp,, ,. Thus, for voeV,,
K#(XFp:m:m')vg = [ap,ce(Xpy:m') vo)(m). (10.16)

Let ¢¥(m)=[ar,ce(XF,:m')*vo](m). Then (10.16) is an expression for ¢ of the form
(10.8). The function @ in (10.10) is then given by ®(A\)=FE%(Xpy:—A:m')vg. By the
definition of B, (v":y) (cf. (10.11)) we then obtain

E;‘,'U(’/: y)an,voe(XF’U :m’)*

= 3 ResUES(V = iy)oimgo Bt (Xpyi— - im)] (10.17)
AeA(XF,v,F)
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for yeX, v'€ap - Recall from Lemma 10.6 that the above expression remains un-
changed if we replace in it A(Xp,, F) by a larger finite set A; as in the proof of Propo-
sition 8.2 we take as A the set given by (8.8).

For the moment, we fix a generic element v'€af,c; we insert —&' for v in (10.17).
Taking adjoints as in the proof of Lemma 6.5 and applying the resulting operator to an
arbitrary vector a€V, we obtain (recall from Lemma 10.3 that ar,, is self-adjoint)

e(Xpy:m')oapyoEp (V' y)a

= Z ReS;P"t[E+(XF,v .. im’)Oer’uoE*(y'—k -1y)al. (10.18)
A€EA

On the left-hand side of this equation we have the element aFonl‘fﬂyv(V' :y)a from Cg,
evaluated at m'€ Xp, ,. By the definition of the space Cr, (cf. (10.9)) this evaluated
element has the form

laryoEf,(V':y)a](m)

_ Pt
= E Res,

XEA(XE,o, F)

EO(XF"U [ :ml)oz E:(XF,‘U:_ . ij)’Uj

[ i (10.19)

for some my, ...,mx€Xp, , and vy, ..., v, €V, (depending on v, V', y, a). In particular, we
have an identity between the right-hand sides of (10.18) and (10.19), for all m'€e Xp,, ..
To this identity we shall now apply the induction of relations of Appendix B. Let the

Laurent functionals £1, £2€ M(a}ic, ZF )iy, be defined by
Lip= Y Resyp(=-)), Lap=3 Res"(¢)
AEA(XF,u. F) A€A

for e M(ajqc, F). Moreover, let ¢1, ¢z eEM(a}c, EF)®°Cr,y be the meromorphic
functions defined by

k
$1(v+A) =ZE:(XF,U:A:mj)vj, ¢2(v+X) =prp o E*(V'+X:y)a
j=1
for generic A€ajyc and veajc.
Applying Theorem B.6 to the identity between the right-hand sides of (10.18) and
(10.19), with L1, L2, ¢1, 3 as above, we conclude that

ZRQS;P’*t[ Z E+7s(l/+'Z.’E)OiF’,voerYvoE*(Ul'F‘:y)a]
A€A SEWF

k
S DI G USRS SEIE AR

)‘GA(XF,UvF) 7=1
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for all z€X, and generic v€ak,c. On the other hand, by the definition (10.11) of
Ey ,(v:z), it follows from (10.19) that

E;,v(y : x)[aF,’UOE;,U(U/: y)a‘]

k
= Z Res, ™ [EO(I/—-:S[Z)DiF,UOZE:(XF,v:_':mj)vj:lv

AEA(XFy,F) j=1

and so we conclude that

Z Res;P’*t [ Z E, s(v+-:x)oipyoprp, o E* (V4 -: y)]

AEA SEWF

=Ep,(viz)coryo Bf, (V' y).

In this latter expression we may replace the residue operators Res;P’*t by Resifurvq (cf.
(8.5)), and we may shrink the set of summation to A(F), since the extra terms vanish,
by the definition (5.5) of the latter set (see the proof of Lemma 7.5). Summing over
veFW (cf. (8.4)), we finally obtain (10.14). The expression (10.15) is obtained by taking
v=v'. O

We can now sharpen the estimate for K% in Lemma 5.1 so that it is valid on X x X.

COROLLARY 10.10. Assume that wCak is compact. Then there ezists a polynomial
q€lly, (r),r(aFq) ON 0y c, for every u,u’ € U(g) a number NEN, and for every z,y€X
a constant C'>0 such that

lg()Ke(v:u;z:u'sy)|| <O+ )Y

for all vew+iag,. The constant C can be chosen locally uniformly in x and y.
Proof. Immediate from (10.15) and Lemma 10.8. O

COROLLARY 10.11. Let te WT(X) be even and W -invariant, and let FCA. Then
TL.f extends to a smooth function on X for every fECX(X:T). Moreover, f—T% f
is a continuous operator from C°(X:71) to C°(X:7). Finally, if F' is defined as in
Lemma 7.3(i1), then (T%f|g)={(f|T% g} for all f,geC>(X:T).

Proof. 1t follows from Corollary 10.10 in the same manner as [9, Proposition 8.3] that
(5.9) holds for z€ X, feC°(X: 7), with similar uniformity as stated in Lemma 5.1. Then
(5.10) shows that T% f extends. The final statement now follows from Lemma 7.3 (ii) by
continuity. O
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11. Application: The Plancherel formula
for one conjugacy class of Cartan subspaces

Recall that the reductive symmetric space is said to have one conjugacy class of Cartan
subspaces if all the Cartan subspaces of g are conjugate under H.

LEMMA 11.1. If X has one conjugacy class of Cartan subspaces then so has Xr,
for every FCA and v€Ngk(a,).

Proof. We first notice that Xz, has only one conjugacy class of Cartan subspaces
if and only if the same holds for Xz. Indeed, conjugation by v provides a bijection from
the set of Cartan subspaces for Xr to the set of Cartan subspaces for Xp,. We may
therefore assume that v=e.

Let bCq be a Cartan subspace with aqg=bNp. Then b is f-invariant and maximally
split. It is also a Cartan subspace for the pair (m;r, m;pNh) (where mip=mp+ap). Let
b’ be an arbitrary Cartan subspace for this pair; it is sufficient to prove that b’ is conjugate
to b under MpNH. Moreover, we may assume that b’ is f-invariant. Since b’ has the
same dimension as b and is contained in g, it is a Cartan subspace for (g, ), and therefore
it is conjugate to b under H. It follows that b’ is a maximally split Cartan subspace
for (g,b), by conjugacy. Thus, b and b’ are also maximally split Cartan subspaces for
(myp, m;NY); from this it follows that they are conjugate under MpNH. O

In what follows we assume that G is linear, in order to be able to apply [25, Theorem)]
(see, however, [25, p. 388, (1)]).

LEMMA 11.2. If X is not compact and has one conjugacy class of Cartan subspaces
then the discrete series for X is empty.

Proof. 1f the discrete series is not empty there is a compact Cartan subspace ac-
cording to [25, Theorem]. If all Cartan subspaces are conjugate this would then imply
that all Cartan subspaces are compact, which is only possible if X is compact. a

THEOREM 11.3. If X has one conjugacy class of Cartan subspaces then K% =0 for
all F#£3. Moreover, in that case,

JF=I (11.1)

Proof. The proof of the first statement is by induction on the rank of ¥. The second
statement, the identity (11.1), is an immediate consequence, in view of Theorem 7.1.
Assume that the first statement is true for all reductive symmetric spaces for which the
corresponding root system has lower rank than ¥. Let FCA, F#@,A, and consider the
generalized Eisenstein integral as defined in Definition 10.7. The induction hypothesis
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implies that the kernel K(m:m/) in (10.6) vanishes. Hence Cr,={0} for all vé WF, and
it follows from (10.15) that K% =0. As an immediate consequence we have T4%=0.

It remains to prove that K4 =0 if A£@. By (9.1) we may assume that Axq={0}.
By the inversion formula (Theorem 7.1) and (5.12) we have T4 f=f—JFf for all fe
C(X:7), and hence T% f belongs to the Schwartz space of X (cf. [7, Theorem 1]).
However, as T% f is annihilated by a cofinite ideal in D(G/H) (cf. Lemma 6.3) it then
follows that T% f belongs to the discrete part of L?(G/H)®V, (since it generates a
subrepresentation of finite length). Now T% =0 by Lemma 11.2, and it follows from
(5.10) that K% =0. O

12. Application: The Fourier transform of rapidly decreasing functions

The Fourier transform F is injective when defined on C°(X:7) (cf. Theorem 2.1). On
the other hand, its extension to the L2-type Schwartz space C(X:7) (see [9, §6]) will
in general not be injective because of the possible presence of non-trivial discrete or
intermediate series. In this section we extend the injectivity to a certain function space
S(X:7) that lies between C°(X:7) and C(X:7). We also extend our Fourier inversion
formula to this space.

Let ||-|| be the function on X defined by ||kaH|=e!8°l for k€K, a€Ay; then
llz||>1. We define || f|l,=sup,cx |2]|~"|f(z)| for reR, feC(X). The space

Cr(X)={f € CX) |1 fll» <o}

is a Banach space, invariant under the left regular representation of G. The Fréchet
space of smooth vectors for this representation is given by

Cr(X)={feC=(X)| f(u;-) € Cr(X), Vue U(g)}

with the continuous seminorms f v, (f):=|f(u;-)}ll», u€U(g). Clearly, C*(X)C
C2°(X) with continuous inclusion. We define

S(X)= N CF(X)
r€ER
and provide this space with the seminorms v, ,, u€U(g), r€R. It follows easily that
S(X) is a Fréchet space, and that the inclusion map C2°(X)—S&(X) is continuous. Fol-
lowing [29, 7.1.2] we call S(X) the space of rapidly decreasing functions on X.
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LEMMA 12.1. The subspace C°(X) is dense in §(X).

Proof. We shall prove the following statement, from which the demsity in S(X)
immediately follows. Let feC°(X). There exists a sequence f,€C°(X) with the
following property. Let r€R and assume that feC°(X). Then f,— f in C2,(X) for
all s>0.

Let {¢:} CC>(X), t>0, be asin (3, Lemma 2.2] for some ¢>0. Fix s>0 and ucU(g).
We have 9;(z)=1 for ||lz||<e’ and sup,¢ x ;0 [¥:(u; T)|<oo. Hence

vu,s(hr—1) = Sup llz]|~* (e = 1) (w; 2)| < Ce™*.
z||>et
We conclude that ¢;—1 in C®(X) as t—oo. Let fo=1%,fecC(X). The proof is
now completed by the observation that pointwise multiplication is continuous from
C(X)xCX(X) to CX,(X). The latter is readily seen from the Leibniz rule. O

In [21, p. 134] the term zero Schwartz space is used for S(X) because it is the
intersection of the LP-type Schwartz spaces CP(X), p>0. Let C(X:7), C2°(X:7) and
S(X: 1) denote corresponding spaces of T-spherical functions. Then

S(X:t)y= [N C=(X:71),
reR

and we have the continuous inclusions
CR(X:T)CS(X:1)CC(X:7).

LEMMA 12.2. Let RER, let p be as in Proposition 3.1 and let wCa (P, R) be open
and bounded. There exists r€R such that the integral (2.4) that defines the Fourier
transform Ff(A) converges for all feC,(X:T) and generic A€w+ia;. The Fourier
transform is a meromorphic °C-valued function of A, and there exist constants NEN
and C>0 such that

eV FFI < CA+PDN £ (12.1)
for all \ew+iay, f€C,.(X:T). Moreover, for each n€N there exists a continuous semi-
norm v on C°(X) such that

[N FFII < A+AD) v (f) (12.2)
for all Aew+ial, fECT(X:T).

Proof. We note that the estimate of the normalized Eisenstein integral stated in
Lemma 4.3 can be sharpened as follows, by the same references as given in the proof.
There exists rg€R and for every ueU(g) an integer N 20 such that

sup  (14+[A)) V|||~ IReM || p(X) E* (A1 u; )| < co. (12.3)
zeX

A€aX(P,R)



FOURIER INVERSION ON A REDUCTIVE SYMMETRIC SPACE 67

We take u=1. Then, for all reR,
IpOFF = [ PN E" (A0 @) daf| <O+ I [ Nl oriRedt+ da
X X

where C is the supremum in (12.3). Since ||z||~™ is integrable on X for m sufficiently
large (cf. [9, equation (3.1)]), we have [ ||z||FIReA+dz<oo for —r sufficiently large.
The statements up to and including (12.1) follow. The statement concerning (12.2) is
obtained from (12.1) in the same manner as [9, Proposition 8.3]. O

It follows from Lemma 12.2 that for all generic n€a; there exists a real number r
such that the Fourier transform Ff is defined and meromorphic in a neighborhood of
n+iag for all f€C,(X:7). It then follows from (12.2) and Lemma 4.2 that 7, F f is well
defined and belongs to C*° (X, :7) for all feC°(X:7). Moreover, the map f—T,Ff is
a continuous linear operator from C°(X:7) to C*(X,:7) (cf. (12.2) and (4.2)).

PROPOSITION 12.3. Let R<0 be such that w(A)#0 for all A€a’(P,R), and let
neai(P,R). There exists r€R such that if f€C?(X:7) and Ff=0 on n+iag, then
f=0.

Proof. For feC®(X:7) we have T, F f=TF f, by the definition of the pseudo-wave
packet 7F f, and hence T, F f=f on X. by Theorem 4.7.

Let w be a bounded neighborhood of 77 and let r€R be as in Lemma 12.2. Let r'<7.
Then for feCP(X:7) there exists, according to the proof of Lemma 12.1, a sequence
fn€CX(X:7) such that f,— f in C®(X:7). Since T, F fr,=fn on X, we conclude by
continuity that

T,Ff=f (12.4)
for feCX(X:7). In particular, if 7 f=0 on n+ia then f=0. a

LEMMA 12.4. The integral (2.4) that defines the Fourier transform F f()) converges
for all f€S(X:7) and generic A€ajc; it is a meromorphic “C-valued function of A.

Moreover, let RER and let p be as in Proposition 3.1. Then for each compact set
wCak(P, R) and each n€N there exists a continuous seminorm v on S(X:7) such that

[P FFII < A+ M) "v(f)
for all New+iay, fES(X:T).
Proof. This is immediate from Lemma 12.2. O

In particular,  f belongs to the space P(a}, H)®°C (see §5) for all feS(X:7), and
if P(ag,H) is topologized as in [11, §1.5], then the final estimate in Lemma 12.4 amounts
to the continuity of the map F:S(X:7)—P(a}, H)®°C. The following theorem is an
immediate consequence of Proposition 12.3.
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THEOREM 12.5. The map F:S(X:7)—P(ag, H)®°C is injective.

We can also write down the inversion formula for the Fourier transform on S(X:7).
The function 7, F feC>™(X, :7) is defined for all f€S(X:7) and all generic n€ay by the
remarks preceding Proposition 12.3. As usual we define the pseudo-wave packet 7F f as
T,Ff for n sufficiently antidominant; it is independent of 7 by Lemma 4.2. Then (12.4)
implies the following.

THEOREM 12.6. Let feS(X:71). Then TFf(z)=f(z) for all zeX,.

The space S(X) is contained in L?(X), and hence the L2-Fourier transform § defined
in [9, §18] can be applied to functions in S(X). Recall that § is defined by continuous
extension of the map feC®(X)— f(€,\)eL*(K:£)®V (€)*, where f(€,)) is defined in
[9, §4], for feM\ n and generic A€a}g. In [9, Theorem 15.5] we saw that the injectivity
of the 7-spherical Fourier transform F on C°(X:7) for all 7 implies injectivity of § on
C2(X). The same proof applies to S(X), and we conclude:

COROLLARY 12.7. Let feS(X). If §f=0 then f=0.

Notice that in the case of a group considered as a symmetric space the injectivity
of the Fourier transform on S(X) (as well as on C°(X)) is a consequence of Harish-
Chandra’s subquotient theorem together with the abstract Plancherel formula. There
exists a generalized subquotient (in fact, subrepresentation) theorem for reductive sym-
metric spaces (see [17, Theorem 1}), but it does not allow one to conclude similarly
the injectivity, because in general, for special values of A, there are H-fixed distribution
vectors in the o-minimal principal series other than those used to define the Fourier
transform.

Appendix A. On the functional equation