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Introduction and def in i t ions  

The  classical Berns te in  p rob lem on weigh ted  po lynomia l  a p p r o x i m a t i o n  is as follows: 

Given a cont inuous  funct ion  W(x) >~ 1 on ( - o% oo) such tha t ,  for eve ry  n ~ 0, 

Ix[~ ~0 as x~+oo;  
w(x) 

de te rmine  whe ther  or  no t  eve ry  cont inuous  f u n c t i o n / ( x )  sa t i s fy ing 

/(x) 
- , 0 ,  x-~ _+ oo 

W(x) 

can be a p p r o x i m a t e d  un i fo rmly  b y  po lynomia l s  wi th  respec t  to the  weight  W, t h a t  is, 

whe the r  or  not ,  corresponding to  eve ry  such ], the re  exis t  po lynomia l s  P mak ing  

I1(~) -P(~) sup 
- . < : < .  WCx) 

a r b i t r a r i l y  small .  

I n  this  p roblem,  whose solut ion is known,  i t  is a p p r o x i m a t i o n  over  the  whole rea l  l ine 

t h a t  is in quest ion.  The p resen t  s t u d y  is concerned wi th  the  s imilar  p rob lem t h a t  ar ises  

when the  real  l ine is rep laced  b y  cer ta in  u n b o u n d e d  subse ts  thereof,  n a m e l y  those  ob t a ined  

when  a f ixed  segment  is t r ans l a t ed  to  a n d  fro t h rough  al l  in tegra l  mul t ip les  of a f ixed  

dis tance,  or  even b y  discrete  subsets ,  l ike the  set of integers.  

(1) Much of the work of Part  I of this paper was done while the author was at Fordham Uni- 
versity. Part  I I  was completed under a contract with the Office of Naval Research. Reproduction 
in whole or in part is permitted for any purpose of the United States Government. 

1 5 -  662901. Acta mathematica. 116. Imprim@ lo 19 soptembre 1966. 
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We will consider approximation by  finite trigonometric sums as well as by poly- 

nomials. At this point, it is convenient to introduce some special notations, which will be 

followed in the rest of this paper. 
o o  If  0~<Q~<I, E o denotes the set [.J . . . .  [ -~ ,  n+~].  Thus, EQ is the real line, R, if 

=�89 and for Q =0,  E 0 reduces to Z, the set of integers. 

Let  W(x)/>1 be a continuous function defined on E o, having the property that  

W(x)-->oo as x-*_+ oo in EQ. Then Cw(Eo) will denote the set of functions [, defined and 

continuous on E o, fulfilling the condition: 

/(x) "->0 as x ~  •  in E~. 
W(x) 

I t( )l Writing II/II w. % = sup ~ W(x) 

for [ e Cw(E0) makes the latter into a Banach space, with norm H 

For A >0, Cw(Eo, A) is the closure (with respect to l] Hw.Fo) in Cw(EQ) of the set of 

finite sums of the form ~-A<~<A a~ e *~*. Also, provided that  W(x) has the supplemen- 

tary  property: 

]x[n-~0 as x ~_ _ _ ~  in E~ fo ra l l  n~>O, 
W(x) 

we define Cw(Eo, O) as the closure, in Cw(E0), of the set of polynomials. 

In  terms of these notations, the classical Bernstein problem can be restated as follows: 

1/W(x) has the a/orementioned supplementary property, under what additional conditions 

on W(x) does Cw(R, 0) = Cw(R) ? 

The solution ([1], [2]) is as follows: 

Cw(R, 0)=Cw(R) i/ and only i/ there exist polynomials P, satis/ying [[P[lw,a~<l, that 

make the integral 

f ~ log_ I P(~)l dx 
-~o 1 + x  ~ 

arbitrarily large. 
The condition on W(x) provided by this result is not a very explicit one, but  it does 

lead immediately to the important corollary, due to T. Hall: 

log 
1! j _ ~  l + x  2 d x < o o  t/~n Cw(R,O)~Cw(R). 

The purpose of this paper is to investigate what happens to these and related results 

when R is replaced by  Eq with 0~<Q<�89 If 0<~<�89  it turns out that  the only change in 

them consists in the replacement of integrals over R by  integrals over E0, the integrands 



WEIGHTED POLYNOMIAL APPROXIMATION ON ARITHMETIC PROGRESSIONS 2 2 5  

themselves remaining unmodified. For the case ~ =0,  i.e., tha t  of weighted approximation 

on the integers, we have not obtained a full solution to the problem, but  only an analogue 

of the above corollary (1). I t  is rather remarkable that  the most obvious adaptation of that  

result is actually valid in this case, namely: 

I /  ~ log W(n) 
_ r 1 + n ~ < c~, then Cw(Z, 0) =~ Cw(Z). 

This statement reminds one of Beurling and Malliavin's multiplication theorems, set 

forth in [5] (see Theorems I and I I  of that  paper). Indeed, pa r t  of our proof bears a super- 

ficial resemblance to the reasoning in [5], insofar as the same harmonic function (see formula 

(18) and the beginning of w 8 in Par t  I I  below) figures in both developments, and its 

potential theoretic properties are used, albeit in quite different ways. The connection of 

our results relating to Z with those of Beurling and Malliavin is nevertheless not clear, and 

it does not seem possible to obtain ours from theirs without much labor, if at all. 

The examination of the case involving E Q with 0 < Q < �89 is carried out in Par t  I of the 

present study. Par t  I I  is devoted to the case when Q =0,  i.e., when Eq reduces to Z. The 

method used here is different from that  of Par t  I, so tha t  the two parts of the paper can 

be read independently. 

I am indebted to Professor Carleson, editor of these Acta,  for valuable criticism of 

Par t  I, w 1, thanks to which the exposition of that  section was shortened and simplified 

considerably. 

Part I. Weighted approximation on E~, 0 < ~ < �89 

The solution of the classical Bernstein problem, for the case E 0 =R,  is based to a large 

extent  on the elementary majoration 

H(zl<~l f~  lYIH(t) dr, 
( x -  t) ~ + y~ 

valid for all continuous subharmonic functions H(z) of sufficiently slow growth. The main 

step in our solution of the problem for the case 0 < ~ < � 8 9  consists in the derivation of a 

similar estimate, expressed in terms of the values of H(t) on EQ, instead of on the whole 

real line. 

1. Harmonic measure and harmonic majoration in the complement of  E 0 

We denote by  D~ the complement of E o. D o is an open subset of the complex plane, 

of infinite connectivity. 

(1) Note added in proo] : We have  since extended the  w o r k  of the  present  pape r  so as to 

obta in  the  complete solution for this ease also (q = 0). This  appears  in Comptea Rendus, t. 262, no. 
20, Set. A, pp .  1100-1102 (1966). 
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L~,MMA. Let V(z) be real and bounded above in the complex plane, continuous on a 

neighborhood o/each component o/ Ee, and subharmonic in D e. Then, /or every z, V(z)<. 

supt~Ee V (t). 

This lemma follows easily from an elementary Phragm~n-LindelSf argument; one 

may use 

log z Q + ~ / ~ - I ,  

with proper determination of the radical, as the Phragm6n-LindelSf function. 

I)V, FINITION. We denote by to(z) a ]unction having the ]ollowing properties: 

i) to(z) is continuous in the complex plane, and harmonic in D Q. 

ii) O~<to(z) ~<1. 

iii) to(Q=l,  -Q~<t~<r 

iv) to(t)=0, n-9~t<~n+Q,  /or n=+__l, +_2 . . . . .  

In  our case, the existence of to(t) is guaranteed by fairly simple general considerations. 

According to the lemma, there can only be one function w(z). 

The function to(z) is the harmonic measure of the component I -Q,  Q] of E e relative to 

De, as seen from the point z. I t  is clear that  the harmonic measure of the component 

In-Q,  n+Q] of E e is given by to(z-n) ,  so that,  if H(z) is bounded and continuous in the 

complex plane, harmonic in Dq, and assumes, for each n, the constant value hn on the 

component [n-Q,  n+Q] of Eq, we will have 

H(z) = ~ hnto(z -n)  (1) 
- -  r  

by the lemma. 

We wish to estimate to(z) from above. According to a natural extension of an idea due 

to Keldysh and Sedov (see [4], pp. 284-288), it would be possible to express 

0 x  g S i n  ~ ~ z -  s i n  2 ~ ' 

where ~(z) is a certain entire function, having a simple zero in each of the intervals (n +Q, 

n + l - Q ) ,  n 4 - 1 ,  0, and no other zeros. One can use the periodicity of the set E e to 

establish an integral equation for ~0 which leads to a complicated but  explicit formula for 

it, and hence to the determination of to(z). 

As we are only interested in estimating to(z), we shall proceed somewhat differently. 

Our idea is to approximate to(z) by  replacing the function ~(z) in the above expression by 

the elementary one (cos gz)/(z ~ - �88 whose zeros are close to those of ~(z). 
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l y l + l  
THEORE~ 1. co(z)<.Co2.+(lyl+l)S, 

where C o depends only on ~. 

Pro@ Using the branch of (sin 2 g z -  sin s g~)�89 which is single valued in D o and positive 

on the interval (Q, 1 -~) ,  we write, for each complex z, 

f0 ~ cos ~(z + t) dt 
~(z)= - 9 t  [(z + 0 2 -  �88 VsinS ~(z + t ) _  sinS~e. 

(2) 

I t  is not hard to see that  f~(z) is continuous and bounded in the complex plane, and con- 

stant on each of the segments [ n - p ,  n +~], since (sin 2 ~z - s i n  s zp)l  has imaginary boundary  

values on both sides of those segments. By its very form (differentiate (2) with respect to 

x), ~(z) is seen to be harmonic in D o. 

The function f~(x) is clearly even, and we proceed to estimate it for x >1 0. If the integer 

n is ~> 0, the quanti ty (cos ~x)/(sin 2 ~ x - s i n  ~ ~ ) ~  is positive on (n +0, n + � 8 9  negative 

on (n+�89 n + l - 9 ) ,  and its integrals over these two intervals are equal to C and - C  

respectively, where C is a certain positive constant whose exact value we do not need to 

know (in fact, C =~-1 arg cosh (1/sin ~ ) ) .  Because of this, (2) yields, by  the second mean 

value theorem, 

C 
nS_�88 n = l , 2  . . . . .  (3) 

And the same argument shows, quite generally, that  

in(x)l ~< 0(1) 
xS+ 1 

(4) 

for x>~O, hence for all real x, since O(x) is even. Another use of (2) shows us that  

f~ - 0  cos ~ dx 
~(0) - ~ ( 1 )  =~(0)  - ~ ( 1  - q )  = - (x * -  [) ]/sin * ~x - sin2 ~q 

> 4 o + ~ v  

which, with (3), yields f~(o) = 4or0, (5) 

where 70 is a constant > 1 depending on ~. 

Applying formula (1) to the function f~(z), we obtain 

r162 

~(z) = ~ ~(n) co(z- n). 

Since co(z) ~>0, we can substitute estimates (3) and (5) into this last relation, getting 
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oJ(z) - ~ Ano~(z -n )  < f~ (z) 
- ~  ~ (0 ) '  

(6) 

where I 
0, n = 0  

An = 1 
t~(~,~-1)' ,,4:0. 

(7) 

We shall use (6) to estimate co(x) for real x. The elementary formula 

l _ 4 , ~ - - ~ s i n  , l a l<=  (8) 
- o o  

shows first of all that  7 r ~ l A n [  =lira<l, so that  co(z) can be expressed in terms of the 

left member, ~p(z), of (6) by 
o o  

co(z) = v2(z ) + ~ Bn ~(z - n), (9) 
- o o  

where the Bn are related to the An through the equality 

~: 1 (lO) 1 + -~B'~e"~O=l-~-~Ane~n~ 

From (7) we have An>~0, from which it is easy to see, by expanding the right side of (10) 

in powers of ~_ooAne in~ that  the Bn are all ~>0. Because of this, we can replace ~v(z) in (9) 

by the right-hand member of (6), yielding 

f2(z) , ~ B f~(z-n)  (11) 

0(1) (12) 
Now B,  ~< nz + 1" 

Indeed, from (7) and (10), we have, by formula (8), 

Bn=~__L._[cosnz~d@lt'= for n + 0 ,  (13) 
2 ~ J _ =  

where F(O) = 9'5 - 1 + x 
75 ~ sin . 

Since Y5 > 1, d(1/F(v~))/dv~ is of bounded variation on [ -zt,  ze], so that  the integral in (13) 

can be integrated by parts twice and thereby proven to be O(1/n2). 
For real x, (12), (11), and (4) yield 



WEIGHTED POLYNOMIAL APPROXIMATION ON ARITHMETIC PROGRESSIONS 229 

_< o(1) o(1) < 
(D(X) (14) 

"~_z~oc(x-n)2+l n 2 + 1  z a §  

where C q depends only on Q. 

The function w(z) is continuous and bounded in ~z/> 0, and harmonic in ~z > 0, so for 

such z we have by  Poisson's formula 

1 
f _.. dt. 

Substitution of (14) into this yields ~o(z) ~< C ~(y + 1)~/(x ~ + (y + 1)2) for y > 0, and for y < 0 a 

similar argument applies, completing the proof of the inequality affirmed by  the theorem. 

Theorem 1 will figure in our applications through the use of a 

COROLLARY. Let H(z) be subharmonic and bounded above in D e, and continuous in a 

neighborhood o/ Eq, and suppose that for each integer n there is a number h,L>~O such that 

H(x) <h,~ for n - ~  <~x<~n +~. 

Then H(i) <. Kq ~ 
_~n +1 

with a coustant K q depending only on ~. 

Proof. Combine the above theorem with the lemma given at  the beginning of this 

section. 

2. Application to weighted approximation on E~ 

The special notations used below have already been explained in the introduction to 

this paper. 

THEOREM 2. Let A >0. Then Cw(Eq, A) = Cw(Eq) i /and only i / the integral 

is unbounded above when / ranges over the set o/finite sums o/the form 

/ (x)  = 5 e 

satisfying llfll < 1. 

Proof. Suppose first of all t h a t  the integral in question does remain bounded above, 

say by K, when ] ranges over the set of finite sums of the given form satisfying II/liw.Eq ~< 1. 
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Then we will prove that  Cw(Eq, A) consists only of entire functions, hence cannot be equal 

to Cw(E0). 
We remark first of all that  Cw(EQ, A) is generated by the finite sums of the form 

- - A ~ A  

where, in each particular sum, all the ~ belong to some arithmetic progression (depending 

on the sum). This is true because wi thsuch sums we can come arbitrarily close in ][ [Iw.sQ 

norm to any other one of the same form, but not necessarily having its ~ in arithmetic 

progression. That fact is in turn an easy consequence of the conditions 

W(x) >~ 1, xEEo, 

W ( x ) ~  for x-~___oo in Eq. 

In  order to prove that  Cw(A, E o) consists only of entire functions, it is thus sufficient 

to show that  the set of finite sums 

/(z)= Z a~ et~ 
- A <~).<~A 

with IIIII ,E  < 1, the in each sum being in arithmetic progression, constitutes a normal 

family (in the complex plane). I t  is even enough to show this for the smaller set made up 

of all such sums which are real on the real axis, for any other can be written as the sum of 

two, one real and one purely imaginary on the real axis. 

We see that  all we need to do is give a bound, depending only on z and not o n / ,  for 

]/(z) 1, where ] is any finite sum of the form 

/(x)= Y axe 'x:: 
--A~A 

having the 2 in arithmetic progression, such that  II/ll w.~ < 1 and/(x) is real on the real axis. 

Let )r be such a sum. Then the function 

g(x)  = 1 + i f ( x ) ?  

is ~> 1 on the real axis, and can be expressed as a finite sum 

- 2 A ~ I ~ 2 A  

where the ~u belong also to some arithmetic progression. I t  follows by a theorem of Fej~r 

and Riesz ([6], p. 117) that  we can write g(x) = ]h(x)] ~, - co < x <  oo, with a finite sum h 

of the form 
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h(x)= 5 c,e ''x, 

having the property that  all the zeros of h(z) lie in ~ z < 0  (see [6], p. 118). 

Now ]h(x)l =( l+( / (x))2) �89 ]](x)], - o o  < x < ~ ,  so since ]l]]lw.E <1 and W(x)~>l 

for x fiE o, 11�89 < 1. In view of the supposition made at  the beginning of this proof, 

this implies 

f !~ 
e 1 +x ~ 

i.e. f j  log I h(~)l d~ < K + z~ log 2, 
~q 1 + x z 

where the constant K does not depend on the choice of ]. 

The function 
1 [e/s 

log lh(~ +t)l dt 
u(~) = ~ J -~/~ 

is subharmonic in the complex plane, hence surely in D0/v Since all the zeros of h(z) lie 

in ~z < 0, U(z) is continuous in a neighborhood of EQ. 

The function h(z) is, by its form, bounded on the real axis, and of exponential type A. 

So by the Phragm~n-Lindel6f theorem, log ]h(z)l ~<0(1)+A ]y[, and the function 

A. Isin z 1/sin  z 
v(~) = u(~)-g~og i ~ +  Vsin~ �89 1 ] 

(same determination of the radical as in the proof of Theorem 1, w 1) is bounded above in 

Dol ~. V(z) is clearly subharmonic in Des and continuous in a neighborhood of Eot s, and 

for xEEol2, V(x)= U(x). Denote by h. the maximum of U(x)=V(x) on the component 

In -~/2,  n + ~/2] of ECv then, since ] h(x) ] ~> 1 for x real, we have h. >~ 0, and by the corollary 

o f w  
oO 

V(i)<KQ~ ~ h, 
_ 1 + n  ~" 

Using again the fact that  ] h(x) ] >~ 1 for x real, we see from the definition of U(x) that  

1 /-n+q 
h. <~ )._ log Ih(t)[dt, 

< K~,~ ~? .~+g l_oglh(t) ldt<< " K~,~  ( log lh(x)[d x 
SO Y(i) 

e - ~  l + n  ~ ~(1-~o) ~JEQ l + x  2 

which is, as we have seen, 
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~ < ~ ( K + ~ l o g 2 ) = C ,  

where C is completely independent of the choice of / .  

In terms of U(i), this last inequality yields 

that  is, 1 r Ql2 log Ih(i +t) l atOM, 

with a number M independent of the choice of / .  

Now h(z) is bounded on the real axis and of exponential type A, and has no zeros in 

~z >~0. So Poisson's formula may be applied ([7], p. 92) to yield, for t real, 

= A + I  ( ~  log Ih(~)l dx log IhCS+t) l J-oo (x--t) ~+1 " 

Integrating both sides of this relation with respect to t over [ -~]2, ~/2], and using once more 

the fact that  log ] h(x) ]/> O, - oo < x < oo, we see from the previous inequality that  

-oo log ]h(x) l 
x ~ + l  dx < M',  

where M'  depends only on M and q, and is hence completely independent of ]. Substituting 

]h(x)[ = (1 + (](x))2) �89 this yields finally 

o, l o g + ~ ( _ ~ ) l  _< , 
x * + l  dx-.~M . 

Since/(z) is, by its form, bounded on the real axis and of exponential type A, it is a conse- 

quence ([7], p. 93) of Poisson's formula that  

logl/(~)l<~AlYl +Iyl (.o log+l/(Ol at. 
d ~ -  (x-- t )~+Y a 

I t  is possible, with the help of the Phragm6n-LindelSf theorem, to derive, from these last 

two inequalities, a relation of the form log I](z) l ~< a(A + M')( I z I + 1), where a is a purely 

numerical constant (see, for instance, [3]). This estimate holds for any finite sum ] of the 

form described above, as long as it is real on the real axis and satisfies the condition 

II/lI~.E ~<a. Since ~, A and M' are independent o f / ,  we have found the bound we needed, 
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and hence proved that  Cw(Eo, A)4= Cw(Eq) under the sUpposition made at the beginning 

of this demonstration. 

In the other direction, the theorem is immediate. Suppose, indeed, that  we have a 
sequence of finite sums In(x), each of the form ~_a~a<,aaae ̀ ~, such that  ilt.nnw. .-<l, but 

o o .  
1 + x  ~ 

f log__+ Lf.(~) I 
Then, JEQ l +x ~ d x ~ o ,  n o c r  

whence, afortiori,  f ~  leg+ [/n(x)[ dx-~ r as n ~  oo. 
1 +x ~ J-~ 

Since H/=llw.so < 1, the previous formula implies that  Cw(E~)= Cw(E~. A), according to a 

theorem of Akhiezer (see [1], [2], and [3]). 

Theorem 2 is completely proved. 

COROLLARY. i [  f~qlog W(x) l + x ~  dx<c~, then G,(Eq, A)#Gw(Eq). 

Proo/. Clear. 

THEOR~,M 3. Let W(x) have the property that ]x]"/W(x)-~O as x ~ + _ ~  in EQ, /or all 

n >~O. Then, in order that Cw(Eq, O)= Cw(E Q), it is necessary and su//icient that the integral 

fg log [P(x) l dx 
l + x  2 

be unbounded above as P(x) ranges over the set o/polynomials with IIPII~.E. < 1. 

Proo]. Let us suppose that  the integral in question is bounded above, by K say, for 

all polynomials P satisfying llPllw,Eo <1. Then we shall prove that  the polynomials satis- 

fying this inequality form a normal family in the complex plane. In that  case Cw(BQ, 0) 

can only consist of analytic functions, and hence cannot equal Cw(Eo). To see this, it  is 

enough to show that  the set of polynomials P which are real on the real axis and satisfy 

IIPII w.E0-< 1 form such a normal family, for any polynomial is the sum of two, one real and 

one purely imaginary on ( -  0% oo). 

Having made this preliminary reduction, the proof proceeds very much as in the case 
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of Theorem 2, save that  here IP(x)l is not bounded on the real axis, as it(x)] was in the 

proof of that  theorem. 

To get around this difficulty, we first show that  there is a constant L 0, depending only 

on ~, such that  

f ? ~  f l~ [1 + (P(x))~] log [1 + (P(x)) ~] dx <~ LQ dx 
1 + x  2 1 + x  2 JE e 

for any polynomial P, real on ( - ~ ,  o~). Let P be such a polynomial; say it is of degree N. 

Given ~7 > 0, consider the function 

g (z )= l+(P(z ) )  2\ ~?z ] " 

g(z) is an entire function of exponential type 2hr~; it is real and bounded on the real axis, 

and satisfies there the inequality g(x)~> 1. I t  follows from these facts, by an extension of 

the theorem of Fej6r and Riesz used earlier (see [7], p. 125), that  there is an entire function 

h(z) of exponential type N~/, having all its zeros in ~z < 0, and satisfying Jh(x) J ~ =g(x) for 

- oo <x  < ~ .  On account of this, Jh(x) J is bounded and >~ 1 on the real axis, and we may 

treat the present function h(z) just as the one denoted by the same letter was handled in the 

proof of Theorem 5, provided we replace A by hr~/ (the type of h(z)) in the definition of 

V(z) given there. That reasoning leads to a relation which, in the present case, takes the 

form: 

.Nrl+l f?~c(l f e'~ dt )loglh(x)ldx 
\ ~  d -eJ~ (x - t)  ~ + 1 

~<~(1K~/2-~) fEloglh(X)ldx+N~(lx,+ 1 log sin �89 ~ p ) ~  . 

Since log ]h(x)J >~0, - o o  < x <  ~ ,  we can argue as in the proof of Theorem 2 to deduce 

f ?oo l~ lh(X)l dx <~ L~ [ fE, l~ lh(x)'dx- N~l l~ + x ~ x~ + 1 �89 ~q] 

with a constant LQ depending only on 0- 
In terms of P(x), the last formula can be written 

(sin ~lxl 2n] 
f ? ~  log[1 +(P(x))2'---~-x-/1 +x ~ J dx 

log[1 + (P(x))' (sin ~Tx] 2hI 
fE~ \ ~x / J dx-L  eN~ log sin�89 ze0, 

and on making ~/-~ 0, we get 
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f /  log [1 + (P(x)) ~] dx<~LQflog [1 + (P(x)) *] dx, 
1 +x2 ,]s~ 1 + x  ~ 

using Lebesgue's dominated convergence theorem. 

The rest of this first part  of the proof is now rapidly completed. If the polynomial 

P(x) is real on the real axis, we can find a polynomial Q so that  IQ(x)I~=1 +(P(x))*, 

- o o < x < o o .  Since W(x)~>l for xEE o, the inequality I]PHw.~q<.l implies ]]�89 
and from this we get 

leo log I Q(*)I d. < K, 
. 1 + x  2 

a constant independent of P,  according to the supposition made at the beginning of this 

demonstration. In terms of P, this last relation implies 

fEQ log [1 + (P(x)) 2] dx ~ 2 K + ~ log 4, 
1 + x  * 

and we can now apply the inequality proven above to conclude that 

f ; ~  l~ <~ LQ(K + ~ log 2), 
fP( )l 

dx 
1 + x  2 

a fixed constant, whenever the polynomial P is real on the real axis and satisfies I[P][ w.s~ ~< 1. 

The set of polynomials P satisfying the relation just proven is a normal family in the 

complex plane, as may be seen by the methods mentioned in the proof of Theorem 2. 

The first part of the present demonstration is now complete. 

The second part consists in showing that Cw(Eo. 0) = Cw(EQ) if there exists a sequence 

of polynomials P .  such that ]lP,~llw,so ~<1 whilst 

fs log ]P,(x)] dx-~ co n ~ co 
1 + x  2 ' " 

Q 

This parallels exactly the reasoning at the end of the proof of Theorem 2. 

Theorem 3 is now established. 

COROLLARY. Let ]xln/W(x)~O, x-~+__~ in Eo, /or all n>-O. I /  

fEq log W (x) dx < 
1 + x  * 

then Cw(Eo, O) ~=Cw(EQ). 
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Par t  I I .  Weighted approximation on the integers 

We are interested in seeing whether or not the corollary to Theorem 3 a t  the end of 

Par t  I can be extended to the case ~ =0,  when Eq reduces to Z. If, in the relation used in 

proving Theorem 3, 

f~** fEQl~ [l + (P(x))2] dx, log [1 + (P(x)) ~] dx < LQ 
1 + x  2 1 + x  2 

valid for polynomials P real on the real axis, one tries to make Q-~0, it is found, after 

calculation of the order of magnitude of L 0, tha t  ~LQ 400 as Q -~0. I t  is therefore not possible 

to apply the results of Par t  I so as to obtain an estimate of the form 

f~_.o l~ +(P(x))2] dx<'K ~ l~ +x ~ -.o 1 +m ~ 

Indeed, such an inequality is not valid without qualification. To see this, one may  take 

P~(x) = (1 - x~) T M  ~J 1 - ~ , 

and one easily finds tha t  
�9 ~ l og  + I P ~ ( m )  l 
_~ 1 +me < 10 

for all sufficiently large N, even though P N ( i ) ~  as N ~ .  

I t  would thus appear tha t  the corollary to Theorem 3 could not be adapted to the 

limiting case Eq = Z. However, if one tries to refine the above example so as to have smaller 

and smaller positive upper bounds on the given sum in place of the number  10, it seems to 

be impossible to proceed beyond a certain point without forcing boundedness of the 

sequence IPN(i)]. This suggests tha t  there might be a uniform majoration for IP(z)l, 

applicable to polynomials P for which ~ _ ~  (log + IP(m)[)/(1 +m s) is sufficiently small. The 

main work of the following sections consists in the establishment of such a result for 

polynomials P of a certain special form. 

During the remainder of Par t  I I ,  P(x) will denote a polynomial of the form 

where the xk are real and positive, and n(t) will indicate the number  of points xk in the 

interval [0, t]. (The usefulness of the function n(t) in determining the size of IP(z)l for 

complex z is well known.) We shall prove: 
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To any e > 0 corresponds a (~ > 0 such that,/or any polynomial P o/ the given/orm, 

log + [P(m)] n(t) 
m2 < ~ implies that < ~ /or all t > O. 

1 t 
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1. Estimation of sums from below by integrals 

Direct calculation of the second derivative shows that,  for x > 0, log ]P(x)] is concave 

(downward) on any interval free of points xk. 

L ~, M M A. Suppose 0 < a < m, and that b > m is determined so as to satis/y 

Then, i / there are no points xz in [a, b], 

log b m 

a a 

b 

(1) 

Proo/. I f  b satisfies (1), then 

- = m  . (2) J a  ~2 

Suppose, without loss of generality, that  [P(a)[ is the smaller of the two quantities [P(a) l 
and IP(b)[; then, 

~ IP(~)l ;log]P(a)[dx+;log[P(x)l-loglP(a)ldx" 
x~ dx = x~ xa 

Denote by  M the value of d log ]P(x) I/dx for x = m. Then, since there are no points x~ in 

[a, b], log ]P(x) l is concave downward for a ~<x ~<b, so (let the reader draw a figure), 

0 ~< log I P(x)] - log ]P(a) l <~ M ( x  - m) + log [P(m)] - log ]P(a) l, 

a ~< x ~< b. From this we have 

;log IV(x)}- log ]P(a)l dx ~ ;log ]P(m)]-log IP(a)] dx + M I ( b e  m ~ ~ 
x2 x~ td~ x -  J~z~J" 

According to (2), the last term on the right vanishes, and, adding log [V(a)[S~ x-*dx to 

both sides of the resulting inequality, we have the lemma. 
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LV.~MA. I] m>~7 and m - l  ~ a ~ m ,  the solution b>~m o / ( 1 )  satisfies b < m + 2 .  

Proo/. I f  we wr i te  a/b =q,  then  0 <~  ~< 1, and  (1) t akes  the  fo rm (log 1 /~ ) / (1 -~ )  = m / a  

which yields,  on expand ing  the  n u m e r a t o r  on the  r igh t  in powers  of 1 -Q ,  

1 - ~ < 2 ( m - a )  
a 

S t r ic t  i nequa l i ty  holds here unless ~ = 1, in which case a = m  =b, a n d  the  l emma  is t r iv ia l ly  

t rue.  So, assuming s t r ic t  inequal i ty ,  we ge t  

a 3 a - 2 m  

~ = b >  a 

whence,  since m - 1 <~ a ~ m, 

( m - a )  ( 2 m - a ) ~ < m +  1 ~<2 
b - m <  3 a - 2 m  m - 3  

if m >~ 7, comple t ing  the  proof.  

T~V, ORE~ 4. Let 6 <~a < b. Then there is a number b*, b <~b* <b + 3 such that, provided 

there are no zeros xk o / P ( x )  in  [a, b*], 

f o* log IP(x)l am<5 ~ l~ IP(m)[ (3) 
a x 2 m2 ' 

a < m < b *  

the sum on the right being taken over the integers m satis/ying a < m < b*. 

D ~ . ~ I ~ I T I O ~ .  During the rest o/ this paper, we will say that b* is well disposed with 

respect to a. 

P r o o / o /  Theorem 4. Le t  the  in teger  m 1 be such t h a t  m l - 1  ~<a<ml ;  then  ml>~7, a n d  

according to  the  previous  lemma,  we can f ind  an  al ,  m 1 < a 1 < m  1 + 2, such t h a t  

log aj  
a m 1 

a a 
1 - - -  

a 1 

During  the  r ema inde r  of this  proof,  we shall  wr i te  a 0 for a. Then,  since m l - 1  ~<a0<ml, 
b > a  o, a n d  m l < a l < m l + 2 ,  we cannot  have  a l > ~ b + 3 .  

I n  case a 1 >/b, we t ake  b* = a 1, t hen  b ~< b* < b + 3, and  if the re  are  no po in ts  x k in [a o, b*], 

we get  



W E I G H T E D  P O L Y N O M I A L  A P P R O X I M A T I O N  ON A R I T H M E T I C  PROGRESSIONS 2 3 9  

b*o log [P(x) I x 2  dx ~<log [P(ml) �9 ~ - ,  (4) 

according to the first lemma in this paragraph.  Since a t - a  0 < 3 and ml/a o < 7/6, we have 

.~a: x_Sdx<5/m~, so tha t  (4) certainly implies (3), which is thus  proven in case al>~b. 

Suppose now tha t  a 1 <b.  We take rag. as the integer satisfying m 2 - 1  ~<a 1 < m2, and 

observe tha t  m 2 > m 1 since a 1 > m 1. There is an as, m s < a 2 < m a + 2 satisfying 

(log aJal)/(1 -alia2) = ms/a 1, 

and since, in the present  case, al<b, we cannot  have a2~>b+3. If  there  are no points x~ 

on [al, aa], we have by  the first lemma, 

a, log [e(x)l d~ <log [P(mz)[ ~ ,  
L X~ 

as - 2  2 where, as in the previous step, Sa, x dx < 5/m2. I f  now a S >~ b, we pu t  b* =as,  then  b ~<b* < 

b +3 .  If  not,  we continue in this fashion, unti l  we first reach an  a t wi th  b ~<at < b  +3 .  We 

then pu t  b*=at. If  there are no points x~in [a, b*] =[a0, at] , we can write, for ?'=1 . . . . .  l: 

(aj dx  ,fa'at_xlog [P(x) I x ,  dx < log [ P(m,)[ ai_x~- ~. (5) 

Here,  the integers mj satisfy aj_a<mj<aj,  so that ,  in part icular,  

a = ao<mx<m~,<... < m t < a  t = b*. 

Also, -~ -~ < ~ for each j, 

as we saw in the case of the first two steps: Adding both  sides of (5) for  }'=1 . . . . .  l, we get, 

since a = a o ,  b* =a l ,  

f ~* ~ dx l ~  ~ l o g l P ( m , )  J,~,_l~<5~1~247 ~. l~ 
Jffil /ffil "tt~j a<m<b* •2 

establishing (3) and proving the theorem. 

TKEOREM 5. Let lO~a '  <b. There is an a, a ' - 3  <a-.~a, such that b is well disposed 

with respect to a; that is, 

f2 1~ dx<.5 y l~  
x ~ m 9- a<ra<b 

provided that there are no points x~ in [a, b]. 

The  proof of Theorem 5 is ve ry  similar to tha t  of Theorem 4, and we omit  it. 

16 - 662901. Aafa mathematica. 116. I m p r i m 6  le 20 sep t embre  1966. 
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2. Inclusion of  the  zeros of  P(x) in  certain intervals 

We are going to carry out a series of geometrical constructions on the graph of n(t) vs. t. 

Recall that,  for t >0,  n(t) is the number  of points x~ (zeros of P(x)) in the interval [0, t]. At 

this point, we extend the definition of n(t) to the whole real line by  putt ing n(t) - 0  for t ~<0. 

The function n(t) is non-decreasing on ( -  co, ~ ) ,  identically zero on some open interval 

including ( - co, 0], and constant for all sufficiently large values of t. The graph of n(t) vs. 

t consists of horizontal portions separated by jumps, and at  each jump n(t) increases by  an 

integral multiple of one. 

In  the constructions tha t  follow, we shah include in the graph of n(t) vs. t its vertical 

portions, i.e., if n(t) has a jump discontinuity at  to, the vertical line segment joining 

(to, n(t o -  )) to (to, n(t o + )) is considered as forming par t  of tha t  graph. 

Our constructions are arranged in three steps. 

First step. Construction o/the Bernstein intervals 

We begin by  taking a number  p >0;  beyond the requirement tha t  p be smaU (p < 1/20, 

say), its choice is unrestricted. Once p is chosen, however, it is to remain fixed throughout 

the series of steps tha t  follow. 

Denote by  O the set of points t 0, - ~ < t o < oo, having the property that  a straight line 

of slope p through the point (to, n(to) ) cuts or touches the graph of n(t) vs. t only once. 0 is 

open, and its complement in R is the union of a finite number  of closed intervals, B0, B1, 

B~ ..... called the Bernstein intervals of the polynomial P associated with the slope p. 

(Together, these intervals make up what  V. Bernstein called the neighborhood set of the 

points xk--see [8], p. 259. His construction of the intervals is different from ours.) The 

formation and disposition of the Bernstein intervals is shown in Figure 1. 

From the figure, we see that  all the zeros xk of P(x) (i.e., the points of discontinuity 

of n(t)) are contained in the union of the Bk. Moreover, i / /or any Bk, we write B~ = [a, b], 

we have: 

That part o/the graph o/n(t) vs. t corresponding to the values a <~t <~b lies between the two 

parallel lines o/slope p passing through the points (a, n(a) ) and (b, n(b) ). 

There is yet  another important  proper ty  of the intervals Bk which is not so apparent.  

Henceforth, if I is a closed interval, say I = [ ~ ,  ill, we write n(I) for n ( / 3 + ) - n ( : r  and 

I I I  for the length of I .  Then we have: 

n (Bk) 
Lv.~MA. For each Bk, ~ >~ �89 

Proo/. We begin by making the geometrically evident observation tha t  a line of slope 



W E I G H T E D  POLYNOMIAL APPROXIMATION ON A R I T H M E T I C  PROGRESSIONS 

slope p 
W n(t) 

"t B o _ _ )  L B~ )  L~B~__) t 

: F i g .  l .  
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p which cuts (or touches) the graph of n(t) vs. t more than once must come into contact with 

some vertical portion of that  graph (let the reader make a diagram). 

Take any interval B~, denote it by [a, b], and denote that  portion of the graph of n(t) 

vs. t corresponding to the values a ~< t ~< b by  G. We indicate by L and M the lines of slope 

p passing through the points (a, n(a)) and (b ,n(b)) respectively. According to the definition 

of the intervals Bk, any line ~V of slope p which lies between 15 and M must cut (or touch) 

the graph of n(t) vs. t at least twice. N must therefore come into contact with some vertical 

portion of that  graph, indeed, it  must come into contact with some vertical portion of G, 

for it can never touch any part  of the graph that  does not  lie over [a, b] (see Figure 1). 

The lemma will thus be proved if we show that  the inequality 

n(Bk) _ 

implies the existence of a line N of slope p, lying between L and M, that  does not come into 

contact with any vertical portion of G. 

L . f  
slope p f l "  

-'[ n ( x ~ - - y  . . . . .  ;R . . . . . . . . . . . . . . .  

a b 

L Bk J 

N M 

:) 

t 

F i g .  2. 

In  Figure 2, I Bkl =PS and n(Bk)=QS. We have to prove that  if QS<�89 .PS, there 

is a line • of slope p, lying between L and M, which does not touch any of the vertical 

portions of G. Denote the union of the vertical portions of G by V, and for XE V let II(X) 
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denote the result of projecting X downwards in a direction of slope p onto the segment PR.  

The result, II (V), of applying H to all the points of V is a certain closed subset of PR,  

and if we use I ] to denote linear Lebesgue measure, we clearly have 

 )n(V)l <lVI, 

by definition of the projection II. Since p . R S = Q S ,  we have p . P R > Q S  if �89 

Also, I VI = QS, so the inequality �89 > QS implies IH(V) I <PR.  There is thus a point 

Y E P R  such that  Y~II(V); if then N is the line of slope p passing through Y, N cannot 

touch V, and since N lies between L and M, we are done. 

Second step. Modification o/the collection o[ Bernstein intervals 

The Bernstein intervals Bk constructed in the preceding step are inconvenient in that  

the ratios n(B~)/p I Bkl may vary. The purpose of the present construction is to remedy this 

defect. 

For ]r = 0, 1, 2 ..... we denote Bk by [ak, bk], and assume the indices k so ordered that  

bk<ak+r We also indicate the smallest of the positive zeros x~ of P(x) by a0; ~0 is the first 

point of discontinuity of n(t), and ao<~o<b0 . Recall that  we have assumed 0 < p < l / 2 0 .  

We are going to construct a finite set of intervals I k = [~k, r~], k =0, 1 ..... having 

the following properties: 

i) All the points xk are contained in the union o[ the Ik. 

ii) n(Ik)]p ] I~1 = �89 k = O, 1 . . . . .  

iii) For ~ <.t<~ro, 

n(ro) - n(t) ~ ~ (rio - t), 

and[or Otk <~ t <~ flk with k >~ l, 

n(t) - n(gk) <~ ~ (t-- ak), 

q 9  

n(rk) - n(t) ~< ~ (rk -- t). 

iv) For b >~ l, otk is well disposed (see w 1) with respect to rk-1. 

We begin by constructing/o.  For 7 >~ b 0, let A, be the line of slope p passing through 

the point (7, n(7)), and write JT=[~0, 7]. Since ~o was taken as the smallest of the xk, 

we have, for 7 = b o, 

n(Jr )  n(Bo) which is >/�89 
pIJ  > pIBo  ' 
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by the lemma proved in the preceding step. For 3E [b o, al), n(JT) continues to have the 

constant value n(Bo) , so the ratio n(J~)/plJ~l is a decreasing function of 3 on [b o, a~). 

Suppose that  n(J~)/plJ~l =�89 for some rE[be, al). Then we take fl0 as that  value of 3, 

and put  I o = [~o, rio]. Property ii) certainly holds for Io, and property iii) does also. Indeed, 

if bo4v<a l ,  it is evident, from the construction of the intervals B~, that  the portion of 

the graph of n(t) vs. t corresponding to the values 0 ~< t ~< 3 lies entirely to the left of the line 

Ar (look at  Figure 1), That  is, for such 3 we have 

whence, afort iori ,  
n(3)--n(t) <--.p(3--t), O<~t<~3, 

n(3)--n(t) < ~ (3--t), 0~<t< 3, l - O p  

(since p < 1/20, 1-3p >0), and property iii) holds. 

I t  may happen, however, that  n(J,,)/p[J~[ remains >�89 for bo~3<a 1. In that  case, 

we will still have n(J~)/p[J,I >~ �89 for 3=b~. This is true because n(B~)/p]B~l >1 �89 by the 

lemma of the preceding step, and 

n([~%, bl] ) = n(a 1 - )  - n( o~ o - )  + n( B1), 

b1-:r 0 = al - oco + [ B1] . 

In the present situation, n(J,)/p I J~l>~ �89 for v =b 1, and decreases on the interval [bl, a2). 

Also, when 3 belongs to [bl, a2), the part  of the graph of n(t) vs. t corresponding to the values 

0 <t--<3 lies entirely to the left of the line A~, just as in the discussion of the previous case. 

So if n(J~)/p]J~l = �89 for some 3elba, a2), we take fig as that  value of 3, and I0=[~0, rio] 

has properties ii) and iii). 

If yet  n(J~)/pIJ~ I remains >�89 for b~ <~v<a~, we win have n(J~)/plJ~ [ >~ �89 for 3=5 3, 

by the argument already used, and we then repeat the above procedure, looking for/?0 

in the interval [b2, as). The process continues in this way until we either get a fig between 

two successive intervals B~, Bk+ 1 (perhaps coinciding with the right endpoint of Bk), 

or we have passed through the half-open interval separating the last two Bk, without 

n(J~)/PIJ~ I ever having gotten ~< �89 If this second eventuality occurs, suppose Bz = [a~,bz] 

is the last Bk; then, as before, n(J~)/pIJ~ [ >~ �89 for 3=b l. Here, since n(t) remains constant 

for t~b  z, we can either take flo=bz, or, if necessary, simply increase 3 until n(J,)/plJ~ I 

has diminished to �89 and use the resulting value of 3 as rio. In  this situation, there is only 

one interval Ik, namely I o = [~o, rio], and the construction is finished, since property i) 

obviously now holds, ii) and iii) hold by the above reasoning, and iv) is vacuously true. 
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If, on the other hand, the construction gives us a fie E [bk, ak+l  ) where there is still a 

Bernstein interval Bk+l, we have to construct 11 = [~1,/~1]- To do this, we must first choose 

~1 so tha t  proper ty  iv) is ensured. Observe first of all tha t  n(t) increases by  a t  least one at  

each of its jumps, so that,  by  construction of Io, P(flo- go) = 2n(Io) ~> 2, whence ak+l >rio > 

2 /p>40,  because 0 < p < l / 2 0 .  Theorem 4 of w 1 thus applies to yield the existence of an 

al, ak+~ ~< ~1 <ak+l + 3  which is well disposed with respect to rio. 

Although ~1 may  lie to the right of ak+ 1, I claim tha t  n(~l)=n(fl  o - ) ,  and besides 

n(t) -- n(o~z) <~ ~ (t-- gl) for t ~> 0~ 1. 

This follows directly from the facts that  n(t) increases by  at  least one at  each jump,  and that  

1/p>3, as is evident from Figure 3: 
P 

~ ._~- slope p 
+ I . . . . . . . .  . . . .  

+ . . . .  

: 

~o ~ a I Ok§ 
( B > k§ 

Fig. 3. 

We see tha t  this choice of gl guarantees not only property iv), but  also i) and iii), insofar 

as their validity depends on the position of ~x- 

We must  now choose J~l > ~1 in such a way as to continue to ensure the properties in 

question. This step is very much like the determination of rio. For T~>bk+l, we write 

JR = [~1, ~], and take A, as before. Then, since n(bk+l)-n(~l)=n(B~+l),  we certainly have, 

for v = b k + i ,  

n(g~) n(Bk+i) > ~ - - > ~ � 8 9  
plJ;I plBk+ll 

by the lemma already used in the construction of I 0. We m a y  therefore proceed just as 

above to find a v, lying either in the half open interval separating two successive Bernstein 

intervals, or beyond all of them, such that  n(J~)/p]J~l= �89 For this T, the par t  of the 

graph of n(t) vs. t corresponding to the values t ~<T lies entirely to the left of A~, whence, 

afor t ior i ,  

nO;)-n(t)<~l--~p (Y-t) ,  O<~t~. 
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We then take fll equal to the v just found, put  11 = [ e l ,  f i l l ,  and see a t  once tha t  properties 

ii) and iii) hold for I 0 and ] 1. 

I f  I 0 0 11 does not already include all the Bernstein intervals Bk, fll must  lie between 

two of them, and we can proceed to get an :t 2 just as :q was found above. Then we can 

construct an ] v Since there are only a finite number  of Bk, the process will eventually stop, 

and we will have a finite number  of intervals I k having properties ii)-iv). Proper ty  i) 

will now also hold, since, when we finish, the union of the I k includes that  of the Bk. 

Third step. Replacement o/the first/ew intervals I k by a single one, i/  n(t)/t is not always 
p/(1-3p) 

We now introduce a new parameter,  7, which will continue to intervene until the last 

sections of this paper, when a decision will finally be made concerning the value to be 

assigned to it. Until then, we require only tha t  0 <~/<2]3, but  ~ is considered as fixed, 

once chosen, throughout the following discussions. From time to t ime we will state various 

intermediate results whose validity depends on ~'s having been taken sufficiently small to 

begin with; the final determination of ~/will come about  when we combine those results. 

In  Figure 4 we show the intervals I k = [g~, fig] constructed in the preceding step. 

~ n(t) slope .P 
slope - -  / J  .'$ P 

i I 

~ffO F / /  

�9 / ( r r .  / 

~ Co. ,o fo =,~__;Jl "~ 

Fig. 4. 

P LEMMA. 1/ 0 <  < 2 25~- ~, sup > 
t ~ �9 - 3 p  

Proo/. Figure 4 shows tha t  

implies ]~o ] > 7" 

n(t) 1 2ac oJ 1 - 3 p '  2 /5o t~e] J sup - ~ -  ~< max  P 3 p ,  max 1 

and this last expression equals 

< ~ <  w Q.E P if oDI 
1 - 3p  p0 
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Our ultimate purpose, in all tha t  is being done, is to show tha t  suptn(t)/t is small if 

~ r  -2 log + IP(m) l is. The way we are going to go about  this is to assume tha t  suptn(t)/t 

is not small, and arrive a t  a positive lower bound for ~Fm-21og + ]P(m) l. The constructions 

will therefore continue under the assumption tha t  sup tn ( t ) / t>p / (1 -3p) ,  which, by  the 

above ]emma, implies tha t  ]Io[]flo >7" 

Suppose [I0]]fl0 >7,  ~here  0 <7  <2]3. We will then replace the first few intervals Ik 

by  a single one, according to the procedure tha t  now follows. 

Let  mr(t) be the continuous and piecewise linear function, defined on [0, oo), tha t  has 

slope 1 on each of the intervals Ik, and slope zero elsewhere---we put  rex(0)=0. The ratio 

o)1(t)/t is continuous, and tends to zero as t - ~ ,  since there are only a finite number  of 

intervals I~. Besides this, co~(t)/t increases on the interior of each Ik. For if t belongs to the 

interior of an Ik, 

dt - ~ t2 0, 

since clearly o~z(t)/t < 1 for t >0.  

The assumption [Io[/flo>~ ? means tha t  o~(flo)/flo>7. In  view of the above remarks,  

there is a largest t, which we ~ l l  call d, for which eox(t)/t --7, and d cannot belong to the 

interior, or be the left endpoint, of any of the intervals I k. 

Since d >fl0, there is a / az t  interval I~, say I z, lying entirely to the left of d. I f  I l is 

also the last of all the intervals Ik, we define do=d, Co=(1-7)d ,  and put  Jo=[Co, do]. In  

this case all the points xk (discontinuities of n(t)) lie to the left of d o. Otherwise, Iz is not the 

last of all the Ik, and there is an Iz+l = [gz+l, flz+l]; according to what  we have said about  d, 

d < az+l. Now surely d >rio, and as we saw in the second step, where the I~ were constructed, 

f l0>2/p>10,  since p<1 /20 .  So we m a y  apply Theorem 5 of w 1 to conclude tha t  there is a 

d o, d - 3  < d o <~ d, such tha t  at+l is well disposed with respect to d o. We will then put  c o = d o - d  7 

and define intervals Jk by  
Jo = [co, do], 

J1 = Ii+1, 

Jg. = Iz+2, 

We will also relabel the endpoints of the Jk with k~>l, putt ing ~/.t_l=el, flz+l=dl, etc.; 

thus, Jk = [ck, dk]. 

Now the point do, although it may  lie to the left of flz, still lies to the right of all the 

points x k in the interval I I. Besides this, we can say tha t  the par t  of the graph of n(t) vs. t 

corresponding to the values t < d o lies entirely to the left of a line of slope p/(1 - 3 p )  through 
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the point (do, n(do) ). Indeed, since d>~flz, d0>f l , -3 .  We also know, from the construction 

of the intervals I~, that  the part  of the graph of n(t) vs. t corresponding to the values t ~<flz 

lies entirely to the left of a line of slope p (and not only of slope p / ( 1 - 3 p ) )  through the 

point (fit, n(flz)). The two statements just made concerning d o can therefore be verified from 

a diagram similar to Figure 3. 

We also have 7 <  IJo[/do<2~l/(2-3p).  For 

[Sol=lSo[.  <Is01 2 
d o d d o d " d - - - - 3 < ~ ? ' 2 - a p  ' 

since by definition of c o, [Jo]/d=~, and since d>f lo>2/p .  In  particular, on account of our 

permanent assumption that  p < 1/20, we certainly have ~1 ~< [ Jo ]/do <~ 40 ~//37, and c o = 

do-IJol >0 since 0<7<2/3. 
The ratio n(do)/p I Jo] is equal to �89 For  since d o and d both lie strictly between all the 

points x k in I t  and the interval Iz+ 1 (or beyond the last Ik, if Jo is the only Jk), n(do)= 

n(d) = ~ n ( I k ) = � 8 9  ~ ]  Ik] by  property ii) of the I k. According to the definition of r 

this last expression equals, by choice of d, �89 ) = �89 = �89 

Let  us define r as the continuous and piecewise linear function on [0, oo), taking 

the value 0 at  the origin, which has slope 1 on every interval Jk, and slope zero elsewhere. 

Then there is an 7', ~ ~<~' ~<2~1, such that  

f~,t: ~ 7' for all t > 0, 
(Oj 

t 

whilst eo+(do)/do=~'. Indeed, ~o+(t)_-_O, O<.t<~Co, and on [co, do]=Jo, eo+(t)/t increases to 

o~+(do)/d o = ]Jo]/do which lies, as we have seen, between ~} and 2~}. :For do<.t<~d , o~(t)/t= 

[Jo[/t decreases, and for t>~d, o)~(t)=eo~(t), so that  eoj(t)/t<~, t ~ d ,  by choice of d. 

The purpose o/ this entire section has been to construct the intervals Jk, and it is with them 

that we shall work during the remainder o/the paper. I t  is best to summarize all that  we have 

done in 

T~EOREM 6. Suppose p < l / 2 0 ,  and supt n ( t ) / t > p / ( 1 - 3 p ) .  Given 7, 0<~}<~, we can 

construct a ]inite set o/intervals Jk = [ck, dk], k >~ O, with 0 < c o and dk_ 1 < %, k >~ 1, that have the 

/ollowing properties: 

i) All  the points  xk (discontinuities o /n( t ) )  lie in (0, do) U (J ~>~1Jk. 

ii) n(do) _ 1 n(Jk) 1 
plJol 2' p I J~ l -2 '  k~>l. 
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iii) For 0 <~ t <. do, 

For ck <<.t<~.dk, b>~ 1, 

P .  K O O S I S  

n(do) - n(t) <~ ~ (d o - t): 

p 
n(t) --n(ck) < ~ (t--ck) 

n(t) < 

iv) For ]c>~ 1, c~ is well disposed with respect to dk-1. 

v) I / ,  /or t >1 O, w~(t) = [ [.J ~>~o g~ N [0, t]l, there is a number 7', 7 ~ ~' ~ 2 7, such that 

col(t) < 7' /or all t > O, 
t 

whilst wJ(d~ - - t 

do 7 .  

3. Replacement of  the distribution n(t) by a continuous one 

Throughou t  this section, we assume t h a t  sup n(t)/t >p/ (1  - 3 p ) .  Tak ing  an  7, 0 < 7  < ~, 

we can then  const ruct  the intervals  Jk = [%, dk], k =0 ,  1 . . . . .  hav ing  the  propert ies  l isted in 

Theorem 6 of the  previous section. 

Notation. Suppose Jz is the last  Jk. Then  we write 

O = (do, Cl) U (d 1, c~) U ... U (dl-1, cz) tJ (dz, oo). 

(This is not the  same O as t h a t  used a t  the  beginning of w 

LEMM.~. I / P ( x )  is the polynomial I-~(1 - x~/x~), 

Proo[. B y  p rope r ty  i) af f i rmed in Theorem 6 of w 2, there  are no x~ in O. B y  p r o p e r t y  

iv), ck is well disposed with  respect  to dk-t for k = l  . . . . .  l, hence, b y  Theorem 4 of w 1, 

k-1 dl~.*l <m<c~ ~n2 

(in the sum, m takes  integral  values), for  b = l  . . . . .  I. Also, since all the xk are less t h a n  
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dl, log [P(x)I  is concave downward and increasing on [d~, c~), and from this it follows 

easily (e.g., by the reasoning of w 1) that  

/ f l o g  [P(~)l d~ < log + I P(~)l 
~2 5 ~ m2 

dl<m<oo 

Adding all these inequalities, 

folOg [P(x)l log + IP(m)l dx<~ 5 
gg2 m Eo m2 ' 

which implies the lemma. 

Notat ion.  Let p(t) be piecewise linear (perhaps with jump discontinuities) and increasing 

on [0, ~) ,  zero for all t sufficiently close to 0, and constant for all sufficiently large t. Then 

we write 

V.(x)= f/log [l -~l dla(t). (6) 

Remark .  Since P ( x ) = l - ~ k  (1 -x2/x2), we have, by definition of n(t), 

log/P(x)[ = V.(x) .  

Jo I x - t  I \ t ! 

This formula is known (see [9], p. 137), but for the reader's convenience, we give a quick 

proof. 

I t  is enough to check (7) for the case where/~(t) is continuous at  x, for both sides of 

(7) obviously equal - oo if ~u(x-) </z(x +). We may also suppose x >0. 

We have 

f~ Ix+t l  x + t  X l  x + t  .(,>.,_f. ,.(,>. 

The first integral on the right is integrated by parts, using the formula 

x 2 1 x + t  

Ot x - t 

valid for t>0 ,  t 4 x ,  and we find, in view of the above assumptions on the point x, and the 

fact that  p(t) vanishes identically near 0: 
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( X l o g  x + t  _ _  l o g 2  1 x xs 
d(~t(t)) - 2#(X)x +;folog]l-V d#(t). (8) Jo 

In  the same way, we get 

x + t 2IS (x) log 2 + 1  - ~  
-- log x -- t d - x x log 1 dis(t), (9) 

and (7) follows on adding (8) and (9). 

Notation. We write J = U k~>0 Je, and ~ -  (0, oo)N J .  

THEOREM 7. Under the assumptions o / th i s  section, we have 

log + I P ( m ) l  >_ 1 /" 
1 m ~ - . . - g j ~  x2 dx,  

where is(t) is a certain increasing/unction that can be described as [ollows: 

i) Is(t) is piecewise linear, continuous, and increasing on [0, oo). 

ii) Outside J ,  the slope o/Is(t) is zero. 

iii) .For each k >~ 0 there are points Ye and Oe in Je = [ce, de], with ce < ~'e < e)e < de/or l~ >~ 1 

and c o =~o <($o <do, satis/ying 

y e - c e  + de-(Se 1 - 3 p  k>~O, 
d e -  ce 2 ' 

and such that #(t) has slope p / ( 1 - 3 p )  on each o / the  intervals Ice, 7k], [(~k, de], and 

zero slope elsewhere in Je. 

In  order t ha t  the reader may  easily see the behavior of Is(t), we show its graph in 

Figure 5: 

~ ( t )  slope 
1 - 3 p  

p 

, / "  /~( t )  vs. t , . ,  

/ J 

1 " , '  ! " *  
, ?--,~ . . . . . . .  ;__  ___ 

.,g.lhw ol , . I : 
/ 1 1 ~ > '  v l  , , , , - J I~ '. ; j : 

Fig. 5. 
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Proof o/ Theorem 7. Let ~u(t) be any function having properties i), ii) and iii). We 

observe first of all that  p(t) is completely specified by  the values of the numbers ~k, Jk for 

]r >~ 1. According to the first lemma of this section, we will be done if we show how to assign 

values to ~k and Ok for k i> 1, compatible with the constraint in iii), so that, for the resulting 

function p(t), 

folOg IP(*)I r L(x) dx >~/a----~j  x-~ d*. 

Property i i i) implies that  i~(do)=�89 ~(J~)=�89 k>~l (~(J~) denotes the 

increase of/~(t) on Jk), so by Theorem 6 of w 2 we must have/~(do) =n(do), /~(Jk) =n(Jk), 

k ~> 1. In other words,/~(t) and n(t) agree on the closure of O, whence, by (6) and the remark 

following, 

f:?o l 1 -- ~ (dn(t)-alia(t)). 
k>~l 

0o) 

By Theorem 6 of w 2 and property iii), n(t)>~la(t) for 0 <t<~do with equality for t = d  0. 

This implies that  the first integral on the right in (10) is non-negative for x > d  0, because 

log (x~/t ~ - 1) is a decreasing function of t for 0 < t < x. Therefore, 

f o ~ f :'log l l - ~  l (dn(t) -d/a(t) ) >~0 (11) 

in view of the definition of O. 

We now show that for ]r 1, 7~ and (~ can be chosen, compatible with the constraint 

in iii), in such a way that 

d~ t "a~ _ 
-~ | log 1 (dn(t)-dla(t))>~O. (12) 

If we apply the second lemma of this section, first with/~(t), and then with the function 

f/~(0, t r [ck, dk] pk(t) 
- - [ n ( O ,  ~ ck<t-<<d~ 

in place of ~u(t), we find 

fc~ l~ 1 - ~  (dn(t)-d/~(t))=xfg~l~ x - t  - d ( n - ~ ) )  ' 

and this, on substitution into the left side of (12), yields the expression 
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f:.<,> (.7 -> ) - 
where 

( x + t  dx 
F ( t ) = j o l o g  x - t  x "  (13) 

Integrating by parts, we see that  the left-hand side of (12) is equal to 

a~$"(t) n(O - F(I) dr. 
7 

(14) 

Successive differentiation of (13) yields, for c, < t < dk, 

2dx  

f o 4 tdx 
F "  (t) = (x ~ _ t~)~. 

From the first of these relations, we see that  

F ' ( t ) - + -  oo as l - ~ c k  in (%, d~) 

_F'(O->oo as t-~dk in (ck, d~), 

since O D (dk-z, ck) U (dk, ck+z). The second relation shows that  F'(t) is strictly increasing 

o n  (ck, dk), and it follows that  F'(t) has exactly one zero, tk, in (ck, dk), and that  E ' ( t )<0  

for ck<t<tk,  whilst F ' ( t )>0  for tk<t<dk.  

Starting with the point tk, the numbers 7k and 0h are found by  the construction of 

Figure 6. 

P 
slope T :~  
,-4 

J 
�9 Z f s J 

�9 s S J 

i ~ i I "d  C �9 
~ "  ,F:-.,  _ . . f  I Pt ~ ,d 

I 1 / I I 
I I # /  I I I 

i ,  I 1 / / . . . .  r - 
.,,/ I i T I 

I I J I 
I l ~ i I 
i s I l 

I l I . . . . . . . . . . . . .  J J . . . . . . . . . . . . .  

. . . .  " ~  . . . .  C k  ) ' k  t k S k d .  ~ "  t Jk j K  

Fig. 6. Showing case where t k is a po in t  of d iscont inu i ty  of n(t). 
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I t  is evident in Figure 6 that  this choice of 7k and 8k is compatible with the constraint in 

iii), and leads to a specification of #(t) on Jk satisfying 

n(t)-la(t) <~0, ck <~t<~t k 

n(t)-kt(t)>~O, tk <<.t<~d k. 

In view of the behaviour of F'(t) on (ck, d,), these inequalities imply that the integral 

(14) is i>0, that is, (12) holds. 

This procedure may be used to specify ~t(t) on all the intervals Jk, k ~> 1, after which 

fclog]P(x)] ~ V~,(x) 
x~ dx>~jo x ~ dx 

will follow from (10), by adding the inequalities (11) and (12). 

We observe finally that  ~ = ( 0 ,  co) 0 O, and that V#(x) is obviously <0  for 0 < x < c  o. 

Hence 

f v.(~) foV~{x2X) dx>~ ja  x~ dx, 

which, with the previous inequality, yields 

fo  l~ IP(x)l dx ( V , ( x )  x~ >1.) ~ x~ dx, 

proving the theorem. 

Remark. Thanks to the results of this section we have reduced the problem of finding 

a positive lower bound for 
log + IP(m)l 

1 m 2 ' 

under the assumption that SUl% n(t)/t>p/(1-3p), to the purely analytical one of finding 

a positive lower bound for 

where ~t(t) has the very special form shown in Figure 5. 

4. Auxiliary formulas 

We proceed to develop certain relations. Throughout this section, v(t) and w(t) will 

denote continuous piecewise linear increasing functions on [0, r vanishing on a neighbor- 

hood of the origin, and constant for all sufficiently large t. 
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LEMMA. 

f:fo ~ I :I log I-~ d~,(O 

Proo/. By the second lemma of w 3, 

for x > O. Also, if t > O, 

= f :  [" I x + t l  
.T " 

f0 ~ I x + t l d x  ['~ I x + l l d x  ~ 
~o~ I~I ~ = Jo 1o~ I~I ~ = ~" 

This last, coupled with the obvious relation S~ ~ d(v(t)/t) = 0 and the preceding formula, yields 

the desired result. 

x2 - f :  f :  log x + t  

By the preceding lemma, the expression on the left is equal to 

Ix-tl \ t l x 

so since d(L~)) d.(.) . ( . )  x x~ dx, 

we will be done if we show 

f i f o  ~ .+,  . t . ( o ~ . ,  log ~ ~T] 7d*=0" (15) 

Let us write ~(t) = 1,(t)/t, then the expression of the left in (15) becomes 

1~_5_ q ~ dxdq(t). (16) 

The function Q(t) is identically zero for all sufficiently small t>0 ,  and is O(1/t) at co. 

Moreover, since ~(x) is bounded, 

f l  ]x+$ ~(x) Co~ Ix+tldx l~ ~ d~'<c~ J0 logl~_A~ 

LEMMA. 

fofologll-~la,(,,d~-d'(~) 
Proo]. 
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which is constant for t>0 .  If, therefore, in (16), we integrate by parts with respect to t, 

the integrated term vanishes, yielding for (16) the value 

_ f : d { f o l o g  ~x+t e(ff__))dx}e,t)dt. (17) 

Making the substitution x =t~ and differentiating under the integral sign (which is 

easily justified by Lebesgue's dominated convergence theorem for functions e(x)=v(x)/x, 

when v(x) has the properties imposed on it at the beginning of this section), we find, for 

t>O, 

fo ~ x + t  e(x) d f o ~  $ + 1  e (~  ) d log - -  dx = log 
d-t ~ x ~ - ~  - - d ~ =  

= ff log $ + 1  1 f~176 x + t  ~--I e'(t$)d~=t,Jo log ~ de(x ) . 

Substituting this result in (17), we find that the expression (16) is equal to its negative, 

and hence must vanish. This proves (15). 

Notation. Let e(t) and a(t) be any real absolutely continuous functions on [0, ~ ) ,  

having there pieeewise continuous and bounded derivatives which are of the form const./t 2 

for all sufficiently large t, and vanishing on a neighborhood of the origin. (This will always 

be the case if e(t) and a(t) are of the form v(t)/t, where v(t) has the properties stated at the 

beginning of this section.) Then we write 

fo= f0 :l~ + t de( ) X - - t  

The bilinear form E( , ) turns out to be positive definite. This result belongs to the 

elements of potential theory (E(de(t), de(t)) is simply the energy of the Green potential 

generated in the right half plane by the mass distribution de(t)) , and is a direct consequence 

of the following 

LEMMA. Let,/or ~ z > 0 ,  

fo ~ z+ t  u(z) = log ~ - t  de(t)" 

Then E(dQ(t), de(t)) = {(u~(z)) ~ + (uu(z)) ~} dxdy. 

1 7 -  662901. Acta mathematlca. 116. Imprim6 le 29 septembre 1966. 

(18) 

(19) 
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Proo/. 
~"~0+ 

1 

f :%(x+ ) u(x) E(d~(t), dQ(t)) = - dx. 

From (18) we have, for y > 0, 

u~,(z) = ( - -  log d~(t) = + y2 y2 d~(t), 
Jo @ ~ (:~ + i) ~ " ( ~ -  t) s + 

Let us denote lira uy(x+i~) by u~(x+ ), and let us show first of all tha t  

(20) 

so uy(x + ) =  - ~ ' ( x )  for x >0  by Poisson's formula. Substituting this into the right side of 

(20), and using (18) to express u(x) therein, we get the integral which was used to define 

F,(de(t), de(O). 
To complete the proof of the lemma, we must show that  the right side of (20) equals 

the right side of (19). From (18), we see that  u(z) is harmonic in the quadrant ~ z > 0 ,  

~z >0,  and that  u(iy) =0 for y >0. Therefore, if R >0, 

-- u(x)%(x+ )ax-r | ut~e ) ~ Rd~= {(u~(z))~ +(%(z))S}dxdy 
J 0 ~.t$ xi-b~l<R2 

x>O,y>0 

(21) 

by  Green's theorem (the possible discontinuities of u's partial derivatives at the boundary 

of the sector cause no trouble here). 

I claim that  the second integral on the left in (21) tends to 0 as R-+oo. In  view of 

the restrictions on ~(t), we can write u(z)=Ux(Z ) +us(z), with 

fM Iz+t l  

fM z+t  dt us(z) =C log ~ ~ ,  (23) 

M > 0  and C being certain constants. If [z[ >M,  we can, to evaluate (22), first expand 

log ((z +t)J(z-t)) in powers of t/z, then use the real part  of the resulting expression; in this 

way we find that  

,ul(Re'~),<~O(1) OUl(Re'" < ~ 0 ( ~ )  
' ~ R  

uniformly for 0<~<~r t ,  as R - + ~ .  Making the change of variable t=RT in (23) we see 

easily that  ]us(Ref~)[ <~O((logR)/R) uniformly for 0 < ~ < ~ n  as R - ~ .  Finally, we 

differentiate the right side of (23) under the integral sign with respect to R and calculate 

the resulting expression explicitly. This yields: 
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~R ~< 0 uniformly for 0 < ~ < �89 ~ as R-~ oo. 

Putting together these estimates, we get: 

lu (Ret~) (Ou (Re~) ~ < 0 , ~ ]  un i fo rmly fo r0<90< �89  as R ~ ,  x- , r  / 

and this shows that  the second integral on the left in (21) tends to 0 as R-~c~. Making 

R-~c~ in (21) thus proves the equality of the right-hand members of (20) and (19), and the 

lemma is established. 

LEMMA. E(d~(t), da(t)) < VE(de(t), d~(t)). E(da(t), da(t)). 

This follows from the positivity of the bflinear form E( , ) (a direct consequence of 

the preceding lemma) by Schwarz' inequality. 

LEMMA. E(d~(t), dQ(t))= f :  f :  {Q(~-~y(Y)} 2 x~ +Y ~ dx dy. 

Proo]. Let us write x=e ~, t =e T, t2(e ~) =R(~), K(~)=log [coth �89 Then 

E(d~o(t), do~ (t))= f o  folog x+ t 

Under the conditions of the present lemma, a formula of Beurling (see w 4 of [10]-- 

I am grateful to g. P. Kahane for having called my attention to this paper of Beurling) 

applies and says that  

f ;~ f ;  K(~-~l)dR(~)dR(z)= foK"(z) f ~  [R(~+~)-R(~)]2d~dv' (25) 

For the reader's convenience, we go through a quick verification of (25). Start with 

the Fourier transforms 

d~, 

r(A) = f~_~ e m dR(D. 

If  we use the Fourier inversion formula to express K(~:-v) in terms of ~(A), multiply both 

sides of the resulting expression by dR(~)dR(z), and integrate we find, after changing the 
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order of integration (which is not hard to justify here), that  the left side of (25) is equal to 

(2~) -1 ~oo I~(Tt)]r(2)pd]t. In terms of r(2), the Fourier inversion formula yields 

1 f~oo e-i~ 1 - e - ~  R(~ + ~) - R(~) -- ~ i2 r(~) d2, 

whence, by Plancherel's theorem 

If  we integrate ~ K"(~)(1 - c o s  2~)~t-2d~ by parts twice, the integrated term vanishes 

each time, and we end with the expression ~r K(T) cos ~t~dv = �89 since our function K(T) 

is even. Multiplying both sides of (26) by K~(~) and using this fact we find, after integrating 

with respect to ~, that  the right side of (25) also has the value (2xe) -1 ~-~o/~(2) I r(2) ]2 d2, and 

(25) is verified. 

We return to the proof of the lemma. In terms of the variable t, 

K"(T) - eosh T _ 2 t ( f  + l)  
sinh 2 v (t ~ - 1) 2 ' 

so, substituting in (25), going back to the variables x and t, and using (24), we get, after 

changing the order of integration, 

l 2 t2§ 
./o .J~ t t - 1  j ( t + l )  2 x "  

On writing tx = y, this last expression becomes 

2 x2+y2  . rr ~ [q (Y ) -~ (x ) ]2  x2+Y 2 
- a y a x =  ! ! ~ - - -  ~ dydx, 

(x+y)2 Jo ,10 t y - x  j (x+y)2 

and the lemma is proved. 

5. Estimation of  E ( d ( l ~ ( t ) / t ) ,  d ( # ( t ) / t ) )  from below 

We again suppose that  supt n(t)/t >p/(1 - 3p), and maintain this assumption throughout 

the present section. Choosing 7, 0 < 7  <2,  we can then construct the intervals Jk =[ck, dk], 

k=0 ,  1 .. . .  whose properties are given by Theorem 6, w 2. 

At the end of w 3, it was remarked that  the present study leads to the problem of 

estimating 
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0.oo)~i~ log 1 d#(t) 

from below,/t(t) being the function described in the statement of Theorem 7, w 3, and 

sketched in Figure 5. As a first step towards the solution of this problem, we shall estimate 

a similar integral, in which J = U k~>0Jk is replaced by the set on which kt(t) is strictly in- 

creasing. 

The reader should now recall the meaning of the numbers Yk, Ok, k/>0, defined in the 

statement of Theorem 7, w 3. During the remainder of this paper, we use the following 

Notation. F = U [Ok, dk] U U [c~, yk], 
k/>O k ~ l  

v(t) = ((1 -3p)/p)#(t) ,  where #(t) is the function defined in the statement of Theorem 7, w 3. 

F is simply the set on which g(t) is strictly increasing (look at Figure 5). v(t) is continu- 

ous and piecewise linear, and is such that  v'(t)_= 1 on the interior of F, whilst v'(t)=0 else- 

where. 

L E M M A .  

log 1 -  dF(t ) x2 
d (O,~o)~F I. dO 

1 5 3 p E ( d ( ~ ) ) ' d ( ~ ) ) "  (27) 

Proo/. In  (27), the integral on the left is equal to 

P log 1 -~/~ dr(t) 
1 - 3 p  x 2 ' 

in view of the remarks just preceding the statement of this lemma. If we now apply the 

second lemma of w 4 and recall the definition following it, we see that  the expression just 

written has the same value as the right side of (27). 

Concerning the right side of (27) we now have 

THEOREM 8. I] the parameter ~ >0 used in the construction o] the intervals Jk is chosen 

su]]iciently small, 

3 1 

where K is a purely numerical constant, independent o] p or the con]iguration o] the Jk, and 

Yk, ~k are de/ined in the statement o] Theorem 7, w 3. 

Remark. We record, for future reference, the numerical value 3/2 - l o g  2 = 0.80685 .... 
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Proo/  o/ Theorem 8. B y  the fifth l emma  of w 4 we have:  

Given 

observe tha t ,  since (Tk - c~ + dk -- e}k)/(dk -- C~) = �89 -- 3p) < �89 we have  

ck <7~ <7;, <6;` < ~  <dk. 
Therefore,  for each k, 

:r '~ x y x 2 

x y 

an in terval  Jk=[%,  d~], we define 7;`=Ck+2(Tk--C~), ($;`=dk-2(d~-(ik),  and  

(29) 

We carry  out  the es t imat ion  of the second integral  on the r ight  in (29) - - the  first  one is 

handled similarly. 

Fi rs t  of all, 

Of the three double integrals on the r ight  in (30), the first  one is the easiest  to evaluate .  

Since C(t) ~_ 1 on (($k, dk), 

~(x) = 1 + ~(~k) - (~ ' ~k<x<~d~.  
X X 

Using this, a simple direct calculation shows t h a t  the  first  double integral  on the r ight  in 

(30) has the value 

dk / - -  " 

F r o m  the definitions of ~,(t) and  F we have  clearly ~(t)= 110, t] fl F I . B u t  F c J ,  and  

the  Jk  were so constructed t h a t  ] [0, t] rl J I ~ 2~/r (Theorem 6, w 2). 

Therefore,  for all t >0 ,  

~(t_) ~< 2 ~ (31) 
$ 

which, with the  preceding result,  yields 
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fi•.• \ x - y  / > / ( 1 - 2 ~ )  ~ - -  . (32) 

We turn now to the second double integral figuring in the right hand member of (30). 

Let us, to simplify the notation, make the change of variables x=~k+s, y=~k-t, and 

denote d~--~k=(~k--(~ by A. Since v(y)=v(ctk) for ~ ~<y ~<~k (look at Figure 5, keeping in 

mind that  (~ >Tk), the integral in question can be written as 

jo [ 

in terms of s, t and A. This last expression simplifies to 

(~k + s) (t + s) (~k - -0  ~k  + s)J ds dt 

d2 k 4 tds -2  0~ (~[d~.lo Jo s+--~tdsdt>~ ( l - l eg2)  O'k~k' 

using again (31). Now A=dk--~k=v(dk)--v(~k)<~v(dk)<~2yd~ by (31), so since O~=d~-A, 

4~A~< 47  A S 

Substituting this into the previous expression, and replacing A by dk--Ok, we get 

For the third integral on the right in (30) we have the same estimate, and using (33) and 

(32) therein, we get finally 

as long as ~/> 0 is sufficiently small. 

In the right-hand side of (29), we estimate the second double integral by  (34), and 

apply a similar inequality to the first double integral. The result, when substituted into 

(28), yields the relation asserted by  the theorem. We are done. 
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6. Estimations on a certain auxiliary harmonic function 

Given 1 and A >0,  we denote by R(l, Al) the rectangle with vertices at  the points 

O, l, l + iA1, and iAl. 

Notation. With a number ~ ~> 1, take any function V(z) harmonic inside R(l, A1) and 

having the following boundary data: 

~, 0 < X < l +  Q 
V~(x) = (35) 

l 
--I, ~ - ~ < x < l  

V~ _= 0 along the top of R(l, A1), (36) 

Then we write 

V x - 0 along the vertical sides of R(1, Al). 

Xz (o,A)= f f .  (Vx(z))~dxdy 
(I, A l )  

(37) 

Y~ (~,A)= f fR (V~(z))~dxdy 
(l, A l )  

Y[(@, A) = J J R+a. Az)(V~(z))2 dxdy| 

where R+(1, A1) = {z E R(1, A1) l Vy(z) > 0}. (Since any two harmonic functions V(z) satisfying 

(35), (36) and (37) must differ by a constant, the quantities Xz(@, A), etc. depend only on 

l, ~, and A.) 

L~MMA. Given e>O, there exists an A >0  such that,/or all 0>~1 sufficiently close to 1 

and all/>0, 

z~Xz(~, A)~<(2+e)/2, zeYz( O, A)<.(]t+s)l 2, zeY[(Q, A)<�89 +s)l 2, 

4 ~ sin s �89 ~n 
where ~ = ~ ~ ~ . (38) 

Remark. For future reference, we record the numerical estimate 

I I 

Pro@ We first evaluate X~(1, A), Y~(1, A) and Y~+(1, A). I am indebted to C. Schubert 

for having suggested to me the method followed in the calculation of these quantities. 
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Since our function V(z) is harmonic in R(rt, Art), and is determined only to within an 

additive constant, we may take it as being given by an expansion of the form: 

V(z) - (An e-"u + Bn e nu) cos nx .  (39) 
1 

If  V(z) is given by (39), the boundary condition (37) is automatically satisfied. From (39) 

we also find 

Vu(z) = - ~ n (An  e - ' u  - B,, e '~y) cos nx,  (40) 
1 

which, with the condition (36) yields (here l =rt): 

An e -n=A - Bn e n:~'4 = O. 

Relations (40) and (35) yield 

- n ( A n - B n )  2 fo~v~( = - x) cos n x  dx  

(41) 

4 sin �89 rtn 
, ( 4 2 )  

r t n  

since in the present case O = 1 and 1 =rt. Solving (41) and (42) for the A n and B.,  and sub- 

stituting back into (39), we get 

sin�89 
V(z) = - n2 eosh n ( ~ A  - y )  cos nx.  

1 sinh rtnA 

From this we have easily, by direct calculation (using Parseval's relation to effect 

the inner integration in each of the following double integrals), 

r~ ~ n a Lsinh z tnA 

fifo Y•(1, A ) =  { V u ( x + i y ) ) Z d x d y  = 4  ~ sin~_ ~rtn [cosh zenA 
rt ~ n a [sinh rtnA 

r tnA ] 
+sin~-~n.4J' (43) 

rtnA 1 
s in~  ~,~.4 J " (44) 

In the present case (Q=I), it is evident by symmetry from (35), (36) and (37) that  

Y.+(1, A)=~Y.(1,  A). 

Formulas (43), (44), and the last one show that  given e>0,  we can choose A > 0  

sufficiently large so that  
x . (1 ,  A) < rt(~ + �89 (45) 

Y.(1, A) < rt(~t + �89 (46) 

:r~+(1, A) < �89 +�89 (47) 

the number 2 being given by (38). 
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Once we fix an A such that  (45), (46) and (47) are satisfied, it is clear tha t  the quantities 

X.(~, A), Y.(~, A) and Y+(~, A) will be continuous functions of ~, at  least for ~ near 1, so 

that  
x,,(e, A) < z~(~ +e) 

Y.(~, A) < g(;t+e) 

Y~+(e, A) < �89 +~) 

for all ~ >/1 and sufficiently close to 1. 

The lemma follows from these last inequalities, since XI(~,A)=(1/zO2X.(~,A),  

Yz(~,A)=(1/ze)2:Y.(Q, A), and Y~(~, A)=(I/ze)2Y+=(~, A), as may be seen by an obvious 

homothety argument. 

7. A n  approx imat ion  to  log 1 - d~ (t) 
(0. ~)~~ -~ 

We again make the assumption that  supt n(t)/t>19/(1-319) so that,  for an arbitrary 

7, 0 <7  < ~, we can construct the intervals Jk = [ck, dk], k ~> 0 (Theorem 6, w 2), and Theorem 

7 of w 3 holds. As in w 5, we consider the set 

~v = U [Ok, dk] U [9 [e~, ~ ]  
k~O k ~ l  

(the reader will recall the meaning of the numbers 7k, 0k if he glances at  Figure 5 of w 3), 

and the function ~(t) (the graph of ~(t) looks just like that  of/~(t) shown in Figure 5, save 

that  its slanting portions have slope 1 instead of p/(1 - 319)). As usual, we write J - -  U k~>0Jk- 

Notation. In  each interval Jk = [ck, dk] we take gk e [Tk, (~k) as the point such that  

2 2 
g~-c~ l _ 3 p  (Tk--Ck), d~-g~=l_3---- ~ ( d k - ( S k ) .  

(This is possible, since (71, - c~ § dk -- ~k)/(dk -- c~) = �89 

We remind the reader at  this point that  go = co smce 7o = co. For b >7 1, we have, on the 

other hand, Ck<~k<gk<Sk<dk. 

T H ~ 0 R E M 9. There is a 19urely numerical constant C, independent o/19 or the con/igura- 

tion o/ the J~ such that, whenever the parameter ~ used in the construction o/ the latter is su/]ici. 

ently small, 

log 1 - t "  d v ( t ) - - ~  Z u ( x ) d x - C U - ~ E ,  (48) 
0.~)-~ ~ ~0 ~ , + ~  
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1 dk 
(49) 

where u(x)=f:loglX+tl x- t ld~-~)  ' (50) 

and 

tlemark, Of course, 

by the lemma of w 5. 

Proo/. We show only (48), (49) being proved in exactly the same way. 

According to (50) and the first lemma of w 4, the left-hand member of (48) equals 

f( u(x) dx - - ~  

If we subtract the sum on the right in (48) from the left side of (48), we therefore obtain a 

result equal to 

f :  u(x) ~(x) dx, (51) 

where ~0(x)---- 0 for x ~ J ,  and if x E J~ = [ck, dk], 

i 1 ck<x<g~ ~(x) --- c~ 

1 

Inequality (48) will be proved if we show that the expression (51) is/> -C~1�89 provided 

~/is sufficiently small. Using (50) again, the integral (51) is seen to equal E(~(t)dt, d(~(t)]t)), 
whence, by the fourth lemma of w 4, 

fo~(X) ~(~) >i - z(~(t) ~(t) (52) dx VE.  dr, dti. 

We proceed to estimate E(ef(t)dt, qD(t)dt). We have, ff ck<.x<g k, I~(x)] ~< (gk--Ck)/xC k, 
and if g~<~x<~dk, Iq~(x)l < (dk--gk)/x 2. Since I J  N [0, t]l ~< 2r/t (Theorem 6, w 2), we see 

easily, as in the proof of Theorem 8, w 5, that  
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and moreover, for each k, 

whilst q (x) - -0  for x ~ J .  

From (53), 

27 
I (x) l < (1-2~)x' 

9 ~  - -  ck 

I~(~)1,< (1 --2~/)~ 7 ~'' 
d~ -- gk 

[ ~ - 2 ~/)~ d~' 

%<x<g~ 

gk <~x<~dk, 

(5a) 

(54) 

x + t ~ x + t ~ t  2 ~log x_t]~(t)dt<-<12_~2~fl log dt 7 x > 0 .  (55) 

Also from (54), 

~ k  - -  Ck 2 

( 1 - 3 p ) ~ ( 1 - 2 ~ )  ~ ~ - -  + \  dk ] J  

We now apply Theorem 8, w 5, according to which this last sum is ~ say 

if ~ > 0  is small enough. Since we are supposing throughout this paper  that  p < 1/20, this 

yields 

fo ~lq)(x)ldx < 16 E (56) 

for all sufficiently small ~/. 

From (55) and (56) we find 

E(qJ(t) dt, q~(t) dt) = f : { f : log l X -i- t l q~(t) dr} q~(x) dx <~ 25 z:2E~ 

if ~ > 0 is sufficiently small. This result, substituted into (52) yields 

f :u(x)  dx >1 - 5zt ~ E ,  q~(x) 

whenever ~ > 0  is sufficiently small, and as we have seen, this is enough to prove (48). 

Since (49) can be proved in the same way, we are done. 
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8. Final  estimation of  log 1 - ~  dr(t) ~ f rom below 

We continue with the notations used in the preceding section. In order to carry out 

the estimation mentioned in the heading to this section, it is, in view of Theorem 9, w 7 

and Theorem 8, w 5, of interest to us to compare the terms of the sum in (48) with those of 

the one in (49). This will be done with the help of the results found in w 6. 

Notation. During the remainder of this paper, we denote by  Q the quanti ty 

(1 + 3p)/(1 - 3/0). We note that  Q > 1, and is very near one if p is sufficiently small. 

We also assume that  the function u, used in the preceding section, is defined for 

complex values of its argument according to the formula 

u(z) = fo log z + t 

The function u(z) is, of course, harmonic in the upper half plane, and continuous up to the 

real axis, since v(t) is piecewise linear, continuous, and vanishes for all values of t sufficiently 

close to the origin. 

We proceed to estimate the difference 

u (x) dx - e dx (57) 
k 

from below. We may obviously suppose k > 0  here, since co=7o=go . So, letting gk--ck=l, 

we denote by R(l, A1) a rectangle of height A1 having for base the segment [ck, gk] of the 

real axis. (This differs only by a translation along the real axis from the rectangle denoted 

by the same symbol in w 6.) 

According to the lemma of w 6 and the remark thereto, we can choose A sufficiently 

large so that  the quantities X~(~, A), etc., defined there satisfy 

gXt (~, A) <. 0.42712 

Yt (~, A) ~< 0.427 l 2 

~Y~(Q, A) ~< 0.214 / 2 

(58) 

for all ~ > 1 sufficiently close to 1, and all I. We then take such an A, and fix it - this value 

of A will be adhered to throughout the remainder of this section. 

Let g(z) be a function harmonic inside R(1, Al) and having the following boundary data: 



268 P. KOOSIS 

V~(x) =~ for c, <<.x<yk 

V~(x) = - 1  for 7k<X<gk 

Vv -- 0 along the top of R(l, A1) 

Vx - 0 along the vertical sides of R(l, A1). 

We note that  ~,k-%=(1 +~)-t(gk--Ck)=l/(1 +~) according to the definition of the number 

g~ (w since (g~--%)/(Tk--Ck)=2/(1--3p) and ~=(l+3p)/(1--3p). Our present function 

V(z) thus differs from the one denoted by the same letter in w 7 only in that  its domain of 

definition has been translated along the x-axis. 

Expression (57) is, in terms of V, obviously equal to 

(59) 

where nz denotes the outward normal to ~R(l, A1) at  the point z. If  we apply Green's 

theorem to the right member of (59) we find for it the value 

f f R(z. Az) (ux(z) V~(z) + u~(z) V~(z) ) dx dy, (60) 

since Vxx + Vvy-0 inside R(l, Al). (The discontinuities of the partial derivatives of u and V 

at the boundary of R(1, A1) give no trouble here.) Our problem has thus reduced to the one 

of finding a lower bound for (60). 

We must now resist the temptation to apply Sehwarz' inequality directly to (60), as 

the estimate thus obtained would be too crude for our purposes. 

We begin by breaking up the integral ~R(Z.AZ) Uu(Z) Vy(z) dx dy into two, the first taken 

over 
R+(z, A0 ={~Rq, A01L(z) >0} 

and the second over 
R-q, AO = Rq, AO ~ R+q, AO. 

From the formula for u(z) we have, for y >0: 

(x+t)~ +y ~ (x_t)~ +y ~ d . (61) 

This shows that  uv(z) is bounded in the upper half plane sinee ld(v(O/O/dtl<const., 
as is clear from the definition of v(0. From (61) we also have uu(iy ) =0, y >-0, and, as in the 

proof of the third lemma, w 4, 
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lim %(x + iT)= - z ~ 
~--~0 + 

But since v(x) is increasing. 

so that 

X>0. 

_d(v~))<v(x)<2__~dx x 2 x (see(31),w 

lim u~(x+i~)<~ 2~e~, x>0 .  
~--->0 + X 
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This, coupled with the facts that uy(iy)-0, y >~0, and that uy(z) is harmonic and bounded 

in the first quadrant, yields, by the principle of maximum, 

u~(Z)<x-V-~y 2 for x>0 ,  y > 0 .  (62) 

From (62) we have clearly 

u~(z)~ <2~-~- for z in R(1, A1), 
% 

whence, since Vy (z) ~< 0 in R-(l, Al), 

2-( l ,  Al) Ck J ,} R-q ,  ,4l) 

rr ]' >i 2 ~  Al ~ (V,(z))*dxdy 

by Schwarz' inequality. Here, R(l, A1) and V(z) differ only by a translation along the x-axis 

from the objects denoted by the same symbols in w 6, so this last relation can be rewritten as 

f i r  (e, A). (63) 
l VE 

Direct application of Schwarz' inequality now yields 

Az)uy(z) V (z)dxdy - V f f (64) 

f f R(,.,,)u,(z) V, (z) dx dy > - f f (ui(z))" dx dy X,(e, A ), (65) 

in terms of the quantities Y~(Q, A), X,(~, A) defined in w 6. Adding, (63), (64) and (65) 

now gives us 
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f f R  [u~(z)V~(z)+u~(z)Vy(z)]dxdy 
(l, A1)' 

(l. Al) J d R(l. Al)  

1 V-~(o,A ) 

which, in turn, is 1> 

- [Xz(e,A)+Y~-(e,A)] [u~+ug]dxdy-2~gA~c--  k 
(h A l) 

(66) 

by Cauchy's inequality. Substituting into (66) the numerical estimates (58), valid for all 

> 1 sufficiently close to 1, we see that  

f f R(l. AZ) [Ux(Z) V~ (z) + u~(z) V~ (z)] dx dy 

~> - 0.641 12. 1 [(u~(z)) 2 + (%(z)) ~] dxdy - 
:7~ (l. AI) " Ck 

(67) 

provided that  p > 0  is sufficiently small, A' being some fixed constant. 

We now change the name for 1~(1, A1) to Rk; R~ is thus a rectangle having the segment 

[c~, g,] as its base, and having height A(gk--ck), where A is the fixed number chosen after 

relations (58). We recall that  l=gk--%=(l+~)(yk--ck), and that  Ck>~(1--2~)yk, since 

I J N [0, t]l ~< 2~t. Taking account of these relations, and remembering that  expression 

(60) equals the right member of (59), whose left member is the same as (57), we get, by (67): 

c-~ u (x )dx -  % Jc~ 

~>-(1  + ~)[0.65 \(Yk--c---~l"lY~ / 7e f f s ,  [(ux(z))2§ (u~(z))2] dx dyl K ,  \(Yk--Ck'12 / (68) 

provided that  ~ > 0 and p > 0 are sufficiently small, where K is some fixed numerical con- 

stant. 

We are now prepared to prove 

THEOREM 10. There is a positive numerical constant L such that, /or all p > 0  and 

> 0 su//iciently small 

:a gC2 
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Proo/. For each k, denote by  Sk a rectangle whose base is the segment [g~, dk], and 

whose height is equal to A(dk-g~). By following the reasoning used above, we can prove that 

1 e~ 1 § Q fek 
d-~ re, u (x) dx -  d~ .J~, ~ (~) dx 

>--(l+~)[O.05(~)'.~ ffs(u:+u:)dxdy]'-K,(~ )' (70) 
for p >0  and ~ >0  sufficiently small, this relation being entirely analogous to (68). 

We now combine (68) and (70) with the inequalities (48), (49) of Theorem 9, w 7 and 

find, taking into account the remark thereto, that  

k t ]] k>~oL\--~k / \ d~ ]J  

--(l+~o)k~>~o[O.65/du--~k'l' 1 f f  dxdy] �89 (71) 

whenever p > 0 and ~ > 0 are sufficiently small. According to Cauchy's inequality, the last 

two terms on the right in (71) are together bounded below by 

If  ~/>0 is sufficiently small, the expression inside the first factor in brackets of (72) 

has, according to Theorem 8, w 5 and the remark thereto, the majorant: 

0.65 _ 

Also, since the rectangles R k and Sk are obviously all disjoint, and lie in the first quadrant, 

  o/II I f t   fo~ ~ + (u~+u~)dxdy<~ (u2+u2) dxdy, 
~.d d R k J d Sks 

which is, however, equal to E(d(~,(t)/t), d(v(t)/t)) by the third 1emma of w 4. 

Putting these estimates into (72) and then going back to (71) (of which the third term 

on the right can also be estimated by  Theorem 8, w 5), we see that  
18 - 662901. Ac~a mathemat i ca .  116. Imprlm~ le 21 septembre 1966. 
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d x  ;o..>_, fo ,o, 

for all p >0  and ~/>0 sufficiently small. Since K and C are numerical constants and ~ ~1 

as p-+0, this proves the theorem. 

l~ l 
9. Return to m2 

1 

According to Theorem 10 of the preceding section, inequality (69) holds whenever 

p > 0  and ~ > 0  are sufficiently small. We can therefore take a positive value of ~(<~) 

such that  (69) holds for all sufficiently small p >0. We choose such a value of ~ an d / i x  it; 

is henceforth to be considered as a positive numerical constant. 

Returning to the notation of the first sections of this second part  of the paper, we let 

P(x) be any polynomial of the form 1-~(1 -x2/x~) with the xk real and positive, and denote 

by  n(t) the number of points xk in [0, t]. We then have: 

THeOReM 11. There is a positive numerical constant D, independent o/the choice o/ 

P(x), such that,/or any p > 0 su//iciently small, 

n(t) p 
sup > - -  1 - 3 p  

implies ~ log+lP(m) I > Dp. 
1 m2 

Proo/. Suppose supt n(t)/t > p ] ( 1 - 3 p )  with 0 < p  < 1120. Then, according to Theorem 6, 

w 2, we can construct the intervals Jk, k >~ 0, using our fixed B > 0. 

By Theorem 7 of w 3 we have then 

~log+[P(m)[>I (V~,(x) 
1 m 2 Ja x2 dx, (73) 

where/~(t) is the function shown in Figure 5, 

V+,(x) = f ; l o g  ] I - ~ 1  d#(t>, 

and ~ = ( 0 ,  ~ ) ~  [J d , = ( 0 ,  o o )N J .  
k>~0 
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The function ~(t) was defined as ((1-3tl)lp)g(t) at  the beginning of 5 5. The right-hand 

side of (73) is thus equal to p/(5 - 15p) times the left hand member of (69), and Theorem 10, 

5 8 yields 

for all sufficiently small 1o > 0, in view of our choice of the constant l 7. 

To estimate the right side of (74), we apply Theorem 8 of 5 5, according to which 

' 2 \  do / "  

Now from Theorem 7, 53, do-8o=[ (1 -3p ) (do -co ) ,  and from Theorem 6, 52, 

do-co>~lido. Therefore, by (75), 

and this, substituted into (74), proves the theorem, since L and l 7 are constants > 0: 

T~EOREM 12. Let Q(z) be any polynomial o/the [orm 1-~(1 -zglz~) with the zk not neces- 

sarily real. There is a numerical constant C, independent o[ the choice o[ Q(z), such that 

co 
log I Q(~)I < c ~ leg+ IQ(m) l 

I~1 ,~ (76) 

[or all complex z, provided that the sum on the right is less tha~ some constant o~ >0, independent 

o[ the choice o[ Q. 

Proo[. Let P(x )=I~(1  -x~ilz~[2), and denote by n(t) the number of points I~1 ~ the 
interval [0, t]. 

We have, on the one hand, 

c o  ~ l~ [P(m)[ ~ .  l~ 
~ , ~ '  , 

and, on the other, 

fl ~ I:1 n(t) ~(t) 
=21:1 t"+l , l : -7-  dt<~l:l  sup< - - t  

These two inequalities, together with Theorem 11, yield the desired result, 
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Remark 1. The set of integers Z thus behaves somewhat as if it had positive logarithmic 

capacity, even though it is of capacity zero. 

Remark 2. Theorem 12 is not dependent on the special arithmetic character of Z. An 

analoguous result is valid if the set {1, 2, 3 . . . .  } over which the sum in (76) is taken is 

replaced by any positive increasing sequence {2m} having the property that  2m+1-2~ ~<h 

for some constant h. Indeed, the work of w 1 is readily adapted to this more general situation, 

and the reasoning of w167 2-8 then goes through practically without change. 

10. Weighted polynomial approximation on Z 

Let W(m) ~> 1 be defined on Z, and have the property that  

]ml k_+0 as m - + •  for every k > 0 .  
W(m) 

In terms of the spaces Cw(Z) and Cw(Z, 0) defined in the introduction to this paper we 

now have: 

log W(m) 
THEOREM 13. I /  ~ converges, then Cw(Z, O) ~ C~,(Z). _r162 1 +m 2 

Proo/. I claim that  if F(m)=0 for m 4 0  and F(0)=1 ,  there do not exist polynomials 

P which make IIF-PIIw arbitrarily small. 

For suppose, on the contrary, that  there is a sequence {P~} of polynomials such that  

HF-P~Hw~O, r--*~. Then clearly P d 0 ) T 1 ,  so, since F is even, if we put  

Qr(x) __Pr(x) + P r ( - x )  
2P,(0)  

we will have I[F-Qrllw -~0, r - ~ o ,  

tha t  is, sup ]lV(m)-Qdm)l-+0,  r ~  cr 
m Wdm) 

(77) 

where Wl(m)=sup (W(m), W(-m)) .  

In  view of the hypothesis, 

~ log Wl(m) 

so, given any s > 0 we can find a number N 8 such that 
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~logWl(m)  e 
mS < ~. (78) 

Since (77) implies that  supm>0[Q~(m) [ / Wl(m) < 1 for all sufficiently large r, we have 

by (78), 

~ l~ IQ--~(m)l < ~ (79) 
m S 

for all sufficiently large r. On the other hand, Q~(m) -~ 0, r-~oo for each m 4=0, by the defini- 

tion of F.  Therefore 
hrs-1 + 

5" log IQ,(m)l 
x~ m S  ~ 0 , r - ~  c ~  , 

which, when combined with (79), yields 

log+lQ,(m)l 
1 m2 + 0,  

r-~ ~ ,  (80) 

since e > 0 is arbitrary. 

Now Q,(z), being even and one at the origin is, for each r, of the form 

So (80) enables us to apply Theorem 12, w 9, according to which 

sup log I Q,(z)l 

From this we see that  the functions Qr(z) form a normal family in the complex plane, and a 

subsequence of them tends to an entire function Q(z) of zero exponential type. Clearly, 

if mEZ, Q(m)=F(m) is 1 for m = 0  and 0 for m:i:0. But  this is impossible, by Jensen's 

theoreml since Q(z) is of zero exponential type. 

We have reached a contradiction, and the theorem is proved. 

Remark. Art analogous result holds for weighted polynomial approximation on any set 

of the form {~tm]mEZ}, where ~t0=0 , A-m=--2m, and the sequence {~tm} is increasing, 

provided there exists an h such that  

2m+1 -Am ~< h for all m. 

(See Remark 2 of the preceding section.) 

As an application of Theorem 13, we give 
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THEOREM 14. Let M(m)>~l, mEZ. I /  

~ l o g  M(m) 
_~ 1 + m  2 < ~ '  (81) 

there is a periodic infinitely di//erentiable /unction /(~) o/the/orm 

1(#) = ~ ~m e im~ 
- - o 0  

such that ~0 > 0, /gin/ < 1/M(m), whilst/(~)( • ~) -~ O, k = O, 1, 2 . . . . .  

Proo/. In order to have a function W(m)~> 1 such that  I m Ik/W(m)~0, m-->+_ ~ ,  for 

all k>0 ,  we put  W(m) =sup {M(m), ef~li}. If (81) holds, we will also have 

~ log W(m) < 
_ ~  i - g - ~  ~ ~ ,  

so that  the preceding theorem may be applied. If .F(m) is as in the proof of that  theorem, 

Fq. Cw(Z, 0), and the Hahn-Banaeh  theorem tells us that  there is a two-way sequence 

(~'m} with ~_~r162 Irm I < oo, such that  

~ ~'(m) Ym> 0, (82) 
W(m) 

~. Q(m) 
while Y~r162 ~ 7m = 0 for all Q E Cw(Z, 0). (83) 

By (82), 7o/W(O)>O, and by  (83) ~_oomkT,,/W(m)=O, k = 0 , 1 , 2  . . . . .  So, since 

W(m) ~>M(m), we can put  o~,~=C(-1)'~m/W(m) with C > 0  sufficiently small, and we will 

have the desired result. 

Remark. Results like that  of Theorem 14, but  in which M(m) is subjected to additional 

restrictive conditions on the regularity of its behaviour, have long been known (see, for 

instance [11], p. 78 and p. 80). In  the establishment of these results, the extra properties 

that  M(m) was assumed to enjoy have always played an essential role. 

We now see that  the condition (81) is by  itself already enough to ensure the existence 

of a function/(v~) having the properties stated in the theorem, and that  no assumptions 

whatever need be made concerning the regularity of M(m). 
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