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1. Introduction and main result

Let f: C-+ A be an entire holomorphic curve from the complex plane C into a semi-
Abelian variety A. It was proved by [No2] that the Zariski closure of f(C) is a translate
of a semi-Abelian subvariety of A (logarithmic Bloch-Ochiai’s theorem). Let D be an
effective algebraic divisor on A which is compactified to D on a natural compactification
A of A (see §3). If f omits D, i.e., f(C)ND=g, then f(C) is contained in a translate
of a closed subgroup of A that has no intersection with D (see [No5], [SY1]). Note
that the same holds for complex semi-tori defined in §3 (see [NW]). In particular, if A is
Abelian and D is ample, then f is constant. This was called Lang’s conjecture. A similar
statement, however, is found in Bloch [Bl, p. 55, Théoréme K] without much proof, and
it is not clear what his Théoreme K really means (cf. [Bl]).

The purpose of the present paper is to establish the quantitative version of the above
result for f whose image may intersect D, i.e., the second main theorem and the defect
relation (cf. §§2 and 3 for the notation):

MAIN THEOREM. Let f:C—M be a holomorphic curve into a complex semi-torus
M such that the image f(C) is Zariski dense in M. Let D be an effective divisor on M.
If M is not compact, we assume that D is a divisor on M satisfying general position
condition 4.11 with respect to OM. Then we have the following.

(i) Suppose that f is of finite order g¢. Then there is a positive integer ko=ko(oys, D)
depending only on o5 and D such that

T¢(r;c1(D)) = Niy(r; f*D)+O(log ).
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(if) Suppose that f is of infinite order. Then there is a positive integer ko=ko(f, D)
depending on f and D such that

Ty (r; c1(D)) = Nio(r; £*D)+O0(log Ty (75 c1(D))) +O(log ) | -

In particular, §(f; D)=6,(f; D)=0 in both cases.

See Examples 4.13, 5.22 and Proposition 5.17 that show the necessity of condi-
tion 4.11. The most essential part of the proof is the proof of an estimate of the proximity

function (see Lemma 5.1):
my(r; D)=0(logr) or O(logT¢(r;c1(D)))+O0(logr)| g- (L.1)

In the course, the notion of logarithmic jet spaces due to [No3] plays a crucial role (cf.
[DL] for an extension to the case of directed jets). We then use the jet projection method
developed by [NO, Chapter 6, §3] (cf. [Nol], [No2] and [No5]).

In §6 we will discuss some applications of the Main Theorem.

In [Kr2] R. Kobayashi claimed (1.1) for Abelian A, but there is a part of the argu-
ments which is heuristic, and hard to follow rigorously. Siu-Yeung [SY2] claimed that
for Abelian A

my(r; D) Ty (13 e1(D)) +O(log ) | o) (1.2)

where ¢ is an arbitrarily given positive number, but unfortunately there was a gap in the
proof (see Remark 5.34). M. McQuillan [M] dealt with an estimate of type (1.2) for some
proper monoidal transformation of DC A with semi-Abelian A by a method different to
those mentioned above and ours (see [M, Theorem 1]).

It might be appropriate at this point to recall the higher dimensional cases in which
the second main theorem has been established. There are actually only a few such
cases that have provided fundamental key steps. The first was by H. Cartan [Ca] for
f:C—=P"(C) and hyperplanes in general position, where P*(C) is the n-dimensional
complex projective space. The Weyls—Ahlfors theory [Ah] dealt with the same case and
the associated curves as well. W. Stoll [St] generalized the Weyls—Ahifors theory to the
case of f: C™—P™(C). Griffiths et al., [CG], [GK], established the second main theorem
for f: W —=V with a complex affine algebraic variety W and a general complex projective
manifold V' such that rank df =dim V, which was developed well by many others. For
f:C—V in general, only an inequality of the second main theorem type such as (5.33)
was proved ([Nol]-[Nod4], [AN]). Eremenko and Sodin [ES] proved a weak second main
theorem for f:C—P"(C) and hypersurfaces in general position, where the counting
functions are not truncated. In this sense, the Main Theorem adds a new case in which
an explicit second main theorem is established.
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2. Order functions

(a) For a general reference of items presented in this section, cf., e.g., [NOJ]. First we
recall some standard notation. Let ¢ and ¢ be functions in a variable 7>0 such that
1 >0. Let E be a measurable subset of real positive numbers with finite measure. Then
the expression

¢(r)=0(¥(r)) (resp. ¢(r)=0(¥(r))lle)

stands for
;@o |:ZE:;| <0 (resp. ’% %ﬁ(:_;l < oo).

In particular, O(1) denotes a bounded term.

We use the superscript * to denote the positive part, e.g., logtr=max{0,logr}. We
write R* for the set of all real positive numbers. We denote by Re z {resp. Im 2} the real
(resp. imaginary) part of a complex number z€C.

(b) Let X be a compact Kéhler manifold and let w be a real (1,1)-form on X. For
an entire holomorphic curve f: C— X we first define the order function of f with respect
to w by

T dt .
7= [ [ 1,
0 At)

where A(t)={z€C:|z|<t} is the disk of radius ¢ with center at the origin of the complex
plane C. Let [w]€ H2(X,R) be a second cohomology class represented by a closed real
(1,1)-form w on X. Then we set

Ty {r; [w]) =Ty (r;w).

Let [w’]=[w] be another representation of the class. Since X is compact Kéhler, there is
a smooth function b on X such that (i/27)80b=w’'—w. There is a positive constant C
with |b|<C. Then by Jensen’s formula (cf. [NO, Lemma (3.39) and Remark (5.2.21)])

we have
Ty (r;w') =Ty (r;w)| < C.
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Therefore, the order function T¢(r; [w]) of f with respect to the cohomology class [w] is
well-defined up to a bounded term. Taking a positive definite form w on X, we define
the order of f by

which is independent of the choice of such w. We say that f is of finite order if oy <oo.

Let D be an effective divisor on X. We denote by Supp D the support of D, but
sometimes write simply D for Supp D if there is no confusion. Assume that f(C)¢Z D.
Let L(D) be the line bundle determined by D and let o€ H°(X, L(D)) be a global
holomorphic section of L(D) whose divisor (o) is D. Take a Hermitian fiber metric | - ||
in L(D) with curvature form w, normalized so that w represents the first Chern class
c1(L(D)) of L(D); e1(L(D)) will be abbreviated to ¢;(D). Set

Tj(r; er(D)) =Ty (r;w),

1 [ 1
my(ri D)= Zr‘/ o8 5t rem

It is known that if D is ample, then f is rational if and only if

lim LalD)

rox  logr

One sometimes writes Tf(r; L(D)) for T¢(r;c1(D)), but it is noted that T¢(r;c1(D)) is
not depending on a specific choice of D in the homology class. We call m¢(r; D) the
prozimity function of f for D. Denoting by ord, f*D the order of the pull-backed divisor
f*D at zeC, we set

n(t; f*D)= Y _ ord, D,

zEA(L)
ng(t; f*D) = Z min{k, ord, f*D},
2EA(L)
1
Nu(rs f*D) = / ”’“—(t;tiﬂ)dt.
1

These are called the counting functions of f*D. Then we have the F.M.T. (First Main
Theorem, cf. [NO, Chapter V]):

Ty (r;c1(D))=N(r; f*D)+my(r; D)+0(1). (2.1)
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The quantities

7= N(rfD)
5(faD)—1—rli{Iolom€[U,1]7
u(£;D)=1- T AL D) g,y

r—oo Ty (r; L(D))
are called the defects of f for D.

(¢) Let F(z) be a meromorphic function, and let (F')o (resp. (F)o) denote the polar
(resp. zero-)divisor of F. Define the proximity function of F(2) by

2
m(r,F)= % /0 log*|F(re*?)| dé.
Nevanlinna’s order function is defined by
T, Fy=m(r, F)+N(r;(F)s)-

Cf., e.g., [NO, Chapter 6] for the basic properties of T(r, F). For instance, let Tp(r;w)
be the order function of holomorphic F: C—P!(C) with respect to the Fubini-Study
metric form w. Then Shimizu—Ahlfors’ theorem says that

Tp(r;w)=T(r, F)=0(1).

If F#£0, T(r,1/F)=m(r,1/F)+N(r;(F)), and then by Nevanlinna’s F.M.T. (cf. [H],
[NO))
T(r,F)=T(r,1/F)+0(1). (2.2)

For several meromorphic functions Fj;, 1<j<!, on C we have

! !
T(r, Fj) <Y T(r,F;)+logl, (2.3)
1

T(r,R(F, ..., F})) < o(Z T(r, Fj)) +0(1),

=1

where R(Fy, ..., F}) is a rational function in F, ..., £} and R(F1(z), ..., Fi(z))#o0.
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LEMMA 2.4 (cf. [NO, Theorem (5.2.29)]). Let X be a compact Kéhler manifold, let
L be a Hermitian line bundle on X, and let 01,00€ H*(X, L) with 0, #0. Let f:C—X
be a holomorphic curve such that f(C)¢ Supp(o1). Then we have

T(r, Z—?f) < Ty(r;ea (L) +0(1).

Proof. Tt follows from the definition that

N(r; (Z—iof)oo) < N(r; f*(01)).

Moreover, we have

o 1 1
m(r,ﬂof) :i/ log* 192 Mg L log* ——— df+0(1).
o1 21 J{z1=r) love fll 21 Jyz=ry  Mloref]|
Thus the required estimate follows from these and (2.1). O

(d) We begin with introducing a notation for a small term.

Definition. We write S¢(r;c1(D)), sometimes S¢(r; L(D)), to express a small term
such that
S¢(r;e1(D)) =O(log ),
if T¢(r;e1(D)) is of finite order, and
S¢(r;e1(D)) = O(log Ty (r; c1(D)))+O(log )|l k-

We use the notation Sy (r;w) in the same sense as above with respect to T¢(r;w). For a
meromorphic function F on C, the notation S(r, F') is used to express a small term with

respect to T'(r, F) as well.

LeEMMA 2.5. (i) Let F be a meromorphic function and let F¥)(z) be the k-th de-
rivative of F for k=1,2,.... Then

(k)
m(r, FT) =S(r, F).

Moreover, if F is entire,
T(r, FY=T(r, F)+S(r,F), k>1.

(ii) Let the notation be as in Lemma 2.4, and set p(z)=(03/01)of(2). Suppose that
p#Z0. Then

o®)
m(r, 7) =S¢(r,a(D)), k=1

Proof. The item (i) is called Nevanlinna’s lemma on logarithmic derivatives {cf. [NO,
Corollary (6.1.19)]). Then (ii) follows from (i) and Lemma 2.4. O

The following is called Borel’s lemma (cf. [H, p. 38, Lemma 2.4]).
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LEMMA 2.6. Let ¢(r) be a continuous, increasing function on R* such that ¢(ro)>0
for some roeR*. Then we have

¢(r+%) <26(r) 5.

For a later use we show
LEMMA 2.7. Let F be an entire function, and let 0<r<R.

R+r
F).
R-r m(R, F)

() 70, F) =m(r, F) <maxlog | F(2) <
(ii) m(r, F)=S8(r,e>™F),

Proof. (i) See [NO, Theorem (5.3.13)] or [H, p. 18, Theorem 1.6].
(i) Using the complex Poisson kernel, we have

Pl = b (t+z ,
()= o /{ oy LI PQdp R (O

Therefore, using (i) and the F.M.T. (2.2) with 0<r<R<R’ we obtain

R+r
< —=— F
gllg)glF(zN R_”Ig}g;llm (O)l+|Re F(0)|

< R+r(
R—r
R+r RR+R 1

< [P /o 2miF ) _2miF
\R—T’ R —R QW(m(Rve )+m(Rae ))'HReF(O)l

Rtr R+R 1, ..o
< el el i )
<F g = (TR, F)+0(1)+0(1)

e I P(¢)-+ max Im(~F(C))) +[Re F(0) o

If T(r,e*™*¥") has finite order, then setting R=2r and R'=3r, we see by (2.8) that

m(r, F) <log |mlix |F(2)] =O(logr).

In the case where T'(r, €*™*¥') has infinite order, we write T'(r)=T(r, e2™F) for the sake of
simplicity. Setting R=r+1/2T(r) and R'=r+1/T(r), we have by (2.8) and Lemma 2.6

m(r, F') <log max |F(2)|

<log ((4rT(r)+1)(4rT(r)+3) <T <r+ ﬁ) +0(1)) +0(1))

log((4rT(r)+ 1) (4rT(r) +3) 2T (r) +0(1))+O() | = S(r, e2™F). O
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3. Complex semi-torus

Let M be a complex Lie group admitting the exact sequence
0— (C*)P - M5 My—0, (3.1)

where C* is the multiplicative group of non-zero complex numbers, and My is a (compact)

complex torus. Such an M is called a compler semi-torus or a quasi-torus. If My is

algebraic, i.e., an Abelian variety, M is called a semi-Abelian variety or a quasi-Abelian

variety. In this section and in the next, we assume that M is a complex semi-torus.
Taking the universal coverings of (3.1), one gets

0-CP-C">C™" =0,
and an additive discrete subgroup A of C" such that

7 C" = M =C"/A,
mp: C™ = (C"/CP) = My = (C"/CF)/(A/CP),
(C*)? = CP/(ANCP).

We fix a linear complex coordinate system z=(z', ") =(z1, ..., p, 27, .-, 7, ) on C™ such
"__ — !
that CP~{z{=...=z], =0} and

ANCP=Z| i |+..+Z
0 1

The covering mapping CP —(C*)? is given by

o e21ria:1 u)
cCP 5 =| i | e(C)*.
e27rizp

T, Up

We may regard n: M — My to be a flat (C*)P-principal fiber bundle. By a suitable

change of coordinates (z1, ..., z,, 27, .., T;,) the discrete group A is generated over Z by

the column vectors of the matrix of the type

, (3.2)
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where A is a (p, 2m)-matrix and B is an (m, 2m)-matrix. Therefore the transition matrix-
valued functions of the flat (C*)?-principal fiber bundle 7: M — M, are expressed by a
diagonal matrix such that

a1 0 0
0 a9

L larl=...=|a,|=1. (3.3)
0 0 ... g

Taking the natural compactification C*=P!(C)\{0,00}—P!(C), we have a com-
pactification of M,
n: M- M,

which is a flat (P!(C))?-fiber bundle over M. Set
oM = M\ M,

which is a divisor on M with only simple normal crossings.
Let © be the product of the Fubini-Study metric forms on (P!(C))?,

P
_dujNdu;
™= Z TP
Because of (3.3) Q; is well-defined on M. Let Qx=(i/2m)00 Y, |z |* be the flat Hermit-
ian metric form on C™, and as well on the complex torus My. Then we set

Q=01+7"Q, (3:4)

which is a Kahler form on M.

Remark. The same complex Lie group M may admit several such exact sequences
as (3.1) which are quite different. For instance, let 7 be an arbitrary complex number
with Im7>0. Let A be the discrete subgroup of C? generated by

(o) () (0

Then M =C?/A is a complex semi-torus, and the natural projection of C?=Cx C onto
the first and the second factors induce respectively exact sequences of the forms

0->C"->M—-C/{1,i)z—0,
0-C"-M-—-C/{1,7)z 0.
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In the sequel we always consider a complex semi-torus M with a fized exact sequence as
in (3.1) and with the discrete subgroup A satisfying (3.2).

Let f: C— M be a holomorphic curve. We regard f as a holomorphic curve into M
equipped with the Kahler form €2, and define the order function by

Tf(r;Q)=/0 dt fra.

t Jaw)
Let f: C—C" be the lift of f, and set
f(2)=(Fi(2), .., Fp(2), G1(2); -y G (2)),

where F;(z) and G;(z) are entire functions. Extending the base My of the fiber bundle
M — My to the universal covering my: C™— My, we have

My, C™ 2 (C*)PxC™, M xpy, C™ = (P1(C))P xC™.
Set
M= (P(C))PxC™.
Then M is the universal covering of M, and then f induces a lifting f of f: C—»M<M,
fizeCo (e2mF1(2) 22 G (2), ..., Cn(2)) €(C*PxC™ =

Set

fay 2€C— (213 2miFr(2)) e (C*)P,

fa):2€ C—(G1(2), ..., Gm(2)) €C™.

By definition we have

Tf(T';Q)=Tf(1)(T;Ql)+Tf( )(’I’;Qz)A (35)
By Shimizu—-Ahlfors’ theorem we have
P
Ty, (s ) )= T(r,e®™F)+0(1). (3.6)
j=1

By Jensen’s formula (cf. [NO, Lemma (3.3.17)]) we have

T,

*dt \
f(z)(r;92)=/0 —/ o %aaz]c ()]
2m m m
(Steseenr)as-3 3 I6,002
j=1 j=1

(3.7)
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LEMMA 3.8. Let the notation be as above. Then for k=0 we have

T(r, Fj(k)) =T(r, F;)+kS(r, F;) < S5, (r; 1) < 57 (r; ),
T(r, Gy =T(r, Gy)+kS(r, G;) < S (;02) < S5 (r; Q).

Proof. By Lemma 2.5 it suffices to show the case of k=0. By Lemma 2.7 and (3.6),

T(r, F;) =m(r, F;) = S(r, eszj) <S; (r) <Ss(r; Q).

Fl

For G; we have by making use of (3.7) and the concavity of the logarithmic function

1
TG =m(r, G =g [ tom” 16,1

1 1

=— log® |G;(2)|2df < — log(1+|G;(2)|?) do
A Jijz1=ny ’ AT S22y !
1 1

<z 14— (2)|2d0 ) =S; (r;Q2) < ; Q). O
210g< +27r L|Z|:T}|G](z)l de) Sf(g)(T’Q2) Sf(r Q)

LEMMA 3.9. Let the notation be as above. Assume that f: C—M has a finite or-
der 5. Then Fy(z), 1<j<p, are polynomials of degree at most g5, and Gy, 1<k<m,
are polynomials of degree at most %Qf; moreover, at least one of F; has degree gy, or at
least one of Gy has degree os.

Proof. Let £>0 be an arbitrary positive number. Then there is an 79>>0 such that
Tf(T;Q)gT'Qf_'—E, r=2T10.
It follows from (3.5)—(3.7) that for r>rq

T, (r; Q) <7,
1 2”( i , (3.10)
e A0S lGj(re’9)|2> do < rerte,
27 Jo ot

It follows from (3.10), (3.6) and (2.8) applied with R=2r and R'=3r that there is a
positive constant C such that

max |F(z)] < Creste.

|zl=r

Therefore, Fj(z) is a polynomial of degree at most g .
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Expand G;(z)=3","c;,2". Then one gets

o0

1 2 ;M 4 m ,
3 [ (L iGre)r) ao =30 s
Jj=1

7=1v=0
It follows that

2 2v +e
leju|“r= <refTE >,

WK

m
j=1lv=1

Hence, c;, =0 for all V>%Qf and 1<j<m. We see that G;(2), 1<j<m, are polynomials
of degree at most %g ¢. The remaining part is clear. O

In the language of Lie group theory we obtain the following characterization of
holomorphic curves of finite order:

PrOPOSITION 3.11. Let M be an n-dimensional complex semi-torus with the above
compactification M, let Lie(M) be its Lie algebra, and let exp:Lie(M)—M be the
exponential map. Let f:C—M be a holomorphic curve. Then f is of finite order
considered as a holomorphic curve into M if and only if there is a polynomial map
P:C—Lie(M)=C" such that f=expoP, and hence the property of f being of finite
order is independent of the choice of the compactification M DOM.

4. Divisors on semi-tori

(a) Let M be a complex semi-torus as before:

0— (C*)P - M 15 My —0,
772]\_4—>M0.

Let D be an effective divisor on M such that D is compactified to D in M; i.e., roughly
speaking, D is algebraic along the fibers of M —Mjy. If M is a semi-Abelian variety,
then this condition is equivalent to the algebraicity of D. We equip L(D)—M with a
Hermitian fiber metric. Let f: C— M be a holomorphic curve such that f(C)Z D. Let
Q be as in (3.4). Then there is a positive constant C independent of f such that

Ty (r; L(D)) = N(r; f*D)+ms(r; D)+O0(1) < CTy(r; )+ O(1). (4.1)

LEMMA 4.2. Let M, M, M, be as above. Let L— M be a line bundle on M. Then
there exist a divisor E with Supp ECOM and a line bundle Ly— My such that L=
L(E)®7*Lg (in the sense of bundle isomorphism or linear equivalence); moreover, such
an Lo— My is uniquely determined (up to isomorphism).
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Proof. Note that 7: M — My is a topologically trivial P1(C)P-bundle over My. Hence
by the Kiinneth formula we have

H*(M,Z)=H*(P,(C),Z)*®H*(M,,Z). (4.3)

Since the higher direct image sheaves R1,0, ¢>1, vanish, it follows that H*(M, Q)=
H*(Mp,0). We deduce that the Picard group Pic(M) is generated by 77* Pic(Mp) and
the subgroup of Pic(M) generated by the irreducible components of OM =M \M. Thus
for L— M there exists a divisor E with Supp ECOM such that L& L(—E)€f*Pic(My);
the assertion follows. O

We denote by
St(D)={zeM:z+D=D}° (4.4)

the identity component of those z€ M which leaves D invariant by translation. The
complex semi-subtorus St(D) (cf. [NW]) is called the stabilizer of D.

LEMMA 4.5. (i) Let Z be a divisor on M such that ZO\M is effective. Let Ly€
Pic(My) such that L(Z)®7*Ly* = L(E) with Supp ECOM. Then ¢;(Lo)>0.

(i) Let D be an effective divisor on M with compactification D as above. Assume
that St(D)={0}. Then D is ample on M.

Proof. (i) Assume the contrary. Recall that My is a compact complex torus with
universal covering mg: C™—My. We may regard the Chern class ¢;(Lg) as a bilinear
form on the vector space C™. Suppose that c1(Lo) is not semi-positive definite. Let
v€C™ with ¢1(Lo)(v,v)<0 and let W denote the orthogonal complement of v (i.e., W=
{weC™:¢y(Lo){v,w)=0}). Let u be a semi-positive skew-Hermitian form on C™ such
that p(v,-)=0 and plwxw >0. Now consider the (n—1,n—1)-form w on M given by

w=QPAR ™1, (4.6)

By construction we have wAf*c1(Lg) <0. Let Z=2Z'+Z" so that Z' is effective and has
no component of M, and Supp Z”’COM.

/1\71 cl(L(Z))/\wz/Zw.

By the Poincaré duality,

Since wAc1 (L(E))=0, we have

/_ Ccy (L(Z))/\w = /_ T_]*Cl(Lo)/\w <0.
M M
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fo=[wt]

Note that f,, w>0, because Z’ is effective and w>0, and that [, w=0, because
Supp Z”COM, and 2P vanishes on OM by construction. Thus we deduced a contra-

On the other hand,

diction.

(ii) When p=0, the assertion is well known ([W]). Assume p>0. Let C* act on M
as the kth factor of (C*)?C M. Since St(D)={0}, one infers that there is an orbit whose
closure intersects D transversally. Hence,

e1(L)=(n1,...,np;c1(Lo)) (4.7)

in the form described in (4.3) with ny,...,np>0.

Now let us consider Lg as in (i) above. By (i} we know that ¢1(Lg)20. Assume that
there is a vector v€C™\ {0} with ¢;(Lg)(v,v)=0. Then we choose p and w as in (4.6).
Because of the definition we have

w=0. (4.8)

D
By the flat connection of the bundle n: M — Mj, the vector v is identified as a vector field
on M. Observe that f(D)=Mjy. The construction of w and (4.8) imply that v€T, (D) for
all zeD. It follows that the one-parameter subgroup corresponding to v must stabilize D;
this is a contradiction. Thus c¢;(Lg)>0 if St(D)={0}.

Since all n; >0 in (4.7) and ¢;(Lo) >0, it follows that ¢;(L(D)) is positive. Thus D
is ample on M. O

COROLLARY 4.9. Let f: C— M and D be as above, and let §) be as in (3.4). Assume
that St(D)={0}. Then we have the following.
(i) There is a positive constant C such that

C Ty (r; Q) +0(1) < Ty (r; e1(D)) < CT(r; Q) +0(1).

(i) S¢(r; Q) =85¢(r;er(D)).
The proof is clear.

Remark. D may be ample even if St(D)#{0}. For instance, this happens for the
diagonal divisor D in M =C*xC* M =P, xP;.
(b) Boundary condition for D. We keep the previous notations. Let
P

oM = | B; (4.10)
7=1
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be the Whitney stratification of the boundary divisor of M in M; i.e., B; consists of
all points x€dM such that the number of irreducible components of @M passing « is
exactly j. Set Bo=M. A connected component of B;, 0<j<p, is called a stratum of the
stratification M =U§’=0 Bj. Observe that dim Bj=n—j.

Note that the holomorphic action of M on M by translations is equivariantly ex-
tended to an action on M, which preserves every stratum of B;, 0<j<p-

Let D be an effective divisor of M which can be extended to a divisor D on M
by taking its topological closure of the support. We consider the following boundary
condition for D:

Condition 4.11. D does not contain any stratum of B,.
Note that the strata of B, are minimal.

LEMMA 4.12. If condition 4.11 is fulfilled, then

dim DNB; <dim Bj =n—j, 0<VYj<p.

Proof. Assume the contrary. Then there exists a stratum SCB; such that SC D.
Clearly the closure S of S is likewise contained in D. But the closure of any stratum con-
tains a minimal stratum, i.e., contains a stratum of B,. However, this is in contradiction
to condition 4.11. g

Ezample 4.13. Take a classical case where M is the complement of n+1 hyperplanes
H; of P™(C) in general position. Then M =(C*)". Let D=H, 12 be an (n+2)nd hyper-
plane of P*(C). Then condition 4.11 is equivalent to that all H;, 1<j<n+2, are in
general position.

Next we interpret boundary condition 4.11 in terms of local defining equations of D.
Take o€ H°(M, L(D)) such that (¢)=D. Suppose that p>0. Let 20€0MND be an
arbitrary point. Let E and Ly be as in Lemma 4.2 for L=L(D). We take an open
neighborhood U of (o) such that the restrictions M|U and Lo|U to U are trivialized.
Write

zo = (up, zg) € (PHC)PxU = M|U.

We take an open neighborhood V of ug such that V2CPc(P!(C))? with coordinates
(41, ..., up). Then L(D)|(V xU) is trivial, and hence o|(V xU) is given by a polynomial
function
o(u,z")= Z .., (@ )ufulr,  (u,2") €V XU, (4.14)
finite
with coefficients a;,...;, (") holomorphic in U. Since D has no component of M, o(u,z")
is not divisible by any u;. Set up=(uoz1,...,uop). Then, after a change of indices of u;
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one may assume that ug;=...=ug,=0, ug; #0, 1<¢g<i<p. Expand oc(u,z") and set o,
and o, as follows:

" _ m, 1 l AP IS l
o(u,z")= E ay,..1,(x )ull...up”+ E 0..00,4;...1, (T )uq"+1 T
ll+...+lq>l 11=,..=lq:0
_ ( //) 5 I
g1 = all._,lp T Juq ...’l.l,p7 (415)
l1+...+lq>1
_ my, las1 1
o= E aOA.AOlq+1-~lp($ )qu+1 ...Upp.
li=..=l,=0
We have

LEMMA 4.16. Let the notation be as above. Then condition 4.11 is equivalent to
that for every xo€OM, o2#0.

(c) Regularity of stabilizers. Let M be a complex semi-torus with fixed presentation
as in (3.1):
0-G=(C")P>M-—>M;—0. (4.17)
Definition. A closed complex Lie subgroup H of M is called regular if there is a
subset IC{1,...,p} such that

GNH ={(z1,...,2p)€G:z;=1for all i€ I}.

Regular subgroups are those compatible with the compactification induced by (4.17).
The presentation (4.17) induces in a canonical way such presentations for H and M/H.

LEMMA 4.18. Let H be a reqular Lie subgroup of M. Then the quotient mapping
M—M/H is extended holomorphically in a natural way to the compactification

L (7H),

which is a holomorphic fiber bundle of compact complex manifolds with fiber H.
We will prove the following proposition.

PROPOSITION 4.19. Let M be a semi-torus with presentation (4.17) and let D be an
effective divisor fulfilling condition 4.11. Then there exists a finite unramified covering
w's My— My such that St(u*D) is regular in M', where u: M'— M 1is the finite covering
of M induced by p'; i.e., M'=M X pry M.

Remark. Note that p extends holomorphically to the unramified covering of the
compactification M, g: M'— M.
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Proof. First, if D is invariant under one of the p direct factors of G=(C*)? in (4.17),
we take the corresponding quotient. Thus we may assume that St(D)NG does not contain
anyone of the p coordinate factors of G.

Assume that dim St(D)YNG>0. Let I be a subgroup of St(D)NG isomorphic to C*.
Then there are integers ny, ..., n, such that

I={(t™,..,t™):te C*}.

By rearranging indices and coordinate changes of type z;+—1/%, we may assume that
there is a natural number ¢ such that n; >0 for i<q and n;=0 for i>q. Let G=G1xGy
with

Gi= {(ul,...,uq,l, - 1):ui€C*} C G,
N —
P—q
G2: {(1,,1 ,uq+1,...,zp):ui€C*} CG.

q

Then ICGy. Consider \: M — M/G4. If \(D)#M/G1, then D would be G;-invariant and
in particular would be invariant under the coordinate factor groups contained in ;. Since
this was ruled out, we have A\(D)=M/G;. Now observe that for every u=(us,...,up)€
CPC(P(C))? we have

}E}%(tnl, ...,tnp)'ll,—_—' (0, ...,O,uq+1,uq+2, ...,up).

Hence it follows from I CSt(D) and A(D)=M/G; that
{0}ex(P}(C)P?cC D.

This violates condition 4.11 because of Lemma 4.12. Thus GNSt(D) is zero-dimensional,
and hence finite. As a consequence, St(D) is compact. After a finite covering, St(D)
maps injectively in My and therefore is regular. O

5. Proof of the Main Theorem
We first prove the following key lemma:

LEMMA 5.1. Assume the same conditions as in the Main Theorem. Then,

m(r; D) =S (r; e1(D)).
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Besides the conditions stated above, we may also assume by Proposition 4.19 and
Lemma 4.5 (i) that St(D)={0}, D is ample on M, and hence M is a semi-Abelian
variety A:

0= (C)P?P—>A—A;—0.

We keep these throughout in this section.

Here we need the notion of logarithmic jet spaces due to [No3|. Since JA has only
normal crossings, we have the logarithmic kth jet bundle Ji(4;log 84) over A along 04,
and a morphism

Vr: Ji(4;log DA) = Ji(A)

such that the sheaf of germs of holomorphic sections of Ji(A;logdA) is isomorphic
to that of logarithmic k-jet fields (see [No3. Proposition (1.15)]; there, a “subbundle”
Ji(A;log OA) of Ji(A) should be understood in this way). Because of the flat structure
of the logarithmic tangent bundle T(A4;log A),

Ji(A;log 8A) = Ax C™F.

Let - B _
m1: Je(A;log 9A) =X AxC™ — A,

7o: Ji(A;log 9A) =2 Ax C™ — C™*
be the first and the second projections. For a k-jet y€Ji(A;log OA) we call ma(y) the jet

(5.2)

part of y.
Let zeD and let 0=0 be a local defining equation of D about z. For a germ
g:(C,0)— (A, z) of a holomorphic mapping we denote its k-jet by jx(g) and write
dotg) =L a(9(0)).
d¢? | ;=0
We set

Je(D)s = {jx(9) € Ju(A)z : do(g) =0, 1< j <k},

(D)= U (D),
zeD

Ju(D;log 04) = 'Ji(D).

Then Jy(D;log A) is a subspace of Ji(A4;log A), which is depending in general on the
embedding D A (cf. [No3]). Note that m,(Ji(D;log A)) is an algebraic subset of C"*.
Let Ji(f): C—Jix(A;log dA)=Ax C"* be the kth jet lifting of f. Then by [No5]
the Zariski closure of Ji(f)(C) in Ji(A;log DA) is of the form, AxWj, with an affine
irreducible subvariety W;, C C™*. Let m: C™— A be the universal covering and let

fizeC o (fi(2),..., fa(z))EC™
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be the lifting of f. Assume that f is of finite order. Then f (z) is a vector-valued
polynomial by Lemma 3.9. Note that every non-constant polynomial map from C to C™
is proper, and hence the image is an algebraic subset. It follows that

Wi ={(f(2), .. f0(2)), 26 C} = {(J' (2), ... [P (2)), z€ C},

and hence dim W <1. Thus we deduced the following lemma.

LEMMA 5.3. Let the notation be as above. If f:C—A is of finite order, then
dim Wi <1 and for every point wy €Wy, there is a point a€C with ngoJi{f)(a)=wy.

We recall the logarithmic Bloch—Ochiai theorem as a lemma ([Nol], [No2]; cf. also
[NW)):

LEMMA 5.4. Let g:C—A be an arbitrary holomorphic curve into an Abelian sub-
variety A. Then the Zariski closure of g(C) is a translate of a semi-Abelian subvariety
of A.

We also need

LEMMA 5.5. (i) Let Y be an irreducible subvariety of A such that St(Y)={0}. Let
Z be the set of those points x€Y such that there exists a translate T of a non-trivial
semi-Abelian subvariety of A with x€TCY. Then, Z is a proper algebraic subset of Y,
and decomposes to finitely many irreducible components Z; such that St(Z;)#{0}.

(ii) Furthermore, there are finitely many non-trivial semi- Abelian subvarieties A’; of
A such that every T as above is contained in a translate of some Aj.

Proof. The statement (i) is Lemma (4.1) of [No2] (cf. [Ka] for the Abelian case).

For (ii) we first note that TCZ; for some Z;. Then we consider the quotients
T/St(Z;)C Z;/St(Z;). We have that dim Z;/St(Z;)<dim Z; and St(Z,/St(Z,;))={0}. If
T/St(Z;) is a point, then T is contained in a translate of St(Z;). Otherwise, we repeat
this quotient process by making use of (i). Because the dimension of the quotient space
strictly decreases at every step, we find finitely many non-trivial semi- Abelian subvarieties
A} of A such that every T as in (i) is contained in a translate of some A’. O

LEMMA 5.6. Let the notation be as above. Then there is a number ko=ko(f, D)
such that

ma(Jx(D;log OA) Wi # Wy, k> ko.
Moreover, if f is of finite order oy, then ko depends only on oy and D.

Proof. (a) We first assume that f is of finite order p5. We see by Lemma 3.9 that
0f€Z, and f(z) is a vector-valued polynomial of order <p ¢. Thus, Wy, k> oy, is of form

Wi =(W,,,0,...,0).

k—Qf
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Take an arbitrary point £, €W, , and set

& =(£;,0,...,0)EW CC™, k>opy.

k—gi

Assume that
& € ma(Jp(D;log 8A))  for all k > p5. (5.7)

We identify & with a logarithmic k-jet field on A along 6A (see [No3]). Set
Si =71 (Jx(D;log BA) N5 (£x))-

Then,
D25, 285,412y

which stabilize to Sp=[3— or Sy £3. Let £9€S8y. If zo€ D, it follows from Lemma 5.3
that there are points a€C and yo€ A such that

fla)+yo=z0€ D,
dk

Fp o(f(z)+yo)=0 forall k>1,

a

where o is a local defining function of D about z¢. Therefore
f(C)+y CD,

and hence this contradicts the Zariski denseness of f(C) in A. Moreover in this case,
it follows from Lemma 5.4 that f(C)+yo is contained in a translate of a semi-Abelian
subvariety of A contained in D.

Suppose now that zo€ D\ A. Let 0A=|JB; be the Whitney stratification as in
(4.10), and let xo€B,. Let B be the stratum of B, containing zo. Then B itself is a
semi-Abelian variety such that

0—-{(C")P"9"—= B— As—0.

Let o(u,z")=01(u,z")+02(u,2") be as in (4.15) and define D in a neighborhood W
of xo such that W is of type VxU as in (4.14). It follows from Lemma 4.16 that
02#0. Note that DNWNB is defined by 03=0 in B. There is a point a€C such that
m20J,, (f)(a)=§,,. Dividing the coordinates into three blocks, we set

/ 14
20=(0,...,0,zq,2y).
N e’

q
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We may regard wo=(z{, zj ) € B. Taking a shift f(z)+yo with yo€ A4 so that f(a)+yoeW,
we set in a neighborhood of a€C

f(Z)+y() = (ul(z)v ...,uq(z),uq+1(z), "'7UP(Z)7mI/(z)) ew,

5.8
9(2) = (ug+1(2), .., up(2), 2" (2)) e WNB. (9

Here we may choose gy so that g(a)=wp.
We set &g =ma0J(f)(a) for all k=1. Using the same coordinate blocks as (5.8), we
set

ék:(£;(1)7£;(2)7€;cl)7 k‘)Qf’
€k(2) = the jet part of Jx(g)(a) = (§(2), &k )-

Since the logarithmic term (e.g., 2z;0/dz;, 1<j<gq, in the case of 1-jets) of a logarithmic
jet field vanishes on the corresponding divisor locus (e.g., 7_;{2;=0}) (see [No3, §1 and
(1.14)] for more details), we have & (1)(x0)=0 by (4.15), and hence £(2)(c2)(2¢) =0 for
all k>1; ie.,

dk

dz*| _,
Let (C*)? be the first g-factor of the subgroup (C*)?C A, and let Ag: A—A/(C*)?~B
be the quotient map. Set

o2(g(z))=0 forall k>0. (5.9)

fe=MApof:C— B.

It follows from (5.8) and (5.9) that the composed map, Ago(f(2)+yo)=fr(z)+As(Y0),

has an image contained in DN B; furthermore in this case, by Lemma 5.4, f5(C)+ A5 (yo)

is contained in a translate of a semi-Abelian subvariety of B contained in BND. Thus,

it has no Zariski dense image in A/(C*)?, and hence so is f; this is a contradiction.
Summarizing what was proved, we have

SUBLEMMA 5.10. Assume (5.7) for {y=(&,,,0,...,0). Then a translate of f(C) is
contained in a translate of a non-trivial semi-Abelian subvariety of A contained in D, or

the same holds for fg and BND, where B is a boundary stratum of A as above.

(b) Here we show that k¢ depends only on the order p(<oc) of f and D. As
the claimed property is invariant by translates of f, one may assume that f(0)=0 and
£(0)=0. As f runs over some vector-valued polynomials of order at most g with f(0)=0,
one may parameterize them by their coefficients which are points of C™?. We denote
by fp:C—A and fp: C—C™ the mappings defined by a point PeCre\{0} such that
fp(0)=0 and fp(0)=0.

If a translate of fp is contained in D, it follows from Lemma 5.4 that there is a
non-trivial semi-Abelian subvariety A’ of A such that a translate of A’ is contained in D
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and fp(C)CA’. By Lemma 5.5 (ii) applied to Y =D, there are finitely many non-trivial
semi-Abelian subvarieties A’ such that fp(C)CA’ for some A}. The condition that
fp(C)C A’ is a non-trivial linear condition for P€C™?\{0}. One may apply the same
for fg and BN D, and notes that the number of those B is finite. It is deduced that the
set = of points P€C™?\{0} such that the conclusion of Sublemma 5.10 applied to fp
and &, =Jx(fp)(0) does not hold is a non-empty Zariski open subset of C™2.

Set Wi(fp)=m2(Jr(fr)}(C)). It follows from Sublemma 5.10 that for every Pe=
there is a number & satisfying

m2(Ji(D; log 0A)) Wi (fp) # Wi(fp).

This is a Zariski open condition for P€=, which defines a Zariski open neighborhood
Z; CZ of the point P. By the Noetherian property, = is covered by finitely many =g, ’s.
Set kp=max{k,}.

Since our f has a Zariski dense image in A, we have P€Z with writing f=fp; this
completes the proof for f of finite order.

(c) Let f be of infinite order. Assume contrarily that me(Jx(D;log 0A))NWy =W
for all k>1. Since mpoJi(f)(0)€Wy for all k>1, we apply the same argument as in (a)
with setting &g =m20Ji{f)(0). Then we deduce a contradiction that f has no Zariski
dense image. 0

Remark 5.11. By the proof of Lemma 5.6 (a) we see that if oy <oo, there is a number
k1(f, D) satisfying
7o (Ji(D;log AW, =2, k>ki(f, D).

This implies that f has no intersection point of order >k, (f. D) with D.

Proof of Lemma 5.1. For a multiple D of D we have
my(r;1D) =Imy(r; D).

Thus we may assume that D is very ample on A. Let {7;}_, be a base of H°(4, L(D))

such that Supp(7;)2f(C) for all 1<j<N. Since D is very ample, the sections 7;,
1<7< NV, have no common zero. Set

Uj={r;#0}, 1<j<N.
Then {U,} is an affine open covering of A. Let € H(A, L(D)) be a section such that
(c)=D. We define a regular function o; on every U; by

oy o)
0]( ) Tj(l’)h
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Note that o; is a defining function of DNU;. Let us now fix a Hermitian metric || - ||
on L(D). Then there are positive smooth functions h; on U; such that

1 hi=)
o) lo;(@)]’

:EEUJ'.

It follows from Lemma 5.6 that there exists a polynomial function R(w) in weWy,
such that

T2 (Jio (D; log OA)) Wy, C {w € Wi, : R(w) =0} # Wy, .

We regard R as a regular function on every U; xWy,. Then we have the following
equation on every U; x Wy, :

bjocrj+bﬂda3-+...+bj;€0dk°0§zR(w), (5.12)

where bj; =) . . bjilgl(:::)wf ' are regular functions on U; x Wy,. Thus we infer that in
every U; x Wy,

11 By
lloll ~ TRl oyl ~

ko
d ;|

gy

d
Ty [Pabiothgbp % 2 obcthib, = (5.13)

Take relatively compact open subsets U;eUj so that YU ]':A. For every j there is
a positive constant C; such that for z€U]

hilbsil < hylbjiag, ()] [wl? < C; Y Jun|*.

finite finite

Thus, after making C; larger if necessary, there is a number d; >0 such that for f(z)€U;

() loss (T £)(2))) < G (1+ ) Ifl""(z)l)j-

1<I<n
1<k<ko
We deduce that
1 k)
< _ C; (1+ f )
lo(FE@ ~ IR(F (), - f<ko> Z g;n"
1<k<ko (5.14)
do; dk‘)a]

(N (=) +

(Jko(£)(2))

(14|

)

Oy 0j
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Hence one gets

_ 27
mAmDPG;/ WUT7W_M+Om

! ()
< g )0 5 g [ o0 a

1<k<k0
23 / ]— (e d )+0() (5.15)
1<_7<N
1<k<ko

T(r,R(f, ..., fF)))

2(k
+O( E m(r, 1( ))+ E m(
1i<n 1IN
1<k<ko 1<k<ko

r L2 0)) +ow,

2

Recall that the rational functions o; are equal to quotients of two holomorphic sections
o and 7; of L(D). By Lemma 2.5 (ii) we see that

G2
m(r, —afj—o“f——> —Sf(T’,Cl(D)).

This combined with (5.15) and Lemma 3.8 implies that m¢(r; D)=S;(r; c1(D)). d

Proof of the Main Theorem. We keep the notation used above. Thanks to Lemma 5.1
the only thing we still have to show is the statement on the truncation, i.e., the bounds on
N(r; f*D)— Ny, (r; f*D). Observe that ord, f*D >k if and only if Ji(f)(2)€ Jx(D;log 8A).
We infer from (5.14) that

ord, f*D—min{ord, f*D, ko} <ord,(R(f', ..., f*))e.

Thus we have after integration that

N(73 f*D)=Nio(r3 f*D) SN (73 (R(f', .., F5))o)-
It follows from (2.2), (2.3) and Lemma 3.8 that
N(r; (R(f', ey fE))0) ST(r, R(f', .., fE) +O(1)

of ) T 7)) = 7).

1<k<ko

Furthermore, S¢(r; Q)=S¢(r, c1(D)) by Corollary 4.9 (i), because D is ample. Hence,
N(r; f*D) < Ny (r; f*D)+S¢ (15 c1(D)).
The proof is completed. g

We have the following immediate consequence of the Main Theorem.
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COROLLARY 5.16. Let M be a complex torus and let f:C—M be an arbitrary
holomorphic curve. Let D be an effective divisor on M such that D7 f(C). Then we
have the following.

(i) Suppose that f is of finite order gs. Then there is a positive integer ko=ko(os, D)
such that

Tf (7’; C1 (D)) = NkO(T’; f*D) +O(10g 7").

(i) Suppose that f is of infinite order. Then there is a positive integer ko=ko(f, D)

such that
T¢(r;e1(D)) = Nigo(r; f*D)+S¢(r; e1(D)).
In particular, 6(f; DY=0k,(f; D)=0 in both cases.

Proof. Since the Zariski closure of f(C) is a translation of a complex subtorus of M
(cf., e.g., [NO, Chapter VI], [Ks, Chapter 3, §9], [NW]), we may assume that f(C) is
Zariski dense. Hence this statement is a special case of the Main Theorem. g

PROPOSITION 5.17. Let M be o complex semi-torus M and let D be an effective
divisor on M such that its topological closure D is a divisor in M. Assume that D
violates condition 4.11. Then there exists an entire holomorphic curve f:C—M of an
arbitrarily given integral order 9>2 in general, and o>1 in the case of My={0} such
that f(C) is Zariski dense in M and §(f; D)>0.

Proof. Let M=(P}(C))P x C™— M (resp. C™— Mj) be the universal covering of M
(resp. Mp), and DC M the preimage of D. We may assume that

{(c0)}?xC™C D.
Let ¢y, ..., ¢, be Q-linear independent real numbers with
0<e<ep <. <cp. (5.18)
Let 02 or ¢>1 be an arbitrary integer as assumed in the proposition, and set
fram ([L:e®%], [1:e%%%, .., [1:e%°); L(2)), (5.19)

where L: C—C™ is a linear map such that the image of L(C) in My is Zariski dense.
Moreover, by a generic choice of ¢; and L we have that f(C) is Zariski dense in M. Let

U, eV, eM,

be a finite collection of relatively compact holomorphically convex open subsets of My
such that there are sections u;: Vi:HA/iCCm and such that the U; cover My. Set l7i=
pi(Us).
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For every i the restricted divisor D|((P}(C))PxV;) is defined by a homogeneous
polynomial Py of multidegree (d, ..., d,), where the coefficients are holomorphic func-
tions on V;. Let P; denote the associated inhomogeneous polynomial. Then F; is a
polynomial of multidegree (dy,...,d,). Due to {co}? xC™c D, P, does not carry the
highest degree monomial, u'lil... ug”.

Recall that M =M /Ao, where A is a lattice in C™ and acts on M via

A (U s Up; ) = A (s 27) = (B (M) g ---,ﬁp(/\)up;iv"-i-/\),
where 3: Ag— (S1)P is a group homomorphism into the product of S'={|z|=1:2€C*}.
Together with (5.19) and (5.18) this implies that there is a constant C>0 such that
IP(A-f(2)] < CleEs o)zt marst] (5.20)
for all A€Aqy and z€C with Re 22>0 and A-f(z)e(Pl(C))le?i. Note that for every

2€C there exists an element A€Ap and an index ¢ such that )\'f(Z)E(Pl(C))prJ\i-
Then there is a constant C’'>0 such that

2 / |Pi(/\~x:)|2
o) < C'=——F—5
o @I < ¢ 1 e g
for all ze M, A€ Ay with A-z€U;. From (5.20) and (5.21) it follows that for Re 2¢>0
RO dea)29~C1z"|2 <o |e(2jdj01)2"—6229|2
T+ I %%

- C'Czle_clzgf — Clc2e—261 Re z?

(5.21)

lo(FNI < c'c?!

Hence,
1
logt ————— > c;Re 2?2+ 0(1
e )

for all 2€C with Re 22>0. Therefore,
1 1

_ 1 L1
meriD) =g /{,z|=,.}log TG ¥~ 2 /ﬂzm}l"g TG “ et

> 2 log*
= 5 g
27 {|z|=r:Rez2>0} ”O'(f(Z))”

1
e - oyt
5 {M:T}CI (Rez®)*d8+0(1)

d9+0(1)

1 2m
=— clrgcos+90d9+0(1)=c—1r"+0(1)‘
2m Jo T

On the other hand one deduces easily from (5.19) that Ty(r; D)=0(r?). Hence,

5(f:D) = lim my(r; D)

5. O
oo 1Tf(r; D)

We will now give an explicit example with St(D)={0}.
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Example 5.22. Let A be the semi-Abelian variety A=C*xC*, compactified by
P}(C)xP!(C) with a pair of homogeneous coordinates, ([xo:z1],[yo:¥1]). For a pair
of natural numbers (m,n) with m<n, let D be the divisor given by

D={([wo: 1], [yo: n1]) : yox1+yg "y zo+yizo =0}

Set D=DNA. Note that St(D)={0}. Moreover, D violates condition 4.11, since D>
([1:0],[1:0]). Let ¢ be a positive irrational real number such that

0<em<l<en. (5.23)
Let f: C— A be the holomorphic curve given by
frz— ([1:€7],[1:e%)).

Let Q;, i=1,2, be the Fubini-Study metric forms of the two factors of (P(C))2. Then
c1(D)=84 +n8s. By an easy computation one obtains

Ty (r; c1(D)) = €

r+0(1). (5.24)

Thus, py=1, and the image f(C) is Zariski dense in A, because c is irrational.
We compute N(r; f*D) as follows. Note the following identity for divisors on C:

D= (e®+e™ +e"%),. (5.25)

We consider a holomorphic curve g in P?(C) with the homogeneous coordinate system
[wo:w1:ws] defined by

g:2€C — [e7:e™%: e™?| € P3(C).

By computing the Wronskian of e#, €™ and €"“* one sees that they are linearly inde-
pendent over C; i.e., g is linearly non-degenerate. Let Ty(r) be the order function of g
with respect to the Fubini-Study metric form on P2(C). It follows that

1
Tg('r) = 10g(|62|2+|6mcz|2+|6nczi2) d9+0(1)
A J{jz1=r}

1
- 1Og(1+|e(mc—l)z|2+|e(nc—1)z|2) d9+0(1).
A J{jz1=r)

(5.26)

If Re2>0 (resp. <0), then |e(™*~1?|<1 (resp. >1) and |e(™~1?|>1 (resp. <1). There-
fore, if z=re*® and Re 20,

log(1+|elme=D=|2 1 |eme=1)2|2) = 9 ]og+ |e(e~ V2| 1. 0(1) = 2(nc—1)r cos 0+0(1).
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If z=re'? and Re 2<0,
log(14|e(me=bz|2 4 |e(ne=Dz|2) = 2]og* |e(me~ 12| 1. O(1) = 2(me—1)7 cos §+O(1).

Combining these with (5.26), we have

T,(r) = (”;—m)cr+0(1). (5.27)

We consider the following four lines H;, 1<j<4, of P?(C) in general position:

H;={w;j_1=0}, 1<j<3,
H4 = {w0+w1+w2 =0}

Noting that g is linearly non-degenerate and has a finite order (in fact, gg=1), we infer

from Cartan’s SM.T. [Ca] that

Ty(r)< Y No(r;g"H;)+O(logr). (5.28)
j=1
Since Na(r;¢9*H;)=0, 1<j<3, we deduce from (5.28), (5.27) and (2.1) that
. (n—m)c
N(rig"Hy) = = 4 O(log ).
s
By (5.25), N(r;g*Hy)=N(r; f*D), and so
NG £20) =2 0(10g ). (529)
It follows from (5.24) and (5.29) that
D) = Lme (5.30)

8f, D)= .

(D) 1+nc

By elementary calculations one shows that ord, f*D>2 implies
(me—1)(e*)" +(nc—1)(e*)" =0.

Furthermore, f(z)€D if and only if e*+e™%*+e"*=0. Combined, these two relations
imply that there is a finite subset .5 C C? such that ord, f*D>2 implies (e*, e¢*)€S. Since

z—(e?,e%%) is injective, it follows that {z:ord, f*D>2} is a finite set. Therefore,
Ni(r, f*D)= N(r, f*D)+O(logr},

1(:D)=6(/:D) = 1o,

(5.31)
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Let ¢'>1 be an irrational number, and set
c=1/d, m=[d], n=[c]+1,

where [¢] denotes the integral part of ¢/. Then m, n and ¢ satisfy (5.23), and by (5.30)

= 4[]}/ ,

Thus §(f; D) (=81(f; D) by (5.31)) takes values arbitrarily close to 1.

Remark 5.32. In [Nob], the first author proved that for D without condition 4.11
a holomorphic curve f: C— A, omitting D, has no Zariski dense image, and is contained
in a translate of a semi-Abelian subvariety which has no intersection with D. What
was proved in [No5] applied to f: C— A with Zariski dense image yields that there is a
positive constant s such that

#T¢(r;c1(D)) < Ni(r; £*D)+S¢(r; c1(D)), (5.33)

provided that St{D)={0}. The above » may be, in general, very small because of the
method of the proof. One needs more detailed properties of Ji (D) to get the best bound
such as in the Main Theorem than to get (5.33); this is the reason why we need boundary
condition 4.11 for D.

Remark 5.34. In [SY2] Siu and Yeung claimed (1.2) for Abelian A of dimension n.
The most essential part of their proof was Lemma 2 of [SY2], but the claimed assertion
does not hold. The cause of the trouble is due to the application of the semi-continuity
theorem to a non-flat family of coherent ideal sheaves. But, it is a bit delicate, and so
we give a counter-example to their lemma.

Let f: C— A be a one-parameter subgroup with Zariski dense image. Let D be an
ample divisor on A containing 0€ A such that f(C) is tangent highly enough to D at 0
so that Ji f(0)€Ji (D), but f(C)¢Z D. Let mg be the maximal ideal sheaf of the structure
sheaf Q4 at 0. Since W, consists of only one point, we can identify A x W with A. Then,
0€Ji(D)N(AXxWy). Let T =Z(Jr(D)N(A x Wy)) be the ideal sheaf of J,(D)N(AXxWy).
Then Z; Cmyg. If the claimed Lemma 2 of [SY2] were correct, it should follow that

HY%(A,0(L(D))*)omd) > H* (A, O((L(D)?)QTI) £ {0} for all g=>1.

Thus we would obtain that dim H°(A, O((L(D))%))=o0; this is a contradiction.

Remark 5.35. It is an interesting problem to see if the truncation level kg of the
counting function Ng,(r; f*D) in the Main Theorem can be taken as a function only
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in dim A. By the above proof, it would be sufficient to find a natural number k such that
m2(Ji(D;log ANOA)) W #Wy. Note that

dim 72 (Jx(D;log A)) < dim Ji(D;log A) = (n—1)(k+1).

Thus, if dim Wy >(n—1)(k+1) we may set ko=k. For example, if J,(f)(C) is Zariski
dense in J,(A4), then dim W,=n2. Since dim my(J,(D;logA))=n?—1, we may set
ko=n. In general, it is impossible to choose k¢ depending only on n because of the

following example.

Ezample 5.36. Let E=C/(Z+iZ) be an elliptic curve, and let D be an irreducible
divisor on E? with cusp of order N at 06 E%. Let f:2€C—(z,2%2)€E?. Then f(C) is
Zariski dense in E?, and

Ty (r, L(D)) ~*(1+0(1)).

Note that f~1(0)=2+4Z and f*D>N(Z+iZ). For an arbitrary fixed kg, we take N >k,
and then have
N(r, f*D) = Ni,(r, f*D) 2 (N —ko)r?(1+0(1)).

The above left-hand side cannot be bounded by Sf(r,ci(D))=0(logr). This gives also
a counter-example to [Krl, Lemma 4].

6. Applications

Let the notation be as in the previous section. Here we assume that A is an Abelian
variety and D is reduced and hyperbolic; in this special case, D is hyperbolic if and only
if D contains no translate of a one-parameter subgroup of A. Cf. [NOJ, [L] and [Ks] for
the theory of hyperbolic complex spaces.

THEOREM 6.1. Let DC A be hyperbolic and let dy be the highest order of tangency
of D with translates of one-parameter subgroups. Let m: X — A be a finite covering space
such that its ramification locus contains D and the ramification order over D is greater
than do. Then X is hyperbolic.

Proof. By Brody’s theorem (cf. [Br], [NO, Theorem (1.7.3)]) it suffices to show that
there is no non-constant holomorphic curve g: C— X such that the length ||¢’(2)|| of the
derivative g’(z) of g(z) with respect to an arbitrarily fixed Finsler metric on X is bounded.
Set f(z)=m(g(z)). Then the length || f'(z)| with respect to the flat metric is bounded,
too, and hence f’(z) is constant. Thus, f(z) is a translate of a one-parameter subgroup.
By definition we may take kg=dgp+1 in (5.12). Take d (>dp) so that X ramifies over D
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with order at least d. Then we have that Ny(r; f*D)<(1/(d+1))N(r; f*D). Hence it
follows from the Main Theorem that

T¢(r; L(D)) = Nag+1(r, f*D)+O(logr) < (do+1) N1 (r; f*D)+O(log)

< do+1
d+1

N(r; f*D)+0(log 1) < %T,(r; L(D))+O(log 7).

Since T¢(r; L(D))>¢cor? with a constant cp>0, d<dp; this is a contradiction. O

Remark. In the special case of dim X =dim A=2, C. G. Grant [Gr] proved that if X
is of general type and X — A is a finite (ramified) covering space, then X is hyperbolic.
When dim X =dim A=2, D is an algebraic curve, and hence the situation is much simpler
than the higher dimensional case.

THEOREM 6.2. Let f: C— A be a 1-parameter analytic subgroup in A with a=f'(0).
Let D be an effective divisor on A with the Riemann form H(-,-) such that D2 f(C).
Then we have

N(r; f*D) = H(a,a)nr*+0(logr).

Proof. Taking the Zariski closure of f(C), we may assume that f(C) is Zariski dense
in A. Note that the first Chern class ¢;(L(D)) is represented by i00H (w, w). It follows
from (2.1) and Lemma 5.1 that

N(r; f*D) =Ty (r; L(D))+O(logr)
:/rﬁ/ iH(a,a)dzAdz+O(logr) = H(a,a)7r*+O(logr). a
o U Jaw

Remark 6.3. In the case where f(C) is Zariski dense in A, Ax ([Ax]} proved the

estimate ‘D D
0< _lin_ Tl(’f',f ) E ’I’L(T’,f )

r—o0 2 r—o0 r2

< 00,

which is equivalent to

— N *D
< lim (T’f ) < 00.
00 r

0< tim NO:ID)
T

=00
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