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1. I n t r o d u c t i o n  a n d  m a i n  r e su l t  

Let f :  C-+A be an entire holomorphic curve from the complex plane C into a semi- 

Abelian variety A. It was proved by [No2] that  the Zariski closure of f ( C )  is a translate 

of a semi-Abelian subvariety of A (logarithmic Bloch-Ochiai 's theorem). Let D be an 

effective algebraic divisor on A which is compactified to D on a natural compactification 

fi~ of A (see w If f omits D, i.e., f ( C ) f ~ D = ~ ,  then f ( C )  is contained in a translate 

of a closed subgroup of A that  has no intersection with D (see [No5], [SY1]). Note 

that  the same holds for complex semi-tori defined in w (see [NW]). In particular, if A is 

Abelian and D is ample, then f is constant. This was called Lang's conjecture. A similar 

statement, however, is found in Bloch [B1, p. 55, Th~or~me K] without much proof, and 

it is not clear what his Th@or~me K really means (cf. [B1]). 

The purpose of the present paper is to establish the quantitative version of the above 

result for f whose image may intersect D, i.e., the second main theorem and the defect 

relation (cf. w167 2 and 3 for the notation): 

MAIN THEOREM. Let f :  C--+ M be a hotomorphic curve into a complex semi-torus 

M such that the image f ( C )  is Zariski dense in M .  Let D be an effective divisor on M .  

I f  M is not compact, we assume that D is a divisor on M satisfying general position 

condition 4.11 with respect to OM. Then we have the following. 

(i) Suppose that f is of finite order Of. Then there is a positive integer ko =k0(O/, D) 

depending only on O/ and D such that 

T/(r ;  cl (D)) = Nk0 (r; f ' D )  + 0 (log r). 
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(ii) Suppose that f is of infinite order. Then there is a positive integer ko =ko(f, D) 

depending on f and D such that 

Tf (r; cl (D)) = Nko (r; f 'D )  + O(log Tf (r; cl (D))) + O(log r)II E- 

In particular, 5(f; D)=Sko (f; D)---0 in both cases. 

See Examples 4.13, 5.22 and Proposition 5.17 that  show the necessity of condi- 

tion 4.11. The most essential part of the proof is the proof of an estimate of the proximity 

function (see Lemma 5.1): 

mr(r; D) = O(logr) or O(logTy(r;cl(D)))+O(logr)llE. (1.1) 

In the course, the notion of logarithmic jet spaces due to [No3] plays a crucial role (cf. 

[DL] for an extension to the case of directed jets). We then use the jet projection method 

developed by [NO, Chapter 6, w (of. [Nol], [No2] and [No5]). 

In w we will discuss some applications of the Main Theorem. 

In [Kr2] R. Kobayashi claimed (1.1) for Abelian A, but there is a part of the argu- 

ments which is heuristic, and hard to follow rigorously. Siu-Yeung [SY2] claimed that  

for Abelian A 

my(r; D) <~ :Ty(r; cl (D)) +O(log r)llE(~), (1.2) 

where ~ is an arbitrarily given positive number, but unfortunately there was a gap in the 

proof (see Remark 5.34). M. McQuillan [M] dealt with an estimate of type (1.2) for some 

proper monoidal transformation of D C A with semi-Abelian A by a method different to 

those mentioned above and ours (see [M, Theorem 1]). 

It might be appropriate at this point to recall the higher dimensional cases in which 

the second main theorem has been established. There are actually only a few such 

cases that  have provided fundamental key steps. The first was by H. Cartan [Ca] for 

f :  C--+Pn(C) and hyperplanes in general position, where Pn(C)  is the n-dimensional 

complex projective space. The Weyls-Ahlfors theory [Ah] dealt with the same case and 

the associated curves as well. W. Stoll [St] generalized the Weyls-Ahlfors theory to the 

case of f :  Cm--+Pn(C). Griffiths et al., [CG], [GK], established the second main theorem 

for f :  W--+V with a complex affine algebraic variety W and a general complex projective 

manifold V such that  rank df =dim V, which was developed well by many others. For 

f :  C -~V in general, only an inequality of the second main theorem type such as (5.33) 

was proved ([Nol]-[No4], [AN]). Eremenko and Sodin [ES] proved a weak second main 

theorem for f :  C--~Pn(C) and hypersurfaces in general position, where the counting 

functions are not truncated. In this sense, the Main Theorem adds a new case in which 

an explicit second main theorem is established. 
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2. O r d e r  f u n c t i o n s  

(a) For a general reference of items presented in this section, cf., e.g., [NO]. First we 

recall some standard notation. Let 0 and ~ be functions in a variable r > 0  such that  

gT>0. Let E be a measurable subset of real positive numbers with finite measure. Then 

the expression 

O(r)=O(~(r)) (resp. O(r )=O(~(~) ) l lg )  

stands for 

( ) limoc ~ < co resp. rli2~ ~ < oo . 

r~E 

In particular, O(1) denotes a bounded tenn.  

We use the superscript + to denote the positive part, e.g., log+r=max{0,  log r}. We 

write R + for the set of all real positive numbers. We denote by Re z (resp. Im z) the real 

(resp. imaginary) part of a complex number z E C. 

(b) Let X be a compact Kghler manifold and let co be a real (1, 1)-form on X. For 

an entire holomorphic curve f :  C--+X we first define the order function of f with respect 

toaJ by 
" dt 

Tf(r;w)= /o T./A(t) f-w, 

where A ( t ) = { z E C  : Iz I <t}  is the disk of radius t with center at the origin of the complex 

plane C. Let [co] E H 2 (X, R)  be a second cohomology class represented by a closed real 

(1, 1)-form co on X. Then we set 

D ( r ;  = r s ( r ;  

Let [w'] = [co] be another representation of the class. Since X is compact Kghler, there is 

a smooth function b on X such that  (i/2~r)OOb=a/-w. There is a positive constant C 

with Ibl<~C. Then by Jensen's formula (cf. [NO, Lemma (3.39) and Remark (5.2.21)]) 

we have 

IT/(r;w')-Tf(r;w)l <~ C. 
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Therefore, the order function Tf(r; [w]) of f with respect to the cohomology class [w] is 

well-defined up to a bounded term. Taking a positive definite form co on X, we define 

the order of f by 
- -  log T/ ( r ;  co) 

~ f  = lim ~< oc, 
r -~c  log r 

which is independent of the choice of such w. We say that  f is of finite order if 0I < oc. 

Let D be an effective divisor on X. We denote by Supp D the support  of D, but  

sometimes write simply D for S u p p D  if there is no confusion. Assume that  f ( C ) g : D .  

Let L(D) be the line bundle determined by D and let (rEH~ be a global 

holomorphic section of L(D) whose divisor (a) is D. Take a Hermit ian fiber metric II �9 II 

in L(D) with curvature form w, normalized so that  w represents the first Chern class 

Cl(L(D)) of L(D);  cl(L(D)) will be abbreviated to Cl(D). Set 

TI (r; cl (D)) : Tf (r; ca), 

1 f27r 1 
my(r ;D) = ~ ] log 

II~(f(re~~ Jo 
dO. 

It  is known that  if D is ample, then f is rational if and only if 

lim TI(r;cl(D)) 
~ c  logr  

< o c .  

One sometimes writes Tl(r; L(D)) for Tf(r; Cl(D)), but it is noted that  Tl(r; Cl(D)) is 

not depending on a specific choice of D in the homology class. We call mr(r; D) the 

proximity function of f for D. Denoting by ord~ f*D the order of the pull-backed divisor 

f*D at zEC,  we set 

n(t;f*D)= E ordzf*D,  
zEA(t)  

nk(t;f*D)= Z min{k, ordzf*D}, 
zEA(t) 

N(r; f'D) = f "  n(t; t f'D) dt, 

Nk(r; f'D)= f~  nk(t;tf*D) dt. 

These are called the counting functions of f*D. Then we have the F.M.T. (First Main 
Theorem, cf. [NO, Chapter  V]): 

T l (r; cl (D)) = N(r; f'D) +my (r; D) + O(1). (2.1) 
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The quantities 

5 ( f ; D ) = l -  lim N(r;f*D) e[O, 1], 
~ Tl(r; L(D)) 

5k(f; D) = 1 -  lim Nk(r; f 'D)  
r ~  Tf(r; L(D)) 

e [0,1] 

are called the defects of f for D. 

(c) Let F(z) be a meromorphic function, and let ( F ) ~  (resp. (F)0) denote the polar 

(resp. zero-)divisor of F.  Define the proximity function of F(z) by 

re(r, F) = -~ log + IF(re~~ dO. 

Nevanlinna's order function is defined by 

T(r, F) = re(r, F) + N (r; ( F)oo ). 

Cf., e.g., [NO, Chapter 6] for the basic properties of T(r, F). For instance, let TF(r; co) 
be the order function of holomorphic F: C - + p I ( C )  with respect to the Fubini-Study 

metric form w. Then Shimizu-Ahlfors' theorem says that  

TF(r;w)-T(r ,F)  = 0(1).  

If F~O, T(r, 1/F)=m(r, 1/F)+N(r; (F)o), and then by Nevanlinna's F.M.T. (cf. [H], 
[NO]) 

T(r, F) = T(r, I/F) +O(1). (2.2) 

For several meromorphic functions Fj, l<.j<.l, on C we have 

l l 

3 = 1  j = l  

l l 

j = l  " j = l  

1 

R(F1, ..., F,))V o ( E  u,)) 
- j = l  

(2.3) 

where R(F1, ..., Fz) is a rational function in F1, ..., Fz and R(FI(z), ..., Fz(z))~c~. 
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LEMMA 2.4 (cf. [NO, Theorem (5.2.29)]). Let X be a compact Kiihler manifold, let 
L be a Hermitian line bundle on X ,  and let al, o2 EH~ L) with ohiO. Let f: C--+X 
be a holomorphic curve such that f ( C ) ~ S u p p ( a l ) .  Then we have 

( ~ r 2 o f )  <<. Tf(r;cl(L))+O(1). T r ,a  1 

Proof. It follows from the definition that 

Moreover, we have 

()a___~2of = ~ i  jf{izl=r} l~ Ha2~ dO~ 1 / l~ 1 dO+O(1) m r, c~1 lla,~ ~ Izl=r} ll~1~ 

Thus the required estimate follows from these and (2.1). [] 

(d) We begin with introducing a notation for a small term. 

Definition. We write Si(r; Cl(D)), sometimes Si(r; L(D)), to express a small term 

such that 

Sf(p; c1 (D)) = O(log r), 

if Tf(r; Cl(D)) is of finite order, and 

S:(r; cl ( D ) ) = O(log ry(r; c 1 (D)))+O(log r)liE. 

We use the notation Sf(r;w) in the same sense as above with respect to Tf(r;w). For a 

meromorphic function F on C, the notation S(r, F) is used to express a small term with 

respect to T(r, F) as well. 

LEMMA 2.5. (i) Let F be a meromorphic function and let F(k)(z) be the k-th de- 
rivative of F for k= 1, 2,.... Then 

Moreover, if F is entire, 

T(r ,F(k) )=T(r ,F)+S(r ,F) ,  k>~l. 

(ii) Let the notation be as in Lemma 2.4, and set ~(z)=(a2/al)of(z).  Suppose that 
~ 0 .  Then 

m ( r , ~ - ~ ) = S f ( r ,  Cl(D)), k>>.l. 

Proof. The item (i) is called Nevanlinna's lemma on logarithmic derivatives (cf. [NO, 

Corollary (6.1.19)]). Then (ii) follows from (i) and aemma 2.4. [] 

The following is called Borel's lemma (cf. [H, p. 38, Lemma 2.4]). 
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LEMMA 2.6. Let r be a continuous, increasing function on R + such that r  

for some r0ER +. Then we have 

For a later use we show 

LEMMA 2.7. Let F be an entire function , and let 0 < r < R .  

(i) T(r,F)=m(r,F)~maxlogIF(z)[  R+r ,n  F ~ Izl=r ~< ~--~- r m t ~ '  J" 

(ii) re(r, F)=S(r, e2~iF). 

Proof. (i) See [NO, Theorem (5.3.13)] or [H, p. 18, Theorem 1.6]. 

(ii) Using the complex Poisson kernel, we have 

i f{ ~+z  F(z) = ~ KI=R} ~--z Im F(~) dO+ReF(O). 

Therefore, using (i) and the F.M.T. (2.2) with O<r<R<R' we obtain 

max IF(z)[ ~< Izl=r 
R+r 

max I ImF(~)[+lRe F(0)[ KI=R 

R+r { 
Im F(~)+  max Im(-F(r +IRe F(0)I - -  [ m a x  

R - r  \I~I=R I~l=a 

R+r Rt+R 1 
R - r  R ' -R '2-~  (rn(R'' e-2=iF)+m(R" e2~F))+  IRe F(0)I 

R+r R '+R 1 
<" R------r R ' - R "  (T(R"e2~iF)+O(1))+O(1)" 

(28) 

If T(r, e 2wiF) has finite order, then setting R=2r and R~=3r, we see by (2.8) that  

re(r, F) ~< log max IF(z)l = O(log r). 
Izl=," 

In the case where T(r, e 2~iF) has infinite order, we write T(r)=T(r, e 2~iF) for the sake of 

simplicity. Setting R=r+l /2T(r)  and R'=r+l /T(r) ,  we have by (2.8) and Lemma 2.6 

F) < log IY(z)l 

<~ log((4rT(r)+ l)(4rT(r)+ 3) ( T ( r  + T ~ r ) ) + O ( 1 ) ) + O ( 1 ) )  

~< log((4rT(r) + 1)(4rT(r) + 3)(2T(r) + O(1)) + O(1))[[ E = S(r, e2~F). [] 
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3. C o m p l e x  s e m i - t o r u s  

Let  M be  a complex  Lie g roup  a d m i t t i n g  the  exac t  sequence 

0 - 4  (C*)P--~ M n ~ M o - + O  , (3.1) 

where  C* is the  mul t ip l i ca t ive  g roup  of non-zero  complex  numbers ,  and  Mo is a ( compac t )  

complex  torus .  Such an M is cal led a complex  s e m i - t o r u s  or a quasi - torus .  If  M0 is 

a lgebraic ,  i.e., an Abe l i an  variety,  M is cal led a s e m i - A b e l i a n  var i e t y  or a quas i -Abe l ian  

var ie ty .  In  th is  sec t ion and in the  next ,  we assume t h a t  M is a complex  semi- torus .  

Tak ing  the  universa l  coverings of (3.1), one gets  

0-+ CP-+ Ca ~+ Cm -+ O, 

and an additive discrete subgroup A of C '~ such that 

lr: C a -4  M = C a / A ,  

71"0: C m : ( C h i C  p) ---4 M 0 = ( c n / c p ) / ( A / C P ) ,  

(c*)p = CP/(AnC ). 

/ , xlt ~ C n We fix a l inear  complex  coord ina t e  sys t em x =  (x  I, x " )  = (X~l,..., Xp, x l ,  ..., ,~, on such 

t h a t  . ~ p ~ r  I I  _ /I = 0 }  and  ~-~Xl - - . . . - -X  m 

The  covering m a p p i n g  C P - + ( C * )  p is given by 

E C P  - ~  ! = i c ( C * F .  

p \ e 2~ixp Up 

We m a y  rega rd  ~?: M - - + M o  to  be a flat  (C*)P-pr inc ipa l  f iber bundle .  By  a su i t ab le  

/ , x "  ~ the  d iscre te  g roup  A is gene ra t ed  over Z by change of  coord ina tes  (x~, ..., x w xa ,  ..., m ,  

the  co lumn vectors  of  the  m a t r i x  of the  t ype  

1 ... 0 

: "% : A 
, ( 3 . 2 )  

0 ... 1 

O B 
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where A is a (p, 2m)-matrix and B is an (m, 2m)-matrix. Therefore the transition matrix- 

valued fnnctions of the flat (C*)P-principal fiber bundle r/: M ~ M o  are expressed by a 

diagonal matrix snch that  

! 0 . . .  ) 

a2 . . .  

0 . . ,  a p  

lal I . . . . .  [ap[ = 1. (3.3) 

Taking the natural compactification C * = P I ( C ) \ { 0 ,  oo}~-+pl(c),  we have a eom- 

pactification of M, 

~: M - +  Mo, 

which is a fiat (pl(c))p_fiber bundle over M0. Set 

O M = M \ M ,  

which is a divisor on M with only simple normal crossings. 

Let ~1 be the product of the Fubini-Study metric forms on (p1 (C))p, 

i ~ dujAd~tj 
fh  = ~ ( l+luj12)2.  

j = l  

Because of (3.3) a l  is well-defined on 2~. Let a 2 - = ( i / 2 ~ ) O O E j  " 2 xj be the flat Hermit- 

ian metric form on C "~, and as well on the complex torus/140. Then we set 

~t = gtl + ~* f~2, (3.4) 

which is a KSohler form on M. 

Remark. The same complex Lie group M may admit several such exact sequences 

as (3.1) which are quite different. For instance, let ~- be an arbitrary complex number 

with Im ~-> 0. Let A be the discrete subgroup of C 2 generated by 

(lo) (~ 
Then M = C 2 / A  is a complex semi-torus, and the natural projection of C 2 = C  • C onto 

the first and the second factors induce respectively exact sequences of the forms 

O -+ C* -+ M --> C / < I , i ) z -+ O , 

O-+ C*-+ M-+  C /  <I, w}z -+O. 
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In the sequel we always consider a complex semi-torus M with a fixed exact sequence as 

in (3.1) and with the discrete subgroup A satisfying (3.2). 

Let f: C--+M be a holomorphic curve. We regard f as a holomorphic curve into M 

equipped with the K/~hler form ~, and define the order function by 

Ty(r;f~)= fo~ ~ /A(t)f *fL 

Let f: C-+C n be the lift of f,  and set 

](z) = (F] (z), ..., Fp(z), C~(z), ..., Gm(z)), 

where Fi(z) and Gj(z) are entire functions. Extending the base M0 of the fiber bundle 

M--~Mo to the universal covering 7r0: C'~-+Mo, we have 

�9 - -  Cm ~ (pX(c))p x Cm. MXMoCm~-(C*) p• M• 

Set 

2 ~ = ( P I ( C ) ) P •  m. 

Then M is the universal covering of A1, and then ] induces a lifting ] of f: C--+Mc---~M, 

] :  z c c -~ (e ~++r'(+),..., +~,,I~z),  c~ (~), ..., CmCz)) e ( c* )~  • c m = ~ .  

Set 

](1): z E C --+ (e 2€ , ..., e 2'~ifp(z)) ~ (C*);, 

](~): z e c - .  (C~ (z),  ..., C m ( z )  ) e c m. 

By definition we have 

T:(r; a) = r:(,~(T; a,)+T:(2)(T; a2). 

By Shimizu-Ahlfors' theorem we have 

p 

TL1) (r; a l )  = ~ T(r, e 2'~iF~ )+O(1). 
j = l  

By Jensen's formula (ef. [NO, Lemma (3.3.17)1) we have 

�9 m 

Tz(,~(~;as) = T (,) J=~ 

1 j/s (j~_m 1 ) 1~-~ 
= 4-~ ICj(re'~ dO- -~ IG~(0)?. 

_ j = l  

(3.5) 

(3.6) 

(3.7) 
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LEMMA 3.8. Let the notation be as above. Then for k>~O we have 

T(r, F (k)) = T(r, Fj)+kS(r, Fj) <~ S](~)(r; a l )  ~ Sf(r; a) ,  

T(r, G~ k)) = T(r, Gj)+kS(r, Gj) <<. S](:)(r; ft2) <<. Sf(r; a). 

Proof. By Lemma 2.5 it suffices to show the case of k=0. By Lemma 2.7 and (3.6), 

T(r, Fj) = re(r, FS) = S(r, e2"iF ) < S].)(r; al )  < SS(r; a). 

For Gy we have by making use of (3.7) and the concavity of the logarithmic function 

1 jr{ log + IGj(z)] dO r (r ;Gj )=m(r ,  Gj)= ~ Izl=r} 

f{  i f {  log(l+[Gj(z)[2)dO =147r Izl=T} l~ Izl=T} 

<'- ~ l ~  f(lzl=~}lGJ(z)12 dO) =SL~)(r;fl2) <<- Sf(r;ft). [] 

LEMMA 3.9. Let the notation be as above. Assume that f: C--+M has a finite or- 
der Of. Then Fj(z), l<<.j<<.p, are polynomials of degree at most Of, and Gk, l<<.k~m, 
are polynomials of degree at most 1 gOf; moreover, at least one of Fj has degree Of, or at 

i O . least one of Gk has degree ~ f 

Proof. Let e>0 be an arbitrary positive number. Then there is an to>0 such that 

Tf(r; fl) <<. rQI+~, r >>. to. 

It follows from (3.5) (3.7) that for r>>.ro 

TL~)(r; ftl) ~< r ~ 

1 f02 '~ ( j~  ~ ) 27c IGj(rei~ dO <<" rOS+~" 
(3.1o) 

It follows from (3.10), (3.6) and (2.8) applied with R=2r and R'=3r that there is a 
positive constant C such that 

max IF(z)l ~ Cr ~ 
Izl=r 

Therefore, Fj(z) is a polynomial of degree at most 0f. 
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o o  v Expand Gj(z)=}-~,  c j , z  . Then one gets 

It follows that  

) 2--~ I Gj (re w)l 2 

r n  o ~  

 o:EEic.j :" 
j = l  v=O 

 lcj.12r2"-<<: r >r0. 
j = l  ~ = 1  

1 Hence, cy,=O for all v > ~ 0 :  and l ~ j < . m .  We see that  Gj(z),  l<~j<~m, are polynomials 
1Q of degree at most 5 /" The remaining part is clear. [] 

In the language of Lie group theory we obtain the following characterization of 

holomorphic curves of finite order: 

PROPOSITION 3.11. Let M be an n-dimensional complex semi-torus with the above 

compaetifieation M,  let Lie(M) be its Lie algebra, and let exp :L ie (M) -+M be the 

exponential map. Let f : C-+ M be a holomorphie curve. Then f is of fn i t e  order 

considered as a holomorphic curve into M if and only if there is a polynomial map 

P : C - + L i e ( M ) ~ C  n such that f = e x p o p ,  and hence the property of f being of finite 

order is independent of the choice of the compactification M D M.  

4. D i v i s o r s  o n  s e m i - t o r i  

(a) Let M be a complex semi-torus as before: 

0---~ (C*)P -+ M " > M0-+ 0, 

r M--+ Mo. 

Let D be an effective divisor on M such that  D is compactified to D i n / ~ ;  i.e., roughly 

speaking, D is algebraic along the fibers of M-+Mo. If M is a semi-Abelian variety, 

then this condition is equivalent to the algebraicity of D. We equip L(D)--+M with a 

Hermitian fiber metric. Let f :  C--+M be a holomorphic curve such that  f ( C ) ~ D .  Let 

be as in (3.4). Then there is a positive constant C independent of f such that  

T y ( r ; L ( D ) ) = g ( r ; f * D ) + m : ( r ; D ) + O ( 1 ) < C T : ( r ; f ~ ) + O ( 1 ) .  (4.1) 

LEMMA 4.2. Let M , M ,  Mo be as above. Let L -+M be a line bundle on M.  Then 

there exist a divisor E with Sup p ECOM and a line bundle Lo--+Mo such that L ~- 

L( E)| (in the sense of bundle isomorphism or linear equivalence); moreover, such 

an Lo-+ iklo is uniquely determined (up to isomorphism). 
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Proof. Note that  ~: M-+  Mo is a topologically trivial P1 (C)P-bundle over Mo. Hence 

by the Kiinneth formula we have 

H2 (_~, Z) -- H2 (PI (C) ,  Z)POH2 (M0, Z). (4.3) 

Since the higher direct image sheaves ~q~,(9, q>~l, vanish, it follows that  H*(M,O)~ 

H*(Mo, 0). We deduce that  the Picard group Pic(M) is generated by ~*Pic(Mo) and 

the subgroup of Pic(M) generated by the irreducible components of OM=M \M.  Thus 

for L-+M there exists a divisor E with Supp E cOM such that  L| 
the assertion follows. [] 

We denote by 

St(D) = {x e M:  x+D = D} ~ (4.4) 

the identity component of those x E M which leaves D invariant by translation. The 

complex semi-subtorus St(D) (cf. [NW]) is called the stabilizer of D. 

LEMMA 4.5. (i) Let Z be a divisor on M such that ZNM is effective. Let LoE 
Pic(M0) such that L(Z)|  with SuppEcOM. Then c~(Lo)>~O. 

(ii) Let D be an effective divisor on M with compactification D as above. Assume 
that St(D)={0}.  Then D is ample on M. 

Proof. (i) Assume the contrary. Recall that  M0 is a compact complex torus with 

universal covering 7to: cm-+M0.  We may regard the Chern class cl(Lo) as a bilinear 

form on the vector space C "~. Suppose that  cl(Lo) is not semi-positive definite. Let 

v E C "~ with cl (Lo)(V, v)<0 and let W denote the orthogonal complement of v (i.e., W =  

{weCm:  cl(Lo)(v, w)=0}).  Let p be a semi-positive skew-Hermitian form on C m such 

that  # ( v , - ) - 0  and P lw • w > 0. Now consider the ( n - 1 ,  n - 1 ) - f o r m  w on _~ given by 

w = fFA ~fl# m-1. (4.6) 

By construction we have wA~*cl(Lo)<0. Let Z=Z~+Z" so that  Z ~ is effective and has 

no component of OM, and Supp Z"COM. 
By the Poincar@ duality, 

MCl(L(Z))AW= /ZW" 

Since WAel(L(E))=O, we have 

/" =/M g*cl(Lo)A  < O. 
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On the other hand, 

Note that  fz ,  co>O, because Z '  is effective and co>0, and that  fz, ,w=O, because 

SuppZ"cOM,  and ~P vanishes on aM by construction. Thus we deduced a contra- 

diction. 

(ii) When p=0,  the assertion is well known ([W]). Assume p>0.  Let C* act on M 

as the kth factor of (C*)VcM. Since St(D)={0},  one infers that there is an orbit whose 

closure intersects D transversally. Hence, 

Cl (L) = (nl,..., np; cl (Lo)) (4.7) 

in the form described in (4.3) with nl ,  ..., r i p > 0 .  

Now let us consider L0 as in (i) above. By (i) we know that  cl(Lo)>O. Assume that  

there is a vector vCC, m\{O}  with cl(Lo)(V, v)=0.  Then we choose # and co as in (4.6). 

Because of the definition we have 

Dco =0.  (4.8) 

By the flat connection of the bundle r/: M-+Mo, the vector v is identified as a vector field 

on M. Observe that  ( /(D)=M0. The construction of co and (4.8) imply that  vET,:(D) for 

all xED. It follows that  the one-parameter subgroup corresponding to v must stabilize D; 

this is a contradiction. Thus cl (L0)>0 if St (D)={0}.  

Since all ni>O in (4.7) and c l (L0)>0,  it follows that  Cl(L(D)) is positive. Thus 

is ample on M. [] 

COROLLARY 4.9. Let f: C--+ M and D be as above, and let ~ be as in (3.4). Assume 

that St(D)={0}.  Then we have the following. 

(i) There is a positive constant C such that 

C-1Tf(r;  ~ ) + O ( 1 )  ~< Tf(r; Cl ( D ) )  ~ CTf(r; 9t) +O(1).  

(ii) Ss(r; ~ ) = S s ( r ;  cl(D)). 

The proof is clear. 

Remark. D may be ample even if S t (D)r  For instance, this happens for the 

diagonal divisor D in M = C *  x C*'--~M=P1 x P1. 

(b) Boundary condition for D. We keep the previous notations. Let 

P 
a M =  [.J Bj (4.10) 

j = l  
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be the Whitney stratification of the boundary divisor of M in M; i.e., Bj consists of 

all points x �9 such that  the number of irreducible components of OM passing x is 

exactly j .  Set Bo=M. A connected component of By, O<<.j<<.p, is called a stratum of the 

stratification - - -  P M - U j = 0  Bj. Observe that  dim Bj =n- j .  
Note that  the holomorphic action of M on M by translations is equivariantly ex- 

tended to an action on M, which preserves every s t ra tum of Bj, O<.j<.p. 
Let D be an effective divisor of M which can be extended to a divisor D on 2~ 

by taking its topological closure of the support. We consider the following boundary 

condition for D: 

Condition 4.11. D does not contain any stratum of Bp. 

Note that  the strata of Bp are minimal. 

LEMMA 4.12. If condition 4.11 is fulfilled, then 

d i m D N B j < d i m B j = n - j ,  0~<Vj~<p. 

Proof. Assume the contrary. Then there exists a s tratum ScBj  such that  S c D .  

Clearly the closure S of S is likewise contained in D. But the closure of any s t ra tum con- 

tains a minimal stratum, i.e., contains a s t ra tum of Bp. However, this is in contradiction 

to condition 4.11. [] 

Example 4.13. Take a classical case where M is the complement of n + 1 hyperplanes 

Hj of Pn (C)  in general position. Then M ~ ( C * )  ~. Let D=Hn+2 be an (n+2)nd  hyper- 

plane of Pn(C) .  Then condition 4.11 is equivalent to that  all Hj, l~<j~<n+2, are in 

general position. 

Next we interpret boundary condition 4.11 in terms of local defining equations of D. 

Take ~ e H ~  such that  (~ )=D.  Suppose that  p>0.  Let XoCOMAD be an 

arbitrary point. Let E and L0 be as in Lemma 4.2 for L=L(D). We take an open 

neighborhood U of fT(x0) such that  the restrictions M]U and Lo]U to U are trivialized. 

Write 

xo = (uo, �9 ( P I ( C ) F •  v v. 

We take an open neighborhood V of u0 such that  V-~CPc(pI(C)) p with coordinates 

(Ul, ..., up). Then L(D) I(Vx U) is trivial, and hence a I (Vx U) is given by a polynomial 

function 

( ,,~ 11 l~ (u,x")eYxU, (4.14) : . . .  

f ini te  

with coefficients azl...z~ (x") holomorphic in U. Since D has no component of OM, a(u, x") 
is not divisible by any uj. Set u0=(um,.. . ,U0p). Then, after a change of indices of ui 
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one may assume that  um . . . . .  U0q=0, u0i~0, l<~q<i<~p. Expand (r(u,x") and set al  

and a2 as follows: 

tl ll lp lp " (u ' x l I )  E a l l ' l p ( X  )Ul ""~P q- E Zxll" lq+l = ao...Olq+l...lp~ )?tq+ 1 ...Up 
ll +...+lq>~ l ll . . . . .  lq=O 

tl ll lp 
~rl= E az>..zp(x )%t I . . . U p ,  ( 4 . 1 5 )  

ll +...+lq>~ l 

y-, /XH~U lq+l ... Ulp p. 
(72 = ~ a o . . . O l q + l . . . l p [  ) q + l  

ll =..,=lq=O 

We have 

LEMMA 4.16. Let the notation be as above. Then condition 4.11 is equivalent to 

that for every XoEOM, cr2~0. 

(c) Regularity of stabilizers. Let M be a complex semi-torus with fixed presentation 

as in (3.1): 

O-+G=(C*)P-+ M-+ Mo--+O. (4.17) 

Definition. A closed complex Lie subgroup H of M is called regular if there is a 

subset I C  {1, ..., p} such that  

GNH = { ( Z l ,  ... , Zp) E G: zi : 1 f o r  all i E I}. 

Regular subgroups are those compatible with the compactification induced by (4.17). 

The presentation (4.17) induces in a canonical way such presentations for H and M/H.  

LEMMA 4.18. Let H be a regular Lie subgroup of M. Then the quotient mapping 

M-+ M / H  is extended holomorphically in a natural way to the compactification 

H> (M/H) ,  

which is a holomorphie fiber bundle of compact complex manifolds with fiber H. 

We will prove the following proposition. 

PROPOSITION 4.19. Let M be a semi-torus with presentation (4.17) and let D be an 

effective divisor fulfilling condition 4.11. Then there exists a finite unramified covering 

#': Mg--+ Mo such that St(p 'D)  is regular in M',  where #: M'-+ M is the finite covering 

of M induced by #'; i.e., M'=M• 

Remark. Note that  # extends holomorphically to the unramified covering of the 

compactification 2~r, #:/~r'--+/~r. 
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Pro@ First, if D is invariant under one of the p direct factors of G = ( C * )  p in (4.17), 

we take the corresponding quotient. Thus we may assume tha t  St ( D ) n  G does not contain 

anyone of the p coordinate factors of G. 

Assume that  dim S t ( D ) N G > 0 .  Let I be a subgroup of S t (D)NG isomorphic to C*. 

Then there are integers n t ,  ..., np such that  

I={(tn~,...,tnp):tEC*}. 

By rearranging indices and coordinate changes of type zi~-~l/zi, we may assume that  

there is a natural  number q such tha t  h i > 0  for i<<.q and ni=O for i>q. Let G=GlxG2 
with 

p - - q  

a ~ =  { ( ~ ,  u~+~,.., zp) : ~ c c*} c a .  
q 

Then ICG1. Consider ,~: M--->M/G1. If A(D)=~M/G1, then D would be Gl-invariant  and 

in particular would be invariant under the coordinate factor groups contained in G1. Since 

this was ruled out, we have .X(D)=M/G1. Now observe tha t  for every u=(ul, ...,Up)E 
C P C ( P I ( C ) )  p we have 

lim (tnl, ..., t ~p)- u = ( 0 ,  . . . ,  0 ,  %+1, Uq+2,..,, up). 
t - + O  " 

Hence it follows from I c S t ( D )  and ),(D)=M/G1 tha t  

{0}q x (p1 ( c )F-q  c D. 

This violates condition 4.11 because of Lemma 4.12. Thus GASt (D)  is zero-dimensional, 

and hence finite. As a consequence, St(D) is compact.  After a finite covering, St(D) 

maps injectively in M0 and therefore is regular. [] 

5. P r o o f  o f  t h e  M a i n  T h e o r e m  

We first prove the following key lemma: 

LEMMA 5.1. Assume the same conditions as in the Main Theorem. Then, 



146 J. NOGUCHI, J. WINKELMANN AND K. YAMANOI 

Besides the conditions stated above, we may also assume by Proposition 4.19 and 

Lemma 4.5 (ii) that  St(D)={0}, D is ample on M, and hence M is a semi-Abelian 

variety A: 

O ~  (C*)V-+ A ~ Ao --+0. 

We keep these throughout in this section. 

Here we need the notion of logarithmic jet spaces due to [No3]. Since OA has only 

normal crossings, we have the logarithmic kth jet bundle Jk(A; log OA) over 2 along 0.4, 

and a morphism 

Jk(2; log OA) Jk(2) 

such that  the sheaf of germs of holomorphic sections of Jk(2;logOA) is isomorphic 

to that  of logarithmic k-jet fields (see [No3, Proposition (1.15)]; there, a "subbundle" 

Jk(A; log0A) of Jk(2) should be understood in this way). Because of the flat structure 

of the logarithmic tangent bundle T(A; log~A), 

Let 

dk( A; log 0.4) TM 2 x C nk. 

r l :  Jk(A; log 0A) ~- 2 x C nk ~ 4, 
( 5 . 2 )  

7~2: Jk (-~; log cgA ) ~- A • C ~k --+ C ~k 

be the first and the second projections. For a k-jet yEJk(2; log0A) we call Ir2(y) the jet 

part of y. 

Let x E D  and let a = 0  be a local defining equation of D about x. For a germ 

g: (C, 0)--+(A, x) of a holomorphic mapping we denote its k-jet by jk(g) and write 

dJ = 

We set 

Jk (D)x =- {jk (g) E Jk (2)x:  dJa(g) = 0, 1 ~< j ~< k}, 

J (D) = U 
xED 

gk (D; log 0.4) = r 1Jk (D). 

Then Jk(D; log 0A) is a subspace of Jk(2; log0A), which is depending in general on the 

embedding/9~-+2 (cf. [No3]). Note that  r2 (Jk (D; log 0.4)) is an algebraic subset of C nk. 

Let Jk(f): C--+Jk(2;log 0.4)=4 x C nk be the kth jet lifting of f .  Then by [Noh] 

the Zariski closure of Jk(f ) (C)  in Jk(A;logOA) is of the form, A x W k ,  with an affine 

irreducible subvariety W k c C  ~k. Let ~r: Cn--+A be the universal covering and let 
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be the lifting of f .  Assume that  f is of finite order. Then ](z) is a vector-valued 

polynomial by Lemma 3.9. Note that  every non-constant polynomial map from C to C n 

is proper, and hence the image is an algebraic subset. It follows that  

w k  = ( ( ? ( z ) ,  ...,/(k) (z)), e c }  = z e c } ,  

and hence dim Wk <~ 1. Thus we deduced the following lemma. 

LEMMA 5.3. Let the notation be as above. If f: C--+ A is of finite order, then 

dimWk~<l and.for every point wkEWk there is a point aCC with v2oJk(f)(a)=-wk. 

We recall the logarithmic Bloch Ochiai theorem as a lemma ([Nol], [No2]; cf. also 

[NW]): 

LEMMA 5.4. Let g: C--+A be an arbitrary holomorphic curve into an Abelian sub- 

variety A. Then the Zariski closure of g(C) is a translate of a semi-Abelian subvariety 

of A. 

We also need 

LEMMA 5.5. (i) Let Y be an irreducible subvariety of A such that St(Y)={0}.  Let 

Z be the set of those points x E Y  such that there exists a translate T of a non-trivial 

semi-Abelian subvariety of A with x E T C Y .  Then, Z is a proper algebraic subset of Y,  

and decomposes to finitely many irreducible components Zi such that St(Zi)~{0}.  

(ii) Furthermore, there are finitely many non-trivial semi-Abelian subvarieties Atj of 

A such that every T as above is contained in a translate of some A~. 

Proof. The statement (i) is Lemma (4.1) of [No2] (cf. [Ka] for the Abelian case). 

For (ii) we first note that  T c Z i  for some Z,. Then we consider the quotients 

T/St(Z~)cZ~/St(Zi) .  We have that  dirnZ~/St(Z~)<dimZi and St(Z~/St(Zi))={O}. If 

T~ St(Z~) is a point, then T is contained in a translate of St(Z~). Otherwise, we repeat 

this quotient process by making use of (i). Because the dimension of the quotient space 

strictly decreases at every step, we find finitely many non-trivial semi-Abelian subvarieties 

A~ of A such that  every T as in (i) is contained in a translate of some d~. [] 

LEMMA 5.6. Let the notation be as above. Then there is a number ko=ko(f,D) 

such that 

7r2(Jk(D;logOA))nWk#Wk, k>~ko. 

Moreover, if f is of finite order Qf, then ko depends only on Q/ and D. 

Proof. (a) We first assume that  f is of finite order Q/. We see by Lemma 3.9 that  

Q/EZ, and 9~(z) is a vector-valued polynomial of order ~<Q/. Thus, Wk, k>~o/, is of form 

W ~ = ( W ~ , O , . . . , O  ). 

k--~f 
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Take an arbitrary point ~es E Wel, and set 

& = (~of, 0 , . . . ,  0 ) ~ Wk c C nk, k >/~f. 

k--Lo f 

Assume that  

~icErc2(Jic(D;logOA)) for all k~>pf. 

We identify ~ic with a logarithmic k-jet field on ,4 along (gA (see [No3]). Set 

Sic - ~  7"( l ( Jk ( D; log OA ) n Tr21 ( ~k ) ) . 

(5.7) 

Then, 

D D Sas D S~s+l D ..., 

which stabilize to SO=Nk~__aISkr Let xoESo. If xoED, it follows from Lemma 5.3 

that  there are points aEC, and yoEA such that  

f (a)+yo = xo E D, 

dk z=~o.(f(z)+yo) dz k = 0  for a l l k / > l ,  

where a is a local defining function of D about x0. Therefore 

f ( C )  +Yo C D, 

and hence this contradicts the Zariski denseness of f ( C )  in A. Moreover in this case, 

it follows from Lemma 5.4 that  f ( C ) + y 0  is contained in a translate of a semi-Abelian 

subvariety of A contained in D. 

Suppose now that  x o E D \ A .  Let O A = U B  j be the Whitney stratification as in 

(4.10), and let x o E B  a. Let B be the s tratum of Bq containing x0. Then B itself is a 

semi-Abelian variety such that 

O -+ ( C* )P-q -+ B -+ Ao -+ O. 

Let a(u ,x" )=a l (u , x" )+a2(u ,x" )  be as in (4.15) and define D in a neighborhood W 

of Xo such that W is of type V •  as in (4.14). It follows from Lemma 4.16 that  

a2~0.  Note that  D A W M B  is defined by a2=0  in B. There is a point a E C  such that  

~r2~ ( f ) (a)=~o s. Dividing the coordinates into three blocks, we set 

( ~  I II 
XO -~ ~ X O, X 0 ) .  

q 
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We may regard w0=(x~, x~)EB. Taking a shift f(z)+yo with yoEA so that  f (a)+yoEW, 
we set in a neighborhood of a E C  

f (z)  +Y0 = (Ul  ( z ) ,  . . . ,  Uq(Z), Uq+l (z), ..., Up(Z), xH (z) ) E W, 
(5.8) 

= ..., u , ( z ) ,  �9 W n B .  

Here we may choose Y0 so that  g(a)=w0. 

set 

We set {k=Tr2oJk(f)(a) for all k ) l .  Using the same coordinate blocks as (5.8), we 

~k(2)---- the jet part of Jk(g)(a)-  (~k(2), ~k~)" 

Since the logarithmic term (e.g., zj O/Ozj, l ~ j  ~q, in the case of 1-jets) of a logarithmic 

jet field vanishes on the corresponding divisor locus (e.g., uq=l  {zj =0}) (see [No3, w and 

(1.14)] for more details), we have ~k (al)(xo) = 0 by (4.15), and hence ~k(2)(a2)(x0) = 0 for 

all k~>l; i.e., 
dk 

dz k = 0  for a l lk> /0 .  (5.9) 

Let (C*) q be the first q-factor of the subgroup (C*)PcA,  and let )~B:A-+A/(C*)q~-B 

be the quotient map. Set 

f B = ; ~ B o f : C ~  B. 

It follows from (5.8) and (5.9) that  the composed map, )~Bo(f(z)+yo)=fB(z)+)~B(yo), 

has an image contained in DnB; furthermore in this case, by Lemma 5.4, fB(C)+%B(YO) 

is contained in a translate of a semi-Abelian subvariety of B contained in BMD. Thus, 

it has no Zariski dense image in A/(c*)q, and hence so is f ;  this is a contradiction. 

Summarizing what was proved, we have 

SUBLEMMA 5.10. Assume (5.7) for ~k=(~os,O, ...,O). Then a translate o f f ( C )  is 

contained in a translate of a non-trivial semi-Abelian subvariety of A contained in D, or 

the same holds for fB and B A n ,  where B is a boundary stratum of A as above. 

(b) Here we show that  k0 depends only on the order Q(<oo) of f and D. As 

the claimed property is invariant by translates of f ,  one may assume that  f ( 0 ) = 0  and 

f(0)  =0. As f runs over some vector-valued polynomials of order at most ~ with f (0 )=0 ,  

one may parameterize them by their coefficients which are points of C n~ We denote 

by fp: C--~A and fp:  C--*C n the mappings defined by a point PECTQ\{0} such that  

f p ( 0 ) = 0  and ]p(O)=O. 

If a translate of fp  is contained in D, it follows from Lemma 5.4 that  there is a 

non-trivial semi-Abelian subvariety A ~ of A such that  a translate of A' is contained in D 
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and f p ( C ) c A ' .  By Lemma 5.5 (ii) applied to Y=D, there are finitely many non-trivial 
! t semi-Abelian subvarieties Aj such that fp(C)cA} for some Aj. The condition that  

A ~ is a non-trivial linear condition for PcC '~~  One may apply the same f p ( C ) c  

for f s  and BAD, and notes that  the number of those B is finite. It is deduced that  the 

set .E of points PEC'~O\{0} such that  the conclusion of Sublemma 5.10 applied to fp 
and ~k=Jk( fp) (0)  does not hold is a non-empty Zariski open subset of C ~Q. 

Set Wk(fp)=Tr2(Jk(fp)(C)). It follows from Sublemma 5.10 that  for every P E ~  

there is a number k satisfying 

:r2(Jk(D; log OA) )•Wk(fp) r Wk(fp). 

This is a Zariski open condition for PC E, which defines a Zariski open neighborhood 

-~k C F~ of the point P.  By the Noetherian property~ -- is covered by finitely many ~k, - 

Set k0=max{k,} .  

Since our f has a Zariski dense image in A, we have P E - -  with writing f=fp; this 

completes the proof for f of finite order. 

(c) Let f be of infinite order. Assmne contrarily that  : r2(Jk(D;log0A))AWk=Wk 

for all k~>l. Since 7r2oJk(f)(O)cWk for all k~>l, we apply the same argument as in (a) 

with setting ~k=~r2oJk(f)(O). Then we deduce a contradiction that  f has no Zariski 

dense image. [] 

Remark 5.11. By the proof of Lemma 5.6 (a) we see that  if ~ /<oc ,  there is a number 

kl (f ,  D) satisfying 

:r2(Jk(D;log0A))NWk = ;~, k >1 kl ( f ,  D). 

This implies that  f has no intersection point of order ) kl (f, D) with D. 

Proof of Lemma 5.1. For a multiple ID of D we have 

ms(r ;  ID) = lms(r; D). 

Thus we may assume that  D is very ample on A. Let {vj}N_l be a base of H~ L(D))  

such that  S u p p ( v j ) ~ f ( C )  for all I~j<~N. Since D is very ample, the sections ~-j, 

I<~j<~N, have no common zero. Set 

Uj={vjr l<~j<.N. 

Then {Uj} is an affine open covering of A. Let a E H ~  L(D))  be a section such that  

(a) = 9 .  We define a regular function aj on every Uj by 

= (x---j 
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Note that  aj is a defining function of DnUj. Let us now fix a Hermitian metric [[. 11 

on L(D).  Then there are positive smooth functions hj on Uj such that  

1 hi(x) 
II~(x)ll-I~j(x)l' xeUj. 

It follows from Lemma 5.6 that  there exists a polynomial function R(w) in wEWko 
such that 

7r2 (Jko (D; log OA))NWko C {w E Wko: R(w) = 0} r Wko. 

We regard R as a regular function on every Uj x Wko. Then we have the following 

equation on every Uj x Wko: 

~o = R(~),  (5.12) bjocrj+bjldzrj+...+bjkod a 3 

b Zz where J i = E f i n i t e  bjil/J~(X)Wl are regular functions on Uj XWko. Thus we infer that in 

every Uj x Wko 

hjb jo+hjb j l  1 _ 1 hj _ 1 daj+...+hjbjko (5.13) 
I1~11 IR[ I~1 IRI aN 

J 

Take relatively compact open subsets U~�9 so that  U U~=A. For every j there is 

a positive constant Cj such that for x C U] 

hjlbj~l<~ ~ hjlby~z~,(x)l.lwzl ~' <. Cj ~ Iwzl ~'. 
finite finite 

Thus, after making Cj larger if necessary, there is a number dj >0 such that  for f ( z )c  U~ 

hj(f(z))lbj~(&o(Z)(z))l<~Cj 1+ ~ I~(k)(z)l 
l<~l<~n 

l<~k<~ko 

We deduce that 

N( ; 
1 1 E Cj 1+ E lift )(z)l 

ll~(f(z))ll ~< IR(]'(z),...,](ko)(z))l j=l a<,z<~n 
l~k~ko 

+... + dk~ ) da--~ (Jl(f)(z)) - - ( J k o ( f ) ( z ) )  . x 1+ o-j O'j 

(5.14) 
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Hence one gets 

- 1 f 2 ~  1 

my(r; D) = ~ ]0 l~ II~r(f(re~~ dO+O(1) 

1 1 [2~log + ifz(k)(reiO)l dO 
l<~l<~n .I0 

l<~k<~ko 

+ E ~ l~ (Jk(f)(rei~ dO +O(1) (5.15) 
I<~j<~N 
l <~ k <~ k o 

..~ T(r, R(f  ,..., ](ao))) 

+ 0 (  l<~t<~nm(r, ft(k))+l<.~j<~Nm(r, ~ ( J k ( f ) ) ) ) + O ( 1 ) .  

l ~ k ~ k o  l<~k<~ko 

Recall that the rational functions crj are equal to quotients of two holomorphie sections 

a and ~-j of L(D). By Lemma 2.5 (ii) we see that 

m(r,  (CrJ~ f)(k) ) = S/(r; el (D) ). 
aj of 

This combined with (5.15) and Lemma 3.8 implies that my(r; D)=Sy(r ;  Cl(D)). [ ]  

Proof of the Main Theorem. We keep the notation used above. Thanks to Lemma 5.1 

the only thing we still have to show is the statement on the truncation, i.e., the bounds on 

N(r; f 'D) -Nko(r; f 'D). Observe that ord~ f*D>k if and only if Jk(f)(z)EJk(D; log 0.4). 
We infer from (5.14) that 

ordz f*D-min{ordz f 'D, k0} ~< ordz( R(f', ..., fk~ ) )o. 

Thus we have after integration that 

N(r; f'D)--Nko(r; f 'D) <<. N(r; (R(]', ..., ](k~ 

It follows from (2.2), (2.3) and Lemma 3.8 that 

N (r; ( R(]', ..., ](k~ ~< T(r, R(]', ..., ](k~ ) + O(1) 

l<~k<~ko 

Furthermore, Sy(r; ~2)=Sy(r, cl(D)) by Corollary 4.9 (ii), because D is ample. Hence, 

N(r; f 'D) <<. Nko(r; frO) + Sf (r; cl (D)). 

The proof is completed. [] 

We have the following immediate consequence of the Main Theorem. 
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COROLLARY 5.16. Let M be a complex torus and let f : C - - + M  be an arbitrary 

holomorphic curve. Let D be an effective divisor on M such that D ~ f ( C ) .  Then we 

have the following. 

(i) Suppose that f is of finite order y f  . Then there is a positive integer k0=k0(y/,  D) 

such that 

T/(r;  el (D)) = Nko (r; f r O )  + O(log r). 

(ii) Suppose that f is of infinite order. Then there is a positive integer ko=ko( f ,  D) 

such that 

T/(r;  Cl(D)) = gko(r, f D ) + S / ( r ,  el(D)) .  

In particular, 5(f;  D)=(~ko(f; D)=0  in both cases. 

Proof. Since the Zariski closure of f ( C )  is a translation of a complex subtorus of M 

(cf., e.g., [NO, Chapter VI], [Ks, Chapter 3, w [NW]), we may assume that  f ( C )  is 

Zariski dense. Hence this statement is a special case of the Main Theorem. [] 

PROPOSITION 5.17. Let ]lJ be a complex semi-torus M and let D be an effective 

divisor on M such that its topological closure D is a divisor in M .  Assume that D 

violates condition 4.11. Then there exists an entire holomoTphic curve f :  C--+ M of an 

arbitrarily given integral order ~>~2 in general, and Q>~I in the case of M0={0} such 

that f ( C )  is Zariski dense in M and (~(f; D)>0.  

Proof. Let M = (p1 (C))P • C m -+ M (resp. C "~ --+ Mo) be the universal covering of 

(resp. M0), and D C M  the preimage of D. We may assume that  

Let cl,... ,  Cp be Q-linear independent real numbers with 

0 < cl < c2 < ... < cp. (5.18) 

Let ~>2 or ~>1 be an arbitrary integer as assumed in the proposition, and set 

/ :  Z F-~ ([1: eClZ~)], [1: ec2z~], ..., [1: eCPZQ]; L(z)) ,  (5.19) 

where L: C--+C "~ is a linear map such that  the image of L(C) in Mo is Zariski dense. 

Moreover, by a generic choice of cy and L we have that  f ( C )  is Zariski dense in M. Let 

U~ ~ V~ ~ Mo 

be a finite collection of relatively compact holomorphically convex open subsets of M0 

such that  there are sections tt{: V i Z + ~ c C  m and such that  the Ui cover M0. Set Ui= 
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For every i the restricted divisor D I((PI(C)F x ~)  is defined by a homogeneous 

polynomial Pio of multidegree (all,..., dp), where the coefficients are holomorphic func- 

tions on Is/. Let P/ denote the associated inhomogeneous polynomial. Then Pi is a 

polynomial of multidegree (dl,.. . ,dp). Due to { o c } P •  Pi does not carry the 
_ dl dp highest degree monomial, u I ... up . 

Recall that J~=5~)/Ao, where Ao is a lattice in C m and acts on J~ via 

)~: ( t t l ,  ... , Up; X tt) ~ ,-~" (~t; X") : (Zl (~ ) t t l ,  "",/~p (/~)~tp; X't-I-~),  

where ~: A0~(S1)  p is a group homomorphism into the product of S l = { ] z l = l : z E C *  }. 

Together with (5.19) and (5.18) this implies that there is a constant C > 0  such that 

IP,(A.Y(z))I <~ Cle (~dj~)~ . . . . .  ~l (5.20) 
for all ACAo and z e C  with R e z ~  and A. f ( z )E(P ' (C) )PxUi .  Note that for every 

zEC there exists an element AEAo and an index i such that A- f ( z )E(P I (C) )PxUi .  

Then there is a constant C ' > 0  such that 

IIo(x)ll ~ <~C' IP~(X'x)12 (5.21) 
I]~ ( I +  I~j I~) '~ 

for all xE~I,  AEA0 with A.xEUi. From (5.20) and (5.21) it follows that for R e z ~  

Ilo(f(~))ll ~ <~ c ' c  ~ <~ c ' c  2 

= C'C 2 le-~,z~ = C t C 2 e  - 2 c ,  R e  z 0 

Hence, 
1 

log + ~> cl Re z~  

for all z E C  with R e z ~  Therefore, 

- 1 dO= ~ jf{izl=~itog+ 1 dO+O(1) ms(~; o)= ~ f,=,=,.}log II~(S(~))il ll~(Y(z))ll 

1 if{ log + 1 dO+O(1) 
~ fzf=r:Rozo>o} ,~(f(z))r~ 

1 f( c1.(aezO)+dO+O(1 ) 
= ~ fzl=r} 

]o" _-- __1 clrOcos+oOdO+O(1 ) = Clro+O(1). 
27r 7r 

On the other hand one deduces easily from (5.19) that Tf(r; D)=O(re).  Hence, 

ms (7-; D) 
(f(f; D) = ~--,~li---mm ~ ~-~ > 0. [] 

We will now give an explicit example with St(D)={0}.  
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Example 5.22. Let A be the semi-Abelian variety A = C * x C * ,  compactified by 

p I ( C ) x P I ( C )  with a pair of homogeneous coordinates, ([x0:xx], [Y0:Yl]). For a pair 

of natural numbers (m, n) with re<n,  let D be the divisor given by 

D={([g0:xl], [Y0:yl]): y~jxl§ .... y~Zxo§ 

Set D = D n A .  Note that  St(D)={0}. Moreover, D violates condition 4.11, since D~  

([1:0], [1:0]). Let e be a positive irrational real number such that 

0 < cm < 1 < cn. (5.23) 

Let f :  C-+A be the holomorphic curve given by 

f :  z ~-+ ([1: eZ], [1: ec~]). 

Let fti, i=1,  2, be the Fubini Study metric forms of the two factors of (pI(c))2. Then 

c l (D)=f t l+nf~2 .  By an easy computation one obtains 

Tf(I'; e l ( D ) )  = l§247 (5.24) 
?r 

Thus, L)f=l, and the image f (C)  is Zariski dense in A, because c is irrational. 

We compute N(r;  f ' D )  as follows. Note the following identity for divisors on C: 

f * D  = (eZ +e . . . .  +e'~Z)o. (5.25) 

We consider a holomorphic curve g in p2(C) with the homogeneous coordinate system 

[wo : wl: w2] defined by 

9: z E C  --+ [e~: e . . . .  : e ncz] E p2(C).  

By computing the Wronskian of e z, e mcz and e ncz one sees that  they are linearly inde- 

pendent over C; i.e., g is linearly non-degenerate. Let Tg(r) be the order function of g 

with respect to the Fubini Study metric form on P2(C). It follows that  

1 f{ l o g ( l e Z l 2 + l e ~ . ~ , 1 2 §  e ..... 12)d0+0(1) 
%(,-) = W ~z~=~} 

1 f {  log(l+[e(mC_l)~[2+[e(n~_l)z[2)dO+O(1). 
47r Izl=r} 

(5.26) 

If R e z ) 0  (resp. ~<0), then le(mc-1)zl~<l (resp. ~>1) and [e(~C-1)zl~>l (resp. ~<1). There- 

fore, if z = r e  w and Rez>~0, 

log(l+ le(m=-l>12+le(~-l>12 ) =21og § le(~=-X)zl+O(1 ) =2(ne-1)rcosO+O(1). 
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If z=re i~ and Rez~<0, 

log( l+  le (m~-l)z 12 + le (n~-a)z]2) = 2 log + le ( . . . .  1)z]+o(1) = 2(mc-  1) r cos 0+O(1). 

Combining these with (5.26), we have 

T A r  ) - _ _  (5 .27)  
7f 

We consider the following four lines Hi, l~<j~<4, of P2(C) in general position: 

Hj = {wj_l =0},  l~<j~<3, 

H4 = { w 0 + w l  -~w2 = 0}. 

Noting that  9 is linearly non-degenerate and has a finite order (in fact, og=l) ,  we infer 

from Cartan's S.M.T. [Ca] that  

4 

Tg(r) <<. E N2(r; 9*Hj)+O(log r). (5.28) 
j = l  

Since N2(r;g*Hj)=O, 1<~j~<3, we deduce from (5.28), (5.27) and (2.1) that  

N(r; g'H4) = ( n - m ) c  r+O(log r). 
7r 

By (5.25), N(r; g*H4)=N(r; f ' D ) ,  and so 

N(r; f 'D)  -- - -  

It follows from (5.24) and (5.29) that 

( n - m ) c  
r+O(logr). (5.29) 

By elementary calculations one shows that  ordz f*D>~2 implies 

( m c -  1)(e~Z)"~ + (nc-  1) (e~) n = O. 

Furthermore, f (z)  C D if and only if e z +e  mcz +e ncz =0. Combined, these two relations 

imply that  there is a finite subset S c C  2 such that  ordz f*D>~2 implies (e z, e Cz) ES. Since 

z~-+(e z, e cz) is injective, it follows that  {z :ordz f*D~>2} is a finite set. Therefore, 

N1 (r, f 'D)  = N(r, frO) +O(log r), 

l+mc  (5.31) 
5 1 ( f ; D ) = 6 ( f ; D ) -  l+nc"  

5(f; D) = l +mc. (5.30) 
l +nc 
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Let c '>  1 be an irrational number, and set 

c=l/c', m=[c'], n=[c']+l, 

where [c'] denotes the integral part of c'. Then m, n and c satisfy (5.23), and by (5.30) 

a ( f ; D )  l+ [c ' ] / c '  = ~ 1 (c' --+ oo). 
l+([c']+l)/c' 

Thus (~(f; D)(=(~l( f ;  D) by (5.31)) takes values arbitrarily close to 1. 

Remark 5.32. In [Noh], the first author proved that  for D without condition 4.11 

a holomorphic curve f :  C--+A, omitting D, has no Zariski dense image, and is contained 

in a translate of a semi-Abelian subvariety which has no intersection with D. What  

was proved in [Noh] applied to f :  C-+A with Zariski dense image yields that there is a 

positive constant ~ such that  

x T / ( r ;  cl (D)) ~< N1 (r; f 'D) + S/(r; cl (D)), (5.33) 

provided that  S t ( D ) =  {0}. The above ~ may be, in general, very small because of the 

method of the proof. One needs more detailed properties of Jk(D) to get the best bound 

such as in the Main Theorem than to get (5.33); this is the reason why we need boundary 

condition 4.11 for D. 

Remark 5.34. In [SY2] Siu and Yeung claimed (1.2) for Abelian A of dimension n. 

The most essential part of their proof was Lemma 2 of [SY2], but the claimed assertion 

does not hold. The cause of the trouble is due to the application of the semi-continuity 

theorem to a non-fiat family of coherent ideal sheaves. But,  it is a bit delicate, and so 

we give a counter-example to their lemma. 

Let f :  C--+A be a one-parameter subgroup with Zariski dense image. Let D be an 

ample divisor on A containing 0EA such that  f ( C )  is tangent highly enough to D at 0 

so that  Jkf(O) E Jk (D), but f ( C )  g D. Let m0 be the maximal ideal sheaf of the structure 

sheaf OA at 0. Since Wk consists of only one point, we can identify A x Wk with A. Then, 

OEJk(D)A(AxWk). Let Zk=Z(Jk(D)A(AxWk)) be the ideal sheaf of Jk(D)A(AxWk). 
Then :/:k Cm0. If the claimed Lemma 2 of [SY2] were correct, it should follow that  

H~ (9((L(D))~)| D H~ (9((L(D))~) |  q) • {0} for all q >~ 1. 

Thus we would obtain that  dim H~ O((L(D))~))=oc;  this is a contradiction. 

Remark 5.35. It is an interesting problem to see if the truncation level k0 of the 

counting function Nko(r; f 'D) in the Main Theorem can be taken as a function only 
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in dim A. By the above proof, it would be sufficient to find a natural  number k such that  

~r2(Jk(D;logAAOA))AWk#Wk. Note that  

dim 7r2 (dk (D; log 4) )  ~< dim dk (D; log A) = ( n -  1)(k + 1). 

Thus, if d i m W k > ( n - 1 ) ( k + l )  we may set ko=k. For example, if J ~ ( f ) ( C )  is Zariski 

dense in Jn(A), then d i m W n = n  2. Since dimTr2(Jn(D;logOA))=n2-1, we may set 

ko=n. In general, it is impossible to choose ko depending only on n because of the 

following example. 

Example 5.36. Let E = C / ( Z + i Z )  be an elliptic curve, and let D be an irreducible 

divisor on E 2 with cusp of order N at 0 E E  2. Let f :  zEC--+(z, z2)EE 2. Then f ( C )  is 

Zariski dense in E 2, and 

Tl(r, L(D)) ~ r4 ( l+o(1) ) .  

Note that  f -  1 (0) = Z + iZ and f*D ~> N (Z + iZ). For an arbi trary fixed k0, we take N > k0, 

and then have 

g(r ,  f*D)-Nko(r,  f 'D)  >. ( g - k o ) r 2 (  l +o(1) ). 

The above left-hand side cannot be bounded by Sy(r, Cl (D))=O(logr). This gives also 

a counter-example to [Krl, Lemma 4]. 

6. Applications 

Let the notation be as in the previous section. Here we assume that  A is an Abelian 

variety and D is reduced and hyperbolic; in this special case, D is hyperbolic if and only 

if D contains no translate of a one-parameter  subgroup of A. Cf. [NO], [L] and [Ks] for 

the theory of hyperbolic complex spaces. 

THEOREM 6.1. Let DC A be hyperbolic and let do be the highest order of tangency 

of D with translates of one-parameter subgroups. Let 7r: X--+ A be a finite covering space 

such that its ramification locus contains D and the ramification order over D is greater 
than do. Then X is hyperbolic. 

Proof. By Brody's  theorem (cf. [Br], [NO, Theorem (1.7.3)1) it suffices to show that  

there is no non-constant holomorphic curve g: C ~ X  such that  the length [[g'(z)11 of the 

derivative g'(z) of g(z) with respect to an arbitrari ly fixed Finsler metric on X is bounded. 

Set f(z)=Tr(g(z)). Then the length IIf'(z)ll with respect to the flat metric is bounded, 

too, and hence if(z) is constant. Thus, f (z)  is a translate of a one-parameter  subgroup. 

By definition we may take k 0 = d o + l  in (5.12). Take d (>do) so tha t  X ramifies over D 
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with order at least d. Then we have that  Nl(r;  f*D)<.(1/(d+l))N(r; f 'D) .  Hence it 

follows from the Main Theorem that  

T I (r; L (D)) = Ndo+l (r, f 'D)  + O(log r) ~< (do + 1) N1 (r; f 'D)  + 0 (log r) 

do+ 1~ , do +1 Tl(r;  L(D))+O(log r). <~ - ~ l v  (r; f*D)+O(logr) <<. d + l  

Since Tf(r; L(D))>~cor 2 with a constant e0>0, d<~do; this is a contradiction. [] 

Remark. In the special case of dim X = d i m  A=2,  C.G. Grant [Gr] proved that  if X 

is of general type and X-+A is a finite (ramified) covering space, then X is hyperbolic. 

When dim X = d i m  A=2, D is an algebraic curve, and hence the situation is much simpler 

than the higher dimensional case. 

THEOREM 6.2. Let f: C--+ A be a 1-parameter analytic subgroup in A with a=f f (0) .  

Let D be an effective divisor on A with the Riemann form H ( . , . )  such that D ~ f ( C ) .  

Then we have 

N(r; f 'D)  = H(a, a)~r 2 +O(log r). 

Proof. Taking the Zariski closure of f (C) ,  we may assume that  f ( C )  is Zariski dense 

in A. Note that  the first Chern class cl(L(D)) is represented by iOOH(w, w). It follows 

from (2.1) and Lemma 5.1 that  

N (r; f 'D)  = T/(r; L( D ) ) +O(log r) 

r dt 
= fo -t f~,(t) iH(a'a) dzAdz +O(l~ = H(a'a)~rr2 +O(l~ [] 

Remark 6.3. 

estimate 

which is equivalent to 

In the case where f ( C )  is Zariski dense in A, Ax ([Ax]) proved the 

0 <  lim n(r,f*D) ~ ~ n(r,f*D) 
r 2 r--+oc r 2 

< (:x:), 

0 <  lim N(r, f*D) ~ ~ N(r, f*D) <co. 
r 2 r - ~ c c  r 2 
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