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1. I n t r o d u c t i o n  

In this paper  we prove the C~-smoothness  of Lipschitz-continuous graphs of C 2 with 

smooth and nonvanishing Levi curvature. 

Let ~t be an open subset of a 3. Given a C2-smooth function u: ~ - ~ R  the Levi 

curvature of its graph at the point (~, u(~)), ~E~,  is the real number 

s  

k(~,u) := ( l §  , (1) 

where 

f-.u := Uxx + Uyy + 2aUxt + 2buyt + ( a 2 + b2) ut t ,  (2) 

and a = a ( V u ) ,  b = b ( V u )  depend on the gradient of u as 

a, b: R 3 --+ R,  a(p)  - P 2 - P l P 3  - P l - P 2 P 3  
l+p~ ' b(p)- l+p~ (3) 

In (1), (2), ~=(x ,  y, t) denotes the point of R 3, ut is the first derivative of u with respect 

to t, and analogous notations are used for the other first- and second-order derivatives 

of u. 

The notion of Levi curvature for a real manifold was introduced by E.E.  Levi in 

1909 in order to characterize the holomorphy domains of C 2. Since then, it has played a 

crucial role in the geometric theory of several complex variables. 

In looking for the polynomial hull of a graph, Slodkowski and Tomassini implicitly 

introduced in 1991 the following definition of Levi curvature for Lipschitz-continuous 

graphs [16]. 

Investigation supported by University of Bologna Funds for selected research topics. 
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Definition 1.1. Let ~ be an open subset of R a and k a given function defined on 

ft •  The graph of a Lipschitz-continuous function u: ft--+R will have Levi curvature 

k(~,u(~)) at any point ~Ef~ if there exist a sequence (u~) in C2(f~) and a sequence of 

positive numbers en-+0 satisfying the conditions: 

(i) There exists M > 0  such that  IIunlIL~(a)+NVUnlIL~(fl)<.M for any n c N ,  and 

(un) uniformly converges to u. 

(ii) s in ft for any n EN .  

Here s and H denote the operators 

and 

l + u t  2 (4) 

H(~, Vu) = (l+a2+b2)3/2(l+u2t)l/2. (5) 

In (ii), u~ and Vun are computed at the point ~; a and b in (5) stand for a(Vu) and 

b(Vu), respectively. If the graph of u has Levi curvature k(~, u(~)) at every point ~Cft, 

we will also say that  u is a strong viscosity solution of 

s  in fl. (6) 

If the function k, together with its first derivatives, satisfies some general growth 

conditions, the class of Lipschitz-continuous graphs with Levi curvature k is very large. 

Indeed, the existence of such graphs has been established by Slodkowski and Tomassini 

with viscosity techniques, starting from the key remark that  the quasilinear operator /2  

in (2) is degenerate elliptic as its characteristic form 

A(p, 4) = ~21+4~ + 2a(p) 41~3+ 2b(p)@43+(a2(p)+b2(p) )4~ 

= (41 + a(p) ~3) 2 Jr- (~2 -I- b(p) ~3) 2 , 
(7) 

is nonnegative defined. Their result is the following: Let UCCf~ be a strictly pseudo- 

convex domain with OUE C 2'~, 0 < c~ < 1. Let k E C 1 (~ x R) satisfy the conditions of Pro- 

position 2 and Theorem 3 in [16]. Then, for every 0EC2,~(~)  there exists ueLip (U)  

whose graph has (generalized) Levi curvature k(~,u(~)) at any point ~EU. Moreover, 

u(~)=r for any ~EOU (see [16, Theorem 4]). 

The function u solves the equation 

s = k(~, u)H(~, Vu) 

in the weak viscosity sense of Crandall-Ishii-Lions (see [11]). Since the minimum eigen- 

value of A(p,. ) is equal to zero for every p E R  u, the operator L is not elliptic at any 
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point, and the regularity results for viscosity solutions of nonlinear elliptic [3] and para- 

bolic equations [18], [19] cannot be applied to our case. We have to introduce a completely 

different procedure, based on the particular structure of the Levi equation. This is well 

highlighted by some identities first explicitly written in [5], involving the two nonlinear 

vector fields, which appear in the characteristic form of s defined in (7): 

X(p)  :=O~+a(p)Ot, Y(p)  :=Oy+b(p)(gt, (8) 

where a and b are defined in (3). 

For a given function u: f~--+R we will write X instead of X(Vu) .  Analogous abbre- 

viations will be used for Y. Then the operator s can be written as 

s = (X2u+Y2u)(l+u2t),  

and by relation (1) we call the following the prescribed Levi-curvature equation: 

(l +a2 +b2)a/2 
X 2 u + Y 2 u = k ( ~ , u )  (1+u2)1/2 (9) 

The Lie bracket of the first-order differential operators X and Y is 

s 
[x ,  Y] = - l+u  oz. (10) 

This structure has been very recently used by two of the authors in [8] to prove a 

first regularity result for viscosity solutions: 

THEOREM. Let us suppose that k ~ C l ( ~ x R ) .  Let u : ~ - + R  be a Lipschitz-conti- 

nuous function whose graph has Levi curvature k. Then Xu,  YuEH~oc(~ ) and u satisfies 

(6) pointwise almost everywhere. 

Here Hloc(~) denotes the classical Sobolev space of order 1. 

Without any extra condition on the curvature k it seems that  the previous result 

cannot be improved. On the other hand, the following theorem was known ([5], see 

also [9]): 

THEOREM. If  k E C ~ ( Q x R )  and never vanishes in ~txR,  then every Cio c ( )- 

classical solution to (6), with ~>�89 is of class C ~ in ~. 

In this paper we fill the gap between these results and prove a regularity theorem 

which has been announced in [6]. 
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THEOREM 1.1. Let k c C ~ ( g t x R )  be such that k(~ ,s ) r  for every (~ , s )EQxR.  

Then every Lipschitz-continuous graph having Levi curvature k is of class C 2'~. 

Together with Theorem 4 in [16] and Theorem 1.1 in [5] Theorem 1.1 above imme- 

diately gives the following C~-solvability result for the Dirichlet problem related to the 

Levi operator. 

COROLLARY 1.1. Let ~ and k satisfy the hypotheses of Theorem 4 in [16]. Let us 

also assume that kEC*C(gtxR) and k(~,s)r  for any (~ ,s )C~txR.  Then, for every 

r the Dirichlet problem 

in a, 
(11) 

u = r on O~ 

has a solution u E C ~ ( ~ ) N L i p ( ~ ) .  

When k vanishes identically and ~ satisfies more restrictive hypotheses, a first ex- 

istence result for (11) was proved by Bedford and Gaveau [1]. I f  k -O ,  ~ is a regu- 

lar pseudoconvex open set, CEC'n+5(~), m E N ,  and O~ and r satisfy some additional 

geometric conditions, then problem (11) has a solution u E c m + ~ ( ~ ) A L i p ( ~ ) ,  0<c~<l .  

Besides, the graph is foliated in analytic complex curves. 

We would like to stress that  the geometric arguments used in [1] do not work when 

k~0.  We emphasize some important differences between our Corollary 1.1 and the result 

of Bedford and Gaveau. The interior regularity result and the foliation phenomena of the 

solutions of the Dirichlet problem given in [1] for k=0  strictly depend on the regularity 

of boundary datum. The Cm+~-regularity result cannot be improved, since every C 2- 

function u depending only on the variable t solves equation (6) with k=0.  The foliation 

result has been extended in many directions (see [2], [4], [15]), but in all these papers it 

follows from the topology of the boundary of ~t. On the contrary, in Theorem 1.1 the 

local regularity property only follows from the structure of the operators L: and H, since 

if k is of class C ~ and everywhere different from zero, any Lipschitz-continuous solution 

is of class C ~ independently of the regularity of boundary datum. Very recently, using 

a PDE technique similar to that  introduced here, two of the present authors proved that  

also the foliation result for k=0  only depends on the structure of the operator, and in 

[7], [10] gave the following local version of it: Every Lwschitz-continuous graph with Levi 

curvature k - O  is foliated in analytic curves. 

1.1. Sketch of the proof. The paper is organized as follows. In w we fix a solution 

u of the equation 

s = k(~, u)H(~, Vu) 
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in an open set f~, and we denote by L~ a linear operator formally defined as s 

Le = X2 + y2 + T 2, 

where Te=s(l+u2t)-t/2Ot, and the coefficients of the vector fields X and Y depend on u. 

Then we prove that  the coefficients a and b of the vector fields and the two functions 

w = cOtu and v = arctan(ut)  

are solutions of 

(12) 

with different functions f .  

The proof of Theorem 1.1 is based on the regularity of the solutions of this linear 

equation in some Sobolev spaces W m,~ naturally defined in terms of the vector fields 

X,  Y and T~, but not explicitly on 0t. The classical elliptic regularization procedure 

is based on Sobolev inequalities and on a priori estimates of Caccioppoli type. In the 

present situation neither the Caccioppoli inequality holds, since the vector fields are not 

self-adjoint, nor the Sobolev inequality, since the coefficients of the vector fields are only 

bounded. 

To overcome these difficulties we first prove an interpolation inequality, which will 

play a role similar to the Sobolev one. 

PROPOSITION 1.1. Let M be such that 

[fall~+ frblloo+llvH~ ~< M. 

For every function zEC ~, r  we have 

f ,Xz,3r ~ c / [~Te(Xz)[2r / ( ,Ver ~-r (13) 

where c > 0  only depends on M and k. An analogous inequality is also satisfied if we 
replace X z  with Yz or Tsz. 

Only if the coefficients are much more regular we can establish a Sobolev-type in- 

equality with optimal exponent (this is done is w In w we establish some a priori 

estimate in the intrinsic directions X and Y, weaker than the classical Caccioppoli one. 

Using these inequalities together with the interpolation ones, we prove a priori est imates 

in W~ 'p, for solutions z of (12) which holds under very general assumptions on the 

commutators  of the vector fields, but requires some strong a priori estimates on the 

derivative Otz, and this, up to now, has not been studied yet. 
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In w we conclude the proof of Theorem 1.1, start ing with the estimates of the 

derivative Or, which, by equality (10), can be expressed in terms of the commuta tor  

of the vector fields. We also use in an essential way the nonlinearity of the equation: 

the interpolation and Caccioppoli inequalities for the derivative 0t provide a gain of 

regularity only if applied to the function Otv. In this way we obtain an L2-estimate for 

Xvt and Yvt. Since Vt:Utt/(l--~U2t), then, due to Definition 2.2 below, vt has to be 

considered a derivative of weight 4 of u, while Xvt and Yvt are derivatives of weight 5 of 

the same function. Once the summabil i ty of these derivatives with respect to t is proved, 

it is possible to use the results in w and obtain analogous estimates for any derivation 

of weight 5 and 4. In particular, the coefficients a and b of the vector fields are now 

regular, and we can apply the Sobolev-type inequality proved in w It  then follows tha t  

the derivatives of weight 4 belong to L 4, the derivatives of weight 3 belong to L p for 

every p, and the derivatives of weight 2 belong to suitable classes C a for every c~E]0, 1[. 

Now, using the results in [5], we deduce that  uEC2'% 

2. P r o p e r t i e s  o f  t h e  coef f i c i en t s  a a n d  b 

Let us assume tha t  u is a solution of class C ~ of the regularized equation 

s = k(1 +u2)(1 +a 2 + b~) 3/2, (14) 

on an open set ~, where s is the operator defined in (4). By simplicity let us denote by 

a=a(Vu) and b=b(Vu) the coefficients introduced in (3), and write X and Y instead of 

X(Vu) and Y(Vu) ,  the vector fields defined in (8). Let us also write 

0, 

In this section we define some Sobolev spaces in terms of these vector fields, and a linear 

operator,  formally defined as/ ;~:  

L~ = X 2 + y 2  +T~.  

Then we prove some properties of the coefficients a and b of the vector fields. In particular, 

we will prove that  they are solutions of a linear equation of the type 

L~z=f, (15) 

with different functions f .  We will also introduce a new function v=arctan(ut), which has 

properties similar to ut, and satisfies the same equation, but with a simpler right-hand 

side. 
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2.1. Natural Sobolev spaces. It  is natural  to give the following definition: 

Definition 2.1. If f is a L~oc(ft)-function, we say that  it is weakly differentiable with 

respect to X if there exists a function gEL~oc(ft ) such that  

ffx*r162 for all 

where X* is the formal adjoint of X. The weak derivative with respect to any other 

vector field is defined in an analogous way. 

Definition 2.2. For every fixed ~ we will denote 

1 
D I = X ,  D 2 = Y ,  D 3 = T e = c ~ c g t ,  V e = ( X , Y ,  Te), 

where w=ut ,  and we will also define 

1 
D4 = T -- lx/.i---~-~ Ot . 

We will define the weight of an index iE{1, ...,4} as 

and, due to identity (10), 

]i I = l  for every i = l, ..., 3, 

141 = 2 .  

In general, if i = ( i l ,  . . . , iq)E{1,2,3,4}q we set lil=Ej Iijl and 

D~ = Dil ... Dim. 

Then, for any open set Ucf~ we call 

WS'P(U)  = { f :  D i f E L P ( U )  for all i such that  Iil ~< m}, 

Nfllw:,"(u) = ~ IIDffllL,~(f). 
lil~<m 

Y u = a  and X u = - b .  (16) 

In particular, 

I l f l l ~ , p ( v )  = IIflILp(U)" 
We also say that  fEW~,~I~(ft) if for every C E C ~ ( f t ) ,  f C E W S ' P ( f t  ). 

Let us recall that  the coefficients of the operator are the derivatives of the function u, 

in the direction of the vector fields: 
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From this equality it follows that  

s = (X2u+ Y2u)(l +u~) 

and 

s = (X2u+ Y2 u+ T~u)(l +u~). (17) 

Moreover, if we introduce two new functions, 

w=Otu and v =a rc t an (u t ) ,  (18) 

the derivatives with respect to t of the coefficients a and b can be expressed as 

cgta= Yv-wXv and a t b = - X v - w Y v .  (19) 

As a consequence the formal adjoints of X, Y and T~ become 

X*=-X- (Yv -wXv) . ,  Y*=-Z-(Xv+wYv) . ,  T~=-T~+wTv.. (20) 

Also the commutators  can be simply expressed in terms of v: 

[X,Y]=T~vT~-k(t+a2+b2)3/2T, [X,Tr162 [Y,T~]=XvTr (21) 

Finally we recall that  for every f EC ~ (f~), for every O E C ~  (12), 

f OtXfr  / OtfXO and f OtYfr = -  f OtfYr (22) 

All the assertions (16)-(22) are direct computations.  We refer to [8] for a detailed proof 

of them. 

2.2. A linear equation. We turn now to prove that  a, b and v are solutions of the 

linear equation (15) for a suitable right-hand side f .  We first note that ,  by (14) and (17), 

u is a solution of the equation 

L~u = k (1 + a  2 +b2)3/z. (23) 
(1+w2)1/2 

Now we prove that ,  if a function z is a solution of equation (15), then its intrinsic 

derivatives Xz, Yz and T~z are solutions of the same equation, with different right-hand 

sides. 



S M O O T H N E S S  O F  G R A P H S  W I T H  N O N V A N I S H I N G  LEVI  C U R V A T U R E  95 

LEMMA 2.1. If  Z is a solution of (15) then s l = X z  is a solution of the equation 

L~sl = X f + k(l  +a2 +b2)a/2TYz + Y ( k( l  +aU +b2)a/2Tz) 
(24) 

+ 2XvT~vT~z-  2Y (T~vT~z) + 2T~(YvT~z). 

Proof. It is a direct computation. Differentiating the equation with respect to X, 

we get 

X2Sl +Y2Sl+T2Sl  = X f - [ X ,  Y ] Y z - Y [ X ,  Y ] z - [ X ,  TE]Tez-T~ [X, Te]z 

(2) X f -T~vT~Yz +k( l  +a ~ +b2)3/2Tyz 

- Y(T~vT~z-  k(1 +a z + b2)3/2Tz) +YvT2z+T~ (YvT~z). 

Note that  

_T~vT~Yz + YvTZ z (2) -Tr + XvT~vT~z + YvT2 z 

= -Y(T~vT~z)+YT~vT~z+XvT~vTez+Tr -T~YvTcz  

(2--1) -Y(T~vT~z) + T~ (YvT~z) + 2XvT~vT~z. 

Inserting this computation in the previous one we infer the thesis. 

An analogous computation ensures 

LEMMA 2.2. If z is a solution of (15) then s2=Yz  is a solution of the equation 

L~s2 = Y f  - k ( l  +a2 + b 2 ) 3 / 2 T X z - X  (k(l +a2 +b2)3/2Tz) 
(25) 

+ 2YvT~vT~z + 2X(T~vT~z)-2T~(XvT~z).  

LI~MMA 2.3. If  z is a solution of (15) then s3=T~z is a solution of the equation 

L~s3 = T~f - 2YvXs3 + 2XvYs3 
(26) 

Proof. Differentiating the equation with respect to T~, we get 

X2s3+Y2s3+T2s3 = T~f-[Te, X ] X z - X [ T s ,  X]z - ITs ,  Y]Yz -Y[T~ ,  Y]z 

(21) T J -  Y v T ~ X z -  X ( Y v T j ) +  XvT~Yz + Y (XvT~z) 

= T J - Y v [ T ~ ,  X ] z - Y v X T ~ z - X Y v T ~ z - Y v X T ~ z  

+ Xv[T~, Y]z + XvYT~z  + YXvT~z  + XvYT~z  

= [using again (21) to sum the terms 4 and 8] 

= Tr f - 2YvXs3 + 2XvYs3 - ( (Xv)  2 + (Zv) 2 + (T~v) 2) s3 

+ k ( l + a  2 +b2)3/2Tvs3. 

Let us finally turn to the principal properties of the functions a, b, v. 
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PROPOSITION 2.1. The function a defined in (3) is a solution of the equation 
L~a = Y(k(1 + a  2 + b2) 3/2 (1 +w 2)-  1/2) _ k(1 +a 2 + b2)a/2TXu 

(27) 
- X (k(l +a2 +b2)3/2Tu). 

The function b is a solution of the equation 
L~b = - X ( k ( 1  + a  2 -I- b2) 3/2 (1 +w 2)-  1/2) _ k(1 + a  2 ncb2)a/2TYu 

(2s) 
- Y ( k( l + a2 + b2)3/2 Tu ). 

The function v defined in (18) is a solution of the equation 

L~v = T(k(1 q-a 2 q-b2)3/2) .  (29) 

Proof. First note that  for every vector field D~ with i=1,  ..., 4 we have 

( Otu ) DiOtu Div 
Di(T~u)=zDi (l~_(ut)2)l/2 -=~ (l_4_(ut)2)3/2 =c (1A_(ut)2)l/2. (30) 

Since u is a solution of equation (23), from Lemma 2.2 and (16) it follows that  

L~a = L~Yu = Y(k(1+a2 +b2)3/2(l +w2) -1/2 ) - k ( l + a  2 +b2)3/2TXu 

- X ( k ( l + a  2 +b2) 3/2Tu) +2YvTEvT~u+2X(T~vTEu)- 2T~ (XvTcu). 

On the other hand, 

2YvT~vT~u+ 2XT~vT~u+ 2T~vXTzu- 2T~XvT~u- 2XvT2u 

(3O)2YvT~vT~u+2[X,T~]vTEu+2ET~v Xv  T~v 
= (1+(ut)2)1/2 2~Xv (l+(ut)2)l/2 =0 ,  

by (21). Hence assertion (27) follows. Assertion (28) can be proved in the same way, 

using the fact that  b = - X u .  

Let us now prove (29). Differentiating (30) we get 

D~(T~u) = ~ DYv w(Div)2 
(1_~ (Ut)2) l /2  - - E  (1+(ut)2)1/2. 

From this relation and Lemma 2.3 we infer that  
s u L~v = ((Xv)2+(yv)2+(T~v)2) ( l+(u t )2)  1/2 (1+ (u,)2)1/2 

+ T~(k( l +a2 +b2)3/2(l +w2) -1/2) - 2 Y v X T r  2XvYT~u 

- ((Xv) 2 + (Yv) 2 + (TEv) 2) T~u+k(1 + a 2 +b2)U/2TvT~u 

= [the first and the fifth terms cancel, and, by relation (30), 

the terms 3 and 4 cancel] 

: T~(k(1A-a2-t-b2)3/2)(1A-w2)-l/2-t-k(1-f-a2 A-b2)3/2Te( (l +w2)-l/2) 

+k(l  +a2 +b2)3/2TvT~u 

= T~ (k(1 + a  2 +b2) 3/2) (1 +w2) -1/2 . 

This implies assertion (29). 



S M O O T H N E S S  OF G R A P H S  W I T H  N O N V A N I S H I N G  LEVI  C U R V A T U R E  97 

3. E m b e d d i n g  t h e o r e m s  in t h e  spaces  W m'p 

In this section we prove a Sobolev-type inequality in the spaces W~n'P(ft), under the 

assumption that  

]]aH~ + I]b[[~ + IIw[[~ ~< M1 (31) 

and that 

k(~,s)#O for all (~,8)E[2• 

As we already noted in the introduction this assumption ensures that X, Y, [X, Y]-TEvT~ 

are linearly independent at every point, and that det(X, Y, [X, Y] -T~vT~) is uniformly 
bounded away from O. It is known that a Sobolev inequality with optimal exponent holds 

if the coefficients of the operator are smooth. Here we will see that it is possible to prove 

the same assertion, under a weaker condition, which can be considered an "intrinsic" 

Lipsehitz continuity. In particular, it is satisfied when the coefficients belong to suitable 

W~m,P-spaces. 

3.1. Vector fields with HSlder-continuous coefficients. If the coefficients a and b of 

the vector fields are H61der continuous with respect to the Euclidean distance, and ~v is 

bounded, we can associate to X, Y and T some frozen vector fields. 

Definition 3.1. Let us fix three open sets f t lCC~2CC~, and assume that  a,b are 

HSlder continuous in ft. For every ~0Eft we denote 

X~o=Ox+(a(~o)+2(y-yo))Ot, Y~o=Ou+(b(~o)-2(x-xo))Ot. 

Since [Xao , Y~o]=-40t, at has the same direction as T. 

The Lie algebra generated by X~o and Y~o is noncommutative, and free of step 2. 

Hence it is a Heisenberg algebra, and it is possible to introduce a canonical change of 

variable: 

v, t) = (x, v, t -  2 v o ) x -  + 2Xo)V), 

which changes X~o and Y~o into two vector fields XH and YH, independent of G0. If we 

denote by dH the control distance of these vector fields, then the control distance asso- 

ciated to X~o and Y~o is d~o=duor o (see [14] for the definition of control distance). The 

distance d~o can be explicitly computed, and it is easy to see that  d~o is locally equivalent 

to the distance 

d~o (~, 4) = (((x~ - x ~ )  2 + (Y~ - Y J )  ~ + ( t - t 0  -a(~o)(x~ - x r  - b(~o) (y~ _ y j )  ~/4, 

in the sense that  there exists a positive constant M2, only dependent on ~2, such that  

M2-1d~o(~, 4) ~< d~o(~, 4) ~< M2d~o(~, 4) (32) 



98 G. CITTI, E. LANCONELLI AND A. MONTANARI 

for every ~, 4 G f~2 (see [5] for a detailed proof). 

It follows that,  if a and b are H51der continuous in classical sense, then there exists 

a constant M3 such that  

la(~)-a(~o)l ~ M3d~o(~, ~o), Ib(~)-b(~o)l ~ M3d~o(~, ~o) (33) 

for every ~, ~0Efl2. 

The Lebesgue measure of a sphere Br R) in the metric dr is R 4 [Bo(0, 1)1. In what 

follows we set N=4, and we call this number the homogeneous dimension of R 3 with 

respect to Leo. This implies in particular that  for every ball such that  B~o(~, R)CC~t2 
and for every function feC([0, R]), 

R 

/B f(d~o(~,4))d4=C~o f(o)QN-ldQ, N = 4 .  (34) 
~o(~,R) 

Let us also recall that  the operator 2 2 X H +Y~ is the Kohn Laplacian on the Heisen- 

berg group, and it has a fundamental solution FH, explicitly computed by Folland [12]. 

The fundamental solution of the operator 2 2 X~o+Y~o with pole at ~ is then the function 

F~o(~, 4)=FH(r r As a consequence, the fundamental solution satisfies the 

relation 

F~o(~, ~) -- FH (r162 ~o(~)) ~ CdHN+2(r ~b~o(4)) ~ Cd~oN+2(~, 4) for all ~, 4, 

for a constant C only dependent on FH. 

Remark 3.1. From the definition of fundamental solution we can deduce the follow- 

ing assertion: for every zEC~(f~2), 

= / X or o( , 4)X oz(4)d4 + / r y oz(4) d4. 

Analogously, adapting to the Kohn Laplacian a standard argument known for the classical 

Laplacian, it is possible to prove the following Morrey-type estimate for the vector fields 

X, Y and T. Let us denote by Z~o,B(~,R ) the mean value of the function z on Br , R), 

and let ~oC~tl. If R > 0  satisfies R <  �88 0f~2), and ~EB~o(~0, R), then we have 

Iz(~)--z~o,B(~,R)l<cjf d~oN+l(~,4)(IXz(~)[+lYz(4)[)d4 
Br 

(35) 
+c f d~oN+l(~,4)([a(4)-a(~o)l+lb(4)-b(~o)l)(l+w2)l/21Tz(4)ld 4. 

J B~o(~,2R) 
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Then the following theorem holds: 

T H E O R E M  3 . 1 .  Assume that a, b and w satisfy conditions (31) and (33), and that 

p,q are real numbers such that p , q > l  and N <min(p , ( l+a)q) .  Then there exists a 

constant C only dependent on M1, M3, fh  and f~2 such that for every zEC~( f t )  

[IZllL~176 • C([[Z[[Ll(~22)-~-[[XZ[[Lv(ft2)-}-[[YZ[[LV(ft2) q-IITZ[[Lq(~)). 

Besides, for every ~, ~oEftl, 

[z(r - z(Co) I ~< Cd~o(~, Co)([[XzllLp(~:)+ [[YZIILp(~:)+ IITzllL+(~2)), 

where r = m i n ( 1 - N / p , a + l - N / q ) .  In particular, if p=c~ and N<aq,  then 

Iz(~)-  z(~o)l ~< Cd~o(r ~O)(IIXzlILp<~2) + IIYzrlL~(~) + IITzlIL+(~)) 

for every ~,~oCgtl, where we have denoted by p' the exponent conjugate of p in the sense 

that 1/p+ 1/p' = 1. 

Proof. It is quite standard to deduce these assertions from formula (35). Hence we 
will prove only the first one. With the same notations as in (35), for every ~EB~o(~O, 2R) 
we have 

C / .  Iz(()] d(  

_~_C(L2Ro(_N+I)p,+N_I ~I/p' 
do) (]IXZHL,(B,o(~,2R)) +IIYZHL,(B~o(~,2R))) 

1 ' / e2R , k /q 
-] -C(J  0 ~o(-NZelzc-~ HTz[[Lq(B,o(,,2R) ) 

[since Br162 2R) C f12] 

C(IIZlIL~ (~)+R~-N/P([ IXZ[[L, (~)+ IIYZ[[L,(~))+ R ~+<'-N/q IITZllL+(~)). 

3.2. Intrinsic Lipschitz-continuous coefficients. 

PROPOSITION 3.1. If  condition (33) holds with a = l ,  then the function 

d(~, ~0) = d~(~, ~0)+d~o(~ , ~o) (36) 

is a pseudodistance, and the functions a and b are Lipschitz continuous with respect 

to it.(1) 

(1) We recall tha t  a pseudodistance is a function d: R3X R3--~R satisfying the same conditions as 
a distance, but  with the t r iangular  inequality replaced by the requirement  tha t  there exists a constant  
C > 0  such tha t  for every x, y, z 

d(x, y) <~ C(d(x, z)+d(z, y)). 
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Proof. It is a consequence of the estimates (32). Indeed, 

d~o(r162162162 
~C(dr162162162162162 ~/2) 
<.cd~(r162162162 

dr162 ~o) <~ C~o(r r 

<~ C(Ix-xll+lxx-Xo]-i ly-yl  I + ]yl-yoL) 
+C(Jt-tl -a(~)(x-xl) -b(~)(y-yl)l 1/2 

+It,-to-a(r --xo)- b(~'o)(yl-yo)l x/2) 
+C(la(r )l~/2Ix-z~tw2 +lb(r162 

~< C(cl~(~, r +d~o(~0, r <~ C(d(r162 

Definition 3.2. If condition (33) holds with a = l ,  then we will say that a and b are 

Lipschitz continuous with respect to the intrinsic distance, and we will denote by C~ (f~) 

the class of functions H61der continuous with respect to d. 

THEOREM 3.2. Assume that a and b are Lipschitz continuous with respect to the 

intrinsic distance, and that there exists a constant ~'I4>0 such that 

[IXa[Ic~ (n=) + IIYalIL~ (~) + IIXblIL~(~) + IIYblIL~ (~=)-4-H Vr VllL4(~) ~< M4. 

Let p be a real number such that N / ( N - 1 ) < p < N .  Then there exists a constant C only 

dependent on the Lipschitz coefficients M3 and M4 such that for every zEC~( f~ l )  

Np  
LIZLIL~ ~CIIV~IIL~ and  r =  

N - p  

Proof. Using Remark 3.1 we get 

z(~) :/Xr162 <)Xz(r + f Yr r~o(~, 4)Yz(i)de 

+/Xr162 ~)(a(~)-a(~o))Otz(~) d~ 

+ f  Yr ~)(b(~)-b(~o))Otz(r d~. 
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Evaluating the function z at the point ~o, and using identity (21), we get 

z(~o) =/Xeorr r162 de+ f Vr rr r162 dr 

f (1+~)1/2 [X, VJz(r162 + j  Xr162 r162 a(~o)) (X+a2+b2)3/2 

[ (1+~2)I/~ T~vT~z(4) d( - j  X~or~o(~O, ~)(a(~)- a(~o)) (1+a2+b2)3/2 

+ f  Vr F~o(~O, ~)(b(()-  b(~o)) 
(1+~2)1/2 

(1+a2 +b2)3/2 [X, Y]z(r de 

-/Y~or~o(~o,r162 (1+w2)1/2 T~vTez(r de. 
( l +a2 +b2)3/2 

These terms have similar behavior, so that we will study only one of them. Let us choose, 

for example, 

[ (1+w2)1/2 Xrzt(,) . . . . . .  
h(~o) = j x~or~o(~o, ~)(a(~)- a(~o)) ( 1 ~ / ~  

aq. 

If we denote by X~ the derivative with respect to the variable 4, and use identity (20), 

then we get 

1 
I3(~0) = -  fx~(X~or~o(~,~)(a(~)-a(~o))(l+a2~b2)3/2)(1-+-w2)1/2yz(~)d~ 

/ 1 
- X~orr (l+a2+b2)3/2 

x (X(l+w2)l/2+(Yv-wXv)(l+w2)l/2)Yz(~) d~, 

and so 

d (~o, ~)lYz(~)l ~)lXv(~)l IYz(~)l [f3(~0)[ ~ c f  -N-be  d~-~-Cfd-N+2(~o, d~. 

Inserting this estimate in the previous expression we obtain 

,z(~o)l ~< C(fd-U+l(~o, ~),re z(()] d~+Cfd-N+2(&, ()IV~z(r ,Vev((), d(). 

Since the pseudodistance d is doubling, then from this relation the asserted inequality 

holds, see [17, pp. 13, 354]. 
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THEOREM 3.3. Assume that a and b are Lipschitz continuous with respect to the 

intrinsic distance. Let z be a function such that 

Then there exists a constant M4 

Tz  ~ LN/(1-~)(~2) 

only dependent on 

with 0</3<  1. 

M3 and M such that for every 

t~(,~)-~(~o)-Xz(~o)(x-xo)-Vz(~o)(~-yo)l 
~< M4d~+~(~, ~o)(llXzllc,(~,)§ IIYzNc,(~)§ IITzlIL~(~,)). 

Proof. Applying inequality (35) to the function 

~(~) = z(~)- Xz(~o)(x-xo)- Y~(~o)(y- ~o), 

we get 

Iz(~)- z(~o)- Xz(~o)(X-Xo)-Yz(~o)(y-yo)l  : [zl (~)-Zl(~O)[ 

f d~-6g + 1 (~, ~)( IXz( i )  - Xz(~o)I +IYz(~) - Yz(~o)I) d~ 
JBr 

+ f d~o N+1(4, ~)la(~) - a(~o)l ITz(~)l d~ 
JBr 

+ f  d~-o N+I (~, ~)[b(~)-b(~o)] ITz(~)[ d~ (37) 

+ f  d~oN+2 (~, r d~ 
JB~o(~,2d~o(~,~o)) 

~< [since X z ,  Yz  E C~d, and by the assumptions on a and b, setting r = d~o(~, ~o)] 

J S~o (r  - J B~o(~/,2, ~) 

r r ,~l/q' 

C O R O L L A R Y  3 . 1 .  

such that 

Assume that (31) is satisfied and that there exists a constant M5 

IlaLI w:,6(~) § IITaHw2,3(~)§ IIy2allL~(~) 
+llbllw:,O(~) + IITbll w:,3(~)+ IIT2blIL~(~)+ IIT~IIL~(~) ~< Ms. 

(38) 
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Then the function d defined in (36) is a distance, a and b are Lipschitz continuous with 
respect to it, and the following inequalities hold: 

(i) If N / ( N - 1 ) < p < N ,  r = N p / ( g - p )  then 

II~IIL~ ~< cllV~zliz~ 

for all z E C ~ ( a l ) .  
1 (ii) / f  p>N,  q> ~N and • = m i n ( 1 - N / p ,  2-N/q )  then 

Iz(~)- z(~o)l < edZ(~, ~0)(llV~ zll~,(~)+ IITzlIL~(~)) 

for all zcC~(f~2) and for every ~, ~oCl2~. 

Proof. Let us first note that, by the standard Sobolev embedding theorem, there 

exists a constant only dependent on M5 such that 

IITatlL6(~2) + IITblIL6(~2) <~ C. 

By identity (19) we also have 

]IVEWlIL6(a2) ~< ]JTallLffa2) +HTbilL6(a2) <~ M5. 

Besides, all the other second-order Euclidean derivatives are bounded: 

Ota wOtaTw I 
[i02taHr2(~2) ~ C T (  (1+~-~-)1/2 ) + (1+w2)3/2 L2(~t2) 

Since 

then 

and 

IIX Ota[[L~(a~) = IIXTallL2(a~> + IIXwTailL2(a~) 

<~ I]XTaJ]L~(a2) +J]XWJlL3(~)]]TalIL~(n~) <~ C, 

II~allL~(~) ~< IIXOtallL~r <~ c 

IIc%xallL~(a~) <~ II(X-acTt)2allLZ(~2) 

= IIX2a--Xacgta--aXcgta--a(cgta)2--aXOta+a2tgttaliL2(~2) <~ C. 
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Hence a, b belong to the classical Sobolev space Hl(f l2) ,  and there exists a constant M3 

1 Now we choose ~3,...,Vt5 only dependent on M5 in (38) such that  (33) holds with a = ~ .  

such that  ~1CC~3CC~4CC~2. Hence 

IlXall L~(~)+ IN~ Xall L~(~) + IITXaNL:(~:) 

<<. IlalIw:,o(~:) +IIV~vTaIIL~(~:) +IIXTalIL~(~:) 
(21) 

IlalIw2,6(~2) + IITa]]L6(~2) + HTaHw1,3(~) < C. 

Hence the first assertion of Proposition 3.1 with p=6,  q=3  and a =  1 ensures that  there 

exists a constant C only dependent on Mi and ft~, i = l ,  ..., 5, such that IIXallLOr 
By the second assertion in Proposition 3.1, using the fact that  

we deduce that  

IIXalIL~(~,)+IITalIL~(~) ~ c, 

la(~)-a(~0)l ~<Cd~o(~,~0) for all ~,~0C~3, 

where a =  5 and again C only depends on Mi and ~ .  Applying the third assertion of 

the same proposition we now get 

la(~)-a(~o)l ~<Cdeo(~,~o) for all ~,~0~1. 

The thesis now follows from Theorem 3.3. 

4. L P - e s t i m a t e s  for  t h e  l inea r  e q u a t i o n  

nn,p  In this section we prove the following a priori estimates, in the Sobolev spaces W~,loc(~ ) 

for solutions of equation (15), under the assumption that  there exists a constant M such 

that  

IlulIL~(~) + IIv~ uIIL=(~) + IIO~ulIL~<~) + IN~alIL~(~) + IIV~blIL~(~) + IIV~ vlIL:(~) ~ M. 
(39) 

THEOREM 4.1. Let p>~3 and m be a fixed positive integer. Assume that f EC~ 

and let z be a solution of equation (15) in ~. I f  f~lCCft2CCgt then there exist constants 

C and C which depend on p, ~i and on M in (39), but are independent of c or z, such 
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that the solution satisfies the estimate 

Ilzll~+~,,(~l) + ~ IIID~zl(P-~)/2112w2,~(~ o 

Id=~+l 

Ilvll w~,~(a~)+ Ilzll w:~,~p(a2)) 

2p 2p i](l +a2 d_b2,t3/2 2p "~ 
+]]a]]w:,2~(n2)+llb]]w~,2p(~2)+ J Uw:-l,2p(~2))" 

If  k=O, then we can choose C = 0 .  

In view of further applications, we have stated here a result more general than 

strictly necessary in this context. In particular, we do not make any assumption on the 

curvature k. 

The proof of this result is a modification of the classical Moser argument,  which uses 

a Sobolev-type theorem and a Caccioppoli inequality. In our context the Caccioppoli 

inequality still holds, but the coefficients of the vector fields are not regular, and no 

embedding theorems hold in these spaces. In particular, we cannot apply the results just 

proved in the first steps of the regularization procedure. On the contrary we prove an 

interpolation inequality which will take the place of the embedding theorems. This is 

done in w In w we prove the Caccioppoli inequality. In w we perform an iterative 

procedure, and we end the section with the proof of Theorem 4.1. 

4.1. Interpolation inequalities. Let us s tar t  with a simple remark: 

PROPOSITION 4.1. For every function r  we have 

/IV vl2r 2 cf(k2+lTkl)r c/IV r :, 

for a suitable constant C depending only on the constant M in (39). 

Proof. Let us first note that  

OtaYv-OtbXv  (lj) ( Y v - w X v ) Y v + ( X v + w Y v ) X v  = ( X v ) 2 + ( y v )  2. (40) 

Then we have 
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/((Xv)2+(Yv)2)r162176 / (O )r f (T~ ) ~- taYv-OtbXv v 2~2 

( 1 6 ) / O t Y u Y v r 1 6 2 1 6 2  2 

(22)- / OtuY2v@-2 / OtuYvCYr OtuX2vr 

-2/OtuXvCXr162 2 

(29)/= Otu T~ 2 vr 2- / k (l +a2 +b2)3/2)r 2 

= [using (20) in the first term, 

and the definition of T and (19) in the second] 

= / w~(T~v)2r T~wT~vr 2 

-2 f  r vOr o + Iy.I)r 

= [since v = arctan(w) the terms 1, 2 and 5 cancel] 

~< f tV~v I I~bl IV~bt + f(]k] ]Xvl+[k I [Yvl+ITkl)r ~. 

The thesis now follows with a HSlder inequality. 

Now we can prove our main interpolation inequality: 

PROPOSITION 4.2. For every p>/3, there exists a constant Cp, dependent on p and 
the constant M in (39), such that for every function zCC~(f~) and for every r  

f IXzlpr ~p 

~<C(/,z[2Pr ,V~(,Xz,(p-1)/2),2,r + f ,XzF-I(,Xr +r162 

where the function v is defined in (18). Analogous relations hold if we replace X with Y 
or T~. 
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Proof. We have 

/ ]Xzlpr = / XzlXz]p-l segn(Xz)r 2p 

= [integrating by parts and using the fact that  X* = - X - Y v + w X v ]  

= - f ( y v - w X v ) z , X z r P  -1 segn(Xz)r 2p 

-2  / zX  ( ]X zl (p-1)/2) [X z](P-1) /2 r 2p 

- 2p f z segn(Xz) r162 

~< [by a HSlder inequality] (41) 

<~ [by Proposition 4.1] 

<<.C(]',Xz,P-Ir162162 ~p 

~-/ IVe(IXzI(P-1)/2)[2~)2P q-/ ,Xz,p-I~)2p-2]Xr 

and choosing 5 sufficiently small we get the assertion. 

4.2. Caccioppoli-type inequalities. Let us start with a Caccioppoli-type inequality 

for the derivative with respect to T. 

THEOREM 4.2. Assume that fEC~(f~), and that z is a solution of (15). Then 
there exists a constant C > 0  dependent on M such that for every r 

(42) 
P 

c / ( ,  2 (Jkl + ITkl)+ IV~ ,l 2) ITzl ~,4- / T f T z r  6. 
J J 

We will make use of the following simple property: 
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Remark 4.1. From identity (22) and the definition of T it immediately follows that  

for every function f ,  r  we have 

Analogously 

f TXfr f ~ j~TfXvr (1+~/2 0 :  /TfX*. 

Proof. We differentiate equation (15) with respect to T, then we multiply by Tzr 6 
and integrate: 

J T f T z r  f T(X2z+Y2z+T2~)Tz~ 6 

= [by Remark 4.1] 

= I :+ . . .+ I9 -  

Let us consider a few terms separately: 

1/(E~,Xlz+XTz)X~zr Tl~+TXz)r Ii + I4 = ---~ 

1 /Tyz([y,T]z+Tyz)r _ 1_2/(IT, Y]z+YTz)YTzr 6- -~ 

(2:) i / 
- 2 ((TXz)~+(XTz)2+(TYz)~+(VT:)~)r 

1 1 

=--~ ((TXz)2+(XTz)2+(TYz)2+(YTz)2)r 6 

1/((Xv)2+(yv)~)(Tz)2r +~ 
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On the other hand, using identity (21) in/2 and/6,  we get 

I2+ I5+ Is = / YvTzwXvTzr XvTzwYvTzr 6 

+I /x((Tz)~)Xvwr / y((Tz)2)Yvwr 

1 + -~ f T~((Tz)2)Tevwr 

Canceling the first two terms and integrating by parts the last three terms by means of 

the identities (20), we get 

I2 + I5 + Is = --~ 

1/(Tz)2yvVoor 1/(Tz)2Xvw(Yv_wXv)r 5 2 

"."-'S '''.+ 
, Si.zl...i..vl.+o l 
2 -2 

Using the fact that v=arctanut in the terms I, 4 and 7, and using Proposition 2.1 in the 

last term, we arrive at 

'I I.+I5+Is=--~ (Tz)'wT(k(l+a'+b2)312)r 6 

-3 f (Tz)'w(XvXr162162162 5 

f (r.)'((x,)' +(yv)' +(T~.)'),6 2 

= _12 f (Tz)h~162 

32 ff (Tz)2~&(l +a2 +b2)l/2(aTa+bTb)r 

-3 f (Tz)'~(XvXC+YvZr162162 ~ 

_ 12 f (Tz)'((xv)'+(rv)'+<")')*6 
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Summing up M1 terms we get 

1/(Tz)2(TEv)2r 
, 
-j 

<<.- f TfTzr 2 C/(Tz)'l.llTklr 

C j(Tz)2k2r +C~ / (Tz)2( (Ta)2 +(Tb)2)~)6 + -~ 

+5 f (Tz) 2 ((x.) 2 + (Yv) 2 + (T6v) 2) r 6 

1 f + ~ ] (Tz )2( (Xr  2 + (Y~b) 2 + (T,r 2) r 

By condition (19) and the boundedness of w it follows that  (Ta) 2 + (Tb) 2 < (Xv) 2 + (Yv) 2, 

and by condition (21) we deduce that  

[Zv[ [T zl + [Yv[ [T z[ <~ [ [X, T] z] + [ [Y, T] z[. 

Hence we get inequality (42), choosing d sufficiently small. 

Let us now prove another Caceioppoli-type inequality, more general than the pre- 

ceding one, in the directions X, Y, T~, for the solutions of the linear equation (15). By 

Lemmas 2.1-2.3, if z is a solution of that  equation, then its derivative is a solution of an 

equation of the form 

L~z = fo+ f l X z  + f2 Yz + f3T~z. (43) 

Hence, in view of the iteration, we will study solutions of this equation. 

r 1 , r  LEMMA 4.1. Assume that f0, ..., f3cLloc(~) and f4, .--, f6eW~,loc(f~) with r>2 ,  and 
2,2 1,3 that zcW~,loc(~)nW~,loc(~ ) is a solution of the equation 

L~z = s 1 6 3 1 6 3 1 6 3  (44) 

For every p>~ 3 there exist constants C1, C2, C3, C4 depending only on p and the constant 
M in (39), and independent of c and z, such that for every CEC~ ( ~ ) ,  r  we have 

S 'Ye(IzI(P--I)/2)'2r Cl S izIP--I(r162162162 

I +If21 1]312)r 2 2 - 2 +  

-~-C4 /Iz1"-3(1512 +1]~12 +1161~)s 

+c4 /Izp-2(I/~l+l/d + 1/61) Iv~ls 
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If the curvature k=O, we can choose C2=0. If k=O, and fl=-2Ota, f2=-2Otb, 
f3=2wTevTez, we can choose C2=C3=0.  

Proof. Let us multiply both members of equation (44) by Iz[P-3zr 2, and integrate. 

Then we get 

f (fo+Xf4+Yfh+T~f6+flXz+f2Yz+f3r~z+zf~)lzl~-3zr 2 

=/(X2z+V2z+T2z) Iz l ' -3zr  2 

= [since X * = - X - O t a ,  Y*= -Y-Orb and T~* =-T~+wT~v]  

=-  / OtaXzlzlP-3 zr /(Xz)2lz[P-3O2- 2 / lz[P-3 zXzCXr 

_/  Otbyzlzl,_azO~_(p_2) /(Vz)~lzlp_as f lzl,_azVzOy r (45) 

<<. /((-Ota,-Otb, wT~v),V~z>[z[P-azr 4@-2) f (V~(izl(~_l)/=))~s 
( p - l )  2 

4i p-1 (v~(tzl(P-1)/2)C'V~lzl(P-~)12)' 

where ( - , - )  is the inner product in R a. This obviously implies that  there exists a constant 

C > 0  such that  

4 (p -2 )  <~Cff IV~r 2 ( p - l )  2 /IV~(lzl(p-x)/2)12r IzF -1 

- f ((O~a, O~b,-~T~v), V~z> Izlp-3zs 

-/((]~, ]2, ]3), V~z}lzlV-azr e (46) 

- f (x]~+Vs163162 ~ 

Let us denote by I0, ..., I5 the terms on the right-hand side. We have to study only I1, 

/2 and/5 .  Integrating by parts the last term we have 
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Using relation (19) in the integrals 3> 6 and 9 we get 

""~ J i""i I/n1 izi'-'+'+'('-'l i i/,i-llzi<.-I.'~izi<.-'"'e p-I 

+2 S IAI Izl'-%lxr 

+f IV~v[ I]511zF-2d-~ 2(p-2)  i I]51Y(IzlC~-~)12)lzl(P-3)/2r 
p - 1  

+2f I]~11~1'-2r162 

§ l..vl i~01N'-'+', ,(.-,I i i~.l..(izi~.-.,'itzi~.-'"'+' p-i 

+2 f I%l Izl'-2r162 
and with a HSlder inequality we arrive at 

15 < C4 i IziP-2(l]41~-i]sl~-l]6i)IV'V[~2-~C4 i iziP--3(l]Al2"J- I]512-[- I]612)@2 

+5 i IV'(z("-')12)12r IzlV-XlV'r 

where 6 will be chosen sufficiently Small. 

Finally we have to consider 11 and 12 in (46). If we do not have any hypotheses 

on k, we get 

I1+/2 -- 2 i p-1 (OtaX(lzl(P-1)/2)+Otbg(lzl<P-1)/2)-wT~vT'(lzl(P-1)/2))lzl(P-1)/2r 

p-1 (]iX(Izl('-1)/2)+]2Y(Izl(V-1)/2)+faT'(Izl(V-~)/2))lzl("-l)/2r 

~< [using equation (19) and a H61der inequality] 

C1 f [ziP-I[V.vI2~2-j-C2 j Iz[P--I([]I [2"I- []212-[- I]3[2) ~2 

+~ J IV. (I.I ('-~)/2) 12r 2. 
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Now the thesis follows, inserting all terms in (46). 

Note that, when k=O, then by (21), TEvT~z=[X, Y]z. Hence, using that  Ota=OtYu 

and Otb=-OtXu from (16), and then (22), 

/ OtaXz[z[P-3zr162162 2 

=- f ~yXzlzl,-3r f ~xzrz,z],-3r f  X,z, ,z,,-2r162 

+ f wXYzlz['-3zO2-(p-2)j~YzXzlzlp-3r f ~Ylzllzlp-2Cxr 

f dx, y] z Izl,-Zzr ~ 
C ~< ~ / IV~  (Iz1('-~)/2)12r 2 + ~ f IzlP-~lV~r 2, 

where in the last step we used that  the integrals 1, 4 and 7 cancel, as do the integrals 2 

and 5. To the other we applied a H51der inequality. 

Again, inserting all terms in (46), we get the stated assertion, for k=0.  

4.3. Iterative procedure. We can now conclude the proof of Theorem 4.1 using 

iteratively the interpolation and the Caccioppoli inequalities. We first deduce from the 

preceding lemmas some a priori estimates for the derivatives of a function z, solution of 

equation (43). 

THEOREM 4.3. Let p>~3 be fixed, let fo , . . . f3EC~(~) ,  and let z be a solution of 

equation (43). Then there exist two constants C and C which depend on p and the 

constant M in (39), but are independent of r and z, such that for every r  r  

.f IV~zl ;r IV~(IV~zl(;-nl2)12O2P 

<~C/Izl2"r162162162 2p 

+c j (Ifol 2"/3+lfx12"+lf212"+lf3 i~)r ~, 

+~( /  ITzl2~/3C2" + f (IV~al+lV~bl)'/21TzlP/2r �9 

If  k=O, we can choose C=0.  

Proof. Since z is a solution of equation (43) then by Lemma 2.1, S l=XZ satisfies 
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equation (44), with coefficients 

fo =k(l+a2 +b2)3/2TYz+2XvT~vT~z, ]4 = fo+ f lXz+ f2Yz+ f3T~z, 

/ 1 : / 2 : J ~ = / 7 : 0 ,  ]5= -2T~vT~z +k(l +a2 +b2)3/2Tz, ]6= 2YvT~z. 

Using Lemma 4.1 we deduce 

/ I v ~ ( l ~ l ( ' - ~ > n ) l ~ r  ~ 

~< C, f Isll'-l(lV~r ' + r 1 6 2  Is, F'-as,k(1 +a "2 +b')a/2Tyzr 2p 

+ C4 f Is~ i p-3 (fo 2 + Jf~ )2 iXzl2 + 11212 iyzl2 + If312 IT~zl 2) 02v 
(47) 

+C4 f IsllP-alV~vlZlT~zl2r 2p+C4 f k2(1 +a z +b2)S(Tz)ZlsllP-3r 2p 

~ ~ /[slIP(b2pq-c/(qb2-t-I~Ter 2p 

+o/(I/112" +11212p + 11312p) r 2p +c4 ] k21rzt2P/sr ~p. 
Integrating by parts the second term on the right-hand side by means of Remark 4.1, we 
get 

-- / IS1 [p-3 Slk(l +a2 +b2)3/2Tyzr 2p 

= / Is11p-aslk(1 +a  2 +b2)3/2wTsvTzd) 2p 

-t 2 ( p -  2) / Y(ls I [(p_ 1)/x)[811(P-a)/2k(1+a ~ +b2)3/2Tzr 2p 
p - 1  

+ f [Sl [p-3slY(k(1 +a  2 +b2) 3/2) Tzr 2v (48) 

+ 2p / Isllp-3 slk(l +a2 +b2)3/2TzO~-P-lYO 

f ,s l.+c f ,T~vl~-Vr C f ITzl~V/3r f IY(IslI(P-1)/~),2r 2" 

+ f k2(IV~aI+IV~bl)P/21TzlP/2r +C f IV~r 2p. 
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By Proposition 4.2, we have 

/ [XzlP~92p ~-i IVr 

~ C / [z,2p r + c i [X ([Xz[(P-1) /2)[2 r i IX z[p- I (IVr162 ~-r162 2p-2 

<~ [using (47), (48) and the fact that Sl= Xz] 

(49) 

+c i Ifol"i'r j (If~l"%lf, l'P +lf.l"Dr ' '  

+ c S k~ IT~I~Pi3 dp + C i k~ ( iv.  al + I v, bl) "/~ ITzl "i2 r 

Analogous relations hold for Y z  and T,z,  and hence 

J IV,,i"+" + j IV, (IV, zl ~162 

< c S Izl"r + @ + '  + i-.+i')" 

+c S (lio12pi3 +lAI2~ +lAI2" +li312")r 

+ c ( S  [Tzl2vla r + i (lV~al + lV~blFI2 lTzl'12 d ' )  " 

Choosing 8 sufficiently small, we get the stated assertion. 

THEOREM 4.4. Let p>>.3 be fized, let fo,.., facC~176 let z be a solution of equa- 

tion (43), and let f l lcCft2CCQ. Then there exist constants C and C which depend 

on p, on fli and on the constant M in (39), but are independent of e or z, such that 

Ilzll~v:,.(al)+ ~ II ID~zl(P-1)lell~vA,~(al) 
li[=2 

3 
(IIA II w:,.(a.) + IIA II L:. (a.)) + IIv IIw,,.. (a.)+ Ilzllw:,..(a.)) 

7=1 
2p 2p 

If k=0, we can choose C=0. 
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Proof. If z is a solution of (43), then by Lemma 2.3 the function 83 =Tez is a solution 

of the same equation with coefficients 

]0 = T~fo + TJ1Xz  + T~f2 Yz + Tef3T~z + k( l +a2 +b2)a/2T~vTz 

- ( ( X v )  2 + (Yv) 2 + (Tev)2) Tez + fl YvTez-  f2 XvTez (50) 

] l = f l - 2 Y v ,  ]2=f2+2Xv, ]3=f3. 

Let us choose ~ 3  such that  Q 1 C C ~ ' ] 3 C C ~  2. By Theorem 4.3 there exist constants 

C and C independent of e such that  

3 

IIs311~:,~(a.)+}--~ II Ds^I(P-1)/2112 z ~1 U w~,~(aa) 
i=1 

3 

i = I  

2p/3 + C(llZs3 I1L=,/3(a,)+ Ilall~j.=,(a~)+ Ilbll ~:.~,(a=)) (51) 
3 

IIw~,.(a.)+ [If~llL..(a.))+ II II w:,..(a.) + Ilzll wl , . . (a . ) )  
i=1  

+a(llTz]t~3.,,/3(f~,) + [[Tz ll~.,.(ft,)+ tla[ '~:.", .( , ,)+ H bll~:.,:o(f~.,)) - 

Analogously, by Lemma 2.1, the function s t=Xz  is a solution of 

L~sl = f0+ f1X81 nt- f2 YSl q- f3res l  + Y(k(1 q - a  2 -t-b2)3/2Tz), (52) 
where 

fo = k(l +a2 +b2)a/2TYz + X fo+ X fl Xz  + X f2 Yz + X f3 

+ f2TsvTsz + f2k(I +a2 +b2)3/2Tz + f3YvTez + 2YvT2e z -  2TevYTez 

and, by Theorem 4.3, 

p (p-t)/2 2 
[1 s l[[w:,~(a,)+ II IDes 1 w2,=(~) 

3 
p 2p 2p 2p ~ (If :o Lt~?..,.~.,.> + Z  (II :,~ tL...: ,,~.> +, :, ii,.,.~,-,.~)+ llv tl.,,: .,.~..> + LI.. % ..~,,.>) 

i = i  

C 8 P ~ 2p/3 2p 2p + II 311w:,.(a~)+C(llTslllL=./~(a~)+llaHw2,=.(a~)+llbllw~,~.(a.)) 

(51) 2p/3 3 
<~ C(l[follw:,.~.(a.) + ~ p + 2p ._]_ 2p 2p (llf~llw:,.(a.) IILIIL..(~=))IJvllwx,=.(a.)+llzllw~,..(a=)) 

i=1  

+~(llTzll~ffa /.(.=) +HZzll~.(.~) 2p 2p + IINI w:,..  (n~) + II bll w:,=.(..)) �9 

Finally, arguing exactly in the same way with Yz, we deduce the thesis. 



S M O O T H N E S S  OF G R A P H S  W I T H  N O N V A N I S H I N G  LEVI  C U R V A T U R E  117 

Proof of Theorem 4.1. 

tion (43), then 

Z p II IIw~+~,~(a,)+ 

We will prove by induction that,  if z is a solution of equa- 

II ID{zl(P-1)/2112wb~(~,) 
li1=~+1 

i = I  

2p 

+e(llTzli2~3 w3(a2) + p 2p 

+ II bll~:,,~p(n~)+ II (l+a2+b2)a/211~-,,~p(a~)), 
for suitable constants C and C depending only on ~2i and M and such that  C = 0  if k=0.  

By Theorem 4.4 the assertion is true for m = l .  Let us assume that it is true for m - 1 .  

Since z is a solution of (15) then T~z is a solution of (44), with coefficients described 

in (50), and there exists a constant independent of e such that  

IIT~zll~:,,p(a,)+ ~ II IO~T~zl(?-~)/211w:,~(a,) 
l i l=~ 

.3 

i=1  

+llk(l +a2 +b~)a/~T~vT~zll ~wa ,~_.o +l l (V~v)2V~zll~( .~_, ,~. ,~,  
3 

2p/3 
+llAllw:,-,,p(a~) IIAIIw;,~p(a~)) 

i =1  

(53) 
+5([[TT~z[]~[~a_~,~w3(a2) T P a 2p +11 T~zllw:.-~,~(a~) +ll IIw:,-,,~(~) 

2p ( l+a2 +b~) ~/~ II~,,,-',~,,,r~ ,) + Ilbllw~-l'~P(a~) +11 o , 5, 
3 

2p <~ C(lif~ + E  (}} fi }l~vp'p(n2)+}}fiIIwp-',2p(a2)) 
i=1 

2p 2p 
+ IIv II wr,,~,(n~)+ II z II w~,~,,(r~)) 

+~(llTzl l~,~.(a~) +llTzll~:._,,~(n~ ) ~ +llallw:,-,,~p(a~) 
2p  _ . + llbll w ~ - ' , ~  (as) + II (1 +a 2 + b2) 3/211~2, 2,~,(n2)) 

Analogous relations hold for X and Y, and the thesis follows. 
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Remark 4.2, Let p ~ 3  and let m be a fixed positive integer. Assume tha t  fEC~ 

let z be a solution of equation (15) in fl, and let ~lCC~2CCf~. Note that  

ii(v~v)2v~ ,2p/3 Z W~,,_l,2p/3(~2) 

2p/3 {~7~V'~2{V ~2ZIr2p/3 

p p 4p 4p 

Then, by Theorem 4.1 and (53), 

ttT~ztlPwy*,'(no + E I I  tDiT~zl('-l)/211w:,~(~) 

-~- C (iBTT~ z ]] ~4~(2 , , , , / ,  (~,) -~-H TTe z H ~v~n-,,, (ct,)-~-]]al]~-1,2p (,,)-~- ii b]]~4~,,- ,,,~,(~, ) ) �9 

Analogous relations hold for X and Y, and we get 

IiI=-~+I 

~< C(11f11~(2,.~.(~,) 4p 4p 

5. R e g u l a r i t y  o f  s o l u t i o n s  o f  t h e  n o n l i n e a r  e q u a t i o n  

In this section we conclude the proof of Theorem 1.1. In order to do so, we first prove 

an a priori est imate for the solutions of the nonlinear regularized equation (14) in the 

space W~ '~,p, independent of ~. By the Sobolev Embedding Theorem 3.2 this leads to an 

estimate in the space C~,~. Letting ~ go to 0 we deduce that  the function u has all the 

weak Euclidean derivatives of order 2 in C~. Then, by the results in [5], we conclude the 

proof of Theorem 1.1. 

5.1. w~m,p-regularity of solutions of the regularized equation. Let u be a solution 

of equation (14) satisfying conditions (39). In order to prove an a priori estimate in the 

spaces W m'p, for the function u, we will make use of the a priori estimates established 

in w together with a new interpolation inequality, based on the hypothesis on k: 
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I 2  PROPOSITION 5.1. Let kr in f t x R .  If TzEW~,'loc(ft) then for all CEC~, 

Pro@ Let s4=Tz. Then 

f Is41ar 

1 f ikl(l+a2+b2)a/21s413r ~< sup 

�9 1 = slgn( k ) sup ( ~ ) / k( l + a2 + b~) 3/2 Tz  sign( sn ) lS412 dp 6 

(21) . . . .  [" 1 "~ f (-[X,Y]z+T~vT~z) = m g n [ ~ ) s u p ~ )  a sign(s4) Is412r 

= [integrating by parts by using (20) we get] 

=sign(k) s u p ( ~ ) ( f g z X ( s i g n ( s 4 ) l s n L 2 r 1 6 2  

+ sign(k)sup (~k[) f (Yz (Yv-wXv)+Xz(Xv+wgv)+TezZev)s ign(s4) l s412r  6 

�9 1 

-2/XzYs4,s4,~6-6/Xzs2(~5Y~)) 
�9 

and the thesis follows. 

Remark 5.1. Differentiating equation (19) we deduce that 

/ Yv - wXv "~ T Y v -  wTXv  - T w X v -  ( Y v -  wXv) wTv 
T 2 a = T [ ~ )  - (1+w2)1/2 

(55) 
T Y v -  w T X v - T v X v -  wYvTv  

(l+w2)l/2 

and 
T2 b = T X v + w T Y v +  T v Y v - w X v T v  

(1+w2)1/~ (56) 

Applying the previous result, we verify that a, b and v satisfy all the assumption 
necessary to apply our Sobolev embedding. For technical reasons we start with the 
derivatives of the function v: 
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LEMMA 5.1. If  ~iCCfl and u is a solution of equation (14) in f~. with k~O. there 

exists a positive constant C depending only on the constant M introduced in (39) and f~i 

such that 

]]TV][L~(~)+[[V~Tv[[i2(~)+[[TV~v]]i:(~)+[[V~vTv[[i2(n~) ~ C, (57) 

where v=arctanut is the function defined in (18). 

Proof. By Proposition 2.1 the function v is a solution of equation (29). Then by 
Theorem 4.2 we have that for every CEC~(f~) 

/ (Iv~ Tv 12 + WTV~vI~), ~ + / I  V~ vl2(T~) 2 ,~ 

~< C / ( r t + lTkl) + IV~ r ~) lTvl 2 r + C / T2 ( k(1 ~- a 2 + b 2 )) Tvr 6 

< C / ( r  + ]V~ r ]2r + C / ( 1  + ]T2a] + [T2b[ + ]Tat s + [Tb[ 2) [Tv[ r 

< [by Remark 5.1 and (19)] 

C / ( r  + ,Ver 2) [Tv]2r 4 + cf(1 + [TVev, + [V~v, [Tv[ + ]Vev[ 2) [Tv[ r 

+5/(,Tv~v,2 + [v~v,2 ,rv,2)r 

for 5E]0.1[ to be fixed later. Choosing 5 sufficiently small we have 

f (tv~ T~ J 2 + ITV~v?)r ~ +C f iV~?(Tv)2r ~ 

~< [for a value of 5 which can be different from the preceding one] 

~ C f (r +[Ver / [Tv[3r / ,Vev[2r 

~< [by Proposition 5.1] 

C/ ( r162  ~/(,V~Tz,2+(V~v)2(Tz)2)r / ,V~v,2r <T 
Choosing 5 sufficiently small, and r  in 121, we get the thesis. 
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Remark 5.2. We explicitly note that, if fhCCl2, then from the previous lemma, 

and (55) and (56), it follows that 

NT2a]]L2(al) + [[T2b[[L2(fh) <~ C, ( 58 )  

for a constant C only dependent on M and 121. 

Let us estimate the derivatives of the functions a and b: 

LEMMA 5.2. For every f~lCCft, there exists a positive constant C depending only 
on the constant M in (39) and f~l such that 

IIV~TallL2(al) + lITVeallL2(al) + IlV~vTallL2(al) 
(59) 

+ IIV~Tb]]L~(al)+ IITVe bllL2(a,) + IlVevTbllL2(n,) <~ C. 

Proof. By Proposition 2.1 the function a is a solution of equation (27). If we denote 

the right-hand side fa, we have 

Jfal <<. ]Veal+lVebl+lVevl. (60) 

Choosing CEC~(fh) ,  r in ft, by Theorem 4.2, we get 

/ ( l V e  Tal2 + ITV~ al2) r + /IV~vl2(Ta)2 r 

C / (02 (Ikl + ITkl)+ ]Ve 012) ITal 2 r + C f f  Tfa Tar 6 <~ 

~< [since Ta is bounded in L2(f~l) by the constant M, and r is fixed] 

<.C(l+fTfaTar 6) 
= [integrating by parts with respect to T, and using (20) of the adjoint] 

=C(1-ffaT2ar162 ~) 
<~ [since ITa I <~ IV~al] 

C ( l  + f (lfa[2 +lT2a,2 + ITal2 +IZal2lrv]2)r <<. C, 

by (60), Lemma 5.1 and Remark 5.2. This inequality provides an estimate for the deriva- 

tives of a, and arguing in the same way with the function b, we conclude the proof of the 

lemma. 
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Remark 5.3. We explicitly note that, if ~ICC~ '~ ,  then 

IlVevffLo(al) + IITallL~(nl) + flTbllL~(a~) <~ C, (61) 

for a constant C only dependent on M and ~21. 

Indeed, by (19) we have that 

Tb+ wTa T a -  wTb 
X v - -  ( lncc02)1/2,  Y v =  (l_j_w2)1/2, Tev=eTv,  

and hence, 

IlXV~vflL~(a~) +llYV~vl[L~(a~) <~ IlXraHL~(a,) +llXrbllL~(al) +HXvTallL~(a~) 

+ IlXvTbllL:(a~) + [IXTv[IL~(a,) + IIYTallL2(al) 

+ IIYTbllL2(n,) + IIYvTallL2(fh) 

+ IIYvTbffL~(a,)+ IIYTvffL~(a~) <~ C, 

for a constant C only dependent on M and ftl, by Lemma 5.1 and Lemma 5.2. In 

particular, 

Ilvllw2,~(a~) <~ c. (62) 

On the other hand, always by Lemma 5.1 we have 

IITV~vIIL:(n,) <. C. 

Hence by the classical Sobolev embedding theorem there exists a constant C only depen- 

dent on M and ~1 such that 

IIV~v[IL6(~l) ~< C. 

By (19) we also have 

IITaflL~(~l) + IITbllL6(al) ~ C. 

LEMMA 5.3. For every ~ I E C ~  there exists a positive constant C depending only 
on M and the choice of ~tl such that 

flaIIwp,2(fli) + Ilbllw:,2(a]) + Ilvll w:,3(al) + Ilvrlw:,~(al) ~< C. 

Proof. Applying Theorem 4.3 to the function z=a, we get 

/ 'Vea ]3 r162  6 ~ C (1-~-/a6r162 6 

+ /  'Ta '2r  'V~a '206T/  'VEb'2r �9 
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Choosing r  in ftl,  and using the estimate (60) for f~, we deduce that  

Also, using Lemma 5.2 we have 

IITVeallL2(f~l) +llXVealIL2(al)-~-IIYV~alIL~(a,) ~ C. 

Using the classical Sobolev embedding theorem, we get 

and in the same way 

Applying Theorem 4.1 we deduce 

Ilallw2,~(al) ~ C, 

Ilb[lw2,6(~1) ~ C. (63) 

Nallw],~(al) +llallw2,~(a~) <<. Uf~llw2,2(a~) +llVllwj,~(a~) +llTa]lw2,~(al) 
+ IlralLL~(a~)+ Hall w~,0(a~/+ Ilbll w~,o(al) ~< C, 

by Remark 5.3 and Lemma 5.1. Arguing in the same way with the functions b and v, 

the assertion is proved. 

Finally let us verify that  the last condition on the coefficients a and b required by 

the Sobolev embedding theorem is satisfied: 

Remark 5.4. For every ~ I C C ~  there exists a positive constant C depending only 

on M and the choice of f~ such that  

and 

Ilal[w~,~oc(a) + ]lbU w~,~oc(a) ~< C. 

Pro@ By (19) and Lemma 5.3, 

IITaU wel'3 (al)~-HTalIw~,~(al)+ IITbllw1,3(a,) + IITbUw~,2(a~) 

In particular, we get 

IIT(V~)2a[[L2(al) = JJ [T, V~]V:a[JL:(al)+ JJV: [T, V~]aJJL:(~I)+ I[(V~)2Ta[[L2(al) 
(21) 
<<. HV~vTV~alIL2(~,) +HV~(V~vTa)HL2(fh) +H(V~)2TaHL~(a,). 
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Writing the first term as (V~v)2Ta+V~vVETa by means of (21) and using a HSlder 

inequality we arrive at 

IIr(V~)2allc~(~,) <~ IIV~vllw2,~(~,) +llTallL~(~) +llTallw:,~(a,) 
+ I1~11 wZ,~(~,)+ IITallwz,~(~,) <~ M. 

This last inequality, together with Lemma 5.3 and the classical Sobolev embedding the- 

orem, ensures that  

Ilallwz,~(~,) + Ilbllw2,~ <~ C. 

Note that,  by Remarks 5.2, 5.3 and 5.4, we can apply the Sobolev embedding theorem 

stated in Corollary 3.1, and we deduce 

THEOREM 5.1. For every ~ l C C ~  there exists a positive constant C depending only 
on M and the choice of f~l such that 

Ilull~:.2(n,) ~< c. 

Proof. Applying Theorem 4.1 to the function a we get 

Ilallw:,3(n,)+ll~lIw:.2(al) 
<~ HAllw],~(al) +llVHw],,(al) +llVllw~,12(nl) +llallw],a(nl) +[lallw),12(nl) 

+ IlZallw],~(al)+ IlTallwj,,(al) + Ilallw],6(al) + I]bllwg,6(al) 

~< [by Corollary 3.11 

<<-I}fMlw2,=(al)+llVllw2.=(a~)+llallw2,=(a,)+llrallw:,~(a,) 
+llbllw2,~(a~) + HZblIw2,~(a~) + HalIw:,~ta,) +llbPPw:,~(al). 

Analogously, arguing in the same way with b and ev, we get 

IIXT~llw:,2(a,) ~< c, 

which is equivalent to the thesis. 

5.2. C2'~-regularity of viscosity solutions. Let u be a strong viscosity solution, 

and (uj) its approximating sequence, as defined in Definition 1.1. For each function uj 
we will denote aj=auj and b3=b~j, the coefficients introduced in (3); Xj and Yj the 

corresponding vector fields, defined in (8); V~ and W~k,P(fl) the related gradient and 

Sobolev spaces, introduced in Definition 2.2, Besides, a, b, X, Y, V0 will be the coefficients 
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and vector fields associated to the limit function u, while Wk'P(gt) will be the associated 

Sobolev space. By definition of viscosity solutions we have 

By this assumption and the results in [91, setting as in (18) v s =aretan(Otuj), we have 

lIVej as IlL2(a~) + IIV~j bj I[L~(al) + IIV~j vj IIL~(al) <~ M, 

for a constant 2~ independent of j .  Besides, 

as-+a, bj--+b a s j - - + + o c  inL~oc(ft). 

THEOREM 5.2. If uELip(Ft) is a strong viscosity solution of (6), then for every 

c~E]0, 1[, a, b belong to the space C~ucl,ioc(~) of H6lder-continuous functions in Euclidean 
sense. Besides, a and b admit Taylor developments of first order with respect to the 

intrinsic distance d: if z=a, or z=b, and c~E]0, 1[, then for every 4Eft, 

z(4) = z(4o) + Xz(~o)(x-  Xo) + Yz(~o)(y- Yo) + O(d 1+~ (4, ~o) ). 

Pro@ Let f~lCCft2CC~t3CCf~, let c~C]0, 1[, and let p<N/(1-c~). Since as-=Yju j 

and bs=-X ju j ,  by Theorem 5.1, 

]laj 11 w2j2 (a3) + Ilbs II w:j2(aa) + Ilvs II wgj~(a3) ~< C, 

for C independent of j .  By Sobolev Embedding Corollary 3.1 there exists a constant C 

only dependent on 2~ and p such that 

HOtay IILP(~I) + HXj as H LP(nl) + IIYj aj II L,(al) <~ C Haj ]Iw2j~(al) <~ C Ilaj IIw3~4(al) 
<~ CNas IIw:;2(~) <. c. 

(64) 

Consequently, by the classical Sobolev embedding theorem, (aj) is bounded i n  C;~ucl(~'~l), 

and the limit a belongs to this space. By Sobolev Embedding Corollary 3.1 it also follows 

that there exists a constant C > 0  independent of j such that for every 4, ~0E~tl 

IXyaj(4)-Xjas(~o)l <. Cd?(4, ~o), 

where dj is defined as in (36), in terms of uj. 

By Theorem 3.2 the Taylor expansion follows. 



126 G. C I T T I ,  E. L A N C O N E L L I  AND A. M O N T A N A R I  

THEOREM 5.3. If uELip(~) is a strong viscosity solution of (6), then uEH2or 

and for every c~E]0, 1[, for every multiindex I of weight 2, DiuEC~.lo c. 

Proof. Applying Theorem 5.1 and Sobolev Embedding Corollary 3.1 to every ele- 

ment of the approximating sequence, and letting j go to oc, it follows that  for every 

multiindex I of weight 2, DxuEC~,lo c for every c~E]0, 1[, while uEW 5'~, from which it 

follows that  uEH12oc(t2). 

5.3. Proof of the main theorem. We can now apply to the solution u of class C 2'~ 

just found the regularity results stated in [5], and conclude the proof of the main result. 

This approach is an iteration of the method used in w Since a and b have Taylor 

developments of order 1, it is possible to introduce the following vector fields, which 

approximate X and Y much better than the analogous vectors introduced in w 

X~o=Ox + P~o a(~)Ot, Y~o=Oy + P~ob(~)Ot, 

where P~oa(~)=a(~o)+Xa(~o)(X-Xo)+Ya(~o)(y-yo), and P~ob(~) is defined in an anal- 

ogous way. It then follows that  

k(~o)(l+u~) 1/2 0+a2+b2)3/2 (65) 

In order to use the theorems stated in [5], we first recognize that  the distance used here 

is equivalent to the control distance associated to the vector fields used in [5], and that  

a function with weak derivative of class C~ has also the Lie derivatives in C~, which is 

the notion of derivative used in [5]. 

Remark 5.5. If condition (33) holds with a = l ,  then the pseudodistance d is equiv- 

alent to the pseudodistance 

a~(~, {o) = inf{((0~ +0~)2+ 0~) 1/4:70 E E(~, ~o)}, 

where 

E({, {0) = {70: [0, 1] --+ R3: "~o(0) = {o, 7'/0(1) = {, 7~ = 01X+02 Y+OaOt, 0 E R3}. 

Remark 5.6. Assume that  fECl~c(~ ) for some c~E]0, 1[, and its weak derivatives 

X f, YfEC~oc(~), OtfEL~oc(f~ ) with p>l/c~. Let ~E~, and let 3/be an integral curve of 

X such that  7(0)=~. Then 
d 

X f(~) = --~-h (f~ h=O" 
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We refer to [10] for the  proof  of these two remarks .  

Proof of Theorem 1.1. The  funct ion u is a solution of class C 2'~ of the  equat ion  

X2u+ Y 2 u -  (Xa+ Yb) Otu = f (1  + u t  2) 1/2, 

with f=k( l+a2+b2)3/2EC~ '~ for every a < l .  By  (65), 

(1-]-U2 (~0)) 1/2 
XOtu(~o) = k(r +a2 +b2)a/2 (~o)X(X~oY~o-Y~oX~o)U(~o). 

Then  by T h e o r e m  3.3 in [5], OtUECd '~. Since u E H  2, the  derivat ive Ota belongs to L 2. 

By  relat ion (19), and the regular i ty  of Otu, this derivat ive belongs to  C~.  T h e n  a, b 

and  f are of class C 1'~ and par t ia l ly  differentiable wi th  respect  to  t, wi th  derivat ives of 
2~ class C 2. Then  by T h e o r e m  3.2 in [5], OtuEC~ '~. In par t icular ,  uEC~,cl. 
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