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1. Introduction

In this paper we prove the C°°-smoothness of Lipschitz-continuous graphs of C? with
smooth and nonvanishing Levi curvature.

Let © be an open subset of R3. Given a C%-smooth function u: 2—R the Levi
curvature of its graph at the point (£, u(£)), £€€, is the real number

Lu
k(i)u): (1+a2+b2)3/2(1—|—u%)1/2’ (1)
where
LU= Uy +Uyy + 20Uz +2buyt+(a2+b2)utt, (2)

and a=a(Vu),b=b(Vu) depend on the gradient of u as

2 —P1P3 —P1—P2P3
a,b:R® = R, a(p):]—)—l-_:)p—g—, b(p)z—ﬁTpg—' (3)
In (1), (2), £=(z,y,t) denotes the point of R3, u; is the first derivative of u with respect
to t, and analogous notations are used for the other first- and second-order derivatives
of u.

The notion of Levi curvature for a real manifold was introduced by E.E. Levi in
1909 in order to characterize the holomorphy domains of C2. Since then, it has played a
crucial role in the geometric theory of several complex variables.

In looking for the polynomial hull of a graph, Slodkowski and Tomassini implicitly
introduced in 1991 the following definition of Levi curvature for Lipschitz-continuous
graphs [16].
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Definition 1.1. Let  be an open subset of R and k a given function defined on
2 xR. The graph of a Lipschitz-continuous function u: 2— R will have Levi curvature
k(§,u(€)) at any point £€€ if there exist a sequence (u,) in C?(2) and a sequence of
positive numbers €, —0 satisfying the conditions:

(1) There exists M >0 such that ||unllLec()+|Vtn Loy <M for any neN, and
(uy,) uniformly converges to u.

(i) Le,un=k(&,un)H(E, Vuy,) in Q for any neN.

Here £, and H denote the operators

Ut
1+u?

Lou:= Lu+e? (4)
and
H(E, Vu) = (1+a” 4+ (1+u}) /2, (5)

In (ii), v, and Vu, are computed at the point &; a and b in (5) stand for a(Vu) and
b(Vu), respectively. If the graph of « has Levi curvature k(&, u(£)) at every point £€,
we will also say that u is a strong viscosity solution of

Lu=k(E,u)H(§,Vu) in . (6)

If the function k, together with its first derivatives, satisfies some general growth
conditions, the class of Lipschitz-continuous graphs with Levi curvature k is very large.
Indeed, the existence of such graphs has been established by Slodkowski and Tomassini
with viscosity techniques, starting from the key remark that the quasilinear operator £
in (2) is degenerate elliptic as its characteristic form

A(p, €)= C+2+2a(p)¢1(s3+2b(p) CaCa+ (a2 (p)+b2(p)) 2

7
= (Q1+a(p)(3)*+ (G2 +b(p)s)?, @

is nonnegative defined. Their result is the following: Let UCCQ be a strictly pseudo-
convez domain with OU€C?*, 0<a<1. Let ke C1(QxR) satisfy the conditions of Pro-
position 2 and Theorem 3 in [16]. Then, for every ¢€C%%(Q) there exists u€Lip(U)
whose graph has (generalized) Levi curvature k(€,u(€)) at any point £€U. Moreover,
w(&)=¢(&) for any £€dU (see [16, Theorem 4]).

The function u solves the equation

Lu=k(& u)H(, Vu)

in the weak viscosity sense of Crandall-Ishii-Lions (see [11]). Since the minimum eigen-
value of A(p,-) is equal to zero for every pcR3, the operator £ is not elliptic at any



SMOOTHNESS OF GRAPHS WITH NONVANISHING LEVI CURVATURE 89

point, and the regularity results for viscosity solutions of nonlinear elliptic [3} and para-
bolic equations [18], [19] cannot be applied to our case. We have to introduce a completely
different procedure, based on the particular structure of the Levi equation. This is well
highlighted by some identities first explicitly written in [5], involving the two nonlinear
vector fields, which appear in the characteristic form of £, defined in (7):

X(p):=0:+a(p)d;, Y(p):=0,+b(p)o;, (8)

where a and b are defined in (3).
For a given function u: Q—R we will write X instead of X(Vu). Analogous abbre-
viations will be used for Y. Then the operator £ can be written as

L= (X u+Y u)(1+u),

and by relation (1) we call the following the prescribed Levi-curvature equation:

) - (1+a2+b2)3/2
X u+Y u=k(¢, u)—_(1+uf)1/2 (9)
The Lie bracket of the first-order differential operators X and Y is
Lu
X,Y]=—"T220,. 10

This structure has been very recently used by two of the authors in [8] to prove a
first regularity result for viscosity solutions:

THEOREM. Let us suppose that ke C*(Q2xR). Let u:Q—R be a Lipschitz-conti-
nuous function whose graph has Levi curvature k. Then Xu,Yu€HL () and u satisfies
(6) pointwise almost everywhere.

Here H (£2) denotes the classical Sobolev space of order 1.

Without any extra condition on the curvature k it seems that the previous result
cannot be improved. On the other hand, the following theorem was known ([5], see
also [9]):

THEOREM. If k€C®(QxR) and never vanishes in QxR, then every C2*(Q)-

loc
classical solution to (6), with a>%, is of class C™ in Q.

In this paper we fill the gap between these results and prove a regularity theorem
which has been announced in [6].
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THEOREM 1.1. Let k€C>(Q2xR) be such that k(£,s)#0 for every (£,s)eQxR.
Then every Lipschitz-continuous graph having Levi curvature k is of class C*<.

Together with Theorem 4 in [16] and Theorem 1.1 in [5] Theorem 1.1 above imme-
diately gives the following C°°-solvability result for the Dirichlet problem related to the
Levi operator.

COROLLARY 1.1. Let Q and k satisfy the hypotheses of Theorem 4 in [16]. Let us
also assume that k€eC>®(QxR) and k(&,s)#0 for any (§,5)€QxR. Then, for every
G C?*(0Q) the Dirichlet problem

{cuz k(€ u)(1+a?+02)32(1+u2)1/2  in Q, an

u=¢ on 0N

has a solution ue C>(Q)NLip(Q).

When k vanishes identically and 2 satisfies more restrictive hypotheses, a first ex-
istence result for (11) was proved by Bedford and Gaveau [1]. If k=0, Q is a regu-
lar pseudoconvez open set, p€C™+>(Q), meN, and N and ¢ satisfy some additional
geometric conditions, then problem (11) has a solution ueC™*(Q)NLip(€)), 0<a<1.
Besides, the graph is foliated in analytic complex curves.

We would like to stress that the geometric arguments used in {1] do not work when
k#0. We emphasize some important differences between our Corollary 1.1 and the result
of Bedford and Gaveau. The interior regularity result and the foliation phenomena of the
solutions of the Dirichlet problem given in [1] for k=0 strictly depend on the regularity
of boundary datum. The C™*“-regularity result cannot be improved, since every C?-
function u depending only on the variable ¢ solves equation (6) with k=0. The foliation
result has been extended in many directions (see [2], [4], [15]), but in all these papers it
follows from the topology of the boundary of €. On the contrary, in Theorem 1.1 the
local regularity property only follows from the structure of the operators £ and H, since
if k is of class C'™ and everywhere different from zero, any Lipschitz-continuous solution
is of class C* independently of the regularity of boundary datum. Very recently, using
a PDE technique similar to that introduced here, two of the present authors proved that
also the foliation result for k=0 only depends on the structure of the operator, and in
(7], [10] gave the following local version of it: Every Lipschitz-continuous graph with Levi
curvature k=0 is foliated in analytic curves.

1.1. Sketch of the proof. The paper is organized as follows. In §2 we fix a solution
u of the equation

Leu= k?(§, U)H(§> Vu)
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in an open set {2, and we denote by L. a linear operator formally defined as L,:
Le=X*+Y?+72,

where T, =¢(1+u?)~'/29;, and the coefficients of the vector fields X and Y depend on u.
Then we prove that the coefficients @ and b of the vector fields and the two functions

w=0u and v=arctan{u,)

are solutions of

Lez=Ff, (12)

with different functions f.

The proof of Theorem 1.1 is based on the regularity of the solutions of this linear
equation in some Sobolev spaces W ™7 naturally defined in terms of the vector fields
X, Y and T, but not explicitly on 8;. The classical elliptic regularization procedure
is based on Sobolev inequalities and on a priori estimates of Caccioppoli type. In the
present situation neither the Caccioppoli inequality holds, since the vector fields are not
self-adjoint, nor the Sobolev inequality, since the coefficients of the vector fields are only
bounded.

To overcome these difficulties we first prove an interpolation inequality, which will
play a role similar to the Sobolev one.

ProrosiTiON 1.1. Let M be such that
llalloo +11Bloo + V] oo < M.

For every function zeC™, ¢cC§°, we have

/ X0 <e [ 19.00) P +e / (Ve +¢%)(1+25), (13)

where ¢>0 only depends on M and k. An analogous inequality is also satisfied if we
replace Xz with Yz or T, 2.

Only if the coefficients are much more regular we can establish a Sobolev-type in-
equality with optimal exponent (this is done is §3). In §4 we establish some a priori
estimate in the intrinsic directions X and Y, weaker than the classical Caccioppoli one.
Using these inequalities together with the interpolation ones, we prove a priori estimates
in WP for solutions z of (12) which holds under very general assumptions on the
commutators of the vector fields, but requires some strong a priori estimates on the
derivative d;z, and this, up to now, has not been studied yet.
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In §5 we conclude the proof of Theorem 1.1, starting with the estimates of the
derivative 0;, which, by equality (10), can be expressed in terms of the commutator
of the vector fields. We also use in an essential way the nonlinearity of the equation:
the interpolation and Caccioppoli inequalities for the derivative d; provide a gain of
regularity only if applied to the function d;v. In this way we obtain an L2-estimate for
Xv, and Y. Since vi=uy;/(1+u?), then, due to Definition 2.2 below, v; has to be
considered a derivative of weight 4 of u, while Xv; and Yv; are derivatives of weight 5 of
the same function. Once the summability of these derivatives with respect to ¢ is proved,
it is possible to use the results in §4, and obtain analogous estimates for any derivation
of weight 5 and 4. In particular, the coeflicients a and b of the vector fields are now
regular, and we can apply the Sobolev-type inequality proved in §3. It then follows that
the derivatives of weight 4 belong to L*, the derivatives of weight 3 belong to L? for
every p, and the derivatives of weight 2 belong to suitable classes C* for every a€)0,1[.
Now, using the results in [5], we deduce that ue C*~.

2. Properties of the coefficients a and b

Let us assume that u is a solution of class C™ of the regularized equation
Lou=k(1+u?)(1+a2+b%)3/2, (14)

on an open set 2, where L, is the operator defined in (4). By simplicity let us denote by
a=a(Vu) and b=b(Vu) the coefficients introduced in (3), and write X and Y instead of
X{(Vu) and Y(Vu), the vector fields defined in (8). Let us also write

O

VitaZ

In this section we define some Sobolev spaces in terms of these vector fields, and a linear

T.=¢

operator, formally defined as L,:
Le=X?4+Y?4+T2

Then we prove some properties of the coefficients a and b of the vector fields. In particular,
we will prove that they are solutions of a linear equation of the type

L.z=f, (15)

with different functions f. We will also introduce a new function v=arctan(u;), which has
properties similar to u;, and satisfies the same equation, but with a simpler right-hand
side.
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2.1. Natural Sobolev spaces. It is natural to give the following definition:

Definition 2.1. If f is a LL (2)-function, we say that it is weakly differentiable with

loc

respect to X if there exists a function g€ L] () such that

loc

/fX*gb:/gtﬁ for all p€C§°(Q),

where X* is the formal adjoint of X. The weak derivative with respect to any other
vector field is defined in an analogous way.

Definition 2.2. For every fixed ¢ we will denote

1
Di=X, Dy=Y, D3=Ts=€ﬁ8ﬁ ve:(X;Y,Ts)7
where w=u;, and we will also define
Dy,=T= 1 0
! Vitw?

We will define the weight of an index i€ {1, ...,4} as
li|=1 forevery i=1,...,3,
and, due to identity (10),
4] =2.

In general, if i=(i1,...,iq)€{1,2,3,4}7 we set [i|=3"; |i;| and
D,=D,,..D;,.
Then, for any open set UC{2 we call
WIP(U)={f:D;fe LP(U) for all i such that |i|<m},
I fllwzr @y = Z 1D fll e (ury-

ld)<m
In particular,
I llwer @y = 1£llLew)-
We also say that feW! P (Q) if for every ¢€C§°(Q), foeWIP(Q).

€,loc

Let us recall that the coefficients of the operator are the derivatives of the function ,
in the direction of the vector fields:

Yu=a and Xu=-b. (16)
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From this equality it follows that
Lu=(X?u+Y?u)(1+u?)

and
Lou= (X2u+Y?u+T2u)(1+ud). (17)

Moreover, if we introduce two new functions,
w=0u and v=arctan(us), (18)
the derivatives with respect to ¢ of the coefficients a and b can be expressed as
a=Yv—wXv and Ob=-Xv-wYwv. (19)
As a consequence the formal adjoints of X, Y and 7, become
X' ==-X-(Yv-wXv), Y'=-Y—-(Xv+wYv), T;=-T.+wTv-. (20)
Also the commutators can be simply expressed in terms of v:
(X, Y] =TT, —k(1+a®+b%)*?T, [X,T.|=-YvT., [Y,T.]=XvT.. (21)

Finally we recall that for every feC>(Q), for every p€C§°(£2),

/atqus:—/ath(p and /atqus:—/athqs. (22)

All the assertions (16)—(22) are direct computations. We refer to [8] for a detailed proof
of them.

2.2. A linear equation. We turn now to prove that a, b and v are solutions of the
linear equation (15) for a suitable right-hand side f. We first note that, by (14) and (17),
1 is a solution of the equation

(1+a®+b%)%/2

Lou=k
N CEmCIVE

(23)
Now we prove that, if a function z is a solution of equation (15), then its intrinsic
derivatives Xz, Yz and Tz are solutions of the same equation, with different right-hand
sides.
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LEMMA 2.1. If z is a solution of (15) then s;=Xz is a solution of the equation
Lesi = X f+k(14a®+62)32TY24Y (k(1+a°+6%)*/Tz)

(24)
F2X 0T vTez-2Y (T vl 2)+2T. (YT 2).

Proof. 1t is a direct computation. Differentiating the equation with respect to X,
we get
X%514Y 2514+ 251 = X f=[X,Y|Y2=Y[X,Y]2— (X, T.|Te2— T [X, T:] 2
WX f Tl Yot k(1+a2+b2)¥2TY2
—Y(TovT.z—k(14+a?+b2)%2T2)+ YuT2 2+ T. (YT, 2).

Note that

LY+ YoT22 2 _TwY T2+ XoTwT 24 YoT22

= Y (TvT.2)+YTouT. 24+ XvTvT, 24T, (YvT.2)-T. YT,z
@ Y (TwT2) + T (YoT.2) + 2XvTov Tz,
Inserting this computation in the previous one we infer the thesis.

An analogous computation ensures

LEMMA 2.2. If z is a solution of (15) then so=Yz is a solution of the equatlion
Lesy =Y [—h(1+a®+6)** T X 2= X (k(1+a” +%)*/°T2)

(25)
+2Y 0T v T 2+ 2X (TovTe2) — 2T (XvTez).

LeMmmMma 2.3. If z is a solution of (15) then s3=T.z is a solution of the equation
L.sy3=T.f—2YvXs3+2XvYs3

— (X024 (Y02 4+ (Tov)?) s3+k(1+a% +5%)% 2 Twss. (26)

Proof. Differentiating the equation with respect to T;, we get

X253+ Y253+ T2%s3 = T.f~ [T, X] X 2= X[T., X]2—[T., Y]Y2~Y[T., Y]z
Yol X2~ X(YTo2)+ XoT.Y2+Y (XvTez2)
=T.f-Yu[T, X]z—=YvXT.2— XYvT .z —YvXT,2
+X0[T., Y]+ XoY T2+ Y XvT 2+ XvY T 2
= [using again (21) to sum the terms 4 and 8]
=T.f—2YvX 534+ 2XvYs3—((Xv)2+(Yv)?+(Tv)?)s3
+k(1+a%+b%)%/?Tvs;.

Let us finally turn to the principal properties of the functions a, b, v.
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PROPOSITION 2.1. The function a defined in (3) is a solution of the equation
Loa=Y (k(1+a?+0%)%2(14w?)~V2) —k(14+a2+b*)3/*T Xu

(27)
— X (k(1+a?+b%)*2Tu).
The function b is a solution of the equation
Leb=—X(k(14a2 4622 2(1+w?)"V2) —k(1+a?+ %)% 2TYu (28)
~Y (k(14+a2+b*)32Tu).
The function v defined in (18) is a solution of the equation
Lev=T(k(14+a24b%)%?). (29)
Proof. First note that for every vector field D; with i=1,...,4 we have
Btu Diatu Di’U
D;(T.u)=¢D; = = . 30
=D i) T w0

Since u is a solution of equation (23), from Lemma 2.2 and (16) it follows that
Lea=LYu=Y (k(1+a®+b*)*2(1+w?) "2 k(1 +a2+b*)*?TXu
~ X (k(14+a®+?)*?Tu)+2Y v T.vTeu+2X (TovTeu) — 2T (X vTew).
On the other hand,
2YvTvTeu+ 22X TovTou4- 2T X Tou— 2T X vTeu—2XvT2u

D oyuToTut2[X, TE]UTEu+2sTEu(—1I%2)—1/5 —25)@@((%";)"2)W -
by (21). Hence assertion (27) follows. Assertion (28) can be proved in the same way,
using the fact that b=—Xu.

Let us now prove (29). Differentiating (30) we get

D%y w(D;v)?
(T ()72 (A (w27
From this relation and Lemma 2.3 we infer that

ﬁ#)zﬁ = ((X0)*+(Yv)*+(T0)")

0,

D3(T.u)=¢

e0yu
(1+(ue)?)t/2

+To(k(14-a2+b%)32(14w?) V) - 2Y v X Tou+2XvY Tou
—((X0)2+ (Y0 +(T.0))) Teu+ k(142 +62)** TuT.u

= [the first and the fifth terms cancel, and, by relation (30},
the terms 3 and 4 cancel]

:Ta(k(1+a2+b2)3/2)(1+w2)_1/2+k(1+a2+b2)3/2T€((1+w2)—1/2)
+k(14+a?+b?)*2TvT.u
=T.(k(14+a®+b%)%2)(1+w?) V2.

This implies assertion (29).
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3. Embedding theorems in the spaces WP

In this section we prove a Sobolev-type inequality in the spaces W™?(}), under the
assumption that

lalloo +11blloc + lwlloo < M1 (31)

and that
k(€,s)#0 for all (§,s)eQxR.

As we already noted in the introduction this assumption ensures that X, Y, [X,Y]|-T.vT;
are linearly independent at every point, and that det(X,Y, [X,Y]-T.vT;) is uniformly
bounded away from 0. It is known that a Sobolev inequality with optimal exponent holds
if the coefficients of the operator are smooth. Here we will see that it is possible to prove
the same assertion, under a weaker condition, which can be considered an “intrinsic”
Lipschitz continuity. In particular, it is satisfied when the coefficients belong to suitable
W[™P-spaces.

3.1. Vector fields with Hélder-continuous coefficients. If the coefficients a and b of
the vector fields are Hoélder continuous with respect to the Euclidean distance, and w is

bounded, we can associate to X, Y and 7' some frozen vector fields.
Definition 3.1. Let us fix three open sets Q,CCQ CC, and assume that a,b are
Holder continuous in 2. For every £3€Q) we denote
Xeo=0:+(a(60)+2(y—10)) 0, Ye, =0y+(b(é0) —2(z—20)) 0,
Since [X¢,, Ye,|=—408;, 0; has the same direction as 7.

The Lie algebra generated by X¢, and Yg, is noncommutative, and free of step 2.
Hence it is a Heisenberg algebra, and it is possible to introduce a canonical change of
variable:

d)éo(ma Y, t) = (‘T7 Y, t— (a(go)—'2y0)(ﬁ—(b(£0)+2$0)y),

which changes X, and Y, into two vector fields Xy and Yy, independent of &. If we
denote by dg the control distance of these vector fields, then the control distance asso-
ciated to X¢, and Yg, is de,=dpode, (see [14] for the definition of control distance). The
distance d¢, can be explicitly computed, and it is easy to see that d, is locally equivalent
to the distance

deo(€,C) = ((me—2¢)* + (We —y0)*)? + (t—to —a(&o) (we — x¢) —b(&0) (e —vc) ) /4,
in the sense that there exists a positive constant M>, only dependent on 22, such that

M3 deo (€, C) < dey(€,C) < Madg, (€,€) (32)
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for every £,( €€, (see [5] for a detailed proof).
It follows that, if a and b are Holder continuous in classical sense, then there exists
a constant Ms such that

la(€)—a(éo)| < Madg, (€,&),  16(§) —b(&o)| < M3dg (€, &o) (33)

for every &,£p€8)s.

The Lebesgue measure of a sphere By, (£, R) in the metric d¢, is R*|Bo(0,1)|. In what
follows we set N=4, and we call this number the homogeneous dimension of R?® with
respect to Lg,. This implies in particular that for every ball such that Be (£, R)CC Qs
and for every function feC([0, R}),

R
/ Fldeo(€,0)) dC=C / f(e)o"1do, N=d. (34)
Bio(&:R) 0

Let us also recall that the operator X%I-{—Yf, is the Kohn Laplacian on the Heisen-
berg group, and it has a fundamental solution 'y, explicitly computed by Folland [12].
The fundamental solution of the operator X )520+Y§20 with pole at £ is then the function
Pe, (€, Q) =T u(de,(€), d¢,(¢)). As a consequence, the fundamental solution satisfies the
relation

Teo(6,C) =T r (B¢, (€), $60(0)) < Cd™N T2 (eo(€), beo(Q)) < Ca N 2(€,¢)  for all £,¢,

for a constant C only dependent on I'y.

Remark 3.1. From the definition of fundamental solution we can deduce the follow-
ing assertion: for every zeC§°(Q2),

#9)= [ XeTe(6,0) Xeo2(0) dc+ [ YaTa(e OO .

Analogously, adapting to the Kohn Laplacian a standard argument known for the classical
Laplacian, it is possible to prove the following Morrey-type estimate for the vector fields
X,Y and T. Let us denote by z¢,, (¢ r) the mean value of the function z on B, (¢, R),
and let £,€€;. If R>0 satisfies R<%d§0(£0, 09Q3), and €€ Bg,(&o, R), then we have

12(6) 260, Ber)| < € / oV (e, (X 2(C)|+Y (O)]) de

B€0(§’2R) (35)

+0/B( dg, N (€, Q) (Ja() —al€o) |+ 16(C) —b(Eo) ) (1+w?) /2| T2(C)] de.

§:2R)
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Then the following theorem holds:

THEOREM 3.1. Assume that a, b and w satisfy conditions (31) and (33), and that
p,q are real numbers such that p,q>1 and N <min(p, (1+a)q). Then there exists a
constant C only dependent on My, M3, Q and Qo such that for every 26 C=(R)

2l oo 1) S Cl|2l 2. (20) H1 X 2l Lo (025) HIY 2l Lo (020) I T2l La(22) )-
Besides, for every £,6€8Q,,

12(&) —2(€0)| < Cdg, (&, &)1 X 2| o (z) + 1Y 2l Lo (0) 1T 2]l Lo (22) )
where r=min(1—N/p,a+1-N/q). In particular, if p=oco and N <agq, then

|2(8) —2(£0)| < Cdgo (€, €0) (1 X 2l Lo (025) 1Y 2| Lo (020) I T 2| Lo (22))

for every &,£,€Q, where we have denoted by p’ the exponent conjugate of p in the sense
that 1/p+1/p' =1.

Proof. Tt is quite standard to deduce these assertions from formula (35). Hence we
will prove only the first one. With the same notations as in (35), for every £ € Be,(£0, 2R)
we have

C
X PHa d
O [ O

2R 1/p’
+C</o o=N+Dp +N_1d0) (“XZ”LP(Bgo(g,zR))+||YZ||LP(B§O(5,2R)))

2R , 1/¢'
+C(/0 Q(—N+1+a)q +N-1 dg) “TZ”Lq(BEO(ﬁQR))

< [since Bg, (&, 2R) C ]
<C(l|2llz () +RNP(1 X 2l 1o 00) HIY 2l Lo (02)) + BTN T 2] Lo(as)) -

3.2. Intrinsic Lipschitz-continuous coefficients.
ProOPOSITION 3.1. If condition (33) holds with a=1, then the function

d(§7 60) :d§(§7 §O)+d§0(£a§0) (36)

is a pseudodistance, and the functions a and b are Lipschitz continuous with respect
to it.(1)

(%) We recall that a pseudodistance is a function d: R3 x R® - R satisfying the same conditions as
a distance, but with the triangular inequality replaced by the requirement that there exists a constant
C>0 such that for every z,y, 2z

d(z,y) <Cd(z, 2)+d(2,9)).
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Proof. Tt is a consequence of the estimates (32). Indeed,

dfo(§7 o) < Cligo(f, o)
< C(de (€, £0) +1a(€) — a(€o) 2|z — 0|2 +[b(€) ~b(&o) | 2y — ol /?)
< Cde(€, &) < Cde(€, &)

Then

dey (€, €0) < Cdg, (€, &)
<C(|lz—z1|+ ]|z —zo|+ |y —y1|+ Y1 —yol)
+C(|t—ty —a(€)(z—z1) —b(€) (y—y1)|'/?
+]ts —to—a(&o)(z1—70) —b(£0) (11 ~0)[?)
+C(ja(&o)—a(€)VHz —z1 |2 +1b(60) —b(ED)  ly—v:["?)
< Cdg(€,&1)+dg (€0, £1)) S C(A(E, 1) +d(61,60))-

Definition 3.2. If condition (33) holds with a=1, then we will say that @ and b are
Lipschitz continuous with respect to the intrinsic distance, and we will denote by C§(£2)

the class of functions Hélder continuous with respect to d.

THEOREM 3.2. Assume that a and b are Lipschitz continuous with respect to the

intrinsic distance, and that there exists a constant My>0 such that

I X all oo (2,) 1Yl oo (,) 1 X Bl oo (020) FIY Oll Lo (022) + | VeV L2 (02,) < M.

Let p be a real number such that N/(N—1)<p<N. Then there exists a constant C only

dependent on the Lipschitz coefficients Mz and My such that for every zeC§° (1)

Np
N-p

lole- <CIVezlps and 7=
Proof. Using Remark 3.1 we get
A= [ XeTe&0Xa(0) ot [ Ye Pl OY2(0)de
+ [ XeTele Qa0 -al@) (0 e

+ [ Ye T, 00) - ben)) 22 .
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Evaluating the function z at the point £, and using identity (21), we get

(&)= / Xe,Teo 60, €) X2(C) dC+ / Ye,Teo 60, O Y2(C) dC

(14w?)!/? ,

+ [ XeTeu (60, O(a(0)~alé0) 7 g X, V1:(0) ¢
211/2

- [ KT, a0 -a(6o)) oo T T:(0) &
W2)1/2

+ [ Va0, O(0) ~b(e0) iy s (X, Y1(0) ¢
(1+w?)1/?

- [ YaTele 000 ~bl60) oz TovTex(C) de

These terms have similar behavior, so that we will study only one of them. Let us choose,
for example,

(1+w?)1/?

B(&) = [ Xa a0 O(a(0) =6 5 sy

XY2(¢)dc.

If we denote by X¢ the derivative with respect to the variable ¢, and use identity (20),
then we get

(60) =~ [ X¢(Xa el 0a(0)~0(60) oz s ) Lt) YO &
- [ ¥aTale0. 0O -elé) g

X (X (1+w?) 2+ (Yv—wXv)(1+w?) V) Yz(¢) dC,
and so
lI3(60)| < C / d=Nt (&, O Y2(Q)dC+C / d™N*2(&, Q)| Xv(Q)] [Y2(¢)] de.

Inserting this estimate in the previous expression we obtain

12(60) <c( [ 60,09+ [ a6, O19.(¢) |vsv(<>|d<)-

Since the pseudodistance d is doubling, then from this relation the asserted inequality
holds, see [17, pp. 13, 354].
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THEOREM 3.3. Assume that a and b are Lipschitz continuous with respect to the

intrinsic distance. Let z be a function such that
X2, Y2€CH(,), TzeLNO=P(Q,) with 0<pf<1.

Then there exists a constant My only dependent on Mz and M such that for every
§7§OEQ2

12{€) —2(&0) — X 2(€o )z ~x0) — Y2{£0) (¥ —¥0)]
< Mad™ (&, &) (| X 2llco 0 1Y 2l ey T2 Lagay) )-
Proof. Applying inequality (35) to the function
21{8) = 2(§) = X z(&o )z —x0) = Y2(&0)(y — Yo )
we get
|2(8) —2(€0) — X 2(§0)(z~z0) = Yz(&0) (y—10)| = |21(§) ~ 21 (o)
</ 45 VH(E, O (1X 2(0)— X a(Eo) [ H1Y2(Q)~ V(o)) de
Beo(€,2de(€.60))

+ / de N (E Ola(¢) —a(éo)| IT2(C)] dg
B§0(§,2d50(§,§0))

+f a5V (€, Q) 1b() —b(&o)] IT2(0)] d (37)
B, (§,2d¢(€,60))

+ / de N6, Q)IT=(0) dg
Beo(€,2dg((€,£0))
< [since X2,Yz€ Cf , and by the assumptions on a and b, setting 7 =dg, (&, &o)]

S de, N (e, Q) (o, dzN2(e, O)IT=(0)ld
<C/BEO(5,27') () (gag)dgo(go () dC+L £o (5 C)i Z(C)\ C

go(€:27)

r T 1/‘1,
</(Qﬁ+fﬁ)9d9+</ pl=N+ha +N‘1d9> | Tz]lq-
0 0

COROLLARY 3.1. Assume that (31) is satisfied and that there exists a constant My
such that

lallyze )+ 1Tallwrs o, +ITall L2

(38)
Hbllyzs ) FHIT0l w3 ) + 1Tl L2022y HITwl L3 (02,) < Ms.
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Then the function d defined in (36) is o distance, a and b are Lipschitz continuous with
respect to it, and the following inequalities hold:
() If N/(N-1)<p<N, r=Np/(N —p) then

lzllLr <cllVez| e

for all zeC§° ().
(i) If p>N, ¢>1iN and B=min(1-N/p,2—N/q) then

12(€) — 2(&0)| < ed®(&, £0) (Ve 2l Lo (02) I T2l Lo () )

for all z€C>® () and for every &,&€€;.

Proof. Let us first note that, by the standard Sobolev embedding theorem, there
exists a constant only dependent on My such that

| TallLe(qq) + 1 Tbl|Ls () < C.
By identity (19) we also have
IVewllLoam) < ITallzs(0z) + 1 T0l s (0,) < Ms.

Besides, all the other second-order Euclidean derivatives are bounded:

oia woaTw
107all L2(0) <CHT< ; ) -

(1+w2)12 ]~ (1+w?)3/?

L2(022)

< |IT%all 2¢0,) + |1 Tal| o) | Tw| L3 (0,) < C-

Since
| X0:allL2(n,) = 1 X Tal|12(0,) + | XwTal| 12(0,)
<X Tall 2, + 1 Xwl L) I Tall Lo (n,) < C,
then
|0zeall 262,y < | X Beall 20, + 1070] L2 () < C
and

8zcallL2(0,) <X ~adk)?all L2 ay)
= [|X2a—Xa6ta~aX8ta—a(@ta)Q—aXata+a28tta||Lz(Qz) <C.
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Hence a, b belong to the classical Sobolev space H'(€);), and there exists a constant M3
only dependent on M5 in (38) such that (33) holds with azé. Now we choose 3, ...,Q5
such that O, CcQ3CcCcQyCC . Hence

[XallLr(0,) +IVe XallLs,) +IIT X all L3 (0,)
< llallw=s(a,) HIVevTal s, + 1 XTa| L3 (a,)

(21)
< llallw2s,) +1Tall L (q,) + | Tallws@,) < C.

Hence the first assertion of Proposition 3.1 with p=6, ¢=3 and a=% ensures that there
exists a constant C only dependent on M; and €, i=1,...,5, such that || Xa| L q,) <C.

By the second assertion in Proposition 3.1, using the fact that
1 XallL= (@) +TallLs ) < C,

we deduce that
la(€) —a(&o)| < Cdg, (€,&) for all §,&€ 0,

where azg, and again C only depends on M; and ;. Applying the third assertion of

the same proposition we now get

|a(£)—a(§0)| <Cdfo(£1€0) for all 57{0691'

The thesis now follows from Theorem 3.3.

4. LP-estimates for the linear equation

In this section we prove the following a priori estimates, in the Sobolev spaces W[ (Q)
for solutions of equation (15), under the assumption that there exists a constant M such

that

lull oo () + I Verll Lo () + 10rul| oo () + | Veall L2 () + I Ve bl L2 ) + [ Ve vl L2 () < M.
(39)

THEOREM 4.1. Let p>3 and m be a fized positive integer. Assume that f€C™®(Q),
and let z be a solution of equation (15) in Q. If Q1 CCQCC K} then there exist constants
C and C which depend on p, Q; and on M in (39), but are independent of ¢ or z, such
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that the solution satisfies the estimate

”zsz)ve"’“*"’(m)+ Z |||Diz|(p_1)/2”%/vé'2(nl)

|i}=m+1

2p/3 2p 2p
SO s g N N )
~ 2p/3
+C(”Tz||W€7n,2p/3(Qz) + ||Tz||€[/5'm_1’p(ﬂ2)
2 2 2
+ ||a||v€!"‘2p(92) + ”b||V5Jn'2p(Qz) +”(1+a’2+b2>3/2||VII;EW—1»2P(QZ)) )

If k=0, then we can choose C=0.

In view of further applications, we have stated here a result more general than
strictly necessary in this context. In particular, we do not make any assumption on the
curvature k.

The proof of this result is a modification of the classical Moser argument, which uses
a Sobolev-type theorem and a Caccioppoli inequality. In our context the Caccioppoli
inequality still holds, but the coefficients of the vector fields are not regular, and no
embedding theorems hold in these spaces. In particular, we cannot apply the results just
proved in the first steps of the regularization procedure. On the contrary we prove an
interpolation inequality which will take the place of the embedding theorems. This is
done in §4.1. In §4.2 we prove the Caccioppoli inequality. In §4.3 we perform an iterative
procedure, and we end the section with the proof of Theorem 4.1.

4.1. Interpolation inequalities. Let us start with a simple remark:

PROPOSITION 4.1. For every function ¢€C§°(2) we have

/|ng]2¢2 < C/(k2+|Tk|)¢2+C/ V0|2,

for a suitable constant C depending only on the constant M in (39).

Proof. Let us first note that

daYv—0,bXv ) (Yo-wX0)Yv+(Xv+wYv) Xv=(Xv)?+(Yv)> (40)

Then we have



106 G. CITTI, E. LANCONELLI AND A, MONTANARI

Jor+opes [(ape® [@avo-anxngs [@02
(8 / By YuY v+ / B XuXv?+ / (Tev)?¢?
2 _ / uY 2?2 / SuYveYe~ / BuX3vg?
-2 / duXvpX P+ / (Tov)?¢?
= / BuT2vp?— / wT(k(1+a2+b%)%/2)p?

+ / (T2v)2¢? -2 / wYvpYp—2 / wXvpX o

= [using (20) in the first term,
and the definition of T and (19) in the second]

=/w2(TEU)2¢2—-/T5wT5U¢2
i / W T T p+ / (ITk|+ (K] | Xu| + k| [Yo]) ¢

+ / (Tev)?¢?—2 / wYvgYe—2 / wXvpX e

= [since v = arctan(w) the terms 1, 2 and 5 cancel]

< [ 1Vvllel V.0 + ] (K] | X o+ [k [Y ol + TR 6.

The thesis now follows with a Holder inequality.
Now we can prove our main interpolation inequality:

PROPOSITION 4.2. For every p>3, there exists a constant C,, dependent on p and
the constant M in (39), such that for every function z€C®(Q) and for every $€C§ (),

/ | X2[Pg?
gC(/lzl2P¢2?+/|Vs(|Xz|(P—l)/2)|2|¢|2p+/|Xz|p_1(|X¢I2+¢2)|¢|2p_2>’

where the function v is defined in (18). Analogous relations hold if we replace X with Y
or Tk.
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Proof. We have

/ [XzPp? = /Xz|Xz|’"1 segn(X z) P
= [integrating by parts and using the fact that X* = - X —Yv+wXv]

=— /(Yv—va)z|Xz|’”1 segn(X z)¢%P
—2/zX(IXz|(”_1)/2)|le(p‘1)/2¢2”
—2;0/2|Xz|”‘1 segn(X2)¢*P 1 X ¢
< [by a Holder inequality] (41)
<o [warixapmios [prnes [1xape

+ [ ixeapeoapens [ parigr2ixor

< [by Proposition 4.1]
<o fixsptome [lapromss [ (xzrgr

+ [ 19xaA0 )R IXZI”‘1¢2’°‘2IX¢I2),

and choosing ¢ sufficiently small we get the assertion.

4.2. Caccioppoli-type inequalities. Let us start with a Caccioppoli-type inequality
for the derivative with respect to T

THEOREM 4.2. Assume that f€C>®(), and that z is a solution of (15). Then

there exists a constant C>0 dependent on M such that for every ¢€C§°(Q)

/(IVst|2+ITVszl2)¢6+/ |Vev|?(T2)%¢°
(42)

<O [ (@PHI+TR)+ (9o Taf0" - [ T8,

We will make use of the following simple property:
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Remark 4.1. From identity (22) and the definition of T it immediately follows that
for every function f, ¢€C§°(2) we have

/TquS:/(l—i%l—/Ed):/waqub—/Tqub.

Analogously
/TYf¢=/waYv¢—/TfY¢>

and

[ g0~ [wTitas- [rite

Proof. We differentiate equation (15) with respect to T, then we multiply by Tz¢®
and integrate:

/ TfTz2¢> = / T(X%24Y?24+T2)Tz¢®
= [by Remark 4.1]
= / TXzXTz4°+ / TX20XvTz¢%—6 / TX2Tz°X ¢

— / TYzYTz¢®+ / TYzwYvTz¢% -6 / TY2T2¢° Y

— / TT.2T.Tz¢5+ / TT.2w0T.vT2¢% -6 / TT.2T2¢°T.¢
=I1++Ig

Let us consider a few terms separately:
I1+I4:—%/([T, X]z-l-XTz)XTquG—%/TXz([X,T]z+TXz)¢6
—%/([T,Y]z+YTz)YTz¢6—-;—/TYz([Y,T]z+TYz)¢6
@) —% / (TX2)2+(XT2)2+(TY2)?+(YT2)?) "
—% / Ysz(XTz—TXz)¢6+% / XvTz(YTz-TY?2)¢®

- ‘% / (TX2)*+(XT2)* +(TY2)" + (Y T2)?)¢°

+—12- /((Xv)2+(Yv)2)(Tz)2¢5.
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On the other hand, using identity (21) in I and I5, we get

L+ Is+1g= / YoT2wXvTz¢%— / XvTzwYvTz¢b

+% / X((Tz)2)Xvw¢6+% / Y ((T2)?)Yvwe®

T / T.(T2)?) Tovwd?.

Canceling the first two terms and integrating by parts the last three terms by means of
the identities (20), we get

12+15+18=—% / (T2)*XvXw¢®—3 / (T2)* Xvwo® X ¢
—% /(Tz)szw(Yv—wX’u)q’)G—% /(Tz)QYvYasz6
—3/(Tz)2Yvo.)qb‘r’Yd)+%/(Tz)zYvw(Xv—i—va)qb6
—% / (T2)*TovT.wd®—3 / (Tz)2TEm¢5TE¢
—% / (Tz)sz(Tsv)quﬁ—% / (Tz)*wL.v¢°.

Using the fact that v=arctanu, in the terms 1, 4 and 7, and using Proposition 2.1 in the

last term, we arrive at
Iz+15+18=—%/(T2)2wT(k(1+az+b2)3/2)¢6
_3 / (T2)2w(XvX ¢+ YvY o+ TovT0) 4
_% / (T2)2((Xv)2+(Y0)*+(T.v)?) ¢°
=_%/(Tz)ZwTk(1+a2+b2)3/2¢6
ﬂg / (T2)2wk(1+a2+b2)Y/2(aTa+bTb) ¢

—3/(Tz)zw(XvX¢+YvY¢+T€vTE¢)q§5

—5 [ @P UK+ 0+ (T
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Summing up all terms we get

% / (TX2)2+(XT2)2+(TYz2)? +(Y T2)%) 6%+ / (TeTz)2¢6+% / (T2)*(T.v)*¢°
<= [TiTsf 0 [Pl Tres
+8 [ap(Tar+@ope+ 5 [@2ee
+48 / (T2)2((Xv)? +(Yv)2 +(T.v)?) 6"

43 [EPXOP+ O+ T8

By condition (19) and the boundedness of w it follows that (Ta)?+(Th)2 < (Xv)2+(Yv)?,
and by condition (21) we deduce that

| X | |Tz|+|Yv| Tz < |[X, T]2|+|[Y, T]z|.
Hence we get inequality (42), choosing ¢ sufficiently small.

Let us now prove another Caccioppoli-type inequality, more general than the pre-
ceding one, in the directions X,Y,T;, for the solutions of the linear equation (15). By
Lemmas 2.1-2.3, if z is a solution of that equation, then its derivative is a solution of an
equation of the form

Lez=fot+ X2+ f2Yz+ f3Tez. (43)
Hence, in view of the iteration, we will study solutions of this equation.

LEMMA 4.1. Assume that fo, ..., fs€L] () and fs, ..., €W (Q) withr>2, and

ioc g,loc

that z€W22_(Q)NW2 (Q) is a solution of the equation

e,loc 1,loc
Lez=fot+ iXe+ foYot fsTez+ X fat+ Y fs+Te fo+2fr. (44)

For every p23 there exist constants C1,Ca, Cs,Cy depending only on p and the constant
M in (39), and independent of € and z, such that for every ¢€C5(Q), $>0, we have

/ IVe(2*-D/2)2¢2 < ©) / 2P 1 (6 4V 0I?) - / folelP=32¢7— / Frlz 12
+C / 2P~V 024 + C / 2P (P ol + o) 6
e / 2P a2+ o2+ o) 82

e f 2P~ (1l + 1o+ o)) Vo062,
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If the curvature k=0, we can choose Co=0. If k=0, and f1=—20ia, fo=—20:b,
fs=2wT.vT,z, we can choose Co=C3=0.

Proof. Let us multiply both members of equation (44) by |z|P~32¢2, and integrate.

Then we get

/(f0+Xf4+Yf~5+Taf6+f1XZ+f2Yz+f3T€z+zf7)‘Z|P—3Z¢2

=/(X22+Y22+T32)|z|p_3zq52
= [since X*=—-X-0a, Y’'=-Y —-0band T, = T, +wT.v]

=—/5‘taXz|z|p_3z¢2—(p—2) /(Xz)2|z|p_3¢2—2/|z|p“32de)X¢>

——/athz]z|p_3z¢2—(p—2) /(Yz)2|z|p_3¢2—2/iz[”_3zYz¢Y¢ (45)

+/wTEvT€z|z|p_3z¢2—(p—2)/(ng)2|z|p_3¢2—2/Tsz[z|p_3z¢TE¢S

4(p—2)
(p—1)?
4

=507 [ Vel )9, Veale| ),

</((—3ta, —0tb,wTv), Vez)|z|P~%2¢% /(Vs(I»ZI(”'l)/z))Qﬁz>2

where (-, - ) is the inner product in R®. This obviously implies that there exists a constant
C >0 such that

2 [Ivaarnpe <c [ pivee
—/((ata, b, —ngv),Vsz)|z|”‘3z¢2
= [ o F, T2z~ (46)
— [F1pie - [l
- / (X fat Y fs+ T fo) 2172 297,

Let us denote by Iy, ..., Iy the terms on the right-hand side. We have to study only I,
Iy and I5. Integrating by parts the last term we have
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= [ Bafialr 326+ (p-2) [ FiX(2DIal 8% +2 [ ialrsz0x9
+ [ falap=20+(p-2) [ F¥ (lzp~20+2 [ Flel 2070

- [wTodilelr 2 +(-2) [ RTl P26 +2 [ Falsp~20Teo,

Using relation (19) in the integrals 3, 6 and 9 we get

I < [ 190l 1l 262+ 2222 17X (el 0 -2

+2 / \Fal l2P261 X ¢

+ [ 19l =22+ K22 [y (el a0

+2 [ 1l e 219
3 2(p—2 -
+ / Veu|| el |z|"-2¢2+%1—) / |fol T=(12] = D/2)|2|P=)/242

+2 / \Fol 21726 | T2,

and with a Holder inequality we arrive at

I5<C4/|z|”_2(|f4|+|f5|+|f6|)|V5v|¢2+C4/|z|"_3(|f4|2+|f5|2+|f6|2)¢2

+6 / V. (P~ V/2) 22 1 / 2PV 62,

where d will be chosen sufficiently small.
Finally we have to consider I} and I3 in (46). If we do not have any hypotheses

on k, we get

2
h”"’:‘ﬁ /(ataX(|z|(”_1)/2)+8th(|z|(”"1)/2)—wTEvTE(Izl(p’l)ﬂ))|z|(”_1)/2¢2

2 ~ ~ -
=1 [EX A2+ FaY (al07/2) 4 T (=2 722

< [using equation (19) and a Holder inequality]

<C1/I?«I”*lIstF"aﬁ?JrCz/IZI”_l(|fl|2+|fz|2+|f:s|2)<f)2

+6 / Ve (j2] = 0/2) 242,
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Now the thesis follows, inserting all terms in (46).

Note that, when k=0, then by (21), T.vT.2=[X,Y]z. Hence, using that d;a=0;Yu
and 9,b=—0,Xu from (16), and then (22),

/Bta,Xz|z|p_32¢2+/ﬁthzlzlp_:‘zqﬁz—/wTevT€z|z|p‘3z 2
——/wYXz|z|p_3¢)2~(p—2)/szYz|z]p_3¢2—2/wX|z] |2|P~ 20 Y
+/wXYz|z[p_3zd)2-(p—2)/szXz|z|p‘3¢2—2/wY|z| |2|P2¢X ¢
—/w[X,Y}z|z|p‘3z¢2
<5 [ 190102 P4 § [1alr 119,07,
where in the last step we used that the integrals 1, 4 and 7 cancel, as do the integrals 2

and 5. To the other we applied a Holder inequality.

Again, inserting all terms in {46}, we get the stated assertion, for k=0.

4.3. Iterative procedure. We can now conclude the proof of Theorem 4.1 using
iteratively the interpolation and the Caccioppoli inequalities. We first deduce from the
preceding lemmas some a priori estimates for the derivatives of a function z, solution of
equation (43).

THEOREM 4.3. Let p>3 be fized, let fo,... f3€C™(Q), and let z be a solution of
equation (43). Then there exist two constants C and C which depend on p and the
constant M in (39), but are independent of € and z, such that for every p€C§°(2), >0,

[1veapems [19.(9este-irnpEg
<c [prgec [@Hv.pprec [ 1varees
O [URPPO+ PP+ o+ o)
([ raporgrs [(9.al+19 02 T2 ).

If k=0, we can choose C=0.

Proof. Since z is a solution of equation (43) then by Lemma 2.1, s;=Xz satisfies
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equation (44), with coefficients

fo=k(1+a? 40232 TY 24 2X0TvToz, fa=fot+fiXz+foaVz+ f3T.2,
fi=fo=fa=fr=0, fs=-2T.vT.z+k(1+a®>+b*)*/?Tz, fs=2YvT.z.

Using Lemma 4.1 we deduce

/ Ve (js2| P~ D/2) 2%
<Cl/|31|”_1(|V€¢|2+¢2)¢2”_2—/|31|”‘331k(1+a2+b2)3/2TYz¢2p
) / Is1 17351 Xo T T, 267+ Cs / I52 P |V u[26P
+Cy / 51177303 +1 /1121 X 22+ 221V 212+ £ | Te 2 1) 977
(47)
+C’4/|51|”‘3[V5v|2[T€z|2¢2p+C4/k2(1+a2+b2)3(Tz)2|31|P‘3¢2p
<6 [lsiPerrc / (6 +|V. p2)P - / 5117350k (1402 +52)3/2TY 267

+%/|V5v\2p¢2p+5/\vez‘p¢2p+c/|f0‘2p/3¢2p

+C / (IF11% + | £ +| f5]*P) 9% + C / k2| T2(2P/3 %P

Integrating by parts the second term on the right-hand side by means of Remark 4.1, we
get

—/|31l”’3slk(1+a2+b2)3/2TYz¢2”
=/|31]p“3slk(1+a2+b2)3/2wT€szd>2p
+2_E55_12_2/y(lsll(p-l)/Z)IslI(p—3)/2k(1+a2+b2)3/2Tz¢2p
+ / |s1P735,Y (k(1+a2+b%)%/2) T 24 (48)
+2p / 15117351 k(14-a2+b2)%/2T2¢0?P 1Y
<6 [loar+C [1Taprge+ S [maprisgr s [1y (ale-/mpe

+ / K2 (Ve al +V.b])P/2 [T2P/2¢% + C / V. 0.
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By Proposition 4.2, we have
[ 1xalpgs [ v (ixz{e-vyEg

<C / Pl / X(1X2PD/2)2g% 4 C / X P (Ve P+ ¢7) 6

< [using (47), (48) and the fact that s; = Xz]
49)
SC/|z|2”¢2p+C/(¢2+|Vs¢|2)p+5/|V€z|p¢2p+C/|V€v|2p¢2p (
e / o3¢ 4 C / (o[22 + | fol?2+ 1 fo[27) 6%

+C [ BTG +C [ K (Teal+(Tb)P2IT2P 2.

Analogous relations hold for Yz and 7.z, and hence
[ 1wt [ 19920
SC/|z|2p¢2”+0/(¢2+|ve¢|2)p
<0 [ [aureres [ (9.2pe
+C [ Ul + AP+ ol + o)

£ [ rrapersgrs [(9.al+ (9P aprgn ).
Choosing ¢ sufficiently small, we get the stated assertion.

THEOREM 4.4. Let p>3 be fized, let fo,... f3€C(82), let z be a solution of equa-
tion (43), and let QCCQCCQ. Then there exist constants C and C which depend
on p, on Q; and on the constant M in (39), but are independent of € or z, such that

||Z||€VE2P(91)+ Z H |Dizl(p—1)/2”%;[/51:2(91)

|2|=2
3
2p/3 2 2 2
<C (Mol o+ Uil gy 1 o) IO s N 0 )

+O(IT 2 s g 1T 2N g+l 00220 )

2p
WP (02,) wi?P(Q,)

If k=0, we can choose C=0.
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Proof. If z is a solution of (43), then by Lemma 2.3 the function s3=1T z is a solution

of the same equation with coefficients
fo=T.fo+T:fiX2+T. o Y2+T: f3Tez+k(1+a?+b2)*? T uTz
—(X0)2+ (Y2 H(T0) D) Tez+ fiYvT.2— fo XvT.2 (50)
A=f-2Yv, fo=fi+2Xv, fi=fa
Let us choose Q3 such that Q;CCQ3CC Q. By Theorem 4.3 there exist constants
C and C independent of ¢ such that

-~ +Z|||Ds3|<" R R

o )
< C(Hfoll;z/p/a(mﬁz A AR P 1

2p/3
+C(IT sl 75075y + Nl

L2p/3(92) +”b” (51)

We2P(922) wier(0s)

2p/3
S (A )+2(||fiuzvg,pm L)) IO, 120220 )
=1

+C(IT2 50 o HIT2 )+l

oo ol

We 2P (922) WA, ))

Analogously, by Lemma 2.1, the function s;=X2z is a solution of
Lesi = fo+ fiXs1+ foYs1+ faTes1 +Y (k(1+a®+b%)%2Tz), (52)
where

fo=k(1+a®+b?32TY 24+ X fo+ X L1 X 24+ X faY2+ X f3
+ foTevTez+ fok(1+a?4+02)3 2 T2 4 f3Yv T, 24 2YvT 22— 2T 0Y Tez

and, by Theorem 4.3,

H1Dis [PD722

P
llsl“wé"’(ﬂl) (2;)

3
<1l 5 g, ﬁé(llﬁti@m 2 P R 1 AV 1 s AP

+b)%

pr
+C|lss] Wi ag)

~ 2p/3
s T O T8 s o)+ lall

L2r/3(Q3) w2 2P(Qs3)

3
2p/3 2
(“f()” P{ 217/3(9 )+Z_; ||fz||W1 P( +“fl”L2p(Qz))+“U“3,€EI,2P(Q )+“Z“ pl 2P(Q ))

+|b)1 2

jod 2p/3
+C(|T2|* +T2|, g, +lall?? winay):

w3 (Qy) WP (Q)

Finally, arguing exactly in the same way with Yz, we deduce the thesis.
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Proof of Theorem 4.1. We will prove by induction that, if z is a solution of equa-
tion (43), then

||Z“Wm+1 P )+ Z || lD 4| P 1)/2”W12 Q)
[i|=m+1

<C(Iollsianss g, +Z (2 1 A
o120 )

+C(HTZHzp{32p/3(Q ) HTZH

2
ol

+llali?®

WP (05) WP ()

+lol7

2
e [t +6%)%2|12

m 1, 2p(Q ))

for suitable constants C and C depending only on €2; and M and such that C=0 if k=0.
By Theorem 4.4 the assertion is true for m=1. Let us assume that it is true for m—1.
Since z is a solution of (15) then T¢z is a solution of (44), with coefficients described
in (50), and there exists a constant independent of ¢ such that

ITe2ymnr gy + D ND Tzl 22

i|l=m
2p/3 2
<OVl +Z IVe ezl s ams g,

+|k(1+a®+b%)3/ 2 T T, Z”%f’ . )+||(V )2V, z||2p{n3 P

3
ZT(nflv A2 PV Y 1 AN

1oy + 2oy U s U )

(53)
2p/3
+OT Tzl ss g, FIT T2y g+l o0
+”b“W5m—1,2P(Q )+”(]‘+a +b2)3/2”Wm 22P(Q ))

3
< C(”fOHQP{v?zp/s(Q )+Z (Hfingvgnm(gz)‘*' Hfiniggn—l,zp(gz))

+lul

Wm,2P(Q )+ “Z“

WP (02 ))

3
+C (1T s e +[lal??

Wm—l,p(ﬂ ) Wm 1, 2p(Q )

+IIb17 +ll(1+a +b%)%/2 |0

Wgn—l,zp(g ) Wm 22p(Q ))

Analogous relations hold for X and Y, and the thesis follows.
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Remark 4.2. Let p>3 and let m be a fixed positive integer. Assume that feC>(Q),
let z be a solution of equation (15) in €, and let ;CCQyCC . Note that

2p/3
NV Vel s g

V(o) VeoVezlP s s o AN Ve0) (V)2 s

A [ AN v T

Then, by Theorem 4.1 and (53),

1Tzl eyt D MDD T2 P20

[é=m
2p/3 4
(”f” P{n 1, 2;:/3(Q )+”v”p ?‘P(QQ)*‘”'Z”Z;VS’"'P(Q )+”v”Wm 1, 4P(Q )+”z”“z;gn—l,4p(gz})

+C(||ITT. z||2”/3 +|TT.2|P

2
m 12p/3(Q ) +||a“ b

2 oy I

Wm Zp(Q) Wm 12p(Q ))

Analogous relations hold for X and Y, and we get

Izl mermgyt D 1Dzl D202 g
Jil=m+1

2p/3 4
(”f” p{n 20/3(0), )+” “W"‘ Lr (g, )+||vllﬁvgw(g2)+IIZI|V53-1,4P(Q2)+||Zl|fy;w(92))

2p/3
+C(IT=| +|| TP

2,
m 21)/3(9 +“al| +||b“ pm 2p(Q ))

WP (Qg) Wi (Q,)

5. Regularity of solutions of the nonlinear equation

In this section we conclude the proof of Theorem 1.1. In order to do so, we first prove
an a priori estimate for the solutions of the nonlinear regularized equation (14) in the
space WP, independent of €. By the Sobolev Embedding Theorem 3.2 this leads to an
estimate in the space Cg .. Letting £ go to 0 we deduce that the function v has all the
weak Euclidean derivatives of order 2 in C%. Then, by the results in [5], we conclude the
proof of Theorem 1.1.

5.1. W™ P_reqularity of solutions of the reqularized equation. Let u be a solution
of equation (14) satisfying conditions (39). In order to prove an a priori estimate in the
spaces W/™P, for the function u, we will make use of the a priori estimates established
in §3, together with a new interpolation inequality, based on the hypothesis on k:
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PROPOSITION 5.1. Let k0 in OxR. If TzeW!?2 (Q) then for all ¢cCg°,

e€,loc

[rmate<c [1v.ratiors [(Teop+varirare+ [1v0r. 64
Proof. Let s4=T=2. Then
/|54|3<256
<sup — ] /|k| (14+a%+b2)3/2 5435
=sign(k) sup(lk|> /lc(l—l—c124—()2)3/2Tzsign(54)IS4|2¢)6

@) sign(k) sup(|k|) /(—[X,Y]z—}—TevTaz) sign(sy)|sa|?@°

= [integrating by parts by using (20) we get]

=sign(k) sup(|k|>(/YzX(sign(s4)|54|2¢6)—/XzY(sign(54)|54|2¢6))
+sign(k) Sup(lllc|> /(Yz(Yv—va)+Xz(Xv+va)+T5zT5v) sign(sq)|sq]28®

_51gn(k)sup<'kI>(2/YzX34IS4]¢6+6/sti¢5X¢
—2/XzYs4|s4|¢6—6/Xzs§¢5Y¢)

+sign(k) sup(lk|) /(YZ(YU—QJXU)+Xz(Xv+va)+TEZT5’U) sign(s4)|s4|>#°,
and the thesis follows.

Remark 5.1. Differentiating equation (19) we deduce that
TQG_T( Yv—wXwv )  TYv—wTXv-TwXv—(Yv—wXv)wTv

(1+w?)1/? (1+w2)1/2 55)
55
_ TYv—wTXv-TvXv—wYvTv
- (1+w?)1/2
and TXv+wTYv+ToYv—wXoT
T2h— v+w v+1lvYv—wXviv (56)

(Fa2)17?

Applying the previous result, we verify that a, b and v satisfy all the assumption

necessary to apply our Sobolev embedding. For technical reasons we start with the
derivatives of the function v:
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LEMMA 5.1. If Q,CCQ and u is a solution of equation (14) in Q, with k#0, there
exists a positive constant C depending only on the constant M introduced in (39) and Q,;
such that

1T L3 (00) VTVl L2y HIT Vel L2 HIVevTv|| p2(,) < C, (57)

where v=arctanu, is the function defined in (18).

Proof. By Proposition 2.1 the function v is a solution of equation (29). Then by
Theorem 4.2 we have that for every ¢e€Cg°(12)

JOvroP 9yt + [ (9081026
<O [ @kl TR +V.0P) T8+ C [ TP(h(1+a*+5%) Tug®
<C [(@+HIVdP)To6+C [+ T al+IT*b0+ Taf+1TH) Tl
< [by Remark 5.1 and (19)]
<C [@* 4190 TuPt+C [T D0l +(Ver] Tol+ |Vevf?) Tol?
<C [@+veaPIroPot+ [ Tole+ S [(ToP+1T.0p)ef
+6 [(TcoP 4 [VooPIToP) o,
for 6€10, 1] to be fixed later. Choosing & sufficiently small we have
/(]VETUIQ-{-[TVEMQMG-}-C/ [Veo|?(Tv)%¢°

<C / (S +IV.0]?)ITul2g* +C / ITo|¢%+C / V. 0[26°

< [for a value of § which can be different from the preceding one]

C
<§ [ 1v.60+8 [1Topsssc [19are

< [by Proposition 5.1]
C
<$ [@+19.020+8 [(V.TP+ @026+ C [ Verfs?

Choosing ¢ sufficiently small, and ¢=1 in £2;, we get the thesis.
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Remark 5.2. We explicitly note that, if 2,CCQ, then from the previous lemma,
and (55) and (56), it follows that

1T%al| 202, + 1 T?bll 1200y < C, (58)

for a constant C only dependent on M and ;.
Let us estimate the derivatives of the functions a and b:

LEMMA 5.2. For every Q,CCSQ, there exists a positive constant C depending only
on the constant M in (39) and Q0 such that

||VsTa||L2(Q1) + HTVeaHLz(Ql) + ”VEUTGHLZ(Ql)

(59)
HIVeTh| L2(0,) FIIT Veb| 2 (0,) I VevTh| L2 (q,) < C.

Proof. By Proposition 2.1 the function a is a solution of equation (27). If we denote
the right-hand side f,, we have
|fal € |Veal+|Veb|+|Vev]. (60)
Choosing ¢€C°(§21), ¢=1 in £, by Theorem 4.2, we get
/(|V€Ta|2+lTV5a|2)¢6+/|V5v|2(Ta)2¢>6

<C [@(R+TR)+V.9P)TaPo*+C [ T1uTasf
< [since Ta is bounded in L?(Q:) by the constant M, and ¢ is fixed)

<C’(1+/TfaTa¢6)

= [integrating by parts with respect to T, and using (20) of the adjoint]
:0(1— / faT%a¢5—6 / fuTad®Té+ / faTamepG)
< [since {Tal < |Veal]

<0(1+ / (Ifal2+|T2a|2+|Ta12+lTal2ITv|2)¢4) <c,

by (60), Lemma 5.1 and Remark 5.2. This inequality provides an estimate for the deriva-
tives of a, and arguing in the same way with the function b, we conclude the proof of the
lemma.
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Remark 5.3. We explicitly note that, if Q;CC<Q, then
IVevllLsa,) +ITallLs(o,) + 1Tl Lo (,) < C; (61)

for a constant C' only dependent on M and ;.
Indeed, by (19) we have that

Tb+wTa Ta—wTb

X’U:———(1+w2)1/2, U:———(1+w2)1/2a

T.v=¢eTv,
and hence,

X Vevllrz2,) + 1Y VevllL2,) < I XTallL2(0,) 1 XTbl|L2(0,) + | XvTal 20y
+IXvTbl| L2+ XTvl| 20, +IY Tall2(ay)
+IIY'Th|| 20,y +YvTal 2 (0,)
+IYvTb|| 2(0,) + Y Tl 2(0,) < C,

for a constant C only dependent on M and €;, by Lemma 5.1 and Lemma 5.2. In
particular,

”’UIIWE'Z(Q]) <C. (62)
On the other hand, always by Lemma 5.1 we have
ITVevllp2a,) <C.

Hence by the classical Sobolev embedding theorem there exists a constant C' only depen-
dent on M and §2; such that
IVev|Lsa,) < C.

By (19) we also have
ITal| s, + 1 Tb] Lo ay) S C.

LEMMA 5.3. For every Q,CCSQ there exists a positive constant C depending only
on M and the choice of 01 such that

I'a|[W§’2(Ql) +||b||W§~2(Ql) + IIUHWEZ'3(91) +“U”WE3’2(91) <C

Proof. Applying Theorem 4.3 to the function z=a, we get

[1veatess [ |v5<vea)|2¢6<c(1+ [asso+ [19upo+ [ 11,068

+/|Ta|2¢6+/|V5a|2¢6+/|V5b|2¢6).
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Choosing ¢=1 in Oy, and using the estimate (60) for f,, we deduce that
||a”W;~’~2(Ql) <C.
Also, using Lemma 5.2 we have
ITV:alirza,) +IX Veall L2, + 1Y Veall 2¢,) < C-
Using the classical Sobolev embedding theorem, we get
lally20,) <,

and in the same way
”b“welrﬁ(gl) <C. (63)

Applying Theorem 4.1 we deduce

lallwzs @, FHllallwe 2@,y < Ifallwe 2@y Hvlwrs ) HTallwz 2(q,)

T alls @) +llallwz e o,y +1bllwa s,y < C;

by Remark 5.3 and Lemma 5.1. Arguing in the same way with the functions b and v,

the assertion is proved.

Finally let us verify that the last condition on the coefficients a and b required by
the Sobolev embedding theorem is satisfied:

Remark 5.4. For every §;CC{ there exists a positive constant C depending only
on M and the choice of Q7 such that

”Ta‘“WEI’B(Ql) + ||TU‘HWE2’2(QI) + “Tb||W51*3(Ql) + ”Tb“WE'Z(Ql) <C

and

lalhwzs_ @+ 1blwzs o) <C:
Proof. By (19) and Lemma 5.3,

||r—’1¢l||vvg’3(nl)“"”Ta“vvg"z(nl)+ ||Tb”W51'3(Ql) + ||Tb||w§»2(91)
<IVevllwpaon HIVerllwzz i, < C.

In particular, we get
IT(Ve)2all L2y = T, Vel Veall L2,y + I Ve [T, Vel all Lz, +I1(Ve) 2 Tall L2(q,)

(21)
< IVevTVeal p2a) +IVe (VevTa) || 2, + (V) Tal L2y
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Writing the first term as (V.v)?Ta+V. vV .Ta by means of (21) and using a Holder

inequality we arrive at

”T(VE)za”L?(Ql) < ”VEUHWELG(QI) +“Ta”L5(Ql)+”Tallwg~3(gl)
+ ”U”Wg-i‘(gl) '*’“Ta”wgﬂ(gl) <M.

This last inequality, together with Lemma 5.3 and the classical Sobolev embedding the-
orem, ensures that

”a”Wf‘G(Ql)+||b||W52’6(91) <C

Note that, by Remarks 5.2, 5.3 and 5.4, we can apply the Sobolev embedding theorem
stated in Corollary 3.1, and we deduce

THEOREM 5.1. For every Q1 CC) there exists a positive constant C depending only
on M and the choice of QU such that

”u“sz(Ql) <C.

Proof. Applying Theorem 4.1 to the function a we get

H(ZHWE3,3(Q]) +HG’HW:‘2(01)
< ”fa”Wsz’z(Ql) + IIvIIW3’3(91) + ||UIIW51‘12(QI) +||a”W€2:3(91) + “a“W;vlz(Q;)

+ ”Ta||WE2’2(Ql) + ||T0||W;-3(Ql) + ”aHWf‘G(Ql) + ”b”ngG(Ql)
< [by Corollary 3.1]
Sallwz2) Hivliwz 2o,y + lallwe 2, HiTallwz2q,)

+||b”vv3’2(gl) + ”Tb”wgv?(nl) + ”a”Wf’G(QI) +”b”ngG(Ql)-

Analogously, arguing in the same way with b and v, we get
||V5u||W54,2(Ql) <C,

which is equivalent to the thesis.

5.2. C%*-regularity of viscosity solutions. Let u be a strong viscosity solution,
and (u;) its approximating sequence, as defined in Definition 1.1. For each function u;
we will denote aj=a,; and b;=b,;, the coefficients introduced in (3); X; and Y; the
corresponding vector fields, defined in (8); V., and ij*p(ﬂ) the related gradient and
Sobolev spaces, introduced in Definition 2.2. Besides, a, b, X, Y, V, will be the coefficients
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and vector fields associated to the limit function u, while Wéc 'P(Q) will be the associated
Sobolev space. By definition of viscosity solutions we have

[l | oo )+ 1 Ve 5| e 2y + | Bt | oo 2y < M-
By this assumption and the results in [9], setting as in (18) v;=arctan(dyu;), we have
1V55 1220+ 1V, bl 22 00y +1Vey0sll 2002 < M,
for a constant M independent of j. Besides,
aj—a, bj—>b as j—+oo in L (Q).

THEOREM 5.2. If u€Lip(Q) is a strong viscosity solution of (6), then for every

a€l0,1[, a,b belong to the space Cg,) 1o (€2) of Hélder-continuous functions in Buclidean

sense. Besides, a and b admit Taylor developments of first order with respect to the
intrinsic distance d: if z=a, or z=b, and a€)0,1[, then for every £€Q,

2(8) = 2(80) + X 2(60) (z — z0) +Y2(€0) (y ~ %0) + O(d % (€, &))-

Proof. Let Q1CCQyCCQ3CCR, let a€]0,1[, and let p<N/(1—«). Since a;=Y;u;
and b;=—X;u;, by Theorem 5.1,

||aj||wf]z2(93) +116; ||W;*]z2(93) + ||Uj”vv3f(93) <G,

for C independent of j. By Sobolev Embedding Corollary 3.1 there exists a constant C
only dependent on M and p such that

18sa; Lo (@) +11X; a5l ooy HY5a5ll o0y < Cllajlwzs o) < Cliajllwzaan)

< Clla; ||W§;2(Q1) <C.

Consequently, by the classical Sobolev embedding theorem, (a;) is bounded in C&, (1),
and the limit a belongs to this space. By Sobolev Embedding Corollary 3.1 it also follows
that there exists a constant C'>0 independent of j such that for every &, £,€$;

|X] aj (6) _Xj G (fO)' < Cd;x (gv £0)7

where d; is defined as in (36), in terms of u,.
By Theorem 3.2 the Taylor expansion follows.



126 G. CITTI, E. LANCONELLI AND A. MONTANARI

THEOREM 5.3. If u€Lip(Q) is a strong viscosity solution of (6), then ue HL (2),
and for every a€l0,1], for every multiindex I of weight 2, Dyué Cq

loc’

Proof. Applying Theorem 5.1 and Sobolev Embedding Corollary 3.1 to every ele-
ment of the approximating sequence, and letting j go to co, it follows that for every
multiindex I of weight 2, Dyu€ Cg 1oc for every acl0,1], while ue WO5 '2, from which it
follows that ue HZ ().

loc

5.3. Proof of the main theorem. We can now apply to the solution u of class Cg’a
just found the regularity results stated in [5], and conclude the proof of the main result.

This approach is an iteration of the method used in §3. Since a and b have Taylor
developments of order 1, it is possible to introduce the following vector fields, which
approximate X and Y much better than the analogous vectors introduced in §3:

Xeo=0:+Pg,a(8)dy, Ye¢,=0,+PLb(£)d,,

where P} a(€)=a(é0)+Xa(fo)(z—20)+Ya(&)(y—yo), and P; b(¢) is defined in an anal-
ogous way. It then follows that

k(o) (1+uf)V/?

Xe  Ye | =~
[ €o» 50] (1+a2+b2)3/2

(€0) ;- (65)
In order to use the theorems stated in [5], we first recognize that the distance used here
is equivalent to the control distance associated to the vector fields used in [5], and that
a function with weak derivative of class C¢ has also the Lie derivatives in Cg, which is
the notion of derivative used in [5].

Remark 5.5. If condition (33) holds with a=1, then the pseudodistance d is equiv-
alent to the pseudodistance

d(€, &) =inf{((67+63)°+63)"/*: v € E(¢, &)},
where

E(&,&)={7:[0,1] > R>: 7(0) = &0, v(1) =&, % =01 X +0,Y +658;, € R*}.

Remark 5.6. Assume that feCgZ () for some a€]0,1[, and its weak derivatives
XfYfeCr(Q), o fell () with p>1/a. Let £€Q, and let v be an integral curve of

loc

X such that v(0)=¢. Then

XF(E) == (fo)

dh h=0
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We refer tq [10] for the proof of these two remarks.

Proof of Theorem 1.1. The function u is a solution of class Cj’a of the equation
X2u+Y2u—(Xa+Yb)du= f(1+u2)'/?,
with f=k(1+a%+b?)3/2€C)* for every a<1. By (65),

(14u? (&))"
(€0)(1+a2+b?)

Xou(éo) = k 3/2 (§O)X(X€0Y§0_YEOXEO)U(§O)'

Then by Theorem 3.3 in [5], du€Cy®. Since ue H?, the derivative d;a belongs to L2.
By relation (19), and the regularity of Oyu, this derivative belongs to C$. Then a, b
and f are of class C;’O‘ and partially differentiable with respect to ¢, with derivatives of
class C§¢. Then by Theorem 3.2 in [5], duc Cj’a. In particular, ue C>*

eucl”
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