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§0. Introduction

The object of this paper is to construct a parametrix for the 3-Neumann problem for
arbitrary bounded pseudoconvex domains in C? of finite type, and to use this parame-
trix to obtain sharp regularity results for the associated Neumann operator and for
solutions of du=f. As an application, we obtain an extension of the Henkin-Skoda
theorem, which characterizes the zero sets of functions in the Nevanlinna class in
strictly pseudoconvex domains, to pseudoconvex domains of finite type in C2.

The 3-Neumann problem is a boundary value problem for an elliptic system of
partial differential equations. Let Q< C” be a smoothly bounded domain. Let U be a
neighborhood of the boundary dQ and let ¢ : U—R be a defining function so that

() All three authors are supported by grants from the National Science Foundation.
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QnU={z€Q|o(z)>0}
and Vo(z)+0 for g(z)=0. Let
O =385*+3*3

acting on (p,q)-forms on Q. Then given a (p,q)-form on Q, the 3-Neumann problem is
to find a (p,q)-form w=N(g) such that

Ow)=g on Q;
u_130=0 ondQ; 0.1
du_130=0 ondQ.

The first results for this problem were obtained by Kohn [K1,2], and proceeded by
L? methods. Our analysis originates in the approach used by Greiner and Stein [GS] for
the strongly pseudoconvex case, which reduces the problem of solving system (0.1) to
the problem of inverting a pseudodifferential operator O* on the boundary 3Q. By
finding an operator (1™ such that 0~ O*=[J,, this in turn is reduced to the problem of
inverting the boundary Kohn-Laplacian [0,. The final parametrix for the Neumann
operator N is then written as a composition of various operators, each of whose
regularity properties is now well understood.

There are several significant differences between our results in this paper and the
earlier of {GS], and several new difficulties had to be overcome in extending the results
to the weakly pseudoconvex case. First, we give a more intrinsic formula for the
pseudodifferential ‘‘Dirichlet to Neumann’’ operator which arises in the construction of
the boundary operator O*. Second, we give a more natural interpretation for the
operator O as the boundary operator induced by the 3-Neumann problem for the
complementary domain C*\\ Q. It is worth mentioning that up to this point the analysis
does not depend on pseudo-convexity or finite type. Third, the properties of the relative
solving operators for O, have to be understood in terms of a natural nonisotropic metric
on the boundary of Q. 1t is here, and in what follows, that pseudo-convexity and finite
type play a crucial role. Fourth, the commutativity properties of these solving opera-
tors with respect to pseudo-differential operators had to be understood without the use
of the more standard S, 1 class of pseudodifferential operators. Fifth, certain micro-
local smoothing properties of the Szegod projection had to be exploited.

We consider domains QccC? which are pseudoconvex and of finite type. The
main result on the construction of a parametrix for the Neumann operator N on (0,1)-
forms is given by:
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THEOREM 5.1. For any integer k, there is an integer k, and there is an operator
T:C*(Q)0,y—>C*(R).1y which -is isotropically smoothing of order k so that for
FECTQ)o.1),

N(f)= NYH+TLS)

where Nf is an operator explicitly given as a composition of operators which are either
standard elliptic pseudodifferential operators, standard elliptic Poisson operators and
Green’s operators, or nonisotropic smoothing operators on the boundary of Q. The
precise definition of Nf is given in Definition 5.1.

Next, let

p,=2 3

R
87,0z, oz

Ye)

9
3z,

This is an operator which is tangential along 8Q. The main regularity results for the
Neumann operator N on weakly pseudoconvex domains of finite type in C2 are then the
following:

THEOREM 7.1. Suppose N is the Neumann operator, and q(L,,L,) is a quadratic
polynomial in L, and L,. Then the following operators are bounded on the indicated
spaces:

qL,,L)N:L? > L2, 1<p<w, k=0,1,2,...; (7.1)
ON_|8¢:L—12,,, 1<p<w, k=0,1,2,...; (7.2)
N:A,—AyymNTyryn a>0. (7.3)

Here Lf are the usual spaces of functions or forms on Q that are in L”(Q) along
with all their derivatives up to order k. A, is the usual isotropic Lipschitz space of
exponent a on €2, and the spaces I', are appropriate non-isotropic Lipschitz spaces.
There are also related results for the solutions of du=f, giving sharp L? and Lipschitz
estimates. These may be found in Section 7. We also obtain the following L' estimate:

THEOREM 8.1. Suppose fis a smooth (0, 1)-form in Q. Then we have the a priori
estimate:

”é*N(f)”Ll(aQ) = C[llfl!Ll(Q)+|l(ﬂ/Q)fAéQ”Ll(Q)]' (8‘1)
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The quantities 4 and ¢ are related to the non-isotropic geometry on 3Q and are
defined in Section 8. This last estimate leads to our result of zeros of functions in the
Nevanlinna class. It is as follows:

THEOREM 9.1. Let QcC? be a bounded, smooth weakly pseudo-convex domain of
finite type m. Let G be a holomorphic function on Q. Then the zero variety Z=Z(G) is
the zero variety of a function F in the Nevanlinna class if and only if the zero variety Z
satisfies the Blaschke condition.

The 3-Neumann problem arises naturally from problems in several complex vari-
ables, and has been the subject of a great deal of interest and research. In the case of
domains with nondegenerate Levi form, the original L? estimates were obtained by
Kohn [K1], and these methods were further developed in Kohn and Nirenberg [KNJ. A
summary of the approach to the 3-Neumann problem in this situation via the method of
a priori estimates is given in the monograph by Folland and Kohn [FoK]. The L?
estimates for the 3-Neumann problem in the case of domains of finite type in C* were
obtained by Kohn in [K2].

The method of studying the 3-Neumann problem via reduction to operators on the
boundary were first used by Garabedian and Spencer [GaS] and by Kohn and Spencer
[KoS], but a parametrix for the Neumann operator in the case of strictly pseudoconvex
domains was first obtained in [GS]. This work in turn was based on the analysis of
Folland and Stein [FoS] for O, for strictly pseudo-convex domains, which utilized the
idea of approximating the boundary by the Heisenberg group.

There has been considerable development in recent years in the analysis of 3, J,,
and the Bergman and Szego kernels for domains of finite type in C2, and this work has a
major bearing on our present paper. In particular, we cite the papers of Bonami and
Charpentier [BC1], [BC2], Christ [C], C. Fefferman and Kohn [FK], Machedon [M],
McNeal [Mc], Nagel, Rosay, Stein and Wainger [NRSW].

The results of this paper were announced in [CNS], and the organization of the
present paper follows that of the announcement closely.(!) The paper is organized as
follows. In Section 1 we obtain a pseudodifferential operator description, up to errors of
order —1 of the ‘‘Dirichlet to Neumann’’ operator for systems of second order elliptic
operators with scalar principal symbol. In Section 2 we describe the operator (I and the
associated 8-Neumann boundary conditions on (0, 1) forms for smoothly bounded

()) Circumstances beyond the authors’ control have forced the delay of the publication of the present paper.
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domains in C2. In Section 3, we use the description of the ‘‘Dirichlet to Neumann”’
operators of section 1 to describe the boundary operator O* associated to the -
Neumann problem. In Section 4, we show how to construct the operator 0~ coming
from the 3-Neumann problem on the exterior of the domain Q, and describe the
relationship between OF, 07, and O,. All of these calculations are done using pseudo-
differential operator realizations of the operators, anc'i we need to keep track of errors
up to order —1. In Section 5, we construct a parametrix for the Neumann operator, and
in Section 6 we establish a variety of commutation properties of the components of the
parametrix. In Sections 7 and 8 we establish the various regularity properties of the
Neumann operator mentioned above, and in Section 9 we carry out the Henkin~Skoda
program in weakly pseudoconvex domains of finite type in C2. We wish to thank the
referee for several useful suggestions which have been incorporated in the text.

§1. Dirichlet to Neumann operators for elliptic systems

The object of this section is to obtain a pseudodifferential operator description, up to
errors of order —1, of the so-called ‘‘Dirichlet to Neumann operatox:” for second order
elliptic operators with scalar principal symbol. The principai symbol of the Dirichlet to
Neumann operator is well known and is of order 1, but later in this paper we shall need
to know the zero order part of the symbol as well. This is the main content of this
section. Our approach is similar to that of Greiner and Stein ([GS], Chapter 7), which in
turn is based on the approach developed by A. Calderén, L. Hérmander, R. Seeley,
and L. Boutet de Monvel. However, the presentation in this section gives a more
intrinsic description of the operator than is available in [GS].

We begin by introducing appropriate notation and by recalling appropriate defini-
tions. Let QcR"*! be open with 0€Q, and let

n+1

g= Zg,-,-(y) dy;dy; (1D
ij=1
be a smooth Riemannian metric defined on a neighborhood of Q, the closure of Q. Let
V be a fixed finite dimensional complex vector space, and let L(V) be the space of
linear endomorphisms of V. We let A denote a second order linear partial differential
operator defined on V-valued functions on Q. We assume that A has the form

n+l

N 32
A=-2,8"(
,-;::1 9y;9y;

+ first and zero order operators (1.2)
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where as usual, the smooth functions {g”} are defined by the equations

n+1

> e Me*y) =0, (1.3)
j=1

Thus the principal symbol of A is scalar, and equals the principal symbol of the
Laplace-Beltrami operator associated to the metric g.

Let M be a smooth hypersurface in Q, with 0€ McQ. Shrinking Q if necessary, M
will divide Q into two parts, and if we let ¢ denote a signed geodesic distance from M in
the metric G, then

Q=MUQ*UQ~

where
Q" = {y€eQ|o(y)>0},
Q™ ={y€Q|o(y)<0}.

Intuitively, the Dirichlet to Neumann operator N* for the operator A on the
hypersurface M relative to the domain Q% can be described as follows. If f is an
appropriate function defined on M, and if u is a ‘‘solution’’ of the Dirichlet problem

Aw)=0 on Q"

u=f on M, (1.4)

then the Dirichlet to Neumann operator N* applied to f is the restriction to M of the
inward normal derivative of u. Of course this is not a precise definition since M is not
the boundary of Q*. In a moment we will see how to deal with this problem, but for
now it is important to note that N* will be a pseudodifferential operator on M and will
be well defined only modulo infinitely smoothing operators. Also, with a similar
definition, there is a Dirichlet to Neumann operator N~ associated to A on the
hypersurface M relative to the domain Q~.

In order to write the operator A in a special form, and in order to make precise what
we meant above by solving the Dirichlet problem, we need to introduce special
coordinates appropriate to the operator A and the hypersurface M. The function ¢ is
smooth on £, and we shall denote by 5/9g the vector field which is dual to 1-form dp (in
the metric g). It is given in coordinates by

n+l| n+l
%= ;[ng(y)%(y)]% (1.5)

j=1 i
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For each y sufficiently close to the origin, the integral curve to the vector field 8/39
passing through y will intersect M in a unique point z(y), and 7 is a smooth mapping.
Also, we can choose a coordinate system on M near the origin 0 which is given by a
mapping

¢:M—-UcR"

where U is an open neighborhood of the origin in R", and ¢(0)=0. Then after shrinking
Q again we may assume that the mapping

PD: Q— Ux(—¢,+¢)

given by

D(y) = (d((¥)), o(y)
is a diffeomorphism. If (x;, ..., x,,) are coordinates on the open set U, we shall, with an
abuse of notation, use coordinates (x;, ..., x,, f) as coordinates on Q where o(y)=t.

For each tE(~¢, ¢) let
M,={y€Q|o(y)=1t}.

Then My=M, and if y € Q, the integral curve to /3¢ passing through y intersects M, in a
unique point 7t(y), where 7, is a smooth mapping and ny=7x. Let g, be the restriction of
the metric g to the hypersurface M,, and then define the restriction of the operator A to
V-valued functions defined on M, by the formula

ALN)Y)=A(forNy) for yEM,. (1.6)
Also define a mapping C:Q—L(V) by the formula
C(x, D(v) = Alpv)(x, ) (1.7)

for each vE V. (Of course, if we choose a basis in the vector space V, then C is a matrix
valued function.) Finally if fis a smooth function on Q let f; denote the restriction of f
to M,.

ProrositioN 1.1. (1) A, is a second order elliptic operator defined on V-valued
functions on M,. The principal symbol of A, is scalar, and equals the principal symbol
of the Laplace-Beltrami operator associated to the metric g,.

(2) If f is a smooth V-valued function on Q, then in terms of the coordinates
o, 0=(x1,..., %, 1) '

2
A(f)x, )= —-%g(x, D+C(x, t) 2—{(& D+Af)x, D. (1.8)



160 D.-C. CHANG, A. NAGEL AND E. M. STEIN

Proof. Write
¢y = (@i1(¥), ..., @a(¥))
and put
oY) = @ (¥)-

Since ¢ was choosen as a signed geodesic distance to M, and since d/3g is the vector
field dual to dp, it follows that

n+l

2]
Y gl ot "’"*‘( ) om

i,j=1 j a'xi

1 if m=n+l

0 if m<n. (1.9

_9 -
(y)—aQ () (» {

The proposition now follows from the chain rule since if we put F(y)=f®(y)), and
®(y)=(x, 1), then

n+l

n+l1
ng(y) (y)— s, t)+[2g"(y) q”"“( )]af (x, 1)
ij=1 i at2 ij=1 ot

n+1 2
; @ P o
+Z[ng(y) 0% (y)] )

L,m=1L1ij=1 1¥*m

Since we can identify M, with My=M via the projection 7, we can also think of A,
as a one parameter family of operators acting on V-valued functions on M. Write

A,=—A(x,t,D)+B(x,1,D) (1.11)

where A(x, t, D,) is a family of scalar second order operators, —A(x, ¢, D) agrees to top
order with the Laplace-Beltrami operator on M,, and B(x, t, D,) is a first order L(V)-
valued differential operator acting on V-valued functions on M. (Note that such a
decomposition is not unique.) We now make

DEeFINITION 1.1.

Ag= Ayx, D)= A(x,0,D,);

-9 )
A] —A](anx)_a(A(xr t Dx))|t=0’ (1.12)

3 = BO(X, Dx) = B_(x’ 0, Dx);
Cy = Cy(x) = C(x,0).
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~ The operators A, A, By, and C, are then differential operators acting on V-valued

functions on M of orders 2, 2, 1, and 0 respectively. A, and A, are scalar operators,
while By and C, are L(V)-valued (i.e. matrix valued) operators. It is in terms of these
operators that we will be able to describe the Dirichlet to Neumann operator for A.

We next recall the definition of Poisson-type operators P*: Cy(M)—C™(Q*). (For
a more complete discussion of these operators, see [GS], Chapter 7.)

DEFINITION 1.2. A function p*(x, t, §)€ C*(UX[0,&)XR") is a symbol of Poisson
type or order m if it satisfies:

(1) p*(x, t, &) has compact support in the (x, t)-variables;

(2) For all multi-indicies a, B and non-negative integers y, o there is a constant
C=C,p,y,s SO that

B a

A similar definition is made for symbols p~(x, - £).

DEeFINITION 1.3. If p*(x, t, &) is a symbol of Poisson type of order m, the mapping
P* defined on Cy(U) given by

P 0= (o) f e ip*(x, 1, ) (8) de (1.14)
2w ) Jgo
is called an operator of Poisson type of order m.

The following result then describes the existence and regularity of solutions for the
local Dirichlet problem for the operator A. (See [GS], Chapter 7 for a complete
discussion.)

THEOREM A. If 0E U< U is a sufficiently small neighborhood of the origin in M,
there are Poisson operators P* of order zero on U, such that, if R denotes the operator
of restriction to M,

(1) AP* are Poisson operators of order —;

(2) RP*~1I are pseudodifferential operators on M of order — .

Moreover, if P;-' are any other Poisson operators with properties (1) and (2), then

(3) P*—P¥ are Poisson operators of order —x.
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DEriniTION 1.4. The Dirichlet to Neumann operators for A on the hypersurface M
for the domains Q* are defined to be

Nt=+RS p* (1.15)

where P* are any operators of Poisson type solving the local Dirichlet problem as in
Theorem A.

It of course follows from Theorem A that N* are well defined pseudodifferential
operators of order 1 on M, since a different choice of Poisson operator leads to an error
of a pseudodifferential operator of order —. We are finally in a position to state the
main result of this section.

THEOREM 1.2. Modulo pseudodifferential operators of order —1,

N*=7% (—Ao)"’z—%Ag' AF —;(—AO)_”ZBO-F% C,. (1.16)

Several remarks are now in order. First, (—A.)"? is understood to mean a pseudo-
differential operator X of order 1 on M whose principal symbol is the positive square
root of the principal symbol of —A,, and such that X*>+A, is an operator of order 0. This
determines X up to an error of order — 1. The ambiguities in the second and third terms
in (1.16) (in the definition of Ay and in whether we take A;'A, or A,A;" and (~A,)"?B,or
By(—Ap"* are also errors of order —1. Finally, the fact that the first order term of N* is
F(—Ap)" is well known, and so as remarked earlier, the main contribution of this theo-
rem is the description of the zero order terms.

Proof of the Theorem 1.2. The roles of Q* and Q™ can be interchanged by simply
reversing the sign of the function o. This has the effect of changing the signs of A, and
B. Thus we shall only make our calculations for the case of Q*. We shall follow the
arguments of [GS], Chapter 7, using the calculus of pseudodifferential operators, and
thus we shall be somewhat brief. According to Theorem A, we can calculate N* by
using any operator of Poisson type which solves the local Dirichlet problem, and we
construct one such operator. We begin by calculating the asymptotic development of
the symbol of a fundamental solution E to the operator A. We let this fundamental
solution act on distributions supported on M, and this gives us an operator of Poisson
type E, which (roughly) satisfies AE,(f)=0 on Q*. (Precisely, AoFE, is an operator of
Poisson type of order —.) If we let E, ,( f) denote the restriction of E,(f) to M, then
the operator P(f)=E,© [Eb,o]_] is an (approximate) Poisson kernel for the operator A in
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the sense of Theorem A. Then N* will be given by R 3P/3t. We now proceed to give a
sketch of the necessary computations.

According to Proposition 1.1 and the discussion following it, if we use the coordi-
nates (x, £)=(x,, ..., X, ¢) on Q, we can write

2 & ) 2
8= =25 D @l iat + 0 57
o i %% (1.17)

- 9 | A 3
+ D> b(x,)—+C(x, 1) —+d(x,t
,21 505 Gl D )

where b;, C, and d take values in L(V) (i.e. are matrix valued). If we let (&, ..., &,) be
dual variables to (xi, ..., x,), and 7 be the dual variable to ¢, the symbol of A is

a(A) =72+ >, (ag'(x)+m"{(x)+0(t2))§,.§j+i[2 bix, DE+C(x, t)n] +d(x, 1)
j=1

s (1.18)
=dy+d,+d,
where d; is homogeneous in £ and 7 of degree 2—j. Thus
dy= 7P+ D, (@l(x)+1a¥(x)+ O(P)EE,
i,j=1
d = i[ZBj(x, t)§j+C‘(x, t)n] ; (1.19)
j=1

d,= d(x, 1).

In equation (1.18) , the coefficients are related to the operators Ag, A;, By and C, by the
equations

n B az
Ayx,D) = H ;
ox, D)) Z_ao(x) Tx ox.

i,j=1 i J

n . 82
A6 D)= > a0 5=

= i (1.20)

Byx, D)= D bjx, 0=
oy Ox;

J

Cox) = C(x,0).
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Let e be the symbol of a fundamental solution E for A, and let e=eg+e;+... be its
asymptotic expansion where ¢; is homogeneous of degree —2~j. The Kohn-Nirenberg
formula for composition of pseudodifferential operators then gives:

€y = (d())_l
” (1.21)
e = —(do)‘2d1—i(do)'3[Z(do)g,(do)x,+(do)n(do)x]
j=1
where (dy),, for example, means the derivative of dy with respect to r. We put
D=D(x,1,£) ="V £},_,(ab(x)+1al(x)+ O(P)EE
,, (1.22)
bix,1,E) = D.bfx, NE;
j=1
so that
dy= 172+D2
(1.23)

d, = ilb(x, 1, §)+C(x, O)n].

As in [GS], we want to see how the fundamental solution acts on distributions
supported on R"={r=0}, and for this we need to evaluate

T
E;f e'"’ej(x,t,éf,n)dr]

—-%

for j=0,1,2,... . We have

e,=(’+D%!
1 b(x, t, &)+ C(x, iy 2}'=1(do)g.(do)x+[2?.;=107(X)§§j+0(’)](2’?)
e, =—if == AL/ A T .
(7’ +D?’ (n°+D")

(1.24)

Now the following calculations are easy to establish:

IJ’+weimd7] _ 1 e—Dt.

2n)_, p+D* 2D

L o ei"ldﬂ =|il+Dt:|e_D,‘
27 . (7]2+D2)2 4D3 ’
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1 (7 "'y dn [ t ] -pr.
— | ===l
27 J_. (f*+D%? L4D
[T edy z292+3z0+3]e_9,,
) (+D? 16D° ’

1 f " e"ydy _[ Di+D oD,
27 |_. (+D%»} 16D* ’

From this it follows that

1 [ 1
int dn = —Dt
Tﬂf_m eeyx, 1, & n)dy ——2De R

and

-~ f e (x, 1, & 7) dn = —ib(x, 1, 5)[‘+DD’] e P +C(x, t)[ 4D] ~Dr

) 2D’ +3tD+3 | _
"E(do)sj(do)xj[%}_]e D (1.25)

[Ea"msg +0(z)][ 4D ]e

iLj=1

In particular, if we let
D()(x: g) =V |a()(-x)g EJ ’

then when we let t=0, we find that the symbol e, ((x, §) of the pseudodifferential
operator E, ; has, modulo terms of order less than —2, the asymptotic development

1 _i[ b(x,0,8) 32;=1(D0)§(D0)x,j|

.00 )= 2Dy(x, &) 4Dy(x, &) 16D (x, £)°

(1.26)

Again using the calculus of pseudodifferential operators, we find that the inverse of the
elliptic pseudodifferential operator E, ; has symbol

[€5.0]'(x, &) = 2Dy(x, E)+iDy(x, &)~ [b(x, 0,£) +2(D0)Ei(DO)Xj:‘ (1.27)
i=1

modulo terms of order —1.
To calculate the Dirichlet to Neumann operator, we now need to compute
E,o[E,,] ", take the derivative with respect to ¢, and then set t=0. The result of this
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computation is that the symbol of the Dirichlet to Neumann operator, modulo terms of
order —1, is

~Dyx, §)=5Dolx, &' 2 (DY Do),
i=1 (1.28)
—%Ao(x, H7A,(x, &)+ %C(x, 0)--b(x, 0, EDy(x, ).

Since the symbol of the operator (—Aq(x, D,))'"? is
Dy(x, &)+ %Do(x, 5> (Dy); Dy,
Jj=1

up to errors of order —1, this finally shows that the operator N* has the desired form,
and completes the proof.

§2. O on (0, 1)-forms and the 3-Neumann conditions for domains in C?

The object of this section is to describe the operator
0 =33*+3*3

and the associated 3-Neumann conditions on (0, 1)-forms for smoothly bounded do-
mains in C2. Thus let g be a smooth Hermitian metric on C?, and let Q< C? be a domain
with C* boundary 3Q. There is an open neighborhood U of 3Q such that if ¢ denotes a
signed geodesic distance in the metric g to 3Q, then

QnU={zEU|o(z) > 0};

Vo(2)#0 for zEU. Q.1

We choose a smooth orthonormal basis for (0, I)-forms on U, given by @, and w,,
where

@,=V 2. 2.2)

We let L, and L, be the dual basis of antiholomorphic vector fields on U. Then L, and
L, are tangential on 3Q2, and in fact on the set I/ we have

L(e)=L,(¢)=0;

i 1 (2.3)
L)) =L,(0) = 77—
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Hence if we define a real vector field T by

T= %(LZ—LZ) (2.4)
i

then on the set U we have
T(0) =0 @.5)

so T is also tangential on 8Q, and the vector fields Re(L,), Im(L,) and T span the real
tangent space to Q2 at every point of 3Q. If 8/8¢ is the vector field dual to the one form
do then it is easy to see that

,=—L % ur 2.6)
V2 %
If fis a smooth function on U then
of= L (f)d,+L,(d,. 2.7

If u is a (0, 1)-form on U then we can write u=u,®,+u,b,, and
Bu=(L (u)—Ly(u,)+su)d, A, (2.8)
where the scalar function s is defined by the equation
3@, = 5@, A®,. (2.9)

(Note that since @,=V 2 8, 8@,=0.)

We next want to compute the formal adjoints 3* of the operators 9, relative to the
metric g. Let dV be the volume element induced by g. Then there are scalar functions
hy and h, such that for ¢, y € C,(U) we have

f pLy)dV= f (=L+h)pypdV (2.10)
1%

U
for j=1,2. Thus if u=u,®,+u,o, we have
8*u=(=L,+h)u,+(—Ly+hyu, .11
and

O* (v, AD,) = (Ly—hy+8)v@, +(— L, +h )vd,. (2.12)
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We can now state the 3-Neumann problem. The operator [ is defined to be
0 =33*+3*3 (2.13)
on (0, 1)-forms, and the 3-Neumann problem is the following boundary value problem:
Ou=f onQ;

u_l80=0 onaQ 2.14)
Su_130=0 on 3Q.

The object of this section is to calculate [0 and the two boundary conditions of
(2.14) in the given coordinates on the open set U. Now if u=u,@,+u,d, then since o=
(1/V 2)@,, u_l30=(1/V 2 )u, and the first boundary conditions is just

u; =0 on 3Q. (2.15)

Since du=(L,(u)—L,(u,)+su,)d, A, the second boundary condition amounts to re-
quiring that Ll(uz)——l-,z(u,)+su,=0 on 8Q. But if u already satisfies the first boundary
condition, then since L, is a tangential operator L(u;)=0 on 3Q. Hence in the presence
of the first boundary condition, the second boundary condition is just

Lyu)—su, =0 on 3Q. (2.16)

The computation of O is an algebraic exercise. In the coordinates given by @; and
(,, O is a matrix valued differential operator. To describe it we first define

- —L,L,~L,L, 0

o 0 LL-L,L,

0 [Ly L]
Hi= [ L.L 0
(L), L,]

O~ [sL,+(h,—$)L, 0 .17

2 0 h,L, '

(hli, SL,

&= | —sL, hlLl]
O [ L,(h))+L(s)—shy+]s|* I:,(hz)]

L Lyh)-Lis)+sh,  Lyhy |

Note that O, is a second order operator, [J;, O, and O, are first order operators, and
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O, is a zero order operator. Also (s only involves differentiation with respect to the
tangential operators L; and L,. Finally note that 0, is also a tangential operator by
equation (2.3).

The first main result of this section is now the following description of the operator
O and the 3-Neumann boundary conditions in terms of the coordinates introduced
above.

PROPOSITION 2.1. On the open set U with coordinates given by &, and @, we have
(1) O=0,+0,+0,+0;+0,;
(2) The two 3-Neumann boundary conditions are equivalent with
(i) u,=0 on 3Q,
(i) Ly(uy)—su;=0 on 3Q;
(3) The operator U is a second order elliptic system with scalar principal symbol
equal to the principal symbol of the Laplace-Beltrami operator associated to the
Hermitian metric 1g.

Proof. (1) is the result of straightforward algebraic calculations using equations
(2.7), (2.8), (2.11), (2.12), and (2.13). We omit these calculations, but see [GS], Chapter
6, for example, for further details. We have already proved (2), and so it only remains to
prove (3).

The second order part of O is the operator Oy, and modulo the diagonal first order

operator
[[Lp Ly o ]
0 [L,, L,]

Oy is the scalar second order operator
—(L,L,+L,L,).

If we write L,=4(X,—iY)), and L,=1(X,—iY,) with X; and Y, real vector fields, then X,
X, Yy, and Y, are orthogonal, and by the Pythagorean theorem,

=1.

1 1
—X.|l=||l—Y.
=4~ [
But modulo operators of order —1

“LL L, =~ %[(\/7 XP+(VIYP+VIXHVIYY] (.18

12928286 Acta Mathematica 169. Imprimé le 10 novembre 1992
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which agrees to top order with the Laplace~Beltrami operator for the metric ig. This
completes the proof,

We want to be able to apply the results of Section 1 to the operator 20. Thus we
want to write

3t -9
20=-5+C=+0, (2.19)
do do

as in equation (1.18), where [J, acts tangentially, and then we want to write
O,=—A+B (2.20)

as in equation (1.11) where A is a scalar second order operator, and B is a first order
operator.

Using equation (2.6) and its conjugate, we see that

D__L§q10]+i[j_4r ﬂ‘ r+LL, 0 ]
25020 1] v3lee’ Lo -1 0 T°+L,L, |

2.21
- (s—5+h)V2 0 3 'I:s+§—h2 0 ]T @21
= - +1 .
: 0 h,/V'2 | de 0 ~h,
Thus we see that
2 V2 (s—s5+h 0
m=-2 4 (s=5+h,) 8
3o 0 V72h,|d
i) ) @2

0 0 . s+§_h 0
—2[ i ]+—2’ [—?—,T][l 0]+2i ’ T
0 [L,,L] V2Loe 0 -1 0 —h,
+20,+20,+20,.
We can expand the vector fields T, L,, and L, in Taylor series in g. Thus we write
T=T"+oT'+0(0%;
L,=L{+oL+0(; 2.23)
L, =L}+oL}+0(0».
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It follows that
[%, T] =T'+0(0), (2.24)
and hence
T+ L,L, = (T +L3+QT°T +LOL + LI L+[T', T°])o+0(c?). (2.25)

From these calculations, we can now calculate the operators Ag, A;, By and C, of
Definition 1.1 for the operator 201.

ProposITION 2.2. For the operator 20 on the domain Q we have:
Ay =2T+2L) LY;

A =4T'T+2L L +2L L0-2[T", T,

- 0 0 s+5—h 0
Bo=—2[ ]+\/2 iT'[(l) 01]+2i[ ? ]T"
2

0 [L},LY] - 0 —h
+200+203+203;
. | V2G6-s+hy) 0
° 0 V72h,

where of course O] denotes the operator T; restricted to the boundary, i.e. to the set
{0=0}.

§3. The boundary operator (" for the 3-Neumann problem

Let Q=C? be a domain with C* boundary. We shall sometimes write Q*=Q, and
Q™ =C*\Q. Recall that the 5-Neumann problem for (0, 1)-forms on Q consists of
finding a (0, 1)-form u such that:

Ou=f onQ;
u_ldo=0 onaQ; 3.D
du_l30=0 on 3Q;

where fis a given (0, 1)-form. It is well known that this boundary value problem can be
reduced to the problem of inverting a certain scalar pseudodifferential boundary
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operator on Q. The object of this section is to explicitly describe this reduction and to
calculate the resulting boundary operator O".

The reduction to the boundary is accomplished through the use of two operators
associated to the domain Q and the operator O, namely a Poisson operator P and a
Green’s operator G. If we let R denote the operator of restriction to the boundary, then
the operator P maps (0, 1)-forms on the boundary 2Q to (0, 1)-forms on Q and has the
property, that modulo C* errors,

OQoP=0 onQ;
(3.2)
RoP=] on3dQ.

The Green’s operator G has the property that modulo C* errors,

OoG=1 onQ;
3.3)
RoG=0 onoQ.

We now try to find a solution to problem (3.1) of the form
u=Pu)+G(f) 3.4

where u, is a (0, 1)-form on the boundary to be determined. (Actually the solution we
derive in this section is exact only modulo C* error terms. The more precise result is
dealt with in Section 5 below.) It follows from the defining properties of P and G that,
moduto C* error terms,

Ow)=f 3.5

for any u of the form given in (3.4). Thus we want to determine u, so that the two
3-Neumann boundary conditions are satisfied.

We now turn to the problem of defining the boundary operator O, whose
invertibility gives us u,.

For this we must use results about the 3, complex on 3Q. We denote by %*° the
space of smooth functions on 3Q. The space of smooth (0, 1)-forms on 3Q, which we
denote by %! can be identified with the restriction to 3R of all smooth (0, 1)-forms on
Q which satisfy the first of the 3-Neumann conditions, i.e. for which u,|,o=0 (see [FK],
p. 86 for details). Then the operator §, carries elements of %*° to sections of %&*'. The
correspondence u;<>u,d, clearly allows us to identify elements of A" with functions
on 3Q, and the L? completion of #*! with L*3%Q).
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We shall define the basic boundary operator (17, a first order pseudodifferential
operator, mapping &"! to #*! as follows. Let u be a smooth (0, 1)-form on Q that

satisfies the first boundary condition, and let u, be its restriction to the boundary. Now
form

O*u, = 8P(u,) _130|,q,

where P is the Poisson kernel given in Section 1. It is to be noted that 5P_]Jp satisfies
the first boundary condition by its very definition. Thus u,—0O%u, is a well-defined'
mapping on %B"! to itself. Since we shall have that essentially u# is given by
u=P(u,)+G(f) (where G is a Green’s operator as in (3.3)), the determination of «, (and
hence of u) is reduced to inverting the equation O*u,=~3G(f)_|39|,o- Since the
bundle #*! is one-dimensional, we can therefore realize 0% as a scalar operator.

We shall now describe this scalar realization of O7.

As in Section 2, in a neighborhood U of 3Q, we choose a basis {@,,®,} for the
(0, 1)-forms. Then if u, is a (0, 1)-form on 3Q we can write it as:

Up= U\, + sy (3.6)

where u; and u, are smooth functions on Q. Since P(u,) is a (0, 1)-form on &, on the
set QN U we can write

P(uy) = v,0,+0,0,, (3.7
where v, and v, are (smooth) functions on QnU. We have
u;=v;, ondQ, forj=1,2 (3.8)

since RoP=1.
Recall from Section 2 that @,=V 2 Jg. The first 3-Neumann condition then gives

0=R(u_130)=u, _180+R(G(f)) _180=V2 u, (3.9
since RoG=0, and so the first -Neumann boundary condition is equivalent to
u; = 0. (3.10)
Hence by (3.8) this implies that

v,=0 on 3. (3.11)
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Next,
du = 3P(up) +3G(f) (3.12)

and so the second 3-Neumann boundary condition is equivalent to
R(8P(uy) _180) = —R(BG(f) _139). (3.13)

Now according to equation (2.8)

3P(u,) = (L,(v)—Ly(v)+50,) @, AG,, (3.14)
and hence
- N - )
OP(u,) _10p = ﬁ(L,(vz)—Lz(v,)+sv,)w,. (3.15)

Now if u is to satisfy the first boundary condition, u, and hence v, is zero on 3Q. On the
other hand, the operator L, is tangential, and hence

Li(vy)=0 on Q. (3.16)

Since u;=v, on 3Q, the second 8-Neumann boundary condition (in the presence of the
first) is equivalent to the following equation for u,:

1 - - _
——R(L,(v,)—sv,) @, = R(AG( f) _13p). (3.17)
_\/—2— 2\¥1 1 1
Near 8Q, using the coordinates {@,®,}, G can be written as a matrix operator
G, G
G= [ : ‘2] (3.18)
GZI GZZ

so that if f=f, @, +f; @,, then

G(f) = (G, (f)+G () D1 +(Gy (f)+ G () @,

3.19)
= Gl(f)a')1+G2(f)a')2.
It follows from equations (2.6) and (2.8) that
5G(f) _Jdo= ~\/1—7 [LAG, () ~LAG () +5G\( )] &y. (3.20)

Thus in equation (3.17), both sides are scalar multiples of @;.
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Now recall from equation (2.6) that

1 0
=—— 2 4iT.
V7 %
Hence equation (3.17) is equivalent to
1 ] i s = 3
—R—Pu,),——Tu)——u :I @, =ROG(f)_100), (3.21)
[ 278 vz " vz

where P(u,); denotes the first component of the Poisson operator applied to u,. But

o +
R P) = N" () (3.22)

where N™ is the Dirichlet to Neumann operator associated with the domain Q and the
operator O (or 20J) studied in Section 1 and N*(u,), is the first component. For a scalar
function ¢ on 3Q we shall write, with an abuse of notation

N (@) = N*(up), (3.23)
where

Up = (pa')I (324)
The above calculations shows that [J* can be realized as the scalar operator
1 i s
O*=—N"-—T———.
2 V2 V2
We summarize our discussion up to this point as follows.

PRrOPOSITION 3.1. The 3-Neumann problem (3.1) is equivalent (modulo C” error
terms) to the problem of solving

O (up) @1 = ROG(f) _130),
or

0% (uy) =%[Ll(Gz(f))—Lz(Gl(f)HsGl<f)]ag;

i.e. the 3-Neumann problem is equivalent to the problem of inverting the operator 0.

In order to calculate N* and 0%, we use Proposition 2.2. Note that we really want
to apply the operator N* to a form on the boundary of the form ¢d@;, and then we want
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to calculate the coefficient of @, of the result. Thus using Proposition 2.2 we see that
the coefficient of @, of By(pa,) is:

By@@,), = V2 iT(@)+2i(s+5—h,) T(@)+h, L,(p)

) R (3.25)
+(L,(h)+Ly(s)—sh,+|s|") @.
Similarly, the w, coefficient of Cy(@pad,) is
Colgd,), = V2 (s—5+h)@. (3.26)
Also from Proposition 2.2 we have:
Afga,) = [T +2L LY)(¢) @,;
3.27)
A(@ad) = [4T'T*+2LL|+2L) LY-2[T", T"1)(¢) &,
Recall from Theorem 1 that, modulo pseudodifferential operators of order —1
N*=—(—Ay)"- %(Ao)“A,—%(—AO)-'/ZBO+ %C-o. (3.28)
Thus if we write
O=—(T%-1%L% 3.29)
then
0% = —\/7@”2+—;~®"[T'T°+ SR+ L= (T, T"]]
L @ " [VZiT +2i(s+5—hy) T"+h, L,
2V2
+(L(h)+Ly(s)—sh,+|s])]
L (s—§+h)~VZiT'-V s (3.30)
V2

= —VZ[0"+T "+ [07'T"-i® | T’
1 - s\ 11270
———(s+5—h,) [(O@ T +I]
f—2 2
+E,LS+E, L}+E,.

where E|, E,, and F; are pseudodifferential operators of order —1. Finally, if we note
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that [@~', T°I T' is also a pseudodifferential operator of order —1, we see that we have
proved the following:

ProrosiTION 3.2.

O*= _‘; [~ (T2— L LO) 24T+ )+ E, Lo+ E, LI+E,,

where the operators E; are pseudodifferential operators of order —1.

So far we have dealt exclusively with the 3-Neumann problem on the domain Q.
However, we may also consider the -Neumann problem on the complementary domain
Q™ =C*\\Q. This problem also gives rise to a scalar boundary pseudodifferential
operator which we call O7. Then a calculation similar to the one above gives us

ProrosiTioNn 3.3.

O = % [=[-(T LI L) +iT°|[I+E\}+E L)+ E, L)+ E,,

where the operators E; are pseudodifferential operators of order —1.

We shall need to consider the compositions 0% o[~ and 0" 0O, and for this we
need:

PROPOSITION 3.4. Let ©=—(T°’—LL}. Then
[O2, T% = F| L+F, L°+F;,
where F; are pseudodifferential operators of order zero.

Proof. 1t follows from the Kohn-Nirenberg formula for compositions of pseudo-
differential operators that, since © is elliptic, modulo pseudodifferential operators of
order zero

[911’2’ TO] — @*l/l[e, TO]

1
2
But
[0, T = [-(T-LIL), T =—[L} L}, T°]
=F\L)+F,LS,

where F; is a pseudodifferential operator of order one. This completes the proof.
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It now follows immediately from Propositions 3.2, 3.3, and 3.4 that we have:

PROPOSITION 3.5. There are pseudodifferential operators F; and F; of order zero
for j=4,5,6 so that

OO =— %L‘,’ LO+F,L+FI0+F,;

and

O-o0* = - L LL+F L+ FL+F;

§4. Invertibility of 0" and (0~ and their relation with O,

We now turn to the problem of inverting the operator O, which, as we have seen, is
equivalent to the 8-Neumann problem. The object of this section is to show how this
can be done, and to establish the connection between the operators (1" and O~ and the
operator O, which arises from the boundary 3, complex. The inversion is done in two
steps. The first step is to invert the operator J* away from its characteristic variety,
and this is done using standard pseudodifferential operators. The second step involving
inverting the operator near its characteristic variety requires a much more stringent
hypothesis on the domain Q than we have used so far, and so in the rest of this paper,
unless otherwise indicated, we make the following standing hypothesis:

Q is a bounded, pseudoconvex domain of finite type m.

We shall use the condition of pseudoconvexity in the following way. Let L,, L, and
T be the tangential vector fields on 8Q that were defined in Section 2, equations (2.3)
and (2.4). These vector fields span the complexified tangent space to 2 at every point,
and since [L,,L,] is again a complex tangential vector field, we can write

[L,,L]=—LAT+aL,+BL,, @.1
I
where 4, a, and § are smooth functions on Q. Pseudoconvexity of the doman Q is then
equivalent to the condition
A=0. 4.2)

The condition that 3Q is of finite type m is equivalent to the condition that for the
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function A,, defined in equation (4.9) below, we have
An%0. 4.3)

We now begin the study of the invertibility of the operator O*. To begin with, note
that in general the operators (0* are not elliptic. We work locally in a neighborhood U
of a fixed point p €3Q, and we choose real coordinates (x;, x,, x3, x4) centered at p so
that

IR”NU = {X4 = 0}, (44)

and in terms of the coordinates x=(xy, x,, x3) on 9L,

T0=i
a b
%3 4.5)
1[a .o

=12 ;2 |4ow.

! 2[8x1 ’axz] )

(This is possible since if we write L{=4(X,—iX,), then {X,X,,T°} are three linenarly
independent vector fields in the variables x;, x, x3.) The symbols of these operators are
thus

(L) = é— (i€, +E,)+OW),

(4.6)
O(TO) = i§3-

It follows from Propositions 3.2 and 3.3 that modulo symbols of order zero, the
symbols of the operators [JF are then given by

o(d%) =71_2~ [\/ —i—(&f+§§)+§§ —53] + O(x),
o(D-)=%[—\/%(§f+§§)+§§ —53] + 0.

Thus for example, when x=0,0(0%) vanishes when &,=£§,=0 and &;=0, while ¢(0")
vanishes when £,=£,=0 and &;=<0.

4.7

We can use the standard theory of pseudodifferential operators to invert the
operators [1* away from their characteristic varieties. Thus we make the following
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DEFINITION 4.1. T'* is a pseudodifferential operator of order zero whose principal
symbol equals 1 on the set

{0([—(T°)2—i‘,’L‘,’]”2)<—i—a(—-iT°)},
and whose principal symbol equals 0 on the set
2 1 ,
{a([—(T")Z—L?L‘,’]"Z)>7a(—,r°)}.

Similarly, T'" is a pseudodifferential operator of order zero whose principal symbol
equals 1 on the set

(o[~ (T 13" < —%0(—iT°)},
and whose principal symbol equals 0 on the set
- 1 .
{o([—(T-L)LY"> > - o(—iT%}.

Moreover, we can assume that the operators T* are essentially self adjoint in the sense
that T*—(T'*)* are pseudodifferential operators of order —=.

PROPOSITION 4.1. There exist pseudodifferential operators Q* and Q* of order —1
so that

0*Q* =1-T~, and Q*0* = I-T*
modulo pseudodifferential operators of order —=.

Proof. This follows from standard pseudodifferential operator constructions since
the operators [0 are elliptic away from their characteristic varieties, in view of
Propositions 3.2 and 3.3.

To invert the operator 0" near its characteristic variety we shall need to work with
the class of NIS operators of smoothing degree k. Here NIS stands for ‘‘non-isotropic
smoothing’’, and this class was introduced and studied in [NRSW], §§4-6. In order to
define this class of operators, we first need to recall from [NRSW] the definition of the
non-isotropic metric on 3Q which is naturally induced by the complex structure in o

Write L,=1(X,—iX,). For every k-tuple of integers (i,,..., ;) with ;;€{1,2} define

o @ s @i, on 9Q by the equation

sl

smooth functions 4;

X, [0 (X, X, ) =4

i i

...ikT0+ail,.....ile+ai2|‘., X,. (4.8)

A
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For each integer /=2 define a smooth function A; on 3Q by the equation

172
mm=[2MmeW], 4.9)

where the sum is taken over all k-tuples with 2<ck</. Finally set

Alx, 8)= > A;(x) 6. (4.10)

j=2
DEFINITION 4.2. (1) For x,y€9Q set
d(x,y) = inf{0 > 0| there exists a continuous piecewise smooth map

@:[0, 11— 8Q with @(0) = x, (1) =y, and almost everywhere

@' (1) = a,(D X +a,() X, with |a,(n)| <9, |ay(1)| < }.
(2) For x€2Q and 6 >0, set

B(x,0) = {y€08Q|d(x,y) <d}.
(3) Let 0 be the induced volume measure on 3R, and set
V(8) = a(B(x, 9))
and
Vix,y) = Vd(x,y)).

The following result summarizes some of the basic properties of the functions d, A
and V,:

THEOREM B. The function d:3Qx3Q—R is a metric, and there are constants
Cy,C; and A so that for all x,y €2Q:

(1) B(x, ) nB(y, 0)*< = B(x, 8)cB(y, Ad);

(2) C18*A(x, O)SV(8)<C,0°A(x, 0);

Q) If d(x, y)<0 then

- A, 0)

= =C,.
1 A(y,(s) 2

See [NRSW], [BDN], or [C] for further details about the metric d.
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DEFINITION 4.3. A smooth function ¢ € Cy(8Q) is a bump function supported on
B(x, d) if @ has compact support in B(x, 8).

We are now in a position to define NIS operators. Let

()= f T(x, y)f(y)do(y)
aQ

where T(x,y) is a distribution on dQx3Q.

DEeFINITION 4.4. T is an NIS operator of order s if T is C* away from the diagonal,
and if there exists a family T, of operators given by

T,f(x)= f T, (x, y)f(y)do(y)
aQ

such that:
(1) T.(f)>T(f) as e—~0 whenever f€ Cy (3Q).
(2) T.€EC™(3Qx39Q).
(3) There exist constant Cy so that for all ¢,

d(x, yy

X X! T.(x, y)| < C,
| x“ty yl kl V(x,y)

where |I|=k, |J|=L1.
(4) For each | there is an integer N, and a constant C, so that whenever ¢ is a bump
function supported on B(x, ), then for all ¢, and all I so that |I|=!

IX'T (@) ()] < C,0™* sup D, a¥Xq(y).

¥ o=N,

(5) The above conditions also hold for the operator T*, i.e. the operator with
kernel T*(x,y)=T(y, x).

We have used the notation X’=X,.]X,.Z ...X.k where I=(i, ..., i) with §€{1,2}, and

II|=k. X! indicates differentiation with respect to the x variables.

The main results that we shall need about the class of NIS operators are contained
in the following result (see [NRSW] for details):

TreoreM C. (1) If T; is an NIS operator of order s; for j=1,2 and if s,+5,<4 then
TioT, is an NIS operator of order s,+s5,.
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(2) If Tis an NIS operator of order s, then T maps the nonisotropic Sobolev space
NL} boundedly to NL%,, whenever k=0 and k+5=0.

(3) If T is an NIS operator of order s, then T maps the nonisotropic Lipschitz space
Iy boundedly to T, whenever k>0 and k+s>0.

See [NRSW], §6 for the precise definitions of NL{ and I',. Note that in [NRSW]
we have used the notation L}, for nonisotropic Sobolev spaces instead of NL?. In this
paper we shall reserve L} for the isotropic Sobolev spaces. Note that NL{=L”, the
standard isotropic Sobolev space L} is contained in NL}, and NL? L.

We now turn to the problem of inverting the operator (J* near its characteristic
variety.

We can describe the operator 3, and its adjoint 3} as follows (as before, we always
use the identification u<—ud,). If fis a smooth function on 3Q and if F is any smooth
extension of fto Q, then

3 (f)=38(F)sq=L\(F)lsq@, = L(f) &, <>L,(f). 4.11)

Next, 8% and B " are pre-Hilbert spaces. In fact there is a smooth, strictly positive

function W on 8Q so that if do denotes Euclidean surface area measure on 8Q, then for
£,8€ B0

(f,8)= f f(©) g(0) W(&) do(Z);
3Q
and for @, W€ %" with ©=60@, and ¥=ya,,

0,9), = f 6(2) () W(Z) do(?).
aQ

Now if uesum, € B*! then the adjoint 5#(u) is computed using this inner product, and
integration by parts shows that there is a smooth function 4 so that

3§ (u) = (—Ly+h)(w). 4.12)

In fact we can say more. Denote by ., the operation of multiplication by a function #;
ie.

M) = nf. 4.13)

Then we have
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ProrosiTioN 4.2. There is a smooth real valued non-vanishing function n on 9Q
such that

Lr=—M_,L, M,
n

Proof. We begin by working near a fixed point on 3. After a translation and
rotation, we may assume that there is a neighborhood V of 0€3Q and a smooth
function h(x, y, t) such that

3QNV = {(z,,2) € V| I(zp) = h(R(z), I(z)), R(zy))}.
We can identify Q2N V with R® via the identification
R33(x,y, 1) (x+iy, t+ih(x,y, 1) ESQ.
Moreover, Euclidean surface area measure on 3QNV is just
gix,y,dx Andy Adt = mmdx Ady Adt.

Near 0, the function

=h(21+21 7)) Z2“’Z'z>_zz‘z-2
@ 2 2 2 2

is also a defining function for €2, and hence

o=@
where @ is a positive real function. Observe that if we write y,=3(z,), then on 99,

- _9%
0y,
But since
o(x+iy, t+ih(x,y, 1)) =0,

it follows easily that

aa—g(x+iy, t+ih(x+iy, )|V 1+ VA, y, D] = [Volx+iy, t+ih(x,y, D).
Y2

Our first object is to see what form the operator 3, takes in these local coordinates.
We shall write z=x-+iy, and A(x, y, )=h(z, ). Then it is easy to check that

- 3 3 o 8 oz, 1) [(ah ) 3 oh a]
L=—r———— o 222\ | —(, )i} ———& D]
s, 57, o5,05, 2 \ar @) e "%
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Similarly,

0 8 9o 9 20 [( ) 8 dh 8]
L=20°_°%29 ., 20+ =~ 26,
1" 8z, 8z, 9z, 8z, AR P @ny

Let n=}@Wg, and let 4, denote the operator of multiplication by #. Note that by
the computation above,

1
=— W|Vol,
n zld

and hence is a globally defined positive function on 3Q.
If (say) © has small support near zero, we compute

Li(f),0),= f &0 [(—z—’:— - i) of ok af] (2, )0z, ) W(z,0) g(z, ) dxn dy A dt
CxR

2 oz 9z o
Oh N Of odhof
= ——i|= M 6(z,1)d. t
f [<8t 1) 27 oz 8]( t)./tt 0z, )dx Andy A d
oh 8
N — == |6 dx Ady A dt,
f flz ) at )az 2 at]( ) dx Ady A
since
. [(ah ) d oh a]
div|{ ——i| ——-——
ot o7 9z ot
Hence

(L(f),©),= —f f(z, 1) MLy M, 0 W(z, 1) g(z, 1) dx A dy A dt
= —(f, M L, M,0),

A general © can be written as a sum of forms with small support by using a partition of
unity, and this then completes the proof.

We consider the operator 3, mapping functions on 3Q to one-forms (i.e. elements
of #*') and the adjoint operator 5} mapping elements of &% ' to functions on 3Q. We
denote by S, the Szegd projection operator—i.e. the orthogonal projection of L*(3Q)
onto the null space of 3,. Similarly we denote by S, the orthogonal projection operator
on the null space of 8%. Since by our choice of basis @, and @, and the definition of %%,
we can identify #*' with functions on 8Q and its L? completion with LX), which

13928286 Acta Mathematica 169. Imprimé le 10 novembre 1992
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allows us to realize S, as an orthogonal projection on L*3Q). Finally, we define the
operator

0=3,5;: "' - B', 4.19)

which we can also identify with a differential operator on scalar-valued functions on
Q.
It follows immediately from Proposition 4.2 that we have the following:

CoOROLLARY 4.3. There is a smooth real valued non-vanishing function 1 on 9Q so
that

So= M, .S, M.

LEMMA 4.4. If we identify O, with a scalar operator, then

ora- =%D,’,+L‘,’F,+L‘,’FZ+F3, (4.15)

where F; are pseudodifferential operators of order zero for j=1,2,3.

Proof. From Proposition 3.5 we see that 000" =—1 L{L{+errors, and from equa-
tions (4.11) and (4.12) we see that 3,33 =—LL}+errors, where “‘errors’ indicate a term
of the form LIF,+L%F,+F,. This completes the proof.

The class of NIS operators is designed to describe the Szegd projection and the
relative fundamental solution for 33

THEOREM 4.5. (1) If K is an NIS operator of order m, and if M, denotes the
operator of multiplication by n as above, then the commutator [K, M, is an NIS
operator of order m+1.

(2) The operators S, and S, are NIS operators of order zero, and Sy—S, is an NIS
operator of order —1.

(3) There are operators Ko: B*°— %" and K,: B°—R"° such that K,=K} and

3,K,=(K)ds=1-S,; K,S,=0; SK, =0;
(4.16)
31Ky =(K)*3,=I-Sy; K S,=0; S,K,=0.

Moreover, if we identify the form u,i, € B*' with the function u, € B*°, we can regard
Ky and K, as scalar operators, and they are then NIS operators of order 1.
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(4) If we define K=K,K,, then K is an NIS operator of order 2 and
O,K = KO, =1-5,. “4.17)

Proof. The proof of (1) is in [NRSW], p. 134. The proof that S, is an NIS operator
of order zero is contained in [NRSW], §5. The existence of K, and K, and the proof
that their kernels satisfy the appropriate size estimates is contained in Christ [C]. To
show that in fact they are NIS operators, i.e. that they have the appropriate size when
applied to bump functions, one uses the same kind of homogeneity arguments used in
[NRSW] to deal with the operator S,. The fact that §,— S is an NIS operator smoothing
of order 1 follows from part (1) of the theorem, and Corollary 4.3. Thus the proof of

parts (2) and (3) of the theorem will be complete when we show that K,=K%.
Now

K, =K\—SK,=(I-S)K,= K3, K,
(4.18)
= Kg(I-8,)= K§—KS, = K§
SO
K, =K}, (4.19)
Finally, to prove part (4), note that

O,K = 38,85 KK,

=5,(I-S) K, 4.20)

while

KO, = K,K,3,3¢
= Ky(I-5) 8}
_ Ky (4.21)
=I1-5,.
This completes the proof.
In order to construct an approximate inverse for J* we need one further result.
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LEMMA 4.6. The operators S;I'* and T'*S, are infinitely smoothing operators (i.e.
their distribution kernels on 3QXx3Q are infinitely differentiable).

Proof. This is based on ideas of Kohn contained in [K3], Theorem 1.18. However,
since the statement of Lemma 4.6 does not appear in {K3], we sketch the main ideas in
the proof.

The operators S,I'" and I'* S, are essentially adjoints of each other so it suffices to
show that T*S, is infinitely smoothing. This is equivalent to showing that F’E, is
infinitely smoothing. But, by Corollary 4.3,

T*S, =78, =T s, Syt _,

and the operator I'"#, has the same properties as the operator I'". Thus our main
objective is to prove the estimates

T~ SoCll; =< Clullo 4.22)

for every s>0. Here ||||; is the norm in the standard Sobolev space L;. Suppose for a
moment that this is established.

Then, since S,T ™ —("Sy)*=8,T —S,(I'")* is an infinitely smoothing operator, it
follows by duality that for every >0 we would have

[1S6T ™ @)llo < Clle| .- 4.23)

On the other hand, the operator ' is bounded on all the isotropic Sobolev spaces,
while the operator S, is bounded from the Sobolev space L2, to L} by Theorem 4.5, (1)
and Theorem C, (2) and the remarks following Theorem C. Hence we have

1SoT )|l =< Cllaa]l - 4.24)

By interpolation, this would imply that for any s>0,
1186 T~ G|l =< Clull, (4.25)
which is the énalogue of equation (4.24). Again by duality, we would have for any >0,
T So()llo < Cllul| (4.26)

and a final interpolation argument between equations (4.23) and (4.25), and between
equations (4.22) and (4.26) shows that the two operators are indeed infinitely smooth-
ing. Thus it remains to establish equation (4.22).
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This in turn would follow from the inequality
IT~@)II, < C,1186s- i+ Iollo] (4.27)

since we could then apply (4.27) to v=Sy(u), and use the fact that 3, S,=0. But equation
(4.27) follows as in the proof of Theorem 1.18 in [K3]. By compactness of 9Q it
sufficies to prove only a localized version of (4.27). One observes that in a sufficiently
small neighborhood of the point p, the symbol of the operator I'” vanishes on the set
{&=-V §f+§§}- But as in [K3], we have that for f with compact support

ILLFIP = IL3F 1P+ L3 LSO+ 0P+ ALY A 1D

= 179 £I12 1,0 2 0 (4.28)
= I+ (£ AT )+ 0PN,

But

a(%/lT‘)) = A&, (4.29)

and so is negative where the symbol of I'" is supported. Thus as in [K3}, we can
estimate ||LY(T"*v)|| in terms of ||L%(T*v)||, and then the finite type hypothesis gives us
equation (4.27). This completes the sketch of the proof.

We are finally in a position to write down a parametrix for the operator O*:

THEOREM 4.7. The operator (1" KT*+ Q" is a right parametrix for O in the sense
that

O* (@O KT*+Q") =I+E,

where

3
— 0 alll —®
E=> E'K,E°+E,

j=1

where K; are NIS operators smoothing of order 1, E;’ and Ej(? are standard pseudodif-
Sferential operators of order zero, and E~* is an infinitely smoothing operator. Similar-
ly, TYKO™+0% is a left parametrix for O in the sense that

(C*KO™+QMO* =I+E,

where E is as above.
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Proof. It follows from Proposition 4.1, Lemma 4.4, and equation (4.17) that
OO KT +Q") =I-S,IT*+F,LKT*+F,LKT*+F,KT*+E™%,

where E~ stands for an infinitely smoothing operator, and each F;, is a standard
pseudodifferential operator of order zero. But L‘,’K and LIK are NIS operators smooth-
ing of order 1, and since Theorem 4.5, part (1) and Lemma 4.6 shows that §;[*=E"*,
this completes the proof of the first identity. The second identity for the left parametrix
is proved in exactly the same way.

These parametrices give inverses for 0" up to an error which are smoothing of
order 1. In the usual way, we can iterate the argument to obtain parametrices in which
the errors are smoothing of any desired finite order. Thus if E is an operator, define an
operator

E,=—E+E-E+..+(-1)}'E-
Then
(I+E)UI+E) = I+(—1)FEF*.
CoroLLARY 4.8. Each of the following operators is a product of k+1 NIS

operators which are smoothing of order 1 and standard pseudodifferential operators of
order 0:

O*' O KT*+0"UI+E)-I;

(I+E)T* KO +Q%)O*-1I.

§5. A parametrix for the 3-Neumann problem

The object of this section is to write down an explicit formula which gives a parametrix
for the 3-Neumann problem. This perhaps requires a word of explanation. As we have
seen in Section 2, the 3-Neumann problem on a bounded domain Q is the boundary
value problem:

Ou=f onQ;
u_l80=0 onaQ; S.1)
du_{80=0 on 3Q.

If the domain Q is smoothly bounded, pseudoconvex, and of finite type, there is a
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unique solution
u=N(f)

for given smooth data f, and the L? regularity of the Neumann operator N was proved

by Kohn in [K2]. Our object in this section is to find an explicit approximation N, to the

operator N so that N—N, is a smoothing operator of arbitrary but fixed high order.
To do this, let us fix a Poisson operator P and a Green’s operator G for the elliptic

system [J on the domain Q. Thus if R is the restriction operator to the boundary 89,
the operators P, G, R satisfy

P:C(3Q)p.1— C*(Q)o.»
G: C*(Q)o.n— C*(Q)o.1

R: C*(Q)0,1n—> C*(3RQ) 0.1
and
OoP=T,
ROP=I+T2
5.2)
ODoG=I+T;

R o G = T4
where

T1: C* (@) 0. y— C*(Q). 1);
T,: C*(8R)0,n— CT (@) 0. 1
(5.3)
T5: C*(Q),1n— C* ()0, 1:
T4: CQ(Q)((), n— Cx(ag)(o, 1

are infinitely smoothing operators. For the existence of such operators, see for example
[GS].

DEFINITION 5.1. For fEC™(Q), 1 set
N4 = G(NH+P[[(Q KT +Q"U+E) RUL,~3) G,(N] ], (5.4)

where G(f)=G\(f)o,+GH f)®2, and where E, is the operator from Corollary 4.8, and
is smoothing of order k.
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The main result of this section is now

THEOREM 5.1. For any integer k, there is an integer k, and there is an operator
T,: C*(Q). )—=C*(RQ)o,1y which is isotropically smoothing of order k so that for
FEC™(Q)q. 1)

N(f) = N\ (H+TL0).

Remark. “‘A is isotropically smoothing of order &’’ means here that the operator A
defines a bounded mapping from the standard Sobolev space L?(Q) to the standard
Sobolev space L7, (Q) for r=0 and 1<p<w. Note that if A is an NIS operator
smoothing of order mk, then it is isotropically smoothing of order k.

To establish the relationship between the operators N and N,, we need the
following consequence of Kohn’s L? estimates for the 3-Neumann operator:

LEMMA 5.2. Let Q<=C? be a bounded, pseudoconvex domain with C* boundary 9Q
of finite type m. There exist operators

Ali Cw(Q)(o_ n—> Cm(Q)(O. 1)
Az C*(6Q)— C*(Q)o. 1)
A;3: C*(3Q)0,1n— C™ (0.

with the following properties:

(1) There is a positive real number s so that the operators A; have bounded
extensions

A H(Q)o,n— Hi-s(Q) . 1)
Ay H(3Q)— Hy—(Q)0.1)
As: Hi(39Q) g, y— Hi-s(Q)o.1)

for all k.
(2) If v, F€ C”(Q)(O, 1y F,€CT(3Q), and F,€ C*(0Q),, ,, satisfy

Ouv=F;, onQ
v_l3p=F, ondQ (5.5)

dv_ldp=F, ondQ
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then
v=A(F)+A(F7)+As(F3).

We note that since it is not important for our purposes, we are not concerned here
with the optimal value of the number s.

Proof. Our first objective is to reduce the inhomogeneous system (5.5) to the
homogeneous 3-Neumann problem (5.1). As in Section 2, we choose a neighborhood U
of 9Q and a smooth orthonormal basis for (0,1) forms on U given by @;, @, with
@,=V 2 8p. Now if on U we have

V=g wa,+gw,
then as in Section 3, we see that

= 1
V_190|s0= ﬁ &

and

éV_]éQLaQ=%(L1(gz)—i«z(gl)+sg1)d’x-

Suppose on 3Q we have
8=V 2F,

g =0 (5.6)

81 5 —2f (Fy-2F
aQ 1 1 2 3

Since L, is a tangential operator, it follows from the above and (2.6) that if equation
(5.6) is satisfied, then

V_180lsq = F;;
3V_13¢|sq = F;.
Now it is easy to construct operators

Bj: Cw(ag)xcm(ag)(o, n— CE(Q)a Jj=12
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so that if
V = B\(F,, F;)@,+By(F,, F))o, ¢.7

then V satisfies equation (5.6). Moreover, the operators B; extend to bounded operators
on Sobolev spaces with only finite loss.
Now suppose v satisfies (5.5) and V is defined by (5.7). If we put

u=v-V
then u € C*(Q), and u satisfies the 3-Neumann problem (5.1) with
f=F-0).
The solution to (5.1) is unique, and hence if N is the Neumann operator,
v—V =u= NF—OV)).

By the regularity results of Kohn, N: C*()0.1,—C*(Q),., and N extends to a bounded
mapping on Sobolev spaces with gain 1/m. Hence we have

v = B,(F,, F;) &,+B,(F,, F,) @,+ N(F,~O(B,(F,, F3) &,+B,(F,, F;) &)

= A](F1)+A2(F2)+A3(F3)7

and it is clear that the operators A; have the required properties. This completes the
proof of the lemma.

We now turn to the proof of Theorem 5.1. For this we need to examine equations
(5.2) in greater detail. If f=fi@,+f2, € C*(Q).1)» We write

G(f) =[G\, (/) +G ()] 0, +[Gy(f)+Gp( )] @,
= G,()D,+Gy( )@y,
while if u=u;0,+ 2@, € C*(8Q) (.1, We write
P(u) = [Py())+Pyy(1)] @, +[ Py () + Py(ty)] @y

It follows from equation (5.2) that the operators RoP,, and RoP,, are infinitely
smoothing.

For f€ C”(Q)(o,l), define N’,j( f) as in equation (5.4). Using equations (5.2) we first
see that
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ONY () = f+T(5) (5.8)

where Ts: C*(Q)0,y—C"(Q)0.1) is an infinitely smoothing operator.
Next,

R(NY(f)_130) = Ro G(f) _Ido+Ro P, (O KT*+Q")U+E) R(L,—5) G,(f)
= 6(f),
by the above remarks where T is an infinitely smoothing operator.

Finally, we compute éNﬁ( f)_18p restricted to 3Q. From equation (3.20) we have

S=ROL G -LG(+5G (],

Ro3G(f) _130=

Since L, is a tangential operator and RoG, is an infinitely smoothing operator, it
follows that RoL,(G5(f)) is infinitely smoothing. Thus

Ro3G(f) _ldo= —\/%(iz—S)(Gl(f))a')ﬁL(f)

where T; is an infinitely smoothing operator. Now let us write
u, = (O KT+ Q")I+EHR(L,~5)G,(f)).

Then according to equations (3.7) and (3.14) we have

Ro&P(u,i,) 150 = —

> Ro [(l-,I P(u)—L, P (u)+su;) ]
= 0%+ T(f)
where Ty is an infinitely smoothing operator. But according to Corollary 4.8, we have
O (u)) = RIL,=sNG,(N+T(f)

where T is an operator which is a product of k+1 NIS operators which are smoothing of
order 1, and standard pseudodifferential operators of order 0. If we take k=m-i
sufficiently large, then T is ‘‘isotropically smoothing of order I’ in the sense we are
using here. It now follows that

RoBNK(f) 180 = T(f)+Ty(f)

where T is as above, and T, is another infinitely smoothing operator.
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We now set v=N(f )—N’j( f), where N is the true Neumann operator. Then the
computations above show that v satisfies the hypotheses of Lemma 5.2, (2), where the
F; are given in terms of the data f by operators of fixed but high order of smoothing. If
we apply Lemma 5.2, we see that

N(f) = NH+T()

where T is smoothing of order k. This completes the proof of Theorem 5.1.

§ 6. Commutation properties

From the results of Section 5, we see that a parametrix for the 3-Neumann problem
involves two different kinds of operators. The operators G, P, 0*,T*, Q* and R are all
related to standard differential or pseudodifferential operators. However, the projection
operators S; and the solving operator K are NIS operators of various smoothing
degrees. When we consider estimates for the 3-Neumann problem, we shall have to
control the commutators of S; and K, not only with the ‘‘good’’ vector fields Land L,
but also with vector fields which point in ‘‘bad’’ directions like T. In the case that 8Q is
strictly pseudoconvex, one can handle the commutators because the operators S; and K
are pseudodifferential operators of the class S, ,,. However in the case treated here,
these operators are not standard pseudodifferential operators, and we must proceed
differently. Thus the main object of this section is to develop the good commutation
properties of a certain subalgebra of the algebra of NIS operators which contains the
operators we are interested in.

The basic problem we face is showing that if A is an NIS operator and T is a
differential operator, then the operator TA can be written as a sum of products of NIS
operators with appropriate differential operators on the right. We begin by recalling
what happens if the differential operator T is ‘‘good’’.

L.EMMA 6.1, Let A be a NIS operator of order k, and let X denote either the vector
field L, or the vector field L,. Then there are NIS operators Aj, j=1,2,3 of smoothing
order k so that

XA= A]L] +A2i,1+A3.

This follows from Lemma 4.1 and the basic facts about compositions of NIS
operators in [NRSW].

We next turn to the study of the commutation properties of a differential operator
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T with the projections S, and S,. Recall that S, is the orthogonal projection of L*(8Q) to
the kernel of L, and S, is the orthogonal projection on the kernel of L}. We need a
preliminary lemma:

LEMMA 6.2. There exist vector fields M,,M,, and M; on 3Q so that:

(1) The vector fields M\, M,, and M; span the complexified tangent space at each
point p€3Q.

(2) If SoF=F, then SoM;F=M;F for j=1,2,3.

Proof. We let My=L,, and we try to find M, and M, of the form

M= a, L
9z, 9z, 9z,

6.1)
M=24+82 452
9z, 9z, 02,

where A;, B; are smooth functions to be determined. In order that M, and M, be
tangential operators, one needs

a9 4% _ 3%

3 3 3 ©2
B2+ B2 =-22
o7, 0z, 0z,

Since Vo=0 on 3, one can choose smooth functions A;, B; so that (6.2) is satisfied. It
is then clear that M,, M,, and L, are linearly independent over C, so that condition (1) is
satisfied.

On the other hand, since L; involves only the derivatives 3/3Z, and 3/32,, it follows
that [L,, M;] must be linear combinations of 3/37, and 3/8Z,. Since these vector fields
are also tangential, they must be smooth multiples of L,, which proves that for j=1,2
there is a smooth function ¢; so that

[iﬂ’Mj] = (pjl-’l'

Now suppose that SoF=F. This is equivalent to saying that L,F=0. The same is then
clearly true of L,F, and we also have

LM;(F)=[L,,M)(F)=¢,L,(F)=0 for j=1,2.

This proves condition (2), and finishes the proof of the lemma.
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COROLLARY 6.3. There exist vector fields V,,V,, and V3 and smooth functions
Y1, Y,, and Y3 on 3Q so that:

(1) The vector fields Vi, V,, and Vs span the complexified tangent space at each
point p€3Q.

(2) If SoF=0, then S, V;F=S8,V,F for j=1,2,3.

This follows from Lemma 6.2 if we let V¥=M;+y;. We now study the commutator
of S, with a differential operator.

LeEMMA 6.4. Let T be any first order differential operator and k any positive
integer. Then there exist NIS operators A,,...,A, of smoothing order =1, an NIS
operator Ay of smoothing order =0, differential operators T, ..., T, of order 1, and an
operator E which is smoothing of order k so that

[T, So]= D, AT +A +E. 6.3)

Jj=1

Proof. Using Lemma 6.2, we can write
3
=2 bM
=1

Thus by Lemma 6.2, (2) we have, assuming Sy(F)=F,

3

T(F)= D, b;M,(F)

Jj=1

w

= b,S,(M;(F)
j=1

6.4)

w

= Syb;M, (F))+§‘, [So, 1,1 M, (F)

J=1 J=1

=S, T(F)+2 [So, Mty ) M; (F)

Jj=1

where ./“b denotes the operator of multiplication by b;. Now letting F=S5,(f), we see
that we have the identity of operators:

3 3
[T, So]So= E [So» /“bj]soMj_E [So» My )[ M. So]- (6.5)
= j=1
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Next let (I-S¢) F=F, i.e. So(F)=0. Then
[T, So] F = —~S,TF.

This time, using Corollary 6.3 we write
3
T=> bV,
Jj=1
Then
3
[T, S,] F = —so<2 ijj) F
=1

3
b;SoViF =, (S, M, ]V, F (6.6)
i=1

3
b, So,F =, 1Sy, M, V,F,

J=1

3
S

j=1
Now letting F=(I—S)(f), we see that we have the identity of operators:

3 3
[T, So]d—Sy) = —2 b;Syy;(I=Sy) —E [So, My} V;
J=1

J=1

3 3 6.7)
+ 2, [So, M, 1oV, + D, (S, 4, )V, o).
i=1 i=1
Now adding equations (6.5) and (6.7) we obtain
3 3 3
[T, Sol = 2, (S, #,1 S M, — >, b; Sy ,~So) — >, [S, ;] V,
j=1 j=1 j=1 ©.8)

3 3 3 .
+ 2, [Sg, M 1S4V, = . [Sos My 1M, Sel+ >, [So, M, 1LV, So).

Jj=1 Jj=1 Jj=1

We can now iterate this identity by in effect replacing V; by T, and inserting this in
(6.8). If we do this iteration a finite number of times we ultimately obtain the desired
conclusion of the lemma, and this completes the proof.

COROLLARY 6.5. If S, is the orthogonal projection onto the kernel of LY, if T is any
first order differential operator and k is a positive integer, there exist NIS operators
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Ay, ..., A, of smoothing order =1, an NIS operator Ay of smoothing order =0, differen-
tial operators T, ..., T, of order 1, and an operator E which is smoothing of order k so
that

[T,5,]= D, AT+A+E. 6.9)
=1
A similar identity holds for the commutator of a differential operator T with either of
the operators S, or ;.

Proof. The identity for the operator S, follows by conjugating equation (6.3).
Identity (6.9) then follows immediately since the operator S, is just the operator S,
conjugated by a multiplication operator, according to Corollary 4.3.

Now let K, be the relative fundamental solution operator for the operator L;, so
that we have:

LK =1-S,

K,L =1I-5, 6.10)
K,;8,=0

S,K,=0.

LEMMA 6.6. Let T be any first order differential operator and k a positive integer.
There exist NIS operators A,,...,A, of smoothing order =2, a NIS operator Ay of
smoothing order =1, differential operators Ty, ...,T, of order 1, and an operator E
which is smoothing of order k so that

[T, K] = D, AT, +A,+E. 6.11)
j=1

J
A similar identity holds with K¥ or K, in place of K.
Proof. Writing T=[L,, T], then
K,L,TK,~K,TL K, = K,TK,.

Bllt, K1L1=I_S(),l-4]K]=I—S], by Theorem 45, SO
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(I-S9TK,—K,TI-S,)=K,TK,,
and
[T.K,]=S,TK,~K,TS,+K,TK,.
Next,
SITK, = TSK,+(S,, T|K,,
but S, K,=0 so S,TK,=[S,, T]K,. Similarly, K,TS,=K|[7, S,]. Therefore,
[T, K] = [So. TIK,~K|[T, $,]+K,TK,. 6.12)
On the other hand, since S;K;=0 we have
So[T, K] =[S,. T)K,, 6.13)
and hence according to Lemma 6.4, we have
2
So[T, K;]= D, ATK,+AK,+EK,

Jj=1

) ) (6.14)
=Y AK,T+AK+EK,+ > A[T, K,].
=1 '

j=1

Now combining equations (6.12), (6.13), (6.14) and Lemma 6.4 we see that there are
NIS operators A; of smoothing order =2, B; of smoothing order =1 and A, of smoothing
order =1, and differential operators T; of order 1 and an operator E smoothing of order
k so that

[T, K] = >, AT, +A,+E+> BT, K)). (6.15)
j=1 j=1

We can now iterate identity (6.15) by replacing [T, K] by expressions like (6.15). After a
finite number of such iterations, we obtain the first conclusion of Lemma 6.5. The other
identities follow in a similar manner. This completes the proof.

We now consider the subalgebra &f of the algebra of NIS operators generated by
the operators Sy, S|, K, and their adjoints and complex conjugates, and by all multipli-
cation operators .. It is important to note that all the NIS operators A; of the previous

14—928286 Acta Mathematica 169. Imprimé le 10 novembre 1992



202 D.-C. CHANG, A. NAGEL AND E. M. STEIN

lemmas actually belong to this subalgebra of. The main result of this section deals with
the commutator of an arbitrary differential operator of order m with elements of this
subalgebra. In order to state this result, we must assign a formal ‘‘degree’’ to every
element of of. This is done in the following way:

(1) The operators Sy, S; and their conjugates and all multiplication operators A{; are
assigned degree 0.

(2) The operator K; and its adjoint and conjugate are assigned degree 1.

(3) If U, V € of have degrees r and s, then the product UV is assigned degree r+s.

(4) If UE o have degrees r and V=4, then the commutator [U, V] is assigned
degree r+1.

It should be pointed out that a given element of & might have several different
representations in terms of products and commutators of the generators, and hence
several different degrees might be assigned. If this happens, we agree to assign the
largest such possible degree to the element.

Remark. 1t follows from the properties of NIS operators that if an operator U€ &
has degree r in the above sense, then U is an NIS operator of smoothing order r.

We can now state our main result.

THEOREM 6.7. Let UE o have degree n, and let T be a differential operator of
order m. Given any positive integer k there are elements A;€ of of degree =n+1, Bj€ A
of degree =n, differential operators T; of order <m and differential operators Q; of
order <m—1 so that

[T,Ul= D AT+ BQ,+E 6.16)
] [

where E is smoothing of order k.

Proof. Let U=S,,S,,K; or K¥, then by the results (6.3), (6.9) and (6.11) the
commutator [T, U] has the expression as follows:

[T, Ul= > AT, +A+E.

Jj=1

Here A; and E are defined by [, U] or a product of [#,, U]. The operator A, has the
form #,U. Now we prove the theorem by induction, first on the degree of U, and then
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on the order of 7. We use two identities involving commutators:
[T, UV]=[T,UlV+UIT, V], and

[T, [U, V1 =[U,IT, VII-LV, [T, U]}.

Note that we always have V=u(, or V=[4,, U] in these two identities which allows us
to apply the property (4) 1o gain one more formal ‘‘degree’’. The theorem then follows
by direct computation.

Recall that we defined the operator K=K K;=KjK,, and K is a relative fundamen-
tal solution for D},. Now we have the following corollary:

COROLLARY 6.8. Let q(L,,L,) be a quadratic polynomial in L, and L,, then the
operator q(L,, LK extends to a bounded operator from LL(3Q) to itself for 1<p<
and k=0,1,2, ....

Proof. Since K=K{K, then K € o is of degree 2 by the property (3). It follows that
g(L,, L)X is an NIS operator of order zero. Therefore it satisfies all the properties
required by the non-isotropic version of the David—Journé theorem (see [DJS]). Thus
q(L,, Ly)K maps LY3Q) to L¥3). The estimates on the kernels of these operators then
also imply, by the non-isotropic version of the Calderdon-Zygmund theory, that these
operators are bounded from L”(3Q) to LP(3Q), 1<p<, Suppose that T is a differential
operator of order k. We need to use the commutation properties to study Tg(L,, LK.
First we know that:

T{a(L,, L)K] = [g(L,, L) T}K+(L, T)K+(L, T)K+T:K. (6.17)
Here T; for j=1,2,3 are differential operators of order k. Using the result (6.16) in
(6.17), we have

T[q(L,, L)K] = [q(L,, L)KIT+(L,K)T,+(L,K)T,+KT,+E,

where T, for j=1, 2, 3 are differential operators of order & and E is a differential operator
of order less than k. We can pass k times differentiation to the L(3Q) function and get a
LP(3Q) function. Now the result follows immediately by our previous discussions.

We need one further commutation resuit, which will later allow us to rewrite the
parametrix for the Neumann operator in a convenient way.
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LEMMA 6.9.
[r*,K]=Y, C.D,F, 6.18)
where the sum involves only finitely many terms, the D; are pseudodifferential opera-

tors of order zero, and the C; and F; are NIS operators with C; smoothing of degree 1,
and F; smoothing of degree 2.

Proof. First,
-K[r*,0,]K=[r",K}]+KT*S,-S,I"'K.
According to Lemma 4.6, S;I'* and I'*S, are infinitely smoothing. Moreover
[T*,0,]=L,D,+L,D,+D,

where D; are order zero pseudodifferential operators. Then the lemma is proved with
F=-K, j=1,2,3, C,=KL,, C,=KL,, and C;=K.

In the formula (5.4), we used O"KT*+Q" as our ‘‘right parametrix’’ for O* which
leads us to the L” estimates for the Neumann operator N. (See § 7 below.) On the other
hand, we also need to put the “‘left parametrix”’ T* KO +Q" and KT[*O"+Q" on the
right to obtain estimates of Henkin—-Skoda type. (See § 8 below.)

ProrositioN 6.10. The differences
r*k0°-Kr+*0-, OKIC*-r‘k0°, and O KT'-KT70O°
are bounded operators from A (3Q) to T, ,;_(89Q), for a>0 and £>0.

Remark. The operators O"KI'™*, I'*KO™, and KI'*[0~ themselves can only map
A0 to T, (39Q).

The proof will require the following lemma:

LeEMMA 6.11. Suppose A is a standard pseudodifferential operator of order zero
defined on 8Q. Then

A:To(8Q)— I,-(09),

Jor a>0 and £>0.

Proof. We first fix 0<e<1/m where m is the type of the domain. Then it is known
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that I',cA,, for all a>0. Since A is a standard pseudodifferential operator of order
zero, then

A:A,,— A, T, (6.19)

—-&

if 0<a<me/(m—1). Hence this lemma is true for 0<a<me/(m—1). Next we consider the
space I';, , with 0O<a<me/(m—1). We may use the identities

LYA(S) = ALY +B(S),
and

LIA(f) = ALY f)+B(f).
Here B and B are standard pseudodifferential operators at order zero. For the first term
of these two identities, we have €T, then L‘,’( fIET, and I_fl’( HET,. We may apply
(6.19) to get the right estimates. For the second term, since I, ,<I,, the estimate is
obvious by applying (6.19) again. Now we may apply the interpolation theorem in
[NRSW] § 6, to show the lemma is true for 0<a<1+me/(m—1). We also can iterate this

method to prove the lemma for general a. For a general &, we just need to use the
obvious inclusion relation between I', spaces to prove the lemma.

Proof of Proposition 6.10. The estimate for the difference of
kO~ and KI'O"

follows by Lemma 6.9, Lemma 6.11 and the result (3) of Theorem C in Section 4. Now
we consider the difference of O"KT* and TTKO™. As we have seen in Theorem 4.7,

O"(O Kr*+Q*)=I+E,
and
(C*KO~+QHO*=I+E.
It follows that
O KT =T"KO +EO0 KT"+T"KO E+Q,+E™%,

where Q;=Q*+Q" is a standard pseudodifferential operator of order —1. Now let us
first look at T*KI"E.

We know by the proof of Theorem 4.7, and by Lemma 4.6 that

O%O KT* = Q%) =I+F,L,KT*+F,L KT*+F,KT*+E*.
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Then the term 'Y KE equals
KO (F,LKT*+F,L KT*+F,KTH)+E™.
Consider,
KO F,L,KT* =T*KF,L,O°KT*+T*K[O",F,L ] KT*.

We use the identity O KT*=I""KO +E0"KT*+IT*KO E+Q,+E”, already pointed
out above. This allows us to write

KO F,LKT*=T*KF,LI*KO~

plus other terms which are even more smoothing.

Now if fEA,,,, then O°(f)€A,cT,. Since L;K is NIS of smoothing order 1, it
maps this to I’ , ;. By Lemma 6.11, this in turn is mapped by F, to ', ,_,; again by K to
I,i3_ and by T to I',,,_,. The other terms are dealt with similarly, completing the
proof of the proposition.

§7. Estimates for the 3-Neumann operator

We shall now state and prove some of the estimates for the 3-Neumann problem that
are consequences of the previous sections. We shall use the following notation. The
space Lf(Q2) will denote the space of functions on Q (or forms on €, depending on the
context) that are in L°(Q2), together with all their derivatives up to order k. That is, here
we are considering the isotropic L? spaces. Similarly, A,(Q) will denote the isotropic
Lipschitz (Holder) spaces of exponent a. Also, I',(Q) will denote the non-isotropic
Lipschitz spaces, related to those appearing in [NRSW], and defined to consist of those
functions (or forms) which belong to I',(8Q), (as defined in [NRSW], § 6), and uniform-
ly so on each of the manifolds M,={o=1¢}.

THEOREM 7.1. Suppose N is the Neumann operator, and ¢(L,,L)) is a quadratic
polynomial in Ly and L,. Then the following operators are bounded on the indicated
spaces:

gL, L)N: L2 17, 1<p<w, k=0,1,2,..; (7.1
8N_J3p: ;- L2, l<p<ow, k=0,1,2,..; (7.2)

N:A, - A, Ny a>0. (7.3)
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Proof. (i) The estimate (7.1). We recall first some basic facts from the theory of
Besov spaces, (see e.g. [GS], Chapter 12). We let L{(3Q) denote the isotropic space of
function on the boundary 8Q which together with their derivatives of order not
exceeding k belong to LP(3Q). The space B”(3Q) arises as a real interpolation space
between LP(8Q) and L%(3Q); in fact

B ={Lf,L7)\_y,

(This is equivalent with the analogue of the approximation property which character-
izes B”.) Another basic property can be stated as follows. Suppose f€ L7(Q). Then
R(f) € BP(3Q), where R denotes the operator of restriction to the boundary. This holds
if 1<p<w. Conversely, suppose P is any Poisson operator of order 0. Then

P:BP(3Q)— LA(Q),

again for 1<p<co,
We shall also need a slight generalization of these facts. We define a space Bf by

By = [LL(OQ), L}, (3]}, 1p.,

for any integer k=0,1,2,.... Then one has that f€L?, (Q) implies that R(f)€ Bf;
conversely if f€ B?, then P(f) € LY(Q) for any Poisson operator of order 1.

We next use the approximate representation of the Neumann operator given by
Theorem 5.1, and the commutation property of I'* and K given in Lemma 6.6. The
result is that modulo higher order terms of the same character (or terms corresponding
to the elliptic problem) we have

N,(f)=PO KT*RL,G,(f). (7.4
We shall need the following lemma:

LEMMA 7.2. The operator q(L,,L))K maps B? to B! boundedly for 1<p<w~, and
k=0,1,2,....

Proof. From the Corollary 6.8, we know that g(L,,L;)K maps L{(3Q) to L;(39Q).
The desired result then is a consequence of the interpolation definition of Bf.

Returning to (7.4), and using the fact that PO~ is a Poisson operator of order 1, we
see that
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q(L,, LY)PO™ = PO q(LS, LY+P'LO+P"L0+P" (7.5)

where L, LI denote the restrictions of L, and L, to the boundary, and P’, P", P" are
Poisson operators of order 1. In fact (7.5) can be verified by an easy application of the
product formula for pseudodifferential operators. Thus in analyzing g(L,, L)N(f) we
are led to consider

PO gL, LYKRL,G,(f) (7.6)

together with other terms which are even better.

If fELY(QQ) then izGl( fEL?, (Q) by standard estimates (see, e.g. [GS]). Thus
RL,G,(f)€ B2, and by the lemma, the same holds after applying q(L?, I:?)K. Finally,
since PO~ is a Poisson operator of order 1, we get that (7.6) belongs to L{(€2). This
completes the proof of estimate (7.1).

(ii) The estimate (7.3). This comes in two parts. The first is that N maps A,(€2) to
A, +2m(2). To prove this it suffices to prove a similar result for the principal term, i.e.
for (7.4). The main point here is the following lemma:

LemMma 7.3. The operator K maps A (39Q) to A, ,,(3Q).

In proving this lemma we may assume that the global type m is strictly larger than
2, for otherwise the result is already contained in [GS], § 14. We prove that K maps
L*(3Q) to A,,,(3L) (note that 2/m<1). To do this it clearly suffices to show that

f [K(x,,y)— K(x,, y)| do(y) < Aljx,—x, " (7.7)
QR

where K(x,y) is the kernel of the operator K and ||-|| denotes the Euclidean distance.
Now since the non-isotropic distance ¢ satisfies o(x,,x,)<A[lx,~x,||'™, we can
reduce the estimate of the left side of (7.7) to three integrals,

f IK(x,, )| do(3),
olx; I=EC X, 'Xz”]/m

f |K(x,, )| do(y),
Q(xzv)')gczl""] _inllm

f |K(x,,y)—K(x,, y)| do(y),
0(xy. )=C)llx, —x, )"

where C is an appropriately large constant.
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Now |K(x),y)| is dominated by A(o(x;,¥))’V(x;,y)”!, and thus by equation (4.5) in
[NRSW] we have that the first two integrals are dominated by A||x,—x,|[*".
For the third integral we use the fact that

|K(xy, )= K(xy, y)| < Allx, = x| sup [V K (x, )|

where the supremum is taken over the line segment joining x; and x,. However since
9Q is of type m, any derivative can be expressed in terms of products of at most m
factors of L, or L. Thus the integrand in the third integral is bounded by
(@Cx;, y)* ™™
Al =y — o)

o 2C -y VO Y)

which since m>2 gives the estimate A|jx,—x,|- |lx,—x,/|*™"=A||x,—x,|[*", by equation
(4.5) in [NRSW], concluding the proof of (7.7). Thus we see that K maps L*(3Q) to
Ay, (39).

Notice that at this stage we have only used the fact that K was an NIS operator of
smoothing order 2. If we now invoke the more precise properties of K, and in particular
the commutation properties in Section 6, we also see that K maps LT(3Q) (the space of
bounded functions whose first derivatives are bounded) to A, ,,,(39). It then follows
by the usual interpolation properties of A, that K maps A,(0RQ) to A,,,,,(9R) for
0<a<l (see e.g. [GS], §13). Finally using the commutation properties of K again, we
see that the same result holds for any non-integral a, and a last interpolation establishes
the desired result for all a>0.

With the lemma proved, we return to (7.4). If fE AL(Q), then L,G(f)E A, (RQ),
and hence RL,G(f) € A, (9Q). The same is true after applying the zero order standard
pseudodifferential operator I'* (see [GS], Lemma (13.5)), and the result is mapped to
A 142m(@R) by K, if we use the lemma proved above. Finally the Poisson operator of
order 1, PO™ maps this to A_,,,(R2) (see [GS], §13). The required A, estimates are
therefore proved.

The second part of the estimate (7.3) is that N(f)€ET,,(2) whenever f€ A, ().
The main point here is contained in the following lemma:

LeMMA 7.4. Supposte that fET(3Q). Then Pi(fYET Q).

Proof. Consider first the case 0<a<1. We shall use the ideas in proposition (6.3) of
[NRSW]. For each fixed size 27%, there is given a partition of unity 1=X ; @, ; where the
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¢, ; are “‘bump functions’ on balls centered at points Af of radius =~27%, having
bounded overlap, with

IL,®, |+|L,®, ;| <C2

Write

f=>fo with
k=0
fo= 2, @y 1)
J

fi= D0 f6 =D L fE), k=1,2,....
i i

Then since f€T, it is easily seen that

Ilfll = c27*
(7.8)
WLy fill =+ Al - < €2°27%
One can also make the crude isotropic estimate
VA, - < C2mkp ke, (7.9)

Now write F=P,(f) and F,=P,(f).
Since the Poisson kernel P, maps L*(3Q) to L*(R2) (see [GS], Lemma (15.34)), it
follows that

IFl, =0 < C27*e, (7.10)
Moreover,

LP =PL)+P
7.11)
Lp =PL+P",
where P’ and P" are zero order Poisson operators, since L; and L, are tangential. Thus

IL\Fl, - < €227 +|P (Sl -

1=
However, a combination of (7.8) and (7.9) shows that

Iflla, <C', (whenever em<a);
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this together with the fact that zero order Poisson operators are bounded on A,, a>0,
gives

L Fll e o HILLFl < C2F ke, (7.12)

LT(Q) L™(Q)

Using the argument in proposition (6.3) of [NRSW] one sees that (7.10) together with
(7.12) implies F=X; F,ET(Q).

The commutation property (7.11) allows us to pass from 0<a<1 to 1<a<2. The
result for a=1 then follows by the interpolation property of the ', spaces (Proposition
(6.2) in [NRSW]). A similar argument proves the lemma for all a, O<a<cs,

We can now complete the proof of property (7.3) of the theorem. We require that
N, be given in a different form from that which appeared in (7.4). By Proposition 6.10,
we use the form whose main term is

N,(f)=P,KT*O RL,G,(f). (7.13)
We start with f€ A,(€2). Then by the usual elliptic estimate,
IO RL,G,(f)EA,(BRQ).

However as is easily seen, A (0Q)<I,(8Q), for all a, while K, being an NIS operator of
smoothing order 2 maps I',(8Q) to T, ,(3Q) (Proposition (6.3) in [NRSW]). Thus an
application of Lemma 7.3 concludes the proof for our estimates for N(f) when fEA,,.

(i) The estimate (7.2). Stripped of all the notation, this is really an elliptic
estimate. In effect, IN_|Jp is essentially

(—L,+s)P(O"KT*+Q"RL,G,.
However, by the symbolic calculus and the results of § 1 and §2, we have that
(=L, +s)P,=P,0"+P’,

where P’ is a Poisson operator of order —1. We insert this in the above, and we get an
expression whose main term is P,(RL,G,) if we use Theorem 4.7 in §4. This has the
smoothing properties of order —1 (elliptic) operators, and gives the desired conclusion.
Thus the proof of Theorem 7.1 is complete.

COROLLARY 7.5. Suppose fis a (0, 1) form with 3f=0, and let u be the solution of
du=f given by u=8*N(f). Then
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(2) L,(u) and L) € L; if fELL, 1<p<w, k=0,1,2,...;
() UEAyy "Ly if FEA, for a>0.

Proof. Part (a) is essentially a corollary of (7.1) of the theorem. The proof of (b) is
much the same as the proof of (7.3) of the theorem. In fact, the role of Lemma 7.2 is
replaced by the assertion that the operator L;K maps A,(3Q) to A, ;,,(8S), the proof
being very similar to that of Lemma 7.2.

CoROLLARY 7.6. The Bergman projection operator is a bounded mapping from
LI(Q) to itself, 1<p<>, k=0,1,2,....

Proof. One uses the identity (see Kohn [K2]) that
B=1-8*N3,

and then the assertion is proved in the same way as estimate (7.1) of the theorem.

§8. Estimates of Henkin—-Skoda type

We shall now extend to pseudoconvex domains of finite type in C? estimates for
solutions of du=f proved by Henkin and Skoda in the case of strongly pseudoconvex
domains. These estimates are crucial ingredients in proving the sufficiency of the
Blaschke-type condition for zeros of holomorphic functions of the Nevanlinna class in
€2, which we take up in the next section.

Recall the definition of A(x, d) made in §4:

Alx, )= D, A;(x)0’.

j=2

Let h—u(x, h) be the function inverse to 0 —A(x, ). Thus clearly

u(x, h) = min (

2gjsm

h \Y
A, (x)) '
If o(x) denotes the distance of x € Q from the boundary, then we let u(x) be defined by

u(x) = u(m(x), o(x)).

Thus g(x) is essentially the radius of the largest ‘‘normal’’ disc in Q centered at x, while
u(x) 1s essentially the radius of the largest ‘‘tangential’” disc in Q centered at x. The
basic L' estimate is as follows:
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THEOREM 8.1. Suppose fis a smooth (0, 1) form in Q. Then we have the a priori

estimate:
‘(ﬁ)f/\ é@ ] 8.1)
Q LY(Q)

The proof of Theorem 8.1 will be based on the following lemma:

”é*N(f)”L'(ag)SC[||f||L‘<Q)+

Lemma 8.2. Suppose K, is an NIS operator of smoothing order 1 and let
FELT(BQ). If F=K,(f), then

|[F(x)—F(x,)| < Au(x,, ||x;— x|, 8.2)
where ||x,—x,|| is the Euclidean distance between x, and x;.

Several remarks are in order. One can actually show that F belongs to the
nonisotropic Lipschitz space I';(6Q). The estimate (8.2) is the best isotropic estimate
that can be made for elements of I';(8Q). Observe also that in the strongly pseudocon-
vex case (m=2), the estimate means that FE€A,,. Note that we have trivially

IEll,- < AlA, - (8.2)

Proof of (8.2). Let K (x,y) be the kernel of the operator K;. It clearly suffices to
show that

j K (xy5 )= K (xy, )l do(y) < Aulx;, [|x,—,])- 8.3)
Ele)

To do this choose y so that A(x;,y)=|jx;—x:||; then of course y=u(x,, ||x;—x|). Notice
also that y=co(x,, x,), because if we apply the function A(x,, -) to both sides we get that
this is equivalent with ||x;—x,||=cA(x;, o(x, x2)), which is indeed the case. Thus for a
sufficiently large constant C we can reduce the estimate (8.3) to similar estimates for
the following three integrals:

(@ J K\ (x;, y)| do(y);
olx,,y)<Cy

(ii) f |K, (x5, ¥)| do(y);
olx;, )=Cy

(iii) f |K (x;, ¥)— K (xy, y)| do(y).
olxy, y)=Cy
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Since |K(x,, y)|<Ao(x,, y)/V(x,, y), the first integral is bounded by Ay, by the use of (4.5)
in [NRSW]. A similar bound holds for the second integral, and so we now turn to the
integral (iii). In order to make the calculation here we use the coordinate system
appearing after (1.9) in [NRSW], which is centered at x,, and where the ‘‘ball’’ centered
at x; of “‘radius’ g(x;, x,) is given by a box (whose dimensions are essentially g(x;, x,)
and A(xy, 0(xy,x2)). If {x,},,<, denotes the straight line in this coordinate system
joining x; to x,, then each x, belongs to the same ball.
Now

1
Kl(x.,y)—Kl(xz,Y)‘—‘ J' dit(Kl(xt’y))dt‘ 8.4)
0

This equals

1
— f (T, K)(x, ),
0

where T, denotes a family of vector fields, for which one can make uniform estimates
(in 1) on their coefficients. Now consider (£, A (x,) y*)T,. Note first,

D A YE = Alx, ) = A, ) = |l =,
k=2

because
o(x,; x) < co(xy, x;) S ¢y

Moreover, by the definition of the quantities A(x,) we get that

(Z Ak(x)y*T>(K )(x,, ¥) <c2y > XK ) x, )|

k=2 |I|=k
& e,y
SCZ =L V’
=2 (x:’y)
(xlv )] k

A

m
k
=C Y —/—————
zz Vix,y)
The next to the last inequality follows because K| is the kernel of an NIS operator of
smoothing order 1, and the last inequality follows because o(x,,x)<o(x;,x;), and
0(x1, ¥)=ZCy=(C/c) o(x,, x,) for those y’s under consideration, if we take C sufficiently
large. We now insert these estimates into (8.4), and carry out the y integration over the
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range indicated in (iii). We then get the following estimate for the integral (iii), if we
apply (4.6) of [NRSW]:

1 m 1
A Zy"-yl"‘dtszf dt<sA'y.
0 k=2 0

This proves (8.3), and thus Lemma 8.2 is proved.
We now turn to the proof of Theorem 8.1 and the estimate (8.1). If we write
f=5@1+f202,
and
u=N(f) = u o+ uid,,
then according to (2.11) we must estimate
(—Li+h)u+(—Ly+hyus. (8.5)

The right side of (8.1) is essentially

It ()5

@

Now the estimate for (8.5) breaks up into two parts. The first is the estimate for
(—Ly+hy) up, which in fact is elliptic. Now u;, is, up to a better error term, G (f3); and
since u, satisfies the Dirichlet boundary condition, we see (using the fact that
L,=(1/V'2)8/80+iT), that (—L,+hy)u, becomes

i 9

- —\/—T?Q_ Gzz(fz)lg=0-

The operator 3G,,/3¢|,-, maps function on Q to functions on Q2 and is essentially the
adjoint of the Poisson kernel. Since the Poisson integral maps L*(3Q) to L*(Q), we see
that the operator 8G22/8Ql9=0 maps LY(Q) to L'(5Q). Thus we have

||(—L2+h2) u2”L1(aQ)sA”~f2”Ll(g)' (8'6)

To study (—L;+h) u; we use the approximate Neumann operator given by (7.13).
Since L, is tangential this gives as the main term for (~L,+h,)u,|,_, the operator

—L,KT*0O°RL,G,. (8.7)
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We can now write (8.7) as the sum of two operators, I+II. Here
I=-LKT*ORL,G,,, and II=-L,KT*0O°RL,G,,.

Turning to I, this operator, mapping functions on Q to functions on 9Q, must be proved
to be bounded from L'(u/0, Q) to L'(3RQ). Let us take the adjoint of the operator (8.7).
Since L,Gy; is a transmission-type pseudodifferential operator of order —1, then the
adjoint of RL,G;, is a Poisson operator of order zero (see Boutet de Monvel [B)). Also
I'*0" is a pseudodifferential operator (on Q) of order 1, so combining this with what
we just said, the adjoint of I'*00"RL,Gy, is a Poisson operator of order 1. Finally —L,K
is an NIS operator of smoothing order 1, so its adjoint is of the same kind. Altogether
then the adjoint of (8.7) is the operator (mapping functions on 32 to functioas on Q) of
the form

PYK,, (8.8)

where K| is an NIS operator smoothing of order 1, and P is a Poisson operator of
order 1.

What we must show, therefore, is that if f€ L*(8Q) then (o/u) PVK,(f) EL™(Q),
and the indicated mapping is bounded. In view of Lemma 8.2, our theorem will be
proved once we have established the following lemma:

LemMa 8.3. Suppose F satisfies the estimates (8.2) and (8.2'). Let P be a
Poisson operator of order 1. Then

IPOF)(x, 0)| < A’ ”—g‘l. 8.9)

We recall the following simple facts about Poisson operators, PV, of order 1, and
their kernels, P{’(x,y). We have

POF)(x) = J P(x, Y)F(y) do(y).
[519]

Then

(@) PP(1) is a smooth function;
) PO, y)|<Allx—yl|™;
©) [PY(x, y)l<Ae Hlx—y|| ™2

The assertion (b) follows because P{’(x, ) is (uniformly in @) the kernel of a pseudodif-
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ferential operator of order 1, and the dimension of 8Q is 3. (c¢) follows by the same
reasoning, since o*P" is a Poisson operator of order —1.
Now

PY(F)(x,0)= f PY(x, y)F(y) do(y)

aQ

=f P(gl)(x,y)[F(y)—F(x)] do(y)+F(x)P(1).
QR

The last term is clearly controlled by (8.2'). The next to last integral can be written as
an infinite sum

> f PY(x, y)[F(y)~F(x)] do(y) + f PY(x, y)IF(y)—F(x)]do(y).
llx=yll=2*

k=1 fe—vli<e
Now by (8.2)
[F(y)~F(x)| < Aulx, |x—ylD,
and since
., h) . h \W
x, h) = min ,
H 25j<m (Aj (x))
then

ux, |x=y|) < C2%%u(x, 0) if |lx—y| = 2.

Thus if we use estimate (b) for P{", we get as an estimate for the sum,

]

> €2%u(x, 0) f lx=yl"*dy < c(————”(x’ 9)) PP c<ﬁ>.
k=1 l—yll=2' ¢ ¢

k=1
The term

J' PY(x, y)IF(y)—F(x)]do(y)
lre—l<e

is estimated similarly, but here we use (c) instead of (b). This completes the proof of the
lemma, and hence the estimates for I is established. The estimates for I7 is straightfor-
ward because G, is a pseudodifferential operator of order —3. Theorem 8.1 is now
proved.

15-928286 Acta Mathematica 169. Imprimé le 10 novembre 1992
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Remarks. (1) The operator 3*N has a unique extension to all forms for which the
right hand side of (8.1) is finite. In fact, the same proof as (8.1) gives the weaker

inequality
l (i) fAdo ] (8.10)
0 LI

which holds for all smooth (0, 1) forms f on Q. From (8.10), 3*N extends as a mapping
from all forms in this space to L'(R).

(2) We claim if 3f=0 in the sense of distributions and if u=3*N(f) then du=fin the
sense of distributions. To see this, approximate f by a sequence of f,€ C5(Q) in the
norm given by the right hand side of (8.10). Since as is known,

“é*N(f)”Ll(Q) = C[llfllLl(Q)+

85*N(f) =f.—N(3*3(f))

and 3f,—0 in the sense of distributions, the result follows.
(3) Note that if §f=0, the sequence u,=3*N(f,) converges to u in L'(Q), u,—f, in
the sense of distributions and
L'(Q)]

L ot < c[|| et H (%) FAGF

uniformly in &.

§9. Zeros of holomorphic functions of Nevanlinna class

A basic problem in complex analysis is to describe the zero varieties of certain classes
of holomorphic functions in domains QcC”. Let H(Q) denote the space of all holomor-
phic functions on Q. For G € H(Q), the zero variety of G is

Z(G) = {z€Q|G(z) = 0}.

For example, when n=1, and the domain is the unit disc D={z€C'||z|<1}, the
Nevanlinna class is

N(D)={f€H(D) supj log+|f,|do<0°}
aD

0<r<l1

where f(z)=f(rz). The zero variety of a holomorphic function in the unit disc is a
discrete sequence of points {¢,} in D. The zero varieties of functions in the Nevanlinna
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class are precisely the discrete subsets Z={o;} in D which satisfy the Blaschke
condition:

> (-lgh <. (B)
>
When n>1 and the domain Q is smoothly bounded and strongly pseudo-convex, a

theorem proved independently by Henkin [H11, [H2], and by Skoda [S], characterizes
the zero varieties Z of functions F in the Nevanlinna class

supf log+|F|da<oo},
e>0 a9,

by an analogue of the Blaschke condition:

N(Q) = {FEH(Q)

f o(z)do(z) < =. (B)
zZ

(Here o(z) is the positive distance of z € Q to the boundary 3Q.) Q,={z € Q| o(z)>¢} and
do is the volume element on Z.

The main object of this section is to prove the following extension of the Henkin—
Skoda theorem:

THEOREM 9.1. Let QcC? be a bounded, smooth weakly pseudo-convex domain of
finite type m. Let GE H(QQ). Then the zero variety Z=Z(G) is the zero variety of a
function F in the Nevanlinna class if and only if the zero variety Z satisfies the
Blaschke condition (B).

In the original work of Skoda (Théoréme 3 of [S]), the sufficiency of the Blaschke
condition is stated for an arbitrary complex hypersurface X of a strictly pseudoconvex
domain Q satisfying HXQ,Z)=(0). This topological restriction is not necessary in
Theorem 9.1 because of the assumption that the hypersurface is given from the
beginning as the zero set of a globally defined holomorphic function. In general, a
complex hypersurface in Q could be defined as a set which, near each point of Q, is
locally a zero set of a locally defined holomorphic function with non-vanishing gradi-
ent. For pseudoconvex domains, or more generally for domains of holomorphy, the
obstruction to finding a global holomorphic defining function lies in the cohomology
group HX(Q, 7).

The fact that the condition (B) is a necessary condition is well-known: it is a



220 D.-C. CHANG, A. NAGEL AND E. M. STEIN

consequence of Green’s formula (see [Che], [Ma]). Thus we only need to show that
condition (B) is sufficient. The main point is that using previously known ideas, the
sufficiency can be reduced to the L' estimate given by Theorem 8.1. For this reason we
shall be brief, leaving some of the details to the cited literatures. We begin by
formulating the Blaschke condition in a slightly different way.

DEFINITION 9.1. Let QcC? be a domain with smooth boundary, and let {w), w,y}
be a basis for the (1,0) forms near 3Q, with w,=3¢. A positive, closed (1,1) current

satisfies the Blaschke condition if the following inequality holds:

A0) = f 0(2)(0,,+6,))(z) < . 9.1
Q

Here 0 are finite measures on Q, and 0; nonnegative.

If GEH(Q), and 0=id31og|G|, then 6 is then a positive closed (1, 1) current on Q
which is essentially the current of integration over Z(G). For such positive currents,
the Blaschke condition (B) is equivalent to condition (9.1).

In the case that Q is a bounded smooth weakly pseudo-convex domairr of finite
type and 6 is a positive closed (1,1) form which satisfies the Blaschke condition,
Bonami and Charpentier [BC2] showed that the component 6,, satisfies a better
estimate.

TreorEM D (Bonami-Charpentier). Suppose 0 satisfies the condition (9.1). Then
the 01y component of 0 satisfies the generalized Malliavin condition:

f (’%) 0, <C - AO)<x. 9.2)
Q

Using the fact that @ satisfies the condition (B) and Theorem D, we have the
following corollary:

CoROLLARY 9.2. The 8, and 0, components of 0 satisfy the mixed condition:

j HD(0,,|+10, (2 < C- HA(6) < . 9.3)
Q
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Proof. Since the matrix {6;} is nonnegative,

1/2
f w1, +HOy @I} < f 20 @Du@ gy p())
Q a 001

2
wi(z)
s L 0(2)0,,(2)+ L —Q(Z) 0,,(2)

=< C-(0).
The last inequality is a consequence of (9.1) and (9.2). This completes the proof.

Now let GE H(Q) and let §=id3log|G|. Following the method of Lelong (see [L]
and also [S]) to find a function F € N(Q2) with the same zero variety, we need to solve
the equation:

330 =9, 9.4)
with @ €L'(3Q). Then the function F determined by
O =log|F|

belongs to the Nevanlinna class, and has the same zero variety.
As a result of assumption (B), 6 will satisfy (9.1) and hence also (9.2) and (9.3). To
solve equation (9.4), we find a 1-form { which satisfies the equation

idt=6. 9.5)
Then we decompose £ into
=280t 80

where &, o and &, ; are bidegree (1,0) and (0, 1) forms. Note that then &, ; is d-closed
since @ is a (1, 1) form. We shall prove that ¢, ; satisfies

f 6., @V (2) + f (&) B0 ALy ()| dV(D) <. 0.6
Q al\o(@)
If we then let « be the solution to

du=¢,, 9.7

given by Theorem 8.1 and the remarks at the end of §8, it follows that
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i03(2iJu) = i93(u—i)
= i(33u+03i1)
= i(88o,1+9%1.0)
=i{(8+8) §o.1+(8+3) 1.0}
=idl=86.

Thus if we put ©®=2i3Ju, the function © satisfies equation (9.4), and according to
Theorem 8.1, © € L(3Q).

Thus we now need to solve equation (9.5) and establish inequality (9.6) for its
solution. To solve (9.5) which involves only the d-operator, we need a general version
of the Cartan-Poincaré lemma. We begin with

ProrosiTION 9.3. Let QcR” be a domain. Let w be a p-form on Q, and X a vector
field on Q. Then if w_|X denotes the contraction of the form with the vector field, we
have the identity

do_|X+dw _JX)=7;1-s~w(exp(sX))ls=o-

This is easy to check directly (and also see exercises 7-18 on p. 319, volume 1 of
(SpD).

Let Q,w, and X be as in Proposition 9.3, and define
F(z) = exp(sX)(2).
Note that %, is the identity mapping.

CoRrOLLARY 9.4. Suppose that the diffeomorphisms {¥,} map Q to itself for
0=s=<sy. Then for zEQ

w(z) = w(eX(z)) — d( f o(wJX ) (e*%(2) ds) - f 0dw_lX(e”‘((z)) ds.
0 0

Proof. We have

(e (@) -0@) = f "L (e ds
0 A

= f °dw_1X(e“‘(z))+ f Od(auX) (eX(2)) ds.
0 0



ESTIMATES FOR THE O-NEUMANN PROBLEM 223

This proves the corollary, and gives us a general version of the Cartan-Poincaré lemma
as follows:

ProrosiTioN 9.5. Suppose Q,w, and X are as above and suppose {¥;} satisfies
the hypotheses of the Proposition 9.3. If dw=0, then

So
0= 97;‘;(0 - d(f 9f(wJX)ds),
0

where F¥w denotes the pullback of the form w induced by the diffeomorphism %;.

We now turn to the problem of solving equation (9.5). We shall first work in a small
neighborhood of the boundary of Q. Let

2
i3510g|G|=0= >, 6,0, A @,

hi=1
We suppose that @ satisfies equations (9.1), (9.2) and (9.3). Let
3, ={z€Q| —e<p(x)<¢}.
Let X=3/3¢ and let
F, = exp(sX).

Note that F maps QNZ, to Q for 0<s<s, if 5o and ¢ are sufficiently small. Set

v=-— f OO_JX(e‘X) ds.
0

Then v is a real 1-form on Z,n Q. Since d6=0 we have by the Cartan-Poincaré lemma

0= %% 6+dv= d(?i;"o(ié log |G])+v).

w= F}(idlog|G|+v.

There is no problem in establishing estimate (9.6) for 9;’;03 log |G]), since the form
idlog |G| is being evaluated strictly inside the domain. Thus we want to estimate v. Now
since w,=38p and @,=3p (up to a constant), it follows that, up to a constant,

9_}X= 912w1+922w2_62]6{)1—922([_)2.
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Hence if we decompose v into its (1,0) and (0, 1) parts,
U=";,0%0o,1,

with Vg, 1=’31,0 and

then

vy 1(2) = f o‘912(6‘5)((2)) ds.
0

In order to establish the estimate (9.6) for v, we need the following estimates for vy :

j {jv} 1D +]vh (D]} dV(2) < CoHB) < o, ©-8)
Q
and
f £ 11 @dvi<c f H(2)|0,@) < CHO) < . ©.9)
Q @ ™ Q

In order to get the estimate (9.8), let us define the operator

10)(2) = j 0 6(e*(2)) ds.
0

Then we have the following lemma:

LEMMA 9.6. Let a>—1 is a real number, then there exist a constant c independent
of 6 such that

f [0 @I dVR) <c f [0.]%"02)] dV(2).
z . 2z

Proof. In the appropriate coordinates system, we may assume z=(xj, X3, X3, X4).
Then o(z)=x, and Q={z€ C?x,>0}. For a>—1,

f [e.(2]*[(TO)(2)|dV() < c f (x,—¢)* ( f |0(z+s)|ds) dv(z)
= 0

z

€ 3

< J " (e —e+s)ds f 10| dV(2)
0 z,
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sc-f (x,—&)*"160(2)| dV(2)
ZE

=c f [0:2)]*""16(2)| dV(2).
ZE

This completes the proof.

It is easy to see that the estimate (9.8) is just the case a=0 by using a limiting
argument. In order to get the estimate (9.9), we need the following lemma:

LeEMMA 9.7, Let
So
u(z) = f NF(2)) ds
0
Then

f %%]v(z)ldV(z)sC(Q) f 1(2)102)|dV(2). 9.10)
Q

Q

Proof. We use the coordinate system which arises in the proof of Lemma 9.6.
Hence we have

F (X1, Xy X3, X,) = (X7, Xy, X3, X, F5).

Then the equation (9.10) is equivalent to

X4
f ulxy, Xy, X5, :)% < C-ulx;, x5, X3, Xg) 9.11)
0

To show this we need to observe that in terms of size

-1
. t \ Uk X _
Hxy, Xy, x5, )= min (——) = [ D A% )
Ay k=2

2<ksm
The functions A, for k=2,3, ..., m have the property

Ap(xy, X5, X3, X)) = AY(Xy, Xy, X3, X4 FS)
for small s. This leads to

Uy, Xy, X35 270x) S C-27Mu(x,, x5, X5, X,).
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Once we have this, it is easy to rewrite (9.11) as follows:

=ity

* E dt
j (x],x2’x3a t) /u(xlyx29x3’t)7
0

27x,

i+l _2=i
27 % —27x,

I
M T

—j+1
ulx), x5, %3,27% %)

= 27x,
ES 2—j+lx
<SC- D 27Mu(x,, x,, X1, X,)- 4
2, 27l 32 7)o
< C ulxy, Xy, X3, X,).
Now we prove (9.10):
f #Q) 1) dvie) = f £#a) f 00x,, Xy, 13, xy+5) ds | dVI(2)

< | |6(x), x5, x5, x,)| f u(xy, Xy, X3, X4—S5) ds dV(z)
Q Oss<x X4—S

4

t
sf [6Cx,, Xy, X3, x4)| (f #(x,,xz,xg,t)dT> dv(z).
Q O<r<x,

Now we may apply the result (9.11) to get

J‘M|v(z)| dV(z)SCf u(2)0(2)|dV(2).
0 0@ Q

This completes the proof of the lemma.

So far we have found a solution w to equation (9.5) which satisfies the estimate
(9.6), but this solution is only defined near the boundary of the domain. We still need to
patch this solution near the boundary with a solution in the interior. Let us extend the
solution w to a 1-form on all of Q by using a smooth cut-off function near the boundary
of Q. Call this extension . Then the 2-form

0—idw

is an exact 2-form on all of Q since 8 is exact. But we also know that this 2-form has
compact support in Q. We now apply the classical theory of harmonic integrals to
conclude that

6—idw=ida
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where a is a one form which is smooth up to the boundary (see Chapter V of De Rham
[D], Theorem 25). Thus

0=idw+a)

and the form {=w+a satisfies the estimates (9.6). This completes the construction of
the required solution, and thus completes the proof of Theorem 9.1.
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