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w Introduction 

The object of  this paper is to construct  a parametrix for the ~-Neumann problem for 

arbitrary bounded pseudoconvex domains in C 2 of  finite type, and to use this parame- 

trix to obtain sharp regularity results for the associated Neumann operator and for 

solutions of au=f. As an application, we obtain an extension of the Henkin-Skoda  

theorem, which characterizes the zero sets of  functions in the Nevanlinna class in 

strictly pseudoconvex domains, to pseudoconvex domains of  finite type in C 2. 

The ~-Neumann problem is a boundary value problem for an elliptic system of 

partial differential equations. Let  ff~cC n be a smoothly bounded domain. Let  U be a 

neighborhood of  the boundary af~ and let O : U-->R be a defining function so that 

()  All three authors are supported by grants from the National Science Foundation. 
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n u =  {z 6 f~l q(z)>0} 

and VO(z)~=0 for O(z)=0. Let 

[] = ~ * + ~ * ~  

acting on (p,q)-forms on Q. Then given a (p,q)-form on if2, the 0-Neumann problem is 

to find a (p,q)-form u=N(g) such that 

tq(u)=g o n Q ;  

u / O Q = 0  on~f l ;  (o.1) 

The first results for this problem were obtained by Kohn [K 1,2], and proceeded by 

L 2 methods. Our analysis originates in the approach used by Greiner and Stein [GS] for 

the strongly pseudoconvex case, which reduces the problem of solving system (0.1) to 

the problem of inverting a pseudodifferential operator [2 + on the boundary a~ .  By 

finding an operator l-q- such that IN- D+=[]b, this in turn is reduced to the problem of 

inverting the boundary Kohn-Laplacian Db. The final parametrix for the Neumann 

operator N is then written as a composition of various operators, each of whose 

regularity properties is now well understood. 

There are several significant differences between our results in this paper and the 

earlier of [GS], and several new difficulties had to be overcome in extending the results 

to the weakly pseudoconvex case. First, we give a more intrinsic formula for the 

pseudodifferential "Dirichlet to Neumann" operator which arises in the construction of 

the boundary operator [~+. Second, we give a more natural interpretation for the 

operator El- as the boundary operator induced by the 0-Neumann problem for the 

complementary domain C2\f2.  It is worth mentioning that up to this point the analysis 

does not depend on pseudo-convexity or finite type. Third, the properties of the relative 

solving operators for [~b have to be understood in terms of a natural nonisotropic metric 

on the boundary of f~. It is here, and in what follows, that pseudo-convexity and finite 

type play a crucial role. Fourth, the commutativity properties of these solving opera- 

tors with respect to pseudo-differential operators had to be understood without the use 

of the more standard Sv2, ~/2 class of pseudodifferential operators. Fifth, certain micro- 

local smoothing properties of the Szeg6 projection had to be exploited. 

We consider domains ~ c ~ C  2 which are pseudoconvex and of finite type. The 

main result on the construction of a parametrix for the Neumann operator N on (0,1)- 

forms is given by: 



ESTIMATES FOR THE ~-NEUMANN PROBLEM 155 

THEOREM 5.1. For any integer k, there is an integer k, and there is an operator 

Tk:C~(O)(o,l)--->C=(O)(O,l) which .is isotropically smoothing o f  order k so that for 

f E  C~((2)(o~ ~, 

N ( f )  = N~(f)+ Tk(f) 

where N~ is an operator explicitly given as a composition o f  operators which are either 

standard elliptic pseudodifferential operators, standard elliptic Poisson operators and 

Green's operators, or nonisotropic smoothing operators on the boundary o f  f2. The 

precise definition o f  N~ is given in Definition 5.1. 

Next, let 

Lj = 30 3 30 3 .  
3~z 3s 3~1 3~2 

This is an operator which is tangential along af2. The main regularity results for the 

Neumann operator N on weakly pseudoconvex domains of finite type in C z are then the 

following: 

THEOREM 7.1. Suppose N is the Neumann operator, and q(L , ,L0  is a quadratic 

polynomial in L 1 and LI. Then the following operators are bounded on the indicated 

spaces: 

q(LI,LON:L~-->LVk, l < p < o o ,  k = 0 , 1 , 2  . . . .  ; (7.1) 

lp_. , , tp l < p < o o  k = 0 , 1 , 2 ,  �9 (7.2) cSN_100 : ~k "~t,+~ . . . . . .  

N :  A,~--> A,~+2/m n F,~+2, a > 0. (7.3) 

Here L~ are the usual spaces of functions or forms on f~ that are in LP(ff2) along 

with all their derivatives up to order k. Aa is the usual isotropic Lipschitz space of 

exponent a on fl ,  and the spaces Fa are appropriate non-isotropic Lipschitz spaces. 

There are also related results for the solutions of Ou=f, giving sharp L~ and Lipschitz 

estimates. These may be found in Section 7. We also obtain the following L'  estimate: 

THEOREM 8.1. Suppose f is a smooth (0, 1)-form in f2. Then we have the a priori 

estimate: 

Ila*N(f)llL,~a~) ~< C[llfllL,,~) +ll(~/o)f^ (8.1) 
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The quantities kt and p are related to the non-isotropic geometry on aff~ and are 

defined in Section 8. This last estimate leads to our result of zeros of functions in the 

Nevanlinna class. It is as follows: 

THEOREM 9.1. Let g2cC 2 be a bounded, smooth weakly pseudo-convex domain o f  

finite type m. Let G be a hotomorphic function on ~ .  Then the zero variety Z=Z(G) is 

the zero variety of  a function F in the Nevanlinna class if  and only if  the zero variety Z 

satisfies the Blaschke condition. 

The 0-Neumann problem arises naturally from problems in several complex vari- 

ables, and has been the subject of a great deal of interest and research. In the case of 

domains with nondegenerate Levi form, the original L z estimates were obtained by 

Kohn [K1], and these methods were further developed in Kohn and Nirenberg [KN]. A 

summary of the approach to the 0-Neumann problem in this situation via the method of 

a priori estimates is given in the monograph by Folland and Kohn [FoK]. The L 2 

estimates for the ~-Neumann problem in the case of domains of finite type in C 2 were 

obtained by Kohn in [K2]. 

The method of studying the 0-Neumann problem via reduction to operators on the 

boundary were first used by Garabedian and Spencer [GAS] and by Kohn and Spencer 

[KoS], but a parametrix for the Neumann operator in the case of strictly pseudoconvex 

domains was first obtained in [GS]. This work in turn was based on the analysis of 

Folland and Stein [FoS] for i-'] b for strictly pseudo-convex domains, which utilized the 

idea of approximating the boundary by the Heisenberg group. 

There has been considerable development in recent years in the analysis of ~, cSb, 

and the Bergman and Szeg6 kernels for domains of finite type in C 2, and this work has a 

major bearing on our present paper. In particular, we cite the papers of Bonami and 

Charpentier [BCI], [BC2], Christ [C], C. Fefferman and Kohn [FK], Machedon [M], 

McNeal [Mc], Nagel, Rosay, Stein and Wainger [NRSW]. 

The results of this paper were announced in [CNS], and the organization of the 

present paper follows that of the announcement closely.(1) The paper is organized as 

follows. In Section 1 we obtain a pseudodifferential operator description, up to errors of 

order - 1 of the "Dirichlet to Neumann" operator for systems of second order elliptic 

operators with scalar principal symbol. In Section 2 we describe the operator [] and the 

associated cS-Neumann boundary conditions on (0, 1) forms for smoothly bounded 

(1) Circumstances beyond the authors' control have forced the delay of the publication of the present paper. 
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domains in C 2. In Section 3, we use the description of the "Dirichlet to Neumann" 

operators of section 1 to describe the boundary operator [3 + associated to the ~- 

Neumann problem. In Section 4, we show how to construct the operator [3- coming 

from the ~-Neumann problem on the exterior of the domain ff~, and describe the 

relationship between [3+, [3-, and [3b. All of these calculations are done using pseudo- 

differential operator realizations of the operators, anti we need to keep track of errors 

up to order -1 .  In Section 5, we construct a parametrix for the Neumann operator, and 

in Section 6 we establish a variety of commutation properties of the components of the 

parametrix. In Sections 7 and 8 we establish the various regularity properties of the 

Neumann operator mentioned above, and in Section 9 we carry out the Henkin-Skoda 

program in weakly pseudoconvex domains of finite type in C 2. We wish to thank the 

referee for several useful suggestions which have been incorporated in the text. 

w 1. Dirichlet to Neumann operators for elliptic systems 

The object of this section is to obtain a pseudodifferential operator description, up to 

errors of order - 1, of the so-called "Dirichlet to Neumann operator" for second order 

elliptic operators with scalar principal symbol. The prihcipal symbol of the Dirichlet to 

Neumann operator is well known and is of order 1, but later in this paper we shall need 

to know the zero order part of the symbol as well. This is the main content of this 

section. Our approach is similar to that of Greiner and Stein ([GS], Chapter 7), which in 

turn is based on the approach developed by A. Calder6n, L. H6rmander, R. Seeley, 

and L. Boutet de Monvel. However, the presentation in this section gives a more 

intrinsic description of the operator than is available in [GS]. 

We begin by introducing appropriate notation and by recalling appropriate defini- 

tions. Let f2cR n§ be open with 0Ef t ,  and let 

n+l 

g= Xgo.(y)dYidyj (1.1) 
i , j= l 

be a smooth Riemannian metric defined on a neighborhood of (2, the closure of f~. Let 

V be a fixed finite dimensional complex vector space, and let L(V) be the space of 

linear endomorphisms of V. We let A denote a second order linear partial differential 

operator defined on V-valued functions on f2. We assume that A has the form 

n+l a2 

A = -  X g0(y) + first and zero order operators (1.2) 
i , j=  1 ay~ 8yj 
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where as usual, the smooth functions {gO} are defined by the equations 

n+l 

EgO.(y)gJ~(y) = 6ik. (I .3) 
j= l  

Thus the principal symbol of  A is scalar, and equals the principal symbol of  the 

Laplace-Bel trami operator  associated to the metric g. 

Let  M be a smooth hypersurface in ff~, with 0 E M c Q .  Shrinking Q if necessary,  M 

will divide ff~ into two parts,  and if we let 0 denote a signed geodesic distance from M in 

the metric G, then 

where 

g2=MUg2+U~ - 

~+ = {y6QlQ(y)  > 0  }, 

Q -  = {y6QlQ(y)  < 0  }. 

Intuitively, the Dirichlet to Neumann operator  N + for the operator  A on the 

hypersurface M relative to the domain f~+ can be described as follows. If  f is an 

appropriate function defined on M, and if u is a " so lu t ion"  of the Dirichlet problem 

A ( u ) = 0  ong2 + 
u = f  on M, (1.4) 

then the Dirichlet to Neumann operator  N § applied to f is the restriction to M of  the 

inward normal derivative of  u. Of course this is not a precise definition since M is not 

the boundary of  f2 +. In a moment  we will see how to deal with this problem, but for 

now it is important  to note that N § will be a pseudodifferential operator  on M and will 

be well defined only modulo infinitely smoothing operators.  Also, with a similar 

definition, there is a Dirichlet to Neumann operator  N -  associated to A on the 

hypersurface M relative to the domain ff~-. 

In order  to write the operator  A in a special form, and in order  to make precise what 

we meant above by solving the Dirichlet problem, we need to introduce special 

coordinates appropriate to the operator  A and the hypersurface M. The function Q is 

smooth on f~, and we shall denote  by a/aQ the vector field which is dual to 1-form d9 (in 

the metric g). It is given in coordinates by 

c3 = | E g O ( y )  OO (y) 0 (1.5) 

0~) i = 1 L j = l  Oyj Oy i 
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For each y sufficiently close to the origin, the integral curve to the vector field a/ae 

passing through y will intersect M in a unique point ~r(y), and ~r is a smooth mapping. 

Also, we can choose a coordinate system on M near the origin 0 which is given by a 

mapping 

q~: M--* U c R "  

where U is an open neighborhood of the origin in R", and q~(0)=0. Then after shrinking 

again we may assume that the mapping 

given by 

O: ~--0 Ux( -e ,+e )  

~(y) = (~b(~r(y)), g(y)) 

is a diffeomorphism. If (xl . . . . .  x,) are coordinates on the open set U, we shall, with an 

abuse of notation, use coordinates (xl .... ,x,, t) as coordinates on fl where e(y)=t. 

For each t E ( - e ,  e) let 

Mt = {y E QI e(Y) = t}. 

Then Mo=M, and ify E fl ,  the integral curve to a/ae passing through y intersects Mt in a 

unique point ~t(Y), where ~tt is a smooth mapping and rt0=rt. Let gt be the restriction of 

the metric g to the hypersurface Mr, and then define the restriction of the operator A to 

V-valued functions defined on Mt by the formula 

At( f  )(y)= A(fo~t)(y) for yEMt. (1.6) 

Also define a mapping C:fl--~L(V) by the formula 

(~(x, t)(v) = A(ev)(x, t) (1.7) 

for each v E V. (Of course, if we choose a basis in the vector space V, then C is a matrix 

valued function.) Finally if f is a smooth function on fl let f, denote the restriction o f f  

to M,. 

PROPOSITION 1.1. (I) At is a second order elliptic operator defined on V-valued 

functions on Mr. The principal symbol of  At is scalar, and equals the principal symbol 

of  the Laplace-Beltrami operator associated to the metric gt. 

(2) I f  f is a smooth V-valued function on f~, then in terms of  the coordinates 

(x, t)=(xl . . . . .  x,, t) 

A(f)(x, t) = - ~  (x, t)+ C(x, t)a~-f(x, t)+ At(ft)(x, t). (1.8) 
Ot ot 
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Proof. Write 

and put 

$(~(Y))=(gI(Y) . . . . .  9.(Y)) 

P(y) = 9.+~(Y). 

Since Q was choosen as a signed geodesic distance to M, and since a/ap is the vector  

field dual to dQ, it follows that 

n+' {10 o- - Oq~ - aq~ - a . . if m = n + l  
z , g  tY)---~---LYI-'X---tYJ= ~--tqgm)(Y) = (1.9) 
i,s=~ ox: ox i o0 if m<~n. 

The proposition now follows from the chain rule since if we put F(y)=f(C,(y)), and 

* (y )=(x ,  t), then 

n+l  2 2 l- n+l  ~ 2 _  "1 _ 
U a F  8"f x ~ g  (r)-7----~-~ (y)=-z-7, ( , t ) + |  ~'~gO(y)~(y)|e-~:(x,t) 

i , j=l  clYiCJYj ~ r  Li,'~=l ~yioyj j dt 
n [- n+l  aq 0 t . .  a q % . .  ] 

+ E I E gO(y) 
I,m=lLi,j=l "~YitY'-~YJtY)J ax I aXm 

( i .  10) 
(x, t). 

Since we can identify Mt with Mo=M via the projection ~, we can also think of  A t 

as a one parameter  family of  operators  acting on V-valued functions on M. Write 

A t = - A ( x ,  t, D~)+B(x, t, D~) (1.11) 

where A(x, t, Dx) is a family of  scalar second order  operators,  -A (x ,  t, DO agrees to top 

order with the Laplace-Bel t rami  operator  on Mt, and B(x, t, Dx) is a first order  L(V)- 

valued differential operator  acting on V-valued functions on M. (Note that such a 

decomposit ion is not unique.) We now make 

DEFINITION 1.1. 

A o = Ao(x, Dx) = A(x, O, Dx); 

A I = Al(x, D~) = ~ ( A ( x ,  t, Dx))[t=0; 

Bo = Bo( x, D x) = B(x, O, D x); 

Co = C(x, o). 

(1.12) 
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The operators A 0, A I, B0, and (~0 are then differential operators acting on V-valued 

functions on M of orders 2, 2, 1, and 0 respectively. A0 and Al are scalar operators, 

while/~0 and t~0 are L(V)-valued (i.e. matrix valued) operators. It is in terms of these 

operators that we will be able to describe the Dirichlet to Neumann operator for A. 

We next recall the definition of Poisson-type operators P• : Co(M)~C=(fU) .  (For 

a more complete discussion of these operators, see [GS], Chapter 7.) 

DEFINITION 1.2. A function p+(x, t, ~)EC=(U• ") is a symbol of Poisson 

type or order m if  it satisfies: 

(l) p+(x, t, ~) has compact support in the (x, O-variables; 

(2) For all multi-indicies a, fl and non-negative integers y, 5 there is a constant 

C=C~,p,r,~ so that 

~ a ~  a P  a a +  

A similar definition is made for symbols p-(x, t. ~). 

DEFINITION 1.3. If  p• t, ~) is a symbol o f  Poisson type o f  order m, the mapping 

P• defined on Co(U ) given by 

(,)'f P• t) = ~ e ~ ~p• t, ~)f(~)d~ 
J R  n 

is called an operator o f  Poisson type o f  order m. 

(1.14) 

The following result then describes the existence and regularity of solutions for the 

local Dirichlet problem for the operator A. (See [GS], Chapter 7 for a complete 

discussion.) 

THEOREM A. I f  O E Uic  U is a sufficiently small neighborhood o f  the origin in M, 

there are Poisson operators P• o f  order zero on Uj such that, if R denotes the operator 

of  restriction to M, 

(1) AP • are Poisson operators o f  order - ~ ;  

(2) RP+--I are pseudodifferential operators on M o f  order -oo. 

Moreover, if P~ are any other Poisson operators with properties (1) and (2), then 

(3) P •  are Poisson operators o f  order - ~ .  
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DEFINITION 1.4. The Dirichlet to Neumann operators for A on the hypersurface M 

for the domains •• are defined to be 

N •  +_Ramp • (1.15) 
at 

where P• are any operators of  Poisson type soloing the local Dirichlet problem as in 

Theorem A. 

It of course follows from Theorem A that N • are well defined pseudodifferential 

operators of order 1 on M, since a different choice of Poisson operator leads to an error 

of a pseudodifferential operator of order - ~ .  We are finally in a position to state the 

main result of this section. 

THEOREM 1.2. Modulo pseudodifferential operators of  order - 1, 

N • = -T- (-Ao) 1/2-1Aot  A 1 -T- 12 (-A~176 12 Co" (1.16) 

Several remarks are now in order. First, (-Ao) ~/2 is understood to mean a pseudo- 

differential operator X of  order 1 on M whose principal symbol is the positive square 

root of the principal symbol of -A0, and such that XZ+Ao is an operator of order 0. This 

determines X up to an error of order - 1. The ambiguities in the second and third terms 

in (I. 16) (in the definition of A0 and in whether we take A o I At or A iAo 1 and ( - A  0) I/2/30 or 

Bo(-Ao) ~/z are also errors of order - I .  Finally, the fact that the first order term of N • is 

-T-(-A0) ~/2 is well known, and so as remarked earlier, the main contribution of this theo- 

rem is the description of  the zero order terms. 

Proof o f  the Theorem 1.2. The roles of g2 + and Q- can be interchanged by simply 

reversing the sign of the function O. This has the effect of changing the signs of A~ and 

/~. Thus we shall only make our calculations for the case of f~+. We shall follow the 

arguments of [GS], Chapter 7, using the calculus of pseudodifferential operators, and 

thus we shall be somewhat brief. According to Theorem A, we can calculate N + by 

using any operator of Poisson type which solves the local Dirichlet problem, and we 

construct one such operator. We begin by calculating the asymptotic development of 

the symbol of a fundamental solution E to the operator A. We let this fundamental 

solution act on distributions supported on M, and this gives us an operator of Poisson 

type Eb which (roughly) satisfies AEb(f)---O on ~+. (Precisely, A OEb is an operator of 

Poisson type of order -oo.) If we let Eb.o(f) denote the restriction of Eb(f)  tO M, then 

the operator P( f )=Ebo  [Eb,0] -l is an (approximate) Poisson kernel for the operator A in 
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the sense of Theorem A. Then N § will be given by R OP/Ot. We now proceed to give a 

sketch of the necessary computations. 

According to Proposition 1.1 and the discussion following it, if we use the coordi- 

nates (x, t) = (x~ .. . . .  Xn, t) on f~, we can write 

A _  
0 2 

at 2 

n 

E (ag(x)+ta~+O(t2)) a2 
i,j= 1 OX i OXj 

n 

+ E[~j(x ' ,)a_~__ +C(x, t ) ~  +d(x, t) 
j= I OXj 

(1.17) 

where/~j, r  and d take values in L(V) (i.e. are matrix valued). If we let (~j .....  ~n) be 

dual variables to (x~ .. . . .  x,), and 7/be the dual variable to t, the symbol of A is 

o(A) = 772+ E (aUo(x)+taiJl(X)+O(tE))~i~j+i x, t)~j+C(x, t)t] +d(x, t) 
i ,j=l [_j=l 

= do+dl+d 2 
(1.18) 

where d~. is homogeneous in ~ and t /o f  degree 2 - j .  Thus 

n 

do = r12 + E (a~(x) + ta~(x) + O(t2))~i~j 
i ,j=l 

F n ] d~ = i ~E, j (x ,  t )~+d(x ,  t),j ; 
Lj=I  

d 2 = d(x, t). 

(1.19) 

In equation (1.18), the coefficients are related to the operators A0, A j,/~0 and C0 by the 

equations 

. 02 
Ao(X' Dx) = E ag(x) axi aXy 

i,j=l 

" 02 
A~(x, Dx) = ~ a~(x) ax, Sxj 

i,j=l 

n 
&(x ,  Ox) = ~ b j ( x ,  O) S . '7 

j=l  OXj 

(1.20) 

t~o(X) = t~(x, 0). 
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Let e be the symbol of a fundamental solution E for A, and let e=e0+o+ . . ,  be its 

asymptotic expansion where ej is homogeneous of degree - 2 - j .  The Kohn-Nirenberg 
formula for composition of pseudodifferential operators then gives: 

e 0 = ( d o )  - 1  

(d o) i(d )-3[ j.~l (d)ej(d )x +(d ) (d)  e l = - -  - 2 d l -  0 0 0 0 q 0 t 
, =  

where (d0)t, for example, means the derivative of do with respect to t. We put 

so that 

D = D(xl  t, ~) = "k/Z~,i=,(a~ J 
n 

b(x, t, ~) = s b,(x, t)~j 
j=l 

(1.21) 

(1.22) 

E]=~(do)~j(do)~j+ lET.j= 1 a~ O(t)](2q) ] 
(q2+D2)3 J 

Now the following calculations are easy to establish: 

I (+=ei"~drl = 1 e_Ot. 
2Zr J_= r12 + D z 2D ' 

I f  += eit~drl [l+Dt]e_O,.  
f~r.J_~ (rl2+DZ) - - - - - - - -~  [ 4D---S-J ' 

for j=0,  I, 2 . . . . .  We have 

e o = (r]2+D2) -! 

:[ b(x, t, ~)+t~(x, t)q 
e ' = - '  L 

(1.24) 

1 ( |+=eit%flx, t, ~, rl)drl 
2~r j_= 

d o = r ] 2 + D  2 

(1.23) 
d I = i[b(x, t, ~)+C(x, t)r/]. 

As in [GS], we want to see how the fundamental solution acts on distributions 

supported on R~={t=0}, and for this we need to evaluate 
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DrJ_~ (r/2+D2) 2 = i e-~ 

1 f+= ei'~drl [ t2DZ+3tD+3] 
2~r j_~ (r/2+D2) 3= 1 - ~  ' e-D'; 

f +~ eit'lrl drl _ [ Dt +D2t2 -] -or 
2~.J_oo (r]2+D2) 3 [ ~ je ; 

From this it follows that 

and 

_ 1  _ r+~ei%o(X,t,~,~)d~= 1 e - D r  ' 

2~r J_~ 20 

l f+_~ei~tel(x,t,~,~])dr]=-ib(x,t,~)[~3tle-Dt+C(x,l)I-~D]e -Dt 
2at 

...a" [ t2D2 + 3tD+ 3 5 - i ~ .  (do)~ (do)~ e -Dr 
j= l  " " I _  

l + a~(x)~,~:+O(t) [ _ ~ j  . 
Li ,  j = l  J 

In particular, if we let 

(1.25) 

Do(X ' ~) ~ /  , U = Ei,j=tao(X)~i~j , 

then when we let t=0, we find that the symbol eb.O(X, ~) of the pseudodifferential 

operator Eb, o has, modulo terms of order less than -2 ,  the asymptotic development 

1 i F b(x, O, ~) ~. 3Eg"=j(Do)~.,(Do)x~ 
eb, o(x' ~) = 2D0(x, ~) [ 4D0(x, ~)3 16D0(x ' ~)5 

(1.26) 

Again using the calculus of pseudodifferential operators, we find that the inverse of the 

elliptic pseudodifferential operator Eb. o has symbol 

[%,o]-1(x, ~) = 2Do(x, ~)+iDo(x, ~)-J b(x, 0, ~) +E(Do)_~j(Do)xj (1.27) 
j= l  

modulo terms of order - 1. 

To calculate the Dirichlet to Neumann operator, we now need to compute 

EbO[Eb,o] -1, take the derivative with respect to t, and then set t=0. The result of this 
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computation is that the symbol of the Dirichlet to Neumann operator, modulo terms of  

order - 1, is 
. t/ 

-Oo(x, e)-2Oo(x, Z (Do),j(Oo)xj 
j = l  

-1Ao(x, ~)-IAI(X, ~)q- I f ( x ,  O ) - 2 b ( x ,  0, ~)Do(x, ~)-I. 

Since the symbol of the operator (-Ao(x, Dx)) I/2 is 

Oo(X,  Oo(X, (Oo) j(Oo)xj, 
j = l  

(1.28) 

up to errors of order - 1 ,  this finally shows that the operator N § has the desired form, 

and completes the proof. 

w 2. [] on (0,1)-forms and the 8-Neumann conditions for domains in C 2 

The object of this section is to describe the operator 

[] = ~ * + ~ ' 8  

and the associated 8-Neumann conditions on (0, 1)-forms for smoothly bounded do- 

mains in C 2. Thus let g be a smooth Hermitian metric on C 2, and let QcC 2 be a domain 

with C ~ boundary aft2. There is an open neighborhood U of 8f~ such that if Q denotes a 

signed geodesic distance in the metric g to a•, then 

Qn • =  <ze vie(z) > 0}; 

VQ(z)4=O for zE U. (2.1) 

We choose a smooth orthonormal basis for (0, 1)-forms on U, given by 031 and 032, 

where 

032 = X/-2-80. (2.2) 

We let L~ and Lz be the dual basis of antiholomorphic vector fields on U. Then L~ and 

L1 are tangential on af2, and in fact on the set U we have 

Ll(o) =L,(o) = 0; 

L2(o)=L2(o)= 1 
v ' T  

(2.3) 
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Hence if we define a real vector field T by 

T = + (L2-L2) 
Z/  

then on the set U we have 
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(2.4) 

T(o)=O (2.5) 

so T is also tangential on aQ, and the vector fields Re(Ll), Im(Ll) and T span the real 

tangent space to 0Q at every point of aQ. If  a/ao is the vector field dual to the one form 

do then it is easy to see that 

1 0 
L 2 - - -  - -  c-iT. (2.6) 

x/T ao 

I f f  is a smooth function on U then 

c3f= Ll(f)o)  l +L2(f )~  2. (2.7) 

(2.8) 

If u is a (0, 1)-form on U then we can write //=l/lO.)l +t/20)2, and 

au  = ( L l ( u E ) - L 2 ( U l ) +  SU O& l ̂  t32 

where the scalar function s is defined by the equation 

c%5~ = sa~j ̂ th 2. (2.9) 

(Note that since (/)2=~/2-00, 00)2=0. ) 

We next want to compute the formal adjoints 8" of the operators 8, relative to the 

metric g. Let  d V  be the volume element induced by g. Then there are scalar functions 

hi and hE such that for 9, ~0 E C o ( U )  we have 

(2.10) 

(2.I1) 

o(L~w) dV = f (-Lj+h)q~r dV 

f o r j = l , 2 .  Thus if u=ult~l+u2~b 2 we have 

and 

O*u = ( -  L 1 + h j)u j + ( -  L2 + h2)u 2 

O*(vebl ^ cb z) = ( L 2 - h 2  + Dvcb I + ( - L  1 + h l ) v ~  2. (2.12) 
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We can now state the a-Neumann problem. The operator [] is defined to be 

[] = c50"+0"0 (2.13) 

on (0, I)-forms, and the a-Neumann problem is the following boundary value problem: 

[]u = f  on t2; 

u l ~ o = 0  onOg2 

O u l O p = O  onc%L 
(2.14) 

The object of this section is to calculate [] and the two boundary conditions of 

(2.14) in the given coordinates on the open set U. Now if u=u~0)~+u20) 2 then since 0Q= 

(1/V~-)0)2, ul~o=(1/V~-2-)u2 and the first boundary conditions is just 

u2=0  on 0R. (2.15) 

Since Ou=(Ll(uz)-Lz(ul)+su00) ~ ̂ 0)2, the second boundary condition amounts to re- 

quiring that L~(uO-Lz(uO+su~ =0 on at2. But if u already satisfies the first boundary 

condition, then since L~ is a tangential operator L~(uz)=0 on Of 2. Hence in the presence 

of the first boundary condition, the second boundary condition is just 

L2(uO-su I = 0  on 0f2. (2.16) 

The computation of [] is an algebraic exercise. In the coordinates given by 0)1 and 

0)2, [] is a matrix valued differential operator. To describe it we first define 

Dj = LI,L2 ] 

[22 = h2L2 (2.17) 

= [ hlL , gL, ] 
[33 L _ s L  1 hjLlJ 

-Ll(hO+Lz(s)-shz+lSl 2 Ll(h2)] 

[]4 = L2(hO_Ll(s)+sh j L2(hz) J �9 

Note that []0 is a second order operator, []j, []2, and []3 are first order operators, and 
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[]4 is a zero order operator. Also •3 only involves differentiation with respect to the 

tangential operators L~ and L~. Finally note that [31 is also a tangential operator by 

equation (2.3). 

The first main result of this section is now the following description of the operator 

[] and the ~-Neumann boundary conditions in terms of the coordinates introduced 
above. 

PROPOSITION 2.1. On the open set U with coordinates given by O~ and if-)2 we have 

(1) [] --  [ ] 0 + [ - ] 1 + [ ] 2 + [ - ] 3 + [ ] 4 ;  

(2) The two 3-Neumann boundary conditions are equivalent with 

(i) u2=0 on Of 2, 

(ii) Lz(ul)-Sul=O on 0Q; 

(3) The operator [] is a second order elliptic system with scalar principal symbol 

equal to the principal symbol o f  the Laplace-Beltrami operator associated to the 
Hermitian metric lg. 

Proof. (1) is the result of straightforward algebraic calculations using equations 

(2.7), (2.8), (2.11), (2.12), and (2. I3). We omit these calculations, but see [GS], Chapter 

6, for example, for further details. We have already proved (2), and so it only remains to 
prove (3). 

The second order part of [] is the operator •0, and modulo the diagonal first order 
operator 

Do is the scalar second order operator 

-(L1LI+L2L2). 

If we write LI=�89 l- iYO, and L2=�89 with Xj and Yj real vector fields, then XI, 

X2, YI, and Y2 are orthogonal, and by the Pythagorean theorem, 

1 X 

But modulo operators of order - I  

- L1L1- LzL 2 = _ -~[ ( V~X, )2  + ( V~y~)2 + ( V~X2)2 + ( V ~  Y2) 2] 

12-928286 Acta Mathematica 169. Irnprim~ le 10 novembre 1992 

(2.18) 
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which agrees to top order with the Laplace-Beltrami operator for the metric �89 This 
completes the proof. 

We want to be able to apply the results of Section I to the operator 2[~. Thus we 
want to write 

a 2 
2[2 . . . .  ~_~. 0 

00 z 00 +DO (2.19) 

as in equation (1.18), where D e acts tangentially, and then we want to write 

D O = -A+/~  (2.20) 

as in equation (1.11) where A is a scalar second order operator, and/~ is a first order 
operator. 

Using equation (2.6) and its conjugate, we see that 

['7 0 = 0 T2+LILI ' 

[(s-~+ ] [ s + g - h  2 0 
[22= h02)/V'-)- 0 0 _h2]T. hz/V'--f -~p + i[ 0 

(2.21) 

Thus we see that 

~2 
2 D = -  aO 2 + V~-h 2 aO 

_2[00 [LIOL,]] + 2i [ 0  , T I l l  0 _O1]+,,.[s+s-h2 W o 

+21-11+21-'13+21-14. 

(2.22) 

_0h2]T 

We can expand the vector fields T, L1, and Lj in Taylor series in p. Thus we write 

T=  T~ 

L, = L~ ', +0(02); 

L~ = L~ +0(o2). 

(2.23) 
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[-~-p, T] =TI+O(Q), (2.24) 

2 - 2 - 0  0 1 - 0  I - I  0 T +LIL 1 = (T ~ +LILI+(2T~ +L1LI+LILI+[T I, T~ (2.25) 

From these calculations, we can now calculate the operators A0, A1, /30 and C'0 of 
Definition 1.1 for the operator 2D. 

PROPOSITION 2.2. For the operator 2D on the domain f2 we have: 

A o = 2(T~176 

A 1 = 4rlT~ ' TO]; 

[o o] Elo i O],o 
/~0 = - 2  0 [L~,L~ + V ~ -  iT'  ?1 + 2i[ 0 - h  2 

+ 2[Z1~ + 2[--1~ + 2r-I~ 

where o f  course KI~ denotes the operator Vlj restricted to the boundary, i.e. to the set 

(e=o}. 

w 3. The boundary operator []+ for the 8-Neumann problem 

Let f2cC 2 be a domain with C ~ boundary. We shall sometimes write g2+=g), and 

f2-=C2\f2.  Recall that the 0-Neumann problem for (0, 1)-forms on f2 consists of 
finding a (0, 1)-form u such that: 

[:]u = f  on f~; 

u__lSQ=0 on Of 2; (3.1) 

0 u / 3 p = 0  onOQ; 

wheref is  a given (0, 1)-form. It is well known that this boundary value problem can be 
reduced to the problem of inverting a certain scalar pseudodifferential boundary 
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operator on aQ. The object of this section is to explicitly describe this reduction and to 

calculate the resulting boundary operator [3 § 

The reduction to the boundary is accomplished through the use of two operators 

associated to the domain fl and the operator D, namely a Poisson operator P and a 

Green's operator G. If we let R denote the operator of restriction to the boundary, then 

the operator P maps (0, 1)-forms on the boundary 0f2 to (0, 1)-forms on f2 and has the 

property, that modulo C = errors, 

r - l o p  = 0 o n f 2 ;  

R o P = I  onOQ. 
(3.2) 

The Green's operator G has the property that modulo C = errors, 

V]oG = I onf2; 

R o G = 0  o n a Q .  
(3.3) 

We now try to find a solution to problem (3.1) of the form 

u = P(ub) + G ( f )  (3.4) 

where Ub is a (0, 1)-form on the boundary to be determined. (Actually the solution we 

derive in this section is exact only modulo C ~ error terms. The more precise result is 

dealt with in Section 5 below.) It follows from the defining properties of P and G that, 

modulo C = error terms, 

I--](u) = f  (3.5) 

for any u of the form given in (3.4). Thus we want to determine Ub SO that the two 

0-Neumann boundary conditions are satisfied. 

We now turn to the problem of defining the boundary operator V1 § whose 

invertibility gives us ub. 

For this we must use results about the 0b complex on af2. We denote by ~0.0 the 

space of smooth functions on ag2. The space of smooth (0, D-forms on af], which we 

denote by ~0.1 can be identified with the restriction to af~ of all smooth (0, 1)-forms on 

f) which satisfy the first of the 0-Neumann conditions, i.e. for which u2lm=0 (see [FK], 

p. 86 for details). Then the operator 0b carries elements of ~3 ~176 to sections of ~]o, 1. The 

correspondence Ul*-->Ul~ clearly allows us to identify elements of ~0. ~ with functions 

on af2, and the L z completion of ~0. ~ with L2(aQ). 
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We shall define the basic boundary operator  D +, a first order  pseudodifferential 

operator,  mapping 5~2 '~ to 03 ~ as follows. Let  u be a smooth (0, 1)-form on Q that 

satisfies the first boundary condition, and let Ub be its restriction to the boundary.  Now 

form 

['-]+ u o = OP(u b) I OOlon, 

where P is the Poisson kernel given in Section 1. It is to be noted that 0 P / 0 o  satisfies 

the first boundary condition by its very definition. Thus Ub~B+ Ub  is a well-defined 

mapping on ~d ~ to itself. Since we shall have that essentially u is given by 

u = P ( U b ) + G ( f )  (where G is a Green ' s  operator  as in (3.3)), the determination of  Ub (and 

hence of  u) is reduced to inverting the equation O + U b = - - O G ( f ) l O o [ a Q .  Since the 

bundle ~0,1 is one-dimensional,  we can therefore realize [3 § as a scalar operator.  

We shall now describe this scalar realization of n § 

As in Section 2, in a neighborhood U of  af~, we choose a basis {0),, 0)2} for the 

(0, 1)-forms. Then if Ub is a (0, 1)-form on af2 we can write it as: 

u b = u10)l+u20) 2 (3.6) 

where ul and u2 are smooth functions on Og2. Since P(ttb) is a (0, l)-form on Q, on the 

set f~ O U we can write 

P(u  b) = v10) 1 +vzo3 z, (3.7) 

where o 1 and vz are (smooth) functions on f~ n U. We have 

u i=  vj on af2, for j =  1,2 (3.8) 

since R o p = l .  

Recall from Section 2 that 0)2=X/YOQ. The first 0-Neumann condition then gives 

0 = R(u_..j OQ) = u b___l O 0 + R ( G ( f ) )  ._100 = V'--2 u 2 (3.9) 

since R o G=0,  and so the first 0-Neumann boundary condition is equivalent to 

u2 = 0. (3.10) 

Hence by (3.8) this implies that 

v 2 = O  onOQ.  (3.11) 
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Ou = 8P(ub)+OG(f) 

and so the second 0-Neumann boundary condition is equivalent to 

R(SP(Ub)_J 80) = -R(~G(f)_38Q). 

Now according to equation (2.8) 

8 P(ub) = ( Ll(Vz)- Lz(v O + svl) ) r I ̂ r z, 

and hence 

(3.12) 

(3.13) 

(3.14) 

8P(%) I Op = -~2 (LI (v2)-L:(vl)+svl) tbl" (3.15) 

Now if u is to satisfy the first boundary condition, u2 and hence vz is zero on 8~.  On the 

other hand, the operator L1 is tangential, and hence 

Ll(vz)=O on c~f~. (3.16) 

Since ul=v~ on aft,  the second 8-Neumann boundary condition (in the presence of the 

first) is equivalent to the following equation for ul: 

I R(Lz(vO_sv 0 d)~ = R(OG(f) 1 80). (3.17) 
x/T 

Near Of~, using the coordinates {o)~, ~b2), G can be written as a matrix operator 

[G,, G,2] 
G =  [G,I G22J (3.18) 

so that i f f=f ,  o~1 +J~ o)2, then 

G ( f )  ~ (Gll(fl)+Gl2(f2)) (f-)l 4-(G21(fl)l-Gz2(f2 )) (~2 
(3.19) 

= Gl( f )  ~1 +G2(f) d92. 

It follows from equations (2.6) and (2.8) that 

8G(f )  __] 80 = -~2 [L1(G2(f))-L2(GI(f))+ sGI(f)  ] d~l" (3.20) 

Thus in equation (3.17), both sides are scalar multiples of o31. 



ESTIMATES FOR THE ~-NEUMANN PROBLEM 175 

Now recall from equation (2.6) that 

1 8 
L 2 - ~iT. 

V T  ao 

Hence equation (3.17) is equivalent to 

z ~0 V 2 - ~  
(3.21) 

w h e r e  P(Ub)l  denotes the first component  of the Poisson operator  applied to u b. But 

a 
R P(Ub) 1 = N+(Ub)l  (3.22) a9 

where N + is the Dirichlet to Neumann  operator  associated with the domain ~ and the 

operator [] (or 2•) studied in Section 1 and N+(Ub)l is the first component .  For  a scalar 

function q~ on 8ff~ we shall write, with an abuse of notation 

where 

N + (cp) = N + (Ub) 1 (3.23) 

Ub = q~O)l. (3.24) 

The above calculations shows that D + can be realized as the scalar operator  

[ - 1 + = I N +  - i T s 

2 x/T x/T" 

We summarize our discussion up to this point as follows. 

PROeOSITION 3.1. The 8-Neumann problem (3.1) is equivalent (modulo C ~ error 

terms) to the problem o f  solving 

Fq+(Ub) 6)1 = R(OG(f)  I OQ), 

o r  

1 [L,(Gz(f ) )_L2(Gl( f ) )+sGl( f )]an;  [ ]+ (uO = 

i.e. the O-Neumann problem is equivalent to the problem of  inverting the operator E2 +. 

In order  to calculate N + and []+, we use Proposit ion 2.2. Note that we really want 

to apply the operator  N + to a form on the boundary of  the form c#cbt, and then we want 
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to calculate the coefficient of  COl of the result. Thus using Proposition 2.2 we see that 

the coefficient of  c01 of/~0(q~col) is: 

Bo(CPcOl)1 = V'-2 iTl(cp)+ 2i(s + ~-h2) T~ hl Ll(q~) 
(3.25) 

+ ( Lj( h O + L2( s ) -  sh2 + lst 2) q~. 

Similarly, the to~ coefficient of  C'0(q0co,) is 

C0(q~col)~ = X/-2-(s-g+h 2) ~0. (3.26) 

Also from Proposition 2.2 we have: 

Ao(tpco ,) = [2(T~ ~ L~](go) cO,; 
(3.27) 

A,(q~cO l) = [4T'T~ L,+2L; -' L~ ' , T~ (q~)a),. 

Recall from Theorem 1 that, modulo pseudodifferential operators of order - 1  

N+=-( -Ao) l /2 -%(Ao) - lA l -~( -Ao) - t /2Bo+ l Co . 

Thus if we write 

then 

(3.28) 

1 0 - '  T ' T ~ 1 7 6  2 2 J 2D+ = - V " 2 0 ' / 2 +  2 [ 2 1 L I L ~ 1 7 6  

1 O-1/z[~/--2-iTl+2i(s+g-h2) T~ 
2V~- 

+ (Ll(h~) + L,(s)- sh 2+tsl2)] 

+ ~2(s-~+hE)-V'-2-iT~ (3.30) 

= _V,'~-[O1/2+iT o] + 1 [O_lTO iO_ I/2] T ) 

- V~2(s+g-h2) [iO-l/2T~ 

+E 1 L~ L~+E 3. 

where El, E2, and E3 are pseudodifferential operators of order - 1. Finally, if we note 

0 = -(T~ ~ (3.29) 
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that [O -~, T ~ T ~ is also a pseudodifferential operator of order - I ,  we see that we have 

proved the following: 

PROPOSITION 3.2. 

D+= V % 2  [[ -(T~ L~ ] '/2+iT~ ][ l+E~ ] +E'L~176 

where the operators Ej are pseudodifferential operators of  order -1 .  

So far we have dealt exclusively with the 0-Neumann problem on the domain if2. 

However, we may also consider the 0-Neumann problem on the complementary domain 

g2-=C2\f2. This problem also gives rise to a scalar boundary pseudodifferential 

operator which we call [3-. Then a calculation similar to the one above gives us 

PROPOSITION 3.3. 

1 
[ - ( T  ) - L , L , ]  +iT ][I+Eo]+E,L,+E2L,+E 3, a - = v 7  [ _  0 2  - 0  0 , , 2  �9 0 - - 0 - - 0  - 

where the operators Ej are pseudodifferential operators of  order - 1. 

We shall need to consider the compositions [~+ oI-1- and [3- o[3 +, and for this we 

need: 

PROPOSITION 3.4. Let O=-(T~ Then 

[0  '/2, T ~ = F, L~ + F 2 L~ + F3, 

where Fj are pseudodifferentiat operators o f  order zero. 

Proof. It follows from the Kohn-Nirenberg formula for compositions of pseudo- 

differential operators that, since O is elliptic, modulo pseudodifferential operators of 

order zero 

[Or2, To ] = 1 0 _ v 2 [ O  ' TO]. 
2 

But 

[0 ,  r ~ = [-(T~ ~ T ~ =-[L,L,,T-~ o o] 

= ~ , t , ~  o , 

where ~. is a pseudodifferential operator of order one. This completes the proof. 
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It now follows immediately from Propositions 3.2, 3.3, and 3.4 that we have: 

PROPOSITION 3.5. There are pseudodifferential operators Fj and ~ o f  order zero 

_ _ _  - 0  0 0 - 0  E3+ o D _ =  1 LILt+F4Lj+FsLt+F6; 
2 

D - o D + = _ _ _ I L O  o - o - - o  - 2 1 Lt+F4LI+FsLt+F6; 

w Invertibility of D + and D-  and their relation with (~b 

We now turn to the problem of inverting the operator [2 +, which, as we have seen, is 

equivalent to the ~-Neumann problem. The object of this section is to show how this 

can be done, and to establish the connection between the operators D + and []- and the 

operator Iq b which arises from the boundary 0b complex. The inversion is done in two 

steps. The first step is to invert the operator [2 + away from its characteristic variety, 

and this is done using standard pseudodifferential operators. The second step involving 

inverting the operator near its characteristic variety requires a much more stringent 

hypothesis on the domain f~ than we have used so far, and so in the rest of this paper, 

unless otherwise indicated, we make the following standing hypothesis: 

if2 is a bounded, pseudoconvex domain o f  finite type m. 

We shall use the condition of pseudoconvexity in the following way. Let L~, L~ and 

T be the tangential vector fields on 0f2 that were defined in Section 2, equations (2.3) 

and (2.4). These vector fields span the complexified tangent space to af2 at every point, 

and since [Lt, Ld is again a complex tangential vector field, we can write 

[L t , L,] = 1 2 T + a L ,  +ilL z, (4.1) 
l 

where 2, a, and fl are smooth functions on OQ. Pseudoconvexity of the doman f2 is then 

equivalent to the condition 

2 I> O. (4.2) 

The condition that a ~  is of finite type m is equivalent to the condition that for the 
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function Am defined in equation (4.9) below, we have 

A m =~= 0. (4.3) 

We now begin the study of the invertibility of the operator I3 +. To begin with, note 

that in general the operators [2 -+ are not elliptic. We work locally in a neighborhood U 

of a fixed point p EOf2, and we choose real coordinates (x~,x2,x3,x4) centered at p so 

that 

0f2 f3 U = {x4 = 0}, (4.4) 

and in terms of the coordinates x=(xl,  X2,X3) on  Of 2, 

T o - O 
Ox 3 ' 

1 [ 0 _ i  0 ]+O(x).  
L~ =-2- ~-'X1 0X2 

(4.5) 

(This is possible since if we write L~ then {X1,X 2, T ~ are three linenarly 

independent vector fields in the variables x~, x2, x3.) The symbols of these operators are 

thus 

o(L o) = 1 (i~1 + ~2) + O(x), 

o-(T ~ = i~3. 
(4.6) 

It follows from Propositions 3.2 and 3.3 that modulo symbols of order zero, the 

symbols of the operators E3 -+ are then given by 

1 

(4.7) 

Thus for example, when x=0, cr(O +) vanishes when ~1=~2=0 and ~3~>0, while o([3-) 

vanishes when ~1=~2=0 and ~3~<0. 

We can use the standard theory of pseudodifferential operators to invert the 

operators E] • away from their characteristic varieties. Thus we make the following 
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DEFINITION 4.1. F + is a pseudodifferential operator o f  order zero whose principal 

symbol equals 1 on the set 

0 2 -0 0 112 _~_ {o'([-(T ) - L , L , ]  ) < o ( - i T ~  

and whose principal symbol equals 0 on the set 

,/2) > 1 a(_iTO)}. {c,([-(T~ o L~] 

Similarly, F-  is a pseudodifferential operator o f  order zero whose principal symbol 

equals 1 on the set 

-(TO) L, ~ "b < iT~ {o([ 

and whose principal symbol equals 0 on the set 

,/z) > _ 1  o(_iTO)}. o] 
Z 

Moreover, we can assume that the operators F +- are essentially sel f  adjoint in the sense 

that r -+-(F-+) * are pseudodifferential operators o f  order - ~.  

PROPOSITION 4.1. There exist pseudodifferential operators Q+ and Q+- o f  order - 1  

so that 

D+-Q +- = I - F  +-, and Q+-[]+- = I - F  +- 

modulo pseudodifferential operators o f  order - ~.  

Proof. This follows from standard pseudodifferential operator constructions since 

the operators []+-- are elliptic away from their characteristic varieties, in view of 

Propositions 3.2 and 3.3. 

To invert the operator D § near its characteristic variety we shall need to work with 

the class of NIS operators of smoothing degree k. Here NIS stands for "non-isotropic 

smoothing",  and this class was introduced and studied in [NRSW], w167 4--6. In order to 

define this class of  operators, we first need to recall from [NRSW] the definition of the 

non-isotropic metric on 0s which is naturally induced by the complex structure in C z. 

Write LI=�89 For every k-tuple of integers (i I . . . . .  ik) with ijE {1,2} define 
r 0[2 smooth functions 2i~ ..... ik, il . . . . .  ik , ii . . . . .  it ̀ on 0s by the equation 

[X+,,[ .... [X+2,Xi,]... ]] = 2,, ..... +,T~ ..... i X,+a~, ..... + X z. (4.8) 
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For each integer li>2 define a smooth function At on aQ by the equation 

..... ,x, l 

where the sum is taken over all k-tuples with 2<~k<~l. Finally set 

A(x, 6) --- ~ Aj (x) 6 j. 
j=2 

DEFINITION 4.2. (1) For x, y E Of~ set 

d(x, y) = inf{6 > 01 there exists a continuous piecewise smooth map 

9: [0, 1]---~ 0f~ with rp(O) = x, rp(1) = y, and almost everywhere 

tp'(t) = a l ( t ) X  1 +az(t)X z with la~(t) I < 6, la2(t)l < 6). 

(2) For x E aft2 and 6 > 0, set 

B(x, 6) = { y E af~] d(x, y) < 6 ) .  

(3) Let  ty be the induced volume measure on a•, and set 

Vx(6) = o(B(x, 6)) 

and 

V(x, y) = V~(d(x, y)). 

The following result summarizes some of the basic properties of the functions d, A 

The function d:aff2• is a metric, and there are constants 

181 

(4.9) 

(4. l O) 

and Vx: 

THEOREM B .  

Ct,C2 and A so that for  all x, y E a~2: 

(1) B(x, 6) fiB(y, 6 )*Q =~ B(x, 6 )cB(y ,  Ae); 

(2) C162A(x, 6)<-. Vx(6)<.C262A(x, 6); 

(3) I f  d(x, y)<<-6 then 

A(x, 6____ Z) 
C1 ~< A(y, 6) ~ C:. 

See [NRSW], [BDN], or [C] for further details about the metric d. 
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DEFINITION 4.3. A smooth function ~o E Co(aQ) is a bump function supported on 

B(x, c}) if  cp has compact support in B(x, d). 

We are now in a position to define NIS operators. Let 

T(f)  = f m  T(x, y)f(y) da(y) 

where T(x, y) is a distribution on af~xaf2. 

DEFINITION 4.4. T is an NIS operator of order s if  T is C ~ away from the diagonal, 

and if there exists a family T~ o f  operators given by 

TJ(x) = JofQ TE(x' Y) f(Y) do(y) 

such that: 

(1) T~(f)--~ T(f)  as e--->O whenever f E  Co(Of]). 
(2) T~ e c~(af~xaQ). 
(3) There exist constant Ckt so that for all e, 

I "J d(x, y)s-k-I 
IX'~X; rE(x' y)l <~ Ct~ V(x, y) ; 

where [I[=k, IJl=l. 

(4) For each ! there is an integer Nl and a constant Cl so that whenever q~ is a bump 

function supported on B(x, d), then for all e, and all I so that II[=l 

[(XXTe(q))) (x) I ~< Cid -t+s sup E d;tl~Jq~ 

(5) The above conditions also hold for the operator T*, i.e. the operator with 

kernel T*(x, y)= T(y, x). 

We have used the notation X~=XiXi2 ... Xik where I=(ij ..... it) with ij6 { 1,2}, and 

]I[=k. XJx indicates differentiation with respect to the x variables. 

The main results that we shall need about the class of NIS operators are contained 

in the following result (see [NRSW] for details): 

THEOREM C. (1) I f  T: is an NIS operator o f  order sHor j = l , 2  and/fs1+s2<4 then 

TIoT2 is an NIS operator o f  order sl+s2. 
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(2) I f  T is an NIS operator o f  order s, then T maps the nonisotropic Sobolev space 

NLP, boundedly to NLPk+s whenever k>-O and k+s>~O. 

(3) I f  T is an NIS operator o f  order s, then T maps the nonisotropic Lipschitz space 

Fa boundedly to Fa+s whenever k>0 and k+s>0.  

See [NRSW], w 6 for the precise definitions of NLP, and F a. Note that in [NRSW] 

we have used the notation L~ for nonisotropic Sobolev spaces instead of NL p. In this 

paper we shall reserve L~ for the isotropic Sobolev spaces. Note that NLg=L p, the 

standard isotropic Sobolev space L 2 is contained in NL~, and NL,,kcL k . 2  2 

We now turn to the problem of inverting the operator g] + near its characteristic 

variety. 

We can describe the operator ab and its adjoint 0~' as follows (as before, we always 

use the identification u~-+utfil). If f is a smooth function on 0f~ and if F is any smooth 

extension of f to ~ ,  then 

~b(f) = 0(F)lm = Ll(F)lafa a)l = Ll( f )  ~ ~-+Ll(f). (4.11) 

Next, ~0,0) and ~0,1) are pre-Hilbert spaces. In fact there is a smooth, strictly positive 

function W on 8fa so that if do denotes Euclidean surface area measure on 8f2, then for 
f, g E ~(0, 0) 

g)0 -- f o f ( ~ )  g(~) W(~) (f, do(~); 

and for O, WE ~o,1) with O=Otbl and W=~ptbl, 

( O ' l ' t / ) l  = fat~ 0(r ~0(r W(r do(C). 

Now if u~--~utO~ E ~0, t then the adjoint a~'(u) is computed using this inner product, and 

integration by parts shows that there is a smooth function h so that 

O~(u) = ( -LI  +h)(u). (4.12) 

In fact we can say more. Denote by ~t, the operation of multiplication by a function ~/; 

i.e. 

~t~(f) = r/f. (4.13) 

Then we have 
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PROPOSITION 4.2. There is a smooth real valued non-vanishing function ~l on af2 

such that 

L~= - ~ _ ,  L 1 d~. 

Proof. We begin by working near a fixed point on 0 ~ .  After a translation and 

rotation, we may assume that there is a neighborhood V of 0E 0f~ and a smooth 

function h(x, y, t) such that 

0~"~ [7 V = {(Zl,  Z2) E V I 3 (z2)  = h(gi(z0, ~(z,), .9~(z2))}. 

We can identify a~2 n V with R 3 via the identification 

R3 ~ (x, y, t) <-> (x + iy, t + ih(x, y, t) ) E0s 

Moreover, Euclidean surface area measure on 0f~ 0 V is just  

g(x,y,  t )dx  ^ dy ^ dt = %/ l+lVh(x ,y ,  t)l 2 dx ^ dy ^ dt. 

Near 0, the function 

, /Z l" f -s  1 Z l - - s  1 Z2-t-s ~ Z2--Z 2 

Q,=n~ .  ~ , 2i ' 2 ) 2i 

is also a defining function for Off, and hence 

O = q~OI 

where 9 is a positive real function. Observe that if we write y 2 = ~ ( Z 2 ) ,  then on a f t ,  

But since 

O0 

q) = -  ay 2 �9 

Q(x+iy, t+ih(x, y, t)) -- 0, 

it follows easily that 

~y (X+iy, t+ih(x+iy, t)) ~ /1  + IVh(x, y ,  t)[ 2 = IVo(x+iy, t+ih(x, y, t))[. 
2 

Our first object is to see what form the operator  ~b takes in these local coordinates.  

We shall write z=x+iy,  and h(x, y, t)=h(z, t). Then it is easy to check that 
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Similarly, 

LI - a 0 a aO a 
OZ 2 ~Z 1 OZ 10Z 2 

q ~ ( z ' t ) [ ( ~ t ( z ' t ) + i ) a  2 az a--~-h (z' t)~t]" az 

Let rl=�89 and let ~ denote the operator of multiplication by r/. Note that by 

the computation above, 

and hence is a globally defined positive function on aft.  

If (say) O has small support near zero, we compute 

i 

: fc , i~ a f  ~z--~Oh a J ] ( z , t ) J R ~ O ( z , t ) d x ^ d y ^ d  t 

= -  • \--~- i Oz Oz ~ (~0 )  dx^dy^dt,  

since 

Hence 

div - i  0~ ~ 

f 
(Ll(f),  O) l = - Jc• f(z, t) Jl~ _, L 1 egv 0 W(Z, t) g(z, t) dx ^ dy ^ dt 

= - ( f ,  J/t_1L 1 J/l~ O) o. 

A general O can be written as a sum of forms with small support by using a partition of 

unity, and this then completes the proof. 

We consider the operator ~b mapping functions on 0Q to one-forms (i.e. elements 

of ~0,1) and the adjoint operator a~ mapping elements of ~0,1 to functions on 0~.  We 

denote by So the Szeg6 projection operator--i.e, the orthogonal projection of LE(a~) 

onto the null space of ~b. Similarly we denote by $1 the orthogonal projection operator 

on the null space of 0~'. Since by our choice of basis o91 and o92 and the definition of g9 ~ 1, 

we can identify g~o,~ with functions on a f  and its L 2 completion with L2(0ff2), which 

13-928286 Acta Mathematica 169. Imprim6 le 10 novembre 1992 
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allows us to realize $1 as an orthogonal projection on L2(0g2). Finally, we define the 

operator 

['-]1 = ~ b ~  : ~0,  1_._~ ~0,  I, (4.14) 

which we can also identify with a differential operator on scalar-valued functions on 

It follows immediately from Proposition 4.2 that we have the following: 

COROLLARY 4.3. There is a smooth real valued non-vanishing function r 1 on Or2 so 

that 

So = d~ _, S j d~.. 

LEMMA 4.4. I f  we identify [3~ with a scalar operator, then 

E3+D_ = 1 E]Ib + L~F, + LOF2 + F3, (4.15) 
2 

where Fj are pseudodifferential operators of  order zero for j= 1,2, 3. 

Proof. From Proposition 3.5 we see that D+[S3-=-12L~176 and from equa- 

tions (4.1 I) and (4.12) we see that 0b0~ '=  -L~176  where "e r ro r s"  indicate a term 

of the form L~176 This completes the proof. 

The class of NIS operators is designed to describe the Szeg6 projection and the 

relative fundamental solution for 0~'. 

THEOREM 4.5. (1) I f  K is an NIS operator of order m, and if ~ denotes the 

operator of multiplication by ~ as above, then the commutator [K, 4 ]  is an NIS 

operator of order m+ 1. 

(2) The operators So and $1 are NIS operators of  order zero, and So-Sl is an NIS 

operator of order - 1. 

(3) There are operators K0: ~3~176 '1 and Kl: ~3~ ~176 such that Ko=K ~ and 

ObKl = (Kl)*b  ~ = I - $ 1 ;  

O~'K o = (Ko)*b b = I-So; 

KiS I=O; SoK t = O ;  

KoS o = 0; S~K o = O. 

(4.16) 

Moreover, if  we identify the form ul~bl E ~3 ~ J with the function ul E ~f,o, we can regard 

Ko and Kl as scalar operators, and they are then NIS operators of  order I. 
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(4) I f  we  de f ine  K=KoK1,  then  K is an N I S  opera tor  o f  order  2 and  

F-I~K = K ~  = I - S t .  (4.17) 

Proof .  The proof of (1) is in [NRSW], p. 134. The proof that So is an NIS operator 

of order zero is contained in [NRSW], w 5. The existence of K0 and K1 and the proof 

that their kernels satisfy the appropriate size estimates is contained in Christ [C]. To 

show that in fact they are NIS operators, i.e. that they have the appropriate size when 

applied to bump functions, one uses the same kind of homogeneity arguments used in 

[NRSW] to deal with the operator So. The fact that SI-S0 is an NIS operator smoothing 

of order 1 follows from part (1) of the theorem, and Corollary 4.3. Thus the proof of 

parts (2) and (3) of the theorem will be complete when we show that Kj =KS. 
Now 

SO 

K t = K I - S o K  1 = ( I - S o )  K I = K ~  b KI 

= K ~ ( I - S , )  = K ~ - K Z S ,  = K~ 
(4.18) 

Finally, to prove part (4), note that 

K, = K~'. (4.19) 

~ K  = Ob~KoK, 

= ~b( l -So )  K l 

= ~bK1 

= I - S  1, 

(4.20) 

while 

= Xo(1 -  So) o~ 

= Ko0 ~ (4.2 l) 

= I - S j .  

This completes the proof. 

In order to construct an approximate inverse for []+ we need one further result. 
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LEMMA 4.6. The operators SIF + and F+SI are infinitely smoothing operators (i.e. 

their distribution kernels on aQ x aft  are infinitely differentiable). 

Proof. This is based on ideas of Kohn contained in [K3], Theorem 1.18. However, 

since the statement of Lemma 4.6 does not appear in [K3], we sketch the main ideas in 

the proof. 

The operators SIF § and F+St are essentially adjoints of each other so it suffices to 

show that F+SI is infinitely smoothing. This is equivalent to showing that F+S1 is 

infinitely smoothing. But, by Corollary 4.3, 

F+S ' I  = F - S  1 = F-v~,7 So./~q_,, 
and the operator F-. /~ has the same properties as the operator F-. Thus our main 

objective is to prove the estimates 

IIr-s0(u)ll, c,  II.llo (4.22) 

for every s>0. Here II" Ils is the norm in the standard Sobolev space L~. Suppose for a 

moment that this is established. 

Then, since So F- - (F-So)*=SoF--So(F- )  * is an infinitely smoothing operator, it 

follows by duality that for every t>0 we would have 

IlS0r-(u)ll0 C,Ilull_,. (4.23) 

On the other hand, the operator F- is bounded on all the isotropic Sobolev spaces, 

while the operator So is bounded from the Sobolev space L~, to L~ by Theorem 4.5, (1) 

and Theorem C, (2) and the remarks following Theorem C. Hence we have 

IlS0r-(u)ll, C,tlullm . (4.24) 

By interpolation, this would imply that for any s>0, 

IIS0 r-(,)ll ,  Csllull0, (4.25) 

which is the analogue of equation (4.24). Again by duality, we would have for any t>0, 

IIr-S0(u)ll0 C,Ilull-,, (4.26) 

and a final interpolation argument between equations (4.23) and (4.25), and between 

equations (4.22) and (4.26) shows that the two operators are indeed infinitely smooth- 

ing. Thus it remains to establish equation (4.22). 
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This in turn would follow from the inequality 

IIr-(v)ll, ~ c,[ll~b(v)ll,-,,m+llvtl0], (4.27) 

since we could then apply (4.27) to v=So(u), and use the fact that 0o S0 =0. But equation 

(4.27) follows as in the proof of Theorem 1.18 in [K3]. By compactness of aQ it 

sufficies to prove only a localized version of (4.27). One observes that in a sufficiently 

small neighborhood of the point p, the symbol of the operator F- vanishes on the set 

{~3~>-V~+~) .  But as in [K3], we have that f o r f w i t h  compact support 

But 

II t~ 2 = IIg~ [ t~ L ~  + o(llfll z+ Ilfll I I t~ 
(4.28) 

or(+ 2T~ = 2~3, (4.29) 

and so is negative where the symbol of F- is supported. Thus as in [K3], we can 

estimate IIL~ in terms of Ilt~ and then the finite type hypothesis gives us 

equation (4.27). This completes the sketch of the proof. 

We are finally in a position to write down a parametrix for the operator [2+: 

THEOREM 4.7. The operator rq-KF++Q + is a right parametrix for [2 + in the sense 

that 

where 

r-I+(r-I-KF++Q +) = I+E, 

3 

E= E o -o EjKjEj  + E -| 
j=l 

where Kj are NIS operators smoothing of  order 1, E ~ and ~o are standard pseudodif- 

ferential operators of  order zero, and E -~ is an infinitely smoothing operator. Similar- 

ly, F+KrI-+Q + is a left parametrix for D + in the sense that 

(F+Krq - +Q+)O + = I+/~, 

where E is as above. 
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Proof. It follows from Proposition 4.1, Lemma 4.4, and equation (4.17) that 

[3 +(F]-K r + + Q+) = i -  S,F + +FIL~ F + +F2L~ F + +F3K F + + E -  =, 

where E -= stands for an infinitely smoothing operator, and each Fj, is a standard 

pseudodifferential operator of  order zero. But L~ and L~ are NIS operators smooth- 

ing of order 1, and since Theorem 4.5, part (1) and Lemma 4.6 shows that SIF+=E -=, 

this completes the proof of  the first identity. The second identity for the left parametrix 

is proved in exactly the same way. 

These parametrices give inverses for O + up to an error which are smoothing of 

order I. In the usual way, we can iterate the argument to obtain parametrices in which 

the errors are smoothing of  any desired finite order. Thus if E is an operator, define an 

operator 

Ek = -E+E2-E3 +... +(-  1)kE ~. 

Then 

(I+Ek)(I+E) = I+ ( -  1) k E k+ I. 

COROLLARY 4.8. Each o f  the following operators is a product o f  k + l  NIS 

operators which are smoothing o f  order 1 and standard pseudodifferential operators o f  

order O: 

[--]+(["I-K F + + Q+)(I+Ek)-I; 

(I+Ek)(F+KO - +Q+) E3+-I. 

w 5. A parametrix for the 0-Neumann problem 

The object of this section is to write down an explicit formula which gives a parametrix 

for the 0-Neumann problem. This perhaps requires a word of explanation. As we have 

seen in Section 2, the 0-Neumann problem on a bounded domain ~ is the boundary 

value problem: 

F l u = f  on Q; 

u l a o = O  o n 0 Q ;  (5.1) 

Ou__lc5 O = 0 on 0f2. 

If the domain f~ is smoothly bounded, pseudoconvex, and of finite type, there is a 
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u = N ( f )  

for given smooth data f, and the L 2 regularity of the Neumann operator N was proved 

by Kohn in [K2]. Our object in this section is to find an explicit approximation No to the 

operator N so that N - N a  is a smoothing operator of arbitrary but fixed high order. 

To do this, let us fix a Poisson operator P and a Green's operator G for the elliptic 

system [] on the domain ff~. Thus if R is the restriction operator to the boundary af2, 

the operators P, G, R satisfy 

P: C| 1)'-> C=(~)(o. 1) 

and 

where 

G: C=((2)(o, 1)""~ C~(~'~)(0, 1) 

R: C=(~)(o, 1)-'> C=(af2)(o, 1) 

E30P= TI 

R o P = I + T 2  

[]oG = I+ T3 

R o G = T 4  

(5.2) 

T~: C| ~)-~ C~(t))(o, ~); 

T2: C=(af/)(o, 1)-~ C=(af~)(o, ~): 
(5.3) 

T3: C=(~)(0.1)---~ C=((2)(0. i): 

T4: C=(~)(0, I)-"') C=(0Q)(0,1) 

are infinitely smoothing operators. For the existence of such operators, see for example 

[GS]. 

DEFINITION 5.1. For fE  C| l) set 

Nka(f) = G(f )+P[[(D-KF++Q +) (I+E~)R(L2-s) Gl(f)  ] e)l], (5.4) 

where G(f)=Gl(f)col+G2(f)(o2, and where Ek is the operator from Corollary 4.8, and 

is smoothing of  order k. 
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The main result of this section is now 

THEOREM 5.1. For any integer k, there is an integer [c, and there is an operator 

Tk: C~(~)(o,l)--->C~ which is isotropically smoothing of  order k so that for 

f E  C~(~)(o, I), 

N ( f )  = Nka(f)+ Tk(f). 

Remark. "A is isotropically smoothing of order k" means here that the operator A 

defines a bounded mapping from the standard Sobolev space L~(~2) to the standard 

Sobolev space L,U+k(f2) for r~>0 and l < p < ~ .  Note that if A is an NIS operator 

smoothing of order ink, then it is isotropically smoothing of order k. 

To establish the relationship between the operators N and Na, we need the 

following consequence of Kohn's L 2 estimates for the a-Neumann operator: 

LEMMA 5.2. Let ff2cC 2 be a bounded, pseudoconvex domain with C ~ boundary O~ 

of  finite type m. There exist operators 

Al: C| n---> C~(O)t0,1) 

A2: C| ---> C~(~)(o. I)  

A3: C| 1)--> C~(~)(o, n 

with the following properties: 

(1) There is a positive real number s so that the operators Aj have bounded 

extensions 

Ai: Hk(~)(O, l) -''> Hk-s(~)(o. J) 

A2: Hk(aff2)--'> Hk-s(~)(o. J) 

A3: Hdaf~)<o, t)--, Hk-,((2)~o, i) 

for all k. 

(2) If v, F i E C| l), F2 E C| and F 3 E C~:(af2)(o, l) satisfy 

Ov= Fl on 

v l ~ Q =  F~ on aQ 

~ v l ~ e  = F2 on a~  

(5.5) 
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o = AI(FI)+A2(F2)+As(F3). 

We note that since it is not important for our purposes,  we are not concerned here 

with the optimal value of  the number s. 

Proof. Our first objective is to reduce the inhomogeneous system (5.5) to the 

homogeneous $-Neumann problem (5.1). As in Section 2, we choose a neighborhood U 

of af~ and a smooth orthonormal basis for (0, 1) forms on U given by o)~, tO2 with 

0)2=X/-2-$ ~. Now if on U we have 

then as in Section 3, we see that 

and 

Suppose on a f t  we have 

V = gl (~l +g2tt)2 

v_l  ~Plau = ~ 2 -  g2 

aV_] aOlan = ~ 2 2  (Ll(g2)-L2(gO+sgl) ~l.  

g2 = X/-2-F2 

g~ = 0 (5.6) 

agl ~b I = 2LI(F2)-2F 3. aO 

Since L1 is a tangential operator,  it follows from the above and (2.6) that if equation 

(5.6) is satisfied, then 

V._.J ~Qlafl = F2; 

cSV.__l cSOla. = F 3. 

Now it is easy to construct  operators 

Bj: C=(afl)• C=(~), j =  1,2 
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V = BI(F2, F3)~b , +B2(F 2, F3)(32 (5.7) 

then V satisfies equation (5.6). Moreover, the operators Bj extend to bounded operators 

on Sobolev spaces with only finite loss. 

Now suppose o satisfies (5.5) and V is defined by (5.7). If we put 

u = o - V  

then u E C| and u satisfies the ~-Neumann problem (5. l) with 

f =  F I - D ( V ) .  

The solution to (5.1) is unique, and hence if N is the Neumann operator, 

o - V  = u = N ( F l - f q ( V ) ) .  

By the regularity results of Kohn, N: C~(O)t0. i)--->C~((2)(0. D and N extends to a bounded 

mapping on Sobolev spaces with gain 1/m. Hence we have 

o = B l ( F  2, F s) o31 +B2(F 2, Fs) ~2+N(F1-  I-I(BI(F 2, F 3) 031 +B2(F 2, F s) r 

= A1(F O+Az(F2)+Aa(Fs), 

and it is clear that the operators As- have the required properties. This completes the 

proof of the lemma. 

We now turn to the proof of Theorem 5.1. For this we need to examine equations 

(5.2) in greater detail. Iff=J~o)l +f2o32 E C~(~)(0. D, we write 

G ( f )  = [GH(fl)+GI2(f2) ] ~l  +[G21(fl)+G22(f2)] (h 2 

= G l ( f ) ~ l + G 2 ( f ) ~ b 2 ,  

while if u=ul~bl+u2tb2 E C| 1) we write 

P(u)  = [P,I (u , )+ P,2(u2) ] r P22(u2) ] r 2. 

It follows from equation (5.2) that the operators RoP12 and RoP2~ are infinitely 

smoothing. 

F o r f E  C| define Nak(f) as in equation (5.4). Using equations (5.2) we first 

see that 
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[3(Nka(f)) = f + T , ( f )  (5.8) 

where Ts: C~(~)~0, ~)-->C*(~)~0,1) is an infinitely smoothing operator. 

Next, 

R ( N ~ ( f ) I  80) = R o G ( f )  _1 ~o+ R oP21([]-Kr + +Q+)(I+ EK) R(L2-s )  Gl ( f )  

= 1"6(f) ,  

by the above remarks where T6 is an infinitely smoothing operator. 

Finally, we compute 8N~a(f)__J ap restricted to 8f2. From equation (3.20) we have 

R oSG( f ) ._ lSp  = 1 R o [L , (G2( f ) ) -Z2(G, ( f ) )+sGl( f )  ] tb~. x/--Y 

Since L~ is a tangential operator and R oG2 is an infinitely smoothing operator, it 

follows that R oLl(G2(f))  is infinitely smoothing. Thus 

R o ~G( f )  _] 8p = - V72 (L2-s)(G~(f))~ + TT(f) 

where T7 is an infinitely smoothing operator. Now let us write 

u I = (I-1-KF++Q+)(I+Ek)R(L2-s)(Gj(f)). 

Then according to equations (3.7) and (3.14) we have 

R o ~P(u I tbl) 1 8Q = ~ 2  R o [(L I pi2(ul)-L2 Pll(Ul)+sul) t31] 

= [:3+(uO+Ts(f) 

where T8 is an infinitely smoothing operator. But according to Corollary 4.8, we have 

I-]+(uO = R(L2-s ) (Gl ( f ) )+  T( f )  

where T is an operator which is a product of k+ 1 NIS operators which are smoothing of 

order l, and standard pseudodifferential operators of order 0. If we take /~>rn.l 

sufficiently large, then 7 ~ is "isotropically smoothing of order l" in the sense we are 

using here. It now follows that 

R o 8N~a(f) t $• = ]P(f)+ Tg(f) 

where T is as above, and T9 is another infinitely smoothing operator. 
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We now set v = N ( f ) - N ~ ( f ) ,  where N is the true Neumann operator. Then the 

computations above show that v satisfies the hypotheses of Lemma 5.2, (2), where the 

F~ are given in terms of  the data f by operators of  fixed but high order of smoothing. If 

we apply Lemma 5.2, we see that 

N ( f )  = N~( f )+ T( f )  

where T is smoothing of order k. This completes the proof of Theorem 5. I. 

w 6. Commutation properties 

From the results of Section 5, we see that a parametrix for the O-Neumann problem 

involves two different kinds of operators. The operators G, P, [2 -+, F • Q-+ and R are all 

related to standard differential or pseudodifferential operators. However, the projection 

operators S i and the solving operator K are NIS operators of various smoothing 

degrees. When we consider estimates for the a-Neumann problem, we shall have to 

control the commutators of S s and K, not only with the "good"  vector fields L and L, 

but also with vector fields which point in "bad"  directions like T. In the case that ag) is 

strictly pseudoconvex, one can handle the commutators because the operators Sj and K 

are pseudodifferential operators of the class S~/2.1/2. However in the case treated here, 

these operators are not standard pseudodifferential operators, and we must proceed 

differently. Thus the main object of  this section is to develop the good commutation 

properties of a certain subalgebra of the algebra of NIS operators which contains the 

operators we are interested in. 

The basic problem we face is showing that if A is an NIS operator and T is a 

differential operator, then the operator TA can be written as a sum of products of NIS 

operators with appropriate differential operators on the right. We begin by recalling 

what happens if the differential operator T is "good".  

LEMMA 6.1. Let A be a NIS  operator o f  order k, and let X denote either the vector 

field L1 or the vector field Ll. Then there are NIS  operators Aj, j= 1,2, 3 of  smoothing 

order k so that 

XA = A iLl +A2LI +A3. 

This follows from Lemma 4.1 and the basic facts about compositions of NIS 

operators in [NRSW]. 

We next turn to the study of the commutation properties of a differential operator 
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Twith the projections So and S I. Recall that So is the orthogonal projection of L2(0ff2) to 

the kernel of L1, and $1 is the orthogonal projection on the kernel of L~'. We need a 

preliminary lemma: 

LEMMA 6.2. There exist vector fieids M1,ME, and M3 on 0ff2 so that: 

(1) The vector fields Ml, M2, and M3 span the complexified tangent space at each 
point p E 0~. 

(2) I f  SoF=F, then SoMjF=MjF for j=I ,  2, 3. 

Proof. We let M3=L1, and we try to find MI and M2 of the form 

0 0 
M1 = ~ + A1 ~,-1 + A2 0s 

where A j, 

tangential operators, one needs 

A10Q + A10P = 
0s  1 0s  2 OZ 1 

(6.1) 

Bj are smooth functions to be determined. In order that MI and M2 be 

0g 

B1 0 g  + B2 0Q = 0Q. 
0s 0s 0z2 

(6.2) 

Since Vo*O on Of~, one can choose smooth functions Aj, Bj so that (6.2) is satisfied. It 

is then clear that MI,/142, and L~ are linearly independent over C, so that condition (1) is 

satisfied. 

On the other hand, since L1 involves only the derivatives a/as and a/0s it follows 

that [L1, Mj] must be linear combinations of 0/0s and 0/0s Since these vector fields 

are also tangential, they must be smooth multiples of Li, which proves that f o r j = l ,  2 

there is a smooth function 9j so that 

[L,, mj] = w 1. 

Now suppose that SoF=F. This is equivalent to saying that LIF=O. The same is then 

clearly true of L1F, and we also have 

L1Mj(F)= [L, ,Mj](F)= q~jLt(F)=0 for j =  1,2. 

This proves condition (2), and finishes the proof of the lemma. 
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COROLLARY 6.3. There exist vector fields V1, V~, and V3 and smooth functions 

~Pl, V2z, and ~P3 on OQ so that: 

(1) The vector fields V1, V2, and 113 span the complexified tangent space at each 

point p E afrO. 

(2) l f  SoF=O, then So VjF=So VjF for j= 1,2, 3. 

This follows from Lemma 6.2 if we let V*=Mi+~j. We now study the commutator 

of So with a differential operator. 

LEMMA 6.4. Let T be any first order differential operator and k any positive 

integer. Then there exist NIS operators A1 . . . . .  A, o f  smoothing order ~>l, an NIS 

operator Ao of  smoothing order I>0, differential operators Tj . . . . .  T, o f  order l, and an 

operator E which is smoothing o f  order k so that 

n 

[T, S0] = Z AjTj+Ao+E" (6.3) 
j=l 

Proof. Using Lemma 6.2, we can write 

3 

T= Z bjM j. 
j= l  

Thus by Lemma 6.2, (2) we have, assuming So(F)=F, 

T(F) = y ,  b~M~.(F) 
j=1 

3 

= ~ ,  b~So(M~(F)) 
j= l  

3 

j=l j=l 

3 

= So T(F)+ Z [So, ~bjl Mj(F) 
j= l  

(6.4) 

where ~bj denotes the operator of multiplication by bj. Now letting F=So(f), we see 

that we have the identity of operators: 

3 3 

[r, So]So-- ~, [So, ~b)SoMj-~ [So, ~o[gj, So]. 
j=l  j=l 

(6.5) 
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Next let (I-So)F=F, i.e. S0(F)=0. Then 

[T, So] F = -SoTF. 

This time, using Corollary 6.3 we write 

3 

j= l  

Then 

[T, S o ] F = - S  o bjVj F 

3 3 
= - E  b jSoVjF-E  [So, d~bj] VjF 

j= l  j=l  

3 3 

= - E  bjSo~PjF-E [So,./ktbj] VjF, 
j = l  j= l  

(6.6) 

Now letting F=(I-So)(f),  we see that we have the identity of operators: 

3 3 

[T, Sol(I-So)= - E bjSoVgj(I- So) - E [So' Mbj] Vj 
j = l  j= l  

3 3 

+ ~  [So, MOSoVj + ~ [So, ~%lfvj, Sol. 
j = l  j= l  

(6.7) 

Now adding equations (6.5) and (6.7) we obtain 

3 3 3 

[~  So] = E [So, M~ S o ~ - E  ~ S o ~ ( I - S o ) - E  [So, M~] 
j = l  j= l  j= l  

3 3 3 

tSo, OSo -Z tSo, Ot ,So]+Z tSo, Ot ,So . 
j= l  j = l  j= l  

(6.8) 

We can now iterate this identity by in effect replacing Vj by T, and inserting this in 

(6.8). If we do this iteration a finite number of times we ultimately obtain the desired 

conclusion of the lemma, and this completes the proof. 

COROLLARY 6.5. I f  $1 is the orthogonal projection onto the kernel of  LT, if T is any 
first order differential operator and k is a positive integer, there exist NIS operators 
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Al ..... An of  smoothing order >I 1, an NIS  operator Ao o f  smoothing order 30, differen- 

tial operators TI . . . . .  Tn o f  order 1, and an operator E which is smoothing o f  order k so 

that 

n 

[T, S,] = E AjTj+Ao+E" (6.9) 
j = l  

A similar identity holds for the commutator o f  a differential operator T with either o f  

the operators So or Sl. 

Proof. The identity for the operator S0 follows by conjugating equation (6.3). 

Identity (6.9) then follows immediately since the operator S~ is just the operator S0 

conjugated by a multiplication operator, according to Corollary 4.3. 

Now let Kj be the relative fundamental solution operator for the operator Ll, so 

that we have: 

LIK~ = I - S  1 

KIL 1 = l - S  o 

KIS 1 = 0 

(6.10) 

SoK ~ = O. 

LEMMA 6.6. Let T be any first order differential operator and k a positive integer. 

There exist NIS  operators A1 . . . . .  An o f  smoothing order 32,  a NIS  operator Ao o f  

smoothing order 31,  differential operators Tl . . . . .  Tn o f  order l, and an operator E 

which is smoothing o f  order k so that 

n 

[T, K,] = E AiTj +Ao+E" (6.11) 
j = l  

A similar identity holds with KT or 1ill in place of  Kj. 

Proof. Writing/~=[Ll, T], then 

K~L l TK l - K I TL iKi = K l TK I . 

But, KILI=I -So ,L IKj=I -S1 ,  by Theorem 4.5, so 
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( I -So)TKI-KIT( I -S  ~) = K~TKI, 

[T, KI] = SoTK ~-K~TS~ + K~TK I. 

SoTK 1 = TSoK t + [S 0, T]Kt, 

but SoKl=0 so SoTKl=[So, T]K 1. Similarly, KITS~=K1[T, S1]. Therefore, 

[T, K~] = [S o, T]Kt-K~[T, S,]+KITK ,. 

On the other hand, since SoK~=O we have 

So[T, K,] = IS o, T]K,, 

and hence according to Lemma 6.4, we have 

2 

So[T, K,] = E AjTjK, + AoK , + EK, 
j=l  

2 2 

= E A j K ,  T j+AoK,+EK,+E Aj[Tj, K1]. 
j=l j=l  

201 

(6.12) 

(6.13) 

(6.14) 

We now consider the subalgebra ~ of the algebra of NIS operators generated by 

the operators So, $1, K~, and their adjoints and complex conjugates, and by all multipli- 

cation operators egr It is important to note that all the NIS operators Aj of the previous 

14-928286 Acta Mathematica 169. Imprim~ 1r 10 novembre 1992 

We can now iterate identity (6.15) by replacing IT, K] by expressions like (6.15). After a 

finite number of such iterations, we obtain the first conclusion of Lemma 6.5. The other 

identities follow in a similar manner. This completes the proof. 

(6.15) 
n t/ 

j=1 j=1 

Now combining equations (6.12), (6.13), (6.14) and Lemma 6.4 we see that there are 

NIS operators fi, j of smoothing order I>2,/}j of smoothing order t> 1 and fi,0 of smoothing 

order I> 1, and differential operators ~ of order 1 and an operator E smoothing of order 

k so that 
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lemmas actually belong to this subalgebra ~/. The main result of this section deals with 

the commutator of an arbitrary differential operator of order m with elements of this 

subalgebra. In order to state this result, we must assign a formal "degree" to every 

element of ~t. This is done in the following way: 

(1) The operators So, S~ and their conjugates and all multiplication operators ~ are 

assigned degree 0. 

(2) The operator K1 and its adjoint and conjugate are assigned degree 1. 

(3) If U, VE ~ have degrees r and s, then the product UV is assigned degree r+s. 

(4) If UE ~t have degrees r and V=~t~0, then the commutator [U, V] is assigned 

degree r+ 1. 

It should be pointed out that a given element of • might have several different 

representations in terms of products and commutators of the generators, and hence 

several different degrees might be assigned. If this happens, we agree to assign the 

largest such possible degree to the element. 

Remark. It follows from the properties of NIS operators that if an operator UE ~4 

has degree r in the above sense, then U is an NIS operator of smoothing order r. 

We can now state our main result. 

THEOREM 6.7. Let UE sg have degree n, and let T be a differential operator o f  

order m. Given any positive integer k there are elements AjE ~l o f  degree >-n+ l, Bl E ~I 

o f  degree >~n, differential operators T s. o f  order <<-m and differential operators Qt o f  

order <~m-1 so that 

[Z~ U]--- ~ AjTj -[-~ BIQ I -~-E (6.16) 
j I 

where E is smoothing o f  order k. 

Proof. Let U--So, SI,KI o r  K~', then by the results (6.3), (6.9) and (6.11) the 

commutator [T, U] has the expression as follows: 

// 

[T, U] = ~ AjTj +Ao+E. 
j=l 

Here Aj and E are defined by [M~, U] or a product of [Me, U]. The operator A0 has the 

form M~U. Now we prove the theorem by induction, first on the degree of U, and then 
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on the order of T. We use two identities involving commutators: 

[T, UV] = [T, U] V+ U[T, V], and 

[T, [U, V]] = [U, [T, V]]-[V, [T, U]]. 

Note that we always have V=~tr or V=[~tr U] in these two identities which allows us 

to apply the property (4) to gain one more formal "degree".  The theorem then follows 

by direct computation. 

Recall that we defined the operator K=KoK~=K~{KI, and K is a relative fundamen- 

tal solution for [Z~. Now we have the following corollary: 

COROLLARY 6.8. Let q(L1,Lo be a quadratic polynomial in L~ and L~, then the 
operator q(Ll, LOK extends to a bounded operator from L~(Off2) to itself for 1 <p<oo 

and k=0, 1,2 . . . . .  

Proof. Since K=K~{K1, then KE ~ is of degree 2 by the property (3). It follows that 

q(L1,L1)K is an NIS operator of order zero. Therefore it satisfies all the properties 

required by the non-isotropic version of the David-Journ6 theorem (see [DJS]). Thus 

q(L1, LDK maps L2(aQ) to LZ(Of~). The estimates on the kernels of these operators then 

also imply, by the non-isotropic version of the CalderOn-Zygmund theory, that these 

operators are bounded from LP(afl) to LP(a~), l<p<oo. Suppose that T is a differential 

operator of order k. We need to use the commutation properties to study Tq(L1, LOK. 
First we know that: 

T[q(L~, LOK ] = [q(L~, L1) T]Kq-(L~ T~)K+(L, T2)K+ T3K. (6.17) 

Here T s for j = l ,  2, 3 are differential operators of order k. Using the result (6.16) in 

(6.17), we have 

T[q(L,, LOK ] = [q(L~, L,)K] T+(L,K)]', +(L,K)]'2+ KT3 + #., 

where ~ for j =  1,2, 3 are differential operators of order k and/~ is a differential operator 

of order less than k. We can pass k times differentiation to the L~(af2) function and get a 

LP(af/) function. Now the result follows immediately by our previous discussions. 

We need one further commutation result, which will later allow us to rewrite the 

parametrix for the Neumann operator in a convenient way. 
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[ r  § K] = X CiDiFi (6.18) 
i 

where the sum inoolves only finitely many terms, the Di are pseudodifferential opera- 

tors of order zero, and the Ci and Fi are NIS operators with Ci smoothing of degree 1, 

and Fi smoothing of degree 2. 

Proof. First, 

-K[F +, [q~]K = [F +, KI+KF+S,-S,F+K. 

According to Lemma 4.6, S1F + and F+S, are infinitely smoothing. Moreover 

[ r  +, D~] = L,D, +L,D2+D 3 

where Di are order zero pseudodifferential operators. Then the lemma is proved with 

Fj.=-K, j= 1,2, 3, CI=KL1, C2=KLj, and C3=K. 

In the formula (5.4), we used [ ] - K F + + Q  + as our "right parametrix" for D + which 

leads us to the L" estimates for the Neumann operator N. (See w 7 below.) On the other 

hand, we also need to put the "left parametrix" F+K[2-+0  + and K F + [ ] - + Q  + on the 

right to obtain estimates of Henkin-Skoda type. (See w 8 below.) 

PROPOSITION 6.10. The differences 

F + K R - - K F + D - ,  [3-KF+-F+KE]- ,  and [3 -KF+-KF+[ ]  - 

are bounded operators from Aa+l(0f2) to Fa+a_,(ag2), for a > 0  and e>0. 

Remark. The operators D - K F  § F+KD -, and KF+D - themselves can only map 

A~+1(0Q) to I-'a+2_E(0Q ). 

The proof will require the following lemma: 

LEMMA 6.11. Suppose A is a standard pseudodifferential operator of order zero 

defined on Of 2. Then 

A: 

for a>0  and e>0. 

Proof. We first fix O<e<l/m where m is the type of the domain. Then it is known 
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that FacAa/m for all a>0 .  Since A is a standard pseudodifferential operator  of  order  

zero, then 

A: Aa/m ~ A~/,, c F~_,, (6.19) 

if O<a<me/(m-1). Hence  this lemma is true for O<a<me/(m-1). Next  we consider the 

space F~+a with O<a<me/(m-1). We may use the identities 

and 

L~ = AL~ B(f), 

L~ = AL~ 

Here B and/~ are standard pseudodifferential  operators at order  zero. For  the first term 

of these two identities, we have f E  F~+ a then L~ Fa and L~ F~. We may apply 

(6.19) to get the right estimates. For  the second term, since F~+~cF a, the estimate is 

obvious by applying (6.19) again. Now we may apply the interpolation theorem in 

[NRSW] w 6, to show the lemma is true for 0 < a <  1 +me/(m- 1). We also can iterate this 

method to prove the lemma for general a. For  a general e, we just  need to use the 

obvious inclusion relation between F~ spaces to prove the lemma. 

Proof of Proposition 6.10. The estimate for the difference of 

F+Kr9 - and K F +D  - 

follows by Lemma  6.9, Lemma  6.11 and the result (3) of  Theorem C in Section 4. Now 

we consider the difference of  Z]-KF + and F+KD -.  As we have seen in Theorem 4.7, 

and 

It follows that 

[3+(U]-KF+ + Q +) = I+E, 

( F + K D - + Q  +) [3 + = I+/~. 

E3-KF + = F+K[3-+~[]-KF++F+Kgq-E+QI+E -~, 

where Q~=Q++Q+ is a standard pseudodifferential operator  of order  - 1 .  Now let us 

first look at F+K~-E. 
We know by the proof  of  Theorem 4.7, and by Lem m a  4.6 that 

~ + ( [ 3 - K F  + = Q+) = I+FIL~KF++FzLIKF++F3KF++E ~. 
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Then the term F+KE equals 

F+KD-(F,L,K F + +F2LIK F + +F3K F +) +E = . 

Consider, 

F+KE3-F,LtK F + = F+KF,L, []-K F + +F+K[[] -, FIL,] K F +. 

We use the identity [~-KF+=F+KIq-+E[-]-KF++F§ =, already pointed 

out above. This allows us to write 

F+KD-F~LIK F + = F+KFIL IF+K�9  

plus other terms which are even more smoothing. 

Now if fEAr+l ,  then [~-(f)EAacF~.  Since L,K is NIS of smoothing order 1, it 

maps this to F~+ 1. By Lemma 6.1 I, this in turn is mapped by Fj to Fa+l_,; again by K to 

Fa+3_ ,, and by F + to F~+3_ ,. The other terms are dealt with similarly, completing the 

proof of the proposition. 

w 7. Estimates for the 0-Neumann operator 

We shall now state and prove some of the estimates for the ~-Neumann problem that 

are consequences of the previous sections. We shall use the following notation. The 

space L~(f2) will denote the space of functions on g) (or forms on f~, depending on the 

context) that are in LP(g2), together with all their derivatives up to order k. That is, here 

we are considering the isotropic L~ spaces. Similarly, Aa(f2) will denote the isotropic 

Lipschitz (HOlder) spaces of exponent a. Also, Fa(f2) will denote the non-isotropic 

Lipschitz spaces, related to those appearing in [NRSW], and defined to consist of those 

functions (or forms) which belong to F~(af2), (as defined in [NRSW], w 6), and uniform- 

ly so on each of the manifolds Mt={O=t}. 

THEOREM 7.1. Suppose N is the Neumann operator, and q(Lj,Lo is a quadratic 

polynomial in LI and L1. Then the following operators are bounded on the indicated 

spaces: 

q(L1,L1)N: P p . . . .  ; Lk-..->Lk, l < p < o o ,  k = 0 , 1  2, (7.1) 

~ N I ~ :  IP--~ tP l < p <  oo, k = 0 ,  1,2 .. . .  ; (7.2) a--, k a-~k+ 1, 

N:Aa--~Aa+2/mgl['a+2, a>0. (7.3) 
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Proof. (i) The estimate (7.1). We recall first some basic facts from the theory of 

Besov spaces, (see e.g. [GS], Chapter 12). We let L~(O~) denote the isotropic space of 

function on the boundary 8ff2 which together with their derivatives of order not 

exceeding k belong to LP(aff2). The space BP(Of2) arises as a real interpolation space 

between LP(Of2) and L~(aQ); in fact 

B p = [L p L p] L ' l . l l-l /p,p" 

(This is equivalent with the analogue of the approximation property which character- 

izes BC) Another basic property can be stated as follows. Suppose fE  LP(f~). Then 

R( f )  E BP(ag)), where R denotes the operator of restriction to the boundary. This holds 

if l < p < ~ .  Conversely, suppose P is any Poisson operator of order 0. Then 

P: BP(Sf2)---~ L~(ff2), 

again for l < p < ~ .  

We shall also need a slight generalization of these facts. We define a space B~ by 

P P B~ = [Lk(C~), Lk+,(a~)],_,/v, p 

for any integer k=0,1 ,2  . . . . .  Then one has that fEL~+I(Q)implies that R(f)EBPk; 

conversely i f fE  B~, then P ( f )  E LPk(f2) for any Poisson operator of order 1. 

We next use the approximate representation of the Neumann operator given by 

Theorem 5.1, and the commutation property of F § and K given in Lemma 6.6. The 

result is that modulo higher order terms of the same character (or terms corresponding 

to the elliptic problem) we have 

Na(f)  = pTq-KF+RL2GI(f). (7.4) 

We shall need the following lemma: 

LEMMA 7.2. The operator q(L1,LOK maps B~ to B~ boundedly for l < p < ~ ,  and 

k=0, 1,2 . . . . .  

Proof. From the Corollary 6.8, we know that q(Ll, LOK maps L~(ag2) to L~(OQ). 

The desired result then is a consequence of the interpolation definition of B~. 

Returning to (7.4), and using the fact that P[2- is a Poisson operator of order 1, we 

see that 
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- - - 0 - 0 , 0 , ,  - 0 ,,, q(L 1, LOP[] = P~ q(L l, L j)+P L 1 +P L I +P (7.5) 

where L~ ~ denote the restrictions of Li and Li to the boundary, and P ' , P " , P "  are 

Poisson operators of order 1. In fact (7.5) can be verified by an easy application of the 

product formula for pseudodifferential operators. Thus in analyzing q(Ll, LONa(/) we 

are led to consider 

Pff]-q(L ~ L ~ ( f )  (7.6) 

together with other terms which are even better. 

If friLl(g2) then LzGl(f)6L~+l(f2) by standard estimates (see, e.g. [GS]). Thus 

RLzGI(f)fiB ~, and by the lemma, the same holds after applying q(L~176 Finally, 

since P[~- is a Poisson operator of order 1, we get that (7.6) belongs to L~(f2). This 

completes the proof of estimate (7.1). 

(ii) The estimate (7.3). This comes in two parts. The first is that N maps Aa(ff~) to 

Aa+z/m(Q). To prove this it suffices to prove a similar result for the principal term, i.e. 

for (7.4). The main point here is the following lemma: 

LEMMA 7.3. The operator K maps Aa(OQ) to A~+2/m(0g2). 

In proving this lemma we may assume that the global type m is strictly larger than 

2, for otherwise the result is already contained in [GS], w 14. We prove that K maps 

L=(0Q) to A2/m(ag2 ) (note that 2/m<l).  To do this it clearly suffices to show that 

fa fK(x,,y)-K(x 2,y)fdo(y) a[Ix , ~X2[~ 2/m <~ (7.7) 

where K(x, y) is the kernel of the operator K and [[. [I denotes the Euclidean distance. 

Now since the non-isotropic distance 0 satisfies O(xj,x2)<~A[[xj-x2[f m, we ~ can 

reduce the estimate of the left side of (7.7) to three integrals, 

fo(.,.y)~C,ll~ _~211,/~ IK(xl. Y)! da(y), 

fo ]K(xl' y)[ da(y). 
(x2,b,)<~C2}{x 1 -x2[I v ~  

o ( x , . . > ~ c , l ~ ,  IK(xl' Y)-K(x2' Y)I da(y), 

where C is an appropriately large constant. 
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Now tK(xl,y)t is dominated by A(o(xl, Y))2V(xI, y)-l, and thus by equation (4.5) in 

[NRSW] we have that the first two integrals are dominated by Allx~-xz[{ wm. 
For the third integral we use the fact that 

IK(xl, y)-K(x z, Y)I ~< Allx~-xzll sup [VxK(x, Y)I 
X 

where the supremum is taken over the line segment joining x~ and x:. However since 

0~  is of type m, any derivative can be expressed in terms of products of at most m 

factors of L~ or Ll. Thus the integrand in the third integral is bounded by 

allx,-xzll [ , (0(xl'Y))z-m do(y) 
dO(xry)~Cl[ixl_x2[ll~ V(x, y) 

which since m>2 gives the estimate Allx,-xzll'llx,-xzll~z-m)lm:All x, -xzll ~ ,  by equation 

(4.5) in [NRSW], concluding the proof of (7.7). Thus we see that K maps L=(a~2) to 

A2/m(0~). 

Notice that at this stage we have only used the fact that K was an NIS operator of 

smoothing order 2. If we now invoke the more precise properties of K, and in particular 

the commutation properties in Section 6, we also see that K maps L~(Sff2) (the space of 

bounded functions whose first derivatives are bounded) to Al+~/m(SQ). It then follows 

by the usual interpolation properties of A~ that K maps A~(8~) to A~+2n~(89) for 

0 < a < l  (see e.g. [GS], w 13). Finally using the commutation properties of K again, we 

see that the same result holds for any non-integral a, and a last interpolation establishes 

the desired result for all a>0.  

With the lemma proved, we return to (7.4). If f rA~(Q) ,  then L2G(f)fi Aa+~(ff2), 

and hence RLzG(f) fi A~+l(aQ), The same is true after applying the zero order standard 

pseudodifferential operator F § (see [GS], Lemma (13.5)), and the result is mapped to 

A~+~§ by K, if we use the lemma proved above. Finally the Poisson operator of 

order 1, P[ ] -  maps this to A~§ (see [GS], w 13). The required Aa estimates are 

therefore proved. 

The second part of the estimate (7.3) is that N(f)fi  l"a+2(Q) whenever f f i  Aa(~). 

The main point here is contained in the following lemma: 

LElVIMA 7.4. Supposte that f6  Fa(0~). Then Pl(f) 6 Fa(Q). 

Proof. Consider first the case O<a<l .  We shall use the ideas in proposition (6.3) of 

[NRSW]. For each fixed size 2 -~, there is given a partition of unity 1 = Ej dPk, j where the 
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~k,i are "bump functions" 

bounded overlap, with 

Write 

s=  s  
k=O 

on balls centered at points ~ of radius ~2 -k, having 

IL, %sl + tL, ,t'~.jl ~ C2 k- 

with 

So= Z ' 1 ' o / ( 4 )  

*~ = E * J ( ~ ) )  - E ~'~-,./(x~-'), k = 1,2 ..... 
J J 

Then since fE  Fa it is easily seen that 

IILII ~< c 2-~~ 

I l t l fk l l t~ + llLlfkllt~ <~ C2k2 -t=. 
(7.8) 

One can also make the crude isotropic estimate 

IIVLIIc ~< c2mk2-k~" (7.9) 

Now write F = P l ( f )  and Fk=Pl(j~). 

Since the Poisson kernel P1 maps L=(ag2) to L=(Q) (see [GS], Lemma (15.34)), it 

follows that 

IlekllL~t.~ ~ C2-~~ (7. IO) 

Moreover, 

L I P  I = p i L ~  ' 

LiP~ -o ,, = P I L j + P  , 

(7.11) 

where P' and P" are zero order Poisson operators, since LI and L1 are tangential. Thus 

IILiFkllt= <~ C2k2-ka+l lp ' ( fO[[z  ~. 

However, a combination of (7.8) and (7.9) shows that 

IILIIA, ~ C', (whenever t m  <. a); 
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this together with the fact that zero order Poisson operators are bounded on Aa, a>0,  

gives 

IIL,FkltL.tu) + I f  ,FkI[L =~u) <~ C2k2 -k~'. (7.12) 

Using the argument in proposition (6.3) of [NRSW] one sees that (7.10) together with 

(7.12) implies F =  Ek Fk E F,(Q). 

The commutation property (7.11) allows us to pass from 0 < a < l  to 1<a<2.  The 

result for a=  1 then follows by the interpolation property of the F, spaces (Proposition 

(6.2) in [NRSW]). A similar argument proves the lemma for all a, 0<a<oe.  

We can now complete the proof of property (7.3) of the theorem. We require that 

Na be given in a different form from that which appeared in (7.4). By Proposition 6.10, 

we use the form whose main term is 

N~(f) = P,KF+I-q-RLzG1(f). (7.13) 

We start with f E  A~(g2). Then by the usual elliptic estimate, 

F+rq-RLEGI(f) E A,(~fl). 

However as is easily seen, Aa(afI)cF~(af~), for all a, while K, being an NIS operator of 

smoothing order 2 maps F~(afl) to F~+2(af2) (Proposition (6.3) in [NRSW]). Thus an 

application of Lemma 7.3 concludes the proof for our estimates for N(f)  when fEAa.  

(iii) The estimate (7.2). Stripped of all the notation, this is really an elliptic 

estimate. In effect, 0 N ~  09 is essentially 

(-L2+s)PI(t~-KF+ +Q+)RL2G1. 

However, by the symbolic calculus and the results of w 1 and w 2, we have that 

(-L2+s)P l = pl[~++p ', 

where P'  is a Poisson operator of order - 1. We insert this in the above, and we get an 

expression whose main term is P1(RL2GO if we use Theorem 4.7 in w 4. This has the 

smoothing properties of order - 1 (elliptic) operators, and gives the desired conclusion. 

Thus the proof of Theorem 7.1 is complete. 

COROLLARY 7.5. Suppose f is a (0, 1)form with af=O, and let u be the solution of 
au=f gioen by u=a*N(f). Then 
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(a) Ll(u) and Ll(u) E LPk iffE L~, 1 < p <  ~,  k=0, 1,2 .. . .  ; 

(b) uEA~+I/,,NFa+ I if fEA~for  a>0. 

Proof. Part (a) is essentially a corollary of (7. I) of the theorem. The proof of (b) is 

much the same as the proof of (7.3) of the theorem. In fact, the role of Lemma 7.2 is 

replaced by the assertion that the operator L~K maps Aa(af~) to A~+~/,,(aQ), the proof 

being very similar to that of Lemma 7.2. 

COROLLARY 7.6. The Bergman projection operator is a bounded mapping from 
LPk(~) to itself, l<p<oo, k=0, 1,2 . . . . .  

Proof. One uses the identity (see Kohn [K2]) that 

B = I-O*Na, 

and then the assertion is proved in the same way as estimate (7.1) of the theorem. 

w 8. Estimates of Henkin-Skoda type 

We shall now extend to pseudoconvex domains of finite type in C 2 estimates for 

solutions of ~u=fproved by Henkin and Skoda in the case of strongly pseudoconvex 

domains. These estimates are crucial ingredients in proving the sufficiency of the 

Blaschke-type condition for zeros of holomorphic functions of the Nevanlinna class in 

g2, which we take up in the next section. 

Recall the definition of A(x, 6) made in w 4: 

A(x, 6) = ~ Aj (x) 6 j. 
j=2 

Let h--.a(x, h) be the function inverse to 6---~A(x, 6). Thus clearly 

/~(x 'h)~min(A~(x))  ' / : z ~ j ~ , .  

If •(x) denotes the distance of x E ~ from the boundary, then we let/~(x) be defined by 

~(x) = ~(~r(x), Q(x)). 

Thus p(x) is essentially the radius of the largest "normal" disc in Q centered at x, while 

/~(x) is essentially the radius of the largest "tangential" disc in ~ centered at x. The 

basic L ~ estimate is as follows: 
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THEOREM 8.1. Suppose f i s  a smooth (0, 1)form in if2. Then we have the a priori 
estimate: 

[Ia*N(f)IIv(ou)<.C[IIfIIL,(.)+ ( ~ ) f A O Q  L'(~)]" (8.1) 

The proof of Theorem 8.1 will be based on the following lemma: 

LEMMA 8.2. Suppose K1 is an NIS operator of smoothing order 1 and let 

fEL| I f  F=K1(f), then 

IF(xO-F(x2)[ <~ Alz(xl, IIx,-x2ll), (8.2) 

where IlXl-x=ll is the Euclidean distance between Xl and x2. 

Several remarks are in order. One can actually show that F belongs to the 

nonisotropic Lipschitz space F1(aQ). The estimate (8.2) is the best isotropic estimate 

that can be made for elements of Fl(ag2). Observe also that in the strongly pseudocon- 

vex case (m=2), the estimate means that FEA1/2. Note that we have trivially 

IIFIl~= <- a l l f l l :  (8.2') 

Proof of (8.2). Let Kl(x, y) be the kernel of the operator Kj. It clearly suffices to 

show that 

lg,(x,.y)-K,(x 2, Y)t do(y) atz(x,, IIx,-x21l). (8.3) 
Q 

To do this choose y so that m(x~.~,)=ltx~-x211; then of course y=/~(Xl, IIx:x211). Notice 

also that y>>-cQ(xl, xz), because if we apply the function A(xt, -) to both sides we get that 

this is equivalent with Ilx~-x211>-cm(x~. Q(x~. x2)), which is indeed the case. Thus for a 

sufficiently large constant C we can reduce the estimate (8.3) to similar estimates for 

the following three integrals: 

(i) ~ IK,(x~, Y)I da(y); 
a0 (xpy)<~Cy 

(ii) 

(iii) 

s Ig~(x~, Y)l do(y); 

fo(x~,r)~cr IKl(xl" Y)- KI(x2' Y)I do(y). 
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Since IK(xp y)[<~Ao(xl, y)/V(xl, y), the first integral is bounded by AT, by the use of (4.5) 

in [NRSW]. A similar bound holds for the second integral, and so we now turn to the 

integral (iii). In order to make the calculation here we use the coordinate system 

appearing after (1.9) in [NRSW], which is centered at x~, and where the "ba l l "  centered 

at xl of " rad ius"  ~(xj,x2) is given by a box (whose dimensions are essentially O(x~,x2) 
and A(x~,o(xl,xz))). If  {Xt}o<~t<~ denotes the straight line in this coordinate system 

joining xl to x2, then each xt belongs to the same ball. 

Now 

Kl(x I , y)--Kl(x 2, y) = (Kl(x t, y)) dt. (8.4) 

This equals 

f0 
1 

IIx,-x211 (TtK1)(x t,y) dt, 

where Tt denotes a family of vector fields, for which one can make uniform estimates 

(in t) on their coefficients. Now consider m k (Ek= 2 Ak(X ,) y )T r Note first, 

~ mk(x,) )" = A(xt ,  Y) ~ m(xl, Y) - IIx,-xzll, k 
k=2 

because 

O(xt, x t) <~ co(x1, x2) <~ c7. 

Moreover, by the definition of the quantities Ak(Xt) w e  get that 

(k~2 ) m E Ak(x,)~T ~ (g,)(x,,y) ~ c ~ 7  k [(x~gO(x,,y)l 
= k=2 Ill~<k 

m O(xt ' y)l-k 
C E  7 k V(xt" Y) k=2 

m y)l-k 
C E  7k O(Xj, 

k=2 V(Xl' Y) 

The next to the last inequality follows because K~ is the kernel of an NIS operator of 

smoothing order 1, and the last inequality follows because O(xt, xO<~O(xl,x2), and 

O(xl, y)>~CT>~(C/c)O(xl, x2) for those y 's  under consideration, if we take C sufficiently 

large. We now insert these estimates into (8.4), and carry out the y integration over the 
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range indicated in (iii). We then get the following estimate for the integral (iii), if we 

apply (4.6) of [NRSW]: 

f0 A yk ' y~ -kd t  = A y  dt<~A'  7. 
k=2 

This proves (8.3), and thus Lemma 8.2 is proved. 

We now turn to the proof of Theorem 8.1 and the estimate (8.1). If we write 

and 

f = A tD1 q-f2a)2, 

u = N ( f )  = UlO)l-~//2(/)2, 

then according to (2.11) we must estimate 

( -  L l + hl)u l + ( -  L 2 + h2)u2. (8.5) 

The right side of (8.1) is essentially 

Now the estimate for (8.5) breaks up into two parts. The first is the estimate for 

( -L2+h2)  u2, which in fact is elliptic. Now u2 is, up to a better error term, G22(J%); and 

since u2 satisfies the Dirichlet boundary condition, we see (using the fact that 

L2=(1/V2-) a/Oo+iT) ,  that ( -L2+h2)u2 becomes 

1 a G22(f2)le=0. 
x/T ae 

The operator aGz2/aQIQ= 0 maps function on Q to functions on a f / a n d  is essentially the 

adjoint of the Poisson kernel. Since the Poisson integral maps L=(af2) to L=(~), we see 

that the operator aG22/aQto=o maps Ll(f/) to LI(aQ). Thus we have 

II(-t2+h2) All f2]ls (8.6) 

To study (-L~ +h0  u~ we use the approximate Neumann operator given by (7.13). 

Since Ll is tangential this gives as the main term for (-L~+h~)u~le= o the operator 

- L1K F+[2-RL2G I . (8.7) 
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We can now write (8.7) as the sum of two operators, I+H. Here 

I=-L1KF+D-RL2GH, and II=-L~KF+[2-RL2G12. 

Turning to I, this operator, mapping functions on ~ to functions on aQ, must be proved 

to be bounded from LI(/~/Q, f~) to LI(O~). Let us take the adjoint of the operator (8.7). 

Since L2Gn is a transmission-type pseudodifferential operator of order - 1 ,  then the 

adjoint of RL2G11 is a Poisson operator of order zero (see Boutet de Monvel [B]). Also 

F+E] - is a pseudodifferential operator (on aft) of order 1, so combining this with what 

we just said, the adjoint of F+EI-RLEGll is a Poisson operator of order I. Finally -LIK 
is an NIS operator of smoothing order 1, so its adjoint is of the same kind. Altogether 

then the adjoint of (8.7) is the operator (mapping functions on 0f~ to functions on f~) of 

the form 

P~ b (8.8) 

where K1 is an NIS operator smoothing of order 1, and p(l) is a Poisson operator of 

order 1. 

What we must show, therefore, is that iffEL~(SQ) then (Q//~)t~)K~(f)EL| 
and the indicated mapping is bounded. In view of Lemma 8.2, our theorem will be 

proved once we have established the following lemma: 

LEMMA 8.3. Suppose F satisfies the estimates (8.2) and (8.2'). Let p(l) be a 
Poisson operator of order 1. Then 

IP~ x, o)l ~< A' #(x) (8.9) 
Q 

We recall the following simple facts about Poisson operators, p~l~, of order 1, and 

their kernels, P(01)(x, y). We have 

( P(ol)(x, y)F(y) do(y). P(l)(F)(x) 
.Io 

Then 

(a) P~ is a smooth function; 

(b) Ip(ol)(x, y)l<~Allx-yl[-4; 
(c) {P(ol)(x, y)l<~AQ-2[Ix-yl1-2. 

The assertion (b) follows because P(~)(x, y) is (uniformly in t)) the kernel of a pseudodif- 
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ferential operator of  order 1, and the dimension of 0f~ is 3. (c) follows by the same 

reasoning, since Q2pt~) is a Poisson operator of order - 1 .  

Now 

Q) = l e~ l)(x' y)F(y) da(y) P(I)(F)(x, 
.io f~ 

I e~ l)(x' y)[F(y)-F(x)] do(y)+ F(x)p<l)(1). 
da ~2 

The last term is clearly controlled by (8.2'). The next to last integral can be written as 

an infinite sum 

~=l fllx_yll=2, P~')(x' y)[F(y)-F(x)] dcr(Y) + ~x_yl,<~oP~ )(x' y)[F(y)-F(x)] dcr(y)" 

Now by (8.2) 

and since 

then 

IF(y)-F(x)l <~ A/z(x, I[x-yll), 

/~(x,h)~ min [ h '~'/J 
2<~j<<rn ~ Am.(X) ] ' 

~(x, IIx-yll) ~ C2k/2/~(x, Q) if Ilx-yll ~ 2ko �9 

Thus if we use estimate (b) for pm -e  ' we get as an estimate for the sum, 

k=l ~x [[x--Yll-4dy<'(/z(x'P))~2k/22-k<'C(-~ )" C2k/2/z(x, Q) -YN~2ko Ck ~) / 

The term 

fllx_yll~< Q P(ol)(x, y)[F(y)-F(x)] do(y) 

is estimated similarly, but here we use (c) instead of (b). This completes the proof of the 

lemma, and hence the estimates for I is established. The estimates for H is straightfor- 

ward because G12 is a pseudodifferential operator of order -3 .  Theorem 8.1 is now 

proved. 

15-928286 Acta Mathematica 169. Imprim6 le 10 novembre 1992 
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Remarks. (I) The operator a*N has a unique extension to all forms for which the 

right hand side of (8.1) is finite. In fact, the same proof as (8.1) gives the weaker 

inequality 

[[a*N(f)llz~(n)<<_C[l,fllz,(a,+ (-~-)fA~Q L'(n)] (8.10) 

which holds for all smooth (0, 1) forms f o n  ~ .  From (8.10), ~*N extends as a mapping 

from all forms in this space to Ll(f~). 

(2) We claim if ~f=0 in the sense of distributions and if u=~*N(f) then au=f in  the 

sense of distributions. To see this, approximate f by a sequence of f~E Co(Q) in the 

norm given by the right hand side of (8.10). Since as is known, 

aa*N(f~) = f,-N(~*a(f~)) 

and afi--~0 in the sense of distributions, the result follows. 

(3) Note that if ~f=O, the sequence u,=a*N(fi) converges to u in LJ(gl), ~u~---,fi in 

the sense of distributions and 

lu (z)ldo(z)<-C[llfllL, o) + (-~)f  ^ ~f L'<o)] 

uniformly in e. 

w 9. Zeros of holomorphic functions of Nevanlinna class 

A basic problem in complex analysis is to describe the zero varieties of certain classes 

of holomorphic functions in domains ff2cC". Let H(fD denote the space of all holomor- 

phic functions on g2. For G E H(g2), the zero variety of G is 

Z(G) = {z 6 g21G(z) = 0}. 

For example, when n = l ,  and the domain is the unit disc D={zEClllzl<~l), the 

Nevanlinna class is 

N(D) = { f6  H(D) o<r<lSupfa D log +'fr' dO < ~176 ) 

where fr(z)=f(rz). The zero variety of a holomorphic function in the unit disc is a 

discrete sequence of points {aj} in D. The zero varieties of functions in the Nevanlinna 
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class are precisely the discrete subsets Z={aj} in D which satisfy the Blaschke 
condition: 

(l-lajl)< oo. (B') 
i 

When n>l and thc domain Q is smoothly bounded and strongly pseudo-convex, a 

thcorcm proved independently by Henkin [HI], [H2], and by Skoda [S], characterizes 

the zero varieties Z of functions F in the Nevanlinna class 

N(V2)= (FEH(ff2) supf0~>0 ~l~176 ~176 ' 

by an analogue of the Blaschke condition: 

fzO(Z) dtr(z) < ~.  (B) 

(Here p(z) is the positive distance of z fi Q to the boundary af2.) f2,= {z 6 if210(z)>e} and 

do is the volume element on Z. 

The main object of this section is, to prove the following extension of the Henkin- 

Skoda theorem: 

THEOREM 9.1. Let f2cC z be a bounded, smooth weakly pseudo-convex domain of 
finite type m. Let G6H(f2).  Then the zero variety Z=Z(G) is the zero variety of a 
function F in the Nevanlinna class if and only if the zero variety Z satisfies the 
Blaschke condition (B). 

In the original work of Skoda (Thdor6me 3 of [S]), the sufficiency of the Blaschke 

condition is stated for an arbitrary complex hypersurface X of a strictly pseudoconvex 

domain ~ satisfying Hz(gLZ)=(0). This topological restriction is not necessary in 

Theorem 9.1 because of the assumption that the hypersurface is given from the 

beginning as the zero set of a globally defined holomorphic function. In general, a 

complex hypersurface in g2 could be defined as a set which, near each point of Q, is 

locally a zero set of a locally defined holomorphic function with non-vanishing gradi- 

ent. For pseudoconvex domains, or more generally for domains of holomorphy, the 

obstruction to finding a global holomorphic defining function lies in the cohomology 

group H2(f2, Z). 

The fact that the condition (B) is a necessary condition is well-known: it is a 
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consequence of Green's formula (see [Che], [Ma]). Thus we only need to show that 

condition (B) is sufficient. The main point is that using previously known ideas, the 

sufficiency can be reduced to the L j estimate given by Theorem 8.1. For this reason we 

shall be brief, leaving some of the details to the cited literatures. We begin by 

formulating the Blaschke condition in a slightly different way. 

DEFINITION 9.1. Let f~cC 2 be a domain with smooth boundary, and let {tol,to2} 

be a basis for the (1,0)forms near 8f2, with ~o2=c3p. A positive, closed (1, 1) current 

2 

o--- oo i^  
i . j=l 

satisfies the Blaschke condition i f  the following inequality holds: 

~t(0) = fu P(z)(01J +Ozz)(z) < ~" (9.1) 

Here 0 U are finite measures on Q, and Oil nonnegative. 

If GEH(f~), and O=i881oglG[, then 0 is then a positive closed (1, 1) current on 

which is essentially the current of integration over Z(G). For such positive currents, 

the Blaschke condition (B) is equivalent to condition (9.1). 

In the case that [2 is a bounded smooth weakly pseudo-convex domain of finite 

type and 0 is a positive closed (1, 1) form which satisfies the Blaschke condition, 

Bonami and Charpentier [BC2] showed that the component 01~ satisfies a better 
estimate. 

THEOREM D (Bonami-Charpentier). Suppose 0 satisfies the condition (9.1). Then 

the OH component o f  0 satisfies the generalized Malliavin condition: 

\ -p-~/O~(z) ~< C. ~t(0) < oo. (9.2) 

Using the fact that 0 satisfies the condition (B) and Theorem D, we have the 

following corollary: 

COROLLARY 9.2. The 012 and 021 components o f  O satisfy the mixed condition: 

f~t(z)(lo~21+lo211) z) ~(0) ~. (9.3) C- < 
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Proof. Since the matrix {00. } is nonnegative, 

fa~(Z)(IO12(Z)["I-[ 21(Z)[} ~ f 2pl/2(Z)P(z) 01/,2r j ,  e,,2(z ) .{ofT(z). : . , , ,  

<< fa 
<~ E.,~(O). 

The last inequality is a consequence of  (9.1) and (9.2). This completes the proof. 

Now let GEH([2)  and let O=iaSlogIGI. Following the method of  Lelong (see iLl 

and also iS]) to find a function FEN(f2) with the same zero variety, we need to solve 

the equation: 

i880 = 0, (9.4) 

with O ELl(aQ).  Then the function F determined by 

O = log IF I 

belongs to the Nevanlinna class, and has the same zero variety. 

As a result of  assumption (B), 0 will satisfy (9. l) and hence also (9.2) and (9.3). To 

solve equation (9.4), we find a 1-form ~ which satisfies the equation 

id~ = 0. (9.5) 

Then we decompose  ~ into 

where ~l,o and ~o, 1 are bidegree (l,  O) and (0, l) forms. Note  that then ~o. 1 is a-closed 

since 0 is a (I, I) form. We shall prove that ~o.~ satisfies 

\ q--~z) / 80 A < (9.6) 

If  we then let u be the solution to 

8u = ~0, i (9.7) 

given by Theorem 8.1 and the remarks at the end of  w 8, it follows that 
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ia~(2i~su) = iaa(u-~) 

= i(Oau+~O0) 

= i(a~o, J+~L o)  

= i { (a+a)  ~0., + ( 8 + ~ )  ~l,0} 

= i d a =  0. 

Thus if we put O=2i~u, the function O satisfies equation (9.4), and according to 

Theorem 8.1, O E L1(Sf~). 

Thus we now need to solve equation (9.5) and establish inequality (9.6) for its 

solution. To solve (9.5) which involves only the d-operator, we need a general version 

of  the Cartan-Poincar6 lemma. We begin with 

PROPOSITION 9.3. Let g2cR" be a domain. Let w be a p-form on s and X a vector 

field on g2. Then i f  w l X  denotes the contraction o f  the form with the vector field, we 

have the identity 

d 
d t o l  X+ d( to l  X) = -~s to(exp(sX))ls=0. 

This is easy to check directly (and also see exercises 7-18 on p. 319, volume 1 of 

[Sp]). 

Let ~,  to, and X be as in Proposition 9.3, and define 

o~s(z) = exp(sX)(z). 

Note that ~0 is the identity mapping. 

COROLLARY 9.4. Suppose that the diffeomorphisms {o~,} map f2 to itself for  

O~s<-s o. Then for z E 

to(z)=to(eSX(z))-d(L*~176 

Proof. We have 

soX L s~ d to(e (z))-to(z) = (to(e~X(z))) ds 

= L'~ + fo'~ 
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This proves the corollary, and gives us a general version of the Cartan-Poincar6 lemma 

as follows: 

PROPOSITION 9.5. Suppose ~2,e9, and X are as above and suppose {o%} satisfies 

the hypotheses o f  the Proposition 9.3. I f  dog=O, then 

~ "*,~ "(fo"*'~ 

where ~;*o) denotes the pullback of  the form ~o induced by the diffeomorphism ~ .  

We now turn to the problem of solving equation (9.5). We shall first work in a small 

neighborhood of the boundary of fL Let  

2 

iO~logtG I = 0 =  E O0"~~ ̂  thj. 
(,j=l 

We suppose that 0 satisfies equations (9.1), (9.2) and (9.3). Let 

x ,  = {z 6 El - e  < o(z) < e). 

Let X= c3/0~ and let 

0% = exp(sX). 

Note that ~ maps ~ N Z, to Q for O<~s<,so if So and e are sufficiently small. Set 

v = - O I X ( e  ~x) ds. 

Then u is a real 1-form on X, n C2. Since dO=O we have by the Cartan-Poincar6 lemma 

o = ~*~o O + d v  = d(~*~o(i~ log IG I)+ v). 

Put 

w = ~*0(i~ log Ial)+v.  

There is no problem in establishing estimate (9.6) for ~*0(i~log[GI), since the form 

i01og IGI is being evaluated strictly inside the domain. Thus we want to estimate v. Now 

since 092=a• and e52=aQ (up to a constant), it follows that, up to a constant, 

O t X  = 012c0~ +022to2-021a51-022cbz. 
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Hence if we decompose v into its (1,0) and (0, 1) pans ,  

O ~'~- Ol,o+Oo, I, 

with Vo, l=Ol ,O and 

then 

1 - 2 
O0, I ----- UO, I(.DI + Uo, I(f_)2 

s 
v I i(z) = Oi2(esX(z)) ds. O, 

In order to establish the estimate (9.6) for v, we need the following estimates for v0. ~: 

f {[v~, dV(z) <~ CM(O) < (9.8) I(Z)[+IU~, l(Z) l} 

and 

f l~(z) ~ " dV(z)<.c fa  e-~z) o0, :z)l ~(z)lO,2(z)l <<- CM(O)< ~.  (9.9) 

In order to get the estimate (9.8), let us define the operator 

T(O)(z) = O(eSX(z)) ds. 

Then we have the following lemma: 

LEMMA 9.6. Let a > -  I is a real number, then there exist a constant c independent 
of  O such that 

s  o,(z)rl(ro)(z)l dV z) <_ c  o:z)r +llo(z)l dv(z) 

Proof. In the appropriate coordinates system, we may assume z=(xj,x>x3,x4). 
Then p ( z ) - x  4 and fl  = {z 6 C21 x4>0}. For  a > -  1, 

s s ) [q~(z)]~ dV(z) <<. c (x4-e) ~ IO(z+s)l ds dV(z) 

s s <~ (x4-e+s) ads 10(z)l dV(z) 
e 
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~< c" f_ (x4-e) a+l t0(z)l dV(z) 
dZ e 

= c-I_ [e~(z)]~ 10(z)l dE(z). 
d2. 

This completes the proof. 

It is easy to see that the estimate (9.8) is just the case a=0  by using a limiting 

argument. In order to get the estimate (9.9), we need the following lemma: 

Then 

LEMMA 9.7. Let 

~0 $0 v(z) = O(~s(z)) ds 

fu It(z) dV(z) <~ JQl~(z) dV(z). (9.10) 
f 

Iv(z)~ C(~2) ~O(z)l 

Proof. We use the coordinate system which arises in the proof of Lemma 9.6. 

Hence we have 

~,(xl, x2, x3, x4) = (xl ,  x2, x3, x4 + s). 

Then the equation (9.10) is equivalent to 

foX4lz(xl,x2,x3,t) d-~tt <~ C.lt(Xl,X2,x3,x4). (9.11) 

To show this we need to observe that in terms of size 

It(xl'x2'x3't)=min~t--~l/k (~2 )-' z.~k-~m \ Ak / = IAkl~'k" t-~k 

The functions Ak for k=2, 3 . . . . .  m have the property 

Ak(xl, x2, x3, x4) ~ Ak(x~, xz, x3, x4 + s) 

for small s. This leads to 

,U(X1, X2, X3, 2-Jx4) ~ C" 2-J/m~l(xl , x2, x3, x4). 
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Once we have this, it is easy to rewrite (9.11) as follows: 

s dt ~ l  2-~+'x' t)dt 
~t/(Xl, X2, X3, t) t = /~(xl' X2, X3, 

j=0 .12-ix 4 t 
oe 

<<- s 3, 2-J+lx4) 2-J+lx4-2-~x4 
j=0 2-Jx4 

:r 2 - J+Ix4  
C" s 2-J/m~l(Xl,X2,X3, X4 )" 2_ix---- ~ 

j=0 

<~ C./~(x 1 , x 2, x 3, x4). 

Now we prove (9.10): 

:Q/~(z) lv(z)ldV(z)=fl~(Z)s176 X3, X4+s)dsdV(z) 

)dr(z) 

Now we may apply the result (9.11) to get 

f l~(z) io(z)l dV(z) f ,  I~(Z)10(z)l dV(z). C. 

This completes the proof  of  the lemma. 

So far we have found a solution w to equation (9.5) which satisfies the estimate 

(9.6), but this solution is only defined near the boundary of  the domain. We still need to 

patch this solution near the boundary with a solution in the interior. Let  us extend the 

solution w to a 1-form on all of  f~ by using a smooth cut-off function near the boundary 

of f2. Call this extension th. Then the 2-form 

O-i d~o 

is an exact 2-form on all of  ff~ since 0 is exact.  But we also know that this 2-form has 

compact support in f2. We now apply the classical theory of harmonic integrals to 

conclude that 

O-i dtb = i da 
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where a is a one form which is smooth  up to the boundary  (see Chapter  V of  De Rham 

[D], Theorem 25). Thus 

0 = id(tb+a) 

and the form ~= tO+a  satisfies the es t imates  (9.6). This completes  the construct ion of 

the required solution, and thus comple tes  the p roof  of  Theorem 9.1. 
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