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Chapter I. The Navier-Stokes equations and the scalar viscosity potential 

1. Introduction 

The ma thema t i ca l  t heo ry  of the  N a v i e r - S t o k e s  equa t ions  has cen t e r ed  u p o n  bas ic  

ques t ions  of  the ex i s t ence ,  u n i q u e n e s s ,  and  regular i ty  of  so lu t ions  of  the init ial  va lue  
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problem for fluid motions in all of space or in a subdomain of finite or infinite extent. 

Such solutions, when they can be constructed or shown to exist, represent flows of a 

viscous incompressible fluid. In two space dimensions the theorem of existence, 

uniqueness and regularity was essentially completed thirty years ago by the work of 

Leray [21], Lions [22] and Ladyzhenskaya [18] who showed that a smooth solution of 

the inital value problem exists for arbitrary square-integrable initial data. 

For viscous, incompressible fluid motions in three space dimensions, to be consid- 

ered in this paper, the theorem of existence uniqueness and regularity has been proved 

only for sufficiently small initial data or in special cases such as cylindrical symmetry 

that essentially reduce the problem to two space dimensions in some sense. In his 1934 

paper [21] Leray considered the possibility of singular solutions in which momentum 

locally and temporarily overpowers the smoothing effects of viscosity. Subsequently 

the problem of the existence of singular solutions has been widely studied [3, 6, 7, 10, 

11, 12, 15, 16, 18, 27, 28, 30, 32, 34, 35, 36, 37, 39, 40] and many results obtained, but 

no conclusive resolution of the question has yet been achieved. 

The evidence favouring the existence of singular solutions, apart from the possible 

implications of repeated failure to disprove their existence, is substantial and has 

continued to mount. On the purely physical and observational side, the phenomena of 

atmospheric dust devils, tornadoes and other vortices tend to support the conjecture 

that singular solutions do occur and to lend a certain significance to the bettter 

understanding of them in both their pure and applied mathematical contexts [34]. 

Ladyzhenskaya [20] has given an example which falls short of being a full singular 

solution only in a specific limitation of its spatial domain at the singular instant. 

Scheffer [27, 28] and Caffarelli, Kohn and Nirenberg [3] have studied the singular point 

set in space time and have shown that it has one-dimensional Hausdorff measure equal 

to zero. Scheffer [29] has recently demonstrated a 'Navier-Stokes inequality' which 

indicates that the magnitudes and solenoidal vectorial properties of a possible singular- 

ity are compatible with the equations as well. Foias, Guillop6 and Temam [10] have 

shown for flows on a three-dimensional torus T 3 that certain new estimates must hold 

for the space derivatives of solutions of the Navier-Stokes equations. These estimates 

involve fractional power integrability over the time variable of a space norm, and are a 

seemingly natural extension to the higher derivative level of the well known energy 

estimates for the Navier-Stokes solutions. 

The main result of this paper is to establish such fractional estimates in the case of 

a domain with boundary upon which the solution components vanish the appropriate 

fixed-boundary condition for viscous flows. It will be seen that the key to this 
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extension is the consideration of time derivatives as well, so that a combined and 

extended set of estimates is obtained. The presence of a boundary brings in complica- 

tions associated with the pressure variable, and in this paper the related scalar potential 

of the viscosity term is analyzed and estimated. Our estimates make possible a limited 

characterization of the pointwise behaviour of singular solutions, and also of the initial 

behaviour of solutions related to water hammer effects. 

Because our estimates apply to Navier-Stokes solutions generally, with minimal 

regularity assumptions such as continuity off the singular set, it will follow that the 

behaviour of solutions generally will be restricted within a certain range of integrability 

and algebraic singular behaviour. Hopefully the more specific problems of character- 

ization thus indicated will be found capable of still more precise resolution. 

2. The Navier-Stokes equations 

Let xi (i=1,2, 3) denote Cartesian coordinates in R 3 and let t be time. Let Ui(X , t) 

(i= 1,2, 3) be the vector field of velocity components of a fluid flow, and let p(x,  t) 

denote the pressure variable. The constant viscosity coefficient is denoted by v. Then 

the equations of Navier-Stokes take the form [21] 

aUi l"-2""--aUi = _  ap + v A u  i (2.1) 
at +U"dxk ax i 

where i= I, 2, 3 and k is summed over k= 1,2, 3 by the Einstein convention for repeated 

indices. 

The differential dx denotes the volume element dx~ dx2dx3 and the Laplacian 

_ 3 a2/ax~. Together with the three momentum operator in R 3 is denoted by A=~i= 1 

equations there holds the incompressibility equation 

3 aU i aU i 
div u = ~'~ axi aX---~ -- O. (2.2) 

i=1 

The four equations together form a semi-linear elliptic-parabolic system. 

Three initial conditions are appropriate: 

ui(x, O) = u,~(x). (2.3) 

We consider initial values of integrable square on the spatial domain: 

Ilu011  = lug(x, t)12dx < oo. (2.4) 
i=l 
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Here and below integration will be taken over a suitable domain ~ R  3. The boundary 

af~ will when necessary be restricted as to smoothness, and three boundary conditions 

are also appropriate for viscous flow: 

ui(x, t) = O, x ~. af2. (2.5) 

The pressure p=p(x,  t) satisfies a Poisson type equation deduced from (2.1) by 

taking the divergence and applying (2.2): 

au k au i ap= 
ax iax ,  

= - u i ,  k Uk, i (2.6) 

= - ( u i  u k ) , i k  

where subscript commas denote derivatives with respect to xi (i= I, 2, 3). In view of 

(2.5) a boundary condition for p can be deduced from (2. I) by simply taking limits on 

approach to the boundary: 

ap = vAui ' x E aft .  (2.7) 
Ox i 

The normal component 

�9 a p  = P,i  n i  = VAbli  ni  (2.8) 
an 

alone provides a Neumann type boundary condition sufficient together with (2.6) to 

determine p up to a constant when u,(x, t) are known at any instant of time. 

The Lebesgue space LP(Q) is the set of vector valued functions on t~ with finite 

norm Ilullp, where 

Ilul~= ~, lu,(x,t)lPax. (2.9) 
i = l  

We shall also use the corresponding Lebesgue space of scalar functions. Throughout, 

these norms are all functions of time t. The inner product of two vector functions ui, vi 

is 

(u, o) = X uioidx" (2.10) 
i=1 

By H/51der's inequality, where p and q are dual indices: 1/p+ 1/q= 1, p~>l, q~> 1, we have 
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I(u, o)1 Ilulbllollq. (2.11) 

Frequent use will be made of Young's inequality [14, Theorem 37]: 

ab<~aP+ bq, (2.12) 
P q 

where a>0, b>0, 1/p+ 1/q= 1, and of a version with a replaced by ae, b by b/e. 
If aj>0, j = l  . . . . .  n and a i has weight or degree wj, then by a homogeneous 

extension of Young's inequality, 

~< ~'~ --~-1 a.P; (2.13) 
a l  an O i l  

where pFW/wi, W=E~'=l wj. Every term on the right has weight pjwFW. 
We also use the inequality 

2 ay <~n a;/q (2.14) 
j=l \ j = l  

where aj>O, j =  1 .. . . .  n and p>O, q> 1. It is easily seen that n(maxj a~) p lies between the 

left and right sides. 

Inequalities of the Sobolev type in three space dimensions will be used, the most 

frequently employed being the first derivative inequality for a vector function of 

compact support or vanishing on 3f~ [1, 19]: 

1 = 1 - I > _ - 0 .  (2.15) Ilullq<~ CllVUllP' q p 3 

Here V denotes the gradient so that Vu is a 9 component dyadic, with the norm 

including all such component derivatives. The constant C in (2.15) is independent of Q 

[1, 19, 25]. For q=oo we use an inequality of Nirenberg [1, 9, 25]: 

ess.maXx , lul = llull  c(ll,ll  '2 IIv ll %llull6). (2.16) 

For a domain extending to infinity the second term can be omitted. 

In the Hilbert space L2(f~) a vector field wi(x) can be expressed as a sum of 

gradient and solenoidal components. Suppose v; is the component of wi orthogonal to 

all gradient vectors V~p in the scalar product (u, o)= J" ui vidx: 

(v i, V~ ep) = 0 
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where 

vi = w i -  Vi ~o 

and ~ is an arbitrary smooth scalar function. We have 

(O i, v i ~ ) ) =  f ~ v i V  i dx 

Since ~ is arbitrary within f and on O f  we conclude [19] 

and 

div v i = V i v i = O, 

O n = O i n i = 0 

where {hi} is the unit normal vector  to the boundary surface O f .  Therefore  

w i = vi+V i epo (2.17) 

expresses wi as a solenoidal vector  field with vanishing normal component  on 0 f ,  plus 

a gradient field [ 19, p. 27]. 

The Stokes operator  A is defined by the solenoidal part of  the Laplacian, as 

applied to a general vector  field wi(x, t), or to a Navier-Stokes  flow ui(x, t): 

Au i = A u i + V J .  (2.18) 

We reserve the symbol f for  the scalar potential of  the viscosity term, to be studied 

below. Since Au,- lies in the subspace ~ of  L2( f )  solenoidal vector fields with vanishing 

normal component  on 0 f ,  we have div Aui=-(Aui),i=O, at least in a weak or generalized 

sense, and similarly Aun=O on Off. If  now u iEC2( f ) ,  ui=O on 0 f  and ui, i=O in f ,  then 

(Aui, ui) = ( Aui+ Vif,  ui) = (Aui, ui) 

= - (V ju i ,  Vjui) (2.19) 

- -  -IlVull . 

Hence if Au=0  it follows that [IVul[~=0 so that u = constant = 0 since u=0  on 0 f .  

Consequently [[Aul]2 acts as a norm on the set of  solenoidal vector fields ui that vanish 
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on aft.  Hence we can define [35] the completion H 2 of C | solenoidal vector fields 

vanishing on Of 2, in the IIAull2 norm. A Sobolev inequality of  the special form 

[[Vu[I 6 ~< CI[Au[[ 2 (2.20) 

holds in the space H2; for a proof  see [35, p. 194]. Then (2.16) becomes  

ess .maxxe,  lu I --Ilull~<.C(llVull~/~llAull~/2+llVull2), u e n  ~. (2.21) 

Throughout our calculations the flow field u will satisfy an energy inequality 

HUHE~<K1 (see (3.1a) below) and a rate of  dissipation inequality HVuI[2~>K~ (see (3.12) 

below). Under  these conditions the second term in (2.21) can be dropped, for by (2.19) 

and (3. la), 

Thus 

IlVull~ ~< 11,,112 IIAull~ ~< K, IIA,,II,. 

ess .max lul = Ilull~ ~ cIIVull~'2(llAull~/2+llVull~ '~) 
1 liVuI[~/2) 

~< c(llVull~ ~2 IIAull~/2+ 
/ K 1/2 \ 

~< C,  IlVull~ '2 IIAullg '~. 

A similar result holds if f~ satisfies a Poincar6 inequality Ilull2<.cllVull2 whence 

IlVull~ ~< Ilul12 IIAull~ 

<~ cIIVull= IIAull2 

(2.22) 

and the result also follows from (2.21). 

The mixed Lebesgue spaces LPt'P2(f~)=ff2(O, T; LP~(f~)) are defined with norms 

Ilullp,,p~ -- Ilu( , t)ll~ dt . (2.23) 

In effect our result will imply that u and its derivatives lie in certain mixed spaces of  

this type, usually with fractional values for P2. When p2<l  (2.23) is not a metric, as the 

triangle inequality does not hold for the mixed norm. We therefore study the space 

norms in L2(f~) of  u(x, t) and its various space and time derivatives as functions of  time t. 
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That the [[ull~ norm in (2.16), (2.21) and (2.22) is actually a maximum for almost all 

t in (0, T) can be shown for unbounded f~ with the aid of  the following auxiliary 

PROPOSITION. Let f ~ R  3 and let vEC(~)  be defined on ~ with v=O on aft .  Also 

let 110112, IlVvll2 and Ilavll2 be finite. Then v--->O as x~oo in f~. 

Proof. Let {~i} be a periodic, C | non-negative, locally finite partition of  unity in 

R3: E~i---1. Such  a partition of  unity can be constructed by periodic extension of  a 

similar partition of  unity on a three-dimensional torus or periodic parallelepiped T 3, 

every function ~i having support  within some translate of  the parallelepiped. Let  vi=vep~ 

so that v=E~v=Eiv~ where at any point the sum is finite. Then 

since 

supxeu [vii----IIvill. ~ CllVvill~'2(HAvill~/2 +HVvill~/2). 
<<. c(llvill~/4 IlAvill~% IIv,ll~ '2 IIav,ll~ '2) 

/ "  

IlVvi[[~ = JO (Vvi)2d~ 

= --ffl viAvidx 

~< Ilv/ll2 IIAvill2 �9 

(2.24) 

But 

Since In vi vjdx= In dPitPy v2dx~O, we have E i IIvill~<llvll~<oo and consequently IIv,ll2--'0 as  
i~oo.  But 

IIAv/l[2 ~ m a x  [a~/I IIoll2+2 m a x  [v~bi[ IIVvH2+max Iq~,l IIAvll~ < g 

where max[A~bi[, max[Vr and maxl~b,[<~l, and therefore also K, are all bounded 

independently of  i. It now follows from (2.24) that suplv/[--->0 as i-->or Thus the 

uniformly finite sum v =  ~'i Vi'--'>O as x.---> ~ which proves the proposition. Hence  finally by 

Sobolev's theorem Iv[ is a continuous function that takes its maximum value at a finite 

point x. 
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(1,1) 

1 

Pl 

3. Energy estimates 

Multiplying the Navier-Stokes  equations by ui, contracting over i= 1,2, 3, and integrat- 

ing over f~, we obtain an identity which after use of  the divergence and orthogonality 

relations reduces to 

Ilull +2vllVull  = 0. (3.1) 

The decrease of  kinetic energy is equal to the rate of  dissipation of  energy by viscosity. 

If u is a weak solution, the relation may be an inequality with dominant right hand side 

[32]. Integrating over (0, T), we find 

Ilull +2v IlVull dt<.lluoll , 0<T <oo (3.1a) 

and so deduce u E L 2' ~~ T), Vu E L2'2(0, T) and by Sobolev's  inequality, u E L6'2(0, T). 

The inclusion of  u and Vu in these spaces can be schematized by means of  an index 

diagram, Figure 1. The reciprocals (1/pl, l/p2) are plotted as Cartesian coordinates so 

the points (1/2, 0) and (1/6, 1/2) are marked as u-points and (1/2, 1/2) as a Vu-point in the 
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diagram. By the standard interpolation theorems the set of points for which u belongs 

to the indicated space is convex, so u belongs to the spaces indicated by the line 

segment 3/pl+2/p2=3/2, p2~2. Another property of the index diagram is that the space 

to which a product uv belongs, say L rt'rz, is given by vector addition on the diagram: 

1/ri=I/pi+l/qi where uEL p"p2, o ~ L  qt'q2. These properties of convexity and vector 

addition remain valid if 0<p2< I, for which the diagram extends to a semi-infinite 

vertical strip 0<~I/pl~<l, 0~<l/p2<o0. Leray, Serrin and others have shown that if 

uEL p''p2 where 3/Pl+2/p2<l then u is a regular solution without singularities, at least 

for 0 < t < T  [33]. 

A second integral estimate or inequality, as is well known, [4, 15, 21, 33] can be 

derived by multiplying the Navier-Stokes equations by Au; and integrating over s As 

the calculation is typical of others to follow below, we present it in detail. Since ui, t is 

also solenoidal and vanishes on 8~ ,  we find 

fcAuiui, tdV= frAu~ui, tdV 

I -  VIIi Vui" t dV 
(3.2) 

- l d f a  2 -dr (Vu)2dV 

_ x d llviiIl~. 
2 dt 

Also Sn A II~p.idV=O by the orthogonality of the solenoidal and gradient subspaces, 

while 

f Au, Au, de=~Aii, Au, dV=llAull~. 

The nonlinear convective terms will be estimated by means of the inequalities of 

H61der, Sobolev, and Young: 

f Au, dV<~ IIAullz Ilull~ IlVull3 U k Ui, k 

<- cllAull2 tlviiII2 llv~ll~ '~ tlVult; '~ 
(3.3) 

_< cIIAIIII~ '~ IlVull~ '2 

~ ii~ll~+Cv-~llVullg. 
2 
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After a cancellation of terms in IIAu[I~, the resulting inequality becomes 

d IlVull~+vllAull~ ~ gllVulh 6. 
dt 

155 

dt ~_4cz 3 = C'(z) (3.9) 
dz 

is an increasing function of  z. From (3.1) we have 

dt = - z  < 0  

dz vllVull~ 

is a convex function of z. Also the expression 

t+CZ 4 = C ( z ) ,  C = ~ (3 .8 )  
12v 2 

From this inequality two successive integrations with respect to z show that 

. 42 ,  
~2~-~'-~ + g z  2 ~ O. (3.7) 

dz ~ 

This inequality has yielded much of  the known behavour of singular solutions and 

asymptotic behaviour for long times. 

Since (2.19) implies 

IlVullN ~ Ilulh IIAull2 (3.5) 

we can deduce from (3.4) that 

d V 2 IlVull~ ~rllVull~, 
dt u 2+v Ilull~ 

(3.6) 

This self-contained inequality for IlVull2 in terms of Ilull2 can be linearized by an 

exchange of independent and dependent variables [5, 6]. With Ilu[lE=Z and use of (3.1) 

we find 

with equality at singular values zr where I IV UlI2--> o~ SO that C' (Zr) = 4cz~>0. For z > z r  (or 

t < T )  we have [6] 

Z 
IlVull~ I> 4cv(z~_z~), z > zr. (3.10) 

(3.4) 
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This is a modified form of an inequality first derived by Leray [21]. 

From (3.6) it follows that if 

KIIVulI~ Ilull~ < v (3.1 I) 

then IlVull~ will be monotonic decreasing in t. Since I[u[12 is also monotonic decreasing in 

t, by (3.1), it is apparent that (3.11) will continue to hold thereafter, so that no singular 

instants can occur subsequently. Consequently, during the time interval in which 

singular instants may occur, before (3.11) takes effect say at T~, we have the lower 

bound 

v v 

IlVull~ ~ ~ >'-------~,gllu0112 0 < t <  T]. (3.12) 

Observe that 

2v fr~ IlVull~ dt > 2v2T-----L llUotl~ 
Jo Klluoll~ 

so that [21] 

T, < ~ Ilu011~. (3.13) 

Behaviour as time tends to infinity has been studied in [13]. 

4. The main theorem 

While three dimensional viscous incompressible flows apparently do not enjoy a 

complete boundedness and regularity property, we will show in the following sections 

that the space and time derivatives of a solution do satisfy estimates similar to the 

energy estimates discussed above for Ilull~ and IlVull2. In consequence it can be shown 

that these derivatives do lie in mixed Lebesgue spaces in which the space index p~ is 2 

and the time index P2 is in general a positive fraction. The Sobolev inequalities and 

interpolation then imply similar results for pl>2. Let D,=a/at, Dg=a/ax i, D~=D~ID~D~ 3, 

and let HD~ulI~ denote the pth power sum over all derivative norms of order s. 

THEOREM. Let  u,(x, t) be a Navier-Stokes f low with finite energy in a suitable 

three-dimensional domain Q c R  3. Let  ui(x, t) be smooth except on a singular set. Over 

any time interval (0, T) where 0~<T<oo we have, for  r, sj=0, 1,2, ...; S= Sl + S2 + S 3, 
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for r or an sj>O, and 

IIDT D~x utlz e L2(4r+2$- 1)-1(0, T) (4.1) 

maXxea IDT~ ul ~ L(2r+s+l)-l(O, T). (4.2) 

The corresponding integrals are bounded by constants depending only on r, sj 

( j=1,2,3) ,  v, T, f~ and Ilu0112. 

Note that when r=0 and the multi-index s=(s I, s2, s3)=0 the pattern of (4.1) does 

not hold precisely. When r=s=0  in (4.2) we obtain the known result max [u[ 6 LI(0, T). 

This was obtained with the aid of (2.12), (2.15) and (2.21) from the estimate 

IIAul{2CL2/3(o, T) derived in [4]. For r=O and arbitrary S=(SI,S2, S3) the result was 

established by Foias, Guillop6 and Temam [10] for the three-dimensional torus T 3. 

Since T the time interval is arbitrary, these estimates will hold through any singular 

instant, since by (3.13) all singular instants lie in a bounded time interval. 

As t->0+ the various norms considered are in general unbounded. Thus 

lim/--,0 IlVull  can not be finite if u0 is nondifferentiable on an open subset of f~. Our 

estimates nonetheless apply near the lower limit t=0. The physical counterpart is 

known as "water hammer": when the tap is turned on the entire plumbing system 

vibrates to pressure shocks of unlimited speed. Compatibility conditions are also 

involved and have been studied by Heywood [15] and Rautmann [26]. 

The conditions to be imposed on our finitely connected domain fl shall be as 

follows. The boundary ag2 shall be piecewise C | with a finite number of edges and 

corners in any bounded subregion, and shall satisfy a weak cone condition [1]. If aQ 

extends to infinity the order condition 

dS ~ KR 2 (4.3) 
f~ n S(R) 

is also imposed with a f ixed  constant K, where S(R) denotes the ball Ixl<<.R. This 

condition is required for Lemma 2 and prevents the boundary surface from being too 

tightly coiled at large distances. It is not satisfied, for example, by the region enclosed 

by rotating the curve x=eZ(2+sin e 2z) about the z-axis. 

5. The scalar viscosity potential 

As will be seen below, it is possible to obtain estimates for the Stokes term Au; on a 

region Q with boundary. However to find estimates of second order space derivatives, 
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and higher order derivatives, knowledge of the Laplacian term Au~ is required. From 

(2.18) we see that estimates will be necessary for the gradient Vfof  the scalar viscosity 

potential functionf. In this section we begin the investigation of properties of f and Vf. 

Since Aui= Auid-Vif and (Aui ) , i=O,  (Aui) ,i=O we find by taking divergences that 

A f =  Vi(Vif) = 0. (5.1)  

Hencef is  a harmonic function that depends on time t as a parameter. Since the normal 

component of/~ui on aft  is zero, by the basic property of the solenoidal Stokes term as 

orthogonal to all gradients, it follows that on af2, 

af _ af = Auini. (5.2) 
an ax i 

By the divergence theorem 

fa AuinidS = fQ (5.3) 

so the boundary datum Auin~ satisfies the necessary integral condition for the Neu- 

mann problem of classical potential theory [17]. Thus f=f(xi, t) may be regarded as 

defined by (5.1) and (5.2) up to an additive constant. For simplicity we choose t h i s  

constant so that 

fff(xi, d x  = 0 ~< t < oo. (5.4) t) 0, 

LEMMA I. For Vf  there holds the estimate 

ilVfll2 2 ~< cIiVull2 (llgullz+ClllVull2) (5.5) 

where C and Cl are independent of u and f. Also IlVfll2ELl(0, T). 

Proof. Let N=N(x, y) be the harmonic Neumann function for Q: thus aN/anx=O on 

af~ while 

I (5.6) - A ~ N =  6(x, y)---~ 

with V=Su ldx [2, 8]. Likewise let G(x,y) be the harmonic Green's function for f~ so 

that G(x, y)=0 for y E a•, - Ax G(x, y)=6(x, y) and G(x, y) like N(x, y) is symmetric in x 

and y. The Bergman kernel for ~2 is defined as [2] 
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so that 

K(x, y) = N(x, y)-G(x, y) (5.7) 

1 A x K(x, y) = -~. (5.8) 

The solution of a Neumann problem for Au=0 is given by a surface integral 

representation with N(x, y) as kernel. Thus 

f N(x, y) Aui(Y, t) ni(Y) dS r. f (x ,  t) (5.9) 
Ja Q 

Since G(x, y) vanishes for y E aft ,  we may write 

f(x, t) = ~ K(x, y) Aui (Y ,  t) ni(Y ) dSy 
da 

Jo (K(x, y) A ui(Y, t)), i dY (5. I0) 

J~ K, i(x, y) Aui(y, t) dy 

by the divergence theorem and (2.2). Here the subscript comma and index i refer to the 

y variable. Applying Green's second theorem to (5.10) we find two terms vanish and 

fO O/4i f (x , t )= r,i-~n dS. (5.11) 
fl 

From (2.2) and (2.5) we see that if coordinates xa (a= 1,2) tangential to aft  are chosen, 

and the normal coordinate is denoted by n, then on af2 

aun = -- aua = 0 .  
an ax~ 

Hence 

fo aua 
f(x, t) = K(x,y),a--~-n dS. (5.12) 

Here a runs through tangential indices 1,2 only, with respect to the y variable. 

We now consider values of x on the boundary ag). While K(x, y) unlike N(x, y) or 

G(x, y) is regular in the interior of ~ ,  this is no longer true if x and y both lie on the 

boundary. 
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LEMMA 2. The kernels 

OK(x, y) 02K(x, y) 

ay a ' an x aYa 
(5.13) 

are Calderon-Zygmund kernels on the boundary manifold, and hence define bounded 

integral operators on L2(Of). 

Proof. For x sufficiently close to Off, x falls within a boundary neighbourhood 

fibred by normals. Draw the tangent plane to O~ touching at the foot of the normal 

through x; and let x' be the mirror image of x in this plane. Similarly, given 

r(x, y)= Ix-yl, let r' =r(x, y') = Ix-y'l. 
Set 

1 +4_~r,+n(x,y ) N(x, y) = 4ztr 

1 1 
G(x, y) = - -  - -  ~-g(x, y). 

4~tr 4:tr' 

(5.14) 

Here 

1 Axg(x,y)= 0 (5.15) A x n(x, y) = -~, 

and 

aN(x 'Y )=o ,  G(x,y)=0,  xEOQ. (5.16) 
an x 

Applying the standard representation formulas to n(x, y) and g(x, y) we find that 

n(x,y)= l_~_f N(x,Z)~nz(  I 1)dSz  
4 ~  .~ aQ r r ~ 

g(x, y) = - ~  ~ ~n z r-7 dSz 
(5.17) 

where r=r(z, y), r'=r'(z, y) in the integrands. 

We now consider y as lying on the boundary near x, so r' =r, and invoke a lemma of 

classical potential theory: as z---~x on 8f2, 

O ( 1 ) = B ( x , z )  r=r(x,z)  (5.18) 
an z r ' 
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where B(x, z) is smooth and uniformly bounded [17]. 

It follows that the functions 

On(x, y) Og(x, y) 
n(x, y), g(x, y), On x ' Onx ' 

where x, y E 0~ ,  can all be represented by integrals of the form 

fs Fl(x" z) F2(z, y) (5.19) dS z 
f~ r(x, z) r(z, y) 

where Fl(X, z) and F2(z, y) a r e  smooth bounded functions on af2. By dimensional 

considerations, and by direct estimation, it can be shown that such an integral has the 

form 

In r(x, y) F3(x, y)+ F4(x, y) 

where again F3(x, y) and F4(x, y) are smooth bounded functions on 0f~ [17]. 

Consequently it now follows that the derivatives (5.13) of K(x,y) have the local 

behaviour as x->y, r=r(x, y), 

aK(x,y) = 1 O_ ( 1 ~ + 0 ( 1  ~ 
Oy a 2zt Oy~\ r ] \ r /  

02K(x,y)_ I 0 (B(y,x) '~+O(1 ~ (5.20) 

2 .  Oya \----r---] \ 7 /  

where B(y, x) is as in (5.18). The lemma then follows, since 0f~ is a two-dimensional 

manifold, piecewise smoothly embedded in R 3 so that small distances in 0f~ are 

asymptotic to those in R 3, almost everywhere in ag2. By (4.3) the usual order conditions 

implicit in the Calderon-Zygmund theorem for R 2 will apply [9, p. 1072; 23, Chapter 9]. 

To complete the proof of Lemma 1 we note that A f = 0  and hence 

ilVfllzZ = f (vf)=dV= ( f aT as 
Jm On 

~ 'lft'2"all-~n l 2,o 
(5.21) 

by the Schwarz inequality, where the subscript a on the norm indicates integration over 

aQ. By Lemma 2, and (5.12), both f and af/On are represented by integral operators 

with kernels bounded in L2(af~). Hence 

11-908289 Acta Mathematica 164. Imprim~ le 27 avril 1990 
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C ~/ta 2 
IlVfll~< ~ 2,0 

oaffil \ On / " 

(5.22) 

By a well-known technique, we find the last integral is majorized by 

C ~InlOiua[ {IDiDkual+lOju,~l} dr. 

By Schwarz' inequality, and an estimate of Ladyzhenskaya [19, p. 21], we now have 

I lVflh 2 ~ CllVulh(llAulh+llVulh} 

cIIVulh (llAulh +llVfll2 +llVulh}, 
(5.23) 

This last step follows from (2.18) and the triangle inequality. 

But now 

cIIvulhllVflh ~ ~IlVflI~ + KIIVulI~ 

so we obtain finally the inequality stated in Lemma 1. 

Since ]IVu}I2EL2(O, oo), and IIAulJ2EL~(0, T) has been established [4], it follows 

that the right hand side of the inequality of Lemma 1 is in U/2(0, T). Hence we have 

shown 

llVflh ~ t1(0, T). (5.24) 

Chapter II. The gradient and Stokes operators and their time derivatives 

6. An integrability lemma 

The main stage of our proof will consist of a sequence of estimates, each requiring the 

use of an appropriate integrability lemma to contribute its single step to an induction 

process. In preparation, the necessary lemma, which in its original application is due to 

Foias, Gufllop6 and Temam [10], will be proved next. 

LEMMA 3. Let a> l, F(t)~O, F(t) E LP(O, T) where p>O, G(t)~O and for O<.t<~T let 

F'(t)+G(t) <~ KF(t) a+p. (6.1) 
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Then G(t) E Lp(a+P)-I (O, T). 

Proof. Introducing an additional positive unit factor or term on the right side, we 

have 

d ( 1  + F(t))+G(t) <~ KFP(t) (1 + F(t)) a. 

Divide by (1 +F(t)) a and incorporate this factor within the derivative: 

a -  1 (1 +F(t))l-"+ G(t) ~ KFP(t)" 
(1 +F(t)) a 

Integrating from 0 to T, we have 

(l+F(O)) 1-~ § r G(t)dt  
a -  1 (1 + F(t)) ~ 

f0 T <~K FP(t)dt-~ (1 +F(T))I-a 
a - 1  

Note that if F(t)---> ~ as t---~0 then the first term on the left will be zero. The second term 

on the right is majorized by (a -1)  -1 independently of F(T) while the first term is finite 

by hypothesis. Consequently the integral on the left is convergent. Now 

foT P fo T a--qP- G(t) a+pdt G(t)a§ = (1 +F(t)) ~+p ap 
( l+F( t ) )  ~+p 

(fo r )-~-~ (f0 r G(t)dt  .~a+~ <~ (1 +F(t))Pdt a+p 
(1 +F(t)) a / 

by Hflder 's  inequality. Both integrals on the right being convergent, the integral on the 

left converges, and the lemma is proved. 
This result in effect shows that the integrability of G(t) is the same as that of the 

right hand side, over finite time intervals. 

7. A triple squence of estimates 

The presence of a boundary, and of boundary conditions on the u,(x, t), introduces two 

types of difficulties that stand in the way of a direct estimate such as the one used by 

Foias, Guillop6 and Temam for T 3 [10]. The first of these is the distinction between Aui 

and Aui together with the presence of a scalar viscosity potential f,  which has necessi- 
tated the preceding lemmas. The second is the failure of non-tangential space deriva- 

tives to satisfy boundary conditions (2.5), which we shall circumvent by an indirect 
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method commencing with the use of time derivatives, which do inherit the boundary 

conditions and subspace properties. In this section we construct three sequences of 

estimates formed by differentiating the Navier-Stokes equations r times with respect to 

time t, and multiplying by Dtu~, D~tAui, and/-.1 tr'r+lui ' respectively, where r--O, 1,2 .... 

[15]. We present these as a single interleaved sequence in an order determined by 

increasing integrability indices--that is, by decreasing integrability over the time vari- 

able. An induction over r is then established. We shall present the first two groups, that 

is, six inequalities, and then the typical rth stage group of three inequalities. Each of the 

inequalities will be numbered by its reciprocal time exponent or index, which specifies 

the position in the time index diagram of every term in the estimate. A pair of the same 

index are marked (a) and (b) in a convenient order. Constants such as C appearing on 

the right hand side of these estimates may be different at different occurrences. 

The first two such estimates are (3.1) and (3.4), which we repeat here labelled for 

later reference: 

dllull~+2vllVull ~ = 0 

dllVull~+~llAull~ ~ gllVull~. 3(a) 

Thus 

To obtain the third inequality, multiply (2.1) by ui, t~Dt u i and integrate, obtaining 

f ui.,ui,,dx+fui,,ukui, kdx=-fP,iUi,,dx+vfui,,au, dx 
--O-v fnVui, tVuidx 

v - -  (Vu)Edt. 
= - - 2  dt 

(7.1) 

~< 2 Ilu,ll2 Ilull6 IIVull3. 
(7.2) 

Since the right hand side is less than or equal to Ilutll~+llull~ IIVull~ we obtain 
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vdllvull~ +lluAl~ ~ Ilull~ IlVullg 

~< CIIVuI[~ I[Vul[2 [[Vut[ 6 3 (b) 

<- cIIVull~ IIAull~ 

where we have used (2.12) and (2.20). 

To derive the second group of three inequalities, we differentiate (2.1) once with 

respect to time t: 

lli, tt'4- Ilk, t lti, k "~- Uk Ui, kt = - -P,  it"l- l lm ui, t" (7.3) 

Multiplying by u;, t and integrating, we have 

fo.i.tu,.ax+ foui, UktUikdX+(, , J~ Ui.tUkU, 

(7.4) 

= - f  u,.tp.,,dx+vf u,,,Aui.,dx. 

The first of these terms is a time derivative, while the third is 

1 f a 2 1 f~ -~- _ uk : - - ( u i  t) d x  = Z, .]~ C~X k ' - - - ~  Uk, k(Ui, t)2dx = O (7.5) 

by (2.2). The first term on the right is zero by orthogonality while we can integrate by 

parts in the last term. The result is 

1 dllutll ~+v]IVu,II~ = _ (  Ui, tUk, tUi k dX 
2 at 3~ 

Ilu,ll~ IlVulh (7.6) 

<~ Ilu,ll~/~ Ilu,ll,~ ~ IlVull~ 

~< Cllu,ll~ '~ IlVu,ll~/~ IlVulh 

Employing Young's inequality with exponents ~ and 4, and cancelling a term �89 2 on 

either side, then multiplying by 2, we find 

dllu,ll~+vllVu,ll~ ~< Cllu,ll~ IIVulI~ 
5(b) 

<. C ( llutll~~ + llV ull~~ . 
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Here Young's inequality has been used again with exponents ~ and 5 

Next multiply (7.3) by Aui, t and integrate finding 

fo Auitu;t 'ax+fn . . . . .  AUitUktUikdX§ ~lli'tUkUi'ktdX 
(7.7) 

=- foAu,,,p..ax+v foA.,,,Au,,,dx. 
Since Vif, is orthogonal to u;,., the first integral on the left becomes 

fnAu,.,u,,ttdx=- f Vu;.,Vu,,.dx 

- 2 1 d f  (vu't):dx' (7.8) 

_ 1 d IlVu,ll~. 
2 dt 

The first integral on the right is zero by the usual orthogonality property, while the 

second, for a similar reason, becomes 

v f~ ~u;,, hue., dx = vll~u,llg. 

We thus have 

I d ilVutll~+vllAutll~ = : A u ,  t{u k tu, k+uku, kt} dx 2 dt Ju . . . .  

Il A.u,[lz { maxxe n ID t ul livull2+llull6 IlV utll3} 
<~ II~,u,llz(fllVu,ll~/: II/~u,ll~/z IlVullz+CllVull: IlVu,llg/z IIAu,II~/:} (7.9) 

<~ CIl~,u,ll~/: tlVu,ll~;: IlVull: 
v IIAu,ll~+fllVu,ll~ IlVull~ 
4 

by Young's inequality with exponents 4 and 4. Cancelling the II/~u,ll~ term, we find 

d llvu,ll~ + 3vll&u,ll~ <~ CllVu,ll~ llVull~ <~ f (llVu,ll~'/5 +llVull~ '} 7(a) Z 

the last step by Young's inequality with exponents } and 5" 
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Multiply (7.3) by ui,, and integrate, obtaining 

v d IlVu,ll~+llu.ll~ = - (Ui,.{Uk,,Ui,~+ukui, k,} dx 2 dt Jn 
-< Ilu.llz(max IO, ul IlVullz+llull6 IlVu,ll3}- 

By Young's inequality (2.12) and the interpolation inequalities, we find 

d v--IlVu,ll~+llut,ll~ ~ cIIVull~ IlVu,ll: IIAu,llz. dt 

(7.10) 

7(b) 

These first two groups of inequalities display many major features of the higher 

order calculations, and serve to initiate the induction on r the order of time derivatives. 

We now give the inequalities for the typical rth stage, found by differentiating (2.1) r 

times with respect to t. Henceforth we shall also use Dt to indicate a time derivative. 

With the help of Leibniz' formula for a higher derivative of a product, we now obtain 

r r 
OrtUi, t+  D t U k D  t Ui, k = - D t P , i + v O t A u i  . (7.11) Jmllwm ~ j / 

j=O 

Multiplying by D~ u i and integrating, we find after some routine steps, 

1Dt[ID~uII~+vHD~VulIg=_ ~ (r) fi r j r-j i= ~ J DtuiDtukD t Ui, kdX.  (7.12) 

The term with j = 0  on the right is 

fo OrtUi'UkD~Ui, kdX=--~ , -- Uk,~(Dtu i) dx=O (7.13) 

by (2.2). For the terms with 0 < j < r  we estimate as follows: 

f OTuiOr 1101 11OUVulI: 1107 ull6 nil3 

<- CIID, VulI: 110,~ ull~ ': IIDr nile;: 11OUVutI: 
(7.14) 

-< c1107 Vull: 110r ull~;: lit), ~ Vutl~;: IIDUVull: 
~ ~..~. r 2 j j r-j  2 2r liB, Vull2+CllOt nil: 110, Vull: 110, Vull:. 

Finally the term with j = r  becomes 
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ffl  r r ~ r 2 D t u iD t UkUi, k dx'~: liD, nil4 IlVulh 

uil~ IID, uli6 ilVull2 <~CIID7 i/2 , 3/2 

<~ CllDT Vull]/2 IIDTull~/2 IlVulh 
~<v  r z r 2 

2r liD' Vulh +CllD, ulh IlVull~ 

(7.15) 

by Young's inequality with p=~, q=4. Combining all terms, multiplying by 2, and 

noting certain cancellations involving r 2 [I D, Vull~ terms, we find 

r 2 r 2 { r-I } 
O,llO, ulh+vllO, Vulh <~ c IIDTull~ IlVuII~+~ IIO/ull~ liD/Vulh IlOr,-~Vull~ 

j=l 
r , - ,  ,,+5} 

c ~ II~ull~ j-' + ~  II~Vull~ j+' (4r+ 1) ~< 
j=l jffiO 

Here we have used the homogeneous version (2.13) of Young's inequality. 

Multiplying (7.11) by r " D t Au i and integrating, we find 

j=O \ J ]  

~< lID7 Aulh]~ r IID/ull6 IlDT-JVull3 

+ max ID• ul liD[ ~Vulh 
j=[r/2]+ l J 

( [r/2] 
<- cII Dr, Aulh~ ~ liD/Vulh IIDT-:V ulI] :2 IIDT-~AulI] :2 

L j=0 

§ ~ IIO/Vullg:2llO/Aullg'~llDT-JVull~}. 
j=[rl2]+ l 

(7.16) 

By Young's inequality, and treating the terms for j--0 in the first sum and j=r in the 

second sum separately, we find that, for any real y with 0<~,<2, 

1 r 2 r -  2 ~  DtllD, Vulh+2vllD, Aull2 -~ (2-y)  v] iD~ /XulI~ 
/ . r  

(7.17) 
[r/21 } 

liD, Vulh IlVull~+ ~ lID/Vull] IIDT-JVulI2 IIDr,-iAulh §  �9 2 
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Again, multiplying (7.11) by r~r+l /"it U and integrating, we find 

20,110:Vul12+llOT+lult~ n,+lui ~ r j r--j = -  --t DtukDt ui,~dx 
j = 0  

f [ r / 2 l  ]lD~t-YVull3 + ~ (r)maxlD~ulllDT_JVull2) <_ or+l  u r 

11O, Vull~llo, Vull~ liD, AulI= / ~ . . d  
Lj=O 

+ ~ 110~Vull~ :2 }tDr Aull~ :2 IlD;-~Vull2 
j=[rl2]+l ) 

It/21 

l ( 2 - Y )  IIDr+lullz-+CN~ 'l t 112 l../-- J 2 r-j r - j"  << - -  110, Vull2 liD, Vull21lOt Aull2. 
2 j=O 

Cancelling the 11D~+~u1122 term on the right, we find after multiplying by 2 that 

(7.18) 

[r/2] 
r 2 r + l  2 j 2 r-j r-j " vDtllO, Vull2+~,ll 0 ,  nil2 ~< c ~ liD, Vull2 liB, Vull2 liD, Aull2 

j=o (7.19) 

~< 2 (Z-y)11o7'~u11~+c(~,) 11O7Vu11~ IlVull~+C ~ 11O~Vull 2 lloT-JVul121107-JAul12 �9 
j = l  

Adding the resulting forms of the two preceding inequalities, and cancelling terms 

on the right containing 11D7/~utl~, we obtain 

r 2 r - 2 r + l  2 O + v) o,llO, Vull2 +y(vllO, AuJl2 +llD, ul19 
f t,21 } 

~< c(~,) ~.llD: Vull~ IlVull~+~ lID{ Vull~ IIDTJVulI2 IIDT-JAulI2 �9 
(4r+3) 

8. Deduction of the estimates for I~Vull2, 1~7Au112 and I~+~u112 
By putting the preceding inequalities into a form to which Lemma 3 applies we can 

deduce in succession, and by induction on r, the requisite estimates for u, Vu and Au 

and their time derivatives of order r. Further combinations and calculations are re- 

quired for this. 

The estimate IIVU]]2EL2(0, oo) has been made from 1 in Section 7. In view of 3(a), 

F3(t)=llVull~ ~ t~(0, T) satisfies Lemma 3 with a=2  and a3(t)=vtlAull~. Hence (73(0 has 

the same integrability as F3(t) 3, that is, G3(OEL~:3(O, T) so that II/~u112 ~L~3(0, T). 
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But this method will not work directly for 3(b) which must be combined with 3(a) 

to gain the result for Ilu,ll:. Adding 3(a) and 3(b) we have 

(1 +v) d IlVull~+ vllAull~§ Ilu,ll~ ~ C(IlVulI~§ IIX7ull~ 112xullg. (3) 

By Young's inequality again, 

CllVull~ IIAull2 ~< 2 IIAull~+gllVull~ 

so we find 

(1 + v ) d  IIV ull~ + 2  II~ull~ + Ilu,ll~ ~ C lllVull~. (8.1) 

With F3(t)=(1 +v)ltVull 2 and G3(t)=~vlls the lemma applies with p=  1 and a=2 

so we conclude G3(t ) E Ll/3(O, T). Hence IlNull: and Ilu,ll: are both in L~3(0, T). 

To estimate IlVu,ll:, we start with 5(b) which however also has a IlVullg ~ term on the 

right side. We therefore add 3(a) multiplied by 311Vull~ which raises its singular index 

from 3 to 5 and makes possible the introduction of Fs(t)=llu,ll:+llVull 6. We obtain using 

(2.14) 

_ _  2 6 2 4 2 ~ 10/3 10 d [llu,ll:+llVutl:]+v[llVu,lt:+311Vulh IIAulh]-~ C[llu,lh +llVulh ] dt 
(8.2) 

<- c[llu,ll~ + IlVull~] 5/3. 

Now Lemma 3 applies with p=~, a=~, and Gs(t)=llVu,l122+311Vull~ 112xull 2. It follows 

that Gs(t ) E L1/s(0, T) and therefore that IlVu,lh ~ zYs(0, Z). 

At the next level IIAu,lh and Iluttllz are to be estimated, and we must combine 7(a), 

7(b), and 3(a) (or (8.1)) multiplied by 511Vull~ thus forming an inequality homogeneous of 

singular index 7: 

~tt [ ( 1 + v)Ilv utll~ + Ilv ull21~ + 3 vllAu,it ~ + tIut, ll2 + 5vllv ull~ IIAull~ 

~< c[llVu,ll~ IlVull~+llVu,llz II,Xu,llz IlVull~+llVullg'] (8.3) 

<. C[llV u,ll~4/% llVullg'] + ,vll~u,ll~. 

Choosing e= 1 and canceling the term in II~u,ll~ on the right side against part of the 

corresponding term on the left, we find 
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With 

and 

[(1 +~)tlVu,ll~+llVull~~ 112xull~ 

C[llV utlt~'/5 + llV ull~ ~] 

<~ c[(I +v)IlVu,ll~+llVull~~ '/~. 

F7(t)=( l +v) llVu,ll~ +llVull~ ~ ~ L ':~(O, T) 

(8.4) 

and let 

4r+ 1 

F4~+3(t) = (1 + v) lID7 Vull~+f4r-l(t) 4~73 

4 

a4r.3(t) = vl[O ~ A . [ I 2 +  liD; + lblll~--~ ~ F2r-~ (t) a4r - ,(t). 

(8.7) 

(8.8) 

c7(0=vtlA-,ll~+ll. . l l~+SvllV.ll~llA.II~, 

Lemma 3 applies with p=~, a=~ and we conclude that G7(t)ELltT(0, T). Hence 

IIAu,II2 and Ilu.llz are both in L2/7(0, T) as required. 

This completes the first two stages of an induction on r; we have shown the result 

for IlVullz, IIAullz and Iludlz at the initial stage and IlVu,ll2, IlAu,l[2 and Ilu,lh at the stage 

with r= l .  We now assume the result holds for r - l ,  that is for IID{VulIz, IID{Aulh and 

IIoi+'ulh for j<~r-1, and prove that the result holds for r, that is, for IIOTVull2, liD7 Aull 
and IIO,+lulh . 

To establish the result for IIDTVull z we must rely primarily on estimate (4r+l) but 

the presence of various terms on the right hand side means that multiples of lower order 

estimates must be combined with this one. By building up the necessary combinations 

recursively it is possible to keep the number of such operations at each stage to a 

maximum of two. The ensuing definitions for F4r+l(t) and G4r+l(t) also involve F4r_l(t) 

and G4r_l(t) for which the L p classes are already established by the earlier stages of the 

induction. 

Thus, for r=2, 3 .. . .  , let 

4r-I 4r-1 
r 2 4r--7 4r-3 4r-5 

F4r+l(t) = IlOtull2+~--(F4,_a(t) +F4r-3 (t) (8~ 

2 4 
a4r+ l(t) = vllOT Vull~ + f2:-_~ (t) ,r-~ a4r_ l(t) + f 4 r _  3 (t) a4r_3(t) (8.6)  
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Here, initially, 

F3(t) = I lVul lL G3(t)- vll-&ull~+ll., l l~ 

Fs(t )  = II.,ll~+llVull~, = Ilu,ll~ +F](t) 

Gs(t) = vllVu,ll~+3vllVull~llAull~ o r  vllV. , l l~+3F~(t)  G3(t) 

F7( t )  = ( l + v ) I l V u , l l ~ + l l V u l l ~  ~ = (1 +v) I lVu , l l~+F~( t )  

G7(t) = vllAu,ll~+llu.ll~+51lVull~(~llAull~+llu,ll~)= ~llAu,ll~+llu.ll~+5~ 63. 

The index of Fq(t) is q - 2  and of Gq(t) is q, for every odd positive integer q, while all 

Fq(t) and Gq(t) are positive quantities, unless IlVull2=0 in which case u=0.  

The basic inequality for the previous stage of  the induction is 

4r-3 
i ~ 4r-5 F~r_3(t)+G4r_3(t ) .~ C F4r_3(t ) . (8.9) 

Assuming as the induction hypothesis that (8.9) holds, we multiply it by 

4 
4 r -  I 4r-5 
4 r - 5  F4~-3 (t) 

and add to (4r+ 1). Likewise, we multiply the second inequality (assumed by hypothesis 

as established at the second part of  the preceding stage of induction on r): 

4r- 1 
4r -3  

/;4r-l(t)+ 4 r - 7  G4r-l(t) ~< CF4r-l(t)4r-3 (8110) 

by 
2 

4 r - /  - - .4~-3 
4r------~ l~4r- l It) 

and add to the preceding relation. Thus we obtain 

4r-I 4r-I -I 
Dt IlDr~ull~+ 4.r-~7. f 4,-l(t) 4--~-3 + f  4r-3 (t)4r----~5 I 

r4r-- t j 
2 4 

+,,liD; VUH~+f 4r-I(t)4r-3G4r-l(t) + 4r-- 1 1~4r-5r ~ G4r_3(t) 
4 r - 5  " 4r-3 ~ ' 

Ij____~t 8r+2 r- l  8r+2 4r+l 4r+l]  
X +F (t ~4r-5 +f4r_l(t) 4r-3 ~<C II~ull 4j-l+ IID/VulI~ j+l 4r-3. .  
j=0 

(8.11) 



However 

D E R I V A T I V E  E S T I M A T E S  F O R  T H E  N A V I E R - - S T O K E S  E Q U A T I O N S  

8r+  2 4r+  1 

{IOJt ull 4j-I <<~ F4j+ l( t) 4j-I 

4r+  1 

<~ F4j+ 5( t) 4j+3 

' 4 r +  1 

F4j+9(I) 4j+7 

4 r + l  
_~ lff" (,'~4r-5 
~.~ ~ 4r_3~,t! j =  1 , . . . , r - 1 .  

173 

(8.12) 

8r+2  4 r + l  

IID/VulI~ i+1 ~ f4j+3(t) 4j+l 
4r+  1 

<~ F4j+ v(t) 4j+5 

4r+  1 

F4j+II(I) 4j+9 ( 8 . 1 3 )  

4r+ 1 

-< F el a 4 r - 3  i o F - - 1 .  "-~ 4 r_1~ ,1  , .j = v  . . . . .  

Hence by (2.14) the right hand side of our inequality (8. I 1) is bounded by 

8r+2  4r+  1 4r+  1 "] 
( ' ,  r 4 r -  1 liD, nil= +F4r_3(t)4r-5 + 4r--74r_l f4'-'(t)4'-3 J 

r 4 r - I  4 r - I  -] 4 r + l  

- -  4r -7  F4,_l(t)4r_3]4,_l (8.14) <<. C [IDtu]]22+f 4r_3(t) 4r-5 + 
L 4r-1  

4 r + l  

= C F 4 , + l ( t )  4 ' - ~  . 

This establishes the basic inequality (8.9) for F4r+~(t) in the form 

4r+  1 

F'4r+l(t)+G4,+l(t ) <<. C F4,+I(t) 4r-I . (8.15) 

In Lemma 3, assuming as induction hypothesis F4,+I(t)ELI/~ T), we have 
p= 1/(4r- 1), a + p = ( 4 r +  1)/(4r- 1)= 1 +2/(4r-  I) so that a = I + 1/(4r- 1). Hence Ga~+l(t) 
Zl/(4r+l)(O, T) by Lemma 3. It follows that IIDTVulh ~ L~"'+~)(0, T). 

For the second stage of the induction proof, we therefore have as hypotheses the 



174 G . F . D .  DUFF 

integrability results up to IID;-'AuII2, IIDTull2 and IlD;Vull2 and wish to establish the 

result for IIO;Aull2 and IIO71ul12 . 
The basic inequality for the previous stage of the induction is taken to be 

4r- 1 
, . 4r-3  F'4,_l(t)+ ~ - ~  G4~_l(t ) ~< C F4r_I(t) 4r-3 (8.16) 

for r~>2. 

Assuming (8.16) as a part of the induction hypothesis, multiply it by 

4 
4r+l  F ~t~4,-3 
4r -3  4r-1~ 

and add to (4r+3), wherein also 7 is set equal to (4r+l) / (4r-3) .  Then 

[ 4 r+ l ]  
D,[(I +0 IID;Vull~+F4,_,(t) 4"-3 ] 

4 

+ 4r+ 1 (v lID7 A.II~+ IIOT'ull~} + ~ F4,-, (t) 4"-3 G4r-,(t) 
4 r -3  4 r - /  

-< c IIDTVull~llVull~+ IID:VulI~IIDT-JVulleIID;-JAuII2+F4,-,(t) 4r-3 �9 
j=l 

(8.17) 

To apply Young's inequality to the product terms on the right hand side, particularly 

those containing I[D~AuI[2, we write the right hand side of (8.17) in the form 

I- 8r+6 4r+3 
f']llDrVull4r+l +llVull8r+6+F (t ~S~ 
""Ell t 112 II 112 4r-l" / 

4,-sj+I 4: ] 

+ 2 ,  II~,Vull~ IlDT-JVull~ '-~9+' IID~-JVulI: '-'9+' IID~-JAull2 
1 j=l 

8r+6 4r+3 
<< .'.h,Dr v ,,4r+I_I_,,VU,~Sr+6_FF :t~4-'~-3 ~LI I ,  Ul12 II 112 4r--1 ~ )  

[r/2] 8r+6 8r+6 )l j  
+ ~  (IID~, Vu[[ 4j+' --~-IID;-JVllII2 4(r-j)+l 

j=l 
[r/21 8,/ 

+~ ~, II~-JVull~ "-~+' IID;-JAulI~ 
j= l  

(8.18) 

where e is a positive number not exceeding 1/4r 3. We also note that 2j<~r in the sums 

above so all exponents used are positive. 
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Again, by the definition given in (8.7), 

8r+6 4r+3 

IlD/Vull~J +l ~< F4j+3(t) 4j+l 
4r+3 

< F4j+7(t) 4j+5 
4r+3 

<~ F4j+ l l(t) 4j+9 (8.19) 

4r+3 

~< F tt~ 4r-3 "~ 4 r _ l ~ j  , j = O  .. . . .  r--l .  

Also, using the definition of G4,§ successively with r replaced by r - j + l ,  
r- j+2 . . . . .  r -1  and r, we find by (8.7) and (8.13) 

8j 8 ( j -  1) 4 

vllDT-gVull~(r-~9+, IIDTJAulI~ ~< IIDT-JVulI~,-~+I F4(r_j)+3(t) 4(r-j)+ 1 G4(r_g)+3(t) 
8(,/-2) 4 

~< IIDT-iVull4(,-,~+, F4(r_j3+7(t) 4(t-.D+5 G4(r_,)+7(t) 
8(j-3) 4 

~< IIDTiVuII2~,-~ +~ F4(,_D+II(t) 4(r-J)+9 G4(,_jS+ll(t) 

: (8 .20)  
8 4 

r-j 4( r - j )+ l  4 r - 7  liD, Vulh Fj.~ (t)'G4r_5(t) 
4 

<<. F4r_l(t) 4r-3 G4r_l(t). 

The terms containing [[D~-:Au[[ 2 on the right hand side of the inequality (8.18) can 

now be replaced by small multiples of  f4r_l(C)41(4r-3)G4r_l(t) and thus cancelled against a 
small part of the corresponding term on the left side in (8.17). Assuming that the sum of 

all such multiples f o r j = l ,  ..., [d21 does not exceed 

we find 

( 4 ~ 2 ( 4 r + l ~ = 4 r + l _ ( 4 r + l ~ 2  
4 r - 3 /  \ 4 r - 7 ]  4r-7  \ 4 r - 3 /  

Dt [(1L +v) 4,+1] r 2 4 r - 3  IIDt Vull2+F4r_l(t) J 

+ 4r+l  { r "  2 +  r + l  2 4r+l  F4~-f } 
4 r - 3  vlID, AulI2 lID, u112+4--/~_3 4r-i(t)G4r-l(t) 

(8.21) 
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8 r + 6  4 r + 3  ] 

-<C/lID, ulh +e4r-l(t) ] 
r 4�9 1 ] 4t.+ 3 

~< el(1 § Wil l  + V~r-,(t)~7-~ ] u �9 

This establishes the basic inequality for the next induction step in the form 

4 r + 3  

, + 4r+ 1 
Fr4r+3(t) 4---r-~_3 G4r+3(t) <<- CF4r+3(t)  4r+l . (8.22) 

Since F4r+3(t)~ LI/(4�9 T) by the induction hypothesis, we have p= 1/(4r+ 1) and 

a+p=l+2/ (4r+l )  in Lemma 3. Hence a = l + l / ( 4 r + l ) > l  and it now follows that 

G4r+3(t ) ~ Ll/(4r+3)(O, T). From this we now easily obtain both 

2 

liD;AnNe and IIDT'ulh ~ L'�9 T). 

This completes the induction proof for IIDTVulI2, IIDtAulI2, IIDT+lulh for r=O, 1,2 . . . . .  

9. Deduction of the estimates for s = 0 ,  1,2 

The results of the preceding section show directly that for D~//i and VD t u i the estimates 

(4.1) stated in the theorem are established. For the second order space derivatives we 

must also use Lemma 1 and its analogue for higher time derivatives. 

Differentiating (5.12) r times with respect to time t, which is a parameter in the 

above representation, we obtain 

aD~ u~ 
Drtf = nK,  a. -~n dS. (9.1) 

Repeating the calculations of Lemma 1, we find 

�9 2 �9 �9 " �9 liD, VfH2 -< CHDt Vuii2(liOt Aulh+ClllO, VuJh). (9.2) 

The first factor on the right lies in LZ/<4�9 T) and the second in LrJ(4�9 T). 

LEMMA lr. IIDTVfII2 lies in Lllt2r+n(O, T). 

By the estimate of Ladyzhenskaya [19, p. 21], we have 

IIOTO~Dkull~ ~ C(IIDT AulIg +IIDT Vu[O (Dr = a/axj, j = I, 2, 3) 
(9.3) 

r "  2 �9 2 �9 2 -< C(IID, AulI=+IID, Vflle+IID, VulI9 
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and the right side expression lies in Ll/(4r+3)(O, T). This establishes the result (4.1) of the 

theorem for the second order space derivatives and their time derivatives of every 

order: now (4.1) of the theorem is established for s=0, 1,2 and r--0, 1,2 . . . . .  

From (2.20) now follow 

2 

[[D~ Vu[[ 6 ~< CHD ~ Aul[ 2 E L 4r+3 (0,  T) 

and 

2 

IIDTulI6 CIIDT VulI2 L 4"+ ' (O, T). 

Hence by (2.16), max lDrtu[ELl/(2r+l)(O, T). This establishes the result (4 .2)of  the 

theorem for s=O. 

Chapter III. Estimates for tangential derivatives 

10. Tangential coordinate systems 

To estimate higher order space derivatives, we shall work with tangential derivatives 

that vanish on the boundary. Thus we introduce tangential coordinate systems in which 

the equation of the boundary has the form xn-x3=O. We shall work locally and do not 

enter explicitly into any aspects of the theory of integration on manifolds that may be 

required to define the integrals used. 

To construct a tangential coordinate system, choose an interior point PoE f2-0g2 

and an e-sphere S(Po, e)cf~-af~ with centre P0. Let w(P) be the harmonic function 

with boundary values zero on af~ and unity on aS(Po, e). Then the level surfaces 

w=constant and the sphere r=constant ~<e where r=r(P, Po)=IP-Pol form a family of 

surfaces f'dling s By a smooth deformation in an outer neighbourhood of r=e we can 

ensure that the modified family of surfaces is C | embedded in R 3 throughout the 

interior of [2. Now let x3=w in g2-S(Po, e) and x3 = 1 + e - r  in S(Po, e) so that the new 

family of surfaces become coordinate surfaces x3=constant. 

On each surface x3=c let isothermic coordinates xl and x2 be introduced, with line 

element 

as 2 = h~(d~ +dx~)+h~ d~  (10.1) 

where hi and  hs  are smooth functions. Within S(Po, e), we choose stereographic 

coordinates x1=~i, x2=~2, x3=r where [38, p. 6] 

12-908289 Acta Mathematica 164. lmprim6 le 27 avril 1990 
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Fig. 2 

_ 4 ?  (d~+d~2)+dr2. (10.2) as2 

By considering two hemispheres we may restrict to bounded values of ~1 and ~2 but this 

is not strictly necessary. 

In curvilinear coordinates the gradient operator has components Vi=h~.IDi, where 

D~=-O/ax~; thus [24, p. 32] 

3 3 
(Vu)  2 = ( v , , , ) 2  = I ,,2 

i=l i=l h'-~i xi (10.3) 

In particular, within the sphere S(P0, e) 

V a u = 2r D a u. (10.4) 

For our isothermal coordinates h2=hl and these factors are non-zero except at r=0. 

Thus Viu and Diu are locally equivalent, in the sense of integral norms, except at 

P0! r=0. In the sequel we shall estimate norms of Da u, a=  1,2, and higher derivatives 

D~ u, s= 1,2, 3 . . . . .  By our next two lemmas it will be shown that V~ u is majorized by a 

sum o f / ~  u norms based on three tangential coordinate systems with distinct poles P1, 

P2, P3, situated at the vertices of an equilateral triangle as shown in Figure 2, where all 

tangential coordinate surfaces shown can be chosen as three families of concentric 

spheres. 
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LEMMA 4, There is a constant K depending only on P], P2, P3, e and f2 such that 

3 
~7(1) u 2 ~ K II o 112 ~ (j) 2 IIDo ulh. ( IO.5)  

j= l  

Here the parenthesized superscripts refer to one of the three selected tangential 
(t3. coordinate systems. A similar result holds for V~ , ,  i= 1,2, 3. 

Proof. We have 

-S(P v e) d S(P1, t) 

fu [D~gul2 dx + ( ,Vu[2 dx 
<~gl -S(PI,e) JS(PI,e) 

(10.6) 

where K] is determined by the minima of the hi outside S(P1, e), and IVu[ 2 is the 

Euclidean squared gradient. 

Since the tangential coordinate systems centred on P2 and P3 create a nonsingular 

three dimensional coordinate system in S(P1, e) with one redundant coordinate among 

the four available tangential coordinates, we may express the Cartesian derivatives of u 

as smooth bounded linear combinations of the available tangential derivatives in these 

two coordinate systems: 

au . au O u .  Ou 
aX i -- /~i  ~ +/Ui ~ "t- V i OXI2 ) ( l  O. 7)  

OXit ~"~i2 

and hence we may write 

I,I ((/)(2),,)2-1-(Ft(3), "~2"t ( Vu)2 ~ ' ~ 2  ~t"a ~ --  Jt 'a ~!  /" 

Integrating this inequality over S(P1, e) we finally obtain 

(10 .8 )  

(I) 2 ~ (1) 2 (2) 2 (3) 2 V u ~ K  D u + K ( D  u + D  u ) fl ~ Ih ,ll o 112 211 o IJ2 JI ~ JI2 (10.9) 

whence the lemma follows with K=max(Kl, K2). 

When t) is not simply connected, a tangential coordinate system will have other 

singular points. The above reasoning can still be applied to such systems if it is assumed 

that, of the three tangential coordinate systems employed, no point is singular for more 

than one, while at such a point the surfaces x3=constant for the remaining two systems 
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are not tangent. Assuming finite connectivity and smoothness, such conditions can be 

satisfied through C = deformations. 

For higher tangential derivatives we shall use a tangential multi-index j,  so that 

IIO~ ull~ ~ Jl J2 2 -- liD1 D2 ulh (10. I0) 
Jl +J2=J 

and similarly for the higher gradients. 

LEMMA 5. There is a constant Ks depending only on f~, PI, P2, P3, e amd s such 
that 

IlV~1%ll~-< Ks E IID~%ll~. (10.11) 
! <~j<~s 
1~<i~<3 

We shall demonstrate the result by induction on s= l, 2, 3, ..., and at each stage will 

also show that a similar inequality holds for the norms of all the mixed gradient- 

derivative quantities Va Da... u of s factors, any number of them being V or D in any 

order. 

For s=2 we may suppose D~u and DaDau given of finite norm. By Lemma 4, 

V~D# u and V~ u have finite norm. Now 

( hl~ 
JV~D~u---~1D~u in K~-S(P,,e) 

Da Vt3 u = / 2~a (10.12) 

t v,O ur in 

The first of these clearly has finite norm while the second is bounded by the norms of 

VaD ~ u and Va u. Finally, boundedness for V~ Va u now follows from that of D~ V a u by 

Lemma 4. 

Proceeding by induction we suppose that the lemma and all boundedness results 

for mixed products hold f o r j = s -  1. As additional hypothesis at the level s we have the 

boundedness of DaD,. . .  D~ u with s D factors: By Lemma 4 we find VaD~ ... D a u is also 

bounded. Now in S(P1, e), 

Da V a ... D x u = V~Da... Dx u+ ~-fr Da... Da u; 

the first term is bounded and the second term with s -1  D factors is majorized by 

VaDv ... Da u which having also s - 1  factors is bounded by hypothesis. We continue to 
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move the V~ factor to the right by permuting it with successive D factors. At a typical 

step we have 

D~ ... D r V~D~ ... D~ u -- Da ... V ~DyD~ ... D~ u+ D~ ... ~ D ~D~ ... D~ u. 

Boundedness of the first factor has been established at the previous step while the 

second gives rise to 

r 

which as above is majorized by the bounded s -1  factor term VrDa... D~ D~... D~ u, and 

to several further differentiated terms of the form (I/r) 6#yD~D~... D~ u with s - 2  factors 

including the factor D~. Such a term is majorized by the bounded s - 2  factor term 

6#TV~D~... D~ u. When V~ has been shifted to the rightmost position of a V factor in 

our general term, we introduce another V# factor replacing D# on the left, by Lemma 4, 

and shift it step by step to the right as far as necessary, by the same process. 

Proceeding in this way we can, using only terms bounded by hypothesis or previous 

calculation, arrive at the conclusion of boundedness for any desired product of s V or D 

factors in S(PI,e). The corresponding calculation for the complementary region 

f~-S(PI, e) is even more straightforward and will be left to the reader. 

Thus we have reached the necessary conclusion for stage s of the induction: 

boundedness of all mixed VD products with s factors. In view of the given data and the 

induction process, which must be carried through for all components in all three 

tangential coordinate systems, Lemma 5 follows. 

In our estimates of D~ u to follow, we shall establish that these quantities have L 2 

norms that lie in LP(0, T) where p is a decreasing function of the order of derivatives. 

Since these estimates hold for an arbitrary choice of the pole Pl, it will follow that the 

tangential gradients V~ u have L 2 norms in the same LP(0, T), as is desired to prove for 

the main theorem. That is, it will suffice from now on to consider only estimates for the 

D~ u to obtain those for V~ u. 

Because Pl is arbitrary, and in view of the proof of Lemma 4 of this section, these 

results actually show that locally, in the interior of f2, all space derivatives of u can be 

thus estimated. Since however all tangential coordinate surfaces must become parallel 

as aft  is approached, such a result does not yield global L2(~'~) estimates for the normal 

derivatives. These will be found in Section 15 below by another method. 

Certain formulas and commutation relations will be needed for the estimates in 
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tangential coordinates. In the metric (10.1) the Laplacian operator is given by [24, p. 51] 

with h2=hl 

AV=h~h____~a{~xl(h 8v~+ 0_8_[ h 8v'~+ O_8_(h A 8__g._v'~'~ 
'8Xl] Ox 2~ '8x2] 8x 3 \h  aox , ] j  

(10.13) 
= a(x) (D~ +D~) u + b l(x) D 1 v + b2(x) D z v + c(x) D~ o + e(x) D 3 o 

the coefficients a, b~, b2, c and e being thus defined. We note that c(x)=h;2=-I in 

S(Po, e) and c(x)~O in •. Also a(x)=h?2=h22=(l+~+~)2/4r 2, bl(x)=b2(x)=O and 

e(x)=2r -1 in S(Po, e). For brevity their dependence on coordinates will not be shown 

explicitly, and we shall denote their derivatives with respect to x~ or x2 with subscripts. 

Differentiating and using (10.13) to eliminate the term in D~ u, we find 

c, / Cl \ 
D, Av = aDlV+ 7 a v +  ~ a , -  7 a )  (D] v+D~ v) 

00.14) 
"}-(bll-~ -bl)Dl v...F(b 2 Cl b2" ~ Cl 

, , - c  j 
Differentiating repeatedly, eliminating D~ u at each stage using (10.13), and replacing 

terms such as D 1 Av ... . .  D k Av using (10.14) and its successors, we find a commutation 

relation of the form 

Da Ao = AD: v + E A~ ADk~ o + E B~ Dx D~ o 
#<a #<a 

#~a #<a 

(10.15) 

where the a~, B~, C~ and E~ are smooth coefficients but with singularities at Po, as 

described below. The two component multi-index fl with fll+fl2=k has non-negative 

components and fl<a means fl is subordinate to a, i.e. fll<<.al, f12<~a2 and 

fll+fl2<al+a2=n. Here fl<<.a should be interpreted as equivalence of order: 

fll+fl2<-al +% only. The behaviour of these coefficients in S(Po, e) is 

A ~ - 0 ,  B ~ = O ( 1 )  C~=0,  E~=O((I+~I+~2)2~ 
, r2 ] .  ( 1 0 . 1 6 )  

We shall also use a second commutation formula obtained in a similar way but 

replacing terms AD~ v ... . .  AD~ v at intermediate stages using the intermediate preced- 

ing results. This has the form 
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#<a #<a 
(10.17) 

~<a ~<a 

with smooth coefficients that satisfy conditions (10.16) also. 

Similarly, we may establish the commutation formula 

D~Viu= ~ G~V, DJ~u (10.18) 
I~l=0 

where Gi~--1, G~_ 1 =nD~(log hi), ... and ~ is bounded, smooth and independent of r in 

S(P o, e). The dual formula 

ViDa = ~ G c D # V i u  (10.19) 
I~l=0 

- 6 t _ _  , with Gin= 1 and similar properties, shows that D~ u i is solenoidal when u i is solenoidal�9 

We conclude this section with a lemma that enables us to improve the order of 

estimates arising from the highest order terms in the last sum on the right in (10.15) or 

(10.17). I f f l<a  and [fll=k=lal-1 = s - 1  then two equivalent cases can arise: a=fl+(1,0)  

or a=fl+(0,  1). In the lemma, we choose the first case for definiteness; the second case 

is exactly similar. 

LnMMA 6. Let  E be a smooth function on Q - P o  satisfying the fourth condition o f  

(10.16) and let a=y+(1,0) .  Then there is a constant C independent o f  v such that 

f oL v k 2 2 vdx <-CllVD~-'vll~. (10.20) �9 E.Dr(D 1 +D 2) 

Proof. Consider the portion of the given integral taken over S(Po, e) the central 

sphere of the tangential coordinates defining Da. We note that 

and write 

dx = r2drdf2 = r2dr 4d~1 d~2 
(1+~+~) ~ 

( I + ~ + ~)2 DktD2 + D2~ v r2dr 4d~l d~2 
i,= Js O'.o.el 

dr E1 , k 2 2 = D~ v" Dy(D 1 +D 2) v d~l d~ 2 . 
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Here E/denotes a bounded smooth function for i= 1,2 . . . . .  Integrating by parts over the 

closed sphere surface we have 

f] f]f_  Is dr s k s k -- E2(D 1 D ~ vD iDvv + D 2 D e vD~Dp)  d~l d~2 
o o  o o  

fo ff f_  - dr (E3(D~ k vD1Orv+ g 4 De vO2Okr v) d~ I d~2 

(10.21) 

foo" dr E2(V 1 s k s k 4r2d~ d~2 
= - D a v ' V '  D p + V z D a v ' V 2 D r v )  (I +r 

4r2dr 
- dr E3(V l DSa-lv)X+E4(Vl DSv-lv'~72D~-lo)) 

| (I+r162 2 

in view of (10.4) and the condition a=y+(1,0) .  The second integral is clearly of the 

desired type and so need not be further considered. In the first integrand we use the 

relation 

Dl V a V =  DI 2r o a v =  V ~ D i v +  D~v  

where a = l  or 2. The second term is majorized by Vav, in view of (10.4). Writing 

V,D~v  V l O  1 "-1 = D i V I D ~ - a v - ~ ' D , D ~ - ' v  = Dy v 
r 

we find the first integral in (10.20) becomes 

f~ dr E2DI (V 1 s-I s-I  s-I V2D~-Iv)  4rZdr162 - | | D r v. V1D r v + D I V 2 D  v v" (1+~]+~22) 2 

fo f]ff  4t2d'l d'2 + dr E 2 (D~(D~-Iv).V~D~r-lv+D2(D~r-'v)'V2D~r-lv) 
| | (1 + r 1 6 2  

Again the second integral is seen to be dominated by an integral of the desired form and 

can thus be dropped from further consideration. The new first term can be expressed as 

fo f_" f~ ~ (1+~+~) 24r2d~ld~2 - dr | ~o E 2 4 3 1  {(VIDSv-'o)z+(V2DS~-'o)2} 

and then integrated by parts with respect to ~ around the closed sphere, yielding 

i i  ~ l ~ l  | 
- -  dr  . (10.22) Dy v) +(VzD r v) ) (1+~+~)2  2 J0 L|174 s--I 2 ,--1 2 4r2d~ld~2 
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where 

E s = D 1 E 2  1+~]+~ E2 

is also a smooth bounded function. This last integral having the desired form, we see 

that 

Ilsl ~< c .Is(~e 0, ~)(VD~-'0) 2 dx .  (10.23) 

The remaining portion of the integral over f~-S(P0, e), can be treated similarly 

since D a = h ~ V ~  is bounded by a multiple of V~ at all ordinary points. Also the 

integration by parts with respect to tangential coordinates is taken over closed (or 

infinite) level surfaces of the normal coordinate, and so does not introduce integrated 

terms. Details are left to the reader. This completes the proof of Lemma 6. 

11. Derivative estimates for the pressure 

Since the tangential coordinate systems are curvilinear, and not in general Cartesian, 

the pressure term does not disappear from the estimates and inequalities for higher 

order tangential derivatives. We therefore set down here the necessary estimates for 

the pressure terms which, as in Lemma 1, will be given in terms of u derivative norms. 

From (2.6) and (2.7) it follows that 

p = b + v f  (11.1) 

where f is the harmonic scalar viscosity potential (5.9) satisfying boundary condition 

(5.2). The "volume pressure" term b(x ,  t) satisfies in view of (2.2) 

with 

A b  = - ui, k Uk, i = -- (U~ Ui, k),i 

= - - ( u i u k ) , , k  
(11.2) 

ab - - = 0  on 0fL (11.3) 
an 

In terms of the Neumann function we have 
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f 
b(x, t) = Jo N(x, y) ui, k(Y, t) Uk, i(Y, t) dy 

_ f aN(x,y) ui(Y,t)uk, i(y ' t)dy 
J. OYk 

-- ( OEN(x' y) ui(Y, t) uk(Y, t) dy. 
J. OYi OYk 

(11.4) 

Since 02N/Oyi ~Yk has the singularity of a Calderon-Zygmund operator in R 3, [9, 23], we 

may expect the singular or integrability behaviour of b(x, t) to be equivalent to that of 

uZ(x, t). 
Turning first to the viscosity potential f ,  we have by (5.12) 

L Ou~(y, t) (11.5) f(x, t) = nK'~(x'Y) Onr dSy 

where by (5.7) and (5.14), 

K(x, y) = I +k(x, y) (11.6) 
2Jtr' (x, y) 

with k(x, y)=n(x, y)-g(x, y) regular nonsingular on the boundary. Hence, for a tangen- 

tial derivative De, 

D e f =  +k(x, y) ~ (y, t) dSy O~p Oy a 2a-tr'(x, y) c3ny 

1 aua 

ay e Oy~ o~p Oy,~ j 
dSy 

= L  [O(1/2~r')02ua 02k(x,y) OUa]dSy" 

(11.7) 

We note that ~p is a tangential coordinate with fl= I or 2 and yp the corresponding 

tangential y coordinate. Since af2 is a closed manifold, the integration by parts brings in 

no integrated terms. As the singularity of a(r'-I)/ay~ is Calderon-Zygmund on a~ ,  we 

find 

iiDeflle, ( Oua Oua De-Tn-n + -Tg-n 12,0)" 

Iterating this calculation for j=2 ,  3 .... we find 
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IID~flh, o~C~ Dh atta 
h=0 fl - -~--n  2,0 

(11.8) 

and by (5.18) a similar estimate is obtained for IIDA af/anlh, a. 
By Green's formula 

IlVD~fll~ = foa Ds~fOD~f~n dS-jr f D~SfAD~fdx. (11.9) 

The first of these integrals is bounded above by 

~n ~ h ~Uct 2 
<~ C D~--~n 2,o IID~flh,0 D~ 2,o h=o (11.10) 

As in the proof of Lemma I we may estimate the right hand side in (11.10) by the 

volume norm expression 

Es-C ~ IIVD~ ulh {llhDh~ull2+llVD~ull2). (I1.11) 
h=0 

The second integral on the right side of (11.9) can be estimated by means of the 

commutator expression (10.17) for AD~f, and we obtain 

2 o, 
~<~ Y<~ (11.12) 

k 

- f l  k -f l  k 2 2 f/ +2 C~'D~'f+2EyDr(O'+D2) dx. / 

The first term, and the first sum, vanish in view of (5.1). A typical term of the second 

sum is 

fo , ~ ~ -fo , =#V3D~fdx D#f ByDaDrfdx- D#f.By 

in view of (10.4) and (10.16), w h e r e / ~  is bounded over f2 including S(P0, e). The second 

sum in (11.12) is therefore bounded by 

C IID~ fl12 ~ IIVDkv fl[2. (11.13) 

A typical term of the third sum is 
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f D~f" -~ k ~ D ~ f ~ V D ~ - l f d x  C rDyf  dx = 

where we may note from (10.16) that C~r vanishes in S(P0, e). Since k - l < s  it follows 

that the third sum in (11.12) is also bounded by an expression of the form (11.13). 

To analyze the last sum in (11.12) we note that Lemma 6 provides a bound 

CIIVD~ -~ fll~ for the highest order terms. A similar calculation but ending at a point 

corresponding to (10.21) will yield the same order of estimate for the second highest 

terms, and so on for lower terms, so that a bound 

S-1 

C ~ IlVDhvfll~ (11.14) 
h=0 

is obtained for the whole sum. Noting I~D}fllz<<.clIv~D~-lfll 2 where fl=y+(1,0), we 

obtain from (11.13) and (11.14) the inequality based on (11.9) in the form 

s - I  

IIVD~ fll~ ~ 2Es+CIIVD~-' fll2 ~ IIVD~ fl[2 
h=0 

$ - I  

<.2E,+C ~ IIVD~ fll~. 
h=0 

(i 1.15) 

Thus we have again used the property that the gradient operator dominates a first order 

tangential derivative operator. The case s=0 of this inequality (I I. 15) is equivalent to 

Lemma 1. We may substitute this result on the right hand side, and so obtain the result 

for s= l .  Upon substitution successively for s=2,3 ... .  the result now follows by 

induction on s. 

LEMMA 7. For s=0, 1,2 . . . . .  

IIVD~flI~ <- C ~ IlVO~ull2{llADhaull2+llVO~ulh} 
h=0 

(11.16) 

where the constant C depends on s and on the choice of  tangential coordinates but not 
o n  u .  

A similar estimate, which we need not state explicitly here, holds for time deriva- 

tives of f i n  terms of the time derivatives of u of the same order. 

The necessary estimate for b can also be found by means of the commutator 

formula (10.17). Since D~ is tangential it will commute on aQ with a/an. Thus 
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IIVD~blI~ = f~ t~ D~b'OD~bdS- fo  D s a b ' A D ~ b d x ' O n  

Since the normal derivative term vanishes on afrO, the first integral is zero. The second 

integral on the right hand side becomes, in view of (11.2), 

fo ] - a  j - a  k - k 2 2 - O~b A#D#Ab+ B#D3D#b+ ~Dk~b+ E~D#(DI+D2)b dx 
L j = 0  /3<a /~<a /~<a 

s- -1  

<~ cIIoL bll6 ~ IIO~(Vu)211~5+C ~ IlVoho bll~ 
j = 0  h=0 

$ $ - 1  

~ CllVOabll2 ~ ,  ,--, IlVO~ ullz llVD~-' ull3+c ~ llvO~ bll~ 
j = 0  1=0 /=0 

s [j/2] s -  1 

~< 1 tirOL bll~+C ~ ~?~ IIVD~ ull~ IIVDs ull~ I1,~-' ull~+C ~ IIVD'o bll~. 
j = 0  1=0 1=0 

To estimate t h e / ~ ,  C~ and ~ type terms here, we have proceeded exactly as in the 

proof of Lemma 7. Note that in the estimation of the nonlinear term, the L 2 norm is 

applied to the factor with the lower singularity. 

I t  now follows that 

IIVDL blI~ <~ C ~ ~ ~-1 IIVD~ ull~ live-' nil= IIhO~-'ullz+C~, IIVDt~ bll~. 
j = 0  /=0 I=0 

For s=0 this relation is 

IlVbll~ ~ CllVull~ Ilhull2, 

which can :easily be obtained directly. Substituting this result on the right hand side we 

obtain the result for s= 1, and so on by successive substitution. Thus we have estab- 

lished 

LEMMA 8. For s=O, 1,2 ....  we have 

s 

j = 0  I=0 

where C depends on s and on the tangential coordinate system, but not on u. 

For completeness we state here the modified form of this lemma needed to 

estimate time derivatives D~VD~ b. 
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LEMMA 8 r. For r, s=O, 1,2 . . . .  we have 

�9 [jl2+r-2h] 
r s 2 ~  h I 2 IIO, VOob[12- C , liD, VDoulI211DT-hVD -'ulI=IIDT- AD -'ulI2 

h=0 j=0 l=O,l<~s 

where C depends on r and s but not on u. 

The demonstrat ion is similar using Leibniz '  formula for the time derivatives of  

(Vu) 2 and again applying the L 2 norm to the factor with lowest overall singularity. 

12. Tangential derivative inequalities 

To establish estimates of  the tangential derivatives of  u, Vu, Au and their time 

derivatives, we differentiate the Navier-Stokes  equations with respect  to tangential 

variables and then conduct  calculations similar to those of  Sections 7 and 8 above. For  

each value of r=0,  1,2 . . . . .  an induction on the order  s =s~ +s2 of tangential derivatives is 

necessary, so the details of  the induction are now somewhat different. Moreover  the 

normal coordinate derivatives are not included in our summations at this stage, so that 

full tensorial invariance is not preserved [31, p. 36]. Thus the divergence property (2.2) 

cannot be used, as it was earlier, to annihilate the pressure terms; instead the estimates 

of the preceding Section I I will be employed. 
/ 'is _/-~sl FiS2 We denote by ~a  u - ~ l  ---2 u a typical tangential derivative of  order  s~+s2=s and 

denote by IIDLull ~ the sum of  squares of  the L2(ff2) norms of  all such tangential 

derivatives of  order  s. For  reasons of  homogenei ty  in t h e o r d e r s  of  integrability, we 

ADa u, the latter being consider at the same time the space derivatives V/T~u and s-i 

replaced in inequalities by " s-~ AD~ u. Thus we will obtain estimates ofDS +1 u, DSD3 u and 
DS-lr.~2 u 3 u simultaneously at a given stage of  induction on s; and this structure also 

applies to all orders r of  time derivatives. 

Applying the operator  D~tD~ to (2.1) we find, using Leibniz '  formula, and (10.15), 

r (:)(;) 
D~ t + l o a u i  2 l )h  l ) J  i ,  F t r -h l '~ s - j , ,  L ' t  ~" a ~ k ~ ' t  ~t~'a ~ i , k  

h=0 j=0 

�9 $ r S 

- - D  t D~(b, i+vf, i)+ vD t D a Au i (12.1) 
s--I 

= -Drt D;(b,i+vf,,i)+ rOt ADS ui+v 2 a~ 07 ADI# U i 
I=O 

s - 1  s s - I  

a D r  l + 2 B a D t D 3 D t  u , + 2 C #  ,D, ui+ 2 ~ , , 2 2 a �9 E#DtD#(DI+D2)ui.  
If0 1=0 fl<a 
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Multiplying by D~D~ u i and integrating by parts in the leading viscosity term on the right 

hand side, we find 

f~.~ r,$ ( ; ) ( S )  h j,.r~r_hr~$_j., dx OtllOTOLull~+vllOTVOLull~ = -  OTOLui E OtOa"~'- ' t  "-'a "i.k 
h,j=O J 

- J .  DTDSa ui{DTD ~ b, i+vDTD~ f, i} ,:ix 

L s--I 
-]-V DrtDSauiE a r I A~ D t ADfl u i dx 

~=o (12.2) 

Io r s a r 1 
+V D t O a u  i B ~ D t O 3 D 3 u i d x  

o I=O 

r s ~'~ raDrDl uidx +v DtDauiz.a "-'# t 
I=0 

f ~  s--I r s ct �9 I 2 2 +v D t D , ~ u i E E e D ,  D'~(Dl+D2)uidx. 
I=0 

Let us denote the integrals on the right side by 11 , 12+13,14,15 , 16 and/7 respectively. By 

(10.18) we have 

f~ r,s (h){X~l.~hDJ ' l)r_hS,~ = - Gkl VkD~ uidx. 
h,j=O I=0 

We observe that the term in the sum with h=O,j=O, l=s gives an integral similar to (7.5) 

that vanishes after integration by parts and use of the divergence condition (2.2). 

Indicating omission of this term from the sum by a prime, we integrate by parts 

with respect to Vk and use (10.19), obtaining 

I1~ D:~kD~I.t i (r~(S~DhOJuka~O~-hOlauidx 
h,j,l=O \I ' l l  \ J  ] 

L~176 ~ t l r [  s h j a r-h , 
- D I D,~ u idx. h,j,l=O \h I  J DtD'~uk(VkGkt) 

Hence 

r, s, 5--j 

ullz+CllDtD~ulh+C IID, D~ukD, D~ uill~. IId<<_~6IIDTVD ~ 2 r s 2  E !  h j r - h i  
h,j,l=O 

In this last sum the opposite corner term with h=r, j = s , / = 0  may be estimated by 
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C IIDTDL Uk" u,ll~ ~ c  lID7/~ ull~ Ilull~ 

~C lID7 VD~ ullz IID~DL ullz IlVull~ 
V �9 ~< 16 liD, v ~  ull~+cll~oL ull~ IlVull~. 

Further terms of the triple sum with 2h+j/2>~r+l/2 will be estimated by 

r~r-h r,l 2 h j 2 r-h l 2 IlDhtO~ukv, o~uill2<~JlD, Oaull3llD, Daull6 
h j h j r-h l <- CliO, O ~ ul12 liD, VD o nil2 liD, VDo ull~ 

while if 2h+j/2<r+l/2 we write 

IIO~O~ -h , 2 h j 2 r - h i  2 u k ~  Oou, llz<~llD, O~ull611 D, D~ull3 

<~CII oh VD j ull~ r - h  I liD, DoulI211D,-hVNoulI2. 

The involution exchanging h with r-h,  and j with 1, shows that the latter set are 

included among the former, so that only the sum with 2h+j>-r+l/2 need be included if 

the constant C is adjusted. 

Now by integration by parts, 

while 

112[ = f D~D~uiD~D~bjdx 

ifo  = -- DtViDaU i GilDtDab dr. 
/=0 

r s ~ ' ~  r --~CIID , VD~ ull~ IID, D~I bll2 
l=O 

s-I  t 
( l~= 0 �9 I 2 �9 2 ~< 3Y2 IIDTVDL ulI~+C IID, VDobllz+llDtbll2 

]I31 = fflDrtDsa uiO~OSaf, i dx 

-- I- foo:VD:u,  D:D f I 

(12.6) 

(12.7) 
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$ 

<~ CIID7 VOLull2 ~ IIOTOtJII2 
/=0 

s -1  ) 

<~-~llOt VO~u II~+C II~ Vol,~fll~ +llOTfll~ �9 

We may integrate by parts in 14, since D~u=O on aQ: 

/o r s a r 1 1141 = v DtVDau i AeDtVDeuidx 
I=0 

s - I  

~CllO, VD~ ulh ~ IIOTVO~ulh (12.8) 
/=0 

s - I  
r s 2..i. <~ v IlO, VO,~ull2 C~llOTVD~ull~. 

16 i=0 

In/5 we integrate by parts with respect to D3, noting that the surface integral vanishes: 

fff] S-I  r s u 1/51 v DiD3 Da i 2  a , , = B e D t D e u i dx 
I=1 

s -2  

<<. ClID 7 VD• ulh ~ 11ot VD~ ulh (12.9) 
/=0 

s -2  
r s 2 

<<. v ilOtVOaull2+C~ llOTVO~ull ~ 
16 I=0 

where we have taken account of (10.4) and (10.16) to convert one Da factor to a 

gradient. Then in/6 we obtain 

1161~V f~ DTDsu~C~D~DlflbldxI=O 

<~ ClloToLullz s IIO;O~ulh (12.10) 
/=0 

$ 

~ < C ~  -~. r t 2 liD, D e ul12. 
/=0 

For the integral I7 we can prbceed exactly as in (11.12) - (11.14) with D~uiin place off ,  
and so obtain the estimate 

$-1 
I, <~C'~. " I 2 liD, rOe u,l12. (12.11) 

I=0 

13-908289 Acta Mathematica 164. Imprim6 le 27 avril 1990 
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The foregoing results will be combined with a second inequality obtained by 
~ r  ~ r ,s - I  changing s into s - 1  in (12.1), multiplying by ~t  z ~  u i and integrating over fL This 

process yields, after an integration by parts similar to (3.2), and noting that D~ -~ u i is 

solenoidal, by (10.19), 

1O,llO7 VDL-'ulI~ + vllOt AOL-'ull~ 

fo . + D:aD:_ , . i  ~ / s - l ~ . . h . . ,  . . � 9  - -  ~ I ] L' 'u~uk~'  u~ Ui, kaX 
h,l=O 

ff~ r " s-I �9 s-I r Ds-I  + DtADa ui{DtDa b.i+vDt a f i }  dx 

fQ s-2 r" s-I a �9 l + Dt ,~D a u i E A # D t l X O ' # u i d x  (12.12) 
/=0 

ff~ s-2 + O t ~ D S a - l u i E B ~ D : O 3 O l o , i d x  
/=0 

f ~  S--I ~ , ~ d g s - I  ~ ~ D  ~ t + ut  ~, ui2_,Ca tD'~u idx 
l= 1 

fQ s-2 r " s-I a �9 l 2..{_ 2 + DtADc, u i E E ~ D t D ~ ( D I  D2)uidx. 
I=O 

We shall denote the integrals on the right side of this second relation by Ji ,J2+J 3, 

J4, Js, J6 and J7 respectively. 
In the estimation of  Ji by HOlder's inequality it is necessary to use an L2(~2) norm 

for the first factor, so that an L6(f~) and an L3(fl) norm or an L| and an L2(fl) norm, 

could be available for the remaining two factors. 
We apply the L6(f2) norm to the factor D~t D t u when it has the lesser total order of 

singularity. Otherwise we apply the L| norm to this factor. We have 

Ifo  '(ht �9 " s-I / s - I N  h l s - t - lG~D,  VkDa uidx 
h,l=O j=0 

r, s - l~ - l - I  
_< � 9  ~-1 h I ]ID;-hVDJau]]3 --:CIID, aD,, .112 / ~,,~=o IID, Do.JIo 

\2h+ll2<r+(j- 1)/2 
r,s- l ,s- l-I  ) 

"1" E h I r-h IIO, O,,ull| VD~ u[12 
h,l,j=O 

2h +//2~>r+ (j- 1)/2 (12.13) 
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r , s - ~ - l - I  
<-CII07AD7 lull2 h t 110, VO~ ul1211or~ -h VD~ ull~/21107 -h AO~ ull~/2 

h,l,j=O 
\2h+l12<r+(j-l)/2 

r ,s- l ,s-I-I  ) 
-1" E h 1 1/2 1t0, VO~ull2 liB, h" ' 1/2 r - h  j aD, ull2 110, VO~ulI= 

h, t,j=O 
2h+ U2~r+(j- 1)/2 

where (2.16), (2.20) and (2.21) have been invoked as appropriate. There is an involutory 

correspondence h--->r-h, l--->j between the terms of the two sums which therefore can 

be combined into one such sum. Employing Young's inequality at the same time we 

now find the estimate 

r ,s- l ,s- l - I  
11 r ~ s-I 2 IIDt VD~uII2110, AD~ulI211D, VDoulI2. IJd<.--~llO, aO~ ull2+C ~ h I h -  I r-h j 2 

h,l,j=O 
2h+l/2>~r+(j - 1)/2 

(12.14) 

The term with h=r and I=s- l , j=O in this sum also contains �9 - s-i liD, AD~ ul12 so that we 
apply Young's inequality once more and obtain 

I/ll ~ ~ IID7 Ao~-'ull~+c{ 11o7 VD71ulI~ IlVull~ 

r ,s - l , s - l - I  } 
E !  h I h ~ I r - h  j 2 + 110, VDaulI21ID, AD~ulI211D, VO~ull2 

h,l,j=O 
2h + ll2>~r + (j-  1)/2 

(12.15) 

where the prime on the summation sign denotes omission of  the term h=r, l=s-1 ,  j=O. 
Noting the lemmas of the preceding section we write the expressions for J2 and J3 in the 

form 

s - 1  

IJ2[+ IJ3l ~< C[]D; AD~ -1 ull2 E (lID; VD~ bH2+v[[D; VD~fI[2} 
1=0 

s - I  

r "  s - I  2 v IID, AD~ ull2+C~ �9 I ~< 16 t=0 {liD, VDa blI~+IIDTVD~flI~}. 
(12.16) 

For the integral J4 we use the orthogonal decomposition Avi=•v i+Vif  a, where 
- -  r l vi-D t D~ ui, and so write, noting (Aw i, Vile)=0, 
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s - 2  
r -  s - I  I J41 ~ CliO, ADs ulh ~ lID7 AD~,,II2 

I=0 

s - 2  
r "  s - I  2 II II v lID, ADs ulh+C~ r ~ I 2 16 t=o OtADsu2 

(12.17) 

by Young's inequality. 

In Js, we see from the second condition of (10.16) that one Ds factor should be 

converted to a Vs to absorb the r -~ factor. Since D3 corresponds to V3 we obtain 

s - -2  
_< r ~ s - I  IJsl-~ CIID, ADs u l l ~  IIDTV3 VsD~ulI2. 

I=O 

The latter factor may be estimated as in [19, p. 21] by the formula 

�9 1 _< r "  I r IlOt VVD~ ul[ 2 -~ C(llOt AD, ull,+llO, VD~ nil2) 

so that we obtain by Young's formula 

s - -2  
r A o s - I  u 2 r -  I 2 �9 I 2 (12.18) 

By the third condition of (10.16), we see that Ds and Vs are equivalent in J6, and so 

obtain 

s - !  

IJ~l ~ ClID7 ADTaulh ~ IlOTO~ nil2 
I = 0  

\ 1 = 0  

__~ ~' r - s - I  2 I s - 2  
~ _ _ I I D ,  ADs ull2+c ~ r , 2 , 16 ~ t=0 liD, VDt~ ulh + II D, ulh } �9 

(12.19) 

From the fourth condition of (10.16) it is evident that two Ds factors in J7 should be 

converted to Vs operators, and these are best chosen as the factors D~+D~. The integral 

over S(Po, e) has the form 

fs (1 + ~ + ~ ) 2  w 4r 2 (D~+D~) v dx = dr w(D~+D~) v. d~, d~ 2 

=-s  f_i ~ (D,w'D,v+D2w'O2v)d~,d~2 

(12.20) 
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where w and v are smooth functions. Supplying the factors (1-t-~q-~)2/4r 2 in numerator 

and denominator we find the expression 

- d r  ( V  I w .  V l v - - } -V  2 w .  V 2 v )  r2dw 

where w denotes solid angle. 

We may now regard V~ as the gradient operator with respect to arc length s~ along 

the appropriate parametric curve on Sr, and, since the isothermic curves form an 

orthogonal net, write 

dS  = r 2 dw = ds I ds 2. 

Integrating by parts in the reverse direction we now find 

dr w(Vl(V l v)+ V2(V 2 v)) ds I ds 2 = dr w(V~ v+V~ o) dS~ 
S r *tO J S  r 

= ~ w(V~ v+V~ v) dx. 
(Po, D 

(12.21) 

The corresponding integral over g~-S(P0, e) can be shown to have a similar form. 

Consequently in view of [19, p. 21], and Young's inequality, 

s--2 
r "  s - I  a [J7l-- D t A D s  u i E  Ea r t 2 2 - D t D#(D I +DE) u i d x  

I=O 

s - 2  
r "  s - I  r ~ 1 r -~ ClID, ADs ul12 ~ (liD, ADaulh+llO, VD~ulI9 

/=0 

s -2  
r "  S--1 lID, ADs ull~+C~(llDT" t II 1 2  , t 2 16 t=0 ADau2+IIDtVDaul2) 

(12.22) 

Combining all the foregoing inequalities and multiplying by 2, we find after certain 

cancellations 

" 2 . .  

(liD, VD~ ull~ liD, AD~-' ul[~} 

r s 2 r S--I 2 4 ll , o 112 II , ~ 11211 Ih -~C  ( D D  u + D V D  u ) Vu 
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r,$,s--I 

+ ~ t  liD, ~ D~ ull, IID~ VD~ ulh lID: -h VD~ ull~ 
h, I,j=O, 2h+j/2 >~ r + l/2 

r , s - l , s - I - I  

+ E t IIDht VD~ull ~ h- , liD, AD,~ ul12 lID7 -h VD~ ull~ 
h, I,j=O, 2h + l/2>~r +jl2 

�9 s - I  [fl2+r-2h] +ZZ Z ' liD, VD~ ull~ IIOT-" VD ~-' ullz liD7 -h s ulh 
h=O j=O l=O,l<~s 

s - I  

+E 
j=O 

, - 2  +X 
/=0  

IIDTVe~ulh � 9 : �9 {liD, AD ~ ull~+llo, 

IIO, AD,~ulh+ IIDTVDgulI~+ IIO, Doull �9 
I=0 I=0 

(12.23) 

Denote the seven summations on the right hand side of (12.23) by El,... ,  S7 in the order 

that they appear there. 

We shall cancel off against the left hand side any terms containing lID7 s in 

the following way: In the triple sum Es such a term appears for h=O, /=0, j = s - 1 ,  
namely 

2 �9 s - I  r " s - I  IIVull2 liD, VD,~ nil 2 IlOt AD a nil 2 
[ 8 r + 4 s + 2  \ 

AD,~ ulI=+C~IID, VD,~ ni l2  +llVull2 fl, 
(12.24) 

The first term w i t h j = s - 1  in E4 can be majorized by 

'1.' �9 ~ s - I  2 �9 s - 1  2 32[[OtAOa ull2+CllO, VOo ul12 (12.25) 

and the first of these terms will cancel against part of a term on the left hand side. The 

gradient products in E4 are identical with those in E5 and Ef, so that E4 reduces in effect 

to 

s - 2  . s - 2  . s - 2  

[tD, ADa nil2 ~< IlDTXDs + lID7 VD~u[[~. (12.26) 
j = 0  ~ j = 0  j = O  

As these sums are included in E5 and E6 it is clear that, adjusting C (as necessary), we 

can drop E4 altogether. 
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13. Tangential derivative estimates 

We now apply Young's inequality to the product terms on the right hand side of (12.23), 

noting that the maximum singular index is 4r+2s+ I. As in Section 8, certain gradient 

and Stokesian terms must be kept together, so that the necessary lower order estimates 

can later be adjoined consistently with the integrability lemma. These terms will also be 

given a sufficiently small coefficient to make possible cancellation against left hand side 

terms. The result of these calculations is the inequality 

D, ~ ~ 2 ~ VDaulIz+[IDtAD a ul12} {IIDtDau[[2+IID~VD~-I ulI2} + {liD ~ s 2  ,"  ~-l 

. ulh <~Cr s ~ l]l-JtL)a Ulh r s-1 
h,l=O 

r , s - I  24r+2s+l r , s - I  ") (13.1) 
P h l 4h+2l+ 1 " l 2 + liD, VV=ullz +v liD, h AOaullz 

h,l~O h,l=O 

r, s -  1 24(r-h)+2(s-1 - 1) 

t h , liO~D~ull2z. + v__ E ][Dt VD=ullz 
8 h,l=O 

Here the prime on the first two summations over r, s indicates that the "upper right 

corner" h=r and l=s is omitted. On the last sums the prime indicates omission of h=r, 
l=s-1.  In view of (3.12), we have supposed that the singular degree of every term 

except those in E5 has been raised to the maximum 4r+2s+ 1 by multiplying by a term 

KIIVu[la>~I. This means that when we apply (2.13) with appropriate exponents, only 

terms with singular index 4r+2s+ I will appear, including terms in IIVull~ r+4s+2. Es is 

exempted from this process because terms containing the Stokes operator/~ will occur 

only in Gh,j{t) SO that a different disposition must be made for these terms. 

The constant C on the right hand side of (13.1) will be definitively denoted by Cr.~ 

and will not be increased hereafter. 

We now define, first for r=0, s=0, 1, 2 .... then for r, s=0, 1, 2 .. . .  and so on for all 

positive integers (r, s): 

r s + l  4 r + 2 s - I  r , s - 1  

Fr,,(t) = IIDTDLulI +IIDTVDL- ulI +-   ~ttFh "(t)4h+ZJ-' + 5 C  E f h, t(t)+ l (13.2) 
~a .J 2 r'Sh, l= 0 h = 0 j = 0  

v(ND, VD~uIi2+IID,AD~ uil2) Gr, s(t)= r , 2 ~" ~-I 2 

r s+l 4(r-h)+2(s- j )  r ,s-1 

+ E  ~ t t 4 r + 2 s - 1  Fh i(t) 4h+2j-I Ghj(t)+C~, ~ E Gh ,(t). 
hoo  h,-o 

(13.3) 
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Again the double prime denotes omission of  the terms h=r,  j = s  and h=r,  j = s + l .  

Terms with 4r+2s-1  <0 or 4 h + 2 j - 1 < 0  are also omitted from the sums. The terms on 

the right side of (13.1) evidently satisfy 

2 4 r + 2 s +  I 4r+2s+ 1 
r~h~ l  4h+2t-1 _<][7 r162 4h+2t- 1 
Lit IJczbl 2 -.< 4 h , l~ j  

2 4r+2s+ 1 4r+2s+ | 
h I //112 ~ F ft  ~4h+2[1+1)-I IID, VD= ~< h . l+z , ,  

h "  I 2 < :  vllD, AOa U[lz ~ Gh.,+t (t) 

(13.4) 

and 

2~r -h)+2(~- t -  5) 4(r-h)+ 2(s-I- l )  

vllOhVO~ull2 ,h+2,+,  ~ - ,  = , , + 2 o + , - ~  IID, AD ~ ulI2 <~ Fh.,+ ~ ( t) Gh, t + ,( t). 

We also note the inequalities, where h<~r, l<<.s: 

1 I 

F (t) 4h+21-1 ~ F  ( / ] 4 r + 2 s - ]  
h, I r, s ," 

r,s 4r+2~+1 r,s+l 4r+2s+l 4r+2S+] 

E l  F (t)4 h+2l-I ~ t I  F r < ~ C F r s ( t )  4r+2s-I ' h,l ~ ~ h,I ~ I , 
h,l=O h,l=O 

r,s 4 r + 2 s + l  4 r + 2 s + !  r,s 4 r + 2 s + l  

E ~ f l l ; ,  ~t ~ 4h+21+ I ? Fh, l+ 1 (t) 4h+2t+l ~ F r ,  s ( t )4"+2"-1 + l - d  - -h , /+ l  ~ : 

h, I=0 h, I=O 

4r+ 2.s + 1 

<<- CF~, s (t) 4,+2s- 1, 

4r+2s+| 
VU Sr+4s+2 ~< F, (/)4r+2s+l < F (t) 4,+~-I 

2 0,1 r,s ' 

G ~t~+'~ ~ ~'-*~*~'=~ 
r.s 4(r-h)+2(s-t-J2 t 4 r + 2 s - I  Fh j(t) 4h+2j-~ 
E l  F~.l+l(t) 4h+2(/+1)-1 Gh, t+l(t)< ~ r.s.. h,~=O 4 h + 2 j - 1  ' 

h, 1=0 

~< 2Gr,,(t), 

r, s+ 1 4r+2s+ 1 4r+2s+ 1 
" ~ l t  4 r + 2 s -  1 i f  t).. 4 h + 2 H  

4 h + ? i  1 -Fh"  <(4r+2s+l)(r+l)(s+2)Fr"(t)4~+2"-1 
h, I=0 . . . .  - -  " 

( 1 3 . 5 )  

Gh,y(t) 

and 

r, s 4h +21+ ! 4 r + 2 s +  

C,~ ~_J C" F (t)  4h*zt-~ < C F  (t)  "§ �9 h , I  k , !  r , s  " 

h, I = 0  
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The general inequality with which we shall work has the form 

4r+2s+l 

~ Fr, s(t) + Gr, s(t) <. C~, s Fr, s(t) 4r+2s-1. (13,6) 

We shall proceed by induction with fr, s(t) EL l/(4r+2s-l)(O,T) and thus prove that 
l/(4r+2s+ 1) Gr,~(t)EL (0, T). However we must first show that (13.1) can be transformed 

into the form (13.6). For this purpose we multiply (13.6) (where r, s are replaced by h,j) 
by 

4(r-h)+ 2(s-.~ 
5 4r+2s-1 Fhj(t) 4h+2j-1 
4 4 h + 2 j - 1  ' 

and add the resulting inequalities for h--0,1 . . . . .  r, j--0, 1 . . . . .  s+ l ,  but omitting h--r, 
j=s and j - -s+ 1. Also for h=0, 1,..., r and /=0  .. . . .  s but omitting h=r, l=s we multiply 

(13.6), with r, s replaced by h, l, by ~Cr, ~ and add on. 

As induction hypothesis we assume that these preceding inequalities are valid. We 

now obtain from (13.1) 

DtFr,~(t)+ 5 Gr,~(t)+Cr,~ ~ t  Gh, l(t ) 
h,l=O 

I 2 4r+2s+ 1 2 4r+2s+ 1 

~Cr, s IlOTOLull2 ~ +IIDtvD~" 

r, s + ,  4r+2s+,  r, s -  1 4r+2s+ 1 

+C l.~Vt Fh, t( t)4h+21-1 + E f h, l+lt(l $4h+2(l+l)-lj 
h,l=O h,l=O 
r,s-, ~ .[_ 1 r,s-l~.~] 1~ (t ~-4(r-h)+2(s-I-l) 

+v ~t IID,hAD~ulI~j "-~ L ,  --h,/+l,, Gh, l+l (t) 
h,l=O h,l=O 

r, s+ l  4r+2s+l +~: . ,  r, s 4h+21+1 
+ 5 ~ ! !  4r+2s+l  4h+21-11 Cr s E l  Cth, iFh, l(t)4h+2t -1 

-4"h.~'--0 4h+21-1 Fh't(t) 2 ' , = h,l=O 

(13.7) 

We note that the Stokes operator terms are together majorized by the sum of G 

function terms on the left hand side. 

Also the sum containing the products of F and G terms is less, term by term, than 

the corresponding sum in (13.3) plus Gr, s(t). Hence this term cancels against 14Gr, s(t) on 

the left side. Inequality (13.6) now implies, by (13.5), 
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[" 4 r+2s+ l  r,s-I 4r+2s+l  

O t f  r, s ( l )+Gr,  s(t) <<. r i f t ,  s(t) ~ +2 h,l=OE Fh, l(t) 4 h + 2 1 - ~  

r.s 4r+2s+ 1 r,s-I 4r+2s+ 1 "~ 
K:" (f34h+2(l+l)-I-l- ~'. F ( t  ~4h+21-1 ! +9_ E' 
Zh, l+l~,.! -- ~ h,l ~" / 

4 h,l=O h,l=O 
4r+2s+ 1 

<- CF�9 4r+2,-1. 

It now follows from Lemma 3 that 

l 

G�9 E L  4r+2s+1 (0, T) 

and hence 

(13.8) 

(13.9) 

2 

tlDt AD~ ull 2 E (0, T). (13.10) HDt VD~uII2 and r "  s-I  t 4r+2s+l 

14. Deduction of the estimates for s3=0, 1, 2 and r, s1, s2 arbitrary 

At a given stage in the induction proof of the preeding section we establish (13.10) and 

at that stage corresponding results for all lower order tangential and time derivatives are 

also known. By Lemma 7 and its analogues for general values of r, we can then 

conclude �9 s- 1 liD, VD~ f]12 E L 1/(2�9 (0, T). Noting that the tangential derivatives of u vanish 

on af t ,  we may again apply the estimate [19, p. 21] and obtain 

r s-I  2 ~  r s-1 2 r V D s - I  u 2 IIO, O~OeD~ ultz'~C{llDtADa ullz+llO, a Ilz) 

�9 " s - 1  2 �9 s - I  2 �9 s - 1  2 <-C(IID,AD~ ulIz+IID, VDa fllz+llO, VO~ ul12) 
1 

E L  4r+2s+l ( 0 ,  T ) .  

(14.1) 

We are now in a postition to undertake the main proof by mathematical induction 

on s, and then on r. The results of Section 7, 8 and 9 assure us that F0,0(t), F0,1(t) and 

F0,2(t ) satisfy the induction hypothesis on s. Consequently Go, o(t), Go, l(t) and Go, z(t) 
satisfy the conclusion of  these induction steps. At any step s of the sequence with r=0,  

the new induction hypothesis requires [IDSaull2 and IIVD~ -1 ut}2~-.L2J(2s-l)(o, T). But the 

result of the preceding induction step s - 1  assures us that HVDS-luII2 (and also 

]]/~D~-2uU2 and IIAO~-Eull2) satisfy precisely this same condition, which since 
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JJD~ ull2<Cl[VD~ -1 ull 2 ensures the necessary induction hypothesis for the next step. This 

proves the induction for r=0,  s=0,  1,2 . . . . .  n . . . .  

Considering now the induction over r, we assume the results proved for all s and for 

values of r up to and including r - 1 .  Then, by (13.2), the new hypothesis at any s step is 
I l D ; D ~ u J h  and �9 s - I  ~LE/(4r+2s-l)  lID t VD~ ull 2 . But the result of the preceding ( s - l ) s t  step of 
the s-induction is that �9 s - - I  � 9  s - 2  , s - 2  IID, VDa ulh and also liD, ADo nil2 and lID, ADo ulh satisfy 
exactly this same condition. Since again IID~D~ulI2< CIID;VD~-lulI2 the induction 

hypothesis for each step from s - 1  to s does hold. Now by our earlier results the 

induction hypothesis can be seen to hold for Fr. 0(t), F�9 1(0 and Fr, 2(t). By (13.2) this 

requires the results of the earlier induction steps up to r - I ,  as well as the results of 

Sections 7, 8 and 9, but these results are all available at the rth stage of the induction. 

Hence the induction over s=O, 1,2,3 . . . . .  n . . . .  holds at the rth stage, and this estab- 

lishes the general step of the induction over r. Letting r=O, 1,2 . . . . .  m . . . .  we now 

easily complete the induction over r and with it the proof that (14.1) holds in general for 

r,s=O, 1,2 . . . . .  n . . . . .  

A further conclusion we can now draw is that, by (2.22) 

maXx ~n ID~ D~ ul =-II D; D~ ull 
�9 s 1/2 ~ r ~  rxs 111/2 CIIDt VDoulh IIv,  'outt2 

1 

E L  2r+s+l ( 0 ,  T). 

(14.2) 

Note that the s3 component is still necessarily zero in (14.2) at this stage of proof. 

15. Normal derivatives of third and higher order 

Remaining to be estimated are the partial derivatives containing three or more normal 

derivations. These we shall estimate inductively on the normal order, by considering 

each component separately and by introducing the incompressibility and vorticity 

relations. 

The continuity equation div u-ui ,  i=O yields in tangential cordinates 

so that 

D 3 u  3 = - D a u a + g i u  i, a = 1,2 (15.1) 

r s3 $2 $! 1.)rl-~S3--1 s 2 s I DiD3 D2 D1 u3 = - ~ t ~ 3  D 2 D 1 Daua+ lower order. (15.2) 
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The right side contains only derivatives of  lower normal order  so suggesting an 

induction on s3. In fact by iterating (15.2) we can express the derivative on the left side 

as a finite linear combination of  derivatives of  normal order  two or less, each of  which 

has L 2 norm with the appropriate property of  integrability by the preceding section, 
namely inclusion in L 2/(4r+2Sl+ES2+2s3-1) ( 0 ,  T). 

For  the tangential components  u~ and u2 we make use of  the corresponding 

tangential components  of  the vorticity equation 

(-Di, t +  Uk (l)i, k = tOk lli, k + V A t o i  (15.3) 

with i, k= 1,2, 3 and 

to i = curl u i = 2 \ ~ x j  cox,/ (15.4) 

where e u* is the permutat ion symbol. Solving (15.3) for the Laplacian term we have, 

with a =  1,2 

vA(I )  a = O) a , t+Uk  tO a, k--(.OkUa, k , (15.5) 

Hence,  with bounded coefficients a~, a 2 

O] l/l = a ,AO 3 u , - a 2 ( O  ~ +O~) O3u , +lower  order 

= alA(w z - D  1 u3)-a2(D~+D~) D 3 u I + lower order  (15.6) 

a 1 
= - -  (w2. t + u k 092. k - w ,  u2. , ) -a lADIu3-a2(D~+D~)D 3 u I +lower order  

lJ 

is now expressed by third and lower space derivatives of  components  of  ui containing at 

most two normal derivatives, together  with a time derivative and products  of  the form 

and 

= U k -  ~ Ukt02, k aX k ~k aXl ax3/  (15.7) 

tOkU2"k \ ax ,  aXm / ~x  k. (15.8) 

As in all our  preceding calculations with the hypoelliptic heat flow operator ,  we see 

that the time derivative takes the place of  two space derivatives, and that the L 2 norms 
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of the time derivative term and all the third order derivative terms on the right side of 

(15.6) lie in L2/5(0, T). The same is true of terms such as (15.7), for 

Iluk to~, ~ll~ ~< max lukl Ilof ull~ 05.9) 

and these two factors are known to be in L 1(0, T) and L2/3(0, T), respectively. Likewise 

for (15.8) we have 

Iltok u2,kl12 ~< Iltoll6 IlVull3 

~<llVull6 IlVullL '2 IlVull~ '~ 

~<cIIAull~ '~ IlVull~ '~ 

and this product has singular index (3)2+(�89 I. Hence IIO3udl2 and also IID3u2112~ 
L 2/5 [0, T]. 

Consider now a typical derivative of (15.6) with respect to time and tangential 

derivatives. We may neglect all lower derivative terms arising from variability of the 

coefficients al and a2 which will have bounded tangential derivatives at every order. 

Thus 

/ ' ) r / ' )s  I )3  a 1 u3 +uk to2,k--tok u2,k)-a2DtD a(Dl + D2) D3 uj + .... (15.10) u t u a ~ 3 u l = v D r D S ( t o 2 , _ A D 1  r s 2 2 

Evidently each of the four linear terms in to or u will have the singularity index 

�89 by the results of Section 14. To calculate the product terms we again use 

Leibniz' rule: 

D r s r s j l r-JDS-I tDa(Ukto2,k)= ~ ( i ) ( l ) D t D a l l k ' D t  a to2,k" (15.11) 
j,l=O 

Again we may use the results of Section 14, namely that the product in the (j, l) term 

has singular index determined by 

�9 l r-j s-I j I r-j s-l �9 liD, Da toz, kll2. (15.12) ID, Ooul IID~O~uk'D, Oa toE, kll2---<max~ 

The factors of this expression have singular indices 

2 j + / + l  and l ( 4 ( r - j ) + 2 ( s - l ) + 3 )  

by (14.2) and (14.1) respectively. Thus the product, and hence (15,11), has singular 

index �89 also. Similarly, the derivative 
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r s __ r, s2 /( r" S j 1 r-j s-I 
DtDa(tOkU2, k)--j,l! 0 j )  ( l )DtDatok .Dt  D a !.12, k (15.13) 

is a sum of terms with typical L2(Q) norm 

j I r - j  s - I  ~< IID, D~%'D, D a U2,k[12-~ llD{D~@16"llDT-JD~-tu2,klh 
s-I 

<~ CllD{ VDta e~ 2 "-J m 112 r - j  m 1/2 liD, VDa "11~ liD, VDo ull2 (15.14) 
m=O 

s--I 
<~ CIID~AD~ulh ~ ,-j- m 112 r-j m I/2 liD, AD~ ulh "liD, VDo ul12 �9 

m~0 

By (14. I) the singularity indices of these factors do not exceed 

~-(4j+2l+3),  l ( 4 ( r - j )+2( s - l )+3)  and l ( 4 ( r - j ) + 2 ( s - l ) + l )  

the sum again being at most 1(4r+2s+5) in every case. 

An entirely similar proof works for the other tangential component u2, and the 

result is known to be true for u3. This proves the desired result for the partial derivatives 

of the form (15.10) and sets the stage for an induction on the normal order s3. However 

we should note at this point that (14.2) can now be extended to first normal derivatives 

as follows (see also [1, p. 718]). 

max[D~D~ D 3 u I = lID; D~ D 3 uH| 
x E ~  

r s 1/2 r s 1 /2+  r V s <-ClfD, VDaD3ulh (lID, VVDoD3ufh lID, D~D~,,ll~/2) (15.15) 
1 

L 2r+s+2  ( 0 ,  T ) .  

Suppose, therefore, as induction hypothesis that the first or L2(Q) result of the 

main theorem has been established for all partial derivatives with respect to x3 of order 

less than or equal to s3-1, where s3~4. Suppose also that the second, or maximum 

norm, result of the main theorem has been shown for all partial derivatives with respect 

to x3 of order less than or equal to s3-3. We wish to establish the first result to order s3 

and the second to order s3-2. 

Observe in view of (15.10) that 

s a �9 s 3 ~ 1 r s s3-3  ~ r s 2 2 s3-2  D D D u D D D (oJ AD 14 +Ix 03 03kl~ 2 k)-a2DtDa(Dl+D2)D 3 ul+.. .  t a 3 t~ V t a 3 2, t-- I 3 k 2,k , 

(15.16) 
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where now the omitted lower order derivative terms may contain terms with coeffi- 

cients differentiated with respect to x3 which near a singular point is the radial 

coordinate. 

To estimate such lower order terms with coefficients singular at the centre P0 of a 

tangential coordinate system, we first omit the sphere S(Po, e) from the domain of 

integration. By the induction hypothesis on s3, the integrability property for this 

reduced domain is easily established. By means of a second tangential coordinate 

system and corresponding domain covering S(Po, e), and by recalling that all lower 

order derivatives in this second system have already been estimated, we can however 

obtain the result for S(Po, e). This establishes the integrability �9 s s3 of D t D~ D 3 u, as required 

for the next stage of the induction on s3. 

The terms on the right in (15.16) have normal order at most s3-1. The linear terms 

among them have therefore been estimated as required, by the induction hypothesis. 

The product terms can be calculated exactly as in (15.11)-(15.14); indeed we need only 
s3--3 read the two-dimensional derivative symbol D~ as including a third component D 3 

with appropriate Leibniz rule factors. Thus the calculation based on (15.12) goes 

through as before since the highest index for the D3 factor in the maximum norm is 

s3-3, and the maxima up to this order inclusive have been estimated and are a part of 

the induction hypothesis. Likewise the calculation based on (15.14) goes through since 

the highest order normal term is the Stokes operator term with normal order at most 

s3-3+2=s3-1;  and these terms have been estimated and are included in the induction 

hypothesis. Therefore the first estimate of the main theorem holds for the derivative on 

the left side in (15.16). Finally, since all L2(~) norms of derivatives of normal order s3 

have been estimated as in the main theorem, the estimate for the maximum or L=(g2) 

norms of all derivatives of normal order s3-2 now follows from the known imbedding 

inequalities [1, p. 718]. This completes the proof of the induction with respect to s3. 

Therefore all derivatives of all normal orders, and consequently, all partial derivatives 

of all orders in the tangential or Cartesian coordinates, satisfy the conclusions of the 

theorem. This completes the proof of the main theorem. 

16. Concluding comments 

The main theorem and the Integrability lemma will be extended in another paper to 

cover the presence on the right hand side of the Navier-Stokes equations of a forcing 

term. If however such a forcing term were only finitely differentiable, then the 

estimates may be valid only up to the corresponding finite stage. 
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Consider solutions of the form 

ui(x, t) = (T-t)-~Ui H(T-t)  +u2i(x, t), (16.1) 

where T, a, ~ are positive numbers, H(T-t)  denotes the Heaviside unit function, U,{Xj) 

is C ~ and u~i(x, t) is C ~ at least near (0, T). Then for t<T, 

{ _~_r_~+3a~ 
)loTO ull -- OL(T-t) ~ ,1 (16.2) 

while 

maxx~t~ ID~ D~x u[ = O( ( T -  t)-~-r-'~). (16.3) 

From the main theorem we may now conclude using (16.2) that 

t5+ r+ a s - - ~ -  < 2r+ s - 1  

holds for all permitted sets of values of r and s. Thus a < l  follows if r=0, s is large, 

while from the case r=0, s = l  we conclude ~8<~(l+a)<l. Equivalent results can be 

deduced from (16.3). From the I/p2 intercept of Serrin's critical line [33] we may infer 

fl~>�89 The condition IlVull2 z'(0, T) is known to be sufficient for regularity [21, p. 227], 

and this can also be seen from our estimates of every order in succession, if the last 

terms on the left are dropped and the estimates are treated as first order linear 

differential inequalities. This condition implies �89 Thus finally, 

( 1 a + 1 '~ ~<B< a + l <  1. (16.4) 
m a x k T ' Y  4-]  - 2 2 

Perhaps the most natural parameter values in the range thus indicated are a=/~=�89 which 

were considered by Leray [21, p. 225]. 

While the asymptotic expansion of a solution with a point singularity need not, in 

general, have a form as simple as (16.1), it is evident from our results that the singular 

behaviour must fall within a well defined and non-trivial range of algebraic behaviour. 

One point singularities with a=/~=�89 might occur in sequences or condensations leading 

to a more complicated higher order asymptotic behaviour. Our estimates are a conse- 

quence of the underlying algebraic and differential structure in R 3 of the nonlinear 

convective terms, which seem to permit exceptions to smoothness but only with well- 

defined "limitations. In higher dimensions of space any such limitations would necessar- 

ily be very much weaker, as comparable integrability estimates are not available. 
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