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The present work continues our investigations on the Scissors Congruence Problems. 

These investigations originated with the Third Problem of Hilbert that dealt with the 

scissors congruence problem in Euclidean 3-space. As indicated in If], [5], [16], the 

non-Euclidean versions are just as interesting. They have an intimate connection with 

the Eilenberg-MacLane homology of certain classical Lie groups (namely, the isometry 

groups of the appropriate classical geometries) and come into contact with algebraic K- 

theory, Cheeger-Chern-Simons characteristic classes, as well as other topics. In all 

three series of classical geometries, the spherical version enters because the basic Dehn 

invarients require an understanding of the spherical scissors congruence problem. In a 

number of recent works, we have concentrated our efforts on the non-Euclidean cases, 

see [6], [18] for results and summaries in these directions. In spite of our efforts, the 

most complete results remain to be the theorems of Dehn-Sydler-Jessen showing that 

volume and Dehn invariants form a complete system of invariants for the scissors 

congruence problem in Euclidean spaces of dimensions 3 and 4. The original work of 

Sydler [19] was an incredible tour de force geometric arument in Euclidean 3-space. It 

was rapidly simplified by Jessen in [9] and extended to Euclidean 4-space. The 

simplification by Jessen employed techniques from homological algebra. Nevertheless, 

two of the geometric arguments of Sydler were retained in Jessen's work. The present 

work continues in the direction of the general theme that the scissors congruence 

problems should be formulated and solved in terms of the Eilenberg-MacLane homo- 

logy of classical groups (with appropriate coefficients). The principal goal in the present 
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work is to return to the Euclidean case. Specifically, after proving a number of 

theorems concerning the Eilenberg-MacLane homology of various Euclidean motion 

groups, we apply the results in conjunction with some results on the Hochschild 

homology theory of the quaternions to obtain a new proof of the above mentioned 

theorems of Dehn-Sydler-Jessen. We note that the particular Hochschild homology 

theory involved in our arguments is intimately connected with the cyclic homology 

theory which is a theory of noncommutative differential forms, cf. Connes [4], Karoubi 

[7]. The fact that there should be such a connection is not unexpected because the 

scissors congruence problem is really an algebraic investigation of the domain of 

integration in a geometrically restricted setting. The present investigation is a first step 

in the direction of trying to pin down the relation. The main accomplishment is that we 

have a proof of the theorem of Dehn-Sydler-Jessen that is essentially homological thus 

answering affirmatively a question in [5]. The difficult geometric lemmas of Sydler 

retained by Jessen are no longer necessary. The only geometric arguments needed are 

completely elementary. Namely, in addition to perpendicularity and the parallel axiom, 

we only need to know that Euclidean simplices have circumscribed and inscribed 

spheres. It should be pointed out that one of the difficulties in hyperbolic geometry is 

the existence of simplices that cannot be circumscribed on a sphere. A second difficulty 

in hyperbolic geometry is the fact that orthogonal trajectories to a hyperplane do not 

focus in the finite part of the space. In this respect, the Euclidean case is half way 

between the hyperbolic and the spherical case. Namely, Euclidean simplices can be 

circumscribed on a sphere but the orthogonal trajectories to a hyperplane do not focus 

in the finite part of the space. The first part of the present work shows that we can get 

around the problem on the non-focusing of the orthogonal trajectories by taking 

advantage of the possibility of circumscribing a simplex on a sphere. 

We rapidly summarize the present work. In Section 1, we show that the Eilenberg- 

MacLane homology of the full Euclidean motion group coincides with that of the 

corresponding orthogonal group in degree not exceeding the dimension of the Euclid- 

ean space. We also examine the stability range for the special orthogonal groups. In 

Section 2, we prove a number of vanishing theorems for the Eilenberg-MacLane 

homology of various Euclidean groups of motions with appropriate coefficients. In 

Section 3, we recall the identification of the Euclidean scissors congruence groups in 

terms of the investigations on the Eilenberg-MacLane homology of suitable Euclidean 

groups of motions. In Sections 4 and 5, we present the new proof of the theorems of 

Dehn-Sydler-Jessen. We conclude the present work with some unsolved problems in 

Section 6. 
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1. Euclidean motion groups 

Let  E(n) denote the group of  all isometries of the Euclidean n-space R ~. E(n) is 

therefore the semidirect product  T(n)~ O(n) of the normal subgroup T(n) formed by the 

translations and the subgroup O(n) of all orthogonal transformations fixing a suitable 

origin. When there is no chance of confusion, we will identify T(n) with R n. The 

principal result in the present section is the following assertion: 

THEOREM 1.1. The inclusion map from O(n) into E(n) induces injective maps from 

Hi(O(n)) to Hi(E(n)) for all i. This map is surjective, hence bijective, when i<~n. 

The injectivity assertion is a trivial consequence of the semidirect product  decom- 

position. We need to show the surjectivity assertion for the range indicated. The 

argument is based on the use of  a t ransposed spectral sequence.  In the literature, this is 

usually called an equivariant spectral sequence. The difference is that we have trans- 

posed the indices to emphasize the idea of  comparison of two different filtrations on the 

same double complex in the first quadrant. Instead of transposing the terms to make 

the higher differentials go the same way, we prefer to keep the terms and change the 

directions of the differentials. Since none of the spectral sequences is displayed in the 

present work, we leave the burden of  keeping track of the transposition of the indices 

to the readers. 

Let  C,(n)=C,(R n) denote the normalized acyclic Ei lenberg-MacLane chain com- 

plex based on the set R n. Thus Ci(n) is the free Abelian group based on the set of/-cells  

where each /-cell is an ordered ( i+l)- tuple (v0 . . . . .  vi) of points in R n with the under- 

standing that each such/-cel l  is set equal to 0 whenever Vs=Vs_~ holds for at least one s 

with 1 <~s<~i. The acyclicity (with augmentation Z) of  this chain complex is well-known 

and depends only on the fact that R n is a set. Let  c~,e"(R n) denote the subcomplex of  

C,(n) spanned by the set of all generic ceils. Here an/-cel l  (v0 . . . . .  vi) is called generic 

when each of its j-faces with j~<min(n, i) spans an affine subspace of dimension j.  By 

using the fact that R is an infinite field, it is easy to see that this subcomplex is also 

acyclic with augmentation Z. We let Q,(n) denote the quotient chain complex so that 

we have the following exact sequence of E(n)-chain complexes: 

(1.2) 0 ~ Cg, ea(n) ~ C,(n) ~ Q,(n) ~ O. 

By using the associated long homology exact sequence, Q,(n) is acyclic with augmenta- 

tion 0. Since E(n) permutes the cells, (1.2) splits as an exact sequence of  E(n)-modules. 
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This immediately yields the following exact sequences of Abelian groups for any group 

G acting on the chain complexes through a homomorphism of G into E(n): 

(1.3) 0 ~ Hg(G, Cg.e"(n)) --~ Hi(G, C.(n)) ~ H~(G, Q.(n)) ~ O, i >10. 

It is then clear that the terms of (1.3) are nothing more than the ith column of 

transposed spectral sequences "El,. that converge respectively to H.(G, A) where A is 

respectively Z, Z, and 0. Since G also permutes the cells, the terms "E 1 i,j can be 

described by using Shapiro's lemma. For example, when G=E(n), 

Hi(E(n),Co(n))~--Hi( O(n))="E~. o. 

This last part is a consequence of the fact that O(n) has the normal complement 

T(n) in E(n). A similar assertion holds for any subgroup G of E(n) that contains T(n). 

For example, this holds for the subgroup SE(n) consisting of all the orientation- 

preserving isometries of R". In order to prove Theorem 1.1, we only have to show that 

LEMMA 1.4. In the transposed spectral sequence associated to E(n) and C,(n), the 

i-th column "E~, ,(n) is (n-i)-acyclic with augmentation "E~.o(n)=Hi(O(n)). 

The proof of Lemma 1.4 begins by an examination of the transposed spectral 

sequence associated to E(n) and Cg, e"(n). 

LEMMA 1.5. cg, en (n )~ )GZ is (n-1)-acyclic for G=SE(n) or E(n). 

Proof. For j<n ,  any j-cycle of "E~ige"(n) is made up of a finite number of generic j- 

cells. Each such j-cell has a unique circumscribed ( j -  D-sphere with a positive radius r 

and circumscribed center p in the affine j-subspace spanned by its vertices in R". By 

moving p in a direction perpendicular to this affine subspace, we can circumscribe our 

j-cell on a j-sphere in R". This requires j<n.  Since SE(n) is transitive on R", we may 

move the j-cells appearing in our j-cycle c until all of them are circumscribed on a 

common j-sphere of radius strictly larger than the finite number of radii associated to 

the j-cells appearing in c. If we let p denote the center of this circumscribed sphere, 

then we can form the ( j+ D-chain p,c .  Since p is not on the affine j-subspace spanned 

by the vertices of any of the j-cells appearing in c, p ,c  is a generic ( j+  1)-chain. We can 

now compute the boundary a(p , c )=c-p ,ac .  Since c is a j-cycle, the (j-1)-cells 

appearing in ac must cancel in pairs by using elements of SE(n). Indeed, since 

j - l~<n-2 ,  the element needed for the cancellation can be assumed to lie in SE(n) and 

to carry p onto itself. In other words, c is the boundary of p,c .  [] 
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Our next task is to improve Lemma 1.5 in the case of G=E(n). In particular, we 

will prove the special case of Lemma 1.4 when i=0. This will be accomplished by an 

induction argument. 

LEMMA 1.6. cg, en(n) ~E(n) Z and C,(n) Get,) Z are both n-acyclic. 

Proof. We proceed by induction on n. When n = l ,  the two chain complexes 

coincide in degree 1. Each 1-cell is automatically a 1-cycle. The reflection about the 

midpoint p of a 1-cell lies in E(1) and the 1-cell (v0, 01) is the boundary of the generic 2- 

cell (p, v0, v0. Our induction hypothesis is that C,(k) | Z is k-acyclic for k<n. By 

using the long homology exact sequence associated to the short exact sequence of 

chain complexes (1.3) with i=0, we claim that C,(n)| is (n-1)-acyclic with 

augmentation Z and Q,(n) | Z is (n+ l)-acyclic with augmentation 0. We note that 

(n-1)-acyclicity of C,(n)| and of Q,(n)| follows from the induction hy- 

pothesis in conjunction with Lemma 1.5. The induction hypothesis does apply because 

C,(n) | coincides with C,(n-1)| through degree n -1  and the latter can 

be identified with a subcomplex of C,(n)| This identification defines a dimen- 

sion filtration ~. Namely, a cell has filtration ~J if the affine subspace of R" spanned by 

its vertices has dimension at most j. 

In order to show that Q,(n) | is (n+ 1)-acyclic, we recall that the transposed 

spectral sequence associated to E(n) and Q,(n) converges to 0. To get at the desired 

result, it is enough to show that, for l<~i<~n, the column "E:'a(n) is (n-i)-acyclic with 

augmentation 0. Since Q,(n) begins in degree 2, the assertion about the augmentation is 

trivial and we can assume that l<.i<.n-2. 
We now assume l<.i<.n-2 and consider the subcomplex ~,-'-,i,Q of ''~l'a: "Li,,tn) 

spanned by cells with filtration n-i.  If c denotes a j-cell of dimension filtration exactly 

r, then Hi(O(n-r)) | appears as a direct summand of "El,~(n). By letting c range over 

distinct E(n)-equivalence classes of j-cells that are not generic, we obtain a direct sum 

decomposition of "El,)a(n). For j~<n, this simply means that r<j. Ifj<.n-i, then the 

coefficient group is Hi(O(t)) with t=n-r>n-(n-i)=i .  By using the stability theorem 

proved in Sah [17, Theorem 1.1], we see that 

~ ,  ,t, Q ~ ni(o(oo) ) ~ o~n-i, Q 
~ 0 , *  �9 

Evidently, .~7,, ;'Q coincides with "~1 e- - t~i,', tn) through degree n- i  for any i~>0 (in fact, 

through degree n-i+ 1 when i<~n). By combining the universal coefficient theorem with 

the (n-  1)-acyclicity of ,,rl, O . .  - ~o,,tn), we see that ff~, ," o is (n--i)-acyclic with augmentation 
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,,E 1. Q, , 0. As indicated before, this means that 0,,in) is (n+ 1)-acyclic with augmentation 0. It 

follows that 

(1.7) 
Hj(Cg*e"(n) |162 Z) ---* H i ( C , ( n )  |  Z) 

is surjective f o r j  = n+  1 and bijective f o r j  = n. 

It is therefore enough to sbow that the map in (1.7) is 0 w h e n j = n .  Let c denote an n- 

cycle in cg, e"(n) | Z. It is enough to show that c becomes a boundary in the complex 

C , ( n )  | Z. To see this, we perform a "boots t rap"  argument. Namely, we look at the 

chain complex C , ( n  + 1) | ~)Z= 0% "+ ~ and the corresponding exact sequence of chain 

complexes: 

(1.8) 

By the induction hypothesis, both of  the first two chain complexes are (n-1)-acyclic.  

The last chain complex begins in degree n+ 1 and is a free Abelian group with basis 

consisting of generic (n+ 1)-cells ranging over distinct E ( n +  D-equivalence classes. By 

using either the circumscribed center or the inscribed center construction, each such 

(n+ D-cell b is the boundary of  an (n+2)-chain modulo .~" (cf. Sah [17, pp. 320-1]). In 

essence, the existence of reflections in E ( n )  kills off this "scissors congruence group"  

H , + ] ( ~ " + ' / ~ " ) .  As a consequence of the long exact homology sequence, we see that 

H.(Y") ~ H.(~"+ ]). 

It is therefore enough to show that our generic n-cycle c becomes a boundary in the 

chain complex if,+1. Since 0 %"+1 contains the generic subcomplex cg, e"(n+ I)| 

evidently the n-cycle c bounds in this subcomplex by Lemma 1.4. [] 

P r o o f  o f  T h e o r e m  1.1. From the preceding argument, it is enough to show that the 

transposed spectral sequence associated to E ( n )  and C , ( n )  is such that "El, ,(n) is ( n - i ) -  

acyclic with augmentation H i ( O ( n ) ) ,  I ~ i < < - n -  1. We may now imitate the argument used 

for Q , ( n ) .  For each such i, we consider the subcomplex of "E~, ,(n) of dimension 

filtration n - i .  This subcomplex ~ i ~ ,  i coincides with "E l .i, ,(n) through degree n - i  so that 

it is enough to show that this subcomplex is (n-i)-acyclic.  By using Shapiro's lemma, it 

is easy to see that we have an exact sequence of chain complexes of  the form: 

O ---~ B ( i ) | ( ~T n - i / ?T n - i -  l - i, , " - i , . , ---~ ~ ~. _i --~ H i( O ( ~ ) ) "~ o, n - i --~ O " 
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Here B(i) denotes the kernel of the surjective homomorphism from Hi(O(i)) to the 

stable group Hi(O(oo)). The surjectivity of this map was proved in Sah [17, Theorem 

1.1]. By using the universal coefficient theorem, the first of the above chain complex 

begins in degree n - i  and is (n-i)-acyclic by means of the circumscribed center 

construction (or the inscribed center construction). The last of the above chain com- 

plex is (n-i)-acyclic by using the (n-i)-acyclicity of ~0...~"-i The desired (n-i)-acyclicity 
072~ n - i  of 5ui,. now follows from the long homology exact sequence. [] 

The situation concerning SE(n) and SO(n) is somewhat different. We will first 

present the stability theorems for SO(n) (this could have been stated and proven 

already in Sah [17]). 

THEOREM 1.9. The map Hi(SO(n))---~Hi(SO(n+ 1)) is surjective for n>~2i and bijec- 
tire for n>~2i+ 1. For i<n<2i, and n odd, Hi(SO(n))---~Hi(SO(oo)) is b(jective. For i<-n, 
Hi(SO(n))--~Hi(SO(oo)) is surjective. 

Proof. Let C,(S n) denote the acyclic chain complex whose j-cells are the ordered 

(j+l)-tuples (v0 . . . . .  v) of unit vectors in R "+1 such that no two of them are linearly 

dependent. The acyclicity follows easily fromt he fact that R is infinite. We now 

examine the transposed spectral sequence associated to SO(n+l) and C.(S"), We 

assert that 

. 2 = .F7,1 (1.10) "dli, l =" 0 SO t h a t  Ei, o ~i,o = Hi (SO(n ) ) "  

By Shapiro's lemma, "E],o=Hi(SO(n)) and "E~. 1 is the direct sum of terms of the form 

Hi(SO(n-1)) | (a, b), a, b are independent unit vectors in R "+1. 

If c is in Hi(SO(n-l)), then dl, l(c| b))=c|174 where c is now viewed as 

lying in Hi(SO(n)). Evidently, we can find oESO(2) so that o(b)=a and so that o 

commutes with SO(n-  1). It follows that d], j(c| b))=0. 

The following assertion was proved in Sah [17, (1.5)] by using the orthogonal join 

construction 

(1.11) ,,•t is ( n -  1)-acyclic. ~ 0 ,  * 

Evidently, the first assertion in Theorem 1.9 follows from the assertion 

(1.12) "El,. is ( n - 2 i -  1)-acyclic for 1 <~i<~(n - 1)/2. 
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We will prove Theorem 1.9 and (1.12) in tandem by an induction argument. The 

induction hypothesis is that (1.12) and Theorem 1.9 have been verified for all m<n. Let 

us now consider the column "E~,, for l<.i<.(n-1)/2. By Shapiro's lemma, "EIj is the 

direct sum of terms of the form H,(SO(n+l-r))| where c is a j-cell of rank r. The 

rank r denotes the dimension of the R-subspace of R n§ spanned by the vertices of c. 

Evidently, r<.min(n+l,j+l). For j<~n-2i-1, we have n+l-r>~n-j>-2i+l. Thus the 

coefficient groups are the stable groups Hi(SO(oo))-~Hi(SO(2i+l)). For j=n-2 i  and 

r=j+ 1, the coefficient group H,(SO(2i)) maps surjectively onto H,(SO(2i+ 1)). By using 

(1.11) and the universal coefficient theorem, it is easy to see that (1.12) holds. To see 

the last assertion, we note that O(n)=SO(n)x (+In) when n is odd. The isomorphism 

between Hi(SO(n)) and Hi(SO(oo)) for i<n and odd n therefore follows from the 

bijective stability of Hi(O(n)) for i<n. In a similarly manner, we can deduce from the 

Hochschild-Serre spectral sequence associated to the semidirect product O(n)= 

SO(n)MO(1) that Hi(SO(n)) maps surjectively onto Hi(SO(~)) for i<.n. [] 

THEOREM 1.13. The map H,{SO(n))---~Hi(SE(n)) is always injective; it is sutjective 

when n~2i. 

Proof. As before, the injectivity is a consequence of the semidirect product 

splitting of SE(n) as T(n)>~SO(n). For the surjectivity assertion, we examine the 

transposed spectral sequence associated to SE(n) and C,(n). It is enough to show that 

"E~,, is ( n - 2 i -  1)-acyclic for O<~i<.(n- 1)/2. The argument is entirely similar to Theorem 

1.1. We leave the details to the careful reader. [] 

2. Some vanishing theorems 

We will now verify some vanishing theorems for the homology of orthogonal groups 

with coefficients in suitable exterior powers (over the field Q of rational numbers). For 

this purpose, we will examine the Hochschild-Serre spectral sequence associated to a 

split exact sequence of groups. 

LEMMA 2.1. Let G=A )qF denote a semidirect product o f  groups with A denoting a 

left F-module. Assume that A and Hi(F, I-Ij(A, Z)) are torsionfree for all j>~2. Then the 

Hochschild-Serre spectral sequence associated to the semidirect product splitting o f  G 

has the property that Hi(F, Hj(A,Z))~'E2i,j='E~,j. Moreover, we have a canonical 

"spectral" decomposition 

H,,(G, Z) ~ H Hi(F' Hi(A, Z)). 
i+j=n 
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Remark.  To be precise, the F-endomorphism of A defined by multiplication by the 

integer m induces multiplication by m j on Hi(F, Hi(A, Z)), and Hj(A, Z)~A~(A). 

Proof. The F-endomorphism arising from multiplication by m evidently induces 

multiplication by m j on H~(A, Z)--=A~(A). It induces an endomorphism qg,, of G that is 

compatible with the semidirect product splitting. Hence it induces a map, again 

denoted by q0m, on the Hochschild-Serre spectral sequence so that ~/9 m commutes with 

all the differentials 'd~,j: 'Er, j---~'E~_r,j+r_,. We only have to show that all these differen- 

tials are 0 for r~>2. This is certainly true for j=0  by virtue of the semidirect splitting 

because 

Hi(F,Hj(A,Z))-~'E~, j and 'E~,0='E~, 0. 

By using the commutation relation, ~o m 0 'dT, j='dT, j 0 fPm' it becomes clear that the image 

of '~,j is annihilated by the integer mJ(mr-~-l). Since r~>2, our assumption on the 

torsionfreeness of 'E~j for j~>2 shows that all the higher differentials are zero. The 

remaining assertions are now clear. [] 

The preceding argument apparently was first used by David Lieberman in the 

setting of the cohomology spectral sequence. It is possible (not needed in the present 

work) to get some more information on the relevant type of torsions that need to be 

avoided. 

THEOREM 2.2. Let  O<~i<~n and l<~j<-n-i. Then Hi(O(n),AJz(R"))=O. 

Proof. We recall that T(n)----R ". By using Theorem 1.1 and Lemma 2.1 for the 

semidirect product E(n)= T(n)NO(n),  our assertion follows. R 

When i=0, Theorem 2.2 can be extended by a simple geometric argument. 

THEOREM 2.3. Let  l~<j~<2n-1. Then Ho(O(n),AJ(R"))=O. 

Proof. There is nothing to prove when n= l .  We therefore assume n>l .  

In general, AJ(R ") is spanned over Q by elements of the form v, ̂  ... ^vj where the 

vectors vs may be assumed to lie on n one-dimensional R-subspaces of R" that are 

mutually orthogonal. Since the exterior product is over Z, hence over Q, it is possible 

for Vs and v,+~ to be R-dependent but not Q-dependent. If an odd number of the vectors, 

say v~ ... . .  u2t+l , lie on a subspace orthogonal to the subspace spanned by the remaining 

vectors v2t+2 .. . . .  vj, then we can find o in O(n) so the o(vi)=+vi according to i>~2t+2 or 

i~<2t+l. Thus a(V~A.. .^Vj)=--(VlA. . .^V J) SO that this element is 0 in the group of 
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coinvariants. In particular,  j may be assumed to be even. Since l~<j~<2n-1, we may 

assign to each basic exter ior  product  vl A... A Vj a decreasing sequence of  integers 

2k(1) i>...I> 2k(s) > 0, 2k(1)+.. .  +2k(s) = j .  

Here  the vectors  v 1 . . . . .  v i are such that 2k(t) of  them lie on the one-dimensional  

subspace L t of R n and the Lt's are pairwise orthogonal.  Evidently s<n so that we can 

find a 1-dimensional subspace  L orthogonal to each L r We assume that v~ . . . . .  V2k(1 ) lie 

in LI. In the 2-dimensional subspace  L+Lj ,  we can find w in L so that u~=vj+w is 

perpendicular  to u2=v2-u 1. Thus v I ̂ v2=v 1A(U2--UI)=(RI--W)A(tl2-[-W)=II1A//2I-UzAW. 

Since u~Lu 2 and v2• the product  vj/x...^v2k(~ ) is the sum of two terms of the form 

W~Aw2/xV3A...^V2m ) where w~Lw 2 lies in L+Lj .  By breaking up each v I, 3~</~<2k(1), 

into components  along w~ and w 2 and multiply out the product,  we see that v~ ̂ . . .  A Vj 

becomes a sum of terms with strictly bigger s or terms that are 0 in the group of 

coinvariants. Thus,  if k(1)= 1, w~ A W 2 A V 3 A... ^ Vj is 0 in the group of coinvariants.  This 

completes  the proof  by induction. [] 

THEOREM 2.4. Let  i>~O and j>O so that n>~2(i+j). Then Hi(SO(n), mJz(Rn))=0. 

Proof. Use Theorem 1.13 and L e m m a  2.1. [] 

THEOREM 2.5. Hi( O(n ), AJz(R~))=0 when j is odd. Hi(SO(n), Nz(R"))=0 when either 

(a) n is even and j is odd, or (b) n is odd, i>~O, j > 0  is even, and i+j<~n. 

Proof. The first two cases are consequences  of  the l emma on " cen t e r  kil ls".  In the 

last case, O(n)=SO(n)x (+In) when n is odd. By using the Hochschi ld-Ser re  spectral  

sequence, Hi(SO(n), AJz(Rn))~Hi(O(n), Nz(R~)). We can now apply Theorem 2.2. [] 

THEOREM 2.6. Ho(SO(n), Nz(R~))=0 for 1 <~j<~n- 1 and Ho(SO(n), A~,(R~))=R. 

Proof. For  the first assert ion,  we may imitate the proof  of  Theorem 2.3. For  the 

second assertion, we have the following exact  sequence,  see Dupont  [5, p. 613, Re- 

mark 2] 

I_I ~ A~.(R~) --~ A ~ ( R ~ )  --o O. 
U 

Here U ranges over all the codimensional  1 R-subspaces  of  R ". We note that SO(n) is 

transitive on these hyperplanes  and the stability subgroup in SO(n) of  R "-J is isomor-  
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phic to O(n-1). We may apply the right exact  functor Ho(SO(n),--) to the preceding 

exact sequence and use Shapiro 's  lemma to get the exact  sequence 

1), Az(R )) ~ Ho(SO(n), A~(R")) -~ R ~ 0. Ho(O(n_ . .-1 

The second assertion is trivial when n= 1. When n>2 we have n<~2n-3 so that the first 

term in the above exact sequence is 0 by Theorem 2.3. We are left with the case of n=2.  

Here O(1) acts trivially on the coefficient group AZz(R) so the first term in the above 

exact sequence is A~(R). On the other hand, we know from Theorem 2.3 that 

H0(O(2), Az(R2 2)) __ Ho(0(2)/S0(2), Ho(SO(2) ' Az2(R2))) = 0. 

Since 0(2)/S0(2) can be identified with O(1), we conclude that Ho(SO(n), AZz(R2)) is the 

negative eigenspace for the action of O(1). Since 0(2) acts on R through the determi- 

nant, the desired conclusion follows by taking the negative eigenspaces for the action of  

0(1) in the above exact sequence in the case of  n=2.  [] 

3. Euclidean scissors congruences 

The principal goal in the present  section is to describe the connection between the 

results in the preceding sections and the study of the scissors congruence problem in 

Euclidean spaces, see Dupont  [5, Section 4] for foundational information. For  the two 

non-Euclidean cases, see Dupon t -Pa r ry -Sah  [6, Section 5]. 

Let  C,(n)=C,(R") denote the normalized acyclic Ei lenberg-MacLane chain com- 

plex based on the set R" as in Section 1. We will filter C,(n)| )Z by the subcom- 
oTzi plexes ~+ ,  O<~i<~n, through the R-dimension filtration in analogy with Section 1. 

Evidently, we have a natural surjective map from ,~+ to o~i=Ho(E(n)/SE(n), ~+) .  Since 

any congruence between simplices with R-dimension less than n can be realized by 

elements  of SE(n), we see that: 

(3.1) For  0 ~< i < n, o~+ ---> ~ is an isomorphism of chain complexes.  

We note that the chain complex ~ i  does not depend on n while ~+  does depend on 

n. By fixing n, we can use the i-acyclicity of ~ i  and the long exact homology sequence 

associated to the exact sequence of chain complexes: 

0 ~ + - ~ - ~ - ~ " / ~  ~-~+.~+ ~ 0  
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to obtain the exact sequence: 

o~. n -  I (3.2) ~ H~(~ + ) ~ H n ( ~ )  ~ Hn(~+/~+ - ' )  ~ O. 

From Dupont [5, Theorem 2.3], we know that H , ( ~ + / ~ - ~ ) = ~ E " = :  the scissors 

congruence group in euclidean n-space. In particular, the isomorphism carries the n- 

simplex A onto e(A). [A] where e(A) denotes the orientation of A and [A] denotes the 

scissors congruence class of the convex closure ofA. We note that e(A)=0 if and only if 

A lies in ~"-I  When n>0, ~E " is known to be a Q-vector space by a theorem of ~ §  �9 

Hadwiger. It is in fact an R-vector space by a theorem of Jessen-Thorup [10] (also see 

Sah [16, Chapters 3 and 4]). We assert that 

THEOREM 3.3. (a) ff~. is (n--1)-acyclic and 

H~(~ +)=Hn(~ +/~ + ) = ~ E  holds for  n>~O. 

Proof. (a) is just a summary of the discussions preceding the theorem and follows 

from Lemma 1.6 and (3.1). 

(b) When n=0, all three groups are naturally isomorphic to Z so that the assertion 

is trivial. We consider the exact sequence of chain complexes: 

(3.4) 0 ---~ R ,  ~ ~_  ~ ~"  ---~0 

R,  is Z-free and begins in degree n. In particular, Rn has a free Z-basis consisting of 

chains of the form A - A '  where A is a generic n-simplex and A' denotes its mirror image 

with A ranging over a complete set of positively oriented SE(n) inequivalent generic n- 

simplices. We note that our n-simplices are ordered so that many such n-simplices are 

mapped to the same geometric n-simplex in Euclidean n-space. Since ~n is n-acyclic, 

Hn(R,)=Rn/aRn+ 1 maps surjectively onto H n ( ~ ) .  It follows that A - A '  is mapped onto 

2[A] E ~E n. We now go in the reverse direction and associate to each abstract simplex 

A in ff~_ the chain A - A '  where A' denotes the image of A under a reflection of 

Euclidean n-space. I fA lies in if"-1 then A - A ' = O .  This then defines a chain map so + , 

that we have a homomorphism from H , ( ~ + / ~ +  - J) to H,(R, ) .  Following this map by the 

two surjective maps described above, we clearly have the map that is multiplication by 

2 on ~E ". Since the present map is evidently surjective, the absence of 2 torsion in ~E" 

gives us the desired assertion. [] 

Remark.  The preceding argument is fairly formal. As indicated, it is the analogue 

of the case of spherical n-space where the scissors congruence group has to be reduced 
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modulo suspensions, cf. Dupont-Parry-Sah [6; Proposition 5.6]. If we turn to hyper- 

bolic n-space, then the principal problem is the n-acyclicity of ~".  This is known to 

hold for n~<3, see Dupont-Parry-Sah [6, Remark 4.8]. If we assume this result for 

n<.m, then Hn(R,) maps onto H.(~-+) for n<.m. The image of Hm(,~ +~ in Hm(~* +)~ is 

then annihilated by 2. 

4. The theorems of Sydler and .lessen: beginning 

In the present section, we review the background materials needed to give a direct 

homological proof of the theorem of Sydler that the scissors congruence classes of 

polytopes in R 3 are determined by their volume and their Dehn invariant. We first recall 

from Dupont [5, Corollary 1.2] the following exact sequence: 

D J 
(4.1) 0 .-o H2(S0(3), R 3) --o ~(R3)/~2(R 3) ---o R @ (R/Z) ~ H~(SO(3), R 3) ~ 0, 

where SO(3) acts in the natural way on R 3, D is the Dehn invariant, J is defined below, 

and ~'2(R 3) is the subgroup generated by all the prisms. Sydler's theorem [9], [19] is 

therefore equivalent to showing H2(S0(3), R3)=0 because the scissors congruence class 

of a prism is determined by its volume. Our direct homological proof of this fact is 

based on Theorem 2.2. Thus we shall show: 

THEOREM. 4.2. (a) HI(SO(3), R3)-----g2 l, the set of  all absolute Ki~hler differentials 

of  R. Furthermore, by means o f  this isomorphism, the map J in (4.1) is given by 

J(l| = I I d  cosO 
2 sin 

(b) Hz(SO(3), R 3) --- 0, 

Remark. Theorem 4.2 (a) together with (4.1) give the theorem of Jessen [9, Theo- 

rem 6] that the image of D is the kernel of J (see also Cathelineau [2], [3]). 

For the proof of Theorem 4.2, we first recall a few facts about the Hochschild 

homology of an algebra A with unit over the ground field Q. In the following all tensor 

products will be over Q unless explicitly stated otherwise. Following the notation in 

Loday-QuiUen [13], the Hochschild homology group Hn(A,A) is the homology of the 

complex (A | b) where the boundary map b is given by 

(4.3) b(ao@ "'" |  = Z (--1)ia0 | "'" | 1 7 4  "'" | "'" |  
o<-i<~n- 1 
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Following Karoubi [12] we will express Hn(A, A) also as the homology of the complex 

f2,(A) of non-commutative differential forms defined as follows: 

Let  e;: A | ~ A | 0 ~< i ~< n -  1, be given by 

(4.4) 6i(ao| |  n) = ao@... @aiai+,@... @an, 

and put 

Q,(A) = CI o<~i<~,-J Kerei, ff20(A) = A. 

Then bIQ,(A) agrees with (-1)hen given by 

(4.5) en(ao| ... |  n) = anao| ... | 

and it follows (see e.g. May [15, Theorem 22.1]) that 

Hn(A, A) -~ H,(ff2,(A), b). 

Notice that A | is a graded algebra with product given by 

(ao| ... |174 ... |  ao| ... |174174 ... |  

and f~,(A) is a subalgebra. Now if we introduce the differentials 

da= l | 1 7 4  ariA,  

then it is not difficult to show that the elements of Qn(A) are sums of terms of the form 

cO=ao.dal . . .da n, aifiA, O<~i~n. 

the natural projection A|174 | restricts to an isomor- 

(4.6) ~2,(A) = A | | 

that maps ao.da ~ ... da, to a0| ... @a,. The differential b: ff2n(A)~f2,_~(A) is given by 

(4.7) b(~o.da)=(-1)"(a~o-coa) a)fif2n_l(A), a 6 A .  

Let us put l , (A)=Ker{b:f2 , (A)~g2,_j(A)}  and Bn(A)=Im{b:Qn+1(A)~ , (A)}  so that 

Bn(A)cln(A)cf2,(A) and H,(A, A)-~ In(A)/Bn(A). Note that if d: ~n(A)---~f~n+I(A) is de- 

fined by d(ao.da I ... dan)=dao.da 1 ... da n, then (ff2,(A),d) is the universal differential 

graded noncommutative algebra of A. 

More precisely, 

phism, 
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For a commutative algebra A, this should not be confused with ~ ,  the graded 

commutative algebra of absolute K/ihler differentials of A. In fact, in this case, the map 

b:ff21(A)---~A is zero and clearly H](A,A)~--ff21(A)/BI(A)~--QJA . Moreover, ff2a=" Aa(~a)~ l 

and the shuffle product defines a natural map 7:f2"A--~H,(A,A) that maps injectively 

onto a direct summand. In addition, the composite map 

n 7 n 
~'~A ~ Hn(A, A) ~ Q,(A)/B,(A) ~ ~-~A 

is multiplication by n!. The next result is a direct consequence of the work of 

Hochschild-Kostant-Rosenberg [8, Theorems 2.2 and 3.1]: 

PROPOSITION 4.8. l f  A is afield of  characteristic zero, then 7: ~a --0 H,(A, A) is an 
isomorphism. 

An essential step in our proof of Theorem 4.2 is the calculation of the Hochschild 

homology of the real quaternion division algebra H considered as an algebra over Q. As 

ususal, H=R.  I + R . i + R . j + R . k  and we show 

PROPOSITION 4.9. The inclusion of  Q-algebras R c H  induces an isomorphism 

H~(R, R) = H~(H, H), n>~ 0, 

and thus 

H,(H, H) ----- ff~, n~ > 0. 

Proof. The second statement follows from the first and Proposition 4.8. For the 

proof of the first statement, we let H0=Q �9 1 + Q. i+Q. j +Q. k be the quaternion algebra 

over Q so that H~R| By the KiJnneth theorem (see e.g. MacLane [14, Theorem 

X.7.41) 

H,(H, H) ~ H,(H o, Ho). 

Hence it suffices to show that H0(H 0, It0)= Q and H,(H 0, H0)=0 for n>0. However, 

H0| the full 4• matrix algebra over Q. Since Hochschild homology is a 

Morita invariant, we can again use the Kiinneth theorem to obtain 

(4.10) H,(H o, H o) | H,(Ho, Ho) ~- H,(M4(Q), M4(Q) ) ~ H,(Q, Q). 

Since H0(Q, Q)=Q and H,(Q, Q)=0 for n>0, Proposition 4.9 follows. [] 
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We next reformulate Theorem 4.2 in terms of the quaternions: Spin(3), the univer- 

sal (double) covering group of SO(3), is identified with the group Sp(1)cH of unit 

quaternions. Namely, let q* denote the usual quaternion conjugate of q E It. Identify R 3 

with the space H-=R.i+R.j+R.k of pure quaternions. Then the covering map 

o:Sp(1)~SO(3) is given by the representation o(q)(v)=qvq* for v EH-.  The inner 

product on H=R 4 is defined by {q~, q2) =(ql q*2+q2 , q])/2. Similarly, Spin(4), the univer- 

sal (double) covering group of SO(4), is naturally identified with S~• where 

Si=Sp(1), i= 1,2, and the usual action via the covering o: Spin(4)~SO(4) is given by the 

rule: 

cr(ql,q2)(v)=qlvq*2, qi~Sl ,  i= 1,2, v E H = R  4. 

This covering map actally extends to o: Pin(4)---~O(4) where Pin(4)=(Sl x S 2 ) ~ Z  2 is the 

semidirect product with Z2 acting on S~ xS2 by interchanging the factors. The corre- 

sponding orientation reversing involution in 0(4) is the quaternion conjugation map. 

For the induced action of Pin(4) on A2z(H), we deduce from Theorem 2.2 and the 

Hochschild-Serre spectral sequence for the extension 

1 --~ { +_ 1 } --) Pin(4) --~ 0(4) ~ 1 

that 

(4.11) H;(Pin(4),AZz(It)) = 0 for i = 0, 1,2. 

It is convenient to identify A2(It) with the ( -  1)-eigenspace in I-I| for the involution r 

given by 

(4.12) r(a0| 0 = a*l| o. 

The isomorphism 

(4.13) (H | H)- ~- A2z(H) 

is given by ao| This isomorphism is Pin(4)-equivariant if we define the 

action 0 on H |  by 

(4.14) O(ql,q2)(ao| qi~Si , i= 1,2, ajEH, j = 0 , 1 ,  

and the Z2-factor acts by ao|174 
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We now consider the map 

(4.15) e = e 0 I J ( - - e l )  " H  ~) H ~ H IIH 

where e0 and el are given by (4.4) and (4.5) above. We note that e is Pin(4)-equivariant if 

the action on the right-hand side is given by 

O(ql '  q2) (VI' 02) = (Q(ql) (U1)' Q(q2) (V2))' qi E S i, vie H, i = 1,2, 

and if the Z2-factor acts by (vl, v2)---~(-v~,-v~). Also e commutes with the involution r 

if r is defined on the right-hand side by the quaternion conjugation: r(vl, v2)=(v~, v'~). 

Note also that on both sides of (4.15) r commutes with the Pin(4)-action. 

By Proposition 4.9, H0(H, H)=R is the (+ 1)-eigenspace for r on H. We therefore 

obtain from (4.15) the following exact sequences of Pin(4)-modules: 

(4.16) 0 --. I i (H)-  --~ (H | H) -  ~ H -  I.IH- ~ 0 

(4.17) 0 --> I~(H) + = Q~(H) + ---> (H | H) + ~ H + = R ---> 0 

where the superscripts + indicate the (+ 1)-eigenspaces for r. Note that the last map in 

(4.17) is given by e 0+--e 1 + . 

From the Hochschild-Serre spectral sequence and Kiinneth's theorem (cf. Dupont 

[5, p. 619]) we obtain 

(4.18) Hi(Pin(4), H-  II H-) ------ Hi(Spin(3), H-) =Hi(SO(3), R3), i = 0, I, 2. 

By using the long homology sequence associated to (4.16), we conclude from (4.11) and 

(4.13) that 

(4.19) Hi(SO(3),R 3) ~Hi_l(Pin(4), Ii(H)-), i =  1,2. 

Thus, the proof of Theorem 4.2 is reduced to calculating Hi(Pin(4), Ii(H)-), for i=0, 1. 

This will be done in the next section. 

5. The theorem of  Sydler and Jessen: conclusion 

The goal in the present section is to prove 

THEOREM 5.1. (a) The natural map Ii(H) ~ Hi(H, H)=HI(R ,R)=  ff~ induces an 

isomorphism H0(Spin(4),I1(H)-)----~2~ and Pin(4)/Spin(4)~Z2 acts trivially on both. 

2-908288 Acta Mathematica 164. Imprim6 le 23 f~vrier 1990 
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(b) Hi(Spin(4), I i(H)-)=0.  

For the proof we first give the complex (f2.(H), b) a Spin(4)-module structure 

compatible on V21(H)cH| with the action O (4.14). Since f2n(H)cH | we define 

the action on H |247 by setting 

(5.2) 
for n = O ,  

for n>O,  

o(ql,q2)(ao) = q2aoq*2, ao6H,  

a(ql, q2) (ao|174 ... | 

= q, ao q*2 | qz alq*l |  az q*l |  | an q*~, ai6H. 

Here qi6Si, i=1,2.  Notice that Q, c H  | is stable under this action and that 

b: f2n(H)--~s n_ l(H) is a Spin(4)-module map. By (4.6), we have a natural isomorphism of 

Spin(4)-modules: 

(5.3) Qn(H) -- f~t(H) | (H/Q) |176 n >0,  

where (ql,q2)6Sl• acts on f~t(H) as in (4.14) and acts on IFQ by o(q0, i:e. 

(5.4) O(ql,  q2) (09" do2.., dan) = O(ql, q2) (o)) "d(Q(ql) (a2)) ... d(p(ql) (a,)), 

where o) E • I (H) ,  a2 . . . . .  a,  E H. 

We next extend the involution r to all of ff2,(H): 

We already defined r on ff20(H)=H by r(a0)=a~6 E H for a0 E H and on ff~l(H)cH| 

by (4.12), i.e., r(aodal)=r(ao|174174174 . Hence, if 

we define the conjugation on Qn(H) by (aodal... dan)*=(da*...da])a* o, aiEH, then 

r (w)=-w* for w E f~(H). We now define r on f~,(H) for n > l  by using the isomorphism 

(5.3) so that 

(5.5) r(o).da2...da,)=(-1)("-2)(n-3)/2.w*.da*...da*2, o)6QI(H), ai6H. 

With this definition, r commutes with b:ff2,(H)---~f~,_l(H), and in view of (5.4), r 

also commutes with the Spin(4)-action. 

It follows that the complex (ff~,(H), b) splits as a complex of Spin(4)-modules into 

(_+ 1)-eigenspaces for r, 

f2,(H) = Q,(H) + II f2,(H)- 

and similarly for I , (H),  B,(H),  and H , ( H ,  H). 

We now prove two useful lemmas: 
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LEMMA 5.6. (a) The Spin(4)-action on H.(H, H) is trivial. 

(b) On Hn(H, H) the involution r is given by ( -1 )  n. id. 

Proof. (a) By Proposition 4.9, every element in Hn(H, H)=In(H)/Bn(H) is represent- 

ed by elements in Q,(R). Let us show first that q fi St acts trivially on H,(H, H). Clearly 

{q} and R are contained in a commutative subfield C c H  so it is enough to show that q 

acts trivially on Hn(C, C). Now by Proposition 4.7 the composition of the maps 

Hn(C, C) --+ ~n(C)/Bn(C) --+ ~ 

is an isomorphism, and clearly, by (4.14) and (5.4), O(q, 1) is given on Q,(C) by 

O(q, 1)(to'da2.. .dan)=qtoq*'daz.. .dan for to6Ql(C), aifiC. 

Since this element goes to to^daz^  ... ^dan in Q~, we have shown that q6S~ acts 

trivially on H,,(C, C). For q6S2, the proof is the same since for C commutative and 

q fi Sp(1) n C, 6(1, q)=O(q*, 1). This proves (a). 

(b) Again by Propositions 4.7 and 4.8 we shall just calculate r when it is restricted 

to Hn(R, R)-------g2~ where by (5.5) 

r(toAda2 A ... ^ dan) = (--1)(n-2)(n-3)/2"to Ada,, A ... da 2 

=( - l )n -Z .~oAdazA . . .Ada , ,  w 6 ~ ,  ai6R.  

This proves Lemma 5.6. [] 

LEMMA 5.7. For the action of  S2,cSpin(4) on g2,(H)), we have H0(S>Q0(H))=R 

and H0(SE, Qn(H))=0 for n>0. 

Proof. For n=0, this is clear from (5.2). For n>0, it follows from (5.3) and (5.4) that 

it suffices to prove 

n 0 ( s 2 ,  Q t ( H ) )  = 0. 

For this, consider the exact sequence of S2-modules 

(5.8) 0 ~ f~(n)  ---, H | I-I~ I-I --, 0 

where the action in the middle is given by (4.14) and where S 2 acts trivially on the last 

module H. Since $2 is a perfect group the long exact sequence for (5.8) yields 

o ~ Ho(S2, Q,(H)) ~ Ho(S2, H |  -~ H + 0 
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and we must show that eo, is injective. Now eo, is given by eo,(ao| l) = aoa I for 

ao,a~ EH, and is split by r/:H--~Ho(S2, H |  defined by 

(5.9) r/(a) = a |  aEH.  

We show that r/is surjective, i.e., that every element is of the form (5.9). This in 

turn follows once we show that in H0(S2, H |  

(5.10) a o x |  ao| for all ao, al ,xEH.  

For this, we observe that (5.10) is clearly true for x=q E Sp(1) by (4.13), and hence also 

for x=q*. By adding these two equations, it follows that (5. I0) is true for x=q+q*. This 

latter ranges over all real numbers in the closed interval from - 2  to 2. It follows that 

(5.10) holds for any real number. Hence, writing any x E H in the form rq with rE R and 

q E Sp(1), we conclude that (5.10) hods in general so that Lemma 5.7 holds 

Proof o f  Theorem 5.1. (a) Consider the exact sequences of Spin(4)-modules: 

(5.11) 0 ~ BI(H)- ---* If(H)- ~ HI(H, H)- ---* 0, 

b 
(5.12) 0 --~ I2(H)- --~ Q2(H)- --~ BI(H)- --*0. 

By Lemma 5.6, we have 

H0(Spin(4), H~(H, H)-) = Hi(H, H)- ~ s 

so that (5.11) yields the exact sequence. 

H0(Spin(4), B~(H)-) ---, H0(Spin(4), I~(H)-)--~ ff2~R ---> 0. 

By (5.12), H0(Spin(4), BI(H)-) is a quotient of H0(Spin(4), O2(H)-) which is 0 by Lemma 

5.7. This proves the first statement of Theorem 5.1 (a). Since Pin(4)/Spin(4) acts on 

II(H) by conjugation and since every element in Ht(H, H) is real, the second statement 

of Theorem 5.1 (a) is obvious. 

(b) We first notice that by Lemma 5.6(b) 

I2(H)- = B2(H)-,  

thus, similar to (5.11) and (5.12), we also have the exact sequence of Spin(4)-modules 

b 
0 --~ I 3 ( H ) -  --~ Q3(H)- --o 12 ( H) -  - - .  0.  



HOMOLOGY OF EUCLIDEAN GROUPS OF MOTIONS 21 

By Lemma 5.7, H0(Spin(4), f~a(H)-)=0, it follows that H0(Spin(4), I2(H)-)=0. We de- 

duce from the long homology sequence for (5.12) that 

b, : Hi(Spin(4), f~E(H)-) ---> HI(Spin(4), Ii(H)-) is surjectioe. 

The long homology sequence for (5.1 l) therefore gives the exact sequence 

b, 
Hl(Spin(4),ff22(H)-) --> Hi(Spin(4), II(H)-) --> Hi(Spin(4), H~(H, H)) 

where the last group vanishes because of Lemma 5.6(a) and the fact that Spin(4) is a 

perfect group. Hence it only remains to prove that the induced map 

(5.13) b,: HI(Spin(4), QE(H)-) --> Hi(Spin(4), II(H)-) 

is zero. For this we first observe that the Hochschild-Serre spectral sequence for the 

extension 

1 --> $2 --> Spin(4) --> SI -* 1 

and the module f~2(H)- yields an exact sequence 

H2($1, H0(S 2, ff22(H)-))--> Ho(S l , H I ( S  2, filE(H)-)) ---> Hi(Spin(4), ~'-~2(H)-) 

HI(S~, Ho(S2, t~2(H)-))--, 0. 

By Lemma 5.7, we obtain an isomorphism 

Ho(S1, Hi(S2, ff22(H)-)) -~ Hi(Spin(4), f~E(H)-). 

The vanishing of b, in (5.13) therefore follows from the following 

LEMMA 5.14. The composition o f  the maps below is zero: 

Hl(S2~ f~2(H))-~ HI(S 2, Ii(H))-->Hi(Spin(4), I1(H)). 

For this we first notice that (5.3) for n=2 gives and isomorphism of Spin(4)- 

modules: f~E(H)-------g2~(H)| where $2 acts trivially on the second factor. We then 

prove the weaker statement 
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LEMMA 5.15. The composition o f  the maps below is zero 

H~(S 2, I1(I-I)| ~ HI(S 2, ~z(H)) ~-~ H~(S 2, II(H)) ~ Hi(Spin(4), ll(H)). 

Proof. Let ~EH1(S2,1~(H)). We will show that for t E R  the class ~.d(it)E 

H~(S z, g2z(H)) maps to zero in Hi(Spin(4), I~(H)). Replacing i by j and k will then prove 

the lemma. We begin by showing that b,(~. d(it)) is zero in H0(S1, HI(S2, II(H))). Let  us 

write ~ (mod S~) for the equivalence relation in this group. Notice that for q E Sp(1) and 

~o E~1(It), O(q, 1)(to)=qtoq* so clearly 

(5.16) q~q* =~ (mod S1). 

Now let qESp(1)nC=U(1) and write q=r+is so that (5.16) becomes 

that is, 

(5.17) 

(r+is)~(r-is)=-~ (rood S0 

r~r-is~is+(is~r-r~is)=~ (mod S0. 

Replacing q by q*, that is, replacing s by - s  in (5.17) and subtracting from (5.17), we 

obtain 

(5.18) 2(is~r-r~is) =- 0 (rood SO. 

Now II(H) is both a left and a right R-module (but not an H-module!) so that there is an 

induced left and right R-multiplication on Ho(S 1, HI(S 2, II(H))). Hence we can mutipty 

(5.18) on the left and on the right by (2r) -I respectively r -1 and obtain 

isr-l~-~isr -I =0 (mod Sl) 

i.e., by (4.7), 

b,(~.d(it))= 0 (rood Si), t = s/r. 

Since t = t a n 0  for r+is=exp(iO), it can be any real number and we have proved Lemma 

5.15. [] 

Proof o f  Lemma 5.14. An easy calculation gives the identity 

b(to. dt) = b(ttoidi)-b(toid(it)), to E f21(H), t E R. 
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Hence it suffices to evalutate b .  on elements of the form 

~.daEHI(S2,~2(H)), ~EH1(S2, QI(H)) and a E H - .  

Lemma 5.15 therefore follows from Lemma 5.14 once we show that the inclusion map 

II(H)---~21(H) induces a surjective map 

e l(S2,11 (H)) --->H 1 ($2, if2 l(H)). 

Since Re(aoal)=Re(alao)for ao, a I E H, II(H)+=QI(H) + so it suffices to show surjec- 

tivity of the map 

(5.19) Hi(S2, I1(H)-)---~HI(S2, if2 l(H)- ). 

Now consider the commutative diagram with exact rows 

0 , I1(H)- ~ ~I(H )- b ' H -  ) 0 

i2 1 l 
0 ,I~(H)- , ( H |  t , H - H H -  ,0  

where e is given by (4.15) and iz(v)=(O,v), v E H-.  Here the top row is a sequence of 

Spin(4)-modules whereas the bottom row is a sequence of Pin(4)-modules. Together 

with the remarks following (4.16) we obtain a commutative diagram with exact rows 

(5.20) 

HI(S 2, II(H)-) )Hi(S2, ff21(H)-) Hi(S2,  H-) 

0 , Hi(Pin(4), I t -  II H-) 

' H0(S2, II(H)-) 

l 
, Ho(Pin(4), I~(H)-) 

Proof of Theorem 4.2. In view of (4.19) and Theorem 5.1 it only remains to 

determine the map J. For this we recall from Dupont [5, Example 4.11] that the map 

R | (R/Z)--~H~(SO(3), R 3) 

is the induced map 

Since i2 is an isomorphism by (4.18), it follows from (5.20) that the boundary map a in 

the top row is injective. Hence b , = 0  and we have proved the surjectivity of the map in 

(5.19). This ends the proof of Lemma 5.15 and hence also the proof of Theorem 5.1. [] 
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(5.21) HI(SO(2), R)---)H~(SO(3), R 3) 

where S0(2)cS0(3) is the natural inclusion and R c R  3 is the inclusion of the line 

normal to the plane in which SO(2) acts by rotations. Thus we have made the usual 

identifications 

R/Z ~ SO(2)=HI(SO(2), Z). 

Now we identify 0(2) with the semidirect product 0(2)= U(1)>~Z2 where SO(2)---U(1) is 

acting by complex multiplication on C=R 2 and the reflection in the real line is just 

complex conjugation. We also put Pin(2)= U(1)>~Z2 where Q : Pin(2)-oO(2) is just given 

by the squaring map on U(1). We next include Pin(2) into Pin(4) by sending z E U(1) to 

(z, z*)E S~ xS2 and we have a map of exact sequences 

(5.22) 

0 )I1(C) ----'-----~ (C | C)- e~ ') iR ' 0 

0 ,I~(H)- , ( H |  e , H - I I H -  ,0 

where A is given by A(v)=(v,-v),vEIR. Here the top row is a sequence of Pin(2)- 

modules induced via ~)| on C| on iR the action is given by Q followed by the 

determinant (over R). The bottom row is a sequence of Pin(4)-modules as usual and the 

vertical maps are clearly equivariant. From (5.22) we obtain a commutative diagram 

(5.23) 

Hi(Pin(2), JR) 

H~(Pin(4), H-H H-) 

a 
, H0(Pin(2), I~(C)-) 

, H0(Pin(4), l l (H)-)  

, H0(Pin(2), HI(C, C)-) 

1 
, Ho(Pin(4), HI(H, H)-) 

Here 

and Pin(2) evidently acts trivially. Together with Theorem 5.1 (a) it follows that the 

right most vertical map in (5.23) is an isomorphism. On the other hand 

(5.24) Hi(Pin(2), JR) ----H1(O(2), R~ --- R| 

where R t donotes R with the determinant action. By way of the isomorphism (4.18) A, 

is 2 times the map in (5.21) so it remains to determine the top horizontal map in (5.23) 
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via the identifications in (5.24). Since all maps in (5.23) respects multiplication by r E R, 

it is enough to determine J(l| for OE [0, 2~r]. Let z=exp(iO) E U(1) ---SO(2) and 

observe that the corresponding 1-chain in C~(Pin(2),iR) is zl/2~i. This lifts in 

C~(Pin(2), (C| to 

zV2|174 1 + 1 | 

Hence a(zll2(~i) is represented in C0(Pin(2),Ii(C)-) by 

�89174 1 + 1 | 1 7 4 1 7 4  = �89 iz*-iz" dz*). 

It follows that in (Q~)- we have 

2J(1 | = ~(z*" dz-z"  dz*). 

By using 

(cos O)'d(cos O)+(sin t~)-d(sin 0)= ~d(cos 2 v~+sin 2 ~)= 0, 

we have 

z* "dz = (cos O-i .  sin O).d(cos O+i. sin 0)=/{cos  0.d(sin O)-sin O.d(cos 0)} 

.f cos20 ,. ]~ 
= l) . -  si-~-~atcos O)-sin 0 d(cos 0) j = _ i  d(COSsin t~0) 

Hence 

Z/(l| = d(cos O)/sin 0 

which proves the remaining part of Theorem 4.2. 

6. Remarks: unsolved problems 

A result of Jessen [10] shows that the scissors congruence group in Euclidean 4-space is 

isomorphic to the scissors congruence group in Euclidean 3-space. For a homological 

proof of this reduction cf. Dupont [5, Corollary 4.28]. Geometrically every 4-dimen- 

sional Euclidean polytope is scissors congruent to an orthogonal cylinder of height 1 

with base equal to some polytope of dimension 3. Since both the volume and the Dehn 

invariant easily "desuspends" to the base, this showed that the theorem of Dehn- 

Sydler-Jessen extends to Euclidean 4-space. For dimensions 5 or higher, Dehn invari- 
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ants and volume are still invariants of the scissors congruence classes. It is not known if 

they are complete invariants. The "desuspens ion"  theorem of Jessen extends weakly 

to higher dimension in the sense that any even dimensional Euclidean polytope is 

scissors congruent to a finite interior disjoint union of orthogonal product of properly 

lower dimensional polytopes, i.e., they are "generalized cylinders" or "decompos-  

able".  However, it is not known if they are scissors congruent to an orthogonal cylinder 

of height 1. The first unsolved case occurs in dimension 6. This problem is first posed 

by Jessen and can be phrased in the form: 

Problem of Jessen: Is it true that every orthogonal product of 3-simplices in R 6 is 

scissors congruent to an orthogonal cylinder of height 1 with a base equal to some 

polytope in R5? 

A Dehn invariant computation for simple examples shows that the the converse of 

the preceding question is definitely false. 

It should be noted that there are various possibilities in the definition of Dehn 

invariants. Moreover, the graded structures of the scissors congruence groups and the 

related definitions of the higher Dehn invariants have a formal similarity to the known 

cyclic homology groups of the field R, cf. Cartier [1] as well as Sah [1 l,  Chapters 6 and 

7]. It should also be noted that the problem of Jessen can be rephrased in homological 

terms. In fact, a necessary condition for an affirmative answer is the injectivity of the 

natural map 

H3(0(5 ),A 4 (RS))---~H3(O(6),A4(R6)). 

The above map is known to be surjective. A sufficient condition will also involve a 

surjective statement for suitable H4, cf. Dupont [5, Example 5.39]. 
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