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1. Introduction
1.1. Results

One of the most interesting results in value distribution theory is the defect relation
obtained by R. Nevanlinna: If f is a non-constant meromorphic function on the complex
plane C, then for an arbitrary collection of distinct ai,...,a,€P?, the following defect
relation holds:
q
> _(6ai, ))+6(ai, /) <2. (1.1.1)
i=1

Here, as usual in Nevanlinna theory, the terms &(a;, f) and 6(a;, f) are defined by

s N(T,ai,f)
é(ai, f) —hrn_lg}f(l—w),

. N(T,ai,f)—N('f"aivf)
0(ai, f) —hfgg.}f T(r, f) ’
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and hence satisfy 0<d(a;, f)<1 and 0<6(a;, f)<1. For the definitions of the terms
T(r, f), N(r,a;, f) and N(r,a;, f), we refer the reader to [Ne2|, [Hay] and the following
subsections.

A problem, suggested by Nev‘anlinna, is whether the defect relation is still true
when we replace the constants a; by an arbitrary collection of distinct small functions
a; with respect to f (cf. [Nel]). Here we say that a meromorphic function a on C is a
small function with respect to f if a satisfies the condition T'(r,a)=0(T(r, f)) as r—o0.
Nevanlinna pointed out that the case g=3 for this question is valid, because we may
reduce the problem to the case that a;, ap and a3 are all constants by using a Mobius
transform. But for the case ¢>3, this method does not work.

Later, Steinmetz [St] and Osgood [O] proved that

q

Z 6(ai, f) <2

i=1
for distinct small functions a;. Their methods, which may be regarded as generalizations
of Nevanlinna’s original proof of (1.1.1), are based on the consideration of differential
polynomials in f and a;, 1<i<g. Though Nevanlinna used only the first-order derivative
of f, Steinmetz and Osgood used higher-order derivatives of f. Hence the truncation
level of the counting function is greater than one in general. See also Chuang [C] and
Frank—Weissenborn [FW].

However, it is hoped that the generalization of {1.1.1) for small functions is true

with the form including the term 6(a;, f) (cf. [D]). In this paper, we give a solution for
this problem by the following theorem.

THEOREM 1. Let Y and B be Riemann surfaces with proper, surjective holomorphic
maps 7y:Y -C and mp: B—C. Assume that wy factors through g, i.e., there exists
a proper, surjective holomorphic map n:Y — B such that my=npgom. Let f be a non-
constant meromorphic function on Y. Let ay,...,aq be distinct meromorphic functions
on B. Assume that f#a;om for i=1,...,q. Then for all €>0, there exists a positive
constant C(£)>0 such that the following inequality holds:

q
(g—2—¢) rf)<z (rya;om, f)+ Nram =y ()

(ZT 7,00+ Noamr 1) I

Here the symbol || means that the stated estimate holds when ¢ E for some excep-
tional set ECRo with [y, dloglogr<oo.

(1.1.2)
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Remark 1.1.3. (1) The term Nyam =, () counts the ramification points of 7y. In the
case Y=C and ny =idc, we have Nyapm ,, (r)=0. Similarly for Nyam 5 (7).

(2) We can define the terms T'(r, f), T(r,a;) and N(r,a;om, f) for the algebroid
functions f, a1, ..., a4 by a similar way for meromorphic functions on C. See the following
subsections.

Applying the theorem to the case when Y=B=C, my =ng=id¢ and all a; are small
functions with respect to f, we immediately obtain the following corollary.

COROLLARY 1. Let f be a mon-constant meromorphic function on C, and let
ai,...,aq be distinct meromorphic functions on C. Assume that a; are small functions
with respect to f for all i=1,...,q. Then we have the second main theorem,

q
(@=2-&)T(r,f)< D> _N(r,a;, f) || for all £>0,

=1

and the defect relation,
g

Z (6(as, f)+6(as, f)) <2.
i=1

A special case of this corollary, when f is a transcendental meromorphic function
and a; are rational functions, was proved in [Y2] (see also [Sa] for an earlier result). The
present paper is a development of the previous one.

We shall prove two other results. The first one is a corollary of the theorem above.
This is suggested by Erémenko [E]. Let &y and &g be the fields of all meromorphic
functions on Y and B, respectively. For a function 1: R..g— R~¢, we define a subset Rﬁ
of g by

&Y ={a€fp:T(r,a)=O0((r)) as r — co}.

Then this Rﬁ is a subfield of &p. For instance, if 9 is a bounded function, then R}g is
the field of all constant functions, i.e., R4 =C. Let F (, y)eﬁ’g [z, y] be a polynomial in
two variables with coefficients in ﬁ}g. For general z€ B, we denote by F,(z,y)€Cl[z,y]
the polynomial obtained by taking the values at z of the meromorphic functions in
the coefficients of F(x,y). Here the terminology “general” is used to indicate that the
exceptional set is discrete.

COROLLARY 2. LetY, B and 7 be the same as in Theorem 1, and let ¥: R~g—Rsg.
Let F(x,y)eﬁ}é [x,y] be an irreducible polynomial such that, for general z€ B, the poly-
nomial F,(xz,y) is irreducible and the equation F.(x,y)=0 defines an algebraic curve
of (topological) genus greater than one. Assume that fi, fo€Ry satisfy the functional
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equation F(f1, f2)=0, where we consider R‘é as a subfield of Ry by the natural inclusion
defined by w. Then we have

T(’F, f,) = O(¢(T)+Nram Ty (7')) H

when r— o0, for i=1,2.

If we apply this corollary to the case when Y=B=C, ny=np=id¢ and ¢ is a
bounded function, then we conclude that T'(r, f;)=0(1) || for i=1,2. Hence, both f, and
f2 are constant functions. This is equivalent to a result of E. Picard: If the equation
F{z,y)=0, where F(z,y) is an irreducible polynomial over C, defines an algebraic curve
of (topological) genus greater than one, then there is no pair of non-constant meromorphic
functions f1(z) and f2(z) on C such that F(fi(z), f2(2))=0 identically. (See also [Z].)

The next result is an algebraic analogue of the theorem above.

THEOREM 2. Let q be a positive integer. For all £>0, there exists a positive constant
C(q,e)>0 with the following property: Let Y and B be compact Riemann surfaces with
a proper, surjective holomorphic map ©:Y —B. Let f be a rational function on Y. Let
a1, ...,aq be distinct rational functions on B. Assume that f#a;om for all i=1,...,q.
Then we have

(q—2—¢e)deg f< Y afaiom, f,Y)+29(Y)
1<i<q (1.1.4)

+C{q,¢){(deg w)(lrg?é(q(deg ai)+g(B)+1).

Here we put ri(a;om, f,Y)=card{z€Y: f(z)=a;om(z)} and denote by g(Y) (resp.
g(B)) the genus of the compact Riemann surface Y (resp. B). Using this theorem,
we can prove the height inequality for curves over function fields, which is a geometric
analogue of a conjectural Diophantine inequality in number theory proposed by P. Vojta
([V1], [V3]). Since the formulation of this height inequality requires some notation, we
postpone stating it until §9 (cf. Theorem 5). A proof of Theorem 2 is similar to that of
Theorem 1. But we do not need Nevanlinna theory in this case. The following scheme
for the proof of Theorem 1 also works for that of Theorem 2, if we replace “B(R)”
by “B”. We also note that the inequality (1.1.4) is an analogue of the unintegrated
version of (1.1.2).

Remark 1.1.5. The reader who is not familiar with Nevanlinna theory may skip §1.4,
§82 and 7 to read the proofs of Theorem 2 (§8) and Theorem 5 (§9).
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1.2. A rough outline of the proof of Theorem 1

We use Ahlfors’s theory of covering surfaces (cf. [A], [Ne2], [Hay]) and the geometry of
the moduli space of g-pointed stable curves of genus 0 (cf. [Kn]), especially properties
around the degenerate locus whose point corresponds to a degenerate, nodal curve.

We first divide P! by a finite union of curves v such that P!\~ is a finite disjoint
union of sufficiently small Jordan domains Dy, 1<k< K, i.e., P1\7=U1<kg1< Dy,. This
division of P! gives the division of (P!)? in the form of open subsets

Dg,x..xDyg,, 1<k;<K for 1<i<q.
Then this division and the holomorphic map
a=(ay,...,aq): B— (P4
give the division of the open set
B(R)=ng'({z€C:|2|<R})
by the open subsets
F(k)=F(ky,....kg) = B(R)Na ' (Dg,x...x Dy,).

Note that on each F(k), the move of a; is bounded in P!. Hence the situation becomes
closer to the case that o, are all constants. We apply Ahlfors’s theory of covering surfaces
to the subcovering f: 7~ (F(k))—P* and g-Jordan domains Dy,, 1<i<g, on P!. Then
we obtain the unintegrated version of (1.1.2) for each domain F'(k). By adding over all &,
we get the unintegrated version of (1.1.2) for B(R). Using the Schwarz inequality, we
conclude the inequality (1.1.2). This is the very rough plan of our proof (we use the
moduli space of g-pointed stable curves of genus 0 instead of the space (P)? above).

There are several problems to work out the process above correctly. The major prob-
lem comes from the degenerating points z€ B, where the values of two distinct functions
a; and a; degenerate into the same value a;(z)=a;(z); the problem is how to separate
the functions a; and a; at the degenerating points 2z in an appropriate way. To motivate
the rest of this introduction, we only remark the following two points, which are closely
related.

(1) If z€ F(k, ..., kq) is a degenerating point such that a;(z)=a;(z), then we have
Dy, =Dy,;. Hence we cannot apply the usual method of Ahlfors’s theory; we need to
modify it. The idea of the modification is roughly as follows: We use Ahlfors’s theory in
two steps (in several steps in general). First, we apply Ahlfors’s theory to the subcovering

fin Y (F(k)) — PL
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Secondly, we apply Ahlfors’s theory to the covering

L0 D) ) — P

Note that we choose the function A(w)=(w—a;)/(a; —a;) so as to separate the functions
a; and aj, ie., A(a;)=0 and A(a;)=1. Combining these two steps, we get rid of the
degenerating point z above. Hence, we can say that our idea is the systematic use of
Ahlfors’s theory in several steps for different functions which separate the degenerating
functions in due order at a degenerating point. The dual graph (cf. §1.5) of the g-pointed
stable curve associated to a degenerating point describes the combinational structure of
the degeneration of the functions a; at the point. In this paper, we use a system of
contraction maps (cf. §1.5) instead of the functions of the form X above.

(2) Let #=C(ay, ..., a,) be a subfield of Rp generated over C by the meromorphic
functions ay, ...,a,. In general, the transcendental degree of the field extension &/C has
high dimension, which requires us to use higher-dimensional algebraic geometry. The
most natural way to control the degeneration such as a;(z)=a;(z) in an appropriate way
is to consider the moduli space of g-pointed stable curves of genus 0, denoted by ./ﬂ_qu.
Roughly speaking, this space is a quotient of (P1)? by the diagonal action of Aut(P!).
For generic z€ B, the points a;(2), ...,a4(z) P! are distinct. We consider these points
as g marked points of P, Since the space ./ﬂ_qu is the classification space of ¢ marked
points of stable curves of genus 0, we have the classification map

cly: B— Mo 4.

This map is a modification of the map @ above. When we consider the degenerating
point z€ B, then the image cl,(2) is contained in the degenerate locus 2, C.#o . What
is important is that we may consider the points a;(z), ..., aq(2) as distinct marked points
of a degenerate, nodal curve instead of considering them as non-distinct points of Pl
Hence in this sense, we can say that the values a;(2), ..., aq(2) are also separated at the
degenerating points z. This is one reason why we employ the space //70,,1.

Next we prepare notation and formulate Theorem 4, from which we derive both
Theorem 1 and Theorem 2. Then we shall discuss farther details of the proofs of our

theorems.

Remark 1.2.1. When we consider the special case that f is a transcendental mero-
morphic function on C and a; are distinct rational functions on C, the proof becomes
simpler than that of the general case. One reason for this is that the field £ is contained
in the field of rational functions on C, and hence the transcendental degree of the field
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extension £/C is equal to or less than one. Especially, we need neither algebraic geome-
try nor the moduli space of stable curves. This case was treated in [Y2]. In the present
paper, we freely use the language of algebraic geometry.

1.3. Notation

In this paper, we assume that all arcs on a Riemann surface are piecewise analytic,
i.e., every arc is parametrized by a continuous map «(t) on the interval [0,1] with the
following property: There is a sequence

O=to<ti<...<tp, =1

such that the restriction of a(t) to each closed interval [t;, ¢;11] is regular and analytic. In
particular, we assume that all Jordan domains are bounded by piecewise analytic Jordan
curves.

The following fact is an easy consequence of the identity theorem for analytic func-
tions. See also [Mi, Theorem 1].

LEMMA 1. The intersection of two arcs on a Riemann surface consists of at most

a finite number of points or subarcs of the original arcs.

Let & be a Riemann surface. We say that F is a finite domain of # when

(1) F is a compactly contained, connected open subset of F;

(2) OF is a finite union of arcs, which are piecewise analytic by our convention;

(3) F and #\F have the same boundary.

Here we denote by F' the closure of F' and by OF the boundary of F. Then a finite
domain F is compact if and only if # is compact and F'=4.

Let [Jycp Ax be a triangulation of # where all edges are piecewise analytic Jordan
arcs. Let FC.# be a finite domain, and let (v;); be a finite set of arcs with OF =, ;-
By applying Lemma 1 for arcs -; and edges of triangles Ay, and passing to a suitable
subdivision of the triangulation, we may assume that each arc +; is a finite union of edges
of triangles Ay. Since F is compact, there is a finite set A’C A such that F={J,.,, Ax.
This gives a triangulation of F by a finite number of triangles. In this triangulation of F,
some edges may belong to only one triangle; such edges form the boundary 0F because
of the condition (3) above. Using the triangulation of F, we define the characteristic
o(F) of F by

—[number of interior vertices]+ [number of interior edges] —[number of triangles].
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Then it is well known that this definition is independent of the choice of the triangulation.
This characteristic is normalized such that p(disc)=—1 as usual in Ahlfors’s theory. We
also put o (F)=max{0, o(F)}.

Let © be a compactly contained open subset of &#. Let f and a be meromorphic
functions on %#. Assume that f#a. Put

n(a, f,Q) =card{z€Q: f(z) =a(z2)}.

Let M be a smooth complex algebraic variety, and let w be a smooth (1,1)-form
on M. Let g: #— M be a holomorphic map. We put

A(g, 9 w) :/ g'w.
o)
Let v be an arc on & and let wys be a Kdhler form on M. We denote by

l(ga’YawM)

the length of the arc g|,:y— M with respect to the associated Kéhler metric of wps. Let
ZCM be an effective divisor such that g(#)¢Zsupp Z. We put
n(g,2,Q)=Y ord. g'Z
z€Q
and
n(g, Z,00) = Z min{1, ord; ¢*Z} = card(RNsupp g~ (Z)).
z€N
Let #' be a Riemann surface and let n: #’—.# be a proper, surjective holomorphic
map. We denote by ram 7 the ramification divisor of 7, which is a divisor on #'. Put
disc(m, Q) = Z ord; (ram ).
zET—1(8)

1.4. Nevanlinna theory

Let Y be a Riemann surface with a proper, surjective holomorphic map #:Y —C. Let
M be a smooth projective variety. Let g: Y —+M be a holomorphic map. Let ZCM be
an effective divisor such that g(Y)¢supp Z, and let w be a smooth (1,1)-form on M.

1 "n(g,Z,Y(t
Nio2) =g [ He2 0

For r>1, we put

— 1 "n(g, Z,Y (¢
Nr92) = [ M85 g,

1 [ AlgY(t)w)
T =
(T,g’W) deg71‘/1 t dt
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and

Neamn(r) = 1 / disc{m, C(t)) dt.
degm J; t

Here C(t)={2€C:|z|<t} and Y (t)=n"1(C(2t)).
Let E be a line bundle on M. Let || - ||; and || - ||z be two Hermitian metrics on E.

Let w; and w be the curvature forms of || - ||; and || - [|2, respectively. Then we have
T(r,g,w1)=T(r,g,w2)+O(1) when r— o0,

which follows by Jensen’s formula (cf. [NoO, p. 180], [LC, IV.2.1]). Therefore we define
the characteristic function T'(r, g, E) by

T(T,g,E) :T(ragaw1)+0(1)a
which is well-defined up to a bounded function.
Let f and a be meromorphic functions on Y such that f#a. Then we put

= _ 1 ["nle, f,Y(2)
1\7(7“,tz,f)—degﬁ/1 : dt.

We denote by wp: the Fubini-Study form on the projective line P, i.e.,

1 v-=1
(S A—) | w.
(ATl 2n WWNdw

We define the spherical characteristic function by

1 L. dt
70N =T0 frow) =g [ [ e G

wp1 =

Then it is well known that this function T'(r, f) is equal to the usual Nevanlinna charac-
teristic function of f up to a bounded term in 7 (cf. the Shimizu-Ahlfors theorem).

1.5. The moduli space of stable curves
Our references are [Kn], [Ke|, [FP] and {Ma]. In this subsection, we always assume ¢23.

Definition 1.5.1. A g-pointed stable curve of genus 0 (or simply g-pointed stable
curve) is a connected reduced curve C of (arithmetic) genus 0 with ¢ distinct marked
points (s1, ..., 8¢) provided that

(1) each irreducible component of C is isomorphic to the projective line P*;

(2) C is a tree of P! with at worst ordinary double points;

(3) s; is a smooth point of C for i=1,...,g;

(4) each irreducible component of C has at least three special points, which are either
the marked points, or the nodes where the component meets the other components.
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Let C=(C, sy, ...,5¢4) and C'=(C", s}, ..., 5;) be two g-pointed stable curves. We say
that C and C” are isomorphic if there exists an isomorphism 7: C—C"’ such that 7(s;)=s;
for all i=1,...,q.

We use the following notation:

.//70’(1: the moduli space of g-pointed stable curves of genus 0, where ‘//70,11 is a smooth
projective variety;

“270,[1 3“—)//70,,1: the universal curve, where ?70,,1 is a smooth projective variety and w,
is a proper flat morphism;

01,...,04: the universal sections of w,, where ai(%,q)ﬂaj (/Zo,q)zﬂ for i#£j;

2, the divisor on %, determined by 37, 0:(Ao,4);

%y the fiber w_ ! (z) over z€ .4 q;

K, /.4, the line bundle on % 4 associated to the relative dualizing sheaf of the
morphism wg: %, q— M q;

K,: the line bundle K%Yq/d,yqu(@q);

wq: a fixed Kéhler form on % 4;

nq: a fixed Kéhler form on . 4;

#,: the curvature form of a fixed smooth Hermitian metric on Kg;

(g): the set {1,...,q};

F =491 the set {(3,7,k,1): 1<i<j<k<i<q};

F=_F9 theset {(i,7,k):1<i<j<k<q}.

Remark 1.5.2. By definition, the family w,: %, — #o,4 With the g distinct sections
01, ...,0q has the following two properties:

(1) For a point € .4 4, the g-pointed fiber €, =(%;,01(x), ..., 04(z)) is a g-pointed
stable curve.

(2) Let C=(C, s1,...,84) be an arbitrary g-pointed stable curve. Then there exists
a unique point xE//?o,q such that C and %, are isomorphic as g-pointed stable curves.

A family of g-pointed stable curves is a proper flat morphism of schemes p: X - M
with ¢ sections 1y, ..., 74 such that the geometric fiber Xz together with ¢ marked points
T1(M), ..., Tq(M) is a g-pointed stable curve for all me M. Then the assertion (2) of the
above remark is generalized to the following moduli-space property: If p: X — M with sec-
tions 71, ..., T4 is a family of ¢-pointed stable curves, then there exists a unique morphism
M -—>//?87q such that p and 74, ...,7, are induced from w, and o1, ..., 04, respectively, by
the base change to M (cf. [Ma, II1.3.1 (a)]). Note that the complex structure of .#p 4 is
uniquely determined by this property.

In this paper, the corresponding moduli-space property in the analytic category is
only asserted over .# 4, which is a Zariski-open subset of //70,,;, via the argument below
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(cf. (1.5.9)).

The space Mo 4. Two g-tuples s=(sy,...,5,) and s'=(s},...,s;) of points on P!
are said to be isomorphic if and only if there exists an isomorphism 7 of P! such that
si=7(s;) for all i=1, ...,q. We denote by .# , the space of g-tuples of distinct points on
P! modulo isomorphism. Then .4 , is isomorphic to

P, =(P"\{0,1,00}) x...x (P1\{0, 1, co})\ [diagonals].

~
g—3 factors

Here note that an isomorphism of P! is uniquely determined by its action on three
distinct points. Then ¢/7o,q gives a compactification of .#; 4 by the natural inclusion
//Zo,qC//—/E,q, because g-distinct points on P! naturally determine a g-pointed stable
curve whose underlying curve is non-singular. Put 25=.#p ,\.#o,q, which is a divisor
on My, (cf. [Kn, 2.7]) and called the degenerate locus.

Remark 1.5.3. (1) We have #p ,={z€ My q: 6, ~P'}.

(2) For i=1,...,q, we define a holomorphic map p;: ,—P*! as follows: For i=
1,...,g—3, let p; be the obvious map coming from the projection to the ith factor. Put
Pg-2=0, pg—_1=1 and py=00. Put

pi=(ide,, pi): Py — PyxP.

Then p; is a section of the first projection Py xP!—2,. Put % =w, ' (Mp4). For
i=1,...,q, let o}: My q— U,q be the restriction of o;. Then there exist isomorphisms
V: Mo,g— Py and ' Uy g— Py x P which fit into the following commutative diagram
of holomorphic maps:

%O,q _L g@q X P1
qu llst projection (154)

Mo g ——> P,

Here ¢'oc,=p;o1p for i=1,...,q. Hence the family wy: % q— #o,q With ¢ sections o} is
isomorphic to the family 2, x P'— 2, with q sections p;.

The dual graph T,. Let x€.#, 4 be a point. Then (6, 01(), ..., 04(x)) is a g-pointed
stable curve. Let T, be the associated graph, i.e., each element v of the set of vertices
vert(I';) corresponds to the irreducible component C, of %, and two vertices v and v’
are adjacent if and only if C, and C,s meet transversally at the node C,NC\y€%;. Then
T’ is a tree.

The classification maps cl, and cl ). Let m: F'—F be a proper, surjective holo-
morphic map of Riemann surfaces .#’ and .#. Let f be a meromorphic function on .#’,
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and let a1, ..., aq be distinct meromorphic functions on #. Then we have the classification
maps

_ lfay ——
F L Moy and F LN,
which fit into the following commutative diagram of holomorphic maps:

Cl(f,a) J——

Fl— %O,q

wl lwq (1.5.5)

F—0 Mo,q-
These classification maps are defined as follows: Put
U={z€ZF:a1(2),...,aq(2) are all distinct} C F,
which is a dense open subset of #. We first define the restrictions
ol U~ Myq and  clip oyl y: 7 U) — %o g
For z€U, let clo(2) €4 4 be the unique point such that two g-pointed stable curves

(Pl, ar(z),...,aq(2)) and (Fo,(z),01(cla(2)), aq(cla(2)))

are isomorphic (cf. Remark 1.5.2). Then there exists an isomorphism 7: P! —%1,(2) Such
that
T(a;(2)) =0i(cla(2)) foralli=1,..,q. (1.5.6)

For yen~1(z), put
cisa)(W) =7(f(y) € Car,(2)- (1.5.7)

Next, we define the holomorphic maps
o F — Moy and  Cga F — Uy,

by the unique holomorphic extensions of cl,|y and cl(g q)lr-1(v), respectively.

Remark 1.5.8. In view of (1.5.4), we may write

a:(2)~ag-2(2) ag1(2)=ag(2)

ai(Z)—aq(z) aq—1(z)—aq_2(z)’ i=1,...,q9-3, (1.5.9)

pi‘”p"da(z) =

and
' _ fy)—aq—2(2) ag-1{2)—aq4(2)
sV W)= T "0 @) 2g1()—ag2(2) (1-5-10)
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for zeU and yen~!(z). Here s: 2, x P! P! is the second projection. These equations
(1.5.9) and (1.5.10) easily follow from the fact that the two (g+1)-tuples of points on P1,

(f(¥); a1(2), -, ag(2))

and
(se'ocl(5,0)(¥), Protpocla(2), ..., Pa—zopocly(2), 0,1, 00),
are isomorphic for z€U and yen1(2).

Contraction. Let p: X —M with sections 71,..., 741 be a family of (¢+1)-pointed
stable curves. Then we say that a family of g-pointed stable curves p': X' =M with
sections 71,...,7, is a contraction of p: X —M obtained by forgetting the section 7441 if

q
X
|
M

there is a commutative diagram
—t s x
satisfying the following two conditions:

I
M

(1) cory=7] for all i=1,...,q;

(2) Consider the induced morphism ¢z on the geometric fiber Xi. Let EC X, be the
irreducible component such that 7,.1(m)€E. If the number of the special points on E,
which are either the marked points or the nodes, is at least four, then ¢z: X7 — X% is an
isomorphism. Otherwise, ¢ contracts E to a point x=cx(EF)€ X}, and the restriction
cm: Xm\E — X/ \z is an isomorphism.

The above definition of the contraction is slightly different from that of [Kn], but
we can easily check that they are equivalent (cf. [Ke, p. 547]). We have the following
fundamental result: For any family of (¢+1)-pointed stable curves, there exists up to a
unique isomorphism exactly one contraction (cf. [Kn, 2.1]).

Let S be a subset of (g) such that ¢'=card $>3. Consider the universal family of
g-pointed stable curves wy: %,q%%ﬂ with the universal sections a;, i€(g). Then by
forgetting all the sections except those marked in S, we get a family of ¢’-pointed stable
curves (tw,): % ,—#o,q With sections o}, i€ S, as a contraction. By the moduli-space
property of .# q, we have the morphism wu: # q— .#, 4 such that (w,)’ and o] are
induced from wgy and &;, respectively, by the base change to //70,q. Here &; are the
universal sections of wg: %,ql—h//%,q/, which are assumed to be labeled by the set S.



238 K. YAMANOI

Therefore we have the commutative diagram of holomorphic maps,

’

Yoy —— Uy — tog
wa (wq)'l lwq/ (1511)
Mo q Mo,

./ﬂo,q' s

u

where u'ocog; =6;0u for all 1€ 8.

The contraction map ¢o. For a=(i,j,k)€_Z, we denote by wazgp((lq) the morphism
Pat %,q — P!

uniquely characterized by the following conditions:

(1) @ac0i=0, paoo;=1 and @ueor=00 (on //{—o,q);

(2) the restriction pql¢,: €, — P! is an isomorphism for all z€.#p 4.
To obtain this ¢,, we observe the following. By forgetting all the markings except ¢, j
and k, we get the following commutative diagram of holomorphic maps (cf. (1.5.11)):

’

e
Uo.q U q U3

A ]

Mo q Mo.q M0,3.

u

Put t=u'oc. Note that .#p 3 is isomorphic to a point and % 3~P'. We normalize the
three universal sections of w3 as 0, 1 and co. Then too;=0, tog;=1 and toor=co. Put
Pa=t.

The contraction map ¢p. By forgetting the marking o,, g4, we have the morphism
Uq: Mo q— Mo g—1 (cf. (1.5.11)). There exists an isomorphism tg: #p,q— %,q—1 Which
fits into the following commutative diagram of holomorphic maps (cf. [Ma, II1.3.3 (b)]):

~/ﬂ_0,q __"‘1_> %,q—l
uql lwq_l (1512)
-%_0,4—1 _ '/Z(;,q—l-

For I<q, put uq,l:ulﬂo...ouq://70,,1—)//7071. Put uq,qzid%‘q. For 8=(i,7,k,1)€.7, we
define ¢g: .#o ,— P! by the composition of the morphisms
(-1

— Ugl U 5 P(i,5,k)
/ﬁo,q—'—>q .ﬁo)l—l)%oyl_l—>Pl.
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1.6. Outline of the proofs

The proof of Theorem 2 is similar to that of Theorem 1 (actually easier). So we only
consider the case of Theorem 1. We first formulate the following theorem.

THEOREM 3. Let Y, B and «w be the same as in Theorem 1, and let ¢23 be an
integer. Consider the following commutative diagram of holomorphic maps, where g is
non-constant:

Y —gﬁ %-qu
. [ lwq (1.6.1)
B ——b—> ‘%,q-
Assume the non-degeneracy condition that g(Y )¢ supp Z,Uw; L(supp Z;). Then for all
e>0, there exists a positwe constant C(g)>0 such that
T(T‘, g, %q) < N(r, g, @q)+Nram7ry(T)+5T(7'v g, wq)
+C(E)T(r,0,1g)+ Nram 5 (1)) |-
In §2, we derive Theorem 1 from Theorem 3, applying to the case that g=cls ) and

(1.6.2)

b=cl,. Using the Schwarz inequality, we prove Theorem 3 from Theorem 4 below.

Definition 1.6.3. Let g3 be an integer.

(1) A g-hol-quintet is an object (F#, %, 7, g,b) where .# and # are Riemann surfaces
with a proper, surjective holomorphic map 7: # —>Z, and ¢ and b are holomorphic maps
which fit into the commutative diagram

y—g_>%_0,q

Wl lwq (1.6.4)

874 —IT)J/?(;,q.

We say that a g-hol-quintet (&, Z, 7, g,b) is non-degenerate if b(Z)¢ supp %, and if the
meromorphic functions p,eg on & are non-constant for all a€_¢#.

(2) A specified g-hol-quintet is an object (F,%,n,g,b, F,R) where (#,%,m,9,b)
is a g-hol-quintet, RCZ is a finite domain and F=7n"1(R). We say that a specified
g-hol-quintet is non-degenerate if the ¢g-hol-quintet (%, %, , g,b) is non-degenerate.

THEOREM 4. Let ¢>23 be an integer. For all £>0, there exists a positive constant
C(q,€)>0 with the following property: Let (#,%,7,g,b, F, R) be a non-degenerate spec-
ified q-hol-quintet. Then we have

A(g, F, »q) <7(9, Dyq, F)+disc(n, R)+eA(g, F,wq)

+C(g,¢)(deg m)(A(b, R, mg)+7(b, Z, R)+0* (R)+1(g, 8F, w,)). (1.6.5)
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The most important part of this paper is the proof of Theorem 4. The proof naturally
divides into the following three steps.

Step 1. We prove a local version of our theorem, which roughly reads as follows:
For each point z€.4, 4, there exists an open neighborhood V; of x such that if a non-
degenerate specified g-hol-quintet satisfies the condition b(R)CV,, then our theorem is
valid. For the precise statement, see Lemma 11. To prove this, we use a lemma from [Y?2],
which is an application of Ahlfors’s theory (cf. Lemma 8). For each vertex v€l'z, we
attach a contraction map ¢,: %, —P*, (v)€_¢. This contraction map ¢, has the
properties that the restriction to the component C, is an isomorphism and that the
restrictions to the other components C,s are constant maps. Applying Lemma 8 to
Y=pyeg and (=g(,y°g, where v and v’ are adjacent vertices, we obtain some sort of
“difference” of the usual second main theorem of Ahlfors. Adding these “differences”
over all the edges of I';, we obtain (a modification of) the usual second main theorem of
Ablfors. Applying Rouché’s theorem (Lemma 9), we get the local version of our theorem.
This method is similar to that of [Y2]. The major differences are that instead of the tree
constructed in [Y2, §8], we use the tree I';, and instead of the combinatorial lemma [Y2,
Lemma 4], we use a geometric lemma (cf. Lemma 10).

Step 2. By a finite union of curves 7y, we divide P! into a finite number of Jordan
domains Dy, 1<k< K. This division of P! gives the division of (Pl)j in the form of the
open subsets

H D, 1<k;<K. (1.6.6)
€S
Put ®=(¢i)ic.s: Mpq— (P)”. We consider connected components R’ of the pullback
of the open subsets (1.6.6) by the composition of the morphisms

R g2 (PY.

Then R is divided into a finite number of the finite domains R’. We assume that the
Jordan domains Dy, are very small. Then using the facts that .#p 4 is compact and that
® is an injection (cf. Lemma 12), we conclude the following: For every R’, there exists a
point £€.4; , such that b(R')CV,.

Step 3. We apply the local version of the theorem for each finite domain R’ and add
over all these finite domains to conclude our theorem. Here we need to estimate extra
error terms coming from

(1) the sum of the lengths I(g,d'7"'(R'),w,) over all R', where &n~1(R’) is the
part of the boundary 87~ !'(R’) which lies in the interior of F;

(2) the sum of p™(R’) over all R'.
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See Lemma 13 for these estimates. Here we only point out the idea of the method
of the first estimate. Take a slightly smaller Jordan domain Dj C Dy for each k. Then
we obtain slightly smaller finite domains R”CR’ in the same manner for R’ but from
the Jordan domains Dj;. We use the length—area principle to find a finite domain R
with R”CRCR’ such that the length (g, &’ w‘l(ﬁ),wq) is small enough provided that

the area A(g, 7' (R"),wy) is sufficiently large. We replace {R’} by {R} to conclude the
estimate.

1.7. Remarks

(1) A part of Theorem 3 can be generalized as follows. For a smooth algebraic va-
riety X, we denote by Kx the canonical bundle of X. Given a morphism p: X - M
between smooth algebraic varieties, we define the relative canonical bundle Kx /s to be
Kx—p*Kp. The relative canonical bundle Kx,ps is a line bundle on X. Note that
the line bundle Kg; , 7 . defined in §1.5 is equal to the relative canonical bundle of
wq: Uo,q— AMo,q in this sense, so our notations do not contradict.

COROLLARY 3. Let X and M be smooth projective varieties over C. Let p: X - M
be a surjective morphism where the relative dimension of X over M is equal to one. Let
DCX be a reduced divisor on X. Let L and E be ample line bundles on X and M,
respectively. Let Y, B and © be the same as in Theorem 1. Consider the following

commutative diagram of holomorphic maps, where g is non-constant:

y 2> x
rl lP
B— M.

Assume that the image b(B) is Zariski dense in M and that g(Y)¢supp D. Then for
all £>0, there exists a positive constant C(e)>0 such that

T(r,g, KX/M(D)) < N("'a 9, D)+ Nram ny (1) +€T(7, g, L)

(1.7.1)
+C(e)(T(r,b, E)+ Nram rp(r)) ||

We shall prove this corollary as part of the derivation of Corollary 2.

(2) Consider the case B=C and mg=id¢ in the corollary above. A consequence of
the general second fundamental conjecture is that the inequality

T(r,g9, Kx (D))< N(r,g, D)+ Nyam ny (r)+€T(r, g, L) || (1.7.2)
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holds for all >0 and for all suitably non-degenerate g. Since we have
T(’I’, g9 Kx (D)) = T(Tw g, KX/M(D))+T(T7 b7 KM)+O(1)’

the inequality (1.7.1) (and hence (1.6.2)) is a weak form of (1.7.2).

The paper is organized as follows. In §2, we prepare some lemmas and derive Theo-
rem 1 from Theorem 3, and Theorem 3 from Theorem 4. The proof of Theorem 4 begins
in §3. This section is a preliminary for the proof including some lemmas from [Y2] and
a review of Ahlfors’s theory, which will be used in the proof. In §§4 and 5, we prove
Lemmas 11 and 13, respectively. The proof of Theorem 4 ends at §6. In §7, we prove
Corollaries 2 and 3 together with some generalization of Theorem 1. In §8, we prove
Theorem 2 from Theorem 4. This proof is similar to that of Theorem 1. In §9, we
introduce some notations from [V1] and [V3], and prove the height inequality for curves
over function fields (Theorem 5).

The author thanks Professor A. Erémenko for stimulating discussions, especially for
suggesting Corollary 2. I also thank Professors H. Fujimoto, J. Noguchi and M. Taniguchi
for many valuable comments on this paper. Finally I thank my colleagues A. Takahashi,
S. Yasuda and K. Ueda for valuable discussions about the moduli space of stable curves.

This paper is an expanded and largely rewritten version of [Y1].

2. Derivations of Theorem 1 from Theorem 3,
and Theorem 3 from Theorem 4

2.1. Basic estimates in Nevanlinna theory

Let Y be a Riemann surface with a proper, surjective holomorphic map m:Y —C. Let
X be a smooth projective variety, and let g: Y — X be a holomorphic map.

2.1.1. The Nevanlinna inequality. For an effective divisor ZC X with g(Y')Zsupp Z,

we have the Nevanlinna inequality ()
N(r,g,2)<T(r,g9,[Z])+0O(1), (2.1.1)

where [Z] is the associated line bundle for the divisor Z. This estimate follows directly
from the first main theorem in Nevanlinna theory. When Y=C and w=idc, the first
main theorem and the Nevanlinna inequality (2.1.1) is contained in [NoO, 5.2.18]. The
first main theorem for a general Y and an ample divisor Z is contained in [Nol, (3.5)],
from which the general case easily follows because an arbitrary divisor Z can be written
as the difference of two ample divisors. See also [LC, IV 2.3].

1) In this paper, we use big and little “oh” notation for asymptotic statements as r—o0.
g

.
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2.1.2. Functorial properties. Let M be a smooth projective variety, and let p: X - M
be a morphism. Let L, and L; be line bundles on X, and let F be a line bundle on M. In
this paper, we often use the following functorial properties of the characteristic function:

T(r,g, Ll +L2) = T(rv g, L1)+T(’I", g, L2)+O(1)7
T(r,g9,p*"E)=T(r,pog, E)+0(1)

for every holomorphic map g: Y — X. We can easily check these properties by the defini-
tion.

2.1.3. Growth estimates of the characteristic function. The lemmas in this subsection
may be found somewhere in the literature, but in lack of precise references, we provide
proofs. (For the case Y=C and w=id¢, see also [NoO, 5.2.29, 6.1.5].)

LEMMA 2. Let X, M, p, Y and g be as above. Let L be a line bundle on X, and
let E be an ample line bundle on M. Assume that dim X =dimp(X) and that g(Y) is
Zariski dense in X. Then there is a positive constant C, which only depends on X, M,
p, L and E, such that

|T(r,g, L)| < CT(r,pog, E)+O(1).

Proof. There is an ample line bundle L’ on X such that both L’'—L and L'+ L are
ample. Since the characteristic function of an ample line bundle is bounded from below,
we have

~T(r,g,L')<T(r,g,L)+0(1) < T(r,g,L')+0(1),

which yields |T'(r, g, L)|<T(r,g,L")+0(1). Therefore we have reduced our proof to the
case that L is ample.

Observe that the line bundle p*FE is big. Hence, by Kodaira’s lemma (cf. [KM, 2.60]),
we may take positive integers k and m such that H°(X,m(p*E)—kL)#0. Let F be a
divisor on X which corresponds to this non-zero global section. Since N(r, g, F') >0 for
r>1, the estimate (2.1.1) yields

0<T(r,g,[F))+O(1)=mT(r,g,p*E)—kT(r,g9,L)+0(1),

and hence T'(r, g, L)< (m/k)T(r, g,p*E)+0(1). Using the functorial property of the char-
acteristic function, we conclude the lemma. (Put C=m/k.) O

LEMMA 3. Let X be a smooth projective variety, and let g:Y =X be a holomor-
phic map. For a function ¥:Rso—R with ¥(r)>21, the following four conditions are
equivalent:

(1) There exists an ample line bundle L on X such that T(r, g, LY)=0(y(r)).
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(2) For all line bundles L on X, we have T(r,g, L}=0(y(r)).

(3) For all smooth (1,1)-forms Q on X, we have T(r,g,2)=0((r)).

(4) Let WCX be the Zariski closure of g(Y), and let C(W) be the rational func-
tion field of W. Then we have T(r,vog)=0{(r)) for all veC(W), where vog is a
meromorphic function on Y.

Remark 2.1.2. If g satisfies one of the above equivalent conditions, we say that the
order of the growth of g is bounded by ¥(r).

Proof. First, we shall prove the equivalence of the conditions (1), (2) and (3). Ob-
serve that the implications (3)=>(2) and (2) = (1) are trivial from the definition. For
(1) = (3), let £’ be the curvature form of a Hermitian metric on L. Since L is ample, we
may assume that ¥’ is positive. For a smooth (1, 1)-form €2, there is a positive constant
C such that —CQ'<Q<CQ because X is compact. Hence we have

IT(r,9,)| <CT(r,9,) = CT(r, g, L)+ O(1) = O(3(r)),

where we may include the term O(1) in O(¢(r)) because ¥(r)>1. Hence we conclude
that the conditions (1), (2) and (3) are equivalent.

Next we shall prove the equivalence of (2) and (4). Since our assertion is trivial for
a constant map ¢, we only consider the case that g is non-constant.

(4)=(2). Let vy,...,v4€C(W) be a transcendence basis of the field extension
C(W)/C, where d=dim W. Put

P=P'x..xP! and v=(vy,...,0q): W --+P.
N ——’

d factors

By Hironaka’s theorem, we may take a blowing-up W—»W, where W is smooth, such
that the rational map o: W --+P induced from v is regular at every point of W. Then
v is a generically finite map. Let §: Y W be the holomorphic map such that ueg=g,
where u: W— X is the composition of the morphism W —W and the closed immersion
W—X. We denote by . the hyperplane section bundle on P!, which is the unique line
bundle of degree one. Put E=pr{.#+...4+pr}.#, where pr;: P—P! is the ith projection
for i=1,...,d. Then FE is an ample line bundle on P. Since ¥ is generically finite, we may
apply Lemma 2 to get

T(T, 9, L) = T(?", g, U*L)+O(1) = O(T(Ta Ueg, E))

for all line bundles L on X. Here we note that T(r,v0§, E)—00 as r—00, because ¢o§
is non-constant. Observe that we have the estimate

d d
T(r,9°G,E)=T(r,veg, E)+0(1) = Z T(r,v;09,Z)+0(1)= Z T(r,v;09)+0(1),
i=1

i=1
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because wp: is the curvature form of the Fubini-Study metric on .. Hence by (4), we
get

T(r,g, L) =O((r))

for all line bundles L on X. This proves (2).

(2) = (4). Let veC(W). By Hironaka’s theorem, we may take a blowing-up Wow,
where W is smooth, such that the induced rational map o: W--sPlis regular at every
point of W. Let g Y =W be the holomorphic map such that uog=g, where u: WX
is the composition of the morphism W —W and the closed immersion W —X. Let L be
an ample line bundle on X. Apply Lemma 2 to get

T(r,§,0°%)=0(T(r,ucg, L)),
where .Z is the hyperplane section bundle on P!. Since we have
T(r,§,0"L)=T(r, 00§, L)+0(1) =T(r,v°9)+0(1),
we obtain T'(r,veg)=0(T(r,ucg, L)). By (2), we have
T(r,u°g, L) =T(r,g, L)+0(1) = O(3)(r)),

and hence T'(r,veg)=0((r)). This proves (4) and concludes the proof of the lemma. O

LEMMA 4. Let X and M be smooth projective varieties, let p: X — M be a morphism
and let g:Y — X be a holomorphic map. Let DCX be a divisor such that p(supp D)#M.
Assume that pog(Y )¢ p(supp D) and that the order of the growth of peg is bounded by
Y(r) for some Y:Rso—>Rx1. Then we have

T(Tv 9, [D]) =0(y(r))-

Proof. There is an effective divisor Z on M such that p(supp D)Csupp Z and
pog(Y)¢Zsupp Z. We may take a positive integer m such that the divisors m(p*Z)—D
and m(p*Z)+D are effective. By (2.1.1), we have

0<T(r,g9,[m(p*Z) - D))+ 0(1) =mT(r,peg, [Z]) - T(r, g, [D])+O(1)

and
0<T(r,g,[m(p"Z)+ D)) +O(1) =mT(r,peg,[Z])+T(r, g,[D]) +O(1).

Hence we get T'(r, g, [D])=0(%(r)) by Lemma 3. This proves our lemma. O
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2.2. An algebraic lemma

LEMMA 5. There ezist a line bundle E on My, and a divisor = on %4 such that
we(supp E) Csupp &, and

(4= 2.9 = Ko+, E+[E]

Proof. Let z€.#,,4, and observe that the restriction Kg|¢, is isomorphic to
Ke,(3°1_,0i(z)), where K¢, is the canonical line bundle on %,~P'. Hence we have
deg K4|«,=q—2 because deg K¢, =—2. Since the restriction <p(1,2,3)|<gz:‘€1—>P1 is an
isomorphism, we conclude that (g—2)(¢{; 5 3)-Z )%, and Kqle, are isomorphic. Here we
note that deg(of; 5 3)% )%, =1. Put L=(q—2)¢[; 5 3,-£—Kg. Then we deduce that the
restriction L, is the trivial line bundle for every z€.#j 4.

Since w, ' (.#o,q) — Mo,q is a P1-bundle, we conclude that there exists a line bundle
Ey on .#j 4 such that the restriction L|w;1( o ,) 18 isomorphic to wg Eg ([Har, Chapter II,
Exercise 7.9]). Let E be an extension of Eq to #p,q- Put L'=L—wgE. Then L'| -1 4
is the trivial line bundle on @, ! (.#p,4). Hence there exists a divisor = on %p,q such that
wq(supp E) Csupp 25 and L'=[Z]. This proves our lemma. a

2.3. Theorem 3 implies Theorem 1

We only consider the case ¢>3 because Theorem 1 is trivial for ¢<3. Let f, a1, ...,aq4 be
the functions in Theorem 1 with the conditions that f is non-constant, that the functions
a; are distinct and that f#a;or for i=1,...,q.

We consider the classification maps cl, and cl s ,).

First we estimate the characteristic functions T'(r, cls,n4) and T(r,cl(s q),wq). Put

$(r) =max{1,gT(r, o},

which satisfies 1(r)>1. Then we have

q

Y(r)=>_T(r,a;)+o(T(r, f)). (2.3.1)

=1

Let 85 be the field of all meromorphic functions on B. Let WC//?o,q be the Zariski
closure of the image cl,(B), and let C(W) be the rational function field of W. Then cl,
defines the natural injection ¢: C(W)—Rg by the pullback of rational functions on W.
Let C(a1,...,aq) CREp be the subfield generated by the meromorphic functions a, ..., aq.
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Then by the definition of cl,, we have ((C(W))CC(ay, ..., aq) (cf. (1.5.9)). Hence the
order of the growth of cl, is bounded by #(r). Apply Lemma 3 to get

T(r, cla, m) = O((r)). (2.3.2)

Similarly, using the field &y of meromorphic functions on Y, we observe that the order of
the growth of cl s 4y is bounded by T(r, f)+(r) (cf. (1.5.10)). Hence we get the estimate

T(’f', Cl(f,a)7 wq) = O(T(T’ f)+1/}(T)),

ie.,
T(r, cl(f,0),wq) < QT(r, £)+O(%(r)) (2.3.3)

with a positive constant ), which may depend on f,a; and (fixed) wy.

Now we take an arbitrary positive constant ¢, and apply Theorem 3 to the case
g=cls 4y, b=cl, and €. The non-degeneracy condition of Theorem 3 easily follows from
the assumptions that a; are distinct and that f#a;om for i=1,...,q. Using (2.3.2) and
(2.3.3), and replacing ¢ with £/Q, we get

T(r,clif,0), %) S N(r, ¢l .0, Dg)+ Nram ny (1) +T(r, f)

(2.3.4)
+O0:(Y(r) + Nram 5 (7)) |l

where we use the notation O, in place of O so as to better indicate that the constant
used to define the symbol O depends on . To complete the proof, we need to estimate
the terms of (2.3.4).

CLAM. The following inequalities hold:

q
N(’I" d(f a)y Z Ty Qi°m, f +O( ( )) (235)
=1
(q=2)T(r, f) =T(r,cl(,a), 54) +O(r))- (2.3.6)

Proof. We first prove (2.3.5). Put
U={z€B:a;(z),...,aq(2) are all distinct}.

Then by the definition of the classification map, we have cl,(U)C .4 4. For z€U and
yen1(z), we have cly q)(y) €2, if and only if f(y)=a,(z) for some i€(q) (cf. (1.5.6)
and (1.5.7)). Hence we have

{yeY:clsa)(y) €D, } C{yeY: f(y) =aiom(y) for some ic(g)ur~Y(B\U).
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This implies that

q q q

n(cl(fa),@q,Y Z (a;om, f,Y d6g7r ZZ aha]? (’I"))
t=1 i=1j=
.761

and . ¢ q
]V(r,cl(f,a),%,)<Zﬁ(r,aio7r ) +ZZ r,a;,a), r>1
i=1 i=1 j=1
J#i
Since we have

B
)<

N(r,a;,a;) =0((r)),

©
Il
-

.
.t

Wl

we get (2.3.5).
Next we prove (2.3.6). Since wp: is the curvature form of the Fubini-Study metric

on .%, Lemma 5 implies the equality
(@—2)T(r,0(1,2,3)°Cl5,a)) = T(r, Cl 5,0y, %4)

_ (2.3.7)
+T'(r, cla, E)+T(r, Cl(f,a)’ [:'])+O(1)
Here we used the functorial property of T, namely
T(T) Cl(f,a)7 (pz172,3)$) = T(?", ¥(1,2,3) OCI(f,a))+0(1),
T(r, Cl(f,a), w;E) =T(r,cla, E)+0(1).
Since for zen~1(U), the two 4-tuples of points on P,
(f(2),a10m(2), azom(2), azom(2)) and (@(1,2,3)°C1(f,a)(z),0, 1, 00),
are isomorphic (cf. (1.5.6) and (1.5.7)), we have
f(z)—ajem(z) azem(z)—agon(z)
oclisay(2) = .
#a.23°(7,0)(2) f(z)—azem(z) agemw(z)—aren(z)
Hence we get
T(r, (1,2,3)°¢l(1,0)) =T (7, £)+O0((r)). (2.3.8)
By wq(supp Z) Csupp 25, we may apply Lemma 4 to get
T(T‘, Cl(f,a)7 [E]) = O(w(r)) (239)
Using (2.3.7), (2.3.8), (2.3.9) and the estimate
T(r,cly, EY=0®(r)) (2.3.10)
(cf. Lemma 3), we get our inequality (2.3.6) and conclude the proof of our claim. a

Using (2.3.1), (2.3.4) and the above claim, we get our Theorem 1.
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2.4. Theorem 4 implies Theorem 3

Let Y, B, m, g and b be the objects in Theorem 3 with the conditions that g is non-
constant and that g(Y')¢Zsupp Z,Uw; ! (supp Z;). Put ¢(r)=max{1,T(r,b,1,)}. Then
Y(r)=1, and

P(r)=T(r,b,ng)+0(T(r,g,wq)). (24.1)

Observe that the order of the growth of b is bounded by ¥(r) since 7, is positive.
First, we consider the case that ¢,°g is constant for some a€_¢. By Lemma 5,
which is obviously valid when (1,2,3)€_¢ is replaced by a, we can prove

(g=2)T(r,pacg) =T(r, g, )+ T(r,b, E')+T(r,g, [E'])+O(1), (2.4.2)

where E’ is a line bundle on J/Z),q and Z’ is a divisor on ?7041 with wg(supp Z')C 2. By
Lemmas 3 and 4, we have

~T(r,b,E'"Y=0((r)) and ~T(rg,[E'])=0(¥(r)), (2.4.3)

respectively, where we note that g(Y)Zw;*(2;). Using (2.4.2), (2.4.3) and the assump-
tion that p,og is constant, we conclude that T'(r, g, 3¢,) =O(%(r)). This proves Theorem 3
in our case, because all terms on the right-hand side of (1.6.2) are non-negative for r>1.

Next we consider the case that ¢,og is non-constant for every a€_¢. For r>0,
decompose B(r) into connected components By (r), ..., By (r) and put

A= (Y', B’ﬂ-,ga b,Yi(T'),Bi(’I‘)),

where Y;(r)=n"1(B;(r)). Then ); is a non-degenerate specified g-hol-quintet for i=
1,...,u,. We apply Theorem 4 to each A; and add over i=1, ..., u, to obtain

A(g,Y(r), 35) <79, Dy, Y (r))+disc(m, B(r))+eA(g, Y (), wq)

1+ C(g,¢)(deg) (A(b,B<r>,nq)+ﬁ(b,%B(r))

301 B+ Y (7))

i=1

for all e>0. Here C(q,¢) is the constant which appears in Theorem 4. We integrate the
inequality and put

T T Ug + R
degny Jq t degmp J; t
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Then we get
T("'7 g, xq) < N(r, g, @q)+Nrame(T) _Nramﬂg(r)+€T(rﬂ g, wq) (2 4 4)
+C(q,€)(T(r,b, 1)+ N(r,b, Z)+ J(1)+(deg M L(r)), r>1, =
for all £>0. Here we note that ram my =7*(ram 7g)+ram, and hence we have
disc(my, C(r)) = (deg ) disc(r g, C(r)) +disc(n, B(r))
and
1 " disc(r, B(t))
Nramw ~4V¥ramm = dt. 2.4.5
()= Namrs 1) = g [ =25 (245)
CLAIM. The following inequalities hold:
J(r) € Nramng (1) for r>1, (2.4.6)
L(r) = o(T(r,g,w,)) |I. (2.4.7)

Proof. We first prove (2.4.6). We apply Hurwitz’s formula to the proper covering
map 7g|p,r): Bi(r)—=C(r) to get

o(Bi(r)) = (deg 7TB|Bi(r))Q(C(T))+diSC(WB|Bi(r)7C("))-
Since o(C(r))=-1 and o(B;(r))>—1, we have
ot (Bi(r)) <disc(mp|g,(r), C(r)).

Hence we have Y .7 0% (B;(r))<disc(rg, C(r)), and so (2.4.6).
Next we prove (2.4.7). In this proof, we denote the covering map ny: Y —C by p to
avoid the confusion with the classical constant 7. Put g*qu%\/—l G?dpAdp, where G

is a C*°-function on Y'\{z€Y":p'(2)=0} with G>0. Then we have

I(r):=1(g,0Y(r),wy) = Grdargp
aY (r)

and

A(r) = A(g,Y(r),wq)z/ G?tdargpdt.
0 Jay (1)
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Put e=degp. Using the Schwarz inequality, we have the following estimates for r>1:

- [0 %

€

1 /(" dt
——-—/ Gtdargp —
€ J1 Jay(z) t

1 r 1/2 r 1/2
<——(// dargpglz> (/ G2t2dargpﬁ)
e\J1 Jov () t 1 Jay(t) t

— ~ (2melog)!/2(A(r)— A(1))/?

1 U d 1/2
< —(2mel —_
e( melogr) (er drT(r)

d 1/2
= (2nrlogr) /2| — .
(27rlogr) (drT(r)>

Here we put T(r)=T(r,g,wq). Take ro>1 such that T(ro)>1. Let E be a subset of
[rg, o0) defined by

reE ifand only if L(r)>T(r)/2logT(r).

Then we have

1 (dT/dr)(r)
I 1 = < ~ N7
/Ed oglogr /Erlogrdr\%r/E L(r)? dr

e (dT/dr)(r) B 2m
< 2”/% T(r)(log T(r))? "~ Tog T(ro)’

Hence outside the set E with f g dloglogr<oo, we have
L(r) < T(r)"*1og T(r) = o(T(r)),

which proves our claim. [

By the assumption b(B)¢Zsupp 2, the Nevanlinna inequality (cf. (2.1.1)) yields
N(r,b, 2,)<T(r,b,[Z,;])+O(1). Thus we have

N(r,b, 25) = O((r))

(cf. Lemma 3). Hence using (2.4.1), (2.4.4) and the above claim, and adjusting the
constant C(e), we obtain Theorem 3.
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3. Preliminaries for the proof of Theorem 4
3.1. A property of finite domains

LEMMA 6. Let F and %, be Riemann surfaces. Let FCF and FoCFo be finite do-
mains. Let (: F — %y be a holomorphic map. Then FN(™1(Fy) is a finite disjoint union
of finite domains of F.

Proof. We may take a finite domain F'C.# such that FCF’, and such that the
branch points of ¢ do not exist on OF’. Let (a;); be a finite set of arcs on #y such that
\U; 0:=0F,. Observe that (~!(o;)NF’ consists of a union of arcs v which are divided
into the following three classes:

(1) v with {(v)=0;

(2) one of the end points of + is a branch point of (;

(3) one of the end points of v is contained in JF’.

Since F is compact, the numbers of arcs -y of the classes (1) and (2) are finite. We apply
Lemma 1 for ((8F’) and o; to deduce that the number of arcs y of the class (3) is finite.
Hence we conclude that (~1(0F,)NF" is a finite union of arcs. We apply Lemma, 1 for
¢(YBF,)NF’' and OF to conclude that (~1(8Fp)NF is a finite union of arcs.

Therefore we deduce that FN¢~!(Fp,) consists of a finite number of connected com-
ponents J, and that the boundary of each J is a finite union of arcs.

Now note that the condition 8J=08(% \J) comes from the corresponding conditions
for F and Fy. Hence each J is a finite domain. This proves our assertion. O

The proofs of the lemmas stated in the rest of this section can be found in [Y2].(?)

3.2. Topology

Let # be a Riemann surface. Let £ and G be two open subsets in &#. We define
two subsets Z(G, Q) and P(G, Q) of the set of connected components of GNE2 in the
following manner. Let G’ be a connected component of GN{. Then G’ is contained
in Z(G, Q) if and only if G’ is compactly contained in (2, and otherwise G’ is contained
in P(G,Q). Then a connected component G’ in Z(G,{?) is also a connected component
of G. The letters Z and P refer to islands and peninsulas, respectively, in Ahlfors’s
theory of covering surfaces.

Let ¢ be a non-constant meromorphic function on QC.#, where  is a domain of %.
Let E be a domain in P'. We consider the following condition for {: —P! and E:

If a€Q is a branch point of ¢, then ((a)¢OE. (3.2.1)

(?) Though our definition of a finite domain is slightly different from that in [Y2], the proofs are
valid without any changes.
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LeMMA 7. ([Y2, Lemma 1]) Assume that a finite number of disjoint simple closed
curves v;, i=1,...,p, divide P! into connected domains Du,...,Dpi1. Let ¢ be a non-
constant meromorphic function on Q, where Q is a finite domain of a Riemann sur-
face F. Assume that the condition (3.2.1) is satisfied for { and D;, 1<i<p+1. Put

A= Z(¢U(D:), Q) and B=UP P(C1(D;),Q). Then we have
2" ()= o(A)+) 0" (B
AcA BeB

Remark 3.2.2. By Lemma 6, the right-hand side of the inequality above is a finite
sum.

3.3. Review of Ahlfors’s theory

Recall that we denote by wp: the Fubini-Study form on the projective line P! Let §)
be a finite domain of P!. Let .# be a Riemann surface, let 2C.% be a finite domain
and let ¢ be a non-constant meromorphic function on Q. Assume that ¢(Q)Cy. Then
we may consider {: Q21— as a covering surface in the sense of [Ne2, p. 323]. We call
¢ ()N O the relative boundary and 1(¢, {71 (£2) NN, wp:) the length of the relative
boundary. Let DC$g be a domain which is bounded by a finite union of arcs. We call

o _ AGCTHDIND wp1)
b=

wapl

the mean sheet number of ¢ over D, and Sq, the mean sheet number of (.

In the following two theorems, we assume that 9 consists of a finite disjoint union
of regular, analytic Jordan curves. We denote by S and L the mean sheet number and
the length of the relative boundary of the covering (: 2— g, respectively.

COVERING THEOREM 1. ([Ne2, p. 328|) There ezists a positive constant h=h(o)>0
which is independent of D, 2 and (, such that

h

waPl

|S—Sp| < L. (3.3.1)

Consider ¢ as the covering map of the closed surfaces ¢: Q— Q. Put

S(a ): l(§7c~1(690)7wpl)
97 length of Q) with respect to the Fubini-Study metric’
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COVERING THEOREM 2. ([Ne2, p. 331, Remark]) There ezists a positive constant
h=h(Q0)>0 which is independent of Q and (, such that

1S~ S(89%)| < AL (3.3.2)

Note that a regular, analytic Jordan curve is regular in the sense of [Ne2, p. 326]
(cf. [Hay, Lemma 5.1]). The main theorem ([Ne2, p. 332]) of Ahlfors’s theory was used
to prove the following lemma. An analytic Jordan domain ECP! is a Jordan domain
whose boundary OF is regular and analytic.

LEMMA 8. ([Y2, Lemma 2]) Let E' be an analytic Jordan domain in P!, or P!
itself. Let E1,...,E,, Eo be analytic Jordan domains in Pl. Assume that the closures
Ej of E;, j=1,...,p, 00, are mutually disjoint. Then there exists a positive constant h>0
which only depends on FEi,...,E,, Ey, with the following property: Let Q be a finite
domain of a Riemann surface F, and let ¥ and  be two non-constant meromorphic
functions on . Assume that

(WM PNENND) C Ex (3.3.3)

and that { and E; satisfy the condition (3.2.1) for j=1,...,p, .
Put

G'=T(y"(EY),Q), GP=Py Y (E"),Q),
Gl =T(¢C"Y(E;),Q), GF=P("HE), Q) Jor j=1,..,p,
GL=T(( (Ex), 2Ny~ L(ED).

Then we have the inequality

G+ D oG+ Y o' (@)=Y Y oG)-D_ 3 0™ (G)- ) o(G)
i=1gegf

Gegl, (3.3.4)

Geg! GegP Jj=1Ggeg]

2 (p_l)A(C> Q, wPl) —hl(Ca 897 wPI)v

where 9({, 1) is the number of connected components G in G! such that ((G)C Ex-

Remark 3.3.5. (1) By Lemma 6, the left-hand side of the inequality (3.3.4) is a finite
sum.

(2) Since we have fpl wp1=1, the term A(({,,wp:) is equal to the mean sheet
number of the covering ¢: Q—PL. Also, since P! is compact, the term I((,8Q,wp1) is
equal to the length of the relative boundary of the covering (.
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(3) Consider the case Ef=P!. Then the condition (3.3.3) is satisfied automatically.
If Q2 is non-compact, then G'=2 and G¥={Q}, and hence 9({,¥)=0. On the other hand,
if Q is compact, then G'={Q} and GF=2. Since ¢ is non-constant, we have ((Q)¢Z F,
so ¥(¢,4)=0. Hence we have 9¥({,1)=0 in both cases. Since g(Q)<p*(Q), we get

=) D oG- D e (G)- Y o)

i=1Geg! i=1GegP Gegl, (3.3.6)

> (p—l)A(Ca Q?wPI)_hl(C, aQ, UJPI).

Here we can write G as Z(("}(Ew), Q).

3.4. Rouché’s theorem

We denote by dist(z, y) the distance between z,y€P! with respect to the Kéhler metric
associated to the Fubini-Study form wp:.

LeEMMA 9. ([Y2, Lemma 3]) Let ECP! be a Jordan domain, and let b be a point
in E. Then there exists a positive constant C=C(E,b)>0 with the following property:
Let §} be a finite domain in a Riemann surface %, and let { be a meromorphic function
on F such that ((Q)=FE and ((02)=0E. Then for a meromorphic function o on F
such that dist(a(z),b)<C for all z€Q, there exists a point z€Q with ((z)=a(z).

4. Local value distribution
4.1. Notation
In this section, we work around a neighborhood of a point xe//Z),q. This point z will be
fixed in this section. We denote by edge(I';) the set of all edges of I'y, i.e.,

edge(I'y) ={{v,v'} : v and v are adjacent vertices of I'; }.

Then edge(T';) is an empty set if and only if z€.#5 4. Let v and v’ be distinct vertices

of I'y. Since T';, is a tree, there exists a unique sequence of distinct vertices

/
V=g, VU1, ..., Up =7,

where v;_1 and v; are adjacent for i=1,...,r. We call this sequence the path joining v
and v'.
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4.1.1. Take a vertex vevert(I';). Recall that C, is the irreducible component of %
which corresponds to vevert(I';). Put

Pt ={ie(q):0:(z)€Cy} (m stands for “marked points”),

P} ={v'evert(l';): v is adjacent with v} (n stands for “nodes”).

Note that we have U, ¢ ery(r,) Po=(g) and P;"N P =@ for v#v’ because marked points
are smooth points of €,. Hence for each i€(q), there exists a unique vertex vevert(T';)
such that o;(z)eC,. Put P=(q)Overt(I'y), P,=P*IIP}CP and d,=card P,.

4.1.2. Define s: P,—C, by the following rule. If 7€ P™, then ¢(7)=0.(z); on the
other hand, if 7€ P?, then ¢(7)=C,NC,. Then ¢ is an injection, and the image s(P,)
is the set of the special points of C,,, which are either the marked points or the nodes.
Hence P, can be identified with the set of the special points on C), by ¢, so d, >3 (cf.
Definition 1.5.1).

4.1.3. Definition of ¢(,y. For each vevert(T;), there exists (v)€_¢ with the fol-
lowing property: The restriction ¢,|c,: C,—P! is an isomorphism and the restrictions
©wylc,.: Co— P! are constant maps for all v'evert([';)\{v}. To see this, we observe the
following.

CLAM. Let C=(C, s, ..., 8q) be a g-pointed stable curve, and let E be an irreducible
component of C. Then there exists a subset SC(q) with card S=3 satisfying the following
property: Consider the contraction c: C—P! obtained by forgetting the points s; marked
in 7€(q)\S, where we note that the resultant 3-pointed stable curve is isomorphic to PL.
Then the restriction c|g: E—P? is an isomorphism, and the restrictions c|g are constant
maps for the other components E’ of C.

Proof. We shall prove this by induction on q. Note that the assertion is trivial for
g=3. Next we assume that the assertion is valid for ¢—1, and consider the case for ¢ where
g=>4. We may take j€(q) such that the number of the special points on E other than s;
is at least three. (If there exists j'€(q) with s; ¢ E, then put j=j5'. Otherwise, we take
arbitrary j€(q), where we note that ¢>4.) Let ¢/: C—C’ be the contraction obtained
by forgetting the point s;, where the marked points on C’ are assumed to be labeled by
the set (¢)\{s}- Then by the property (2) in the definition of contraction (cf. §1.5), we
conclude that the restriction ¢’|g: E—C’ is an injection and that ¢/(E’)#¢ (E) for the
other components E'CC.

Now by the induction hypothesis, there is a subset SC(q)\{;7} with card S=3 such
that the contraction ¢’: C’— P! obtained by forgetting the points labeled by (¢)\(SU{j})
has the following property: The restriction ¢”’|y(g): ¢'(E)—P! is an isomorphism, and
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the restrictions ¢”|g/ to the other components E’ of C’ are constant maps. Put c=
c’o’: C—P?, which is a contraction forgetting the points labeled by (¢)\S. Then c has
the desired property. This proves our claim. [

Now apply this claim to the case C=%, and E=C, to get the subset SC(g) and
the contraction ¢. Put (v)=S (by ordering the elements of S). Then by the definition
of (), we have @(,)|¢, =toc, where ¢ is some automorphism of P*. Hence ¢(v) has the
desired property. This {(v) will be fixed for each vevert(T',).

4.1.4. For vevert(l'y) and 7€P,, put wy(r)=pes(r)€PL. Then w,: P,—P! is
an injection.

4.1.5. Definitions of 7, and t,. For v€vert(l';), we define the map 7,: (¢)— P, by
the following rule. Take i€(q). If i€ P)*, then put 7,(:)=i€P,. Otherwise, take the
vertex v'€vert(I'z)\{v} with i€ P/? and the path

!
V=1g, U1, -, Up=10

joining v and v'. Put 7,(i)=v;€P,. Then we have
wy (75 (i)) = @yeoi(z) for all i€ (g) and vevert(l,). (4.1.1)

There exists a section ¢,: P, —(q) of 7,: (¢)— P,. This ¢, is defined by the following rule.
For i€ P”, put ¢, (i)=i€(g). For a vertex v'€ P7, take a maximal path

v, v, vy, .y U (4.1.2)

starting from the edge {v,v'}, i.e., there exists no path extending (4.1.2) to the right.
Then we have card P;’ =1 (otherwise we can extend the path). By d,, >3, there exists
i€P". Put 1,(v')=i. Then this ¢, is a section of 7,, which will be fixed for each
vevert(I's).

If v and v’ are adjacent vertices of [';, we have
7o (ty(v')) #v  (as elements of P,), (4.1.3)

which easily follows from the definitions of the above objects.

4.1.6. For vevert(l'y) and T€P,, put ﬁvﬁch(U)oaLv(T)://?o’q—»Pl. Then we have
Bo,-(z)=w,(7)€P?, which follows from (4.1.1) and the fact that ¢, is a section of 7,.
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4.2. A geometric lemma

Recall that .& is the hyperplane section bundle on P!,

LEMMA 10. There exists a Zariski-open neighborhood U, C Mo 4 of T such that

Y (dv-2)¢}y L =K, onw; (Us). (4.2.1)

vEvert(l;)

Proof. Put M=}, ¢ ey, )(dv—2)97,, £ —Kq. For yEMp 4, let M, be the restric-
tion of M to %,. Note that C, are isomorphic to P! for all vevert(T';) and that the
degrees of the restrictions Ko|c, and ((dv —2)¢7,y < )|c, are both equal to d, —2 (cf. [Ma,
p. 202, (1.3)]). Hence M;|c, are the trivial line bundles on C, for all vevert(I';). Since
T'; is a tree, we conclude that M, is the trivial line bundle on %.

We apply the theorem of semi-continuity [Har, Chapter III, Theorem 12.8] to the
flat morphism w,. Then we obtain a non-empty affine open neighborhood U, of = such
that

dim H°(%,, M,)<1 and dimH°(%,, M, ") <1 (4.2.2)

for all yeU,. Put
Z={yeU,:dim H°(%,, M) =1}.

Again by the theorem of semi-continuity, we see that Z is a Zariski-closed subset of U,.
Take a point y from U \ %, which is a non-empty Zariski-open subset of U,. Then €,
is isomorphic to P!, and hence the condition (4.2.2) implies that M, is the trivial line
bundle on %,. Hence U,\ 2, CZ. This implies that Z=U,.

Now by the theorem of Grauert [Har, Chapter III, Theorem 12.9], we have a section
s€H%(w, ! (U;), M) such that the restriction s|¢, is equal to the section 1 of the trivial
line bundle M., where we note that U, is affine. Let D be the divisor on @ 1(U,) defined
by s=0. Since w, is a projective morphism, wy(supp D) is a Zariski-closed subset of Uz,
which does not contain z. Hence by replacing U, by U\w,(supp D), we may assume
that s is a nowhere vanishing section on w!(U,). This implies that the restriction

q
M| wr L (U) is the trivial line bundle, which proves our lemma. O

4.3. The local version of the theorem

LEMMA 11. Let A be a countable set of non-degenerate q-hol-quintets. Then for all
xE//Z),q, there exist an open neighborhood Vy;=V;(A) of z and a positive constant h,=
ha(A)>0 with the following property: Let (F,%,w,g,b)€EA be a g-hol-quintet contained
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in A. Let RCZ be a finite domain such that b(R)CV,. Put F=m"'(R). Then we have
the inequality

A(g, F, 3;) <71(g, Dy, F)+disc(r, R)+(deg 7)o" (R)

(4.3.1)
+hyl(g,O0F, wy)+hy(deg 7)n(b, 2, R).

Proof. For (#,%,n,g,b)€A and a€_#, put

Goa = Pa°9,

which is a non-constant meromorphic function on .%#. For vevert(T',) and 7€P,, let E?
be a small spherical disc in P! centered at w,(7) such that

(1) E¥NEY, =@ for 7#7', where we note that w, (7)Zw,(7');

(2) go: F—P! and E? satisfy the condition (3.2.1) for all vevert(I';), 7€P,, a€_#
and (F,%,7,9,b)€A, ie., if acF is a branch point of g, for some (#,%Z,m, g,b)eA
and a€_Z, then go(a)¢0EY for all vevert(T';) and TEP,.

Here in the second condition, we note that the set

U  {ga(a):a is a branch point of g,: F — P'}

ac
(37%77",9,’7)61\

is countable, because A and the set of branch points of g, are countable.
For each {v,v'}cedge(I';), put

Dy =@y (PNEY )N (PI\EY),

which is a compact subset of %,q, because ¢,y and ¢, are proper maps. Note that
%:\(CyuNCy) consists of two connected components. The set (¢ |e,) " (P'\EY) is con-
tained in one component, and the set (¢(,|«, )"L(P\EY') is contained in the other com-
ponent. Thus we have w,’ Y(z)N D, =2. Hence the image wq(Dy ) C.My,q is a compact
subset which does not contain the point z. Therefore, for all {v, v’} €edge(I's), we con-
clude that there exists an open neighborhood V, .+ of z such that wy ! (V4 v )N Dy =2,
ie.,

() (P PNE YNwy (Vo)) C By (4.32)

Let VZC//Z),q be an open neighborhood of z such that

(1) VoCU, (cf. Lemma 10);

(2) VoCV,, for all {v,v'}cedge(T,);

(3) dist(wy(7), Bo.r(¥)) <C(E?, wy (7)) for all yeV,, vevert(Ty) and TEP,, where
we note that 3, -(z)=w,(7) (cf. Lemma 9);

4) <p<v>oai(‘7z)CE;’U(i) for all vevert(l',) and i€(g), where we have ¢,yo0;(x)=
wy (7o (4))EER (;y (cf. (4.1.1)).
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Let A=(#,%,m,g,b)€A. Let R be a finite domain of % such that b(R)CV;. Put
F=n"!(R), which is a finite disjoint union of finite domains on &#. We shall derive the
estimate (4.3.1) with the constant h, which will be found below.

First we apply Lemma 8. For a vertex v€vert(I';) and 7€F,, put

Gor =T(gy(EY), F) and Gl =P(g.\(E), F).

We denote by C(F) the set of connected components of F. Let v, be the unique vertex
of T'; such that o1(z)€C,,. For each vertex vevert I';\{v,}, take the path joining v,
and v:

Vo =70, V1, vy Up—1, Ur =7.
We denote the vertex v,_1 by v~, which is uniquely determined by the vertex v.
We first consider the vertex v,. For each HeC(F'), we apply Lemma 8 (cf. (3.3.6))
to the case
?:y, Q=H, Czw:g@a)le ET:Pla Eoo:E;)oy
{Ej }?:1 = {E:;)'O }u'ePyoU{EfD }iepgg\{l}a p=dy,—1.

Adding over all HEC(F) and using the fact 3_;c pm\ (1} 2_gegr , € (G) 20, we obtain the
following: There exists a positive constant h,, >0 which does not depend on the choices
of AéA and R, such that

Ee) Y -3 ( T a0+ ¥ @)=Y T @)

HEC(F) vEPR “Gegl GegP €P Gegl

Vo,V vg,t

2 (dy,—2) A(G(voy, Frwp1) = by 1w, OF, wp1).
Next for a vertex vevertT';\{v,}, we put
Gl =T(g7 (B2 ), Fngh (B2 ).
For each HeC(F'), we apply Lemma 8 to the case

9:,9, Q=H7 <:g<v)|Ha ¢=9(u—>|H7 ET:E:;}—a EOO:E:—a
{Ej}j=1,mm:{Eg’}u/epg\{v—}U{Ef}iePgnv p=dy,—1,

where the condition (3.3.3) follows from the property (4.3.2). Adding over all HEC(F')
and using the fact } .. pm D gegr 0*(G)>0, we obtain the following: There exists a
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positive constant h, >0 which does not depend on the choices of A€A and R, such that

E@): Y Hgwlagela)+ Y. oG+ Y. o' (G)

HeC(F) Gegy_ | Gegy_ |
- Y (T w0+ ¥ @)% 3 e6)- a0
vePp\{v~} "Geg! |, Geg? i€P Gegl Gegl

2 (d’U_2)A(g(U)’F7 wpl)_hvl(g(v)aaF,wPI)‘

Now, using the inequality IE(v,) for the vertex v, and the inequalities IE(v) for
vertices v#v,, we add the inequalities IE(v) over all v€vert(I';). Then we obtain

ottm- Y Y Y e

HeC(F) vevert(I's) i€EP™ Geg) |
+ Z ( z ﬂ(g(u)lHag(v—)lH)_ Z Q(G)) (433)
vevert(Cx)\{vo} “HEC(F) Gegl

2 Z (d’U_Q)A(g('u)vFawPl)_h,l(g’aFqu)'

vEvert 'y

Here we used the following two facts:
(1) There exists a positive constant h’'>0 which does not depend on the choices of
A€A and R such that

> hul(ge), OF,wpr) <HI(g, OF,wy).

vevert(I'y)

(2) For a vertex v#v,, the term

> oG+ Y 0" (G)

GegI_ Gegl_ |

appears on the left-hand side of IE(v), while the term

- Y de)- ¥ )

Geg!_ GegP_
v, v, v

appears on the left-hand side of IE(v™) because v€ P, and v#(v™)~ for v~ #v,. Hence
these terms are canceled by each other when we add inequalities over all vevert(I',).
Now we will estimate the terms on the left-hand side of (4.3.3).
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CLAIM. The following inequalities hold:

3" oyl gw-)le)— Y o(G)<2Adegm)a(b, 2, R) for all v#v,,  (4.3.4)
HeC(F) Geg!

= Y 3 Y eG) <y, Py, F)+q(deg m)ii(b, 25, R), (4.3.5)

vevert(l'z) 2€P™ Gegl |
Y o (H) <disc(r, R)+(deg m)o" (R). (4.3.6)

HeC(F)

Proof of (4.3.4). For HEC(F) and {v,v' } €edge(T;), let ¢ (v, v, H) denote the num-
ber of connected components G in Z{( g@%( v}, H) such that g, (G) CE?. Then we have

19/(1)71]_’ H) :ﬁ(g(“)|H’g<U—)|H)

and

- S o(G)<cardgl< Y (v v, H).

Geg!l HeC(F)

Here we note that G€G! is non-compact because 9(vy is non-constant and E}_ is non-
compact, hence o(G)>—1. (By the definition, we have g(,(G)CE}_.) Therefore to
prove (4.3.4), it suffices to prove

> ¥, v, H) < (degm)a(b, 25, R) (4.3.7)
HeC(F)

for all {v,v'}€edge(T,).
Take GEL(g;,) (EY), H) such that g (G)CEy. Then by the definition of Vz, we
may apply Lemma 9 to the case
F = H, E= Eg/, Q= G, C =G(v) (= (p(v>0g), a= ,BU,UIObOﬂ’.
We conclude that there exists z€G such that
(p<v)og(z) = Sp(woo'bv(v,)oboﬂ(z) (438)

(note that By v =@ ()0, (»))- Now we shall prove bom(z)€supp Z; by contradiction.
Suppose bor(2)¢supp Z,. Then (4.3.8) implies

P (1)°9(2) = P10, wy°bem(2), (4.3.9)
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which follows from the facts that the restrictions ¢,)|«, and ¢ |%, give isomorphisms
€,—P! for ye My \Z, and that w,og(z)=bom(z) (cf. (1.6.4)). By the assumption
g(v/)(G)CE}jl, we have

Pyog(z) €EY. (4.3.10)

On the other hand, we have
P(0)°0. (oryobom(2) ¢ EY. (4.3.11)

To see this, we note that <,0<U/>oabv(vl)(l_/,;)CE;’;,(Lw W) by the definition of V,. Hence
we have cp@:)oo%(vf)(y)géE}j/ for yeV, (cf. (4.1.3)). Since bom(z)€V,, we get (4.3.11).
The relations (4.3.9), (4.3.10) and (4.3.11) give a contradiction. Hence we have bow(z)€
supp Z;. This proves (4.3.7) and (4.3.4). O

Proof of (4.3.5). Let GeG] ;, i€ P;™. Since —p(G)<1, we have

- 3 Y Yo Y Y carddl,

vevert(Ly) i€P™ Geg{,ﬂ- vevert(ly) i€P
By the definition of V,,, we may apply Lemma 9 to the case
EzEzUa Q:G7 C:<p(v)°g7 azﬁv,iobo"r (Z(p(v>°0'i0b07l'),

to conclude that there exists z€G such that

P(vyeg(2) = PuyoTiobom(2).

This implies that either g(z)=0;0bem(2) or bom(z)€supp Z;. (Note that |, is an
isomorphism for yE//?o,q\%.) Hence for i€ PI", we have

card gi’i <G, Dg,ir F)+(degm)7i(b, 25, R),
where we put @q,izoi(%ﬂ)C%,q. Since we have 2,=3.7_1 D4, %q,iN%q,v =2 for

i#8, Uyeversr,) o =(¢) and PPN P =2 for v#v', we obtain

z Z card 1 ; <7i(g, Dy, F)+q(deg m)n(b, 24, R).

vevert(Dy) i€P™
This proves (4.3.5). a

Proof of (4.3.6). For HeC(F), the restriction «|g: H— R is a proper map. Hence,
by Hurwitz’s formula, we have

o(H) = (deg 7|g)o(R)+disc(r|u, R).
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Since o(R)<o(H), we get

0" (H) < (deg 7|m)o* (R)+disc(n|y, R).
Adding over all HEC(F'), we obtain

Z 0" (H)< o"(R) Z deg 7|y + Z disc(|g, R) = 0" (R) deg w+disc(m, R).
HeC(F) HeC(F) HEC(F)

This proves (4.3.6) and concludes our proof of the claim. O

Next we will estimate the first term on the right-hand side of (4.3.3).

Note that the Fubini-Study form wp: is the curvature form of the Fubini-Study
metric on the hyperplane section bundle .#. Hence by Lemma 10, the restriction of the
(1, 1)-form

Z (dv —2)plywpr — 74
vevert(T'z)
to w, '(U;) is a curvature form of the trivial line bundle. Hence, there exists a C*-
function € on w, ' (U,) such that

Z (dy—2)pl,ywp1 =g =dd€  on wq_l(Uz). (4.3.12)
vevert(T;)

By Stokes’s theorem, we have

IA(g,F,dd°£)|=’Lg*dd°£ = : (4.3.13)

/ g d°
OoF

There exists a positive constant h” >0 which does not depend on the choices of A€A
and R, such that
| ga
oF

because the image g(F) is contained in the compact set w, (V). Hence using (4.3.12),
(4.3.13) and (4.3.14), we get

<h'l(g,0F,w,), (4.3.14)

Z (dv_2)A(g(v)aF7wPl) >"4(9’1:‘7 xq)_h"l(gvaFqu)' (4315)

vEvert 'y

Put h,=max{h’'+h", 2 card(vert(T';))+g—2}, which is a positive constant indepen-
dent of the choices of A€ A and R. Using (4.3.3)-(4.3.6) and (4.3.15), we obtain (4.3.1)
and conclude the proof of Lemma 11. O
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5. Lemmas for division and summation
5.1. An algebraic lemma
Put ®=(¢;)ic.s: Mo q— (P!)7.
LEMMA 12. @ is an injection.

Proof. We prove this by induction on q. For ¢=3, our lemma is trivial because J/70,3
is isomorphic to a point. Suppose that our lemma is valid for all ¢ with ¢’<q, where
g=3. We shall prove our lemma for g+1.

Our lemma is equivalent to saying that for distinct points x, ye‘//Z),qH, there exists
i€.#971 such that ¢;(z)#¢i(y). Let ugi1: Mo g+1—#o,q be the morphism obtained by
forgetting the marking o441 (cf. (1.5.12)). In the case that ugy1(x) and ugq1(y) are
distinct points in .# 4, our lemma follows from the induction hypothesis.

In the other case, put 2=ug, (). Using the isomorphism tgi1: #0,q+1—>%o,q, the
fiber u;jl(z) is isomorphic to €, (cf. (1.5.12)).

We first consider the case when ¢y41(z) is a smooth point of €,. Let vevert(I',) be
the unique vertex such that t11(z)€C,. Then since p(y|¢,: Cy—P" is an isomorphism
and @(ylc , is constant for v'evert(I's)\{v}, we have @) (te+1(2))#P(w) (tq+1(y)) as
desired. (By definition, we may take i€ #9*1 with ¢;=w(syotq41.)

Next we consider the case when ¢441() is not a smooth point of €. Then t441(z)isa
node. There are adjacent vertices v and v’ such that tg41(x)=C,NCy. If 01 (tgr1())F#
© () (tq+1(y)), the proof is done. If vy (Lg+1(2)) =Y () (tq+1(y)), then we can easily see
that @y (tq+1(2))# @ vy (tq+1(y)), which proves our lemma for g+1. a

5.2. Estimates for summation

Let A=(#,%,7,9,b, F, R) be a specified ¢g-hol-quintet. For i€.#, put
bi = pob: Z — P?
and
F5 = {i €. b; is non-constant}.
Definition 5.2.1. We call £, the type of the specified g-hol-quintet A.

Let #C .7 be a subset. Let D={D;},. 7 bean 7-tuple of Jordan domains D; CP*.
Let ®'={D;},_ 7 be another such tuple. We say that D’ is compactly contained in D if
all D] are compactly contained in D;. We also write ®'C® if D,CD; for all ic.?. Let
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A=(F,%,7,9,b, F, R) be a specified g-hol-quintet of type 7. We consider the following
condition for {b;},. > and {D;}

ic s’
bi|g: R— P! and D; satisfy the condition (3.2.1) for all ief. (5.2.2)
Put Ro=RN(,. 7 b; '(D;) and Fp=n"'(Rp). Then by Lemma 6, Rp (resp. Fp) is a

finite disjoint union of finite domains on # (resp. # ), because Jordan domains D; are
finite domains (cf. §1.3).

LeEMMA 13. (1) Let FCF9 be a subset. Suppose that D’={D§}i€j is compactly
contained in D={D;},. 7. Then for all ¢>0, there ezists a positive constant pi=
1 (e, j\,@,@’) with the following property: Let (#,%,m,q,b, F,R) be a specified g-hol-
quintet of type 7 such that the inequality

A(g, For,wg) > pi(deg m)(A(b, R, nq)+1(g, OF, wg)) (5.2.3)

holds. Then there exists an .#-tuple of Jordan domains D" ={Dj}'},c 5 with D'CD"CD
such that we have the inequality

l(gv BF’D”, wq) < E14(97 FD"’wq)+l(g7 aFa wq)'

Moreover, we may take D" such that (b;) ics and D" satisfy the condition (5.2.2).

(2) Let #, D' and D be the same as in (1). Then there exists a positive constant
/J,2=[,L2(j,z),©l)>0 with the following property: Let (F,%,7,9,b, F,R) be a specified
q-hol-quintet of type .#. Let D" be an P-tuple of Jordan domains such that

D'CcD'CD. (5.2.4)

Suppose that (b;),. 7 and D" satisfy the condition (5.2.2). Then we have

> 0"(G) <ot (R)+ua(A(b, R,ng)+l(g, OF, wy)).
GGC(R:DI/)

Here we recall that C(Rg~) is the set of connected components of Rgw.

Remark 5.2.5. If j:@, then Rop=R and Fp=F for an ﬁ-tuple of Jordan do-
mains . Hence the assertions of the lemma, are trivial in this case. In the following, we
consider the case .J#£@.

Proof of Lemma 13(1). For icg, , we fix a biholomorphic identification x;: D; = A.
Put D;(r)=x; "(A(r)) for 0<r<1. Here A(r)={z€C:|2|<r} and A=A(1). Let ro<1
be a constant such that D}C D;(r) for all ic.g.
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By replacing D; by D;(s) and A by A(s) for rp<s<1, we may assume that x; gives
a biholomorphic map between neighborhoods of D; and A. In particular, we may assume
that 0D, is regular and analytic for all ied.

We fix a specified g-hol-quintet A=(%#, %, x,g,b, F, R} of type J. For ic.?, put

fi:biOWlﬁ:F—)Pl, Fi:é'i‘l(Di)ﬂF and Ci:Xi"fi'Fi:Fi—)A-
For 0<r<1, put
Yi(r) =& 1(8D;(r))NF C F,.

Let wg be the Euclidean form on ACC, which is a Kéahler form. Put S;=A(&;, F,wp1)
and L;=I(¢;, OF, wp1), which are the mean sheet number and the length of the relative
boundary of &;: F—P1, respectively.

CLAIM 1. There exists a positive constant Q= Q1 (JA,D,CD’ ) which does not depend
on the choice of A, such that
WG, v(r),wr) < Q1(Si+L;)  for ics and re [ro,1]. (5.2.6)

A proof of this claim will be given later.
Now we will find the constant u;. We take a positive constant ngQg(i ) which
does not depend on the choice of A and satisfies the estimates

> Si=(degm) Y Abi, R,wpr) < Qa(degm) A(b, R 7my) (5.2.7)
ies €S
and
D Li=) U& OF,wp) < Qal(g,0F,wg) < Qa(degm)i(g,0F,w,).  (5.28)
e ic.d

(We note the trivial estimate 1<degn.) Let £>0 be an arbitrary positive constant. Put

2919

Then y; is a positive constant which only depends on &, j, © and ', and does not
depend on the choice of A.
Next we will find ©”. For r€[0, 1], put

Q(T):{Di(”“)}ieﬁ A(r) ZA(Q,FQ(T)Mq),
OFp(r) =O0Fp(r\(OFNOFp (), U(r)=1(g,0Fp(r),wy)-

Define a subset E(e)C|rg, 1] by

def
reE(e) <= l(r) >cA(r).
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CLAIM 2. Suppose that the inequality (5.2.3) holds for A. Then the set [ro, 1]\ E(¢)
s not a null set. Here a null set is a set of Lebesgue measure zero.

Before proving this claim, we will complete the proof of (1) of our lemma. Note that
the set

{r€[ro,1]: (b:),c 7 and D(r) do not satisfy the condition (5.2.2)}

is a finite set, and so a null set. Suppose that the condition (5.2.3) holds for A. Then by
Claim 2, we may take r€[ro, 1] such that (b;),. 7 and D(r) satisfy the condition (5.2.2),
and such that the inequality

I(r)<eA(r)

holds. Since I(g, 0F gy, wq) <I(r)+1(g, OF,w,), we have
l(ga aFD(r)ywq) geA(g, FD(T)qu)-'_l(g’ 6Fv wq)-

Put ©”=9(r), which proves (1) of our lemma. O
Now we prove the claims above to conclude the proof.

Proof of Claim 1. In this proof, we denote by Q any positive constant which is
independent of i€, re [r0,1] and the choice of A.
For 0<r<1 and i€.7, put Fi(r)=&"Y(D;(r))NF and

€ir =§i|mim — Dy(r).

Define the map v,: D;(r)— D; by

Di(r)3z+— x;* (@) €D;.

Let S; » be the mean sheet number and L; » be the length of the relative boundary of the
covering &; »: Fi(r)—D;(r). Let S . be the mean sheet number and L; ,. be the length of
the relative boundary of the covering ¥,0&; ,: F;(r)— D;. Since we have

1

g¥r(welp,) <weil 5 < Q¥ (werlp,)  for i€ and r€[ro, 1], (5.2.10)

we get

l(&iﬂ‘) 'Yi(r)#‘jpl) < Ql(w'rogi,'r’ 7i(r)a wPl) for iejand re [TOa 1] (5211)
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Here we note that -;(r)COF;(r). Since 9,o&; (vi(r))COD;, we may apply Covering
theorem 2 (cf. (3.3.2)) to the covering ,.0&; ,: Fy(r)—D; to get

(Wro&ir, vilr),wp1) < QS +Lj,) for i€.# and 7€ [ro, 1]. (5.2.12)

Here we note that dD; is regular and analytic for ied by the assumption made in the
beginning of the proof of this lemma. By (5.2.10), we have

S; <QS;, and L], <QL;, for i€ and r€ro, 1].
Hence combining with (5.2.11) and (5.2.12), we obtain
1(&.r,vi(r),wp1) < Q(S; r+Li,) for i€ and r€[ro, 1].
Since xjwg < Qwpi|p, and x;°&i,»=(i|7; (), We have

l((ia'yi("')?wE) < Ql(giw)%(r)val)’
and hence
UG, vilr),we) < Q(Sir+L; ) for i€.Z and r€ry, 1.
We have S; ,<Q(S;+L;) for r¢<r<1 by Covering theorem 1 (cf. (3.3.1)). Using that
L; »<L;, we obtain

1(Gi,vi(r),wr) < Q(Si+L;) for ie.# and r€[ro, 1].

This proves our claim. O

Proof of Claim 2. We shall also denote the restriction (;|p, by ¢;. For HEC(Fp),
we take a subset I ch with the following properties:

(1) If iely and i'ely are distinct, then |(;| and |{;| are distinct functions on H;

(2) For all i€ there exists i€ Iy such that |¢;| and |(;’| are the same function
on H.

For HeC(Fy), i€ Iy and r€|0,1], put

Qui={z€H:|(i(2)| > |¢i(2)] for all '€ Ix\{i}},
Qui(r) ={2€Qn,:|G(2)| <r},
Fr,:(r) = Qp i Nvi(r)
and

lai(r) =Ug,Vu,i(r),wq), Ami(r)=A(g, Qm(r),wy)-
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Then by the above definitions, we have

AP= Y S Apu(r) and UM< Y Y lwa(r)

HEC(Fyp)icly HeC(Fp)i€ln

To see these estimates, we observe that

U Ui CFormc U U Qnulr)

HeC(Fop)i€ln HeC(Fyp) i€ln

(5.2.13)

(5.2.14)

(note that £ #2), where Qp ;(r)NQy. s (r)# if and only if H=H’ and i=7'. From this
fact, we immediately obtain the first estimate. For the second estimate, we observe that
|¢i(z)|=r on 2€Qy,;NFp (), and hence Qu iN&Fop(rCHu,:(r). By (5.2.14), we have

IFpomnC U U@QuindFor)c U U Analn).

Hec(Fg)iEIH HeC(Fyp)i€ly

Hence, we obtain the second estimate.

Now we will use the length-area principle. For HeC(Fp) and i€ Iy, put

g (wq V 1GgdG /\dCu
where G ; is a C-function on Qz ;\{2€Q,;: (/(2)=0} with Gg,;>0. Then for r&(0, 1],
we have
la(r) = / VGHh,irdarg(;
Am.i(r)
and

AHJ»(T):/ </ GH,,-tdargQ) dt
0 FH,i(t)

Using (5.2.6), (5.2.13) and the Schwarz inequality, we have

1(r)*< ( ooy lH,i(T))2

HeC(Fp)i€ly

2
\/GH,irdarg§i>

HeC(Fop) ‘LEIH ‘YH ()

-( &
(> >
-(

HEC(Fyp) i€y Y1) HEC(Fp) i€y Y 7H:(7)

S Y e Amten) Y Y fAn)

HeC(Fp)i€lu HeC(Fop) i€ln

rdarg(i) Z Z/A Gu,rdarg(;
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— d
<l Y. D UG v(nH,wE) —A(r)
HEC(Fp) 4.7

<01 Y (S Le) L)

. dr
ieF
for a.e. r€[rg, 1].
Now, suppose that the set [rg, 1]\ E(¢) is a null set. Then using (5.2.3) and (5.2.7)—

(5.2.9), we have
1—7‘02/ dr
E(e)

d 1

ied
QD ez (Si+Li) [/ d 1
< 52 ‘/TO (EA(T)) —A(’r‘)2 dr
1 Zieﬁ (Si+L;)
€2A(T0)
019

= £2A(ro) (deg )(A(b, R, ng)+1(g,0F,wq))

Q1Q2 A(g7 F@’qu)
= 62,u1 A(’r‘g)

< %(1—T0)’

which is a contradiction because r9<1. This proves our claim and concludes the proof

of (1) of our lemma. a

Proof of Lemma 13(2). Let A=(%#,%,7,g,b, F, R) be a specified g-hol-quintet of
type JA, and let D" be an 7. -tuple of Jordan domains which satisfies (5.2.4). We also
assume the condition (5.2.2) for (b;),. 7 and ©". In this proof, we denote by Q any
positive constant which only depends on D, ©’ and .#, and does not depend on the
choices of A and ®”. We shall prove

Y. 07 (G) <ot (R)+Q(A(b, R, mg) +1(g, OF, wg)), (5.2.15)
GEC(R:DN)

which proves our lemma.
For a subset 1 C,f, put

Rr=RNN b YD) and Fy=7"1(Ry).
i€l
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If [#.7, take i€.7 with i¢1, and put

L =I(b; *(Di),Rr), T,

1,

;=Z(b7YPN\D/),R;) and P;;=P;'(D}),Ri).

For HeC(R;), we apply Lemma 7 to the case Q=H, (=b; and v;=0D; (cf. (5.2.2)).
Adding over all HEC(Ry), we obtain

Y. ootHY2 Y oH)+ Y o(H)+ Y ot (H). (5.2.16)

HeC(Rr) HET, ; HeI, HEP:;

Let Sp; be the mean sheet number of b;: R—P* over D;CP'. Then we have

Y ot(H) - Y o(H)<card(Ti 1)< Sp;

HEI,;J HGI,;J

(cf. (5.2.4)). Using Covering theorem 1 (cf. (3.3.1)), we get

> ot (H)= > o(H) < Q(A(bs, R,wp1)+(bi, OR, wp1))- (5.2.17)

HeI; r HeZ; ;

Similarly, we have

~ Y o(H)<card(Z] ;) < Spip, < Q(A(bi, R, wp1)+1(bi, IR, wps)), (5.2.18)
HeZ; ,

where Sp1p, is the mean sheet number of b;: R—P* over P'\D,CP'. Put I'=IU{i}.
By (5.2.16)—(5.2.18) and Z; ;UP; ;=C(Ry’), we get

S otH)S ) o (H)+Q(A(b, R,wp)+1(bi, OR, wp1)).

HeC(Ry) HeC(Ry)

Using this estimate inductively, we have

Y. ot (R)+Q > (A(bs, R,wpr)+1(bs, OR, wpn)),

HEC(RD//) 16]

where we note that Rg=R and R ;=Rgp~. By the estimates
> " (A(bi, R,wpr)+1(bs, OR, wp1)) < Q(A(, R, ng) +1(b, R, 714))
ied

and
l(b, 8R777q) < Ql(gaaFa wq)7

we obtain (5.2.15), which proves (2) of our lemma. O
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6. Conclusion of the proof of Theorem 4
6.1. A weak version of the theorem

We first prove the following result.

CramMm. Let jch, 23, be a subset. Let A be a countable set of non-degenerate
specified g-hol-quintets of type 7. Then for all €>0, there exists a positive constant
C=C{e, #,\) such that

A(g, F, %) <n(g, Dy, F)+disc(m, R)+eA(g, F,w,y)

+C(deg 7)(A(b, R, 15)+7(b, Z,, R)+0* (R)+1(g,0F,wgy)) (6.1.1)

for all (#,%,7,9,b,F,R)€A.

Proof. Recall that we denote by dist(z, y) the distance between z,y€ P! with respect
to the Kahler metric associated to the Kéhler form wp:. Put

N={(Z 2,7 9,b):(F X790 F R)EA},

which is a countable set of non-degenerate g-hol-quintets. For a point z€.#p 4 and for
r>0, put

W (r)={y € Mo, dist(¢i(z), #:(y)) <r for all i€ F}.

By Lemma 12, we may take r, >0 such that W,(r,)CV,(A’) (cf. Lemma 11). Consider
the open covering
'//70,q = U‘ WI(%TI)
z€Mo,q
Since //707q is compact, we may take a finite set S of points xe//7o,q such that the open
sets W (4r;) for these €S give a covering of .# 4. Let 7o be the minimum of §r, for
z€S. Then for all ye.#, 4, there exists z€S such that

Wy (ro) CWa(ry) C Ve (A). (6.1.2)

Next, take a finite union of arcs v on P! which has the following property:

(P) P\ is a finite disjoint union of Jordan domains D,(7y), 1<a<T, such that
SUP, ye D, (v) dist(z, y) <ro.

Let ¢ be an arbitrary positive constant. Take a positive integer J such that J>1/e,
and take small deformations 7, ...,y of v with the following properties:

(1) each v;, 1<j<J, also satisfies the property (P);

(2) 7NNy =@ for 1<j<k<I<I.
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Then for each integer j with 1<;j<J, we may take a small closed neighborhood 4;
of v; with the following property:

(P’) P!\4; is a finite disjoint union of Jordan domains D;(d;), ..., D1(8;), where
each Dy (8;), 1<a<T, is compactly contained in Dq(7;).

We also assume that

5jﬂ5kﬂ51=® for 1<j<k<iI<]. (6.1.3)

Put T={1,..,T}*. For B=(B)se 7€T and 1<j<J, put Dp;={Dp,(73)}ie7 and
5,;=1Dp,(0;)},c 7> which are #-tuples of Jordan domains. Then Dy ; is compactly
contained in Dg ;.
We take a positive constant h such that
hy(A"Yy<h for all y€S (cf. Lemma 11),
sy <hwy on %y, (6.1.4)
1<h.
Note that h is independent of the choice of e. We also take a positive constant u such
that
w>pi(e, 7, Dg 5, D5 ;) and p> pa(.2, 05,5, D5.5) (6.1.5)
for all B€T and 1<j<J (cf. Lemma 13).
Take (#,%,7,g9,b, F, R)€ A. We consider the covering

EizbioﬂF:F—%Pl for i€ .7

Since we have (by (6.1.3))

> A(g,€71(8;), wq) <24(g, F,wg)

Jj=1

for all i€.7, , we have

J
>N A(9,671(55), wq) <20A(g, F,wg), §=card S
i=licg

Hence there exists j, 1<j<J, such that

> Ag,&71(85), wq) < ?A(g, F,w,) < 260A(g, Fwy). (6.1.6)
€S
For the rest of this proof, we fix this j.
Now we will find D% with Dj ;CD3CDg,; such that the local version of (6.1.1) is
valid on Rgg.
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SUBCLAIM. For each BET, there exists an j—tuple of Jordan domains Dy which
satisfies D ;CDECDg,; and the inequality
A(g7 FDga J’fq) < ﬁ(gv 9qv FDE)"I_diSC(ﬂ'a R@g)
+(degm)o" (R) +hu(deg m)(A(b, R, ng)+1(g, OF, wg)) (6.1.7)
+ehA(g, Fpy,we)+hi(g, OF,we)+h(deg m)n(b, 25, Roy).

Proof. We first consider the case
A(g, Fo, |, wq) < p(deg ) (A(b, R, 1) +1(g, OF, wy))-
Put D;=9} ;. Then using (6.1.4), we have
A(g, Foy, 39) <hA(g, Py, we) <hp(deg m)(A(b, R,mq) +1(g, OF, wy))-

Since all terms on the right-hand side of (6.1.7) are non-negative, we conclude our asser-
tion in this case.

Next we consider the case
A(g, Fo, ,,wq) > p(deg m)(A(b, R, mq) +1(g, OF, wy)).

Let D7 be the 7-tuple of Jordan domains obtained in Lemma 13 (1) (cf. (6.1.5)). By
the property (P) of v;, we see that b(Rpy)CWy(:)(ro) for z€Rpy. Hence by (6.1.2),
we have b(R@g)CVz for some z€S. Hence we may apply Lemma 11 for each connected
component GGC(Rgg) to get

A(g, 7 HG), ) <79, Dy, 7 (G)) +disc(r, G)+(deg m) o (G)
+hi(g,0n " (G),wy) +h(deg 7)7i(b, Z, G).

Adding over all GEC(Rpy) and using the estimates of Lemma 13 (1) and (2), we conclude

our assertion. O

Since F=Uger ForUU,c 7€ ' (6;) and FpyNFypy,=o for §'#f3, we have

A(g,F,39) <Y Ag, Foy,30)+h Y Ag,&7(8;),wg)
BET i€d

< Z A(g)FDg7 }fq)+20h6A(g,F,Wq)
BET

(6.1.8)
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(cf. (6.1.6)). Adding the inequalities (6.1.7) over all €T, and using the estimate (6.1.8)
above and card T="1°, we get

A(ga F) ’fq) < 7_7’(97 9@? F)+diSC(7T, R)+(20+1)h€A(gv F? wl})
+78(deg 7)o" (R)+hp1?(deg 7) A(b, R, n,)
+h1?(pdeg w+1)1(g, OF, w,) +h(deg ) 7a(b, 25, R).

Note that the constants h, p, # and 7 are independent of the choice of A€ A. Using the
facts that >0 is arbitrary and that the constant (26+1)h is independent of the choice
of e, we see that the term (26+1)he is also an arbitrary positive number. This proves
our claim. O

6.2. The end of the proof

‘We prove our theorem by contradiction. Suppose that our theorem is not correct. Then
there exist g3 and £>0 with the following property: For all positive integers k, there
exists a non-degenerate specified g-hol-quintet

Ak = (jlmgk‘y Tk Gk bk) Fka Rk)
such that
A(gk, Fx, 7q) > 1(gk, Dq, Fi)+disc(me, Ri) +eA(gk, Fr,wq)

+k(deg7rk)(A(bk,Rk,nq)-H_L(bk,ﬁfl,Rk) (6.2.1)
+0" (Ri) +1(gk, OFk, wy)).

Put A={\;, \z,... }. Replacing A by an infinite subset, we may assume that the types of
A are all the same 7 C#9. Using the above claim and (6.2.1), we conclude that

kQr < Cle, 7, M) Qx
for all positive integers k, where we put
Qi = (deg mx ) (A(bk, R, ) +7(br, 25, Ri)+0" (Ri) +1(gk, OFk, wy))-

But this is a contradiction, because we have Q;>0. Hence we obtain our theorem.
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7. The proof of Corollary 2
7.1. Preliminaries
We start with the following lemma (see also [NoQ, 6.1.5] for the case Y=C).

LEMMA 14. Let Y be a Riemann surface with a proper, surjective holomorphic map
my: Y —=C. Let F(x)=z;-i=0 a;x* be a polynomial in one variable with coefficients a;
in Ry, where d=1 and ag#0 as elements in Ry. Assume that fERy satisfies the
functional equation F(f)=0. Then there are positive constants C and r¢ such that

d
T(r, f) <CZT(¢, a;) for r>ro.

=0

Proof. If all a; are constant functions, then f is also a constant function. Hence,
our lemma is trivial in this case. In the following, we only consider the case that some
a; is non-constant.

Put w(r):z;izo T(r,a;). Then we see that ¢(r)—o0 as r—o0. Let LCRAy be the
smallest subfield containing both C and all a;. Then £ is a finitely generated field over C.
Hence, by Hironaka’s theorem, there exists a smooth projective variety M over C such
that the rational function field C{M) of M is isomorphic to £. In the following, we fix
one isomorphism ¢: C(M)~ £. Then we have the holomorphic map b: Y — M, which has
Zariski-dense image, such that vob=u(v) for all v€C(M). Note that the order of the
growth of b is bounded by 4(r), because £C 8%.

Take an irreducible polynomial G(z)€£[z] over £ such that G(f)=0. Let G(z)€
C(M)[z] be the polynomial obtained by G(z) and the isomorphism ¢~!: £—C(M). We
may take a smooth projective variety X and a generically finite map p: X =M such
that the rational function field C(X) is isomorphic to the field C(M)[z]/(G(z)), via the

inclusion C(M)CC(X) given by p. Here we denote by (G(z)) the ideal generated by

G(z). Then we have a holomorphic map g: Y — X such that peg=>b and zog=f, where
we consider z as a rational function on X. By Lemma 2, the order of the growth of g is
bounded by ¢(r). Hence by Lemma 3, we get

T(r, f)=T(r,zog)=O0(¥(r)).

This proves our lemma. [

7.2. A generalization of Theorem 1

Let Y, B, m and % be the same as in Corollary 2. Then we may consider £z as a subfield
of Ry by the natural inclusion defined by #: Y — B.
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COROLLARY 4. Let F(z)€Rg[z] be a polynomial in one variable with coefficients
in ﬁ}g. Assume that the equation F(z)=0 has no multiple solutions in an algebraic
closure of R}é’,. Let f be a non-constant meromorphic function on Y such that F{f)#0
as elements in Ry . Then for all €>0, there exists a positive constant C(g)>0 such that

(deg F—2~&)T(r, f) S N(r, 0, F(£))+ Nram my (1) + C (&) (Nram =5 (1) +4(r)) |l;

where we consider F(f) as a meromorphic function on Y.

Remark 7.2.1. If we put F(z)=(x—aq)...(x—a,) for distinct al,...,aqeﬁ}é, then
the corollary above implies Theorem 1. This is because we have

N(r,0,F(£))=Y_ N(r,a;om, f)+O(%(r)). (7.2.2)

1=1
Note that the condition F(f)#0 is equivalent to f#a;om for all i=1,...,q.

Proof of Corollary 4. Let f¢ be an algebraic closure of fc. We consider the fields
R}é, fip and Ry as subfields of Rc. Note that each element of R¢ is algebraic over £z,
and hence naturally defines a multi-valued analytic function on B with at worst algebraic
singularities. Similarly, each element of R naturally defines a multi-valued analytic
function on Y with the same type of singularities. Let £C & be the splitting field of
F(x) over Rﬁ. Then there exist a1, ..., aq, 3€ £ such that

Flz)=8(z—a1) ..-{x—ay), (7.2.3)

where g=deg F(z). Since £ is a finite separable extension of ﬁﬁ, there is a primitive

element a€L, ie., £=AY%(a). Let B’ ™, B be the Riemann surface of the multi-valued
function @ on B. Then ay,...,aq are meromorphic functions on B’. Let G(x)eﬁ'é [7]
be an irreducible polynomial such that G(«)=0. Since the ramification points of ' are
either poles of the coefficients of G or zeros of the discriminant of G, we have

NramﬁB/(r) :Nramws(r)+0(¢(r))1 (724)

where mg=mgon’ (cf. (2.4.5)).
Next let Y/ 25y be the Riemann surface of the multi-valued function c on Y. By a

similar reasoning as for (7.2.4), we have

Nramﬂ'y,(r) = Nram ny (r)+0(y(r)), (7.2.5)
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where my/=myon”. By the constructions of B’ and Y’, there exists a proper, surjective
holomorphic map #:Y’— B’ such that n'or=non". Apply Theorem 1 to the case Y’, B/,
fer” and ay, ..., aq. Using the estimate of Lemma 14,

T(r,a;)=0(p(r)) fori=1,..,q,

we get

q
(q—2—e)T(r, f) < Z N(r7 ai°7A1'7 f°7r”)+Nram 7ry1(T)+06(Nram7r31(r)+w('r)) ”
i=1
for all e>0. Here we note that T'(r, f)=T(r, forn”") and that a;, ..., a4 are distinct because
F(z)=0 has no multiple solutions. By (7.2.2) and (7.2.3), we have

Z N(r,azof, for") = N(r,0, F(for"))+0(%(r)) < N(r, 0, F(f)) + O((r)).

Hence using (7.2.4) and (7.2.5), we conclude the proof. ]

7.3. The proof of Corollary 3

We use the notation in Corollary 3. Let Q be the curvature form of a Hermitian metric
on E. Put ¥(r)=max{1,T(r,b,Q)}. Then we have ¢(r)>1, and

Y(r)=T(r,b, E)+o(T(r,g,L)). (7.3.1)

Note that the order of the growth of b is bounded by ¥(r).

Let W be the Zariski closure of the image g(Y'). We first consider the case W#X. By
Hironaka’s theorem, there exists a blowing-up W —W with a smooth W. Let g: Y oW
be a holomorphic map such that g=wucg, where wu: W — X is the composition of the map
W —W and the closed immersion W— X. Since the map pou: WM is surjective and
dim W=dim M , we may apply Lemma 2 to conclude that the order of the growth of §
is bounded by 1 (r). Hence by Lemma 3, we have

T(r,g, Kx/m (D)) =T(r,§,u"Kx/m(D))+O(1) = O((r)).

This proves our corollary in the case W#X.

Next we consider the case W=X. By Hironaka’s theorem, there exists a blowing-
up wX—X with a smooth, projective variety X such that a generically finite map
o: X 5>PYx M over M exists. Let MyCM be a non-empty Zariski-open subset such that
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the restriction a0=a|)~(0:)?0—%P1xMO is finite and the restriction u0=u|)~(0:)?0—>X0 is
an isomorphism, where Xo=p~1(Mp) and Xo=(pou)~}(My). Put Fy=ramay, i.e., the
ramification divisor of ag. Then Fj is a divisor on )?0. Let HyCP'x My be the reduced
divisor supported by ag(supp(Fo+usDo)), where Do=D|x,. Put

Go= ((QO°U51)*(HO))red —Do.

Then Gy is an effective divisor on Xy because Dy is reduced. By the ramification formula,
we have

ug K xo/Mo(Go+ Do) = g (K (p1x My) /o (Ho) )- (7.3.2)

Here K(p1x Mo)/M, 15 the relative canonical bundle of the second projection Plx My— M,.
Let HCP'x M be the natural extension of Hy, and let GCX be the natural extension
of Gy. Then by (7.3.2), there exists a divisor Z C X such that

pou(supp Z) C M\ My (7.3.3)

and
wKx/m(G+D) = o (Kpixumym(H))+[Z). (7.3.4)

Here {Z] is the associated line bundle for Z. Let §: Y = X be the holomorphic map with
g=ueg. By (7.3.3), we have

T(r,§,12])=O0(¥(r))

(cf. Lemma 4). Hence by (7.3.4), we obtain
T(r,9, Kx/m(G+D))=T(r,acd, Kpixnmym(H))+O(r)). (7.3.5)
CLAIM. For all £>0, the following inequality holds:

T(Ta aog, K(PlxM)/M(H)) < N(’f’, 010!7, H)+Nramﬂy(r)+5T(r’ g, L)
+05(Nramws(r)+w(r)) H

Proof. Let p be the generic point of M in the sense of scheme theory. Let P}L be
the generic fiber of the second projection p': P! x M — M. Then P}, is the projective line
over the rational function field C(M) of M. Let H,CP}, be the restriction of H. By
a coordinate change of the first factor of P! x M, if necessary, we may assume that the
divisor (oo)CP}L is not a component of H,. Hence we may take a polynomial F(z)¢c
C(M)[z] such that H, is defined by F(z)=0.
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First, we consider F(z) as a rational function on P*x M. Let (F)oCP!x M be the
divisor of zeros of F(z). Then we have

N('l", 0, Foaog) < N(T’ aog, (F)O)’

where Foqo§ is a non-constant meromorphic function on Y because of the assumption
W=X. Note that we have

N(r,aeg, (F)o) =N (r,asg, H)+O((r))
because p'(supp((F)o—H))#M (cf. Lemma 4). Hence we get
N(r,0, Foaod) < N(r, acd, H)+O(x(r)). (7.3.6)

Next, let ﬁ(x) be the polynomial over ﬁ% obtained from F(z) by the natural injec-
tion C(M)—RY, defined by b (cf. Lemma 3). Let ¢: P1x M —P! be the first projection,
and put g=Coao§: Y —PL. Then we have

Foaod=F().
Hence, using (7.3.6), we get
N(r,0,F(3)) < N(r,acg, H)+O0(1(r)). (7.3.7)
We apply Corollary 4 to obtain
(deg F~2-¢)T(r,3) < N(r,0, F(§))+ Nram ny (1) + Oc (Neamn (1) +(r)) || (7.3.8)

for all £>0. Here we note that F\(x) has no multiple solutions because H is a reduced
divisor.

Now since ((deg F—2) C*$)|ph:K(plxM)/M(H)lpL, there exists a divisor P on
P! x M with p'(supp P)# M such that

(deg F—2)("Z = K(prxary/m (H)+[P].
Hence we may apply Lemma 4 to get
(deg F—2)T(r, §,2) =T(r, aog, Kprxar) (H))+O(r)). (7.3.9)

Note that we have T(r, §, £ )=T{(r, §)+O(1), because the Fubini-Study form wp: is the
curvature form of the Fubini-Study metric on .#. Hence combining (7.3.7), (7.3.8) and
(7.3.9), we get

T(Tv Qog, K(PIXM)/M(H)) < N(’f‘, aog, H)+Nram Ty (T)+5T(T’ g)
+O0e(Nram 5 (1) + (7)) ||
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for all €>0. Note that the order of the growth of g is bounded by T'(r, g, L). Considering
Coa as a rational function on X, we apply Lemma 3 to get

T(r,g9)= O(T(T, 95 L)),
i.e., there is a positive constant () independent of ¢ such that
T(r,9)<QT(r,g,L)+0(1).

Hence, we obtain our claim. ]

Now we go back to the proof of the corollary. Since we have
pou(supp((a*H),ed —u’ (G+D))) # M,
we obtain (cf. Lemma 4)

(.3, (a"H )rea) = N(r, 9, G+D)+0(4(r))
(r,9,G)+N(r,g, D)+O0(3(r)).

Hence combining this with (7.3.5) and the above claim, we get

T(T‘,g, KX/M(G+D)) < N(Tv g, G)+N(Tag» D)+Nram Wy(r)+ET(r) g, L)
+O0e(Nram =5 (1) +%(r)) ||

for all €>0. Using (7.3.1), N(r,q,G)<T(r,9,[G])+O(1) (cf. (2.1.1)) and
T(’I",g, KX/M(G+D)) =T(T7 g, KX/M(D))+T(T795 [G])+O(1)’

we get our corollary. O

7.4. The proof of Corollary 2

We use the notation in Corollary 2. Put ¥(r)=max{1,4(r)}. Then we have ¥(r)>1
for >0, and A% =R%. Note that the estimate in Corollary 2 is easily derived from the
corresponding estimate where 1 is replaced by ¥. Let SCR% be the smallest subfield
containing both C and all the coefficients of F(z,y). Note that £ is a finitely generated
field over C. Hence there exists a smooth projective variety M over C such that the
rational function field C(M) of M is isomorphic to £. In the following, we fix one
isomorphism ¢: C(M)~5£. Then we have the holomorphic map b: B—M, which has
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Zariski-dense image, such that vob=¢(v) for all veC(M). Note that the order of the
growth of b is bounded by ¥(r).

Observe that f; is algebraic over £ if and only if f; is algebraic over £. In the case
when f; and f, are algebraic over £, we have

T(r, f;)=0(¥(r)) fori=1,2,

by Lemma 14. This proves our corollary in this case. Thus, in the following, we assume
that both fi and f; are non-algebraic over £.

We denote by u the generic point of M in the sense of scheme theory. Let F(z,y)€
C(M)[z,y] be the polynomial obtained by F(x,y) and the isomorphism :~*: £—C(M).
Let @ be the quotient field of the ring C(M)[x,y]/(F(z,y)), where (F(z,y)) is the ideal
generated by F(r,y). We may take a smooth projective variety X and a surjective
morphism p: X — M such that the rational function field C(M)(X,,) of the generic fiber
X, of p (in the sense of scheme theory) is isomorphic to Q. Note that X, is a smooth,
projective curve over the field C(M). Then the rational function field C(X) of X is
also isomorphic to Q. Since the meromorphic functions f; and fo satisfy the functional
equation F(fi, f2)=0 and they are not algebraic over £, we get the holomorphic map
g:Y = X such that b and g fit into the commutative diagram in Corollary 3, and such
that zog=jf; and yog=f,. Here we consider x and y as rational functions on X. By
the assumption that, for general z€ B, the polynomial F,(xz,y) is irreducible and the
equation F,(z,y)=0 defines an algebraic curve of (topological) genus greater than one,
we see that the curve X, is geometrically connected and has genus greater than one.
Hence the canonical bundle K x, is ample. Let L be an ample line bundle on X.

CLAM. There is a positive constant C, which only depends on p: X M and L,
such that T(r,g, L)<CT(r, 9, Kx/a)+O0(¥(r)).

Proof. There exists a positive integer m such that mKx,—L|x,, is very ample on X,.
Hence we may take an effective divisor H on X such that [H|x,]=mK X“—L| x, and
g(Y)¢supp H. Since the restriction Kx,/u|x, is isomorphic to Kx,, we see that the
restriction (mKx/y —L—[H])|x, is the trivial line bundle on X,. Hence there exists
a divisor G on X such that p(supp G)#M and mKx/y—L—[H]|=[G]. Therefore we
obtain

T(r,g,L)=mT(r,9, Kx/m)-T(r, 9,[H])=T(r,g,[G])+O(1).
Since we have

_T(T7 g, [H]) < 0(1)

(cf. (2.1.1)) and
—T(r,9,[G]) =0(¥(r))
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(cf. Lemma 4), we conclude our claim. (Put C=m.) a

Now, applying Corollary 3 for the case D= and using the above claim, we get
T(r,g,L) < Oc(Niamny (1) +Nram 5 (r) + ¥(r))+eT(r, 9, L) |
for all £>0. Letting e<1, we get
T(r, 9, L) = O(Neam my (1) (1) ||, (7.4.1)

where we note that Neamzs(r)<Nramny (r) for r>1 (cf. (2.4.5)). Using zog=f; and
yeg= f2, we obtain

T(r, i)=0(T(r,g,L)) and T(r, f2)=0(T(r,g,L)) (7.4.2)

(cf. Lemma 3). By (7.4.1) and (7.4.2), we get our corollary. a

8. The proof of Theorem 2

In this section, we prove Theorem 2. Our theorem is trivial for ¢<2. Hence in the
following, we consider the case ¢>3. Let £>0 be a positive constant and let

Y, B, m, f, a1, ..., a4 (8.0.1)

be the objects in Theorem 2, which will be fixed in the following. Consider the specified
g-hol-quintet A=(Y, B, ,cl(s ), clq, Y, B) defined by (8.0.1).

Put §=max;¢igqdega; and
U={z2€B:ai(2),...,aq(2z) are all distinct}.

Then U is a dense, open subset of B. For (i, j,k)€_¢ and for zen~(U), the two 4-tuples
of points on P1,

(f(z)7aio?r(z)’ajow(z)’akoﬂ(z)) and (w(i,j,k)oCI(f,a)(z)101 1700)7
are isomorphic (cf. (1.5.6) and (1.5.7)). Thus we have

_ f(2)=aiom(z) ajom(z) —agom(z)
PaabClire &)= 50 Zaen(z) agen(a)-aen(z)

which is a rational function on Y. Hence we get

|deg (@, j,k)ocl(f,a)) —deg f| < Tédeg . (8.0.2)
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Also, for (i, 4, k,1)€.# and for z€U, the two 4-tuples of points on P2,

(al(Z),ai(z),aj(Z),ak(z)) and (¢(i,j,k,l)OCIa(z)7071700)7
are isomorphic. Thus we have

a(z)—ai(2) a;(z)—ax(2)
a(z)—a(2) a;(2)—ai(2)

B, 5.k,0)°Cla(2) =

which is a rational function on B. Hence we get
deg((s, j.k,1y°¢la) < 84. (8.0.3)
By the assumption that a; are distinct, we conclude that
cle(B) ¢ supp 25. (8.0.4)

First, we consider the case that A is non-degenerate. We apply Theorem 4 for
the non-degenerate specified g-hol-quintet A\. Denoting by C1(g,€) the constant C(g,¢)
obtained in Theorem 4, we get

deg(cl(f,a))*Kq < ﬁ(cl(f,a), Z,, Y)+diSC(7T, B)-}-EA(Cl(f,a), Y, wq)

i (8.0.5)
+C1(g,€)(deg m)(A(cly, B, ng)+7(cly, 25, B)+0"(B)).

Here we used the facts:
(1) A(cl(s,a), Y, 52g)=deg(cl(s,0)) Ky
(2) 0Y =0 because Y is compact, and hence I(cls,q), Y, w,q)=0.
By the Riemann—Roch theorem and the Hurwitz theorem, we have

o(B)=2¢g(B)-2 and disc{m, B)=(29(Y)—2)—-(deg7)(2¢9(B)—-2), (8.0.6)

$0
0" (B)<2g(B) and disc(m,B)<2g(Y)+2degn.
Hence by (8.0.5), we get

deg(CI(f’a))*Kq < ﬁ(cl(f,a), @q, Y)+2g(Y)+€A(C1(f7a), Y, wq)

’ (8.0.7)
+C5(q,€)(deg 7)(Alcly, B, nq)+0(cla, 25, B)+9(B)+1),

where we put Ca(q, e)=2max{C1(q,¢),2}.
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CLAIM. There exist positive constants Qi,...,Qs which are independent of the
choices of >0 and of the objects in (8.0.1), such that

Alclg, B,1q) < @16, (8.0.8)
ﬁ(Claa "%7 B) < Q25, (809)
Alcl(s,0), Y, wq) < Q3(deg f+ddeg ), (8.0.10)
q
lcl(z,ay, Do, Y) < Y Alaser, ,Y ) +Qud degm, (8.0.11)
=1
(g—2)deg f <deg(cl(f,a)) " Kq+Qs0deg 7. (8.0.12)

Proof of (8.0.8). For ic.#, let pr;: (P1)”—P! be the projection to the ith factor.
Put

Z= Z pr;.%,
€S

which is an ample line bundle on (P!)¥. By Lemma 12, the line bundle *Z is an ample
line bundle on .#p,. Hence there exists a curvature form w’ of ®*% that is a positive

(1,1)-form. Therefore there exists a positive constant @ such that n,<@Qjw’. Using
(8.0.3), we have

A(cla, B, ng) < Q1 A(cla, B,w') = Q) deg(Pocl,)" &
=0Q] Z deg(g;ocl,) < 8Q] (card £ )4.

ic.#
Put @,=8Qcard .# to conclude the proof of (8.0.8). g

Proof of (8.0.9). There exists a positive integer @ such that Q4®*%—[Z;] is an
ample line bundle on //70,,1. Hence using (8.0.3), we get

7i(cla, 25, B) < deg(cl,)*Z, < Qhdeg(Pocl,)*Z <8Q5(card £ ).

Put Q2=8Q%card .# to conclude the proof of (8.0.9). O

Proof of (8.0.10). Using the isomorphism tgi1: Mo q+1—%,q (cf. (1.5.12)) and
Lemma 12 for .# q41, e see that the line bundle

P= Z oL+ Z (picwg) " #

o€ £9 €79
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is an ample line bundle on %,q. Let w” be a curvature form of P that is a positive
(1,1)-form. Then there exists a positive constant Q% such that w,<Q4w”. Using (8.0.2)
and (8.0.3), we get

A((ﬂ(f,a)) Y7 wq) < QQA(Cl(f,a)v K w”)

=Qszdeg(cl(s.4)) P
= Qé( Z deg(wacclisq)) + z deg(¢ioclao7r)>
a€ g9 i€ga

< (Qjcard Z9+7Q5card #9+8Q5card #9)(deg f+ddeg ).

Put Qs=Qjcard £9+7Q%card £ 9+8Q%5card £7 to conclude the proof of (8.0.10). 0O
Proof of (8.0.11) (cf. the proof of (2.3.5)). Put

U={z€B:ai(z),...,a4(z) are all distinct}.

Then by the definition of the classification map, we have cl,(U)C . #p,4. For z€U and
yem~1(z), we have clis,)(y)€Z, if and only if f(y)=a;(z) for some i€(g) (cf. (1.5.6)
and (1.5.7)). Hence we have

{yeY:clis,a)(y) €y} C{yeY: fy) =ason(y) for some i€ (q)}Un (B\U).

This implies that

q q q
,FL(Cl(f,a)v @qa Y) < zﬁ(aioﬂ'a .fa Y)+(deg7r)2 Zﬁ'(aia a;, B)
i=1 i=1 j=1
J#i

Since we have
ﬁ(ai, aj, B) < 25,
we get (8.0.11). (Put Q4=2¢(q—1).) O
Proof of (8.0.12) (cf. the proof of (2.3.6)). By Lemma 5, we have

(g—2) deg(p(1,2,3)°Cl(f,0)) = deg(cl(f,a)) Ky +(deg ) deg(cls) "E +deg(cl(,0)) " (),
(8.0.13)
where E and E are obtained in the lemma. By w,(supp E)Csupp 25, there exists a
positive integer Q5 such that the divisor Qzw; 2, —E is effective. Hence by (8.0.4) and
by the proof of (8.0.9), we have

deg(cl(s,q))*(E) < Q5(deg m) deg(cla)*(2;) < Q2Qzd deg 7. (8.0.14)
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Since ®*% is ample, there exists a positive integer Q7 such that the line bundle
QY®*Z—E is ample. Using (8.0.3), we get

deg(cly)*E < QY deg(®ocl,)*Z < 8Q¥ (card .# ) 4. (8.0.15)
Using (8.0.2), (8.0.13)-(8.0.15), and putting
Qs = Q2Q5+8Q5 card I +7(g—2),

we get our inequality (8.0.12) and conclude the proof of the claim. O
Now using (8.0.7) and the above claim, we get

q

(q_2)deg f < Z ﬁ'(aioﬂ'7 f7 Y)+29(Y)+EQ3degf

i=1

+(eQ3+Q4+Qs)6deg m+Ca(q, €)(deg m) ((Q1+Q2) 6 +9(B)+1).

Put
C3(g,e) =max{eQ3+Qs+Q5+C2(q,6)(Q1+Q2),Ca(q,€)}.

Replacing € by £/Q3 and putting C(q,£)=C5(q,£/Q3), we obtain our theorem in the case
that X is non-degenerate.

Next we consider the case that A is degenerate, i.e., there exists some a€_¢ such
that @aocl(yq) is constant. Then by (8.0.2), we conclude that

deg f < 7ddeg .

Hence replacing C{q,¢) by max{C(q,¢),7(¢g—2)}, we also get the theorem in the case
that A is degenerate. Here we note that all terms on the right-hand side of (1.1.4) are
non-negative. This concludes the proof of Theorem 2.

9. The height inequality for curves over function fields
9.1. Notation

General references for this section are [L], [V1] and [V3]. See also [No2] for related results
in higher-dimensional cases. Let k be a function field, i.e., the rational function field of a
compact Riemann surface B. This B is uniquely determined by & (up to isomorphism),
and called the model of k. We consider B as a smooth projective curve over C. Let
SCB be a finite set of points, which will be fixed throughout.
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Let X be a smooth projective curve over k, and let DCX be an effective divisor.
Let L be a line bundle on X. Following P. Vojta [V3], we define the functions

hi(P), N{Y(D,P) and di(P)

for Pc X (k) as follows.
First, take a model of X over B, i.e., a smooth variety X projective over B such
that the generic fiber (in the sense of scheme theory) is isomorphic to X over k. To each

PeX(k)=X%(k), we can associate the commutative diagram of holomorphic maps

fe

Y —X
ﬂl lp
B:B

by taking the normalization of the Zariski closure of P in X. Here Y is the model of k(P).
Let ®CX be an extension of DC X, and let £ be an extension of L to X. Put

1
egm

hg x(P)= 3 deg fpL

and

N @,P):delw 3" min{l,ord, f3®}, PeX(k)\D.
€ zeY\m—1(S)

If we replace the models X, © and £ by other models X', ®’ and £', we have

he(P)=hes(P)+0(1) and NU3(D,P)=NU(®', P)+0(1),

where O(1) are bounded terms independent of P€ X (k). Then we define the functions
hik(P) and N{'}(D, P) by

hrx(P)=hgr(P)+0(1)

and
NM(D, Py =N{"J(®,P)+0(1), PeX(k)\D,

which are functions modulo bounded terms O(1). Finally, put

1 .
dk(P)—degﬂdlsc(ﬂ,B).
Then we have "
au(P) =20 o)

degm
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(cf. (8.0.6)). The following facts are easy consequences of the above definitions:

(i) NU3(D, P)<hip)k(P)+O(1), where [D] is the associated line bundle.

() A7p,Y)<(deg )N, N§(D, P)+card S).

(iii) Let P} be the projective line over k. In the following, we always take P'x B as
a model of P} over B. Then a point P€P}(k)\(co) corresponds to the rational function
fp on Y obtained by the composition

fprY I8 Plx p LB, pl

Let % be the hyperplane section bundle on P}. Then we have

deg fp
degm

hgk,k(P)— +O(1)

(iv) Let k’Ck be a finite extension of k. Put e=[k:k] and X'=X®;k’. Let B’ be
the model of k'. Let b: B'— B and b: X'— X be the natural maps. Put D'=b*D, L'=b"L
and $’=b"1(S). Then using the natural identification X’ (k)=X (k), we have

hpw (P)=ehy k(P)+0(1), NGk (D', P)<eN{Y(D,P)+0(1)
and
di(P) < edi(P).
By these properties and Theorem 2, we obtain the following result.

LEMMA 15. Let DCP} be a reduced divisor and let €>0. Then we have
hitpy (D), £(P) < N 3(D, P)+di(P)+ehazy x (P)+0c(1)

for all PePL(k)\D. Here O.(1) denotes a bounded term which depends on €, but does
not depend on PP} (k).

Proof. We first prove the lemma, for the special case that the divisor D has the form
D=(Py)+...+(P,) by k-rational points P,€P(k), i=1,...,q. By a coordinate change
of P}, if necessary, we may assume that P;#oo for all i=1,...,q. By the property (iii)
above, each P; corresponds to the rational function fp, on B because k(P;)=k. Here B
is the model of k. By the assumption that D is reduced, the points P; are distinct. Hence
the rational functions fp, are distinct. Let P€P}(k)\D, let Y be the model of k(P) and
let m:Y — B be the natural map. Since hg p1(D), x(00)=0(1), it suffices to consider the

case P#oo. Then P corresponds to the rational function fp on Y. Because P ¢suppD
we have fp # fplo’ll' for i=1,...,q. Apply Theorem 2 to get

q
(g—2—¢)deg fp < Z A(fpom, fp, Y )+29(Y)+0.(1)degm (9.1.1)

=1
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for all £>0. Here we note that the functions fp, and the Riemann surface B are fixed.
Let D CP'x B be the Zariski closure of DCP} and let fp: Y —P*x B be the associated
holomorphic map for P. Then we have

a(feom, fp,Y) <A(fp,D,Y)+0(1)deg,

g
i=1
because D is the union of the graphs of fp.. By the property (ii) above, we get

q

> Al fpom, fp, Y) < (deg m) (N (D, P)+0(2)). (9.1.2)

=1

By (9.1.1), (9.1.2) and Kpi(D)=(q—2)%, we get
thl(D),k(P) < N,E’I%(D,P)+dk(P)+Eh_gk’k(P)+Oe(1) for all € >0.
k

This proves the lemma for our special case.

Next we prove the general case. For a finite extension k' of k, we shall use the
notation D’ and S’ in (iv) above.

Let k'Ck be a finite extension of k such that the divisor D'CP}, has the form D'=
(P1)+...+(P,) by k’-rational points P,eP}, (k'), i=1,...,q. Then we have the natural
identification P}(k)\D=P3},(k)\D'. For P€P}(k)\D, we apply the special case above
to obtain

Bty (D)0 (P) S N 5. (D', P)-die (P) +ehg,, oo (P)+Oc(1).

Using the property (iv) above, we conclude the proof. 0

9.2. The height inequality

The following theorem proves Conjecture 2.3 in [V3] for the case of curves over function
fields.

THEOREM 5. Let k be a function field. Let X be a smooth projective curve over k,
let D be a reduced divisor on X, let L be an ample line bundle on X and let €>0. Then
we have

hicx (D) k(P) S NUS(D, P)+di(P)+ehp k(P)+0c(1)
for all PeX(k)\D.

Proof. Let oz:X—)P,lc be a finite surjective map over k. Put E=(ram )4 CX.
Let HCP} be the reduced divisor supported by a(supp DUsupp E). Then there exists
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an effective divisor GC X such that (a*(H))rea=D+G, since D is reduced. By the
ramification formula, we have

Kx(D+G)=a(Kpy (H)).
Then by Lemma 15 and the property (i) of the previous subsection, we have

hkx(D+G),k(P) :hKPk(H),k(a(P))
< N (H, o(P))+dk(a(P))+eh, x(e(P))+0:(1)
<NOY(D+G, P)+di(P)+eha-g, 4(P)+0:(1)
< N{UD+G, P)+di(P)+€ChL 1(P)+0¢(1)
< NUU(D, P+ gy k(P)+di(P)+eChy ik (P)+0(1)

for all Pe X(k)\(D+G@G). Here C is a positive integer such that the line bundle CL—a*%;
is ample; hence C is independent of P and . For the points Pesupp G, the values
hkyDy(P) are bounded because supp G consists of finite points. Hence, replacing ¢
by ¢/C, we get

hicx D).k (P) S NUA(D, P)+di(P)+ehp k(P)+0:(1)

for all Pc X (k)\D. This proves our theorem. a
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