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1. Introduction

I.1. The well-known Thue-Siegel theorem, in the refined form obtained by Dyson and
Gelfond, asserts that if a is an algebraic number of degree r=2 and if £>0 then

p

(1'——, > q—\/—27—s
d

for g=qo(a,€). The constant gy(a, €) in this result turns out to be not effectively
computable.

In fact, Thue proved a result of this type with the exponent r/241, Siegel improved
this to the eXponent min (r/(s+1)+s) for s=0,1,...,r—1 and finally, by using full
freedom in the construction of the auxiliary polynomial, Dyson and Gelfond indepen-
dently arrived at the exponent V2r.

The common feature in the approach of Thue, Siegel, Dyson and Gelfond is the
consideration of two approximations p,/q,p./q, to a and the construction of an
auxiliary polynomial p(xl,xz) with integral coefficients vanishing to a high order at
(a,a) and vanishing only to a low order at (p/q.,p»/q2). Although Siegel and
Schneider soon realized that further improvements could be obtained by the consider-
ation of several distinct approximations py/qi, ..., Pm/q.» to @ and by the construction
of an auxiliary polynomial P(xy,...,x,,) in many variables, it took about thirty years
before Roth showed how to prove that P would vanish only to a low order at the point
wi/q1,...,Pm/q»). In this way Roth was able to prove his celebrated theorem

a—-e—‘ >q "
q

for q=qola, ).
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1.2. All results mentioned above are ineffective in the sense that the method does
not allow the calculation of go(a, £). On the otherk hand, Thue himself noted that one
could obtain a statement of the following kind ([T], Theorem III, p. 249).

THUE’S THEOREM. Let a be algebraic of degree r and let h, k be given positive
numbers. There is an effectively computable constant Go=Gy(a, h, k) such that if there
exist py, qo with

Tk

Py
a—— <q02 , qy> Gy

dy

then we can determine effectively G=G(a, h, k, qo) such that

N r
a——ll‘ >gq 2(k+1)

Jor all g>G.

Gelfond ([G], Theorem 1, p. 22) obtained a similar resqlt, but with the exponents
9,9, in place of r/2+1+k and Ir/(k+1)+1+h, provided 2<d<v=<r and 93,=2r(1+¢).
He also related approximations to two different algebraic numbers in the same field,
with essentially the same conclusions. It should be noted that because of a basic
difference between the auxiliary constructions of Thue and Gelfond the result of Thue
and the result of Gelfond are somewhat different. Further refinements are in Hyyr6
((HD.

The meaning of these results is simply that if there is an-exceptionally good
approximation to a then all other approximations cannot be too good from some point
onward. Now the question is whether exceptionally good approximations exist in
nature or not. As far as we can see, the constant Gy in Thue’s theorem, or the
analogous constant in Gelfond’s result, turns out to be far too large and as of today no
pair (a, po/qo) has been found which verifies the hypothesis go>Gy of Thue’s theorem.
This means that no effective result for the approximation of a by rationals has been
found using Thue’s or Siegel’s or Roth’s approach.

1.3. In order to illustrate one of the difficulties which appears let us consider the
following problem.

Let P(x) be a polynomial of degree d, with integral coefficients bounded by H. Let
o be an algebraic number of degree r and let p/g be a rational number. Now suppose
that P vanishes o to order e(a) and suppose also that P vanishes at p/q to order e(p/q).
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We would like to find conditions which make sure that e¢(p/q) is small, even if e(a) is
relatively large.
Let e=e(p/q). Then (gx—p)*© divides P and hence we must have H=4°. This yields

e(z) <logH
q logq

which shows that e(p/q) is small if g is relatively large compared with H. On the other
hand, let e=e(a) and let Ax) be an irreducible polynomial with integral coefficients
bounded by H(a) and defining a. Then we can write P=f°Q where Q has integral
coefficients and now H=C ¢H(a)° with an absolute constant C, by a basic result on
heights. Thus we see that this argument cannot produce a bound better than

eplg) < e(a) 122 HD) +0< d )
logg logg

If we disregard the O(...) term, we see that in order to have e(p/q)<e(a) we need
something like log g>log H(a).

It is the appropriate generalization of this argument to polynomials in two or more
variables which is needed in Siegel’s and Roth’s approach and this leads to results
which are useful only in the case of approximations p/q in which q is fairly large
compared with H(a). We have been unable so far to construct pairs (a, p/q) in which
plq is an excellent approximation to a and also q is large enough for this method to
work.

1.4. If we look again at the preceding problem there is an obvious inequality which
has to be satisfied if a#p/q, namelv

e(plg)+e(yr<d

because P vanishes at p/q to order e(p/q) and also vanishes at a and at all conjugates of
a to order e(a).

This purely algebraic approach is the one followed by Dyson in his work and, as
far as we knowi, it has not been the object of further study since the appearance of
Dyson’s paper [D]. On the other hand, it has the distinct advantage of being entirely
free from considerations of heights and hence it allows any approximation py/go to a 1o
be a candidate for a starting point to obtain effective results. This is exactly what we do
in this paper. We shall obtain a very explicit formulation of Gelfond’s result and as a

17812904 Acta mathematica 148. Imprimé le 31 aolt 1982
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special case we shall exhibit an infinite class of number fields of large degree (=40) in
which an effective form of Thue’s theorem holds.-

The question of effective measures of irrationality for an algebraic number is of
considerable importance and it has attracted much attention; it has also proved to be a
difficult one. The first non-trivial approximation theorems for a class of algebraic
numbers were obtained by Baker [Bal] using techniques related to the construction of
explicit Padé approximants to algebraic functions of one variable. These techniques
have been further developed to deal with simultaneous approximations [Ba2], so that it
is possible to obtain uniform approximation results for certain fields of the type
Q(V alb) with a/b sufficiently close to 1. A notable success of this method has been
Baker’s result

\3/7_%‘ > 104q—2.955;

further improvements have been announced in the work of G. V. Choodnovsky.

An entirely different approach to the problem of effective bounds has been made
possible by Baker’s work on linear forms of logarithms; an exposition of the current
state of the theory can be found in [Ba3]. It suffices here to mention that the work of
Baker, together with some fundamental improvements by Feldman [F], has led to the
first general non-trivial effective improvement in the exponent of approximation, for
every algebraic number. On the other hand, the gain in the exponent appears to be
extremely small and it depends badly on the height of the number of be approximated.
However, it has been pointed out by Baker [Ba4] that for numbers of the type a'™, m
large, his technique yields an exponent of the kind c(a)logm, which for fixed a and
large m is even better than the Thue-Siegel exponent 2Vm.

To sum up, our knowledge about effective approximations is of the following kind:

(A) good effective exponents (approaching Roth’s exponent 2) for numbers of the
type V/alb , obtained through the use of Padé approximations to algebraic hypergeo-
metric functions;

(B) a small effective improvement on the Liouville exponent, which however
applies to every algebraic number, obtained through the use of the theory of linear
forms in logarithms. For special numbers, the exponents obtained are also good.

To these results, we can now add:

(C) good effective exponents for all generators of certain number fields, the
exponent being the same for all generators, obtained by refining the originali Thue-
Siegel method.
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I.5. The refinements of the Thue-Siegel method which are relevant to us require a
careful use of Dyson’s idea for proving the non-vanishing of the auxiliary polynomial
and also require that losses in estimating should be reduced to a minimum. As a
consequence, besides using Dyson’s approach, it is absolutely necessary that all
estimates be carried out with the utmost precision. Also the p-adic generalizations of
the Thue-Siegel theorem must be considered. For this reason, we shall use in a
systematic way the absolute height (Mahler’s measure) rather than more familiar
notions of height, as well as Lang’s local to global technique (see [L], Chapter VI).

Our notations and definitions are as follows.

Let K be a number field. We write d=[K: Q] and for every place v of K we write
d,=[K,: @,]. If the finite place v of K lies over the prime number p, we write vjp. We
normalize the absolute value | |, so that

() if v|p then

lpl, =™,
(ii) if v|c and v is real then

lxlo =[x,
(i) if v|ee and v is complex then

Ixlo = [xI*%;

here | | denotes the Euclidean absolute value in R or C. In view of our normalizations,
we have the product formula

[T, =1

v

if x€EK*,
We define the absolute height of x € K by the formula

h(x) = [ max 1,x,);

one of its main properties is that it does not change if we replace K by a finite extension
(see Weil [W]); we also define

log Ta=logmax(l,a) for a=0,
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so that

log A(x) = 2 log * |x],-
Let S be a set of places of K and let x € K*. From the product formula we have

> logxl, = = log x|, = — D log* |x|, = ~log hx).
N

végsS vés
Moreover, if x+0 the product formula yields
log A(1/x) = log h(x),

which combined with the previous inequality gives

> log x|, <log h(1/x) = log h(x).
N
From the last two inequalities we deduce the

Fundamental inequality. Let x € K* and let S be any set of places of K. Then we
have

—Ellc)g+ x|, = 2 log |x|, < 2 log* |Ux],
s

vgsS vés

and in particular

~logh(x)< D, log |x|, <logh(x),
s

where h(x) is the absolute height.

This notion of height is easily extended to vectors in the following way. If
Xx=(xy, X3, ..., X,) With x;€EK we define

h(x) = Hmax(l, %1 o5 eees X |0)-

We may further extend this notion to polynomials in any number of variables and to
vectors of polynomials, by taking the height of the vector whose components are the
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coefficients of the polynomial, and similarly we proceed with matrices; we also define
|x],=max |x,.

The following properties of height are easily established. First of all, the inequality
max (1, ab) <max (1, a) max (1, b) yields

h(xy) < h(x) h(y)
for x, yEK; also

h(x*) = h(x)"
if x is algebraic and a € Q. Next, we may note that if v is a finite place then
[xit ... + x|, < max |x],

while if v is infinite then
e+ +x,f, < % max|x),;

sine Edv= d, we obtain:

vjw
Ifxi,...,x,€EK then

h(xy ... xp) S h(xy) ... A(x,), h(xy +...+ x,)) < nh(x),

where X is the vector x=(x1, ..., x,).

Moreover of x and y are any vectors with components in K, then

h(x®y) < h(x)h(y).

If o is an algebraic number of degree r and if H(a) is the maximum of the
coefficients of an irreducible equation for a over Z, we have

Ci(NH(a)" < h(a) < Cy(r) H(@)'"

where C,(r), Cx(r) depend only on r; this may be useful in visualizing the size of A(a).
Finally, we shall abbreviate

Ma) =logh(a)

and call A(a) the logarithmic height.
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I.6. The content of this paper is as follows.

In section II, we prove Dyson’s lemma, essentially using his arguments.

In section III, we construct the auxiliary polynomial P(x;,x,) and its vanishing at
(a1,a2) and (8y,8,) is controlled by means of LLemma 5 and Lemma 6; Lemma 5
represents the application of Dyson’s lemma.

In section IV, we prove a general effective result relating an approximation 3, to
a; with another approximation 3, to a,. This result is stated in Theorem 2. Theorems 3
and 4 are special cases of Theorem 2, formulated in a more familiar way.

In section V, we show with examples that our results are sufficiently explicit and
precise to yield some cases of effectiveness for the Thue-Siegel theorem; in particular
our Example 2 is completely explicit in all numerical constants.()

Finally, I would like to thank here the Mittag-Leffler Institut for providing comput-
er time and assisting in the numerical calculations of section V.

Note. 1 wish to take the occasion of the publication of this paper to clarify the
relative status of two preceding papers, namely ‘‘Algebraic values of meromorphic
maps’’, Inv. Math., 10, 267-287 (1970) by Enrico Bombieri and ‘‘ Analytic subgroups of
Group varieties’’, Inv. Math., 11, 1-14 (1970) by Enrico Bombieri and Serge Lang.

In fact, although submitted and received at the same time (June 29, 1970) and
although my paper appeared before the joint paper, the joint paper actually precedes
the other. In particular the Schwarz lemma of the joint paper, which appears also as
Proposition 4 in the first paper, originates entirely in the joint paper.

Finally I must point out that the references to the first paper which appear in our
joint paper were added a posteriori at my request, for the sake of completeness. The
fact that my paper does not contain a similar cross reference to the joint paper is simply
due to my oversight. I wish to apologize to Professor Lang if this fact has caused
misunderstandings in attributing to me alone ideas and results obtained in collaboration
with him.

1I. Dyson’s lemma

II.1. Let K be an algebraically closed field of characteristic 0 and let
§.=&.1,...»8un), u=1,...,m be m points in K". We shall assume that for i=1,2,...,n

() We have made no effort here in trying to single out various classes of number fields to which our method
applies. Indeed, the reader will perceive that strong effective results can be obtained in many cases of ample
generality. Any improvement of Lemma 6 would lead to better results and it is easily seen that if we could
replace the constant re(1)/(1—re(1)) by 1 as a multiplier of d;A(a,) (and we allow worse multipliers for
d>A(a,)) then the optimal exponent 2 would follow effectively for every algebraic number. We hope to return
to these questions in future papers.
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the m numbers &;,&,,...,&,,; are distinct; in this case the set of points §, will be
called admissible. Let 4,>0, i=l, ..., n be real numbers.

Let d,, ..., d, be positive numbers (not necessarily integers) and let 7, u=1,...,m
be real numbers. We define

@(d9ﬂ; t]"--stmlgl’---sgm)y

and abbreviate P(d;z,), to be the vector space over K consisting of all polynomials
P=P(x,,...,x,) in n variables with coefficients in K and satisfying

deg, P <d, (A)
fori=1,...,n;
A'P(E,)=0 (B)
Jor
N 8’:‘ ot |
3x,"...9x,"

and all indices I = (iy, ...,1i,) with

) i‘+ + 9 i"<t
ldl aes "d 1

n

for u=1,...,m. It is convenient to allow ¢, to be negative or 0, in which case no
condition on P at the point §, is imposed.

1 1
(P,,(t)=f f dx,...dx,,
o Jo

thx +..+d,x, st

Let us define

so that the number of solutions of

0i1+19 i2+ + 7 i"<t i <d
—_— -4 =z , <
ll] 2 '; nY v v

n

for large d, is asymptotic to ¢,(f)d;d> ... d,. Since the number of indices (i, is, ..., i,)
at out disposal is asymptotic to d;d,... d,, we see that ¢,(f) measures the number of
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indices satisfying the given conditions, as the degrees di, ..., d, go to infinity. We have
@n(1)=0 if t<0, @, ()=1if t 2T\,
If we fix &,,...,&,, and ¢4, ..., t,, with

> )<,
"

the vector space 2(d; 1,) is not (0) as soon as the degrees d,,...,d, are sufficiently
large. Indeed each equation in (B) is a homogeneous linear equation in the coefficients
of P and we have (d,+1)...(d,+1)~d,...d, coefficients. Now I, ¢,(t,)<1 implies
that for large d,,...d, we have more unknowns than equations in our linear system,
which makes the result obvious. Conversely, the question arises whether the condition
2.9x(t,)<1 is also necessary for having %(d; 1,)#(0). This is so if §,, ..., §,, are generic
in an appropriate sense (which we do not need to make precise here) and this gives
some support to the view that it may always be so. It is the content of Dyson’s lemma
that this is essentially the case if §,, ..., &, is admissible, if n=2 and if the ratio d»/d, is
small. We have

THEOREM 1. Let §,, ..., §,, be admissible and let n=2. Then if P(d; t,)+(0) we have

-2 d,
L)<1+ ez 0)-2
2%( ) maX< 5 ) 4

In order to appreciate the meaning of the admissibility condition, let us consider
the case n=1. Then (B) implies that P(x) has a zero at &, with multiplicity not less than
max (¢,, 0)d=g@(t,)d. If the &, are admissible, that is distinct, then

d 2 t)< Z (multiplicity at §,) <degP<d
and
Z @(t) <L
This simple argument makes clear why admissibility is needed, for otherwise the
example of P(x;) taken as polynomial in several variables xi, ..., x,, shows that no result

like Theorem 1 can possibly hold.
We shall deduce Theorem 1 from the apparently weaker
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DYSON’S LEMMA. Let §,,...,§,, be admissible and let n=2. Then if #d; t,)+(0)
and 0<t,<min (%, ¥,) we have

1 (m—Z )dz
t° < 14+ max ,0)—.
20,4 o\ 2 )4,

I1.2. In this section we prove some simple facts on polynemials P € 2(d; ¢,); our
results are stated for polynomials in several variables.

LEMMA 1. We have:
(a) if t},<t, then
Pd; 1,) < P(d; t));
) if a=1 then
Pd; 1) < Plad; o 't,);

(©) if Po€EP,; ton), 0=1,...,r then
P,..Pc 9”(2 d,; 2 min(—;—&—> tgﬂ);
p pull ytetd,
(d) if PEPQ; 1,) then
PNE P(Nd; t);
(©

Al (4, t,)E @(ad; a’! (tﬂ—23>>

for every o =1—mini,/d,;
®) 2d; 1,)=(0) if t,> L0 for some p.

Proaf. (a), (b), (e) follow readily from the definition of 2. (d) is a special case of
(¢). For (c), we note that

A(P,...P)=> (A" P)...(A"P)
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where the sum is over all 14, ..., I, with I, +...+ I,=I. Now

Stz (v o)

hence if
. d.
Z ﬂy—l"——— < 2 min Tty
v ] !
<2 dw) Edei
o )
then
0 d Lo+ d, d <t,

on

for at least one ¢ and the corresponding derivative A" P, vanishes at &,. Since this
holds for every decomposition, we see that A/(P;...P,)(E)=0, which proves (c).
Finally (f) follows from Taylor’s theorem.

Let P(xy, ..., x,) be a polynomial and let us consider decompositions

P=2 f&)8(x)
=0

where f{x')=f{x1, ..., x,—1) and gi(x,) are polynomials. We certainly have decomposi-
tions in which fy,fi, ...,f; are linearly independent over K and also gq, g1, ..., 2 are
linearly independent over K; indeed, any decomposition in which s is minimal has the
required property. We define

5(P)=maxs

where the max is over all decompositions with fj, ..., f; linearly independent over K and
8o, ..., &5 linearly independent over K. It is clear that

0<s,(P)<d,

because g, ..., gs are polynomials in one variable of degree =<d, and thus not more
than d,,+1 of them can be linearly independent.
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LEMMA 2. For every P we can find a polynomial L=a+b,x; +...+ b, x,, of degree
1 such that

S (LP)=s,(P)+1.

Proof. We use matrix notation and write f, g for the corresponding column vectors;
we have

P="gf

where ‘() denotes the transpose. It.is clear that at least one of x,gq, ..., X, 2 is
linearly independent from g, ..., g; (just check degrees); let g; be a maximal subset of
&0, ..., &s such that g, ..., g, x, g; with i €[ are linearly independent and let g;; be the
complementary set. Then we can write

x'gy="g A+x,'g B

for suitable constant matrices A, B. Let us write L(x)=Ly(x')+b,x,, where
X'=(x1,...,X,—1). We have, with an obvious notation for Ay, Ay

(Lo(x")+b,x,) P = (Lo(x")+b,x,) 'g £
= 'gi(Lo(x') fi+b, Arfi) +'gu(Lo(x") i +b, Ay f10) + X, ‘g1 b
(fi+Bf),

and ‘g, ‘gy, x,'gr are linearly independent by construction. If we show that the
column rank of

Ly(x")fi+b, A fy
Lyx')fy+b, Ay fy
f,+Bf,;

is at least s+1 for a generic choice of Ly(x’) and b,,, the result follows. Since the rank
does not increase if we specialize L(x) we may set b,=0 and prove that for generic
Ly(x’) the rank of

Lyx)f,
Lyx")f,
£ +Bf,
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is at least s+ 1. If not, then since the rows Lo(x') fi and Ly(x')fy; are linearly independ-

ent we must have

f;

f,+Bf; = N, -L(x’)

fII
for a suitable constant matrix N;. This means that fi+Bf}; is divisible by Ly(x') and
since Ly(x') is arbitrary we must have

fI+Bfu =0,
This contradicts the fact that f;, ..., f; are linearly independent and proves our result.
COROLLARY. Let P(d; 1,) % (0) and let a>1. Then there is P€ P(ad; o' t,) with

P#+0 and

$,(P)=[(a—1)min d,].

IL.3. In what follows, P € 2(d; t,) and g, is admissible. We have a decomposition
P =1y(x") go(x,) +... +f,(x) g,(x,)

where fo, fy,....f; are linearly independent and similary go, gi,...,g, are linearly
independent. In view of this property of linear independence we know that some
generalized Wronskian of fy, ..., f;, and also the Wronskian of g, ..., g,, is not identi-
cally 0. To be more explicit, there are differential operators dy, d4, ..., 0, such that &;
has degree < i and such that

F(x') = det (5if;')i,j=0, r§

=)
ox, &i Jk=0,....s

is not identically 0. Similarly,

G(x,) = det ((

is not identically 0.

LEMMA 3. We have

3 \&
F(x') G(x,) = det { §, P '
x') (x,,) € ( z(ax) >j’k=0,,..,s

n
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Moreover,

deg, G<(s+1)(d,~s).

Proof. Since the variables x' and x,, in f{x') and g{x,) are separated, we have

9 \k, £ 3\,
() P20 s

n

now the identity of Lemma 3 follows by multiplication of the matrices associated to
F(x') and G(x,,). In order to prove the last statement in Lemma 3, we note that there is a
basis g of the vector space over K spanned by g, ..., g5, such that

d,=deggh>deggi> ... >deggt=0.

The Wronskian of the g is proportional to G(x,) and hence we may assume that the
degrees degg; form a strictly decreasing sequence of integers and in particular

deggi<d,—j.

A typical term in the cxpansion of the determinant for G(x,) is

1/ 3 \k
()

where the k; form a permutation of 0, ..., s. The degree of this product is

2 (degg—k) < X, (d,~j—k)=(s+1)(d,s),
=0 =0
because the k; are a permutation of 0, ..., s. This proves Lemma 3.

Remark. In the special case in which n=2 we must have d,=(5/3x,)' and hence we
can repeat the previous argument and find

degx’ Fixy) <s(s+D(d,— ).

I1.4. In this section we prove Dyson’s lemma. Let P40, P € 9(d; t,). If we replace
P by PN with N> and use Lemma 2 we see that we may suppose in proving Dyson’s
lemma that s is arbitrarily large.
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Let P=1X;_, f{(x,) g{(x,) be our decomposition of P, and let us consider u as being
fixed. Let A, be a constant (s+1) X(s+1) invertible matrix. We have
P='tg="144,8="'(4,/1)(4.8)
and we choose A, so that if we write g*’=A, g then

) ) @
o< ordsﬂgg‘ <ord, g1'<..< ord; gl <d,.
We may do this in several ways; we select one for each x4 and define
= @)
u#j—ord&.ﬂz g".

Let

ak
G(x,) = det (—g) ;
: axlz( ! j, k=0,..., s
by Lemma 3, we have

deg T(x,) < (s+1) (d,—5).

In order to compute the order of zero of G(x;) at £,,, we note that

ak
det { =—g® =det (4,) G(x
(axkgl )j,k=0,v..,s ( M) ( 2)

2

and hence it has the same order of zero at £, as G(x,) because A, is invertible. Now a
typical term in the expansion of the determinant is

3 \4
(=) g"
n<ax2) &

where the k;’s are a permutation of 0, 1, ..., s, and hence it vanishes at &2 at least to the
order

2 (k) = X (w,)-
i=0 =0
Thus we have shown that

ord; G(x,) = > i)
Jj=0
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Now the points §,, are distinct, hence
D ord, G(x,) <deg G(x,)
u"

which yields

S () <6+ (dys)

j=0 u

It is here that we have Dyson’s important remark that, since the u,; are integers strictly
increasing in j, the quantity ¥, (u,;—Jj) is increasing as a function of j. It follows that

> > (=) < (b+1) (dy~s)

J=0 u

for b=0,1, ..., s.

Our next task consists in obtaining a lower bound for ord, lF(x,). This is done as
w0 : #
follows. Let us consider

3 \i O \u«
det{{— ) (— ] P(x,, .
© ((8"1) <8x2> (* §M2)>i,k=0 ..... s

If we write £*)="A'f and recall that P="'f*)- g then we see that this determinant is

det (‘43! F(x,) det ((58—) g (rS,,z)) :
X J k=0,...,s

2

,,,,,

Now

ALY )
<a—xz> g¥ () *0

if k=j, while

O\
<5c—;> gj(!‘) (62)=0

if k<j, and it follows that

.....
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since the matrix is non-singular triangular. This shows that F(x;) vanishes at &,

2 \/ 2@
det “wp(x,,
¢ ((axl) ( z) (= ”2)) L k=0,...,5
By our hypotheses, (3/5x,) “* P(x,, é'ﬂz) vanishes at x;=§,, at least to the order
—l—d1 max ( 1, -0,
9, z d2

and hence a typical term in the expansion of the determinant vanishes at x;=§,, at
least to the order

exactly as

——d,Zmax( lk —19 ;" 0)
1

where the i’s are a permutation of 0, 1, ..., 5. A fortiori, the determinant itself and F(x,)
vanish at £, at least to the order

1 Ex k (Uuk —k) s(s+1)
_._d m t _0 __0 —— 0 —_
% : k=0 o ( wo d, : d, ) 2

and since the &,;’s are distinct, we obtain

d22max< ——0— 0( 7 ) )— S(s;1)<( s+1)(d,—s)

n k=0

by our bound on deg F obtained in the remark to Lemma 3.
Let

f=maxi,

b = min (s,—l;—zdzt).

Then we can replace X;_, by ZILO in the last inequality and deduce the basic inequality

b
k 1 1
—d > 2 max ( ﬂ—ﬂzzz, 0) < (s+1) (d,—s)ﬁ?l d, 022;;] (#u—K)

u k=0

and let

3, d m
+—2—s(s+ < (s+1) d1+—0—j~d—l (b+1) (dz—s)+(7——1) s(s+1),
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the last step coming from the inequality obtained by Dyson’s remark.
Let us write

S = Gdz, b = ﬁdzy

so that 0<o=<1 and

. 1
= 'y o t 3
B =min (0 9, )
where
{ =max tﬂ.

We divide both sides of our basic inequality by d;d, and we approximate ¥, by an
integral. This yields

(1]
1 %) (m ) d, 1
t—x,0)dx<o+—B(1-0)+|——1}0® —+0{— ).
191022’;10 max (1,—x,0) dx < o+ 52 B(1-0)+( 3 @ +olg
Now we obtain a lower bound for the integral as follows.

Case 1. p=t,,.
In this case,

B 1
j max (1,—x, 0) dx = > 4
0
and also
’02
o+=B(l-o) <1
19[
because
B<t<min(d,d,) <9,

by our hypotheses on ¢,. Thus

oo, Y
L max(tp—x,O)de—z—tf,{o+—é:ﬂ(1—a)

in this case.

18812904 Acta mathematica 148. Imprimé le 31 aoat 1982
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Case 11. p,=<t,.
In this case, we have 8<t/#, hence f=0<t/{},. We have

B
t,— ’0 d
fo (RO ity 10,48

+_ — —_ — —_—
o ry B(-o0) 0+01 o(1—0) 1+§] 1910

The last expression is decreasing in o because

f, < min (3, 9) S 53+ )

and hence a lower bound is obtained by choosing ¢ as large as possible, which yields

1
ﬂ=0=§2tﬂ.

This is in the situation of Case I, and we get the lower bound %tf‘ once again.

We have shown

1 2 m d2 1
£<l+max(2-1,0)2+0(-L);
2 29,9, “ max(z )d, O(Odz)

U

and since we may suppose that od,=s is arbitrarily large we obtain Dyson’s lemma.

I1.5. We show here how to deduce Theorem 1 from Dyson’s lemma. If we replace
P(x1,x3) by PM(x1,x,) and let N—» we see that the statement of Theorem 1 depends
only on the values of #,,%,,1, and the ratio dy/d;. Without loss of generality, we may
assume %=1 and write ¢ for J,; we also define 6 by

6= dz/d].

The polynomial P gives us a set of parameters (z,; ¥, 9); conversely, we say that
(t;;3,0) occurs if there is a sequence of polynomials P; with parameters
(tf?; 19"),6")) —(t,;9,0).

Let us consider the case ¥=<1. We divide the set of x’s into subsets My, M,, M3 as
follows:

M= {ult, <9}, M,={uld<t, <1}, M;={u|1<t}.
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LEMMA 4. |M3|=0 or 1. If |M5|=1 then M, is empty. If <1 then M U {u|t,=1}
has at most one element.

Proof. We assume that (¢4, t;; %, d) occurs with t;>1, =1 and we will reach a
contradiction.

Since we have 9=<1, we may increase ¢ to 1 and (#;,1;, 1, 8) will occur a fortiori.
Thus we may suppose #=1. Let P be a polynomial with parameters (t;,—¢, 1—¢;1, ),
where £>0 is arbitrarily small. Since #,>1, we see that P factorizes as

P(xy, x) = (x,—§;)" (x2=812)? Q(xy, x,)

where a;=[(t;—1—¢)d;].

Now &;1#+&,; and £,+&,, because E, and &, are admissible and thus Q vanishes
exactly as P at §,, while we must lose a; derivatives with respect to x; and a,
derivatives with respect to x, in the vanishing at the point &,. It is an easy matter to
obtain parameters for Q and if we consider d,, d,— and then let £>0, as we may, we
deduce that the new set of parameters

1
1,—:1,0
( 2—tl >

also occurs. We note that 1/(2—¢)>1 and start our transformation once again but
considering of course the vanishing at &,. Then we see that

270 s
3——2t1, b3 b

also occurs. By iteration, we arrive at new parameters £, k=1,2, ... for which

and thus max tl("" >2 if k is sufficiently large. This contradicts the last clause of Lemma
1.

Now suppose that (¢, 1;,...;9, 6) occurs and either #,>1 or ;=1 and 9<1. Then
the same argument as before shows that

t2 t3 1
i, , RS U 20
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also occurs. This proves that we must have 7,/(1+3—1,)<1 for every u=2, hence t,<?
because #,>>1, and the proof of Lemma 4 is complete.

If we look at the last set of parameters we see that we can apply Dyson’s lemma to
it.-We obtain

1 1 ty 2 <m—2
> — <1+
723 <1+0—z,) max

u=2

which is easily transformed into

1 1 m—2 1+d9-1\?
1——25(1+0—z,)2+23§t;s1+max< 5 ,0)< 5 )6

=2

<14+max (-’E—z——gﬁ) d;

since <p2(t)=1-—%(1+0—t)2/0 if £>1, we have obtained Theorem 1 if some #, is £,>1.
Now suppose that (1,7, ...;3, 8) occurs and M;=C but [M,|>1. If P gives para-
meters

(ti—¢, tr—¢,...;%,6)

and £>0 is sufficiently small then again P factorizes as

P(x),x,) = n (xl—éﬂl)[(‘”ﬁ&-e)d'] (x> x,)

HEM,

and now, by letting d;, d,— and ¢—~0, we see that Q gives rise to parameters

(1,8, ...;9%,6%)

where
=0 — 9 ituem,
®o1-8
et < gr if u€EM,,
“ T 1-S
S= D (L,

uE M,



ON THE THUE-SIEGEL-DYSON THEOREM 277

of course, we must have S<1. We also have 9*<l. Otherwise, if we divide the
condition iy/d,+9*i,/d,<t} by ¥* we see that

(9%, 9%, ..; (97, (6%))
also occurs as a set of parameters, and (9%)"'<1. By the last clause of Lemma 4, M,

consists of a single element, say ug, because £/9*=1 for u € M,. In this case however

L4 s

= = <
> 1-§5  1+9-¢, !
(]

because tposl, and we reach a contradiction.

Since ¥#*<1 we can apply Dyson’s lemma once more and we find

9 1-S( L )2< (m—2 ) 1
+ <1+ 22 0)—0,
> 201—5) > 29 (1—s max (=50} 7759

HEM, REM,

which is easily transformed into

t,—— |+ —t. < 1+ max {——=,0]6;

uezuz(” 2 “ZJI 29 # 2

since @()=t—9/2 if #<1<1, we have completed the proof of Theorem 1 when J<I1.
Finally if 9>1 the proof of Theorem 1 is reduced to the preceding case, by noting that if
(t,; 9, 8) occurs then (z2,/7; 97',671) also occurs and noting that we can state Dyson’s
lemma in the form:

2—210— £ < 1+max ( m;2 , 0) min (0, 67)

if (¢,; 9, 8) occurs and 0<¥<1,0<t,<?.

HI. The auxiliary polynomial

HL.1. Let k& be an algebraic number field, let a;,a, be algebraic with
k(a;)=k(a,)=K; let r=[K:k] be the degree of a,; and a, over k.

We are interested in the approximation properties of a;, ay by elements of k, say
f1,82. We follow Thue’s ideas (for the case k=Q) and construct a polynomial
P € klx;, x;] with the following properties:

(i} P vanishes at the point (a;, a;) to high order;
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(ii) P vanishes at the point (8, 3») only to low order;
(iii) the height of P is not too large.
To be precise we want P such that

deg, P<d; i=1,2

where d,=d,, d, is large, and such that for some ¢, >0, we have
A'P(a,,a,) =0,
where

I ai|+ iy

 oxh axk

for all I=(i;, i) with

i i
L Sy
d, 4,

In carrying out our estimates we shall suppose that d, and hence d, are large and
eventually go to infinity. The algebraic numbers are kept fixed; (@, a¥),u=1,2,...,r

will denote a set of conjugates of (a;, a,). We always assume (8;, 8>) # (04, a). Let

1
@, ()= f j dx dy,
o Jo

Flx+dy <t.

LEMMA S. Let P be as before and let us suppose that rg.(t)<1. Let T be defined by

@=1-r (t)+L§
(pl (p2 2 dl'
Then there is I*=(if, i¥) such that

ATP@B,,B,)*+0

and

.
LI
dl d2 ‘

Proof. Let (@¥,a¥),u=1,...,r be the conjugates of (a;,a;) over k. Since we

assume K=k(a;)=k(a,,a,), the numbers a;=al’,...,a{’, are all distinct; similarly,
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a=a’, ...,a?, are all distinct. It is clear that 8;+a¥; hence the set of r+1 points
g,=(a¥,a¥) if u=1,...,r and §.=(B;,p6,) is admissible for the application of
Theorem 1. We apply Theorem 1 with ¢,=t,u=1,...,r and with ¢,,,=7*>7 close to 7,
to the effect that ¥ 'i/d\+di/d,<t* implies O 'i)/d;+3ir/d,<t. Then if we had
A'P(B,, B2)=0 for all I with & iy/dy+0ir/d,<t*, we obtain by Theorem 1

r+1

D et <1+
u=1

ra
2 d,

which implies

@,(0) < gt < 1—-r<pz(t)+L£1—2-,
2d,
which contradicts our choice of 7.

It remains to construct P with all the desired properties. This is achieved using the
fundamental construction of Thue and Siegel. We prove the following invariant form of
the familiar Siegel’s lemma.

Let k be a number field, K a finite extension of k, of degree [K:k]=r, and let
L,-(x)=2j’ila,-jxj, i=1,2,...,M be M linear forms with coefficients a;€K, in the N

variables x, ..., xy. We have:

SIEGEL’S LEMMA. (') There is a constant ¢, depending only on the fields k, K but
not otherwise on M, N or the forms L;, with the following property.
If N>rM then there is a solution x€ kN, x+0 to the linear system

L(x)=0, i=1,...M

satisfying

™ r

M
h(x) < c,(c,N) MM (Hh(L,-)) v
i=1

where h(x)=I1, max;|x;, is the absolute homogeneous height.
Proof. If k=K this is Siegel’s lemma as fqrmulated in our paper “‘On G-functions”’
({Bo]). Now suppose k€K, k%K. There is a number field F such that kcKcF and F is

(") Perhaps, and more appropriately, results of this type should be called Thue’s lemma.
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a Galois extension of k, with Galois group G, and also is a Galois extension of K, with
Galois group H. Clearly H is a subgroup of G with index
[G:H}=[K:k]=r.

We consider the coefficients a; of L; as elements of F and look at the linear system
N
2 1@ X;=0
j=1

for i=1,2,...,M and y€G, to be solved with X;EF. Since n(a;)=a; for every n€H,
the number of independent equations is at most rM (we may restrict our attention to y
running over a set of representatives of cosets of H in G). Now we apply Siegel’s
lemma for the field F and obtain a solution X € FY to the above system, with X+0 and

1
™™ M Nom
hX) < c(Ne) V™ [ ( I h(y(L:») A

yEG/H

i=1

The constant ¢, depends only on the field F. Since A(y(L;))=h(L; for every y€ G, our

bound for A(X) simplifies to
1

™ M N-M
h(X) < c)(Nc,) V™ (H h(L,)) .

The solution we have found is in FV while we want a solution in k. Let A€F,
A#0. We have

N
2 Ma)(x)=0
j=1

for every y€G, hence

N
2, a;7 GX) =0
J=1

for every y € G. Now we take traces in k and we find
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x;= Trg,(AX) = Z YAX)€Ek.

yEG

If we let A run through a basis of F over K we cannot always have Trg4(AX)=0 unless
X=0 to start with. This shows that we may choose A such that Trg(AX)+0, from a
finite set which depends only on F and k, but which is independent of X; enly the
choice of A will depend on X.

In order to complete the proof of Siegel’s lemma, we have to show that we can
choose the solution X € FV so that A(Trg(AX)) is comparable with #(X). This need not
be always true and an additional argument is needed to overcome this difficulty.

Let XEFN, X+0. We claim that there is #€EF such that

maxll,quHv <1 (v finite),
J
max X, < Ah(X) (v infinite),
J

where we have written for simplicity || |l,=| | d/d, and where A=A(F) depends only
on the field F. Now we complete the proof of Siegel’s lemma as follows. We have

max [, <Al @ fnit),
mjglx||/1/t)(}||v <||A|l,AR(X) (v infinite),
and we have ||/1||v=||a||y_,u for every y€ G and a €F, a+0; this implies
max lly Al < max IvAll, (v finite),
max IyGeX )l < max IvAll, AR(X) (v infinite),
and finally

(T, (X)) < |G | | max [ly(apx;) |1
v N

19—-812904 Acta mathematica 148. Imprimé le 31 aoat 1982
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< |G|<H max |y/1(,,) I ] anexy»
v 7

vjo
= |G|W(GAAK(X).

Since A belongs to a fixed finite set, we have |G|h(GA)A<c; where c3 depends only on
the fields F, k; this proves the conclusion of Siegel’s lemma with x=1uX.
It remains to show that we can find x#0 with the required properties, namely

llo< 1/ max|[X}l, (o finite),
J

el < ARCX)/ max X/l (v infinite).

Let

1/ max{lX}]j, (v finite),
Mv) = !
h(X); max || X ||, (v infinite).
J

It is clear that A(v)=1 for almost all v, A(v)=||z,|* with [,€Z and 7, a uniformizing
parameter of F, if v is finite, and also H,,A(v)d"=1 by definition of height. Thus the
collection {4(v)} forms a ceiling of the field F, as defined by Mahler ((M]). By Mahler’s
theorem ([M], Section 12, p. 440) if we choose

A = d(FyX®) Dﬂ%
where d(F)=[F: Q] and Dr is the absolute discriminant of F, there is at least one u=+0
with the required property
lleell, < A) if v is finite,
|leello < AA() if v is infinite;

this completes the proof of Siegel’s lemma.
In what follows, we abbreviate

A(x) = log h(x)

and call A(x) the logarithmic height.
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LEMMA 6. Let t be given with ro,()<1 and let d,,d> be large integers. Then we
can find P €klxy, x;] not.identically O, of degree deg, P<d,, such that

A'P(a,,0,) =0
Sfor all I=(i,, 1) with

i i
F1rr9-2 <y,
dl d2

and such that

r@,(t)

(d, Ma)+d, AMay)+(d, +d,) log 2)+o(d, +d).

Remark. The proof of Lemma 6 will yield a slightly stronger but more complicated
bound. This may be useful in dealing with specific cases.
Proof. Let us write

P(Zl’zz)=2xj 520 2

1,2

regarding the coefficients of P as unknowns in the field k. We have
1 I .’ 1 j2 \~ §y . Ja— 02
;?A P(al’ aZ) = 2 <l-]) <l2) .; aé le,jlv

Jiohy

where I'=i!i,!. The associated linear from L; has height
)= H max (Jl) (J )(Il;'“i' Oflfiz

v J L ) v

<[] max (J) i T (J ) o, "
v 1\h v, 0 1\
d . fd i

$(:—') [ Tmaxt,jaj)* "‘<i2>Hmax<1,sazlu>"z :

1 v 2 v

() G

iz) h(a,)d‘~£‘h(a2)d2—i2.

2

v
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The number N of unknowns is (d;+1) (d,+1) while the number M of equations is the
number of solutions of ¥7'i,/d,+i,/d,<t, which is asymptotic to ¢.(f)d;d> as d,,d>
go independently to «. Thus

N~d1 dz, N—-rM~(1—r<;02(t))d1 d2

and Siegel’s lemma shows that we can find x; €k, not all 0, such that A’P(a;, a»)=0
and

N r
Nz BN d, d,(1—rgy1)

d, d, . .
: EIog ; +log i +(d1—ll)l(al)"'(dz—lz)/l(az) >
1 1 2

with c;=c(k, K). The first term is O(log (d, d,))=0(d,+d,).
Also

MP) <

log <‘1i) <dlog?2,

M1se0dd,,
1

and Lemma 6 follows.

Remark. If t<min(3~!,9) a more careful estimate yields the following result. Let

1 5. 1 1 o1 1. .5
=L gt a—uprog—t—L 422
8)=-culog—r+-c(1—u)" log———cut—-u

Then we have

2 3 2 3
apys—2 (é g+ (’7—0%) l(a,)) d, +2T2:F(02 g (%t) + (%—Wl%)l(az)) d,.

We also have g(u)<lu’® for 0<u<l1, and

2
AMP) Szi—trﬁ(d‘ May)+dy M) +i(d, +dy)).
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IV. The Thue-Siegel theorem

IV.1. Let k, a;, a,K=k(a;)=k(a,) be as in the preceding section, let r=[K:k]=2
be the degree of a;,a, over k and let 8,, 3, be two approximations to a;, a, relative to
a same set § of places v of £. This is to be understood in the following sense. Let S be a
finite set of places of k together with an extension to the field k and for vE S let | |, be
the absolute value associated to v normalized relative to the field k; then we say that
B € k approximates a relative to the set S if

|a—pBl, <1 for vES.

THEOREM 2. Let k, K, ay,a3, B1,8., S be as before and let ¥,t,1,0,,0, be
positive numbers such that

rg(<1, O0<t<t

and
o
L 2< +@(0)~1
23, re,()+@y(7)—1.
Then we have

- T)Z min (ﬁé log———— , 56, log

vES

| ﬁzl o= /32|>

L1 o, log3
<6'<w‘) " 1-rgy(0) Map 1-—r<p2(t)>

|, log3
Mar)+ 1—r<p2(t))

1
+d,{ A(B)+
(1B
COROLLARY (Thue-Siegel theorem). Let v be a place of k extended to K, let a €K,
ka)=K, and let e>0. There are only finitely many BEk such that

|la—Bl, <h(B)™

This corollary is the refinement of the Thue-Siegel theorem obtained by Dyson and
Gelfond. As usual, this is proven by contradiction. If we had infinitely many solutions,
we could find 84,8, with A(8,),A(5,) arbitrarily large, 2(8,)/A(3,) arbitrarily small and
now we could apply Theorem 2 with 6;=1/A(8,), 8,=1/A(8,), ¥=1, t arbitrarily close to
V 2Ir, 7 arbitrarily small, to obtain a contradiction. In fact this argument is so well-
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known that we can safely omit the details. On the other hand, our Theorem 2 is very
explicit and it is possible to draw some interesting consequences out of it. Let us
consider in detail the case in which S consists of a single place v.

We assume

O<r<t<min@!, 9

so that @(1)=}7, @,(r)=17* and we choose

o,= (log h(B, )+ > log 3h(a,)>

0, = (log h(ﬂ2)+ log 3h(a2)>

Then our inequality becomes

(t—7) min <061 log |a i,B I , 9716, log———— l '3 | ><
1 1 2 2

that is:
either

29

|a,=B|, = Bh(ay)) @0 pg) .

or
49 29

log=B,], = Gh(a) TP hgy -,

On the other hand, it could be that our choice of 8,0, does not satisfy the
condition in the hypotheses of Theorem 2, so that in this case we cannot say that the
preceding alternative holds. In this case however we must have r(02/0,)>rt?+12—2
whence we obtain

log h(ﬂ2)+ log 3h(ay) <+—<log h(g, )+ log 3h(a,)>
7’

We have shown:

THEOREM 3. Let kcK be number fields, let r=[K:kl=2 and let v be a place of k
extended to K, with absolute value | |, normalized relative to k. Let A,t, T be positive

real numbers with



ON THE THUE-SIEGEL-DYSON THEOREM 287

0<V2—rf <1<t< \/lsmin(ﬂr',l’)-
r

Let a;, B, i=1,2 be such that k(a;)=K, B;€k, |a;—Bi, < 1. Then we have:
either
4 24

|as =By, = Ghiay) “O hg) T,

or
28

laz_ﬂzl (3h(a )) (2 rtz)(t—r) h(ﬂ) 1 r
or

log h(ﬁ2)+ log 3h(ay) <T;—-—2 (log h(g, )+ log 3h(a,))
7

The special case =1 can be given a simpler formulation.
THEOREM 4. Let kcK be number fields, let r=[K:k]=2 and let v be a place of k
extended to K, with absolute value | |,, normalized relative to k. Let also t, T be

positive real numbers with

0<V2—r? <r<t<V 2r.

Then the following two statements hold.
(A) For all but finitely many pairs (a, ) with k(a)=K, B €k we have

2

-4 2
la_ﬁlv > (3h(a)) Q2=-r)(t~1) h(ﬂ) t—1 .
(B) The quantity

log h(ﬂ)+

log 3h(a)

lies in some fixed interval

X, —r X)
( 422

as (a, 8) runs over all pairs which do not satisfy (A).
It is now clear that if we can determine one pair which does not satisfy (A), then

we can determine an interval containing
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log h(B)+

log 3h(a
2—rf € )
and then determine effectively all exceptions to (A). We shall give later on some
examples of fields K admitting pairs (a, 8) which do not satisfy (A) and for which the
exponent 2/(t—7) is O(V r); for these fields, we then obtain an effective Thue-Siegel
theorem.

IV.2. Let P be the polynomial constructed in the preceding section. We have
P,t,t,I*,d; with deg, P<d;, and we have the following facts:
) rg(n<1

. r d
(i) @2r)=1-rgx(t)+——<1
2 d,

(i) A'P(ay, a)=0 for o' Lt+d2<t
dl d2

(iv) there is I*=(if, if,) with AP(B,,B2)+0 and

ot Ho o8 <o

dl d2
rey(t)

1—rg, (1)
(vi) if vES then Ja,—fB4, <1 fori=1, 2;

V) AP) < (d, Ma,)+d, Aa,)+(d, +dy)log2)

here (iv) and (v) follow from Lemma 4 and Lemma 5.

We abbreviate I!=i;!i,! and
(J) _ I\ (J2
1 i) \i,)’

Let y=(1/I*)A” P(8,, B,) so that y=0; note also that y€k because P €k [x;, x,] and
B1,B2€k. Thus the product formuia yields X, loglyl,=0 where the summation is over

all places v of k and where | |, is normalized relative to k. Now we proceed to estimate
log |y, separately for each v, as follows.

Case 1. vES, v finite.

We have
1 My 1 e ; j
Y=t P(ﬂ.,ﬂz)=2( I )(1*+1)1A P(a;, @) (B,=a)" (B~ )"
. I *
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and, by property (iii), we also have A”"*P(a;,a;)=0 for all I with 9'i)/d;+
Yirldy<t—0"'if/d\~ i§/d, and a fortiori for all I with 97 i\/d+Oiy/d,<t—1.

Since (1/I!)A’ does not introduce denominators we see, using the fact that v is
finite, that

log

1
7i A'P(a,, a,)

<log|P|, +d,log*|a,|, +d,log*|as|,.

Also log |8;—a,<0, hence if t—7>0 we have
max*log |(8,~a)" (8,~ay"],

—(f~7)min (0d1 log————, 9" d,log————

1
{a,—ﬁ,{ ( 2 ﬁz‘ )
where max* is taken over all I with 97'i,/d,+®i»/d,=t—7. Thus we have shown that in
Case I if r>7 we have

log Iyl <log|P|,+d,log* ||, +d,log* |asl,

—(t—7) min (19 d\log~————,9"d,log

| /3( (azjﬁZ(u)

Case 11. v& S, v infinite.

In this case we proceed as in Case 1, but taking into account the contribution
arising from differentiating P. Let ¢,=1 if v is real, £,=2 if v is complex. Then we
obtain

log ly|, <log|P|,+dilog™|a4|, +drlog™| ;| , +—2=(d,+d,) log3

[k Q]

—(t—1) min (ﬂdl log ¥'d log—l—> +o(d,+d,).

_t
la,—Bilv ’ : la, =Bl

Case 11, v§ S, v finite.
In this case we do not use that Taylor series expansion for (1/7*!) A" P but rather
estimate directly this quantity. Thus we obtain

log |y, <log|P|,+d,log* |8, +dslog™ |82,

Case IV. v€ S, v infinite.
In this case we proceed as in Case III, but taking into account the contribution
arising from differentiation in (1/7*!) A” P. Then we obtain
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IOg l”lv = lOg 'P|v+d1 10g+ Iﬂ1|v+d2 10g+ IﬂZIv

[k Q] —Y_(d,+d,)log2+o(d,+d,).
With respect to the estimates in Cases I and II, we note that we have ja,—B,<1 in
these cases because v€S. Now it is clear that log*|a],=log™ |8}, if vES, v finite,
while log™|aj,<log™ |8, +(e,/[k:Q])log2 if vES and v is infinite, and thus we can
replace log*|ay, by log*|8i|,+(e./[k:Q])log?2 in our estimates.
We combine our local estimates of log |y|, with the global result X log |y|, =0 and we
find

0=ZXlog|yl, <EIlog|P|,+d, Zlog™|Bi|,+d2 Llog*|Bsl,

+<Z = Q]> (d,+dy)log6+o(d, +d,)

vjw

. 1
~(t—7) > min <0d log————, 9" d,log———— )
% : ‘ a— l‘v ‘az—ﬁ21v

which simplifies to

. 1
(t— 0d, 1 19"1d 1 >
T)% mm( [P la ay :3 Iu o Iaz—ﬂzlv

<dA(B)+dA(B,)+(d, +d,) 1og 6+ A(P)+o(d, +d,).

By property (v) we have

A=Y (4 @)+ d @)+ (d +d)og?
~_r_—lal 2 Aay \+dy)log2)

1—rgy (1)

and if we combine this bound with the last inequality we obtain, noting that =2 and
(r+1) @>(0>1 because r<t:

. 1 1
(t—7) > min (z?d log————,%'d log————)
% : |a1—ﬂ1|U : |a2—/32|,,

<4, (/1(/31)+ Map+ 11‘323([))

1
1-re (0

L1 , log3
& (Mﬂz) "0 P o0 )
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This inequality holds with @,(v)=1=r@,(f)+} r d»/d; whenever re,(1)<1 and 0<r<t.

If we divide both sides of the asymptotic inequality above by d, and let d,, d; go to
o keeping the ratio d/d; fixed, we see that the asymptotic inequality above can be
replaced by an exact inequality. This completes the proof of Theorem 2.

Remark. If we deal with specific cases it appears that interesting results can be
obtained only if r<min (™', ¥) and hence @»()=17, @,(r)=17. In this case however we
can use the remark at the end of the proof of Lemma 6 to obtain slightly better results.

V. Some cases of effectiveness

V.1. Let m=3 be a positive integer and let a be the real root a>1 of the irreducible
equation

X—mx"'+1=0.

We take k=0, K=0(a) and for v we take the real place of Q, extended to K so that
o>1,i.e. | |, is the usual euclidean absolute value | | in R.
The equation a”—ma”~'+1=0 yields

m—r+1 < la_ml — Ial—r+l <(m_1)—r+1
which shows that ,31=m"1 is an excellent approximation to a;=a~!. We have
lor =Byl <(m—1)y" 1,

We want to show that if m and r are sufficiently large then this approximation is so
good that it does not verify (A) of Theorem 4.
First of all, we compute A(a) as follows. Since «a is an algebraic integer, we have

logla|,<0 if v is finite.
If instead v is infinite, we have
log|al, <0 for all v+v*

where v* is the real place of K for which a>1. Finally we have

log |al, = —i-log || < % log m.
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If we put together these local estimates we find

Ma)) = A(@) = log h(a) <—-log m.

It is obvious that for 8;=m~"' we have
ABy) =log h(B;) = logm.

In view of these estimates we see that the pair (a;, ;) does not satisfy the bound
(A) in Theorem 4 as soon as

-—_4 2
(m_l)—r—1<(3m%) (Z—n‘z)(t—r)m t—t;

if m is sufficiently large, we need only

2, 4

+1> :
4 t—t r2-rH(t—-1)

with 0<V 2—rZ <z<t<V 2/r . If we set 1=V2/(r+a) where 0<a<l we have

2—r2=2a/(r+a)=ar* and the condition on 7 becomes V a t<t<t; of course, we can

choose 7 arbitrarily close to V'a ¢, at the expense of making r/(rf*+1>—2) very large.
It is easily seen that we can fulfill the condition

2 4

Fl>—2 4
d -7 | =) (1—7)

by choosing ¥=200 and t=V 2/(r+a) with a=0.35. For example a rough numerical
calculation, of which we omit the details, leads to the following explicit result.

Example 1. Let K be the field generated by the root x>1 of the equation

20— mx"®+1=0,

where m is an integer m=10'">', Let a € K generate K over Q. Then

a— % f = 10713656 h( a)-zsszz (max([p[, { qD)-so

Jor all p, q with (p, @)=1 and with

max (Ipl, Iql) = m8076815h(a)‘572.
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We may combine this result with the trivial Liouville estimate and obtain a lower
bound which holds for all @ which generate K over Q and for all p/q. If we formulate
our inequality in terms of H(a), the maximum of the coefficients of an irreducible
equation for a over Z, we obtain

Example 2. Let K be the field of Example 1 and let Q(a)=K. Then we have for all
plq:

=50

a—£‘ = (10m)* H(a) % H(£>
q q

V.2. It is clear from what preceeds that effective results for the equation
x"—mx"'+1=0 usually need r or m to be very large, so that no result of practical or
intrinsic interest can be obtained. On the other hand, since it appears that the above
examples are the first fields not of type Q(V a/b ) in which a uniform result of Thue-
Siegel type holds effectively for every generating element of the field, we believe that it
is of some theoretical interest to investigate fields of lowest possible degree for which a
non-trivial result can be obtained and also to investigate the best exponents we can get
for fields of large degree.

In order to obtain results on these lines we use Theorem 3 with various values for
#. We take the same equation, x'—mx""!'+1=0, ‘and choose 7 arbitrarily close to
V 2—rf*. We take (a1, 1) as our anchor pair and allow k(B;) to be as large as needed to

obtain our conclusions, of course in an effective way. This means that the third
alternative in Theorem 3 may be disregarded and hence, if the first alternative does not
hold, the second alternative must be true. If m is large enough the first alternative of
Theorem 3 cannot hold if V' 2/r <min (9", ) and

29 2
rH> (1+ r(2—rt2)>

and we can take here 7=V 2—rf* for the purpose of checking this inequality. If this
inequality holds then the Thue-Siegel exponent for A(8,) will be

29
t—17°

If we write =V 2/(r+a) , t=V at and if we choose # in an optimal way we obtain

28 _ 2 <1+i i) rta _ 2 (1+i)
-1 (1-Va)? a r/rtl (1-Va) a
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provided a <}, which we may suppose. Since

min 1+i> =139.2573250...

ol
a (1-Vay\ a
at a=0.20556943 ..., we have obtained

Example 3. Let r=40 and let K be the field generated by the root x>1 of the
equation

X —mx™1+1=0,

where m=my(r) and my(r) is effectively computable. Let also a be such that Q(a)=K.
There is an effectively computable qo(a) such that for every plq with H(p/g)=q¢(a) we
have

-39.2574
a—l! >H (ﬁ) .
q q

We have computed some examples with specific values of m and r, with the goal of
finding non-trivial effective results for equations with not exceedingly large coeffi-
cients. The following example represents the result of our search for the case d=1,
after carrying out the majorizations with great precision.

Example 4. Let K be the field generated by the root x>1 of the equation
x*16-2469528 x**+1=0.

There is an effectively computable absolute constant 1<3216 with the following proper-
ty. Let a be such that Q(a)=K. Then there is an effectively computable qy(t) such that

Jor every plq with H(plq) = qo(@) we have
> H(—’l)_ﬂ.
q

If we use the more precise estimate in the remark at the end of the proof of Lemma

a—ﬁ

q

6 and if we choose r very large and also ¢ very large, of order V r , then we can obtain
effective results for equations with small coefficients.

Example 5. Let K be the field generated by the root x>1 of the equation

X—mx1+1=0,
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where m=2561 and where r=rg for some effectively computable constant ry. Let also a
be such that Q(a)=K. There is an effectively computable qo(a) such that for every plq

with H(p/q) = go(a) we have .
a—£| S H(B_)—(I—IO ).
q q

V.3. It should be obvious by now that results of the same kind apply to a class of
equations of a fairly general type. Rather than prescribing a and trying to find a good
approximation 8, examples may be found by choosing f first and deforming it slightly
into an algebraic number of much higher degree. A typical situation would be to
consider a polynomial f{x, m) depending on a parameter m and with bounded height and
fixed degree and deform the equation f{x, m)=0 (the equation for ) into the equation
fx, m)=R(x) where R(X) is a rational function with bounded height with a zero of very
high order at «; then we can take flx, m)=R(x) as our equation for a.

On the other hand, it would be nice if one could utilize for the purpose of obtaining
effective results the remarkable approximations investigated by Stark [S] in the case of
certain cubic fields. It appears however that our procedures are not sufficiently refined
and new ideas may be needed in order to achieve this goal.

Further improvements of our results may come from a sharpening of Lemma 6
(this could lead to the best possible exponent 2, in every case), but it is also possible
that the consideration of several approximations |a;—f,,i=1,2,...,m for suitably
independent pairs (a;,3,), is needed, as is the case with Roth’s theorem. Here the
difficulties are of two kinds. In the hypothesis of Roth’s lemma, one needs A(3;) large
and A(B;+1)/A(B;) also large in order to obtain a useful result. In Roth’s lemma, A(8;)

large means
MB1) > Ari(ay)

with A>1, which is too strong a condition for our purposes. On the other hand,
Dyson’s lemma has the advantage of being free from considerations of heights. Unfor-
tunately, the extension of Dyson’s lemma to more than two variables is still lacking, as
well as a formulation of Roth’s lemma which does not require the 3;’s to be of rapidly
increasing heights; we have no contribution to offer here for the solution of these
problems.
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