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I. Introduction 

1.1. The well-known Thue-Siegel theorem, in the refined form obtained by Dyson and 

Gelfond, asserts that if a is an algebraic number of degree r~>2 and if e>0 then 

t a -q>q-V~7-~  

for q~qo(a, e). The constant qo(a, e) in this result turns out to be not effectively 

computable. 

In fact, Thue proved a result of this type with the exponent r/2+ l, Siegel improved 

this to the exponent min(r/(s+l)+s) for s=0, 1 . . . . .  r - 1  and finally, by using full 

freedom in the construction of the auxiliary polynomial, Dyson and Gelfond indepen- 

dently arrived at the exponent X/~. 

The common feature in the approach of Thue, Siegel, Dyson and Gelfond is the 

consideration of two approximations pl/ql,Pz]q2 to a and the construction of an 

auxiliary polynomial p(x~,x2) with integral coefficients vanishing to a high order at 

(a,a) and vanishing only to a low order at (Pt/qt,Pz/q2). Although Siegel and 

Schneider soon realized that further improvements could be obtained by the consider- 

ation of several distinct approximations P~/ql ..... Pm/qm to a and by the construction 

of an auxiliary polynomial P(x~, .... Xm) in many variables, it took about thirty years 

before Roth showed how to prove that P would vanish only to a low order at the point 

(P~/q~ ..... PMqm). In this way Roth was able to prove his celebrated theorem 

[ a---~ > q-2-e 

for q>~qo(a, e). 
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1.2. All results mentioned above are ineffective in the sense that the method does 

not allow the calculation of qo(a, e). On the other hand, Thue himself noted that one 

could obtain a statement of the following kind ([T], Theorem III, p. 249). 

THUE'S THEOREM. Let a be algebraic o f  degree r and let h, k be given positive 

numbers. There is an effectively computable constant Go=Go(a, h, k) such that i f  there 

exist Po, qo with 

a Po -r---1-k 

---qoo < qo 2 , qo > Go 

then we can determine effectively G=G(a, h, k, qo) such that 

a -  p r l-h 
> q 2(k+l) 

for all q>G. 

Gelfond ([G], Theorem 1, p. 22) obtained a similar result, but with the exponents 

t~, t~l in place of r/2+ 1 +k and �89 1)+ 1 +h, provided 2~<t~<v~l~<r and 001 =2r(1 +e). 

He also related approximations to tWo different algebraic numbers in the same field, 

with essentially the same conclusions. It should be noted that because of a basic 

difference between the auxiliary constructions of Thue and Gelfond the result of Thue 

and the result of Gelfond are somewhat different. Further refinements are in Hyyr6 

([HI). 
The meaning of these results is simply that if there is an exceptionally good 

approximation to a then all other approximations cannot be too good from some point 

onward. Now the question is whether exceptionally good approximations exist in 

nature or not. As far as we can see, the constant Go in Thue's theorem, or the 

analogous constant in Gelfond's result, turns out to be far too large and as of today no 

pair (a,po/qo) has been found which verifies the hypothesis q0>G0 of Thue's theorem. 

This means that no effective result for the approximation of a by rationals has been 

found using Thue's or Siegel's or Roth's approach. 

1.3. In order to illustrate one of the difficulties which appears let us consider the 

following problem. 

Let P(x) be a polynomial of degree d, with integral coefficients bounded by H. Let 

a be an algebraic number of degree r and let p/q be a rational number. Now suppose 

that P vanishes a to order e(a) and suppose also that P vanishes at p/q to order e(p/q). 
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We would like to find conditions which make sure that e(p/q) is small, even if e(a) is 

relatively large. 

Let e=e(p/q). Then (qx-p) e divides P and hence we must have H>~q e. This yields 

log q '  

which shows that e(p/q) is small if q is relatively large compared with H. On the other 

hand, let e=e(a) and let f(x) be an irreducible polynomial with integral coefficients 

bounded by H(a) and defining a. Then we can write p=feQ where Q has integral 

coefficients and now H~C-dH(a) e with an absolute constant C, by a basic result on 

heights. Thus we see that this argument cannot produce a bound better than 

log q \ l o g q /  

If we disregard the O(...) term, we see that in order to have e(p/q)<e(a) we need 

something like log q>logH(a). 
It is the appropriate generalization of this argument to polynomials in two or more 

variables which is needed in Siegel's and Roth's approach and this leads to results 

which are useful only in the case of approximations p/q in which q is fairly large 

compared with H(a). We have been unable so far to construct pairs (a, p/q) in which 

p/q is an excellent approximation to a and also q is large enough for this method to 

work. 

1.4. If we look again at the preceding problem there is an obvious inequality which 

has to be satisfied if a4:p/q, namelv 

e(p/ q) + e(a)r <. d 

because P vanishes at p/q to order e(p/q) and also vanishes at a and at all conjugates of 

a to order e(a). 
This purely algebraic approach is the one followed by Dyson in his work and, as 

far as we know, it has not been the object of further study since the appearance of 

Dyson's paper [D]. On the other hand, it has the distinct advantage of being entirely 

free from considerations of heights and hence it allows any approximation po/qo to a to 

be a candidate for a starting point to obtain effective results. This is exactly what we do 

in this paper. We shall obtain a very explicit formulation of Gelfond's result and as a 

17-812904 Acta mathematica 148. lmprimd le 31 aotat 1982 
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special case we shall exhibit an infinite class of number fields of large degree (~>40) in 

which an effective form of Thue's theorem holds.  

The question of effective measures of irrationality for an algebraic number is of 

considerable importance and it has attracted much attention; it has also proved to be a 

difficult one. The first non-trivial approximation theorems for a class of algebraic 

numbers were obtained by Baker [Bal] using techniques related to the construction of 

explicit Pad6 approximants to algebraic functions of one variable. These techniques 

have been further developed to deal with simultaneous approximations [Ba2], so that it 

is possible to obtain uniform approximation results for certain fields of the type 

Q(V'Y-a-~-~) with a/b sufficiently close to I. A notable success of this method has been 

Baker's result 

~---~-  > 10-6q-2"955; 

further improvements have been announced in the work of G. V. Choodnovsky. 

An entirely different approach to the problem of effective bounds has been made 

possible by Baker's work on linear forms of logarithms; an exposition of the current 

state of the theory can be found in [Ba3]. It suffices here to mention that the work of 

Baker, together with some fundamental improvements by Feldman [F], has led to the 

first general non-trivial effective improvement in the exponent of approximation, for 

every algebraic number. On the other hand, the gain in the exponent appears to be 

extremely small and it depends badly on the height of the number of be approximated. 

However,  it has been pointed out by Baker [Ba4] that for numbers of the type a ~/'n, m 

large, his technique yields an exponent of the kind c(a)log m, which for f ixed a and 

large m is even better than the Thue-Siegel exponent 2 V ~ .  

To sum up, our knowledge about effective approximations is of the following kind: 

(A) good effective exponents (approaching Roth's exponent 2) for numbers of the 

type ~" a /b ,  obtained through the use of Pad6 approximations to algebraic hypergeo- 

metric functions; 

(B) a small effective improvement on the LiouviUe exponent, which however 

applies to every algebraic number, obtained through the use of the theory of linear 

forms in logarithms. For special numbers, the exponents obtained are also good. 

To these results, we can now add: 

(C) good effective exponents for all generators of certain number fields, the 

exponent being the same for all generators, obtained by refining the original Thue- 

Siegel method. 
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I.$. The refinements of the Thue-Siegel method which are relevant to us require a 

careful use of Dyson's  idea for proving the non-vanishing of the auxiliary polynomial 

and also require that losses in estimating should be reduced to a minimum. As a 

consequence, besides using Dyson's approach, it is absolutely necessary that all 

estimates be carried out with the utmost precision. Also the p-adic generalizations of 

the Thue-Siegel theorem must be considered. For this reason, we shall use in a 

systematic way the absolute  height (Mahler's measure) rather than more familiar 

notions of height, as well as Lang's local to global technique (see [L], Chapter VI). 

Our notations and definitions are as follows. 

Let K be a number field. We write d= [K: Q] and for every place v of K we write 

do=[Ko: Qo]. If the finite place v of K lies over the prime number p, we write rip. We 

normalize the absolute value I Io so that 

(i) if rip then 

]Ply = p--ddd, 

(ii) if vloo and v is real then 

(iii) if oloo and v is complex then 

Ixlo --Ixl I'd, 

Ixlo=lxl d; 

here ] I denotes the Euclidean absolute value in R or C. In view of our normalizations, 

we have the product formula 

] - [ Ix lo  = 1 
/1 

i fxEK*.  

We define the absolute height of x E K by the formula 

h(x) = H max (1,]xlo); 
0 

one of its main properties is that it does not change if we replace K by a finite extension 

(see Weil [W]); we also define 

log +a = log max (1, a) for a~>0, 



260 E. BOMBIERI 

so that 

log h(x) = ~ log + Ixlv. 
U 

Let S be a set of places of K and let x C K*. From the product formula we have 

log Ix[o -- - ~  log Ixlv/> , ~  log + Ix]v I> - log  h(x). 
S yeS v~S 

Moreover, if x4=O the product formula yields 

log h(1/x) = log h(x), 

which combined with the previous inequality gives 

log Ixlv ~< log h(1/x) = log h(x). 
s 

From the last two inequalities we deduce the 

Fundamental inequality. Let x E K* and let S be any set o f  places o f  K. Then we 

haoe 

and in particular 

- ~  log + Ixlo log Ixlo log + I1/xlo 
v~S S o~S 

- l o g  h(x) <~ Z log Ixlo ~ log h(x), 
s 

where h(x) is the absolute height. 

This notion of height is easily extended to vectors in the following way. If 

x=(xl,x2 ... . .  x,,) with x jEK we define 

h(x) = I--[ max (I, Ix~ Io ... . .  Ixn Io). 
t~ 

We may further extend this notion to polynomials in any number of variables and to 

vectors of polynomials, by  taking the height of the vector whose components are the 
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coefficients of the polynomial,  and similarly we proceed with matrices; we also define 

Ixl0=max Ixjlo. 

The following properties of  height are easily established. First of  all, the inequality 

max (I, ab) ~<max (1, a) max (1, b) yields 

for x, y E K; also 

h(xy) <~ h(x) h(y) 

h ( x  a ) = h ( x )  lal 

if x is algebraic and a E Q. Next,  we may note that if v is a finite place then 

while if v is infinite then 

s i n e  2,~do = d, we obtain: 

I f  xl . . . . .  xn E K then 

I x , +  ... + x . lo  ~< m a x  Ixilo 

Ix, + . . .  +X.lo <~ n ~d max IxL; 

h(xl ... x ,)  <~ h(xO.. ,  h(x,), h(xl +. . .+ x,)  <~ nh(x), 

where x is the vector x=(xl  . . . . .  Xn). 

Moreover  of  x and y are any vectors with components in K, then 

h(x ~ y) ~< h(x)h(y). 

I f  a is an algebraic number of  degree r and if H(a) is the maximum of the 

coefficients of  an irreducible equation for a over Z, we have 

Cl(r)H(a) l/r <- h(a) <~ C2(r) H(ct) 1/r 

where Cl(r), Cz(r) depend only on r; this may be useful in visualizing the size of  h(a). 

Finally, we shall abbreviate 

2(a) = log h(a) 

and call 2(a) the logarithmic height. 
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1.6. The content  of  this paper  is as follows. 

In section II, we prove  Dyson ' s  lemma, essentially using his arguments.  

In section III, we construct  the auxiliary polynomial  P(Xl, x2) and its vanishing at 

(al ,  a2) and (fll,fl2) is control led by means of  Lem m a  5 and Lem m a  6; L e m m a  5 

represents  the application of  Dyson ' s  lemma. 

In section IV, we prove  a general effective result relating an approximation fl~ to 

a~ with another  approximation f12 to a2. This result is stated in Theorem 2. Theorems 3 

and 4 are special cases of  Theorem 2, formulated in a more familiar way. 

In section V, we show with examples that our  results are sufficiently explicit and 

precise to yield some cases of  effect iveness for the Thue-Siegel theorem; in particular 

our  Example  2 is complete ly  explicit in all numerical constants.(1) 

Finally, I would like to thank here  the Mittag-Leffler Institut for  providing comput-  

er t ime and assisting in the numerical calculations of  section V. 

Note. I wish to take the occasion of  the publication of  this paper to clarify the 

relative status of  two preceding papers,  namely "Algebraic  values of  meromorphic  

m aps" ,  Inv. Math. ,  10, 267-287 (1970) by Enrico Bombieri  and "Analyt ic  subgroups of  

Group var ie t ies" ,  Inv. Math. ,  11, 1-14 (1970) by Enrico Bombieri  and Serge Lang. 

In fact,  although submitted and received at the same time (June 29, 1970) and 

although my paper  appeared before the joint  paper,  the joint  paper  actually precedes  

the other.  In particular the Schwarz  lemma of  the joint  paper,  which appears also as 

Proposit ion 4 in the first paper,  originates entirely in the joint  paper. 

Finally I must  point out  that the references to the first paper  which appear  in our  

joint  paper  were added a posteriori  at my request ,  for the sake of  completeness.  The 

fact that my paper  does not contain a similar cross reference to the joint  paper  is simply 

due to my oversight.  I wish to apologize to Professor  Lang if this fact has caused 

misunderstandings in .attributing to me alone ideas and results obtained in collaboration 

with him. 

II. Dyson's lemma 

I L l .  Le t  K be an algebraically closed field of  characteristic 0 and let 

~,=(~,1, . . . ,~an) , /z=l  . . . . .  m be m points in K n. We Shall assume that for i = 1 , 2  . . . . .  n 

(1) We have made no effort here in trying to single out various classes of number fields to which our method 
applies. Indeed, the reader will perceive that strong effective results can be obtained in many cases of ample 
generality. Any improvement of Lemma 6 would lead to better results and it is easily seen that if we could 
replace the constant rqo2(t)/(l-rqo2(t)) by 1 as a multiplier of d12(aO (and we allow worse multipliers for 
d2;t(a2)) then the optimal exponent 2 would follow effectively for every algebraic number. We hope to return 
to these questions in future papers. 
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the m numbers  ~li, ~2i . . . . .  ~mi are distinct; in this case the set of  points g~, will be 

called admissible. Le t  t~i>O, i=1 . . . . .  n be real numbers.  

Le t  dl, ..., dn be positive numbers  (not necessarily integers) and let tF,,/~=1 . . . . .  m 

be real numbers.  We define 

~(d, O; tn . . . . .  tm Igl . . . . .  gin), 

and abbreviate ~(d;  t~,), to be the vector  space over  K consisting of  all polynomials 

P = P ( x l  . . . .  ,xn) in n variables with coefficients in K and satisfying 

degxP ~< di (A) 

for  i=1 . . . . .  n; 

for 

AIp(~,) = 0 (B) 

~il +'"+ in 
Ax-- 

~XI il . . .  ~Xn in 

and all indices I = (il . . . . .  in) with 

"~1 il + . . . + d l  On~n< t#, 

f o r /~=1  . . . . .  m. It is convenient  to allow t~, to be negative or O, in which case no 

condition on P at the point ga is imposed. 

Le t  us define 

f0f0 cp,(t) = ... dxn ... dx n, 

OlXl +...+OnXn~t 

so that the number  of  solutions of  

ii i2 in 
~ - - + t ~ 2 - - + . . . +  t ~ - - <  t, i ~ d ~  

d 1 d~ d n 

for large dv is asymptot ic  to 9n(t) dl d2.. .  dn. Since the number  of  indices (il, i2 . . . . .  in) 

at out disposal is asymptot ic  to dl d2.. .  dn, we see that q~n(t) measures the number  of  
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indices satisfying the given conditions, as the degrees dl . . . . .  d~ go to infinity. We have 

tpn(t)=0 if t~<0, q0,,(t)=l if t ~>Z0i. 

If  we fix ~l . . . . .  ~m and tl . . . . .  t,,, with 

< l ,  
/g 

the vector space ~(d; t~,) is not (0) as soon as the degrees d l  . . . . .  d n are sufficiently 

large. Indeed each equation in (B) is a homogeneous linear equation in the coefficients 

of P and we have (d l+ l ) . . .  ( d n + l ) - d l  ... d~ coefficients. Now E~,tp~(t~,)<l implies 

that for large d~,.., d,, we have more unknowns than equations in our linear system, 

which makes the result obvious. Conversely, the question arises whether the condition 

Z~,q0n(t~,)~< 1 is also necessary for having ~9(d; tu):~(0). This is so if ~1 . . . . .  ~m are generic 

in an appropriate sense (which we do not need to make precise here) and this gives 

some support to the view that it may always be so. It is the content of Dyson's lemma 

that this is essentially the case if ~l, ..., ~m is admissible, if n=2 and if the ratio d2/dl is 

small. We have 

THEOREM 1. Let  ~1 . . . . .  ~m be admissible and let n=2. Then i f  ~(d; t,)~=(0) we have 

Z tP2(t#)~< l+max  ( ~ ,  0)dE. 
u dl 

In order to appreciate the meaning of the admissibility condition, let us consider 

the case n= 1. Then (B) implies that P(x) has a zero at ~ with multiplicity not less than 

max (t~,, O)d=cpl(tu)d. If the ~, are admissible, that is distinct, then 

d Z q~,(t.) ~ ~ (multiplicity at ~5~) <~ degP ~< d 

and 

This simple argument makes clear why admissibility is needed, for otherwise the 

example of  P(xi) taken as polynomial in several variables x~ .. . . .  xn shows that no result 

like Theorem 1 can possibly hold. 

We shall deduce Theorem 1 from the apparently weaker 
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DYSON'S LEMMA. Let  gt ..... gm be admissible and let n=2.  Then i f  ~(d; t~,):l:(0) 

and 0<tu~<min (01, Oz) we have 

II.2. In this section we prove some simple facts on polynomials P fi 3~(d; t~,); our 

results are stated for polynomials in several variables. 

LEMMA I. We have: 

(a) i f  t~ <~ t# then 

(b) i f  a >I 1 then 

~9(d; t~,) = ~9(d; t*); 

~9(d; t~,) c 3~(ad; a-ttu); 

(c) i f  P e E ~(do; teu), Q= 1 . . . . .  r then 

de; Pl'"PrE~(~d~'~n~n(dli+...+dri)tQ# )' 

(d) / f P E  ~(d; t.) then 

 (Nd; t#); 

(e) 

for  every a ~>l-min  iJd~; 

(f) ~(d; t.) = (0) i f  t~, > E Oifor some It. 

Proof. (a), (b), (e) follow readily from the definition of ~. (d) is a special case of 

(c). For (c), we note that 

a t (P ,  ... er)  = E ( a "  P) . . .  (A', Pr) 
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where the sum is over  all I~ . . . . .  L with I~ +... + L=I. Now 

hence if 

then 

( ) (  E mi, n dl i  ..~ . . . .q_ dr i l~, d r q- " " [- n ~on  / Q 

~ iev 
iV 

ilJ 
< Z m i n { .  dei te ~) 

n de n q~ 

for at least one p and the corresponding derivative A te PQ vanishes at ~ .  Since this 

holds for  every  decomposi t ion,  we see that A*(P1...P~)(~)=0, which proves (c). 

Finally (f) follows from Taylor ' s  theorem. 

Le t  P(xl ..... x,) be a polynomial  and let us consider decomposit ions 

s 

P =  
j=0 

where fj(x')=fj(xl . . . . .  Xn-l) and gj(x,) are polynomials.  We certainly have decomposi-  

tions in which fo,fl . . . . .  f~ are linearly independent  over  K and also go, gt . . . . .  gs are 

linearly independent  over  K; indeed, any decomposit ion in which s is minimal has the 

required proper ty .  We define 

sn(P) = max s 

where the max is over  all decomposi t ions with fo . . . . .  fs linearly independent over  K and 

go . . . . .  gs linearly independent  over  K. It is clear that 

O<-sn(P)<-dn 

because go . . . . .  gs are polynomials in one variable of  degree <~dn and thus not more 

than dn+ 1 of  them can be linearly independent.  
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LEMMA 2. For every P we can find a polynomial L=a+bl xl +...+ bnxn of  degree 
1 such that 

sn(LP) >I Sn(P)+ 1. 

Proof. We use matrix notation and write f, g for the corresponding column vectors; 

we have 

p = tg.f  

where t( ) denotes the transpose. I t  is clear that at least one of  XngO,...,xngs is 

linearly independent from go . . . . .  gs (just check degrees); let gi be a maximal subset of 

go . . . . .  gs such that go ..... gs, xngi with iEI  are linearly independent and let gn be the 

complementary set. Then we can write 

Xntgll = t g . A  +Xntgl "B 

for suitable constant  matrices A, B. Let  us write L(x)=Lo(x')+bnxn, where 

x '=(xl  . . . .  , Xn-l). We have, with an obvious notation for AI,AII: 

(Lo(x') + bn Xn) P = (Lo(x') + bn Xn) tg. f 

= tgI(Lo(x') fI+bnAI flI) + tgii(Lo(x ') flI+bnAll fn) +Xn tgI bn- 
(fI+BfII), 

and tgi, tgll , xnrgi are linearly independent by construction. If we show that the 

column rank of  

(L0(x ' )  fvkbn At fu 

L ' I ~ 
\ f,+BfII // 

is at least s+  1 for a generic choice of Lo(x') and bn, the result follows. Since the rank 

does not increase if we specialize L(x) we may set bn=O and prove that for generic 

Lo(x') the rank of  

L0(x') fl 
Lo(X') fII / 

f~+mH / 
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is at least s+  I. If  not, then since the rows Lo(x') fl and Lo(x') fn are linearly independ- 

ent we must have 

(fi) 
fI+BfII = NL'L~ fn 

for  a suitable constant  matrix NL. This means that f l+Bfn  is divisible by Lo(x') and 

since Lo(x') is arbi trary we must  have 

f i+Bfu  = 0. 

This contradicts the fact that fo . . . . .  f~ are linearly independent  and proves our  result. 

COROLLARY. Let  ~(d;  t~)4= (0) and let a > l .  Then there is PC ~(ad ;  a -l t.) with 
P=#O and 

sn(P) >>- [ ( a -  I) rain dr]. 
12 

H.3. In what  follows, P E  ~9(d; tu) and ~, is admissible. We have a decomposi t ion 

where fo, fl . . . . .  f~ are 

independent.  In view 

P = f0(x') go(x . )  + . . .  + L ( x ' )  

linearly independent  and similary go, gl . . . . .  gs are linearl 3 

of  this proper ty  of  linear independence we know that some 

generalized Wronskian o f fo  . . . . .  fs, and also the Wronskian of  go . . . . .  gs, is not  identi- 

cally 0. To be more explicit, there are differential operators 6o, 6l . . . . .  6s such that 6; 

has degree ~< i and such that 

is not identically 0. Similarly, 

is not identically 0. 

F(x ')  = det (6;fj),,j= 0 ..... , 

G ( X n )  = det g~ j,k=0 ...... 

LEMMA 3. We haoe 

F(x ' )G(xn)=de t  (t~i( ~--~-~kP~ . 
\ \ a x . /  /j,k=o ..... s 
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degx, G ~ (s+ 1) (dn-s). 

Proof. Since the variables x' and x,, in fj(x') and gj(x,,) are separated,  we have 

now the identity of  L e m m a  3 follows by multiplication of  the matrices associated to 

F(x ')  and G(x,). In order  to prove  the last s tatement  in L e m m a  3, we note that there is a 

basis g* of  the vec tor  space over  K spanned by go . . . .  , gs, such that 

dn I> degg~ > degg]  > ... > deg g~ I> 0. 

The Wronskian o f  the g* is proport ional  to G(x,) and hence we may assume that the 

degrees deggj  form a strictly decreasing sequence of  integers and in particular 

deg gj <~ dn-j. 

A typical term in the expansion of  the determinant  for G(xn) is 

where the  kj form a permutat ion of  0 . . . . .  s. The degree of  this product  is 

B $ 

(deg g F O  (an-j-  = (s+ 1)(an-s), 
j=0 j=0 

because the kj are a permutat ion of  0 . . . .  , s. This proves Lem m a  3. 

Remark. In the special case in which n =2  we must have 6i=(a/axO i and hence we 

can repeat  the previous argument and find 

degxj F(xj) <. (s+ l) (d) - s). 

II.4. In this section we prove Dyson ' s  lemma. Let  P:~=0, P E 8~(d; tu). If  we replace 

P by U v with N---~o~ and use L e m m a  2 we see that we may suppose in proving Dyson ' s  

lemma that s is arbitrarily large. 
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Let  P = Z~=0fj(x,)gj(x2) be our decomposition of P,  and let us consider/~ as being 

fixed. Let  A,  be a constant  (s+ 1 ) x ( s + l )  invertible matrix. We have 

p = t f. g = t fA~l .A~ g = t  (ta~! f) (A~ g) 

and we choose A u so that if we write gq')=At, g then 

0~< orde~ go ~) < ordr 2 g~') < . . .  < ordr g~) ~< d z. 

We may do this in several ways;  we select one for each/~ and define 

uui = ordr g~). 

Let  

by Lemma 3, we have 

G(x2) = det gs ; 
j , k = O  . . . . .  s 

deg T(x2) ~< (s+ 1) (d2-s) .  

In order to compute the order of  zero of  G(xz) at ~F,2, we note that 

k 
det { ~ o q ' ) ' ~  =det(A~)G(x2) 

~  ) j k = o  ..... 

and hence it has the same order of zero at ~i,2 as G(x2) because As, is invertible. Now a 

typical term in the expansion of  the determinant is 

\ ax2) 

where the kj's are a permutation of  0, I . . . .  , s, and hence it vanishes at ~,z at least to the 

order 

Thus we have shown that 

$ 

j=O j=O 

s 

~ G(x2) I> Z (uw-J)" 
j=O 
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No w the points ~,2 are distinct, hence 

E ord ~2 G(x2) ~< deg G(x2) 

which yields 
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if k=j, while 

if k<j, and it follows that 

N o w  

ax2] s t .2) 4:0 

ax2/ s ~ .2) = 0 

det(( a_~__~"~*g(.) ~ .\ \ \ a x 2 /  j ( .2)! , o  
/ j , k = O  . . . . .  s 

2 E (u.j--j) <~(s+ 1) (d2-s )  
j=O . 

It is here that we have Dyson ' s  important remark that, since the u~, s are integers strictly 

increasing in j ,  the quantity E~, (u~-j) is increasing as a function o f j .  It follows that 

b 

E E (u.FJ)~(b+l)(d2-s) 
j=O . 

for b=O,1 . . . . .  s. 

Our next task consists in obtaining a lower bound for ord~., F(xO. This is done as 
follows. Let  us consider  

i a ..k p . x  , 

If  we write f(~')= t A~lf and recall that p= t f~ ) ,  g~) then we see that this determinant is 

k 0  , 
det (t A-~l) F(xl) det 

\ \ ax2/ j, : . . . . .  
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since the 

exactly as 

matrix is non-singular triangular. This shows that F(xl) vanishes at ~,1 

By our hypotheses, (9/~x2) "~ P(x~, ~,2)vanishes at Xl=~u~ at least to the order 

1 \'u(t--'~ U~kd2, ) ~ d l  max v 2 0 , 

and hence a typical term in the expansion of the determinant vanishes at xl=~m at 

least to the order 

s ( ik t~ U~k ) 
~ , d , ~ m a x  t~-v~,-~ - - -  2-"~-,0 

1 k=O \ "*1 2 
where the ik'S are a permutation of O, I ..... s. Afortiori, the determinant itself and F(xO 
vanish at ~,1 at least to the order 

ld~max( t t , -ozk-#z(u"k-k)  0) s(s+l) 
e I ~ \ d 2 d 2 ' 2 ' 

and since the ~m's are distinct, we obtain 

-~ld '~max(t"-o~k-~gz 'uak-k"o)  - m s ( s + l , < ~ ( s + l , ( d ' - s , k = o  \ d2 d2 2 

by our bound on degF obtained in the remark to Lemma 3. 

Let 

and let 

t = max t. 

1 

Then we can replace ~ ~,=0 by Eb= 0 in the last inequality and deduce the basic inequality 

m +-~ s(s+ I) ~< (s+ 1) dl +--if--- 7 (b+ 1) (d~-s)+ 1), s(s+ 
O ' l a  2 
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the last step coming from the inequal~y obtained by Dyson's remark. 

Let us wfite 

s = ad2, b = fld 2, 

so that O<o~ < 1 and 

where 
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t = m a x  t W 

We divide both sides of  our basic inequality by dl d2 and we approximate Ek by an 

integral. This yields 

~o~ 02 / m d2 
0;02~ fo max(t~-x'O'dx<~o+-~lfl(1-o)+~-2-1)az-d~l+O(--~2)" 

Now we obtain a lower bound for the integral as follows. 

and also 

Case I. flOz>~G. 
In this case, 

fo ~~ I t 2 max(t~-x,O)dx= 2 ~ 

o+-==3(1-o) ~< t 
Ol 

because 

02 fl ~< t ~< min (O,, 02) ~< 0 I 

by our hypotheses on G- Thus 

fo#~ 

in this case. 

18-812904 Acta mathematica 148. Imprim~ le 31 aofit 1982 
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Case II. ~92~tju. 
In this case, we have f l~ t [g2  hence fl=o<.t/92. We have 

ff h max (t~,-x, O) t~, 92a-�89 2 t u 02- �89  dx 

tr+-~l tr(1 - t~) 

The last expression is decreasing in a because 

tu ~< min (9,,  02) <~ +(91 + 02) 

and hence a lower bound is obtained by choosing a as large as possible, which yields 

1 
fl = ~ = -~22 t u. 

This is in the situation of  Case I, and we get the lower bound ~ t 2 once again. 

We have shown 

2 919 2 t~ ~< 1 + max d2 1 

and since we may suppose tha t  ~d2=s is arbitrarily large we obtain Dyson ' s  lemma. 

11.5. We show here how to deduce Theorem 1 from Dyson ' s  lemma. If  we replace 

P(xl ,  x2) by pN(x1, X2) and let N--~ oo we see that the statement of  Theorem 1 depends 

only on the values of  01,92, t~, and the ratio d2/dl. Without loss of  generality, we may 

a s s u m e  91- -1  and write 9 for  92; we also define 6 by 

6 = d2/dl.  

The polynomial P gives us a set of  parameters  (tF,; 0, 6); conversely,  we say that 

( tg;0,6)  occurs  if there is a sequence of  polynomials Pi with parameters  
t 0" ~0 ,6(0)  ---~(t~ ; 0 ,6) .  -~ ,  

Let  us consider  the case 0~<1. We divide the set of/~'s into subsets M~,M2,M3 as 

follows: 

), ), 
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LEMMA 4. [M31=0 or 1. I f lM3l=l  then ME is empty, l f  t~<l then M3 0 (pit,~=l} 

has at most one element. 

Proof. We assume that (q,  tz;O, 6) occurs with t~>l ,  t2=l and w e  will reach a 

contradiction. 

Since we have 0~<1, we may increase 0 to 1 and (q, 1;, 1,6) will occur afortiori. 

Thus we may suppose O= 1. Le t  P be a polynomial with parameters ( t l -e ,  l - e ;  1,6), 

where e>0 is arbitrarily small. Since q > l ,  we see that P factorizes as 

P(x~, X2) ~--- (Xl - -~ l l )  al (X 2 -  ~12) a2 Q(x~, x2) 

where ai=[(q-  1-e)di]. 

Now ~il~=~2t and ~12=1=~2 2 because ~! and ~2 are admissible and thus Q vanishes 

exactly as P at ~2, while we must lose al derivatives with respect to x~ and a2 

derivatives with respect to x2 in the vanishing at the point ~1. It is an easy matter to 

obtain parameters for Q and if we consider d~, d2---~ and then let e---~0, as we may,  we 

deduce that the new set of  parameters 

also occurs. We note that 1 / ( 2 - h ) > l  and start our transformation once again but 

considering of  course the vanishing at ~2. Then we see that 

2 - t ' ,  1;1,6 

also occurs. By iteration, we arrive at new parameters l~ k), k = l ,  2 . . . .  for which 

,(k) >_ k - ( k -  1) t 1 
max,~, ~ (k+ 1)-kq 

and thus max t(~ k) >2 if k is sufficiently large. This contradicts the last clause of Lemma 

1. 

Now suppose that (q,t2 . . . .  ;0 ,  6) occurs and either q > l  or q = l  and 0 < I .  Then 

the same argument as before shows that 

1, l+v~-q'  l+t~-t~ . . . .  ; 1, ff-~ 
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also occurs. This proves that we must have tJ(1 +O-tl)<~ 1 for e v e r y / ~ 2 ,  hence t~<O 
because t l> I, and the proof of Lemma 4 is complete. 

If we look at the last set of parameters we see that we can apply Dyson's lemma to 

it. We obtain 

1 + ~ ' ~ 1 ( .  ~ ~ 2 < l + m a x ( _ ~ , O ) ~ l  6 
2 ~2 2 \ l + O - t , ]  

which is easily transformed into 

1- I - -~- ( ,+t~- t , )2+E-~ot2<~l+max(-~ ,o) ( l+~- t ' ) z6  
20 ~>~2 

< l + m a x  ( - ~ - , O )  6; 

since q)2(t)=l-�89 if t > l ,  we have obtained Theorem 1 if some t~, is t~,>l. 

Now suppose that (q,t2 .... ;0, 6) occurs and M3=~ but [M21>l. If P gives para- 

meters 

( t l - -e ,  t2--e . . . .  ; t~, 6)  

and e>O is sufficiently small then again P factorizes as 

N 
/~EM2 

and now, by letting d~, d2---,~ and e--~O, we see that Q gives rise to parameters 

(t~', t{ .... ; 0", 6") 

where 

0 
t* = I - S  0* if/zEM2, 

tz <~* if/uEM~, 
t~ <<- l_  S 

s= Z (,.-e); 
/~EM2 
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of course, we must have S < I .  We also have 0"~<1. Otherwise, if we divide the 

condition il/dl+O*i2/d2<t* by O* we see that 

( tTlO*, t~/O* .... ; (0*) -1 , (6*) -1) 

also occurs as a set of parameters, and (O*)-t<l. By the last clause of Lemma 4, M2 

consists of a single element, say/~o, because t~,/O*= I for/~ E M2. In this case however 

0 0 
t ~ =  ~<1 

1 - S  l+O- t& 

because t~0~< 1, and we reach a contradiction. 

Since 0"~<I we can apply Dyson's  lemma once more and we find 

~< l + m a x  ,0 b, 
~,em~ 2(1-S)  ~,eu, 20 

which is easily transformed into 

E (t~, -0--~+ ~ 1-J--t2<~ l + m a x ( - m ~ , o )  6; 

since 92(t)=t-O/2 if O<t<~l, we have completed the proof of Theorem 1 when 0~<1. 

Finally ff O> 1 the proof of Theorem I is reduced to the preceding case, by noting that ff 

(ta;O, 6) occurs then (6,/0;0-t,6 -t) also occurs and noting that we can state Dyson's  

lemma in the form: 

~ --~-1 t~ ~< l+max (-~--~, O) min (5, 5 -1) 
20 ~' 

if (6,; 0, ~) occurs and 0<0~<1,0<6,<_0. 

IIL The auxiliary polynomial 

III.1. Let k be an algebraic number field, let al,a2 be algebraic with 

k(al)=k(a2)=K; let r=[K:k] be the degree of al and a2 over k. 

We are interested in the approximation properties of al,  a2 by elements of k, say 

fll,fl2. We follow Thue's ideas (for the case k=Q) and construct a polynomial 

P E k[xl, x2] with the following properties: 

(i) P vanishes at the point (al, a2) to high order; 
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(ii) P vanishes at the point ( ~ 1 , / 5 2 )  only to low order; 

(iii) the height of  P is not too large. 

To be precise we want P such that 

degx~P <~ di, i = 1,2 

where dl>~d2, d2 is large, and such that for some t, t>0,  we have 

where 

for all I =  (il, i2) with 

AIP(apa2) = 0 ,  

A I _ ~i t+ i2 

axe2' 

0 -2 q + O t 2 < t .  
dl d2 

In carrying out  our estimates we shall suppose that d2 and hence dl are large and 

eventually go to infinity. The algebraic numbers are kept fixed; (a~), a2~)),g = 1,2 . . . . .  r 

will denote a set of  conjugates of  (al,  a2). We always assume (fll,/52)4= (al,  a2). Let  

~2( t )= fo l f o ldxdy ,  

~ x + ~  < t. 

LEMMA 5. Let P be as before and let us suppose that rq%(t)< 1. Let r be defined by 

r d2 
qq(r) = 1-rtP2(t)-t 2 d I" 

Then there is/*=(iT, i~) such that 

AfP(fll,/5 2) :I: 0 

and 

Proof. 

assume K=k(aO=k(al,a2),  

0-' 3 .  
dl d2 

Let  (a~), a ~ ) ) , # = l  . . . . .  r be the conjugates of  (al,  a2) over  k. Since we 

the numbers a~= a~ l) ..... a~ r), are all distinct; similarly, 
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a2='a~ ~) . . . . .  ar r), are all distinct. It is clear that f l i4a~); hence the set of r + l  points 

g~,=(a~), a~ J if /z=l  . . . . .  r and g r+ l=(~ t , f l2 ) i s  admissible for the application of  

Theorem 1. We apply Theorem I with t~,=t,/z=l . . . . .  r and with t r+~=r*>r close to r, 

to the effect that O-til /dl+Oi2/d2<r * implies O-lil/dl+Oi2/d2<r. Then if we had 

AlP(flt,fl2)=0 for all I with 0 -t il/dl+Oi2/d2<r*, we obtain by Theorem 1 

which implies 

r+ 1 d2 
E q~ ~< 1 + r _ _  
~=1 2 d I 

r < ~p2(r*) ~< 1-rcpz(t)-~ 2 d 1 ' 

which contradicts our choice of  r. 

It remains to construct P with all the desired properties. This is achieved using the 

fundamental construction of  Thue and Siegel. We prove the following invariant form of 

the familiar Siegel's lemma. 

Let  k be a number field, K a finite extension of k, of  degree [K:k]=r, and let 
_ N Li(x)-E~=laux j, i=1 ,2  . . . . .  M be M linear forms with coefficients aijEK, in the N 

variables xl . . . . .  XN. We have: 

SIEGEL'S LEMMA.  (1) There is a constant c 1 depending only on the f ields k, K but 

not otherwise on M, N or the f o r m s  Li, with the fol lowing property, 

I f  N > r M  then there is a solution x E/dr, x#=0 to the linear system 

satisfying 

L,(x) = 0, i = l , . . . , M  

h(x) ~< c l ( c i N )  N-rM L i  N - r g  

where h(x)=IIv maxilxi[o is the absolute homogeneous  height. 

Proof. If  k = K  this is Siegel's lemma as formulated in our paper "On  G-functions" 

([Bo]). Now suppose k E K, k+K.  There is a number field F such that k c K c F  and F is 

(J) Perhaps, and more appropriately, results of this type should be called Thue's lemma. 
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a Galois extension of k, with Galois group G, and also is a Galois extension of K, with 

Galois group H. Clearly H is a subgroup of G with index 

[G: 1t] = [K: k] = r. 

We consider the coefficients aii of Li as elements of F and look at the linear system 

N 

~ 7(a.-u) Xj = O 
j=l 

for i = t , 2  . . . . .  M and y E G ,  to be solved with XjEF.  Since ~i(ao.)=a~i for every r /EH,  

the number of  independent equations is at most rM (we may restrict our attention to ~, 

running over a set of  representatives of  cosets of H in G). Now we apply Siegel's 

lemma for the field F and obtain a solution X E F N to the above system, with X4:0 and 

I 

h(X) <~ c2(Nc2) N-rM 1-I h(~Li)) 
i=1 7 

The constant c2 depends only on the field F. Since h(y(Li))=h(Li) for every y E G, our 

bound for h(X)simplifies to 

1 

h(X) ~< c2(Nc2) N-rM h(Li ) 

The solution we have found is in F N while we want a solution in /c  'v. Let ;t E F, 

24=0. We have 

N 

~'(ao.) ( ~ j )  = 0  
j = l  

for every y E G, hence 

N 

j = l  

for every ~ E G. Now we take traces in k and we find 

N 

E aijxj = 0 
j=l 



ON T H E  THUE-SIEGEL-DYSON THEOREM 281 

with 

xj = TrF/,(2X j) = ~ y(2Xj) E k. 
yEG 

If  we let 2 run through a basis of  F over K we cannot always have TrF/k(2X)=0 unless 

X=0 to start with. This shows that we may choose ~ such that TrF/k(2X)*0, from a 

finite set which depends only on F and k, but which is independent of X; only the 

choice of 2 will depend on X. 

In order to complete the proof of Siegel's lemma, we have to show that we can 

choose the solution X E F u so that h(TrF/k(;LX)) is comparable with h(X). This need not 

be always true and an additional argument is needed to overcome this difficulty. 

Le t  X E U v, X~0.  We claim that there is/~EF such that 

max ILugillo ~ 1 (v finite), 
J 

max IL~X~llo ~ Ah(X) (v infinite), 
J 

where we have written for simplicity [I [}v=l [ d/do and where A=A(F) depends only 

o n t h e  field F. Now we complete the proof of Siegel's lemma as follows. We have 

max II~Sjllo ~ II~llo (v finite), 
J 

max IIA/~jlo ~ II,~lloAh(X) (v infinite), 
J 

and we have IlAllo=llall _,o for every y E G and a E F, a:l:0; this implies 

and finally 

maxlb'(Al~0llo ~ max II~'AIIo (O finite), 
Y,J Y 

max Ily(~x/[Io ~ max II~Allo Ah(X) (v infinite), 
Y,J Y 

h(TrF/K(2/~X)) ~< IGI I-[ m a x  II~(~x~.)I1~ J~ 
v Y'J 

19-812904 Acta rnathematica 148. Imprim6 le 31 aofit 1982 



2 8 2  E. BOMBIERI 

o,o,(H max,  ,o) 
Y v[| 

= IGIh(G~.)Ah(X). 

Since 2 belongs to a fixed finite set, we have IG[h(G).)A<~c3 where c3 depends only on 

the fields F, k; this proves the conclusion of Siegel's lemma with x=2/~X. 

It remains to show that we can find/~=t=0 with the required properties, namely 

Let 

ILullo~ 1/ max llSjllo (o finite), 
J 

ILullv <.Ah(X)/maxllSjllo (v infinite). 
J 

I 1/maxllX~llo (u finite), 

2(~ (o infinite). 

It is clear that ~.(v)=l for almost all v,2(v)=llrc, ll~ with loEZ and zv a uniformizing 

parameter of Fv i f0  is finite, and also IIoA(v)do=l by definition of height. Thus the 

collection {2(v)} forms a ceiling of the field F, as defined by Mahler ([M]). By Mahler's 

theorem ([M], Section 12, p. 440) if we choose 

A = d(F)2d(~IDFt �89 

where d(F)=[F: Q] and DF is the absolute discriminant of F, there is at least one/~:I:0 

with the required property 

I~ullv~<2(v) if v is finite, 

ILullv ~< A2(v) if v is infinite; 

this completes the proof of Siegel's lemma. 

In what follows, we abbreviate 

2(x) = log h(x) 

and call 2(x) the logarithmic height. 
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LEMMA 6. Let t be given with r~2(t)< 1 and let dl, d2 be large integers. Then we 
can find P E k[xl, x2] not identically O, of degree deg~ P<~d~., such that 

for all I=(iz, i2) with 

and such that 

AXP(a~ ,a 2) = 0 

0 -~ & + O &  < t, 
d 1 d~ 

rq~2(t) 
2(P) =log h(P) ~< l_rq02(t ) (dt2(ai)+dz2(a2)+(dl+dz)log2)+o(dl+d2). 

Remark. The proof of Lemma 6 will yield a slightly stronger but more complicated 

bound. This may be useful in dealing with specific cases. 

Proof. Let us write 

= 4 

regarding the coefficients of P as unknowns in the field k. We have 

J1 'J2 

where I]=il!iz!. The associated linear from Lz has height 

h ( L ' ) = H m a x l t ~ : ) k i 2 /  I 

d, 1-[ max ( 1 , 1 ~ , l j  _i, i2 
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The number N of unknowns is (dl+ 1)(d2+ I) while the number M of equations is the 

number of solutions of O-lil/dl+Oi2/d2<t, which is asymptotic to q~2(t)d~ d2 as dl,d2 
go independently to o0. Thus 

N -  d, d2, N-rM ~ (1-r~2(t))dl dE 

and Siegel's lemma shows that we can find xsEk, not all 0, such that AlP(al,a2)=O 
and 

N r 
2(P) ~< N _  r-------M- lOg (ClN)-t [1 +o(1)] d, dz(1-rq~2(t)) 

dl d2 
"(~log(i~)+log(i2)+(d~-i~)2(a,)+(d2-i2)2(a2)), 

with Cl=Cl(k, g). The first term is O(log(dl d2))=O(dl+d2). 
Also 

E 1 <~ tPE(t) d 1 d2, 
I 

and Lemma 6 follows. 

Remark. If t<min(O -~, O) a more careful estimate yields the following result. Let 

g(u) =---I u3 l o g l + l ( 1 - u )  3 log ~ l  1 u+ 5 u 2. 
6 u o 1 -u  6 12 

Then we have 

2(p)< 2r (~g(Ot)+t 2 t 3 2r 1 2 3 
2_rt 2 (-2-O-6 ) ~'(al) )d, +-~-~-( O2 g (-o t) + ( 2 -~ - ' 6  )~'(a2) )d2" 

We also have g(U)<~�88 2 for 0 < u < l ,  and 

r 2 
2(P) _< ~ (d 12(ctl) + d 2 2(a2)+ �89 I + d2) ). 

L - - r l -  
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IV. The Thue-Siegel theorem 

IV.1. Let  k, al, a2,K=k(al)=k(a2) be as in the preceding section, let r=[K:k]~2 

be the degree o f  a l ,  ct2 over  k and let fll,fl2 be two approximations to al ,  ct2 relative to 

a same set S of  places v of  k. This is to be understood in the following sense. Let  S be a 

finite set of places of k together with an extension to the field k and for v E S let I Io be 

the absolute value associated to v normalized relative to the field k; then we say that 

fl E k approximates a relative to the set S if 

la-f l [o  < 1 for vES.  

at,a2, ill,fiE, S be as before and let O,t,r, 61,62 be THEOREM 2. Let k, K, 

positive numbers such that 

Then we have 

and 

rq~2(t) < 1, 0<  r < t 

r 62 
- - - -  <~ rcP2(t)+~(r)- 1. 
2 6! 

( t _ r ) Z m i n ( O 6 t l o g  1 tgr1621og 1 ) 

~< dil(2(fll)+ 1 2(al)_ F log3 ) 
1--rqo2(t) 1 - rqo2(t) 

+62(2(fl2)4 1 2(a2)4 log3 .~ 
1-rq02(t ) 1-rq~(t) / 

C O R O L L A R Y  (Thue-Siegel theorem). Let v be a place of  k extended to K, let a E K, 

k(a)=K, and let e>0. There are only finitely many fl E k such that 

Ict-fl[o < h(fl) -V~-~ 

This corollary is the refinement of the Thue-Siegel theorem obtained by Dyson and 

Gelfond. As usual, this is proven by contradiction. If we had infinitely many solutions, 

we could find fll,fl2 with 2(flt),2(f12) arbitrarily large, 2(flt)/,~(fl2) arbitrarily small and 

now we could apply Theorem 2 with 61 = 1/2(/30, 62 = I/2(fl2), 9=  1, t arbitrarily close to 

X~ 2/r, r arbitrarily small, to obtain a contradiction. In fact this argument is so well- 
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known that we can safely omit the details. On the other hand, our Theorem 2 is very 

explicit and it is possible to draw some interesting consequences  out of  it. Let  us 

consider in detail the case in which S consists of  a single place v. 

We assume 

0 < r < t < min (t~ -1, v~) 

so that q02(t)=�89 2, q~z(r)=�89 and we choose 

61= (log h(fll)+ 2 _ ~  log 3h(a,) ) -1 

2 -1 
62 = ( l o g h ( f 1 2 ) + ~ l o g 3 h ( a 2 ) )  

Then our inequality becomes  

( I 0-1621~ 1 ) ''<2 
( t - v ) m i n  l~6llOg lal_fll-------Tv , la2- 2iv 

that is: 

either 

o r  

40 20 

la2_fl21v >I (3h(a2)) (2-rt2)(t-r) h(fl2 ) t - r  

4/O 2/O 

la_fl,lo >. (3h(aO) (2-r?)(,-O h(fl,) t-v, 

On the other hand, it could be that our choice of  61,62 does not satisfy the 

condition in the hypotheses  of  Theorem 2, so that in this case we cannot say that the 

preceding alternative holds. In this case however  we must have r(62/60>rtZ+rz-2 
whence we obtain 

logh(f12)+2 2__~t21og3h(a2)< . r (logh(fl,)+ 2__~log3h(a,)). 
rt" + r~ - 2 \ 2 - rt ~ 

We have shown: 

THEOREM 3. Let k c K  be number fields, let r=[K: k]>~2 and let v be a place of  k 
extended to K, with absolute value [ [o normalized relative to k. Let ~, t, r be positive 
real numbers with 
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0 < ~  < r < t <  ~ 2 r  ~<min(O-I,O). 

Let ai, fli, i = I , 2  be such that k(ai)=K, fliEk, lai--flilv< 1. Then we have: 
either 

4/0 2/0 

la _ ,1o (3h(al)) (2-rt2)(t-r) h(fll ) t-r, 

o r  

40 20 

[a2_fl2lv ~> (3h(ct2)) (2-rt2)(t-r) h(fl2 ) t-r, 

o r  

log h(fl2)+ 2--~mE lOg 3h(az) < rt2 +rz_2 (log h(fll)+ 2~rtE lOg 3h(al) ) �9 

The special case v ~= 1 can be g iven  a s impler formulation. 

THEOREM 4. Let k c K  be number fields, let r=[K:k]>-2 and let v be a place of  k 
extended to K, with absolute value I I~, normalized relative to k. Let also t, r be 

positive real numbers with 

O < ~ / 2 - r t  2 < r < t < ~ /  2/r .  

Then the following two statements hold. 

(A) For all but finitely many pairs (a, fl) with k(a)=K, f lEk we have 

4 2 

la-31~ ~>(3h(a))~2-rt2)tt-r)h(fl),-r 

(B) The quantity 

log h(fl) + 2_~2rt 2 log 3h(a) 

lies in some f x e d  interval 

as (a, fl) runs over all pairs which do not satisfy (A). 
It is now clear that if we can determine one pair which does not satisfy (A), then 

we can determine an interval containing 
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9 
log h(fl) + ~ r t 2  log 3 h(a) 

and then determine effectively all exceptions to (A). We shall give later on some 

examples of fields K admitting pairs (a, fl) which do not satisfy (A) and for which the 

exponent 2/( t-r)  is O(X/7); for these fields; we then obtain an effective Thue-Siegel 

theorem. 

IV.2. Let P be the polynomial constructed in the preceding section. We have 

P, t, r, I*, di with degxiP<.di, and we have the following facts: 

(i) rqo2(t)< 1 
r d2 

(ii) cp2(r)= 1 - rgz ( t )+~-~-~  < 1 
1 

0 1 il +0  i2 (iii) AIp(a l ,  a2)=O for - - -  - - < t  
dl d2 

* - -  "* - ,  (iv) there is I -(/1, 12,) with AI*p(fll,fl2)*O and 

ll  12 ~ _  0-1 
d 1 d2 

riPE(t) 
(v) 2(P) ~< (d 12(a0+d 2 ~.(aE)+(d I +d2) log 2) 

1 -rq0 2 (t) 

(vi) if  y E S  then lai-flil~< I for i=1, 2; 

here (iv) and (v) follow from Lemma 4 and Lemma 5. 

We abbreviate I!=ii! i2! and 

Let y=(1/I* !)A I* P(fll, f12) so that y:#0; note also that yEk because P E k [xl, x2] and 

fll,fl2 E k. Thus the product formula yields Zvloglylo=0 where the summation is over 

all places v of k and where I Io is normalized relative to k. Now we proceed to estimate 

log H~ separately for each v, as follows. 

Case I. v E S, v f inite.  

We have 

, ,  1 
~'= a P(]31,f12)= t . I (I* +I) ! 

l*+I 
A P(al ,  a2) (fll--al)i'(fl2--a2) i2 
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and, by property (iii), we also have Al*+IP(al,a2)=O for all I with ~-1il/d1+ 
Oi2/dz<t-v ~-1 i~/dt-0i~/dz and afortiori for all I with 0 -1 it/dl+0i2/d2<t-r. 

Since (1/I[)A I does not introduce denominators we see, using the fact that v is 

finite, that 

log l l AZP(Ctl, a2)lo<~ log[P]v +d, log+,allo +d21og+la2,o. 

Also log I/~i-a~lo<0, hence if t - r > 0  we have 

max* log ](ill-a,)" (f12-t~2) i: Iv 

1 <~_(t_7:)min(Odllog {al-flll ~ ' 1  0-1d21og la2Lfl21~ ) 

where max* is taken over all I with 0 -~ il/dl+Oi2/d2>~t-r. Thus we have shown that in 

Case I if t> r  we have 

log lYiv <~ log Ielo+d, log + ICqlo+d2 log + la21o 

( , , )  
- ( t - r ) m i n  O d l log icq_fll lo , 0 -1 d21og [ct2_fl2i ~ 

Case II. u E S, u infinite. 
In this case we proceed as in Case I, but taking into account the contribution 

arising from differentiating P. Let eo= 1 if o is real, eo=2 if u is complex. Then we 

obtain 

s 
log 171o ~< log IPIo +dl log+[ cqlo + d2 log+t a2[ v + [ k - ~  (dl+ dE) log 3 

( 1 0-, d21og 1 ) + o ( d , + d 2 ) "  - ( t - r )  min Od I log la l_fl~lo ' la2-fl2[~ 

Case III. v ~ S, o finite. 
In this case we do not use that Taylor series expansion for (1/I* l)AJ*P but rather 

estimate directly this quantity. Thus we obtain 

log b'lo ~ log lelo + d, log + 1~, Iv + d2 log + 1~21 v. 

Case IV. u ~ S, u infinite. 
In this case we proceed as in Case III, but taking into account the contribution 

arising from differentiation in (1/I* !) A I* P. Then we obtain 
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log ]Ylv ~< log ]Ply+d, log + ~ ,  Iv+d2 log + ~2}v 

C v 
+ ~ (d I + d 2) log 2 + o(d 1 + d2). 

With respect  to the estimates in Cases I and II, we note that we have lai-flilv<l in 

these cases because  yES .  N o w  it is clear that log+lailo=log+[Bi[ v if yES ,  v finite, 

while log+lai{v<.log+lflilo+(ev/[k:Q])log2 if y E S  and o is infinite, and thus we can 

replace log+lailv by log+]fli[v+(eo/[k:Q])log 2 in our estimates. 

We combine our local estimates of  log h'lv with the global result E log I ,1o=0 and we 
find 

0 = E log I~1~ ~ E log {Plo+di E log+lflt[v+d2 E log+lfl21o 

- ( t - r )  2 min (Od I log 
yES 

1 , t~ -I d 2 log , )  
la2- 2Iv 

which simplifies to 

1 t~ -1 d 2 log ( t - r )  2 min Odllog tal_fl,[o, 
yES 

1) 
ta2- 21v 

<~d12(flO+d22(flz)+(d I +d2) log 6+ )ffP)+o(d I +d2). 

By property (v) we have 

rcp:(t) 
2(P)<~ 

1 -rq:2(t) 
(dl2(ai)+d z 2(a2) + (d I + d  z) log 2) 

and if we combine this bound with the last inequality we obtain, noting that r~>2 and 

(r+ 1) q~z (t)> I because  r<t :  

( t _ r ) 2 m i n ( t ~ d l l o g  1 , t~_ld2 log 1 ) 
lal-flllo Ict2-flz[o 

<di (2(/31)4 1 2(al)+ log3 
1-rq)2(t) 1 - rcP2(t) ] 

{2(/32).+ 1 ~(t~2)q. log3 "~ + d  2 \ 1 -  r~2(t ) 1 -- rq92(t ) ]" 
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This inequality holds with (p2( ' t ' )  ~-  1 =r~2(/)+~ r dz/dl whenever rq0z(t)< I and 0 < r < t .  

I f  we divide both sides of the asymptotic inequality above by dl and let dl, d2 go to 

oo keeping the ratio duM1 fixed, we see that the asymptotic inequality above can be 

replaced by an exact  inequality. This completes the proof of Theorem 2. 

Remark. If  we deal with specific cases it appears that interesting results can be 

obtained only if t<min  (0 -1, O) and hence fpz(t)----lt2, q92(v)=l ~2. In this case however we 

can use the remark  at the end of the proof of Lemma 6 to obtain slightly better results. 

V. Some cases of effectiveness 

V.1. Let  m>~3 be a positive integer and let a be the real root a > l  of the irreducible 

equation 

xr - -  m x r -  l + l = O. 

We take k=Q, K=Q(a) and for v we take the real place of  Q, extended to K so that 

a >  1, i.e. I Io iS the usual euclidean absolute value I I in R. 

The equation at-mar- l+ 1=0 yields 

m -r+l< la-ml = lal - ' §  < ( m - l )  - '+1 

which shows that fll=m -I is an excellent approximation to al=a -1. We have 

l a , - 3 ~ l  < ( m -  1) - r - '  . 

We want to show that if m and r are sufficiently large then this approximation is so 

good that it does not verify (A) of Theorem 4. 

First of all, we compute  h(a) as follows. Since a is an algebraic integer, we have 

loglalo ~< 0 if v is finite. 

If instead v is infinite, we have 

log la}v < 0 for all v .v*  

where v* is the real place of K for which a > l .  Finally we have 

log lair. = _1 log lal < Z log m. 
r r 
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If  we put together  these local estimates we find 

2(a  0 = 2(a) = log h(a) < 1 log m. 
r 

It is obvious that for fil =m-1 we have 

),(ill) = log h(fll) = Iogm. 

In view of  these estimates we see that the pair ( a l , f l0  does not satisfy the bound 

(A) in Theorem 4 as soon as 

4 2 
( m - - 1 ) - r - l < ( 3 m  ~) (2-r t2)( t-r)  m t - r .  

if m is sufficiently large, we need only 

r + l >  2 ~ 4 
t - r  r(2-rfl) ( t - r )  

with 0<'V'- '2-rt  2 < r < t < ~ / 2 / r .  If  we set t=X/2/(r+a) where 0 < a < l  we have 

2-rt2=2a/(r+a)=at z and the condition on r becomes v'-a--t<r<t; of  course,  we can 

choose r arbitrarily close to V~-h--t, at the expense of  making r/(rt2+r2-2) v e r y  large. 

It is easily seen that we can fulfill the condition 

2 4 
r + l  > + 

t - r  r ( 2 -  rt 2) ( t - r )  

by choosing r~>200 and t=  V' 2/(r+a) with a=0.35.  For  example a rough numerical 

calculation, of  which we omit the details, leads to the following explicit result. 

Example 1. Let K be the field generated by the root x> 1 of  the equation 

x20~ + l =O, 

where m is an integer m~>101731. Let a E K  generate K over Q. Then 

lct--P l >~ lO-13656 h(ct)-z8622 (max(lpl, ,ql)) -5~ 

for all p, q with (17, q)= 1 and with 

max (ho[, [q[) I> mS~ 
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We may combine this result  with the trivial Liouville est imate and obtain a lower 

bound which holds for  all a which generate K over  Q and for all p/q. If  we formulate 

our  inequality in terms of  H(a), the maximum of  the coefficients of  an irreducible 

equation for a over  Z,  we obtain 

Example 2. Let K be the field of Example 1 and let Q(a)=K. Then we have for all 
p/q: 

[a--P >~ ( lOm)-l~176 H( P ) -5~ 

V.2. It is clear f rom what preceeds  that effective results for  the equation 

xr--mxr-l+l=O usually need r or m to be very  large, so that no result of  practical or 

intrinsic interest  can be obtained. On the other  hand, since it appears that the above 

examples are the first fields not of  type Q(V~-a-~ ) in which a uniform result of  Thue- 

Siegel type holds effectively for every  generating element  of  the field, we believe that it 

is of some theoretical  interest  to investigate fields of lowest  possible degree for which a 

non-trivial result  can be obtained and also to investigate the best exponents  we can get 

for fields of  large degree. 

In order  to obtain results on these lines we use Theorem 3 with various values for  

t~. We take the same equation, x r - - m x r - l + l = 0 ,  and choose r arbitrarily close to 

We take (al,flO as our  anchor  pair and allow h(fl2) to be as large as needed to 

obtain our  conclusions,  of  course  in an effective way.  This means that the third 

alternative in Theorem 3 may be disregarded and hence,  if the first alternative does not 

hold, the second alternative must  be true. If  m is large enough the first alternative of  

Theorem 3 cannot  hold if X/2 / r  <-min (O -1, 0) and 

r + l >  2/t~ ( 1 +  2 
( t - r )  \ r(2-rt 2) ] 

and we can take here  z-= ~ for the purpose of  checking this inequality. I f  this 

inequality holds then the Thue-Siegel exponent  for  h(fl2) will be 

20 

t - -Z ' "  

If  we write t = ~ / 2 / ( r + a )  , t = V ~ t  and if we choose 0 in an optimal way we obtain 

t - v  (1 ~- V'-h--) z r+  1 

2 

( I  - x / -~-)  2 
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provided a ~< ~, which we may suppose.  Since 

2 ( 1 + 1 ]  = 39.2573250... mani ( l - V a - )  2 \ a /  

at a=0.20556943 .... we have obtained 

Example 3. Le t  r~>40 and let K be the field generated by the root x > l  of  the 

equation 

xr--mx r-1 + 1 =0,  

where m>-mo(r) and mo(r) is effectively computable. Let also a be such that Q(a)=K. 

There is an effectively computable qo(a) such that for every p/q with H(p/q)>-qo(a) we 

have 

H (  p ] -39"2574 

We have computed  some examples with specific values of  m and r, with the goal of  

finding non-trivial effective results for  equations with not exceedingly large coeffi- 

cients. The following example represents  the result of  our  search for the case v a= 1, 

after carrying out  the majorizations with great precision. 

Example 4. Let K be the field generated by the root x> 1 o f  the equation 

X 3216- 2469528 x 3215 + 1 = 0. 

There is an effectively computable absolute constant/~<3216 with the following proper- 

ty. Let a be such that Q(a)=K. Then there is an effectively computable qo(a) such that 

for every p/q with H(p/q) >I qo(a) we have 

a p > H ( P )  -~ -q 

If  we use the more  precise estimate in the remark at the end of  the proof  of  Lem m a  

6 and if we choose r very  large and also O v e ry  large, of  order  V ' 7 ,  then we can obtain 

effective results for  equations with small coefficients.  

Example 5. Let K be the field generated by the root x> 1 o f  the equation 

xr--mx r-I + 1 ~'~0, 
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where m~>2561 and where r>-rofor some effectively computable constant ro. Let also a 

be such that Q(a)=K. There is an effectively computable qo(a) such that for every p/q 

with H(p/q) >>- qo(a) we have 

io 
V.3. It should be obvious by now that results of the same kind apply to a class of 

equations of a fairly general type. Rather than prescribing a and trying to find a good 

approximation fl, examples may be found by choosing fl first and deforming it slightly 

into an algebraic number of much higher degree. A typical situation would be to 

consider a polynomial f(x, m) depending on a parameter m and with bounded height and 

fixed degree and deform the equation fix, m)=0 (the equation for fl) into the equation 

fix, m)=R(x) where R(x) is a rational function with bounded height with a zero of very 

high order at oo; then we can take f(x, m) =R(x) as our equation for a. 

On the other hand, it would be nice if one could utilize for the purpose of obtaining 

effective results the remarkable approximations investigated by Stark [S] in the case of 

certain cubic fields. It appears however that our procedures are not sufficiently refined 

and new ideas may be needed in order to achieve this goal. 

Further improvements of our results may come from a sharpening of Lemma 6 

(this could lead to the best possible exponent 2, in every case), but it is also possible 

that the consideration of several approximations lai-flilo, i =1,2 ... . .  m for suitably 

independent pairs (ai,fl;), is needed, as is the case with Roth's theorem. Here the 

difficulties are of two kinds. In the hypothesis of Roth's lemma, one needs 2(/31) large 

and 2(fli+0/2(fli) also large in order to obtain a useful result. In Roth's lemma, 2(/31) 

large means 
2(flO > Ar2(cq) 

with A>I ,  which is too strong a condition for our purposes. On the other hand, 

Dyson's lemma has the advantage of being free from considerations of heights. Unfor- 

tunately, the extension of Dyson's lemma to more than two variables is still lacking, as 

well as a formulation of Roth's lemma which does not require the fli's to be of rapidly 

increasing heights; we have no contribution to offer here for the solution of these 

problems. 
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