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1. Introduction

In this note, functions considered are complex-valued unless otherwise explicitly
stated. For a function f(x) ELL (R"), let

loc

|l f1lpmo = Sup |I|_1f |f(x)=f} dx,
1

where the supremum is taken over all cubes I in R”, with sides parallel to axis, and
where || denotes the Lebesgue measure of I and

fi= lll‘lff(x) dx.
1

A function f(x) is said to belong to BMO (R") if ||f||gmo<+ .
Let R; (j=1, ..., n) be the Riesz transforms. That is,

R; f(x) = (—iEJE " f &) (),

where i=(—1)"?, £=(§,,...,&,) and where A and v denote the Fourier and the inverse

Fourier transforms, respectively. As is well known,

R f(x)=C,P.V. [ (x—y) x—=y|™" " Yf(y)dy

for f{x) € U,_, .. L*(R"). For fix) € L*(R"), let

(") This work was supported in part by Science Research Foundation of Japan. (General Research (c)
1980.)
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R f(x)=C,P.V. f {G=y) =y =) 1T K ey O fO) dy,

where y(x) denotes the characteristic function of a measureable set E.
C. Fefferman and Stein [8] showed

THEOREM A. [ h(x) f(x) dx| < C||A|| . |fllpmo> where

o = 1+ X, IR, Al
j=1

As a corollary of Theorem A they obtained

THEOREM B. Iff(x) € BMO (R"), then there exist gy(x), ..., g,(x) € L*(R") such that

n
f= g0+2 Rjgj, (modulo constants),

J=1

and

n
> gl < Clllso-
Jj=0

The Fefferman-Stein proof of Theorem A used the subharmonicity of

n /2
{ P, % h()P+ D P, % Rjk(x)lz}p

=1
on

R = {(x,): xER", t>0}

for p>(n—1)/n, where Px) denotes the Poisson kernel. Theorem B was obtained from

Theorem A by the Hahn-Banach extension theorem. Until now the existence of

8o, --»8,€L” had not been obtained constructively, except for the case n=1, where

P. W. Jones exhibited gy and g using complex function theory. (For the martingale

case, see Uchiyama [15]). In this note, we prove Theorem B constructively, and since

our proof does not use subharmonicity, we obtain Theorem B in a more general form.
Let 6,(8),...,0,(8)€EC(S,_,), where

S,_1={xERM|x|=1}.
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Let
K f(x) = (0(&/|ED A& (), j=1,...,m.

As is well known (see Lemma 2.A), there exist aaje C and Q,,i(x) €C”(S,.,) such that

f Q,x)=0
xl=1 !

and

K; fx) = ay f()+P.V. f Qg (x=y)/ [x=y]) x=yI""f) dy
for f(x) € U, L°(R"). For f(x) € L*(R"), let

K,'f(x)=aojf(X)+P-V- f {Qo (=2 =y x=y7"= Q4 (=y/[yD Y| ™"% 5. o1y} fO) dy-

Our result is

THEOREM 1. If

0.8) ... 0,8
&\ 2 (L.1)
rank (01(—5) o,,,(—&)) 2

on S, ,, then for any f(x)EBMO(R") with compact support, there exist
g(x), ..., g, (x) EL*R") such that

f= z Kj g; (modulo constants),
j=1

and

D lgll e < Cy By vees 8,0 1 lsato-
j=t

Let 1 be the identity operator. Since

1 & o &)\
rank(1 -—El...—é,,):z onsS, |,

the operators-1, Ry, ..., R, satisfy (1.1). By duality, Theorem 1 gives another proof of
Theorem A. More generally, we obtain
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COROLLARY 1. If (1.1) holds, then

€101 +ves 8, [l < 2 1K il < €56, .. 0,) 1l (12)

j=1

Remark 1.1. The second inequality is well known.
In [6], S. Janson showed that if

Cllll o < Wil 2 1Kl < 1A (1.3)
i=1

i=

holds, with C and C’ independent of A(x), then

> 16(5-6(—8)| %0 (1.4
j=1

on S,_;. Our Corollary 1 gives the converse (conjectured by Janson).

COROLLARY 2. If (1.4) holds, then (1.3) holds.

Remark 1.2. Janson’s proof of the necessity of the condition (1.4) shows the
necessity of the condition (1.1) in our Theorem 1 and Corollary 1.
Another interesting case is

COROLLARY 3. If

1

> 0O=1 (1.5)
j=1

on §S,_, and if there exist v, ...,v,,ER"\{0} such that
supp 6, {§€S, :§-v,=0}, (1.6)

where &-v; denotes the inner product in R”, then (1.2) holds.

See [3], [6], and [7] for related results.
In proving Theorem 1, we establish the following somewhat more precise result.

MAIN LEMMA. Assume that (1.1) holds and that R>C, (0,,...,0,). If
Ifllemo=<1 and if suppf is compact, then there exist g,(x),...,g,(x) EL*(R") such
that
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<c;56,,...,6,, R), 1.7)
BMO

f—E Kjgj
j=1

m 12
(2 Ig,-(x)lz) =R (1.8)
j=1

and
supp(g1—R),supp g, ..., suppg,. are compact, (1.9)
where
;i—r)rl cs6,,..,0,,R)=0 (1.10)

Remark 1.3. If %, and er(x) (j=1, ..., m) are real-valued, that is, if

6/8)=6(-) (1.11)

on S,_, and if f(x) is real-valued, then we can take g,(x), ..., g(x) to be real-valued.

Notation. A dyadic cube is a cube of the form II_[k; 27k (kj+1)2"‘], where
ky, ..., k, and k are integers. In the following, I and J denote dyadic cubes. (/) and x;
denote the side length and the center of I, respectively. al denotes a cube concentric
with I, with sides parallel to the axis and with l(al)=al(]).

v and p denote elements of C™.

2,1 denotes {v=(v,,...,v,)EC™: L1 v['=1}.

V(v) denotes (Re vy, Imvy, ..., Rev,,, Imv,,) (ER*™).

V(v)- V(u) denotes the inner product of V(v) and V() in R,

gx)=(g1(x), ..., 2.(x)), @(x) and p(x) denote C™-valued functions.

(K-g) (x) and (K-g) (x) denote L, (K;g) (x) and L (K, g) (x), respectively.

For 6(x), Q(x) € C*(S,_) and y ER"\\ {0}, 6(y) and Q(y) denote 6(y/ly) and Q(y/|y),
respectively. The letter C denotes various constants that depend only on

0](6)’ LS ) em(E)'

Acknowledgements. 1 would like to thank Professor John B. Garnett for correcting
my bad English and for his kindness and encouragement during my stay at U.C.L.A.,
1980-1981, where I prepared this paper.
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2. Preliminary I

LEMMA 2.A. Let (§)€EC™(S,_,). Then there exist ag€C and Q) EC(S,_)

such that

and

65 f(8)" (%) = ay f()+P.V. f Q,(x—y) x—y| "y} dy

f Q,(0) =0,
=1

|ae] < €2.4(6)

for any f(x) € LA(R"™), where ¢, (6) depends only on

See Stein [14], p. 75.

Remark 2.1. If

then

LEMMA 2.1. Let vE€Z,, |, p=,, ..., 1), W=y, ..., u,) EC™ and

Then there exist

such that

and

sup {|ijkaQB(x)|:j, kE{l,...,n},|x| =1} <c,,(0),

sup (|D“r 0@ |E| =1, ay+...+a,<C,,n)).

Re (0(§)+06(—§)) =Im(6(8)—6(—£)) =0,

Reag=0 and ReQux)=0.

rank (“,) =2.
u

kyy ook ki, .. kL EC

k= 2 piki= 1
j=1 Jj=1

Re <2 v-j(kj+k;)> =Im (E 7k~ k)

=1 =1

)-o

2.1

2.2)

(2.3)

2.4

(2.5)
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Proof. Set
Viv)  V(v)
Viv) =V(v)
VG 0.0
A=V vaw o..0 |~ @A)
0..0 V(@)
0...0 VG)

where A and A, are 6X2m real matrices. Let

(a1 a(,)A=(00)

Note that (2.5) implies

max (rank (Y), rank (Y,)) =2,
n n
rank (Y) =2,
it

Say,

221

Then, rank A,=4. So, a,=a,=a,=a,=0. By the linear independence of V(ja’) and

V(in'), we get as=as=0. Thus,

rank A = 6.
So, there exist x,, ..., X,,,, X{, ..., X3,, € R such that
1 0
: 0
Xom _ 1
A X, 0
: 1
Xom 0

Putting
ky=x,+ixy, o k= Xy FiXy,,

Lt . 7 [ < 1
ki =x;+ix}, ...k, = x5, +ix;

then gives the result. Q.E.D.
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LEMMA 2.2. Assume that (1.1) holds. Then there exist

81(57 'V), veey Gm(gr 'V) e Cm(sn—l XzZm—l)
such that
Y e®eE =1, 2.6)
j=1

p=

Re Y, 7{O(E, W+O(~E v} =Im D, 7{OLE,V)-O(-£ W} =0, Q.7
J=1 =1

sup {|D{ " O LE, W)|: || = V= 1, 0y +...+a, < C, ()} < C. (2.8)

Proof. Take any (§,v)ES,_;XZ,,_,. Then by (1.1) and Lemma 2.1, there exist
{k(€, v}, and {k(E v)}™ such that

> 0O kE V) = >, 0O KIE V) =1 2.9
=1 j=1
and
Re " 7k, v)+K/(E, v)) = Im > 7(k{(E, V) K/(E, v)) =0. (2.10)
=1 j=1

Furthermore, we can take k,(&, v) and k}(g, v) to be C” in some neighborhood of (€, v).
Then by the compactness of §,_;XZ,,_;, we can define k{(§, v) and k(§, v\ to be C* on
S,-1XZ,,,_, and to satisfy (2.9)-(2.10). Set

O(E,v) = {k(§, v)+k(—&, v)}/2.

Then (2.6)~(2.7) follow from (2.9)-(2.10). Q.ED.

LEMMA 2.3. Let f(x) EL*(R"). Let vEZ, _,. Set

pix) = (O, M Re fB)” W+i@ & MImMAD @, j=1,..om Q11

and

P() = (1(x), ..., Pmlx)).
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Then
V(p(x))-V(v)=0 (2.12)
and
(K-p) (x) = fx). (2.13)
Proof. Applying Lemma 2.A to 6(8)=64Ev), we get ag., and
Qo wx) € C>(S,_,)- Then

D)= Y, 70y ReSX)
Jj=1

Jj=t

+P.V. [ D 7,Q ox=y) x=y|"Re fy) dy

i=1

m
+i D, 7,06, iy Im flx)
j=1

+P.V. | D 7,Q. wmx—) =y Imf(y) dy. (2.14)

J=t

By (2.7) and Remark 2.1, we get

M=

Re
1

m

Vj0g .,y =Re > Qg »¥) =0,
J Jj=1
m

3

Re Y, 7,00, 1y =Re D, i7;Qq,. 1) =0.
Jj=1

j=1
Then the real part of (2.14) is equal to 0, and we get (2.12). (2.13) follows from
(2.6). Q.E.D.

Remark2.2. Let vER"NZ,, ;. Then if i’=p in Lemma 2.1, we can take ki,....k,

to satisfy IE;=kj (j=1,...,m). So, if (1.11) holds, we can take ©/&, v) in Lemma 2.2‘to

satisfy @,{5, v)=04(~§&, v). Furthermore, if f(x) is real-valued, then we can take p(x) in
Lemma 2.3 to be R™-valued.

3. Preliminary Il

Definition 3.1. For a measure u defined on R%*'!, let

eell = sup lel(QW)/ 1],
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where the supremum is taken over all closed dyadic cubes in R" and

o) = {(x,1):xELtE€,I()}.

If ||u||c<+o0,u is said to be a Carleson measure.
Definition 3.2. For f{x) EC(R™), let
IllLipy = sup [fC)—f)I/x—y].
x¥y
For f(x) EC'(R™), let
Wfllipz = 22 1D Fllier-
=1

LEMMA 3.1. Suppose that f(x) has compact support and ||f|[guo<Ci - Then

there exist functions {b/(x)}; and complex numbers {A;};, where I is taken over all
dyadic cubes, such that

fx)="Y, 4;b ), 3.1)
H

supp by = 31, 3.2)

f bx)dx =0, (3.3)

[1Ballips <UD, (3.4)

<1, (3.5)

4

> AL MO, iy
I

where d,, , denotes the Dirac measure concentrated at the point (x,)E€RY" .
Proof. Following Chang-R. Fefferman [5] (see also A. Calderén-Torchinsky [2]),
let p(x) € Z(R™) be real-valued and such that
suppg c {xER": |x| < 1},

fq‘:(&t)zt" dt=1 for any EER"\ {0}.
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Then .
fx)= J; (@*g*xHEtdt
=> fj Gx=y) (@ * )t dtdy
T J Jr
=, b,
where !

T(D) = {(x, D: x €L, tE (D)2, KD)}.

and @ (x)=t""@(x/t). Then,

supp b, 31, f b(x)dx=0 (3.6)
and
ID, byx)| = ‘ J J D, g(x=y) (g% ) )t dtdy| <A,D7", GB.7
U]
where
12
A= c|1|-“2{ [ f g % fO)e " dt dy} (3.8)
Y]
Set

bi(x) = bx)/,.

Then (3.2)-(3.4) follows from (3.6)—(3.8).
Take any dyadic /. Then,

EMJIZ[JI:CZII g * feOP e dt dy
L]

Jel

=ij’ o % f@)F 1 dt dy < C|fllamo ]
o)

by Fefferman-Stein {5] p. 146. Q.E.D.
Remark 3.1. By almost the same argument, we can show

billipe < I 3.9
instead of (3.4).

15—812904 Acta mathematica 148. Imprimé le 31 aot 1982
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Definition 3.3. For {A;}; obtained by Lemma 3.1, set
n= D BHI+25—x )

Li=2"*%

&0 =D, @3Yn,_x).

=0
LEMMA 3.2. With ni(x) and e(x) defined as above, we have
M) S g(x) < Cy,
1) < Cy ,2 x=y|+ D" 0,0,
(X) < Cy 2 p—y[+ 1" e, )

and

o0

> 0,

k=—w

s C3.2’
c

(3.10)
3.11)

3.12)

(3.13)

where O,-, denotes the measure induced by n-dimensional Lebesgue measure on the

hyperplane t=a in R"".

Proof. Since (3.10)—3.12) are easy, we verify only (3.13). Take any dyadic cube /

in R”. Then

o) k=-w Q) k=~ J. y(n=2"*

<C D {1+ =Y, WPV Cl

L: KL)=KD) J:JeL

by (3.5). Take any j=0. Then by the above and (3.10)

f > e f0?,_, < ClH (1+).

QD) k=—oo

Thus, by the Schwarz inequality,

f 2 M) (%) 5,=2-k§C|I|(1+j)”2_

QW k=—

S e .<C f S S R en)
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So

o

> e ™o,

=00

< > @B (1+)" <+ Q.E.D.

c j=0

LEMMA 3.3. Let j be a positive integer. Let {bfx)}r be such that

supp b; < 21, 3.14)
fb,(x)dx=0, (3.15)
1Bl < QUD)™". (3.16)

Then for any {A;};=C and for any f>a>0,

> b

I a<l(D<B

<G 2 QY
L 1

Proof. By (3.14)—(3.16), we get

| f bx) 5,00 dx | < C2"J I (3.17)

if IH=<I(I). For k=0, let G.(I) be the collection of all dyadic cubes such that

IND=27%D and 2In2I+Q.
Then,

J

2 «©
le,b,m dx< c; Wl > W

2
0 I JESD
>
I

C ) D A1 D A2 WIIID by (3.17)
k

J

172 2 12
”2 p—kn+1) (z I,IIIZ 'II) ) (2 ( Z[) MJ') II])
k | c 7 JEG(

e S (Spfin) " (I Swr2n)
k { I 7J

<29 > P Q.E.D.
I

f b (x)b{x)dx ‘

A

A
S

12

A
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LEMMA 3.4, Assume that {b/(x)}; and {A;};=C satisfy (3.14)-(3.16) and

2 A1 O, imp|| =1 (3.18)
I

c

Let a>0 and set

fo)= " Ab®.
I liD<a
Then

“f”BMO = C3,4 21"1.
Proof. Take any cube I (not necessarily dyadic). Set

fix) = > Ayb,(x)

(J: lh<a, IN<27K) and 2InI+Q)

and
F0) =f)—fi(x).
Since |4,|<1 by (3.18),

L -£0)] < 2" (3.19)

for any x,y€I. By Lemma 3.3 and (3.18),

IAIE, < c2% > PP <C2¥1.

{J: <27 and YInix2)

So, by the above estimate and (3.19)

f [F)—f(x )P dx < C227|1. Q.ED.
1

LEMMA 3.5. Let I and p(x) € C'(R") be such that
f px)dx =0, (3.20)

PG| < Iy 1AM+ x—x, ™! (3.21)

D, p@)| < 1D UMD +x—x, )" (3.22)
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for j=1,...,n. Then there exist {ﬁj(x)}f:ocCl(R") such that

PO =, 27D x), (3.23)

=0
suppB;c 21, (3.29)
1BllLip1 < Cs 5 271D, (3.25)
f Bx)dx=0. (3.26)

Proof. By dilation and translation, we may assume x;=0 and K)=2. Let
h(t) € C*(R) by such that

supph = (1/4,3/4), D h(t/2)=1 for t>1.
Jj=t

Set

ho(®) = 1= h(t/2).

j=1

Then

PO = hy(x) p()+ D, hQ7|x]) p(x)

=1

= {ho(IXI)p(xHh(le) > h@ ) po) dy / f h(|y)) dy}
k=1

0

+2 {h(Z”|x|)p(x)

Jj=1

— R x) f >, h2Hy) py) dy / f hQ27*'ly) dy
k=j

+hQ7) | D R o) dy / f h(2"'|yl)dy}

k=j+1

= i)+ B).
j=t
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Since

{27 |x]) POy < C2- (i
and

> k@) p) dy < €27,

k=j
BAx) can be written in the form 27/#*D8(x) where B(x) satisfies (3.24)-(3.26). Q.E.D.
Remark 3.2. If p(x) is a C™-valued function with properties (3.20)—(3.22) and if
V(pG)-Vv) =0

for some vector vEC™\{0}, then by the same argument as above, we can get Cc”-
valued functions {f;(x)};Z, such that (3.23)~(3.26) hold and such that

V(@(x) - V(v)=0. (3.27)

LEMMA 3.6. Let 6(§) € C*(S,_))- Let b(x) and I be such that (3.2), (3.3) and (3.9)
hold. Then,
p(x) = (6(8) B(©))” (x)
satisfies (3.20),

[p(x)] < 5 ((6) U™ /(D +x —x "1, 3.2’
and

D, p(0)| < c3 f(O) K™ /UMD +]x—x,)" 2, (.22
where c3 ¢(0) depends only on (2.4).

Proof. By Lemma 2.A, there exist a,€ C and Q,(x) €C™(S,_,) such that

plx) = agb(x)+P.V. f Qo(x—y) [x—y|7"b(y) dy = p (x)+px).

Clearly, p,(x) satisfies the desired properties.
If x€ 31, then

lp, (0| = ] f {Qy(x—y)x—y|™" = Qplx—x) [x—x,|7"} b(y) dy

< Ccy 1 (0) (D™ Hx—x,)) "D,
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Similarly,

D, po0)] < Ce ((6) IWD)™ x—x,| =2,
If x €31, then

IPz(x)l =

f Qy(x—y) x—y|™" (b(y)~b(x)) dy | < Cc, ,(0).
tx—y|<10n"2(D)

Similarly,
I, p (0] < Ce, (O) D" Q.E.D.
LEMMA 3.7. Let v€C™{0}. Let b(x) and I be such that (3.2), (3.3) and
1blliip2 < Cs4 I 3.9y

hold. Then there exist {B](x)};‘;o such that (3.24)-(3.27) and

(K. Z 2—j(n+l)ﬂj> (x) = b(x) (3.28)

j=0

hold.

Proof. Firstly applying Lemma 2.3 to f=b and v/lv], we obtain p(x)} with
(2.12)~(2.13). By Lemma 3.6 and (2.8), p(x) satisfies (3.20)—(3.22). Then we can apply
Remark 3.2 and obtain {B(x)};_, with the desired properties. Q.E.D.

Remark 3.3. If (1.11) holds, if vER™NZ,, _;, and if b(x) is real-valued, then by

Remark 2.2, we can take {Bj(x) =0 to be R™-valued.

4. Proof of the Main lemma

We may assume
suppf< {x:|x] <1} and ||fllgmo=<C;,C;;- @.1)

Let M be a large positive integer to be determined later and let R>2Y"*? By Lemma
3.1, we have

FO)=" 1,6, 4.2)
1
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where {bfx)}; and {A;}; satisfy (3.2)—(3.5) and (3.9). By (4.1) and (3.8),

=0 if3In {x:|x<}=0

and

21‘, W0 < Cllfl2,.

We inductively construct C™”-valued functions
{gk(x)};;—M——l’ {q)k(x)}:;—M’ {Bl,j(x)}j=0,],2w_; l(I)sZM’

such that

supp Bl,j <21, j ﬁl,j(x) dx=0, ”Bl,j”Lipl = C3_5(2il(1))“,

(K' E 2—j(n+l)ﬁw> ®) = b;(x),
Jj=0

)] < €3y ¢4 (M, R) x) 7, (),
supp @, = {x: |x] <2n"?max (2%, 1)},
00— @) < €l g, (M, R) 2 |x—y]| if [x—y|<27%,
g 1 W=(R,0,...,0),

lg(x)| =R,

M
g —-g_ =D A0 2750g ()—qx),

LKD=2"* j=0
lg, () —g | <C, e, 2 x—y| if [x—y|<27%,
where

C42(M,R) = 2M** 2R,

We temporarily accept this construction. By (4.12), if k=—M, then

M k
g8 = > 42,27 (- > &)
j=0 h=—M

L2M=2l(D=2*

4.3)

4.9

4.5)

(4.6)

4.7)
4.8)
4.9

(4.10)
4.11)

4.12)

(4.13)

(4.14)
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oo d k
e T R LR LTI
j=0 -

L2Mzin=27% j=M+1 I 2M=zin=27*

Il

4.15),—4.16),—(4.17),. (4.18)

By (4.4)-(4.5) and Lemma 3.3, (4.15); and (4.16), converge in L? as k—». By
(4.7—(4.8) and (3.13), (4.17), converges in L' as k—x. Since

”gk_gh”Lw <2R,
2R
le—gds = f 2al{x: [8.0)— 80| > a}| da
0

2R
< J 2a/{|(4.15),—(4.15),| > al3}| da
’ 2R
+ f 2a/{|(4.16),—(4.16),| > a/3}| da
0

2R
+ f 2a/{|(4.17),—4.17),| > a/3}| da
0

<9/|(4.15) — (4. 15)h||iz+9||(4. 16),— (4. 16)h||22+6R||(4. 17,—4. 17),,||'LI
—0, h k— o,
Set

g =g_p_ 0+ lim (g(x)—g_p_ ).

k—w in L2

Then (1.8) holds. By (4.3), (4.5), (4.8) and the second formula of (4.18),
supp (g—(R,0,...,0) = {x: x| <2n"?2M}.

Therefore, (1.9) holds.
By (4.10) and (4.18),

g. = (R,0,...,0)+(4.15),—(4.16),—(4.17),.

Thus, by (4.6),

Kg= D A4b~K (4.16,+(4.17)), (modulo constants).

2M=(n=2*
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Thus, by (4.2)
K- g=1—(4.20)-K-((4.21)+(4.22)) (modulo constants),

where

@200= > 4,6,

K>
@2)= > 2790 N 28, ),
j=M+1 1:2M=1D

“22)= > ¢W.

j=—M

Further, we temporarily accept the following three inequalities:
1(4.20) | gpp0 =< C27M7,
1(4.21)||gpo < C27M,

1(4.22)||gmo < CC5 1 €4 (M, R),

4.19)

4.23)
(4.24)

(4.25)

where the BMO-norm of C”-valued function is the sum of the BMO-norms of its

components, and we conclude the proof of (1.7).
Take any £>0. By taking M large enough, we get

114.20)l|po » 11(4-2Dllpmo < &

Taking R large enough depending on ¢ and M, we get

1(4.22)|| gm0 < €

by (4.14). By the boundedness of K, ..., K,, on BMO(R") and by (4.19),

1F—K - gllmo = (4.20)+ K - ((4.21)+(4.22))|[p0 < Ce.

Therefore (1.7) holds.

The construction of {g,(x)}, {@(x)} and {B, (x)}. We construct these function by

induction. Define g_,,_; by (4.10). Assume that {g,},_ a1 -a k-1, {®u}th=n, . k-1
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and {8, ;} Moz jm0,1,2 have been constructed so that (4.5)-(4.14) hold with some
sufficiently large C4, and R. In particular, g,_,(x) satisfies

[gr-1(x)| =R, @.11y

g )= D < Cy i (028 x—y) if r—y| <274, 4.13y

Applying Lemma 3.7 to v=g,_,(x,) and b(x) for each I with ()=2"*, we get
{B; ;(x)};Zo such that (3.24)~(3.28) hold. Consequently, we have (4.5)—(4.6) and as well

VB, () V(v) =0. (4.26)

Note that

M
> MAi2‘f‘"+"|s,,,-<x>|scZz*ﬂ"“’ > ¥

Ln=2"%  Jj=0 j=0 Lith=27*, dist(x, D<¥~*

=Cn,(x) 4.27)
and that if |x—y|<27%,

M M
> 2R, (0B, 00 < € D, 27D > Wl e—y) 2

Lip=2"%  Jj=0 j=0 LKD=27F, dist(x, =2' 4

< Cn, () 24x—y). (4.28)
If 0sj<M and if §; ;(x)+0, then by (4.13)" and (3.12),
g 10 —gi (x| = CCy 4 2M("+l)£k—1(x) 2¢! pe—x}

for these x and 1. So, by (4.11)' and (4.26),

|V(g,_ (x)/R)- V(B (x)/|B, )| < CC, ;2" PR ¢, (x) (4.29)
for these j, x and 1.
Set
M
h(x) = 2 1122—j(n+1)ﬁl’j(x)
Lip=27*% j=0
and

k(x) = gi—1(x)+h(x).
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By (4.27)-(4.28),
Ih(x)| < Cr(0), (4.30)
th(x)~h(y)| < Cna(x) 2%|x—y| 4.31)
if Jx—y|<2~*. Thus by (4.13)’
k() —kO)| < [g— ()8, ()| +|h(x)—h(y)|
< {C,,27',_,(x)+Cn(0)} 2k |x—y]
< (3/4) Cy , £,(x) 24 x—y| 4.32)
if x—y|<27* and if C,, is large enough. By (4.30) and (3.10),
||k(x)|—R| < C. (4.33)
Since {A;}; in (3.8) are real, by (4.27) and (4.29),
k()| —R|< CR™ {n,(0)+C, 2" Pe,_,(x)} n,(x)

< CC4.1 2M(n+2)R_1£k(X) nk(x)' (434)
Set
2(x) = RK()/ [K(x)]-

Then (4.11) is clear. If R is large enough, then by (4.32)-(4.33),
g0 — g0 < (4/3) [k(x)—k()| < C, , £(x) 2"}x—Y|

provided |x—y|<27*. Thus (4.13) holds.
Set
@i(x) = K(x)—gu(x).
Then (4.12) is clear. (4.8) follows from (4.3). (4.7) follows from |g,(x)|=||k(x)|-R| and

(4.34).
Let

x—y|<27%
Then
@)~ = k()| (k(x)|-R) (k(x)—k(»)) +k() R(k)|—[k)D/ kG- kG)|
= (4.35)+(4.36).
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By (4.32)-(4.33),
[4.35)|< CR'C,  2k|x—|.
On the other hand,
1(4.36)| < 2| [k(x)|—k(») ||

< 2|lgp— () +h(x)|— g, , ) +h() || + 2| |8—1 () +h(x)|—[g,_, ) +hB) ||

=(4.37)+(4.38).
By (4.13)’ and (4.30)

[4.37)| < [h(x)| CC, 2" 'x—y|R'< €C, , R 2x—|.

By the same reason as the estimate of (4.29)

V(@10 +hD))/ [g, ) +BGID - VB, ;0 —B, ,0))/ I8, 0B, ,0)D| < CC, , 24 IR™!
4.39)

if B; ;(x)—P; ;(»+0 and if O0sj<M. Since {4;}; in (3.8) are real,

|(4.38)| < C{| V(h(x)—~h(»)) - V((g-,0)+h())/ |g,_,() + h()]| + [h(x)~h()/R)
< CC, 2D R 2K x—y)|

by (4.28), (4.31) and (4.39). Thus (4.9) holds if C,4 , is large enough, and the induction is
completed.

Proof of (4.23). Since
ad=<cy™

By (4.1) and (3.8), (4.23) is clear.

Proof of (4.24).

oo

[@.2D]go< D, 277D

J=M+1

<C i 27

.BMO J=M+1

DER S

n<2M

by (3.5) and Lemma 3.4.
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Proof of (4.25). By (4.7) and (3.13), for any cube I, (not necessarily dyadic),

1! f > @ |dx<Cie MBI | D, e®ndx
I | k=—log, i) I kz—log, {D)
< CCi,c (M, R). (4.40)
By (4.9), if x,y €1, then
> -G < CCE ¢, (M, R). (4.41)
k<—log, KI)

Thus, (4.25) follows from (4.40)—(4.41).

Proof of Remark 1.3. By (4.10),g_,,_,(x) is R™-valued. Assume thatg, (x) is R"-
valued. Since f(x) is real-valued, {1}, and {b,(x)}, are real-valued. Then by Remark
3.3, for each I with I()=2"%, we can get R™ -valued {6, j(x)};’:o that satisfy (4.5)—(4.6)

and (4.26). Then, from its construction, we see that g;(x) is also R”-valued.

5. Proof of Theorem 1
Take R>C, (6,, ..., 8,) such that ¢ s(8,,...,0,, R)<U/10. Let

I llemo =1
and let suppf be compact. Then by the Main lemma there exists g'(x) such that
If-K-g'llsmo < 15,
llg'll,- =R

and such that supp (g'—(R,0, ..., 0)) is compact.
Since

lim,_  K-(g'-(R,0,...,00)(x) =0,

X—»®

tim_ . K-g(x) exists. Therefore, there exists fi(x) € BMO (R™) such that

(1K g'—fllamo < (1/4)- (1/5) = 1/20
and such that supp f; is compact. Then

”f]”BMO <1/5+1/20 = 1/4.
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By applying the above argument to 4f;, we get g*(x) such that
1fi— K &llpumo =< (1/5) - (1/4) = 1/20,
llg*ll,- = R/4,
and such that supp (g2—(R/4,0, ..., 0)) is compact. Then,

IF~K- (&' +lleso < K &'~ illawoIf: K €llamo
< 1/20+1/20 = 1/10.

By repeating this argument, we get {gf(x)};_, such that
f= KZ g (modulo constants),
k=1

and

> llghl,- <R+R/A+RIB+RI/16+... = 3R/2.
k=1

6. Proof of Corollary 1
Since 0,(&), ..., 8,(&) satisfy (1.1), (), ..., 0,,(€) also satisfy (1.1). Set

KH(x) = (6,8 (&))" (x).
By Theorem 1, for any f(x)€BMO(R"”) with compact support, there exist
81(%), ..., 8m(x) E L(R™ such that
f= i K¥g; (modulo constants), 6.1
=1
and j
é}llgjllg <C46;; -, 0,) Ifllomo- 6.2)
For h(x) € F5(R"), set

u(th)= sup

fflemo=<!

[ ho) T d
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and
)=, IIK;hll,
i=1
where
FoR™) = {h(x) E AR™: h(E)=0 near 0}.
Then,

uh)sC sup

[ifllgmo=<1.fE L™, suppf: compact
i ~

f h(x) {2 K}“gj(x)} dx
=1

j > K h(x)g,(x) dx

< C-v(h) (by (6.2)).

f ho) TG dx

(by (6.1)

=Csup
f

= sup
f

On the other hand,

v(h) = sup

], <1 G=1, o)

f h(x) {2 Krux) }dx
j=1

< Cu(h),

f > K h(0)u,(0) dx
j=1

= sup

since K’j* is a bounded operator from L™ to BMO. Thus, we get
u(h)=v(h)
for any h € (R"). In particular, we get

v(h) = Cl|h, .

(6.3)

Following the argument of [14] pp. 230-231, we can show that the Banach space
B={h(x)ELY(R"): v(h)<+=} equipped with the norm v, is the completion of FR")
with respect to the norm v. If we substitute m=n+1, K;=R; (j=1,...,n) and X, , =1,
then B=H'(R"). On the other hand, (6.3) tells us that if ,, ..., 6,, satisfy (1.1), then the
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Banach space B is independent of the choice of 64, ..., 6,,. Consequently, if (1.1) holds,
then

B=H'(R"
and
U(h) = ”h”HI(Rn)
for any h€B.
References

[1]1 CALDERON, A. P., An atomic decomposition of distributions in parabolic H” spaces. Adv. in
Math., 25 (1977), 216-225.
[2]1 CALDERON, A. P. & TORCHINSKY, A., Parabolic maximal functions associated with a
distribution. Adv. in Math., 16 (1975), 1-63.
[3] CARLESON, L., Two remarks on H' and BMO. Adv. in Math., 22 (1976), 269-277.
[41 — An explicit unconditional basis in H'. Buil. Sci. Math., 104 (1980), 405-416.
[5] CHANG, S.-Y. & FEFFERMAN, R., A continuous version of duality of H' and BMO on the
bidisc. Ann. of Math., 112 (1980), 179-201.
[6] COIFMAN, R. & DAHLBERG, B., Singular integral charcterization of nonisotropic H” spaces
-and the F. and M. Riesz theorem. Proc. Symp. Pure Math., 35 (1979), 231-234,
[7]1 CoilFMAN, R. & WEISS, G., Extensions of Hardy spaces and their use in analysis. Bull Amer.
Math. Soc., 83 (1977), 569-645.
[8] FEFFERMAN, C. & STEIN, E. M., HP spaces of several variables. Acta Math., 129 (1972),
137-193.
[9] GANDULFO, A., GARCIA-CUERVA, J. & TAIBLESON, M., Conjugate system characterization
of H': counter examples for the Euclidean plane and local fields. Bull. Amer. Math.
Soc., 82 (1976), 83-85.
[10] JANSON, S., Characterization of H' by singular integral transforms on martingales and R".
Math. Scand., 41 (1977), 140-152.
[11] JoNES, P. W., Constructions with functions of bounded mean oscillation. Ph.D. Thesis.
University of California, 1978.
[12] — Carleson measures and the Fefferman-Stein decomposition of BMO (R). Ann. of Math.,
111 (1980), 197-208.
[13] — L~ estimates for the § problem in a half-plane. To appear in Acta Math.
[14] StEIN, E. M., Singular integrals and differentiability properties of functions. Princeton,
1970.
[15] UcHiyama, A., A constructive proof of the Fefferman-Stein decomposition of BMO on
simple martingales. To appear in the Proceedings of the conference in honor of Antoni
Zygmund, held at the University of Chicago, 1981.

Received November 20, 1981

16—812904 Acta mathematica 148. Imprimé le 31 aotit 1982



