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In [13], R.M. Kashaev defined a family of complex-valued link invariants indexed 

by integers N>~2 using the quantum dilogarithm. Later he calculated the asymptotic 

behavior of his invariant, and observed that  for the three simplest hyperbolic knots it 

grows as exp(Vol(K)N/2rr) when N goes to infinity, where Vol(K) is the hyperbolic 

volume of the complement of a knot K [14]. This amazing result and his conjecture that  

the same also holds for any hyperbolic knot have been almost ignored by mathematicians 

since his definition of the invariant is too complicated (though it uses only elementary 

tools). 

The aim of this paper is to reveal his mysterious definition and to show that  his in- 

variant is nothing but  a specialization of the colored Jones polynomial. The colored Jones 

polynomial is defined for colored links (each component is decorated with an irreducible 

representation of the Lie algebra sl(2, C)). The original Jones polynomial corresponds to 

the case that  all the colors are identical to the 2-dimensional fundamental representation. 

We show that  Kashaev's invariant with parameter N coincides with the colored Jones 

polynomial in a certain normalization with every color the N-dimensional representation, 

evaluated at the primitive N th  root of unity. (We have to normalize the colored Jones 

polynomial so that  the value for the trivial knot is one, for otherwise it always vanishes.) 

On the other hand, there are other colored polynomial invariants, such as the gen- 

eralized multivariable Alexander polynomial defined by Y. Akutsu, T. Deguehi and 

T. Ohtsuki [1]. They used the same Lie algebra sl(2, C) but a different hierarchy of 

representations. Their invariants are parameterized by c + l  parameters: an integer N 
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and complex numbers pi ( i=  1, 2, ..., c) decorating the components, where c is the number 

of components of the link. In the case where N = 2 ,  their invariant coincides with the 

multivariable Alexander polynomial, and their definition is the same as that  of the second 

author [22]. Using the Akutsu-Deguchi-Ohtsuki invariants we have another coincidence. 

We will show that  if all the colors are � 8 9  then the generalized Alexander poly- 

nomial is the same as Kashaev's invariant since it coincides with the specialization of the 

colored Jones polynomial as stated above. Therefore the set of colored Jones polynomials 

and the set of generalized Alexander polynomials of Akutsu-Deguchi-Ohtsuki intersect 

at Kashaev's invariants. 

The paper is organized as follows. In the first section we recall the definition of 

the link invariant defined by Yang-Baxter  operators. In w we show that  the Akutsu-  

Deguchi-Ohtsuki invariant coincides with the colored Jones polynomial when the colors 

1 ( N - 1 )  by showing that  their representation becomes the usual representation are all 

corresponding to the irreducible N-dimensional representation of sl(2, C). In w we 

show that  if we transform the R-matrix used in the colored Jones polynomial by a 

Vandermonde matrix then it has a form very similar to Kashaev's R-matrix. In fact, it 

is proved in w that  these two -~-matrices differ only by a constant. We also confirm the 

well-definedness of Kashaev's invariant by using this fact. 

In the final section we propose our "drSm i Djursholm". We use M. Gromov's simpli- 

cial volume for a knot to generalize Kashaev's conjecture. Observing that  the simplicial 

volume is additive and unchanged by mutation, we conjecture that  Kashaev's invari- 

ants (= specializations of the colored Jones polynomial -- specializations of the Akutsu-  

Deguchi-Ohtsuki invariant) determine the simpliciai volume. If our dream comes true, 

then we can show that  a knot is trivial if and only if all of its Vassiliev invariants are 

trivial. 
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1. P r e l i m i n a r i e s  

In this section we recall the definitions of Yang Baxter operators and associated link in- 

variants. If an invertible linear map R: c N| c N-+ C N| C N satisfies the following Yang- 

Baxter equation, it is called a Yang-Baxter  operator: 

( R|174 R@id) = (idNR)( RNid )(id| 

where id: cN-+c N is the identity. If there exists a homomorphisra #: c N - - - + C  N and 

scalars a,/3 satisfying the following two equations, the quadruple S=(R, #, a,/3) is called 

an enhanced Yang-Baxter  operator [27]: 

(#@#)R = R(#N#) ,  

Sp2(R+l(id|  = a~:1/3 id, 

where Spk: End(C|  |  is the operator trace defined as 

N--1 

SPk( f ) ( v i~ |174174  ~ )=  E r ..... Jk--l'J[v ~ V  ~ ~V" - J i t , i 2 , . . . , i k - l , j  \ J l  ~ J2 ~ ' ' ' ~  J k - 1 ] '  

j l , j 2 , . . . , j k - -  l , j=O 

where 
N - 1  

f(v~l|174174 = E fJl,J2il,i~,...,ikjk(Vjl|174 
j l , J2  ,... , j k  =0 

for a basis {Vo,Vl, ...,vlv-1} of C N. 

For an enhanced Yang-Baxter  operator one can define a link invariant as follows [27]. 

First we represent a given link L as the closure of a braid ~ with n strings. Consider the n- 

fold tensor product ( c N )  | and associate the homomorphism bR(B): (cN)| | 

by replacing a~ 1 (the usual i th  generator of the braid group) in ~ with 

id|174 |177174174  
�9 y �9 ~ �9 

i--1 n - - i - -1  

Then taking the operator trace n times we define 

Ts(~) = a-w(~)/3-nSpl(Sp2(... (Spn(bR(~)#| 

where w(~) is the sum of the exponents. Then Ts(~) defines a link invariant, and we 

denote it by Ts(L). 
To define the (generalized) Alexander polynomial from an enhanced Yang-Baxter  

operator we have to be more careful, since Ts always vanishes in this case. If the homo- 

morphism 

Ts, I(~) = a-w(~)fl-~Sp2 (Sp3(... (Spn(bs(~)(id|174 E End(C N) 
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is a scalar multiple of id and 

Spl(#) Ts, I(~) = Ts(~) 

for any ~, then the scalar defined by Ts, l(~) becomes a link invariant (even if Spl(p,)=0) 

and is denoted by Ts, I(L). Note that this invariant can be regarded as an invariant of 

(1, 1)-tangles, where a (1, 1)-tangle is a link minus an open interval. 

2. T h e  i n t e r s e c t i o n  o f  t h e  g e n e r a l i z e d  A l e x a n d e r  

p o l y n o m i a l s  a n d  t h e  co lo r ed  J o n e s  p o l y n o m i a l s  

In [1] Akutsu, Deguchi and Ohtsuki defined a generalization of the multivariable Alexan- 

der polynomial for colored links. First we will briefly describe their construction only for 

the case where all the colors are the same according to [6]. 

Fix an integer i ~ 2  and a complex number p. Put  s=exp(Trv/L-1/N) and [k]= 

(sk--s-k)/(S--S-1) for a complex number k. Note that  [N]=0 and [N-k]=[k]. 
Let Uq(sl(2, C)) be the quantum group generated by X, Y, K with the relations 

K ~ _ K - 2  
K X  sXK,  K Y = s - l Y K ,  X Y - Y X =  

8--8--1 

Let F(p) be the N-dimensional vector space over C with basis {fo, f l , . . . , fN-1}.  We 

give an action of Uq(sl(2, C)) on F(p) by 

X(fi)  = V/[2p-i+ l][i] fi-1, 

Y(fi) = ~/[2p-i][i+ l] fi+l, 

K(fi)  = sP-ifi. 

Using DrinfeVd's universal R-matrix given in [7], we can define a set of enhanced Yang- 

Baxter operators SA(p) with complex parameter p. Then Akutsn-Deguchi-Ohtsuki 's  

generalized Alexander polynomial is defined to be TSA(p),I by using the notation in the 

previous section. We denote it by ePN(L,p ) for a link L. Note that  if N = 2  the invariant 

(I)2 (L, p) is the same as the multivariable Alexander polynomial [22]. 

Next we review the colored Jones polynomial at the N t h  root of unity. There is 

another N-dimensional representation of Uq(sl(2, C)), corresponding to the usual N- 

dimensional irreducible representation of sl(2, C). Let E be the N-dimensional complex 

vector space with basis {e0, el, ..., eN-1}, and define the action of Uq(sl(2, C)) by 

X(s i) = [i+l]ei+l, 

v ( e d  : 

K(ei) = si-(N-1)/2e~. 
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(See for example [18, (2.8)].) By using Drinfel'd's universal R-matrix again we have 

another enhanced Yang-Baxter operator Sj .  Then the invariant Ts~,I coincides with 

the colored Jones polynomial of a link each of whose component is decorated by the N- 

dimensional irreducible representation evaluated at t=s2=exp(27rvfL1/N).  It is clear 

from the actions of X and Y that  the representation remains irreducible after the eval- 

uation. Note that  before evaluating at s 2, we have to normalize the colored Jones poly- 

nomial so that its value of the trivial knot is one, for otherwise the invariant would 

be identically zero. This is well-defined since the colored Jones polynomial defines a 

well-defined (1, 1)-tangle invariant ([18, Lemma (3.9)]). We will denote Tsj,1 by J Y "  

Now we put p = � 8 9  in the Akutsu-Deguchi Ohtsuki invariant. Then since 

I N -  k] = N ,  we have 

x ( f d  = [i lk_l,  

Y(f , )  = [ i+ l l f /+ l ,  

K(fi)  = s(X-1)/2-ifi, 

and so the two representations F(�89 ( N - 1 ) )  and E are quite similar. In fact, if we ex- 

change X and Y, and replace K with K -1, then these two coincide. (This automorphism 

is known as the Cartan automorphism [16, Lemma VI.1.2].) Therefore they determine the 

same Yang-Baxter operator and the same link invariant, that  is, we have the following 

theorem. 

THEOREM 2.1. The Akutsu Deguchi-Ohtsuki invariant with all the colors p= 

�89 ( N - 1 )  coincides with the colored Jones polynomial corresponding to the N-dimensional 

irreducible representation evaluated at exp(27rv/L~/N). More precisely, we have 

ON(L, � 8 9  =JN(L) 

for every link L. 

Remark 2.2. After finishing this work we were informed by Deguchi that  it was 

already observed in [5] that  the R-matrices given by F ( � 8 9  and E coincide. 

v 

3. R - m a t r i x  for t h e  co lored  J o n e s  p o l y n o m i a l  a t  t h e  N t h  roo t  of  u n i t y  

Let R j  be the R-matrix shown in [18, Corollary (2.32)], which is the (N2x N2)-matrix 

with ((i, j), (k, l))th entry 

min(N--l--i , j)  (S--s--l) n [i+n]! [ N - l + n - j ] !  

(Rg)k~ = E 5Z,i+~Sk,j-n In]! [i1! I N -  1 - j ] !  
n : 0  

X 8 2 ( i - ( N - 1 ) / 2 ) ( j - ( N - 1 ) / 2 ) - n ( i - j ) - n ( n + l ) / 2 ,  
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where [k]! = [k] [k-1]  ... [2][1]. Note that  o u r  matrix R j  corresponds to R in [18, Defini- 

tion (2.35)]. This matrix is used to define an enhanced Yang-Baxter  operator and the 

link invariant JN described in the previous section. 

The aim of this section is to transform it to a matrix similar to Kashaev's/~-matrix.  

Since Rj corresponds to the intersection of two link invariants, the colored Jones 

polynomials and the generalized Alexander polynomials, the authors have been looking 

for its special property. On the other hand, Kashaev's ,~-matrix and Rj have the same 

Jordan canonical form for N = 2  and 3. So we expected that  in fact they are congruent 

for any N after several calculations using Maple V. 

Let W and D be the (N•  with ( i , j ) t h  entries W]=s 2ij and D~= 

5i,js (N-1)i respectively, where 5<j is Kronecker's delta. We will calculate the product 

Rj=(W|174174174 with id the identity ( N x N ) - m a t r i x ,  

and show the following proposition. 

P R O P O S I T I O N  3 . 1 .  

[d-c-1]![N-l+c-a]! 
~(a'b'c'd)(-1)a+b+l [d-b]![b-a-1]! if d>~b>a>~c, 

[b-d-1]![g-l+c-a]! 
e(a'b'c'd)(-1)a+c [c-d]![b-a-1]! if b>a>~c>~d, 

[ R "~ cd 
\ J]ab = Q(a,b,c,d)(_l)b+d[N-l+b-d]![c-a-1]! 

[c-d]![b-a-1]! if c>/d>~b>a, 

[g-l+b-d]![a-b]! 
o(a'b'c'd)(-1)c+d [c-d]![a-c]! if a>c>~d>>.b, 

0 otherwise, 

where o(a, b, e, d) =s -N2/2+l/2+c+d-2b+(a-d)(c-b) IN-  1]! (s-  s-1)2(N-1)/N 2. 

We will prepare a lemma to prove the proposition. 

For integers a and/~ with 0~<a~<N-1 and a+/3  even, put 

N - 1  

i = 0  

where 
Ix]! 

Note that  the summation in S(c~,/~) is essentially from 0 to N - 1 - c ~ .  Then we have 

LEMMA 3.2. 

S(o~,/~) = 8-(N-- l -a)(N--a+2res((a--~) /2)) /2(S--S--1)N-l -e~ [ N -  1 - a + r e s ( ( a - ~ ) / 2 ) ] !  
[ res ( (a -~) /2) ] !  ' 

~he~-e res(~) e {0, I, 2,..., N- i } U the ~e~idue ~od~to N. 
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Proof. We will show 

N - ( ~ - I  

S(c~,/3) = H ( 1 - s  5 -~-2 j )  = ( 1 - J - ~ - 2 ) ( 1  - s  ~-~-4)  ... (1--S/~+~-2N+2). 
j = l  

Then the required formula follows immediately. 

We use the quantized Pascal relation 

Then since 

[~ =,or ~ i [ ( ~ + i - 1 ]  
[ i - 1  j + s [  i ] �9 

N - 1  ro+ l I [~ '] 
s(~'9)=s-~ ~ s~ L i - 1  + E s(~+*)i " 

i = 0  i = 0  

(putting k = i - 1  in the first term) 

N - 2  

k = - I  

we have the recursive formula 

S(c~-1, f l+ l )  = ( 1 - s # - ~ ) S ( ~ ,  fl). 

Now the required formula follows since S ( N - 1 ,  7)=1  for any integer 7. [] 

{l/lZ~;s~l/lz'~ef --e2ae+2bf ( i d |  k(~f l 8(N-1)l,  Proof of Proposition 3.1. Since t . . . . .  ]ab--O , , , 

( id |  1 )gh = 5o,i 5h,j S-(N- 1)j, ~,,r~az- 1 ~,,~uz- 1 Jgh _ o-2Cg-2dh//,,Ar2 , we have 

N-1  min(N- l - i , j )  
2 ~ cd 

Y (t~J)ab = ~ E ~e'k~f'l~g'i~h'j~l'i+n(~k'j--n 
i,j,k,l,e,f ,g,h=O n = 0  

xs2ae+2bf_2cg_2dh+(Y_l)(l_j) ( 8 - - S - 1 )  n [i+n]! [ N - l + n - j ] !  
[n]! [ i]!  [ N - I - j ] !  

X 82( i - (N-1) /2 ) ( j - (g -1) /2 ) -n ( i - j ) -n (n+l ) /2  

N-1  min(N--l--i,j) 
= ~ E s(N-1)2/28(2b-2a+N)n-n2/2-3n/2+(2a--2d+n+2)j+(2b--2c+2j--n)i 

i,j=O n=O 

[ N - l + n - J ] !  [ n : i  1 • ( s - s - 1 ) n  [ N -  l - j ] !  
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N--1 ~-.min(N-l--i,j) N--1 N-1 x-,N--l-n 
Ej=n Z.~,i=O Since the  s u m m a t i o n  Y~i,j=o z-.~=o is the same  as ~ ,~=o we 

have 

N - 1  N - 1  

N2 (Rd)ab cd 8(N-1)2/2 E E s(2b-2a+N)n-n2/2-an/2+(2a-2d+n+2)J(s-- S-1)n 
n = 0  j=n 

[ N -  1 + n - j ] !  S(n, 2(b-c+j) -n) 
x IN- l - j ] !  

with 
N - - 1  

i = 0  

N-1 V,N-I-k and we have Replacing j - n  wi th  k, the  s u m m a t i o n  turns  out  to  be  ~ k = o  Z-~n=O , 

N - 1  
N21~ "~cd o(N-1)2/2 82(a-d+l)k[N_ I'ltJJab~-~ E 1-k l !X(k) ,  

k=O 

where 

N-l--k 
X ( k ) =  Z (--1)'~s2(b-d)n+kn+'~('~+l)/2 (8--S--1)n 

IN- 1- k-n]! 
n ~ O  L J 

S(n, 2(b-c+k)+n). 

From L e m m a  3.2, we have 

X(k) = (8--8-1)N-18 -N(N-1)/2-res(c-b-k)(N-1) 

N-l--k 
X E 8(2b-2d+k+res(c--b--k))n 

n = 0  

[N-l-n+res(c-b-k)]! 
[N - 1 - k - n ] !  [res ( c -  b -  k)]!" 

Pu t t i ng  i = N - l - k - n  we have 

X(k) = (8--8-1)N--1s-N(N--1)/2+2(b-d)(N--1)--k2-kres(c-b--k)+(N--1-2b+2d)k 

[k+res(e-b-k)]V 
x Ires(c-b-k)]! "S(k+res(c-b-k),2d-2b-k-res(c-b-k)) 

= (8__8--1)N-18-N(N--1)/2+2(b-d)(N--1)-k2--kres(c--b--k)+(N-1-2b+2d) k 

[k+res(c-b-k)]! 
X 

[res(c-b-k)]! 

X 8 -(N-l-k-res(c-b-k))(N-k-res(c-b-k)+2res(k+b-d+res(c-b-k)))/2 

X(S_8-1)N-l--k-res(c--b-k) 

[N - 1 - k - r e s ( c -  b -  k) + r e s ( k  - d +  b +  r e s ( c -  b -  k))]! 

[ r e s ( k -  d+b+res(c- b- k))]! 
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Therefore X(k)  vanishes unless res(c- b -  k) + k = res(c- b), and in this case 

X(k)  = (8--8-1)2(N-1)-res(c-b)(--1) res(c-b)+res(c-d)+l 

X 8 -N2-2b+2d+(res(c-b)+l)(-res(c-b)+2res(c-d))/2 

[N - 1 - res(c-  b) + res(c- d)]! • 
[res(c-d)]! 

x ( -1 )ks  (2d-2b . . . .  (c-b)-l)k Ires(c-b)]! 
[res(c-b)-k]! '  

noting that res(x+res(y))=res(x+y) for any x and y. 
Then we have 

res(c- b) 
N2r5 .~r _ o ( N -  1)2/2 82(a--d+l)k ~ J J a b - ~  E I N - l - k ] !  

k=O 

x (S--S-t)2(n-1)-res(c-b)(--1) res(c-b)+res(c-d)+l 

X 8 -N2-2b+2d+{res(c-b)+l}{-res(c-b)+2res(c-d)}/2 

[ N -  1 - r e s ( c -  b) +res (c-  d)]! 
X 

Ires(c-d)]! 

• Ires(c-b)]!  
Ires(c-b)-k]! 

-- (_ 1)res(c-b)+res(c-d) 

X 8 -N2/2~-l/2-2b+2d+{res(c-b)§ res(c-d)}/2 

x ( s - s - l )  2(N-1)-res(c-b) [ g - l - r e s ( c - b ) + r e s ( c - d ) ] !  IN- l ] !  
Ires(c-d)]! 

res(c--b) 
X E 8{2a-2b-res(c-b)+l+N}k[N--l--re~ (e-b)-Fk] 

k=0 

= (_l)res(c--b)+res(c-d) 

X S -N2/2-F1/2-2b+2d-F{res(c-b)+l}{-res(c-b)+2res(c-d)}/2 

X (8--  8 - 1 ) 2 ( N - 1 ) - r e s ( c - b )  [ N -  1 -- r e s ( c -  b) + r e s ( c -  d)]!  [N-  1]! 
[res(c-d)]! 

x S ( N - 1 - r e s ( c - b ) ,  N + l + 2 a - 2 b - r e s ( c - b ) )  

= (_l)res(c-b)+res(c -d) 

X 8 -N2/2+l/2-2b+2d+res(c-d){res(c-b)-F1}-res(c-b){res(c-b)+res(b-a-1)+l} 

X (8--  8--1) 2 (N-  1 ) I N -  1]! 

x [res(c-b) + r e s ( b - a -  1)] ! I N -  1 -  res(c-  b)+ res(c-d)]! 
[res (c -  d)]! [res (b-  a -  1)1! 
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Now suppose that  c>~b. In this case res(c-b)=c-b, and so 

N2(l~J)Cdb -----(__l)r 

X 8 - c T d - ( a - d ) ( c - b ) + r e s ( c - d ) ( c - b + l ) - ( c - b ) { c - b + r e s ( b - a - 1 ) q - 1 }  

[c-b+res(b-a- 1)] ! I N -  1 -c+b+res(c-d)]! 
X 

[res(c-d)]! [res(b-a- 1)]! 

If c-d<O then [N-l-c+b+res(c-d)]! vanishes, and so we will assume c>~d. Then 

N 2 t  ~, ~cd 
~xtJ )ab __ ( _ l  ) b+ds (c_b ) {b_a_ l_res (b_a_ l )  } [c-b+res(b-a-1)]! [N- l  +b-d]! 

p(a,b,c,d) [c-dl![res(b-a-1)]! ' 

and the conclusion follows immediately in this case noting that  this vanishes unless d ~> b. 

Next we assume that b>c. In this case res(c-b)=N+c-b, and so 

N 2 t  Rj '~cd 
/ab 

~(a, b, c, d) 
__ (__ l )N+c-b+res (c -d )  

X 8 - c + d - ( a - d ) ( c - b ) + r e s ( c - d ) ( N + c - b + l ) - ( N + c - b ) { N + c - b + r e s ( b - a - 1 ) + l }  

X 
{N +c-b+res(b-a-1)}! [-1-c+b+res(c-d)]! 

[res(c- d)]! [res(b- a - 1)]! 

This vanishes unless b - a - l ~ > 0 ,  and so we assume b-a-l>~O. Then 

N 2 1 ~  ~cd I ztJ}ab _ (_ l )a+CS(C_b+l){d_c+res(c_d)  } [N+c-a-  1] ! [ -1 -  c+b+res(c-d)]! 
o(a, b, c, d) Ires(c-d)] ! [ b - a -  1]! 

Then the conclusion follows immediately noting that this vanishes unless a>~c. 
This completes the proof. [] 

v 

4. K a s h a e v ' s  R - m a t r i x  and  his invariant  

In this section we will calculate Kashaev's R-matrix given in [13], and prove that  it 

coincides with the matr ix  R j  up to a constant given in the previous section. 
n i We prepare notations following [13]. Fix an integer N~>2. Put  ( x ) n = l - l i = l ( 1 - x )  

for n~>0. Define 0: Z--+ {0,1} by 

0 (n )=  { 1 if N > n ~ > 0 ,  

0 otherwise. 

For an integer x, we denote by res(x)E {0, 1, 2, ..., N - 1 }  the residue modulo N. 
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Now Kashaev's R-matrix RK is given by 

(RK~ 
Cd _ Nql+c_b+(a_d)(c_b) O ( r e s ( b - a - 1 ) + r e s ( c - d )  ) O ( r e s ( a - c ) + r e s ( d - b )  ) 

]ab -- (q)res(b-a- 1 ) ( q - - 1 ) r e s ( a - c ) ( q ) r e s ( c - - d ) ( q - - 1 ) r e s ( d - b )  

with q=s 2. Note that  we are using PoR with R defined in [13, 2.12] rather than R itself, 

where P is the homomorphism from c N @ c  N t o  c N @ c  N sending x| to y| 
We will show the following proposition. 

P R O P O S I T I O N  4 . 1 .  

)~(a,b,c,d)(_l)a+b+l [ d - c - i ] !  [N-l+c-a]!  
[d-b]![b-a-1]! 

A(a, b, c, d ) ( -  1) a+~ [b-d-  1]! I N -  1 + c - a l l  
[c-dl![b-a-1]! 

R ~cd 
K&b = ;~(a,b,c,d)(_l)b+d [N-l+b-d]![c-a-1]!  

[c-d]![b-a-1]! 

A(a, b, c, d ) ( -  1) c+d [ N -  l+b-d]![a-b]! 
I t -  [a - c]! 

0 

g d ) b > a ) c ,  

~ b > a ) c ) d ,  

g c ~ d ~ b > a ,  

ifa>~c>~d>>.b, 

otherwise, 

where )~(a, b, c, d)=sNe/2-N/2+2+c+d-2b+(a-d)(c-b)(8--S-1)l-NN/([N--1]!) 2. 

Proof. From the definitions of 0 and res, there are 16 cases to be considered according 

to the signs of b - a - l ,  c-d, a - c  and d-b: 

(A0) b-a-l>~O, (A1) 0 > b - a - l ,  

(B0) c-d~O, (B1) O>c-d, 

(C0) a-c>~O, (Cl) O>a-c, 

(DO) d-b>>.O, (D1) O>d-b. 

For the case (Ai) & (Bj) & (Ck) & (D/), we see that 

res(b-a-1)+res(c-d)+res(a-c)+res(d-b) = (i+j+k +l)N-1 .  

Therefore if i+j+k+l)2 ,  then (RK)Ca d vanishes since if two integers x and y satisfies 

x + y ) 2 N - 1 ,  then one of them is bigger than N. The case (A0) & (B0) & (CO) & (DO) is 

empty, since we have b > a ) c ) d  from (A0), (B0) and (CO), which contradicts (DO). 

Therefore we see that (RK)~a d vanishes except for the following four cases, which 

have already appeared in Proposition 3.1: (i) d)b>a)c ,  (ii) b>a)c)d ,  (iii) c ) d ) b > a  
and (iv) a ) c ) d ) b .  
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We will only prove the first case because the other cases are similar. Noting tha t  

(q)n  ~- ( - - 1 ) n s n ( n + l ) / 2 ( S - - 8 - - 1 )  n [n]! ,  

( q - 1 ) n  ~--- s - n ( n + l ) / 2 ( S - - 8 - 1 )  n[~]!,  

we have 

( RK )Ca d = (_ l )a+b+ l N s2+c- 2b+d+(a-d)(c-b)+N2/2- N/2 ( S_ S-1)--N + l 

1 
X 

[d-b] ! [b-a-11! [N+e-dl!  [a-el! 

since r e s ( b - a - 1 ) = b - a - 1 ,  res(a-c)=a-c ,  r e s ( c - d ) = N + c - d  and res(d-b)=d-b.  
Now since [N-n] = [n], we see that  

1 1 [d -c -1] ! [N+c-a-1] !  
[d-b]![b-a-1]![N+c-d]![a-c]!  = ( I N - l ] )  2 [b-a-1]![d-b]! 

Therefore 
(RK) :d = A(a, b, c, d)(-1) a+b-bl  [d-c--1] ! I N - l + c - a ]  ! 

[d-b]![b-a-1]! 

as required. [] 

Therefore RK and R j  are equal up to a constant depending only on N. More 

precisely we have 

PROPOSITION 4.2. Let RK and Rj be the R-matrices defined as above. Then we 
have 

RK = s-(N+I)(N-3)/2(W|174174 -1) 

for any N >~ 2. 

Proof. From Propositions 3.1 and 4.1, we only have to check tha t  

o(a, b, c, d) _ s (N+1)(N_3) /2"  
A(a,b,c,d) 

We have 
p(a,b,c,d) 1 Ns(N-3)/2 (S--S-1)N-I[N-- )3, 
)~(a,b,c,d)--(-  ) ( N 1]! 

but this coincides with S ( N + l ) ( N - 3 ) / 2  as shown below. 

We have 

N - 1  

( s - s - l )  y - 1  I N - l ] !  = I - I  ( 2v/L~ sin(kTr/N)) 
k = l  

N - 1  

= ~--1N-1 I I  (2sin(kTc/N)). 
k = l  
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On the other hand, from [9, 1.392-I, p. 33], we have 

N-I 

sin(Nx) = 2 N-1 H sin(x+kTr/N). 
k=O 

Dividing by sinx and taking the limit x-+O, we have 

N - 1  

N = I I  (2sin(kit/N)). 
k = l  

Therefore we have 

(_I)Ns(N-3)/2((S--S-1)N~NI[N--1]')3.=(_I)Ns(N-3)/2X/'-~a(N-1) 

: 8N2+(N-3)/2+3(N-1)N/2 
=s(nT1)(N--3)/2, 

completing the proof. [] 

We will show that the matrix RK also satisfies the Yang-Baxter equation. To do 

that we prepare a lemma. 

LEMMA 4.3. The matrices D and D -1 can go through Rj  in pair, that is, the 
following equality holds: 

(id|174 -1) = (D-l|174 

Pro@ It is sufficient to show that  (D|174 Since Da=Si,js (N-1)j, 

( (D| = E (~a'k(~b'ls(N--1)k s(N--1)l(RJ):J= s(N--1)(k+l)(lt~j)ikJ 
a,b 

and 

(RJ(D| = E (Sa,i(Sb,js(N-1)is(N-1)J(Rj)ak~=s(N-1)(i+J)(RJ); j" 
a,b 

But these two coincide since (Rj)~ vanishes unless k+l=i+j (the charge conservation 

law), completing the proof. [] 

Using Lemma 4.3 we can give another proof of 
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PROPOSITION 4.4 (Kashaev). Kashaev's R-matrix RK satisfies the Yang-Baxter 
equation, that is, 

( Rg| |  )( Rg|  ) = (id| ) ( Rneid)( id |  ). 

Proof. From Proposition 4.2, we have 

s 3(N+1)(N-3)/2 (RK | id) (idQRK) (RK | 

= (WQW|174174174 

x ( idQWQW)(id|174174174 -1) 

x (WQWQid)(idQD|174174174 

= (W|174174 

x (id|174174174174 

x (R j |174174174174  

= (W|174174174174174174174174174 -1) 

x (R j |174174174174  

= (W|174174174174174174 

• ( i d |174174174  

Similar calculations show 

s3(N+D(N-a)/2(id|174174 = (W|174174174 v-) 

x ( id |  | (id|  

x ( i d | 1 7 4 1 7 4 1 7 4  

From the Yang-Baxter equation for Rj  these two coincide, completing the proof. [] 

To show that Rj  and RK define the same link invariant, we will construct enhanced 

Yang-Baxter operators by using R j  and RK. 
Let # j  be the (NxN)-matr ix  with (i,j)-entry (#j)ij=Si,js2~-N+l. Then the qua- 

druple S j  = (R j, p j, s (N2-1)/2, 1)  is an enhanced Yang-Baxter operator since the follow- 

ing lemma holds. 

LEMMA 4 . 5 .  

(#j  |  = R j ( # j Q # j ) ,  
N--1  

E • \~ij ((R j) (idQ#j))kj : (8(N2-i)/2)• 
j = 0  
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Proof. The proof for the first equality is similar to that  of Lemma 4.3. 

For the second equality we first note that  R j  defines an invariant of (1, 1)-tangles. 

Therefore the right-hand side equals a scalar times 5i,k, and it suffices to show 

N--1 
E q-1 �9 N - l , g  (N2--1)/2 4-1 ( ( R  j )  ( l d |  j = (s ) . 
j=0  

The equality for Rd follows from 

R id N - 1  j N--1 j 2 j - N + I  

a,b 

~- [[RJJN_1,j~N--1'j 82j--Nd-l: ~j,N 18(N-1)2/282j-N4-1 :~j,N--18(N2-1)/2. 

To show the equality for R j  1 we use the explicit formula 

min(N--l--j,i) 
{i:~_l~ij V~ (8--8--1) n [ j+n]!  [ g - l + n - i ] !  
\~J  ]kl= ~ (~l'i--n(~k'j4-n [n]! [j]! [ N - i - - i ] !  

n : 0  

X (--1)n8 -2(i-(g-1)/2)(j-(g-1)/2)-n(i-j)+n(n+l)/2, 

which can be checked by direct calculation. A similar calculation shows 

(Rgl(id|176 = 5j,o 8 -(N2-1)/2 , 

and the proof is complete. [] 

Next we will give a Yang-Baxter  operator using RK. Let PK be the ( N x N ) - m a t r i x  

with ( i , j ) -ent ry  (pK)}=--s6i,j+l. Then we have 

LEMMA 4.6. 

WDpjD-1W -~ = #K. 

Proof. Since  W ;  "~82aj, ~a IDb ----'~'a,o" ~e(N- 1)b, (pj)~=Sb,c 82c-N+1, [lJ/r~--l~d)c=Oc, ~--(N-- 1)d 

and ~W - ~  --8-2di/N ]d-- / , w e h a v e  

N--1 
1 (WD#jD-1W-1)} = ~  (-s) E 82(j--i+l)a=--S~i,j+l, 

a=O 

completing the proof. [] 

Combining Lemmas 4.5 and 4.6, we show that  SK=(RK,#K,--s, 1) is also an en- 

hanced Yang-Baxter  operator. 
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LEMMA 4 . 7 .  

(#K@PK )RK = RK(#K| ), 
N-1 
E •  \~ij ((RK) (id@#K}}kj = (--s)• . 
j = 0  

Proof. 
follows immediately from that  in Lemma 4.5. 

The second equality follows from 

(RK)• 

= sT(g+l)(N-3)/2(W@W)(id|177174174 

completing the proof. 

Note that  the lemma can also be proved by using [13, (2.8) and (2.17)]. 

Now we see that  Sj  and SK define the same link invariant by using 

LEMMA 4.8. Let ~ be an n-braid. Then 

bRK(~) = s-w(r174174174 

x (id|174174174174 

Noting that  # j  and D commute since they are diagonal, the first equality 

[] 

Proof. First note that  

since 

R~ 1 = (Dk| k) R~jI(D-k| -k) 

Rj (D|  = (D|174174174 

= (D|174 = (D|  

from Lemma 4.3. 

Therefore 

R~K a = s~=(N+I)(N-3)/2(W|174174174 -1) 

= sT=(N+I)(N-3)/2(W|174174174 

and the required formula follows immediately since bR~(a~ 1) can be written as 

ST-(N+I)(N-a)/2(w|174174 1) 

x (id|174174174174 [] 
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Since we know that JN=Tsj,1 is well-defined as described in w from the previous 

lemma TSK,I(L) is also a link invariant, which we denote by <L)N. Note that  it is 

implicitly stated in [13] that  the invariant can be regarded as an invariant for (1, 1)- 

tangles. Note also that  though the invariant was defined only up to a multiple of s 

in [13], we can now define it without ambiguity. 

Since 

bRK(~)(id| | = (WOn)( Dkl|174174 )bRj(~) 

x (id|174174 | 

from Lemma 4.8, we conclude that  S j  and S K define the same link invariant. 

THEOREM 4.9. For any link L and any integer N~2,  (L)N and JN(L) coincide. 

5. R e l a t i o n  b e t w e e n  t h e  s impl ic ia l  v o l u m e  

a n d  t h e  co lo r ed  J o n e s  p o l y n o m i a l s  

Let K be one of the three simplest hyperbolic knots 41, 52 and 61. Kashaev found in [14] 

that  the hyperbolic volume of S 3 \ K ,  denoted by Vol(K), coincides numerically with the 

growth rate of the absolute value of <K)N with respect to N. More precisely, 

Vol(K) = 27r lim log I<K>NI 
N-+c~ N 

We would like to modify his conjecture taking Gromov's simplicial volume (or the 

Gromov norm) [10] into account. Let us consider the to r t s  decomposition of the comple- 

merit of a knot K [11], [12]. Then the simplicial volume of K,  denoted by ]]K]I, is equal to 

the sum of the hyperbolic volumes of the hyperbolic pieces of the decomposition divided 

by v3, the volume of the ideal regular tetrahedron in H 3, the 3-dimensional hyperbolic 

space. Recall that  it is additive under the connect sum [26], 

IIKl~tK211 = I IKll l+l lK211,  

and that  it does not alter by mutation [25, Theorem 1.5]. 

Noting that  JN is multiplicative under connect sum, that  is, 

JN(KI~K2) = JN(K)JN(K2), 

and that  it does not alter by mutation [25, Corollary 6.2.5], we propose the following 

conjecture. 
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CONJECTURE 5.1 (volume conjecture). For any knot K,  

IIKI I _-2~- lira log lJN(K)] 
V 3 N--+ cx~ N 

(5.1) 

Remark 5.2. First note that  if Kashaev's conjecture is true then our conjecture holds 

for hyperbolic knots and their connect sums. It is also true for torus knots since Kashaev 

and O. Tirkkonen [15] showed that  the right-hand side of (5.1) vanishes in this case by 

using H. Morton's formula [20] (see also [23]). 

Remark 5.3. Note however that  the volume conjecture does not hold for links since 

JN of the split union of two links vanishes. 

As a consequence of the volume conjecture, we can deduce 

CONJECTURE 5.4. The union of all the colored Jones polynomials is an unknot 

detector. 

We show that  the volume conjecture implies Conjecture 5.4 by using the following 

two lemmas. 

LEMMA 5.5 ([8, Corollary 4.2]). If IIKII=0 then K is obtained from the trivial knot 

by applying a finite number (possibly zero) of the two operations: 

(1) making a connect sum, 

(2) making a cable. 

LEMMA 5.6. If IIKII:O then the Alexander polynomial A(K; t) of K is trivial if 

and only if B[ is the trivial knot. 

Proof. This lemma comes from Lemma 5.5 and the following three facts [3, w (see 

also [4, Proposition 8.23]): 

(i) The Alexander polynomial of a non-trivial torus knot is not trivial. 

(ii) The Alexander polynomial is multiplicative under connect sum. Therefore if 

A(K1; t) and A(K2; t) are non-trivial, then A(KI~K2; t) is also non-trivial. 

(iii) If K '  is a knot obtained from K by a cabling operation, then A(K' ;  t) is 

A(K; t~ ) f ( t )  with some Laurent polynomial f ( t ) ,  where n is a non-zero integer. Hence 

if A(K;  t) is non-trivial, so is A(K' ;  t). [] 

Proof that the volume conjecture implies Conjecture 5.4. Suppose that  a knot K 

has trivial colored Jones polynomial for every color. Then A(K; t) is also trivial since 

the Alexander polynomial can be determined by the colored Jones polynomials from 

the Melvin-Morton-Rozansky conjecture [19], [24] proved by Bar-Natan and S. Garoufa- 

lidis [2]. 
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Therefore from Lemma 5.6 we conclude tha t  K is trivial since the volume conjecture 

implies [[KII=0. [] 

Remark 5.7. The above argument using the Melvin-Morton-Rozansky conjecture 

was due to Bar-Natan and Vaintrob. Our original conjecture was a weaker one; see below. 

We also anticipate the following simplest case of V. Vassiliev's conjecture [28, Stabi- 

lization Conjecture 6.1] (see also [17, Chapter  1, Par t  V(L), Conjecture[), which follows 

from Conjecture 5.4 since every coefficient of the colored Jones polynomial as a power 

series in h= log  t is a Vassiliev invariant. 

CONJECTURE 5.8 (Vassiliev). Assume that every Vassiliev (finite-type) invariant 

o/ a knot is identical to that of the trivial knot. Then it is unknotted. 
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