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1. Introduction

It is conjectured that if f(X) is any irreducible integer polynomial such that f(1), f(2),...
tend to infinity and have no common factor greater than 1, then f(n) takes infinitely many
prime values. Unfortunately this has only been proved for linear polynomials, in which
case the assertion is the famous theorem of Dirichlet. One may seek to formulate a weaker
conjecture concerning irreducible binary forms f(X,Y’). Here the necessary condition is
that the values of f(m,n) for positive integers m,n are unbounded above and have no
non-trivial common factor. Again one might hope that such a form attains infinitely
many prime values. This is trivial for linear forms, as such a form takes all sufficiently
large integer values. For quadratic forms it was proved by Dirichlet, although in certain
special cases, such as f(X,Y)=X2+Y?2, the result goes back to Fermat. Dirichlet’s
result was extended by Iwaniec [14] to quadratic polynomials in two variables. Our goal
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in the present paper is to make progress in the case of binary cubic forms. We shall prove
the following.

THEOREM. There are infinitely many primes of the form z°+42y3 with integer z,y.

More specifically, there is a positive constant c such that, if

n=n(X)=(log X)~¢,

then the number of such primes with X<z, y<X(1+7) is

2vy2

ap "
3log X

{14+0((loglog X)~1/6)}

as X — oo, where

and v, denotes the number of solutions of the congruence z3=2 (mod p).

It may be noted that the product oy is conditionally convergent, but not absolutely
convergent.

There is nothing special about the particular range chosen for  and y, and a similar
theorem could be proved for

aX<zr<aX+nX, bX<y<bX+nX,

for any non-zero a,b such that a+b+/2 #0. Indeed it seems likely that one could do this
with sufficient uniformity to deduce a result for an arbitrary bounded set RCR? with a
positive Jordan content. Specifically, for such a set R one would hope to deduce that

X2

2, -1 31 9.3 nrimel
#{(z,y)e2Z?: X (z,y)eR, x°+2y° prime} UOmeas(R)BlogX

as X tends to infinity.

Hardy and Littlewood [7, Conjecture N| asked whether there are infinitely many
primes which are the sum of three non-negative cubes. OQOur result shows that this is
indeed the case. Hardy and Littlewood went on to give a conjectural asymptotic formula
for the number of such representations, but our approach gives no information about
this. It is the fact that z°+2y® factorizes while 234y%+2® does not which makes the
latter problem more difficult.

It is not hard to prove results on the representation of primes by diagonal cubic
forms in four variables, by using the circle method. For general non-singular cubic
forms, however, it would appear that such techniques require five or more variables. It
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seems likely that our method will extend to arbitrary irreducible binary cubic forms, in
which case one would be able to tackle irreducible cubic forms in two or more variables,
whether they are non-singular or not. One may indeed hope to tackle binary cubic
polynomials, providing that they are irreducible over Q and factor completely over Q.
There are, however, unpleasant technical difficulties to be dealt with, notably the lack of
unique factorization in general cubic fields. None the less, it seems unlikely that these
are insurmountable. In particular, one should be able to establish the form of Schinzel’s
Hypothesis required for the author’s work [11] on solutions of diagonal cubic equations
in five variables.

Another way in which one might hope to extend the theorem would be to consider
incomplete norm forms for fields of higher degree. For example, one might attempt to
handle

Noay q(@+z22"/ 4. 42,207 D)

for appropriate n<d.

In measuring the quality of any theorem on the representation of primes by an integer
polynomial f(z1,...,Z,) in several variables, it is useful to consider the exponent a(f),
defined as follows. Let [f| denote the polynomial obtained by replacing each coefficient
of f by its absolute value, and define a(f) to be the infimum of those real numbers « for
which

#{(z1, .., T EN" | fl(21, ..., ) S X} X%

Thus a(f) measures the frequency of values taken by f. If a>1 we expect f to represent
at least X'~¢ of the integers up to X, while if o<1 we expect around X such integers
to be representable. Thus the smaller the value of «, the harder it will be to prove that
f represents primes. The two classical theorems of Dirichlet both correspond to a=1.
For representation by diagonal cubic forms in four variables, as handled by the circle
method, one has a:%. Before the present work there was only one theorem proved in
which a<1, namely the result of Friedlander and Iwaniec [2] that there are infinitely
many primes of the form z?+y*, for which a=2. Our theorem corresponds to the still
smaller value az%, while the conjecture that 2241 takes infinitely many prime values
has a:%. The groundbreaking work of Friedlander and Iwaniec was the inspiration for
the present paper, although the techniques used are quite different.

One needs to be rather careful in formulating conjectures concerning the represen-

tation of primes by polynomials in more than one variable, as the example
Fla,y) = (" +15)1{1—(2*~23y*~1)*} -5

shows. One easily verifies that f(z,y) takes arbitrarily large positive values for z,y€Z,



4 D.R. HEATH-BROWN

is absolutely irreducible, and that it takes values coprime to any prescribed integer.
However, f(z,y) does not take any positive prime value.

It may be appropriate to mention that one can prove results on the distribution of
prime elements in Z[\3/§ ] by the use of Hecke L-functions with Grossencharacters. If
one has a suitably smooth region RCR3N[0, X3, with volume at least X3/2+¢ for some
positive constant €, then one can hope to pick out the elements z+y+v/2 +2V4€Z [\3/5]
for which (z,y,z)€R, by using sums of Grossencharacters. In this way one may be
able to find infinitely many prime elements, if one assumes the Generalized Riemann
Hypothesis, or has suitable zero-density theorems available. Unfortunately the region
[0, X]x[0,X]x[0,1) is not ‘suitably smooth’, even though its volume is amply large
enough. None the less, the above approach can be used to produce first degree prime
elements with z<, (Jz|+y|)¢, under the Generalized Riemann Hypothesis, for any £>0.

2. A broad outline of the proof

In this section we shall describe the overall plan of attack. The next section will go into
greater detail, giving precise statements of various lemmas which together suffice for the
proof of our theorem. The later sections will then prove these subsidiary results.

We should mention at the outset that our approach to the sieve procedure has
much in common with that given by Friedlander and Iwaniec [3]. They describe a quite
general approach to problems involving primes in ‘thin’ sequences. Unfortunately their
condition (R1) is not quite met in our case, so that their work cannot be used as it
stands. Although it seems possible that Friedlander and Iwaniec’s hypothesis (R1) might
be relaxed sufficiently for our application, we have chosen instead to present our own
version of the sieve argument. In the light of these remarks, it should be stressed that it
is the ‘Type IT’ bound, described below, which is the most novel part of our proof, and
not the sieve procedure.

It will be convenient to define the weighted sequence
A={e’+2y°: z,y€ (X, X (1+0)]NN, (z,y) =1},

where integers in A are counted according to the multiplicity of representations. In order
to motivate our choice of 7 in the theorem we shall work with an arbitrary n in the range

exp{—(log X)"/*} <n< 1. (2.1)

We shall write 7(A) for the number of primes in A, and prove that
22

310;{)( {140((loglog X)~1/%)}. (2.2)

71'(.A) =09
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This clearly suffices for our purposes. To establish (2.2) we shall compare 7(.A) with 7(B),
in which
B={N(J)e(3X?3X*(1+n)]},

where J runs over integral ideals of K :Q( 2 ), and NV is the norm from K to Q. The
primes in B therefore correspond to first degree prime ideals. However, the Prime Ideal
Theorem may be stated in the form

7k (z) =Li(z)+O(zexp{—cy/log z }) (2.3)

for a suitable positive constant ¢, where mx(x) is the number of prime ideals of norm at
most . Thus our constraints (2.1) imply that

_ 3nX3 1
m(B)= 3log X (H—O(logX))'

In order to establish (2.2) it therefore suffices to show that

(A) =sn(B)+0 ﬂi(l log X )~1/6 (2.4)
T =x7 log X og log , .
where

x=0on(3X)" L.

To compare 7(.A) with 7(B) we shall perform identical sieve operations on the two
sequences, and show that the leading terms correspond. Providing that the error terms
are acceptable, this will produce the required asymptotic formula (2.4). This is much
easier than trying to evaluate explicitly the leading terms produced by the sequence A
alone, and summing them to produce (2.2).

The argument will require ‘Type I’ and ‘Type II’ estimates for the sequences A
and B. The Type I bounds are provided by the following lemmas.

LEMMA 2.1. For any geN let oo(q) be the multiplicative function defined by

__ W
S 14pV

00(p°)

where v, is the number of first degree prime ideals above p. Then if A is any positive
integer, there exists c(A) such that

6m°X2 o c
= O(EQ) < (Q+XQ'*+X%2)(log QX ).

> r(g) ule)?[#A, -

s
Q<gs2Q
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LeMMA 2.2. For any qeN let p1(q) be the multiplicative function defined by

1(-57m)

Plp

or(p°) =p(1—

where P runs over prime ideals of K. Then if A is any positive integer, there exists
c(A) such that

InXx3 .
5 rlarula? -0 01(0) < X2 (10 Q)14
Q<qs2Q
Here
_ wlogep
70’_ \/ﬁ

is the residue of the pole of the Dedekind zeta-function (k{s) at s=1, where gg=
142 + /4 is the fundamental unit of K.

The function 7(q) occurring here is the ordinary divisor function. Note also that
the function v, described in Lemma 2.1 agrees with that defined in the statement of our
theorem.

It is appropriate to introduce at this point a notational device which will be used
throughout this paper. The letter ¢ will be used to denote a positive absolute constant,
though not necessarily the same at each occurrence. Similarly, given a parameter A,
we use ¢(A) to denote a ‘constant’ depending only on A, again potentially different
at each occurrence. The reader should however be warned that the parameter A may
have different meanings in different places. Thus, for example, the exponent ¢(A) in
Lemma 2.1 is a function of the parameter A in Lemma 2.1, rather than that which
occurs in Lemma 2.2. In practice, the meaning should be clear from the context. Note
that all implied constants are allowed to depend on A.

Lemmas 2.1 and 2.2 show in particular that 4 and B have ‘level of distribution’
X?27¢ and X3¢ respectively, for any £>0. The result for B is unsurprising, but it is
certainly worthy of comment that one can prove such a sharp result for A. Estimates
of this type are not hard to obtain, and go back to Greaves [5], (see also the recent
work of Daniel [1] for an alternative approach). It should be noted that for the ternary
form z3+x3+2z3, only a level of distribution X3/2~° has been proved unconditionally.
Assuming the Riemann Hypothesis for certain Dedekind zeta-functions, Hooley [12] has
extended the range for this latter problem to X?~¢. As remarked in the introduction it
is the fact that the form 2%+ 2y3 factorizes which enables such a strong Type I bound to
be established.
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The ‘Type IT” estimate will be more complicated to state, but, roughly speaking, it
will allow us to handle sums

> Do tats

U<a<2U V<b<2V:abe A

when X!'teg Vg X3/2-¢,

A standard application of the identity of Vaughan, or the author’s generalization
of it, shows that a Type I bound with level of distribution X2?~¢, together with a Type II
bound covering the range X!~*<«< V& X3/2t¢  suffice for an easy proof that A contains
the expected number of primes. The reader will observe that, by symmetry, if one has
a Type II bound for V; <V« V3, then one can also cover the range X3/ Vo<V X3/ V.
It is thus apparent that we have two small intervals X1~ ¢« V& X1*¢ and X3/?c <V«
X?3/2%¢ which we are unable to handle by Vaughan’s method. This forces us to resort to
a more delicate sieve procedure, in which relatively trivial bounds are applied on these
ranges. The two intervals are sufficiently small that their total contribution is negligible.
This technique is typical in situations where sieve methods are used to prove asymptotic
formulae. The author’s work [10] on the asymptotic formula for the number of primes
in the interval (z,z+27/127¢] is a good illustration of this, though by no means the first
occurrence of the method.

At this point we introduce a new parameter
T={(loglog X )™ %, (2.5)

where w is a positive absolute constant. The parameter 7 will play the role of the
exponent € above, making precise its dependence on X. We shall eventually choose
w=%, but we shall motivate this choice by recording at each stage of the argument any
constraints that must be imposed on the size of w in order for the proof to proceed.

In order to describe the sieve process in simple terms we shall depart from the
analysis that is to be adopted in practice. Thus, what follows is for illustrative purposes,
the actual procedure being described in the next section.

We start by observing that

7(A) = S(A,2X3/2).

Buchstab’s identity now yields
S(-A7 2X3/2):S(A: XT)— z S('Alhp)_' Z S('Apap)

XT<p< X1 X1-T{p< X1HT
- > S(Ap; p)— > 5(Ap, p)
X1+‘r<p<X3/2—‘r X3/2‘T§p<2x3/2

= 81(A) —52(A) - 53(A) — Sa(A) — S5(A),
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say. Since 7 tends to zero as X goes to infinity, we shall be able to handle S1(A) by
a sieve estimate of ‘Fundamental Lemma’ type. The sums S3(A) and S5(.A) run over
ranges that cannot be handled by our Type II estimate. They will therefore be bounded
below by 0, and above via a crude sieve bound. For the latter we only require that p is
smaller than our level of distribution X2~¢. This will produce estimates

n2x3

log X’

Sg(.A), Sy (A) LT

which are acceptably small. The sum S4(.A) is already in a form close to that required
for our Type II estimate. However, S>(A4) requires some further manipulation. We set

S(”)(_A): Z S(.Ap]...pnapn)7
XTpn<...<pr1< X177
pr..pa<X'FT

so that S3(A)=S1)(A). We now observe that Buchstab’s identity yields

S(A) =TI (A) = U (A) - S+ (A),

where
T A) = 3 S(Ap,..pm XT)
XTEpn<...<p1< X177
Do pp< X 7
and

U™(A) = > S(Aps...pnsns Prt1):

XTEpnp1<..<p< X177
PL <X T<prprs1

By iteration this leads to
S(A)= D (~D)"HT™M(A)-UM(A),
1<n<ng
with
no <7, (2.6)
since any term of the sum S (A) will vanish for p;...p,>4X3. We may now attempt
to handle S3(A) by applying a Fundamental Lemma sieve to the terms T(™(A), and a

Type 1I estimate to the terms U((A). For T{™"(A) we have p;... p,< X7, which is
certainly small enough for the available level of distribution. For U(")(.4) we note that

b 'and <PrePrr1 < (plmpn)(n+1)/n < X4(1+T)/3 <X3/2—T
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for n>3. However, UM)(A) and U@ (A) have to be decomposed as

1 — E §
U( )('A)_ S(Ap1p27p2)+ S(AIJ1P21p2)
X7<p2<;ol<X1’T XTSp2<P1<X1_T
XM prpa < X3/2T X3/ 2T e pipp< X3/

+ Z S(-Ampz’p?)

XTEpakp< X7
p1p2>X3/2+"

= UV (A)+S6(A)+USV(A),

say, and
(2) _
U (A)“ S(‘AP1P2P3’p3)+ S(AP1P2P3=p3)
X7Lps<pz<p1< X7 X7<ps<pa<p <X 7
P12 <X VT pipapa X327 p1p2<X VT, pipaps> X327
=UP(A)+57(A |
=U;"(A)+57(A4),

say. We shall bound Sg(A) and S7(A) from below by zero, and from above by a crude
sieve bound, in the same way as for S3(A) and S5(.A). Moreover Ul(l)(A) and U1(2)(A)
are in an appropriate form for our Type II estimate, while for Uz(l)(.A) we merely have to
note that the integer a=(2>+2y%)p; 'p; " lies in the range X'+t?"<a< X3/2=7 which is
also suitable.

A precisely analogous sieve decomposition applies to S(3,2X3/2). We can then
compare leading terms from the two decompositions to establish the asymptotic equal-
ity (2.4).

We now discuss the Type II bound. We shall do this in the context of the sums
Sa(A) and S4(B), this being the simplest example. It is clear that we cannot get any
cancellation from the two sums individually, since they are composed of non-negative
terms. We wish, however, to avoid a Type Il estimate for the difference S4(A)—3S4(B),
which would involve the two sequences simultaneously. We therefore plan to remove a
leading term from S4(.A). This latter sum is essentially

> MS(An,n).

logn
X4r<n<X3/2-7

We shall decompose A(n) as A1(n)+Az(n), where

Mm)= 3 uld)log =

din:d<L
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and L=X"/2. This type of splitting (with a slightly different function A;(n)) seems to
have been introduced by the author [9]. The precise form given above was first used in
this type of context by Goldston [4]. The function A;(n) is so constructed as to mimic the
distribution of A(n) over residue classes. Thus the average of A2(n) in residue classes will
be small. Moreover the function A,(n) is easily handled if L is small, and its contribution
will be shown to match S4(B) closely. In fact the sum S;(B) can be estimated directly,
as one can give asymptotic formulae for the individual terms

S(prp)'

The outcome of the above discussion is that we require a Type II bound for a sum

Z Z Pty

U<ag2U V<bg2V:abEA

where ¥, comes from the function Ay(n). We may therefore assume that the average of
1y over arithmetic progressions is small. Thus it is no longer necessary to demonstrate
cancellation between the two sequences A and B. Instead the saving will come from sign
changes in .

The treatment of the above Type II sum forms the core of the paper. Eventually the
estimation is made to depend on a large sieve inequality, but there is much preparatory
work, which the reader will find described in the relevant sections.

3. Outline of the proof—further details

Although the description in the previous section was given purely in terms of the arith-
metic of Z it is more natural to consider also the corresponding sieve problem for ideals
of the field K=Q(+¥/2). We therefore set

A =24y V2): 2,y (X, X(1+n)]NN, (z,y) =1}

and
B ={J:N(J)e(3X3,3X3(1+n)]}.

The superscript (K) is intended to remind the reader that we are working over the
field K. It should be observed at this point that if n is small enough, no two values of
T+y+/2 are associates, so that A¥) contains distinct ideals. The following elementary

fact, which will be proved in the next section, will also be used repeatedly.
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LEMMA 3.1. No prime ideal of degree greater than 1 can divide an element of AX),
nor can a product of two distinct first degree prime ideals of the same norm. Thus if a
square-free ideal R divides an element of AU, then N(R) must be square-free.

The Type I bounds for A% and B are the following.

LEMMA 3.2. Let g2(R) be the multiplicative function on ideals defined by
02(P9)=(1+N(P)~ 1)~ .

Then for any positive integer A there exists a corresponding c(A) such that

612X
> oA #A;KLWQT@@(R) < (Q+XQV2+X%?)(log QX ).
QIN(R)L2Q
ReER

Here R is the set of ideals R for which N(R) is square-free.

LEMMA 3.3. For any positive integer A there exists a corresponding c(A) such that

3nX>® .
#Bﬁf)—%ﬁ@ < X2Q"3(log Q).

>, (®»*

Q<N(R)<2Q

We shall use the Buchstab identity over the field K, sieving z+y+/2 by prime ideals.
If every prime ideal factor P of z-+y+/2 has N(P)>2X3/2 then (z+y+/2) will be a prime
ideal, whence x3+2y° is a prime, by Lemma 3.1.

For a set 7 of integral ideals of K, and any integral ideal E, we write
Ig={I€I:E|I}.

We also set
Sk(Z,z2)=#{I€I:P|I=>N(P)>z},
for any real z>1. The subscript K is again intended to remind the reader that we are

working over the field K. With this obvious extension of the standard notation we see
that

m(A) =Sk (AF), 2X3/2),
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Buchstab’s identity now yields

Sk(A), 2X32) = S (AK), XY~ N Sg(ARD, N(P))
XTEN(P)<X1-7

- Y sk, NP

X1-m<N(P)<X1+7

- Y Sk(AYO, N(P)

X1+T<N(P)<X3/2—-‘r

- Y Sk(A¥9,N(P))

X3/2-7T< N(P)<2X3/2

= 51(A) ~52(A) - S3(A) — Sa(A) — S5(A),
as in the previous section. Similarly we set

S™(A) = > Sk (AR, N(P.)),
XTEN(P)<...<N(P)<X*~"
N(Py...P)<X7

T(A) = > Skc(Af gy X7) (3.1)
XTEN(P)<...<N(P )< X"
N(Py...P,) <Xt

and

n K
U™(A) = 3 Sk(AS) b N(Pagr)).
XTEN(Pry1)<...<N(P)< X7
N(P1...Po)< X" < N(P1... Pnt1)

We should note here that the various prime ideals P; which occur when Buchstab’s
identity is applied must have distinct norms, by Lemma 3.1. It now follows that

Sa(A)= 3 (~) T -UM(A),

I<nng

with ng<7~1. As before we note that
X1+T<N(P1 -'~Pn+1) <N(P1 Pn)(n+1)/n < x4+7)/3 <X3/2_T (32)

for n>3, so that U(™(A) can be handled as a Type II sum for n>3.
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Following the procedure of the previous section we also put

1 K

Ui (4) = 3> Sk (A by, N(P2)),
XTEN(P)<N(P)<X™"
X1+T<N(P1P2)<X3/2—‘r

K
UV (A) = 3 Sk(AS L N(Py)),
XTSN(P2)<N(P1)<X1“T
N(Py Py) 2 X3/2+7
UP(A) = 3 Sk (ALY, p,, N(P3)),

XTEN(P3)<N(P)<N(P <X~
N(P, P)< X" N(PL P P3)< X3/%—

So(A) = 3 Sk(Anp,, N(Py))

XTEN(Py)<N(P)<X'™7
X3/2=T < N(P Py )< X3/247

and

K
S1(A)= > Sic (A b, par N(P5))-
XTEN(P)<N(P)<N(P)<X'™"
N(P Py)< X *"

N(PLP, P3)>X3/2~7

We then have
UO(A) =017 (A)+85(A)+ U3 ()

and

UP(A) = U (A)+57(A).
A precisely analogous sieve decomposition applies to Sg (B, 2X3/2) where
BY) ={A:N(A)e (3X3,3X3(1+n)]}.

In this case, however, the various prime ideals P; that arise need not have distinct norms,
although the ideals themselves must be distinct. A further difference is that Je B¥) can
be a prime ideal without N(J) being prime. Thus

7(B) = Sk (B, 2X3?) + O(X?).

We can extend the definition (3.1) to the case n=0 in the natural way, so that S1(A)=
T} A), and similarly for B. This gives us the following basic sieve decomposition, in
the obvious notation.
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LEMMA 3.4. We have
m(A)—xm(B) < X324 Y~ T A) -3T™(B)]

oL<ngsny

+UD(A) = UD(B)|+|UP(A) - UM (B)]

HUP(A)-2UPB)+ > [UP(A)—»U (B

3<n<no

+ D (Si(A)+5xS;(B))+|Ss(A)—#S4(B)|-

j=3,5,6,7

For this expression we shall establish the following bound via the Fundamental
Lemma sieve.

LEMMA 3.5. We have

n%x?
log X~

> ITM(A) - =T (B)| <7

ognng

Moreover an upper bound sieve will yield the following estimate.
LEMMA 3.6. We have
2X2

, , n
Si(A)+xS;(B) KT og X

for 7=3,5,6 or 7.

We now prepare the terms UJ(")(A), U™(A) and S4(A) for the Type II estimate.
Our goal is to approximate each of these by a combination of sums

Yoern > ds (3.3)

R S:RS€ AK)

The coefficients cg will take only the values 1 or 0, and will be supported on ideals RER
all of whose prime factors P satisfy N(P)>X7. Similarly the coefficients ds will be

supported on ideals
n+1

s=1[~,
i=1

where P; are first degree prime ideals with N(P;)€J(m;). Here the intervals J(m) take
the form [X™¢, X (M1)€ where

& =(loglog X )™*° (3.4)
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for some constant wy€[w,1). Moreover we shall require that
m1>...>mn+1>7'§_1, (35)

whence the intervals .J(m;) are disjoint, and the ideals S are square-free. In addition we
shall need

n+1
> omiz (147t (3.6)
i=1
and
n+1
> (mi+1) < (B-7)¢, (3.7)
i=1
so that
X1+T§N(S) <X3/2-—T. (38)

Finally, for S as above, the coefficient dg will take the form

n+1
log N(P;
ds=dg(m)=[] W’
i=1 "

where m=(my, ..., mp41).
In order to show how this is achieved, we begin by discussing U™ (A) for n>3. Here
we shall define

() () T log N(P)

A(m’n) = * K Mmn41§ —l_

v (4) Z Sk (s X ) H m;€Elog X’
N(PI)GJ(’ITLI) =1

where m satisfies both "

> (mi+1)<(1+7)E!

i=1
and m;+1<(1—7)£71, in addition to the constraints (3.5), (3.6) and (3.7). The nota-
tion Sg) indicates that only elements RS€ A for which N(R) is square-free are to be
counted. Tt is now clear that U™ ™)(A) takes the required form (3.3), where cg=1 pre-
cisely for those RE€R which have no prime ideal factor P with N(P)< X™»+1£. Moreover
we set
UM(A) =) T4,
m

which will be the required approximation to U{™(A).

We can handle Ul(n)(A) in exactly the same way for n=1 and 2, to produce approx-
imations (71(")(/1) We may also treat S4(A) along the same lines. Here we set
log N(P)

SMA= 3 SR X S

N(P)eJ(m)
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where

We then take
=S4

as our approximation to Sy(A).
In the case of Uz(l)(A) the réles of R and S are reversed. We confine N(P;) and
N(P,) to intervals J(ny) and J(ny) respectively, where

€ <ng <y <(1-7)67 1 -

and
ni+ng = (%+T)f_1,

and we replace
(»Aplpza (PQ))

by
Sk (AR X"2€).

This counts products
PIP1Q2 .. Qnir

of prime ideals in which

N(@Q1)=...2 N(Qn+1) > X",

We therefore introduce intervals J(m;) as before, with
My > .o > Mgl = N2,
and require that N(Q;)€J(m;). If we now define

n+1

P log N(Q:)

U(n,m,l) — i

2 Z Z H m;€log X’
R=P1P; S=Q1...Qn41 t=1

RSe AK)

we may approximate Ug(l)(A) satisfactorily by

62(1)(«4) — Z (’]\z(n,m,l),
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where we sum over appropriate vectors m, regardless of their length. We may note,
however, that n< 77!, just as before.

The corresponding approximations with A replaced by B are defined analogously,
though we must bear in mind that only prime ideals of first degree may divide S. The
following lemma, whose proof uses simple sieve upper bounds, estimates the errors in-
volved in all these approximations. Amnticipating the form of the result, it is natural to
set

E=1°, (3.9)

which we now do. Thus wo=>5w, and we therefore require that
0<w<l (3.10)

in order to ensure that wwg<1.

LEMMA 3.7. We have

()} 4\ F7(m) X 4
U _n -
5 W TOl < e

2

2
n S (n Ui X -
|U1( )(-A)—Ul( )(A)|<<I5g—X§T 3 forn=1 and 2,

~ n2X2 5
1S3(A)-Bu( )| < Lo er

and
22
(1) 7>(1) n°X 4
U. —U, — .
U3 (A)-Us (A)|<<logX§T
Similarly we have

~ X3
Te(B — ™ NE -4
n§>3| (B)-U (B)I<<IOgX£T )

IU1( )(B)—Uf )(5)|<<l—zg—X§7'_3 for n=1 and 2,
3

3 nX" . -3
|S4(B)—S4(B)| < Tog X ér

and

3
Mgy _ D R Sp—
[U;(B)-U;7(B)| < longT .
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We have now to consider sums of the form

Z CRr Z ds=U(.A),

RER  S:RSe A

say. It is clear that we cannot get any cancellation from U(A) and U(B) individually,
but only from the difference

U(A)—»U(B).

In order to avoid a Type Il estimate involving the two sequences A and B simultaneously,

we remove a leading term from the first sum, by writing
ds=es+fs, (3.11)

where the ‘leading part’ eg is given by

w'(N(S)) L
es=— u(J)log ——. (3.12)
Hi:+11 (mi&log X) J|S:§(;I)<L N(J)
Here
L=X7/2 (3.13)
and

w(t) =w(t,m)= meas{xeR"+1 x; € J(my), H‘Ti < t}.

Note that for the case n=0, the function w(t) is only piecewise continuously differentiable,
in which case we define the derivative w'() to be the right-hand derivative, for precision.
The function w(t) which occurs here has been constructed so that

w(t)
H?:f (ng log X)

is an approximation to

Z d57

N(S)Kt
according to the Prime Ideal Theorem. We shall see that eg is easily handled if L is small,

and is so constructed as to mimic the distribution of dg over residue classes. Thus the
average of fg in residue classes will be small. The following lemma makes this precise.

LEMMA 3.8. Let CCR? be a cube of side So>L? and edges parallel to the coordinate
azes. Suppose that for every vector (z,y,2)€C we have z,y,2< V3 and

23423 +42% —6zyz > V.
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For each B=a~+b¥/2 +cV/4 €K let 3 be the vector (a,b,c). Let a constant A>0 be given.
Then for any integer o€ Z[V/2] we have

Z fipy < Vexp{—cy/logL }

p=a(modgq)
pgec
uniformly for q¢<(log X )4.

The reader should note that the implied constant is ineffective, as a result of potential
problems with Siegel zeros. The reader should also observe that Lemma 3.8 does not
require « to be coprime to g.

We can now decompose our sums as U=U,.+ Uy, with

Ue(A):ZCR Z €s
R

S:RSe AK)

Up( A=Y _er >, fs
R

S:RS€AK)
The parameter L has been chosen so that N(JR)< X2~ /2, as we shall see. This is
sufficiently small that U.(A) can be readily handled via Lemma 3.2. On the other hand,
U(B) can be estimated directly by the Prime Ideal Theorem. This leads to the following
bound.

and

LEMMA 3.9. There is an absolute constant ¢ such that

Uo(A)—»U(B) < M~ 1%2 X% (log X )°,

where
n+1

M= H m;.
=1

Moreover, in the obuvious notation, each of

D UM(A) = 3T (B)),

n23
ﬁl(z)(A)—zﬁl(")(B) for n=1 and 2,
§4,e(A) — 8, (B)
and
U5 (A) =305 (B)
is O(n®/2X?(log X)©).
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Having removed the leading terms from U(A) we can proceed to estimate the re-
maining parts U (A) individually. It is no longer necessary to demonstrate cancellation
between the two sequences A and B. Instead the cancellation will come from fs. The
following result shows how Uy (A) can be bounded in terms of averages of fs.

LEMMA 3.10. Suppose that we have a bound of the form

> f<Vexp{-cy/logL}, (3.14)

B=a(mod q)
gec

subject to the conditions of Lemma 3.8, uniformly in o range

g<Q <exp{{logX }.

Then there exists an absolute positive constant ¢ such that

Z crfs < XQQfl/leo(logX)c’

RSe A0
V<N(5)<2V

for X1 T« V& X827,

This result, which is our Type II estimate, is the most novel part of our entire
argument, and it is here that the structure of the form 234 2y? is most crucially used.
One readily sees that each term Uy (.A) may be written as a sum of O(log X ) sums of
the form considered in Lemma 3.10. Moreover, since n<<7~! and m; <¢~!, the number
of possibilities for n, m is
< 7_—1(05—1)“-‘ <log X,

by (2.5), (3.4) and (3.10). It follows, in the obvious notation, that each of

ST,

nz=3

[71(7})(./4) for n=1 and 2,

Sy £(A)
and
I3,

is O(X2Q7 % (1og X )°).
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We can now combine this with the estimates of Lemmas 3.5, 3.6, 3.7 and 3.9, to

deduce from Lemma 3.4 that
X

2 2372
_anX
logX+£T

log X

(A —xm(B) < T + (2 + QTN X2 (log X )°. (3.15)

We have already chosen £=7° in (3.9). In order to specify our choices for  and Q; we
suppose that (3.15) holds with the constant c=cy, say. We then take

n=(log X)~2¢0~?
and
Ql — (IOgX)IGO(co+1),'7—320 — (logX)GOO(COH).
These choices are consistent with (2.1) and Lemma 3.8, and lead to

2y 2

. 1
w(A)— s (B) <<T10gX'

We may then choose w:é— to produce (2.4), and the theorem follows.

4. Preliminaries

In this section we establish Lemma 3.1, and prove a number of results about divisor sums
over the ring Z[\3/§ ] For most stages in the proof of our theorem a loss of an arbitrary
power of log X will be acceptable, while a loss of exp(log X/loglog X) is not. Thus it
is important to have estimates for divisor sums which only lose powers of log X. We
shall also give sundry other results, including some elementary facts from the geometry
of numbers, and a tool for counting points ‘near’ a non-singular hypersurface.

We begin with Lemma 3.1. Let P be a prime ideal factor of z+y+/2. If P|y then
P|z so that (z,y)#1. Otherwise ¥/2 =—zy~! (mod P), so that any element of Z[\s/ﬁ] is
congruent to a rational integer. It follows that the residue field modulo P has p elements,
where p is the rational prime above P. We then have N(P)=p, so that P has degree 1.
If p is any rational prime then, according to Dedekind’s theorem, the first degree prime
ideals above p take the form (p, n—+v/2 ), where n runs over the distinct solutions of the
congruence n®=2 (mod p). Thus distinct first degree primes Py, P, above p correspond to
distinct values of n. If Py, P2]m+y\3/§ this leads to a contradiction, on taking n=—zy~!
(mod p). This proves Lemma 3.1.

We next record the following estimate, which goes back to Weber.
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LEMMA 4.1. The number of integral ideals of K=Q(¥/2) with norm at most = is
’ygl‘+0($2/3),
where vy is as in Lemma 2.2.

We now move on to the divisor function estimates. We shall use the notation 7(-)
both for the divisor function in Z and for the divisor function in Z[\3/§] The meaning

will always be clear from the context. We begin with the following bounds.

LEMMA 4.2. For any integer A>0 there is a constant c¢(A) such that

Z 7(n)* « z(log 2)*“)
ng

and
Z r(I)* < z(log x)C(A).
N(I)<z
Indeed there is a positive constant §=6(A) such that
> 1) < y(log )W

r<nLr+y
and

Y () < y(loga) ™
<N )<z+y

for 210 y<x.
The estimates for 3" 7(n)# are well known, and indeed one may take the constant

¢(A) to be 24 ~1. For the bounds for 3 7(I)# one may note that there are at most 7(n)?
ideals I with N(I)=n, and that 7(I)<7(n)3 for each. Thus

> Tt <)

N(I)=n

so that the required results follow from the estimates for 3 7(n)%.
We shall make frequent use of the following elementary fact, without further com-

ment.
LEMMA 4.3. We have T(IJ)<7(I)7(J) for any two non-zero integral ideals.

Since the divisor function is multiplicative, it suffices to prove this when I and J are
powers of the same prime ideal P. The lemma is then a consequence of the inequality

7_(Pe+f) =e+f41< (e+1)(f+1) =T(PE)T(Pf)'

Our next result will be used in an auxiliary capacity, to establish the main estimates
of this section.
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LEMMA 4.4. Let n be a positive integer. For any number field k and any non-zero
integral ideal I of k there is an ideal J|I with

N SNIDY™ and r(I)<2V 1r(J)? L

To prove this write [=1;15, where I, is the product of all prime ideal divisors of
I with norm at most N(I)'/». Then I, is a product of at most n—1 primes, whence
7(Iy) <21, We can write I; as a product Jj ... J; with N(J;)<N(I)/™ and N(J,.Js)>
N(I)Y/™ for r#s. It follows that t<2n—1. We therefore deduce that

t
r(I)<2m () < 27 [ r(d) <277 (max ()t < 27 (max T (i),
i=1
which suffices for the lemma.

We can now give our first main result.

LEMMA 4.5. Let C=(a1, a1+ So] X (az, a2 +Sp] x (a3, az+So] be a cube of side Sp, and
suppose that max |a;|<Sg for some positive constant A. For any f=z+yv/2 +2V/4€K
write B=(z,y,z). Then there is a constant c(A) such that

> 7(8)* < S3(log Sp)*.
gec
For the proof we apply Lemma 4.4, with n>(34)~!, to show that

7(8)? < max{r(I)*: 1|8, NU) < S} < D r(I)*™.

118
N(I)<So

It follows that

YT Y r()Wg{Bec: 118}

fAec NI}« So

< Y TI)MSINI) ! « S (log o)™,
N(I)<So

by Lemma 4.2. Here we have used the fact that if C’ is a cube of side N(I), then there
are O(N(I)?) values of 3’ for which I|3. This completes the proof of Lemma 4.5.

Our second main result is the following.
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LEMMA 4.6. Let x2y>2 be given, and let a, 3 be coprime integers of K. Suppose
that there is an integer r such that

I, |89 < 2"

for each conjugate. Then for any positive integer A there exists a positive constant c(A,r)
such that

Z T(ma+nB)? < zy(log z)°A").
Im|<a, |n|<y
n#0

We begin the proof by observing that the terms of our sum will have
0 <|N(ma+ng)| < z3*3.
According to Lemma 4.4 we have
r(ma+nB) < 7(I)57*5
for some ideal I|ma+ng3 such that N(I)< N(ma+nB)Y/G+3) It follows that
Z T(ma+nf)* <« z r(DE A% m| <z, |n| <y : I|ma+nB, n#0}.
Jm|<z, |nl<y Nz

We put (I,a)=I; and I=11,. Since (&, )=1 we see that I;|n. We now write v(J) for
the smallest rational multiple of the ideal J, whence v(I;)|n. As n cannot be zero there
are O(y/v(1,)) possible values for n. Moreover each such value of n will determine m to
modulus 5. Since

v(l2) S N(I)<N(I)Kz,

it follows that there are O(zv(I3)~1) possible values of m corresponding to each n. For
any A in the range (0,1), we now find that

> rmatnByi<ay Y r(D)ETIA D" y() (L) T <2 T Ayf(A) (4.1)
Im|<z, |n|<y N()<z I=I 1,
n#0

uniformly in A, where f(o) is the Dirichlet series
_ T(])(6r+5)A
flo)= Z N(I)°

I

> v vl)

I=I1,

The function f(o) has an Euler product, with factors

00
1+ empp ™™
m=1
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where
Z T(Illz)(6T+5)A
v(ih)v(l)

We note that there are at most (m+1)® pairs I, I, and that 7(1;12)<(m+1)? for each
pair. In order to give a lower bound for v(I1)v(I2) we note that I;|v(I1), whence,
on taking norms, we have N(I)|v(I1)3. Since N(I3)|v(I3)? similarly we deduce that
pm=N(I)|v(I1,)3v(I2)3. Tt follows that v(I))v(l)=p™/3. We also have v(I1)v(I2)>p
for m>=1. It therefore follows that

€m,p=

)

N(Ill;)):pm

em,p < (m+ 1)5+(18r+15)A min(p—m/?), p-—l)7

whence -
1+ Z em pp ™A < 1He(A,r)p A < (L4p~ 8 AT),
m=1
for a suitable constant c(A4,r). We therefore deduce that
FIA) K CA+A)SAT) g A=A,
If we choose A=(logz)~! the lemma then follows from (4.1).

Our final result on divisor function sums is a corollary of Lemma 4.6.

LEMMA 4.7. Let z,y>2 be given. Then for any positive integer A there ezists a
positive constant c(A) such that

Z r(m+nv2 )A < zy(log zy ).
Im|<z, Ini<y
mn#0

We turn now to the following result from the geometry of numbers.

LEMMA 4.8. Let weZ3 be a primitive integer vector. Then the set of x€Z? for
which w-x=0 forms a 2-dimensional lattice of determinant |w|. If 21,22 is any basis
of this lattice, then ziAzZo=+w. The basis can be chosen in such a way that |2,[<|zz|
and

(W] < |21 |- |2Z2| < W],
and with the property that
|AzZ1+ pza| > |Al-|21] + |1l |22
for any scalars A, p.

We note that an integer vector is said to be ‘primitive’ if its coordinates have no
non-trivial common factor. If we let A be the set of integer multiples of w then the set of
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vectors x described in the lemma will be the ‘dual lattice’ A*, as described in the author’s
paper [8, §2]. The first assertion of the lemma is therefore an immediate consequence
of [8, Lemma 1]. It follows that

|z1Az2| = d(A") =d(A) = ||,

in the notation of [8]. However, z,Az> is orthogonal to z, and z3, and so lies in A**=A.
It therefore follows that z;Azo=1w as asserted. The remainder of Lemma 4.8 follows
from the argument used to prove [8, Lemma 2].

Our next result allows us to count non-singular points near to a hypersurface.

LEMMA 4.9. Let C;CR™ be disjoint hypercubes with parallel edges of length Sy, and
contained in a ball of radius R, centred on the origin. Let F be a real cubic form in n
variables, and let Fy be a real constant. Suppose that each hypercube contains a point x
for which F(x)=Fy+O(R?S,) and |[VF(x)|>>R?. Then the number of hypercubes C;
contained in any ball of radius Ry is <pl1+(Ro/So)" 1.

For the proof we may clearly suppose that Sy<cgRp with a suitably small abso-
lute constant ¢y, since the result is trivial otherwise. It follows that each vertex v of
every hypercube C; satisfies both F(v)=Fy+O(R2Sy) and |[VF(v)|>>R?. We divide the
vertices into sets B;, not necessarily disjoint, for which |0F/dv;|>>R? for any v in B;.
We shall examine the case j=1, the other cases being similar. For a given choice of
u=(vg, .., up) let

Bi(u)={v: (v, u) € B}

Now if v; and v]=v,+4 are any two elements of B;(u) we will have

13
F(vi,u) :Fl(vl,u)+5§—x—(v1,u)+O(R62)‘
1

However,
F(’Ui’ U), Fl(’Ul, u) = F0+O(R2SO),

whence OF
8 — (v1,u) < R?Sy+ R6%.
3:01

It therefore follows that §<<Sp+R™162. We deduce that either §< Sy or |§|>>R. Since
this holds for any two elements of Bj(u), it follows that

#Bl(u) <<1v

and therefore that #B,<(Ry/Sy)"!. The lemma then follows.
Finally we have the following corollary of the Prime Ideal Theorem.
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LEMMA 4.10. Let Ji, ..., J;m be intervals of the form J;=[a;, pa;), with p>1 and a;>
A>1 for each i<m. Let Y >1 be given and define J (Y, m)CR™ as the set of (T1,...,Tm)
with z;€J; and [[z:;<Y. Then there are positive absolute constants c¢; and co such that

> [T 10g N(P,) = meas(7 (Y, m))

(N(P1),..., N(Pm))ET (Y,m) i=1
+O(mY (c;+log o)™ exp{—ca(log A)'/?}),

uniformly in m.

For the proof we use induction on m. For m=1 the result is an immediate conse-
quence of the Prime Ideal Theorem, in the form given by (2.3). For the induction step
we shall write c3 for the constant implied by the O(-)-notation. When we have m+1
variables P, we fix the first m, so that the final prime ideal has N(Pp4+1)€ Jm41 and

Y
N(Pp41) < m

The contribution from the factor log N(P,,11) is thus

Y
dt—l—O(——— exp{—c logA)l/z}),
/tEJm+1,t<Y/HN(Pi) [IN(P) el

by the Prime Ideal Theorem. We write ¢5 for the implicit constant. The contribution
from the error term is then at most

1 log N(P;)

1/2 :

c5Y exp{—c4(log A)"/?} Z HT(ET—
N(P;)eJ; i=1

m
< esYexp{—cy(log A)V/?} H(CG +loga;o—loga;) (4.2)

=1

=c5Y exp{—c4(log A)Y/?}(ce+log 0)™.

The main term produces

/ Z ﬁlog N(P;)dt.

t€Tm1 (N(Py),..., N(Pm )€ T(Y/t,m) i=1

According to our induction hypothesis this differs from

/ meas(J(Y/t,m)) dt

€Jm41
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by at most

Y
C3/ m— (c14+1og 0)™ L exp{—cz(log A)/?} dt
t€Jmiy1 (43)
< esmY (e +log o)™ exp{—cz(log A)V/2}.

We may note that

/ meas(J(Y/t, m)) dt =meas(J (Y, m+1)),

€Jmi1

which produces the required main term. Moreover the two error terms (4.2) and (4.3)
will produce a total at most

c3(m+1)Y (cy+log )™ exp{—cy(log A)'/*}

providing that

c3zes, c1z2cs and ca2<cy.

Since we may clearly choose ¢z, ¢; and ¢ in this way, the induction step is complete.
This proves Lemma 4.10.

5. The Type I estimates—Lemmas 2.1, 2.2, 3.2 and 3.3

We begin this section by examining
#{z,ye (X, X(1+n)): Rlz+yV2} = S(R; X) = S(R),

say. We shall establish the following estimate.

LEMMA 5.1. If A is any positive integer, there exists ¢(A) such that

2v 2
S AR s<R)—j{,(—);{<<(X+Q><logQ)C<A>, (5.1)
ol

for X=1.

We begin the proof of Lemma 5.1 by splitting the vectors (z,y) into congruence
classes modulo N(R), whence

SR)= Y #{z,ye(X,X(1+n)] :z=u, y=v(mod N(R))}.
u,v (mod N(R))
Rlu+v¥2
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Using the notation eq(x)=exp(2miz/q), this becomes

NR)? Y > Y enmla(u—a)+b(v—y))

u,v (mod N(R)) a,b(mod N(R)) X<z,y<X(1+7)
R|u+v\3/§

=N(R)™? Z So(R, a,b) Z en(r)(—az—by))

a,b(mod N(R)) X<z, y<X(1+7n)
where
So(R,a,b)= > en(ryau+bv).
u,v (mod N(R))
Rlu4v¥2

To evaluate the sum Sp(R, a,b) we note that there is a multiplicative property
SO(R1R2) a, b) = Sl(Rb a, b)SO(R27 a, b)7

for R{R2€R, so that it suffices to investigate the case in which R is a prime. When
a=b=0 we note that the number of pairs v, v modulo N(R), for which Rlu+v¥2, will
be N(R). We therefore see in general that Sp(R,0,0)=N(R), whence

S(R):fﬁio—(X—)Jro( > I—S%R}’%iﬂmin{X,]ﬂv@}min{ N—(R—)})

N(R 5 &
(®) lal,[bI<N(R)/2 (R) |al o]
(a,b)#(0,0)
(5.2)
The total contribution from the first error term on the right is
<X Z )7 r(R)* < X (log @)™,
N(R)<2Q

in view of Lemma 4.2. This is satisfactory for Lemma 5.1.

To handle Sg(R, a,b) when (a,b)#(0,0) we first examine the case in which N(R) is
a prime p. For any integer ¢ coprime to p, the pairs tu, tv run over the residues modulo p
when u, v do. Hence

So(R,a,b)= Z ep(atu+btv) = Z ep(atu+btv).

u,v (mod p) u,v (mod p)
R[tu-{—tv% R|u+v§3/§

It follows that

p—1
(p—1)So(R,a,b) Z Z ep(atu+btv) = Z Ze,,(atu—kbtv)

t=1 u,v(mod p) u,v(mod p) t=1
Rlu+v¥2 Rlu+v¥2

=p#{u,v (mod p): R|lu+vv/2, plau+tbuv}
—#{u,v (mod p): Rlu+vV?2}.
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If pt(a,b) then the condition plau+bv shows that we have u=\b (mod p), v=—DXa
(mod p), for some integer \. If we also have R|u+v+/2 then either p|\ or Rlb—a\:"/ﬁ.
Thus So(R, a,b)=0 for Rtb—av/2 and pt(a,b). The final condition is clearly superfluous.
It follows for a general R that So{R, a,b) vanishes if Rtb—aV/2, while if R|b—av/2 we
have the trivial bound

|SO(R> a, b)l < N(R) < Q

We proceed to estimate the contribution to (5.1) arising from terms in (5.2) for
which a, b are both non-zero. This is

«Q Z lab]~! Z 7(R)* < Q Z |ab|_lT(b—a€'/§)c(A)=21,
0<lal,[b|<Q Q<N(R)L2Q 0<|al,lbi<@Q
R|b—a¥2
say. We split the available a,b into ranges M <la|<2M, N<|b|<2N, where M, N run
over powers of 2. There will be O((log Q)?) such pairs M, N. We use Lemma 4.7 for
each range, whence

1< QY (MN)*MN(log MN)“™ <« Q(log Q)°*,
M,N

which is satisfactory.
We turn now to the terms of (5.2) in which a, say, is zero. By the same argument
as before we find that the corresponding contribution to (5.1) is

<X Y PTT Y rRAX D BT () <« X (log Q)7
0<bl<Q Q<N(R)S2Q 0<|bl<Q
R|b
by Lemma 4.2. Again this is satisfactory for Lemma 5.1. An entirely analogous argument
applies for terms with b=0.
We may now deduce Lemma 3.2. We have

#AZ0 =3 w(d)#{z ye (X, X(1+n)] : d|z,y, Rlz+yV2}.
d=1

Writing 2=dx’, y=dy’ we find that

(K) _ N c (X X ._R

:z:’+y'\3/§}

(5.3)

u(d>5((—R%;-§).

o0
d=1
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Moreover, for RER we have

dZ:lu 2T d2 N(R/(R,d)) N(R>Z d)) (5.4)
_n’X? 1 1
= N®) WIJR)(l p2)p|£([m(1 p)
_ 67]2X2 1 —1
= N(R) ml}m(”p) !

which produces the leading terms in Lemma 3.2.
We shall split the sums (5.3) and (5.4) at d=A, where 1<A<X will be specified
below. Terms in (5.4) for which d>A contribute a total

2y 2
n°X A -2
- N
< E N(R)T(R) E d *N((R,d))
Q<N(R)<2Q d>A
RER

in Lemma 3.2. We put (R,d)=S and R=ST. Thus N(S)|d, and on setting d=N(S)e,

the above becomes

<PX? 3T w(SAT(DANS)TINT T Y e

Q<N(ST)K2Q e>A/N(S)

<PX? YT w(S)AT(T)AN(S)TAN(T) " min{1, N(S)/A} (5.5)
N(S),N(T)<2Q

<& TIZXZA—I(IOg Q)C(A)

by Lemma 4.2.
Similarly, the contribution from the terms of (5.3) in which d>A is

< Z ZT(R AS((R d) >

Q<N(R)<2Q d>A

<Y > (s > T(T)C(A)S<T; %5—)

d>A N(S)d Q/N(S)<N(T)<2Q/N(S)
< Z 7(d)e4) Z T(x+y\3/§)c(A).
d>a X/d<zy<(1+m)X/d

Here we shall use Lemma 4.7 again, so that the above expression is

< Y r(d) C<A>( )(1ogX)C<A><<X2(10gX)C<A>A~ (5.6)
A<d X
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by Lemma 4.2.
If we now write S=(R,d) and R=ST once more, it follows via Lemma 5.1 that the
overall contribution from terms of (5.3) and (5.4) with d<A is

<« T (A ) i (X/d)?

QN(R)K2Q d<A (R,d}" d N(R/(R,d))
RER
X\ _n*(X/d)?
A M X\ (XA
<y > (s) > 7(T) S(T, d) N
dSA N(S)ld Q/N(S)<N(T)<2Q/N(S)
TER
X Q 4
< X T(S)A<‘—+————)(logQ)c( )
d<A N(S)id d N(S)

< (X+Q)(log Q)*™ >~ r(d) < (X +Q)(log Q)* M Alog X.
d<a

On comparing this with (5.5) and (5.6) we find that the sum in Lemma 3.2 is
X2
< x (log XQ)*™) +(X +Q)(log Q)* Alog X.
The choice A=1+min{X 2, XQ~'/2}, which is essentially optimal, then yields a bound
<(Q+XQ2+X%2)(log QX )™,

for a suitable constant ¢(A), thus completing the proof of Lemma 3.2.
The proof of Lemma 3.3 is, by contrast, almost trivial. We have

#BO = #{I:N(I)e (%(}% %(Hn)”.

According to Lemma 4.1 we deduce that
#B) = 34 X3 N(R) 1+ O(X2N(R)~%/3). (5.7)

The sum in Lemma 3.3 is thus

X2
A_ 2 201/3 (A)
<D TR g < XPQ (o )f
QIN(R)<2Q
by Lemma 4.2.
It remains to deduce Lemmas 2.1 and 2.2. For any rational prime p we have
1, pIN({J),
- D MR)= { ; (5.8)

Rlp, RIJ, R#(1) 0, ptN(J),
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where R runs over ideals. We may rewrite the condition R#(1) as p|N(R). It follows
that
#A =) Y w(R)#AG,
Rlg, ¢IN(R)
if ¢ is square-free. By Lemma 3.1 we have #.A%K) =0 unless RER, in which case we
must have ¢g=N(R). We use this to substitute in Lemma 2.1, so that Lemma 3.2 may
be applied. The contribution to #A, arising from the main term in Lemma 3.2 is

) 3 e R
N(R)=q

This is multiplicative in g, and for ¢=p, prime, it reduces to gp(p)/p. Thus

6972 X?
Z T(‘Z)Aﬂ(Q)z #Aq— nﬂg Q‘—O(Q)l
Q<e<2Q 4
672 X2
&« r(g)4 #A(K)— o2(R ‘
Q<§2Q (9) Ng;:q R T N(R) 2(R)
ReR
6n2X?
< F(N(R))A |40 - R t
Q<N(ZR)<2Q( ( )) # £ WzN(R)QZ( )
RER

< (Q+XQ1/2+X3/2)(log QX)C(A)’

since T(N(R))=7(R) for ReR. This completes our treatment of Lemma 2.1.
Finally, to handle Lemma 2.2, we proceed as above using (5.8). We find that
#B,=ula) > wR)#B.
Rlg, gIlN(R)
It follows from (5.7) that
_ 3 ﬂ(_R_) 2 -2/3
#B,=30nXulq) > N(R)+O<X S ONR)T).
Rlq, q|N(R) Rlq, qIN(R)
We readily find that the main term is
3nX3

Yo 01(q)-

Moreover the contribution of the error term to the sum in Lemma 2.2 is

< X? Z r(g)* Z N(R)™%/3

Q<g52Q R|q, q|N(R)
< X2 3 o) 7(a)’a P < X2Q(1og Q)W
Q<gL2Q

as required.
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6. The Fundamental Lemma sieve bounds

The first object of this section is to derive an asymptotic formula for

K -
T(A) = > Sic(Ap p, X7).
XTEN(PR)<...< N(P)< X177
N(Py...P)< X"
This will be done via a ‘Fundamental Lemma’. We could obtain versions of the classical
Fundamental Lemma appropriate to the field K, but it seems simpler to relate our sieve
functions to ones over the rationals. We shall think of S;(.A) as T(®)(A4) in what follows.
We therefore proceed to show that

T™(A) = > S(Ap, ps X7), (6.1)
XTEpn<...<p1< X"
P1..pa< XHT

by demonstrating that

S(Apy. )= 3. SAR) o 2), (6.2)
N(P;)=p:

if p;>z. To this end we observe that if z3+2y3 is counted by A, and p|z®+2y3, then
the ideal (x+y\3/§ , p) will be a first degree prime, P, say. Thus, for each relevant pair
x,y, every prime p; determines a unique first degree prime ideal P; with N(P;)=p;.
Conversely, if P|z+y+/2, then P will be a first degree prime ideal. Thus each P; gives
rise to a corresponding prime p;. This suffices for the proof of (6.2), and hence of (6.1).
We proceed to estimate
S(Apy..pnr X7)

via a classical ‘Fundamental Lemma’, in the form given by Theorem 7.1 of Halberstam
and Richert [6]. We apply this with ‘w(p)’=pgo(p), ‘X’ =612X?/72, ‘¢'=X1/6 and ‘2’=XT.
It then follows that

S(Ag, X7) = M(q){1+O(exp(—77"))} +O(E(q)),

where () 6n2X? )
Ma)— 0@ 67 (1_ oo{p )
== 1L -7
and 622
Fo- Y waprar |- "5 i)

d<x1/3
pld = p<X7
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Taking g=p1 ... pn, the error term E(q) contributes to 7(™)(A) a total

& Z Z p(d)?7(d)?

XTEpn< . <p1<XP™T  daXx1/8
P1..pa< X7 pld = p<XT

< Zu(r

r<X3/2

2

6n°X
22 ho(qd
#Aqd 7T2qd QO(q )

6
" go< r)| < X7/*(log X)°

by Lemma 2.1. Note here that gd is square-free. We now find that

677X 2
2

T (A) = 11 (1—9%)20{1+O(exp(-f—l))}+0(x7/4(1ogX)C), (6.3)

p<XT

where

5, — ) 20(p1 - Pn)

P1.-Pn
XTEpn<...<p1< X7

P pa< X7

The above procedure may be repeated with the sequence A replaced by B. We begin
by showing that

SBp2)= D SBY,2)+0(r(q) ¢ X3 V2 (log X)°), (6.4)
N(Q)=q

if g=p; ... pn is square-free, with p;>>z. If N(J) is counted on the left-hand side, and
N(J) has no factor p?, then @={(q, /) must have N(Q)=gq, so that J is counted on the
right-hand side. Clearly any J appearing on the right also contributes on the left, unless
P|J for some second degree prime ideal with N(P)=p?€|[z, 2?), or for some inert prime
ideal P with N(P)=p®€[z, z3). Moreover, again assuming that N(J) has no factor p?,
there cannot be distinct divisors Q, Q" of J with N(Q)=N(Q')=q. Since there are at
most 7(n)? possible ideals of norm n, it follows that

-3 SB(K),z)<<T(q)3{Z#qu+ S #Bpgt > #B,,sq}

N@)= plg 21/2p<z 21/3p<z
3
<<T(q>3{§ Yo P+ Yo Y ()

plg nX? 21/2&p<z n X3

paln pqln

+ > ZT(n)B}

21/3p<z ngX?
p’qln
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< T(q)B{Z (pg)7 'm0+ D (P9 7'r(g)°

plg 21/2p<

s <p3q)—lr<q>3}x3<logx>c

z1/3p<z

< T(q)7q_1X3z’l/2(log X)¢,

as required for (6.4).

‘We now write

Tén)(B)z Z S(Bpl---PmXT)’
X"Epn<...<p1< X177
Pl pn<X1TT
and proceed to compare T¢™(B) with T(™)(B). We shall do this in two stages, passing
via W
n K -
T (B)= > (B p,n X7),
XTEN(Po)<.. . <N(P )< X7
N(Py...Py)< X7
in which Z(l) indicates that N(P;... P,) must be square-free. According to (6.4) and

Lemma 4.2, we have

T (B)~-T{M(B) < XY (log X)¢ Y 7(q)'¢7 ' < X" *(log X)*. (6.5
g< X1+7
Moreover @
TM(B)-T™(B) « > #Bgf.).ipn,

XTEN(P)K  EN(P)< X7
N(Py... P )< X7

where 2(2) indicates that the ideals P; are distinct, and that N(P; ... P,) is not square-
free. In view of Lemma 4.1, together with the fact that ¢g=N(Q) has at most 7(g)*
solutions @, we conclude that

TOEB)-TVB < Xx® Y. 3 (9!

p}X"'/a qul+v
P°lg

< X3 Z (log X )°p~ 2 < X3(log X)° X ~7/3,

p2XT/3

When we compare this with (6.5) we conclude that

TM(B)-T{M(B) < X3 /3 (log X )°.
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We may now proceed as before to deduce that

70(5) =3700x° [T (1-22) 5114 0fer(-r )+ 0T, (69
p<X™
where ( )
_ 01\P1..-Pn
X = Z PP

XTEPpn<...<p1< X177
P1pa<X T

We must now compare the main terms in (6.3) and (6.6). We look first at the
product involving the function gg{p). Since

PPy ﬁP)" > %+0(Y—1/3)<<(10gY)'27

vep<z P Y<N(P)<Z Y<p<Z

by the Prime Number Theorem and the Prime Ideal Theorem, it follows that the infinite

(-

p2Y P

product

is convergent, and is 1+O((log Y)~2). This shows that

B )

p<z

2
N -2 1
=00 (1+0((log 2)™)) [] (1—1-9)-
p<z
For the product in (6.6) we begin by observing that

[ (=) =L te) - I 5) ILTLC ) (-5)

p<z p<z P|p p<z p<z P|p

On the other hand, for any o>1 we have

> Zlog(l—ﬁ;)—log(l—ﬁ;):ygézé— > o)

Y<p<Z Plp Y<N(P)<Z

after consideration of the contribution from prime ideals of degree 2. Partial summation,
using the Prime Number Theorem and the Prime Ideal Theorem, reveals that

Y = X g +Oleey) )

Y<p<Z Y<N(PYKZ
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uniformly in ¢. Thus, taking Y=z and letting Z— oc we conclude that

(57 )(17) = () ()

p<z P|p p>z Plp
_ (o) —2
= 2x(0) (1+0((log 2)™7)).
We may now let o tend to 1 to deduce that
1 AN _
11 H(l—m)(l—5> =75 1 (1+0((log 2)72)). (6.8)

p<z Plp

It follows that

,,Uz(l_%p“)) :70_1(1+0((10gz)—2))pI;[z(l_l)’
whence (6.7) yields

I1 (1-%) :70-100'1% (1+0((log2)2) [T (1— o) ) (6.9)

p<z p<z p

Moreover we may note that

H(l——gol()—m) < (logz)™?, (6.10)

p<z

again via (6.7).
We have also to compare the sum

5, = >3 00(p1 - Pn)

P1---Pn
XTEpn<..<pr1< X177

P1..pa<X't7

with the corresponding sum ¥, in which the function gg is replaced by p;. At this point
we observe that go(p)=v,+O(p~!), and similarly p1(p)=v,+O(p~'). Thus

01(9) = 00(9) {1+ O0(X ") }" = 0o(9) {1+ O((log X))},

by (2.5) and (2.6), unless q is divisible by an inert prime p, say. In the latter case go(g)=0
and
o(g) <3"p T X2,
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again by (2.5) and (2.6). We may now compare our various estimates to show that

2X2
T™(A)— T (B) < é%—)F (Zo{exp(—7 ")+ (log X7) "2} 4+ X5 X ~7/2) 4 X 277/4
2y 2
Ui X -1 ! yy—T/2 2—71/4
by - X X
< logXT{ oexp(—77 ) +X; H ,

where

Y= E L
0= .
pP1...-D
XTEpn< <pr<X1TT "
pl...pn<Xl+"

Moreover, since go(p)<vp, we have

Vp, ...V, 1 [ | 1 ‘
o< > —”1——1’1<<—,( > —3><<—,(10g—+0(1)),
[ s P n! T
PP X7

and similarly

1 1
When we sum over n we therefore deduce that

3 1) - T B) < T fexp(—r) 4 X7/
2 ” Tog X7 exp(—T

xexp(log —i— +O(1)) +rolx2oT/4

7.,,72)(2

< log X’

by (2.5). This proves Lemma 3.5.

7. Upper bound sieve results

This section is devoted to the proof of Lemmas 3.6 and 3.7. We begin by establishing
the following result, which we shall use repeatedly.

LEMMA 7.1. Let Q be a set of square-free integers q with N<q<2N. Suppose that
z>X™ and N<X277. Then

Z (A ) Z nX? 2—7/5
Sr(Ag 7)< . st X7
Noee o glogmin(z, X?~7/N)
and 5
X
> SK(B(K),z)<<Z 7 +X37/5,

3 2—T1
Nigeo = glog min(z, X2-7/N)
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For the proof we begin by converting our problem into one which involves only
rational numbers. For the sequence .4 we may use (6.2) to show that

ST Sk(AS0, )= S(A4,2)
N(Q)eQ q€Q
while for the sequence B, we find that
> SklBY0,2)= 3 88, 2)+0( X205 X Y s
NQ)eg q€Q qeQ

=Y S(B,,2)+0(X>27/*(log X))
qEQ

by (6.4) and Lemma 4.2.
We now apply the form of Selberg’s upper bound sieve given by Halberstam and
Richert [6, Theorem 4.1]. We set

20= min(zl/z, N—1/2X1—7'/2)’

and for A we take ‘2’=29, ‘w(p)’=po(p) and ‘X’ =6n2X?%/n?q. Similarly for B we take
2=z, ‘w(p)’=p01(p) and ‘X’ =3~vunX>/q. We then deduce that

2

2X
S(Ag2) < S(Agy 20) € T (log z0) '+ 3 7(d)*1(d)?| Rag(A)|

d<zo
and
S(Byr2) < 5By 20) < X (log 20)~ ') 7(d)?u(d)*| Rag (B)],
d<z0
where

Rin(A) = #Am — 6”2‘52 2olm)

s m
and similarly for R,,(B). Note that we have used (6.9) and (6.10) to bound the prod-
ucts ‘W(z)’ (in the notation of Halberstam and Richert). Clearly we may suppose that
every prime factor p of an element g€ Q satisfies p> 2, since otherwise S(A,, z) vanishes,
and similarly for S(By,z). Thus we may suppose that dq is square-free for d< z2. We
may now sum for ¢€Q, and use Lemmas 3.2 and 3.3 to bound the error terms. Since

N2z3 < X?~7/2, by choice of zy, we deduce that

1 2-7/4
3754,z «Q—Zq +O(X?7/4(log X)°),
geQ geQ
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and similarly that

X3

E:S(Bq,z)<<——n § ¢ 1+ O(X3 /4 (log X )°).
log 2

qeQ q€Q

The lemma then follows.

It is now a straightforward matter to establish Lemma 3.6. For S3{.A) we have

Ss(A)= > Sk(AENEPY< Y Sk(AR0, X172,
X1-T{N(P)<X1+7 X1-TN(P)<X1+7

By Lemma 3.1, we may assume that N(P) is prime. Thus Lemma 7.1 yields

2x2 2X2 2X2
S3(A) < Z L_+X2—T/5<<TW—+X2—T/5<<TTI__
plog X log X log X

Xl—‘rgp<X1+‘r

by (2.1) and (2.5). This is satisfactory for Lemma 3.6. One may handle S3(B) in much

the same way. We no longer know that N(P) is prime. The contribution from prime
ideals P of degree 2, however, is

< Y #BF< Y XYNP) <X
N(P)zX1/2 N(P)yzX1/2

the sum being over such primes. Inert primes may be handled similarly.
The treatment of S5 is entirely analogous to that used for S3. For Ss(A) we have to
observe that

oo )i Y pt >, it

X7<pa<pr<X' 7 X2<pa< X1=7  X3/2-7/py<p1 < X3/247/p,
X3/2‘T<p1p2<X3/2+"

< Z p2'17'<<T.
X1/2<py< X1-7

Similarly we note that the summation conditions for S7 imply that

N(P, P, Ps)

> xl/2-2r
N(P Py)

N(P3) =
and
N(P3)? < N(PPy) < X117,

We thus have a sum over (pip2ps)~" in which X1/2-7/2< py py< X1=7 and X227«
p3<X1/2+7/2_ This therefore produces a total O(r) as for Sg. For Sg(B) and S;(B) we
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again have to note that prime ideals of degree greater than 1 may occur. As for S5(B)
these contribute O(X3~1/5), say, which is negligible. This completes our discussion of
Lemma 3.6.

For our treatment of Lemma 3.7 we note at the outset that in every application
of Lemma 7.1 we will have 2>> X7 and N« X227, so that min(z, X?>~"/N)>X". We
begin by examining U(™(A) for n>3. We shall record at the outset two estimates which
we shall use repeatedly. If 22> X" we have

> NP <er (1)

2K N(P)<z X

Moreover we have

1
-1 -1_
> NP)'<log(r 1)+O<logXT)
XTEN(P)KX1-7 (7'2)

glog(r_l)——7'+0( )glog(r‘l).

1
log X7

In each case we use partial summation, based on the Prime Ideal Theorem, together
with (2.5).
The contribution to U(")(A) arising from terms in which

X"<N(Ppp1) < X7F8

may now be estimated via Lemma 7.1 as

2X2
€ Y Sr(AGD XN Y e+ X, (7.3)
N(Q)eQ ge0 1798

for an appropriate set Q. Moreover

1 11 1y
> o) S > N(Porr) 1! ( 2 _(P—)>

N@eQ XTN(Prg1)<X7+e X’<N(P><X“*N (7.4)
1
-1 —1\n
43 a(logT ",

by (7.1) and (7.2). In view of (7.3), the total error when we sum over n is

2X2 2X2
IZg G 77 rexp{log 7!} < T2 _ers,

< log X

which is satisfactory. The term X2~7/3 in (7.3) contributes O(7~1X2~7/°) after summing

over n, which is also satisfactory.
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Those terms of U(™(A) for which X'~""¢<N(P,)<X'~™ may be estimated in a
similar fashion. We must also handle the cases in which

XN ... P) < X1HT,
as well as those for which
XWTLN(Py ... Poyp) < XHHTHE
In each case we have
XT<N(Ppy1)<N(P)<..<N(P)<X'"7
and

Y<N(P)<YXE.

Here Y may depend on N(P;) for i2>2, and satisfies Y 2 X7. Thus the total contribution,
after summing over n, is again O((n?X?/log X)£173).
Finally we shall estimate the terms for which there are primes P;,_1, P; with

N(P)<N(Pi_1)< X°N(P).

To estimate

> N
N(Q)eQ
in this case, we fix 4, so that the sum over P,_; produces O(¢771), by (7.1). The
remaining prime ideals produce a factor O{(log 771)"/n!} as before. We therefore obtain

a contribution
U2X2
log X7

1
& fTwzm(logT)",

on allowing for the various indices i<n, which produces O((7°X?%/log X )&7~4) after
summing over n.

The net effect of these estimates is that we may restrict the prime ideals P; so that
N(P;))eJ(m;), with integers m; satisfying (3.5), (3.6) and the other relevant conditions,
providing that we allow for an error O((72X?/log X)£é7~%). Our next step is to replace

Sk(A%) p . N(Pry1))

K M
Sk(AR) p L Xmm),
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According to Buchstab’s formula this introduces an error

3 Sk(A%) p . p N(P)).

X™n+18 KN(PY<SN(Pry1)

We sum over the various prime ideals P, ..., P41, using Lemma 7.1, along with (7.1)
and (7.4), to show that the error is

2x2
< n §7_—1

g X7t oy UeeT )"

When this is summed over n we get a total O((n2X?/log X }¢7—3), which is satisfactory.
We proceed to introduce the factor

n+1

_ 17 log N(R)
ds = E m;€log X
Since N(P;)eJ(m;) we find that
<8N Lt aer,

S miflogX

by (3.5). Thus (2.6), (3.4) and (3.9) yield
1<ds <14+0(e772).

We must therefore allow for an error O(£7~2U(™(A)). Since Lemma 7.1 shows that

22
(n) n X 1 1 —Iyn+1
UM(A) <« og X7 (n31)! (log 7= 1"+,

by (7.2), the total contribution to Lemma 3.7 is

772X2

<<10ng

,,72x2

log X

gr?expllogr™'} = g,

which is again satisfactory.
To complete the proof of Lemma 3.7 for U (")(A), it remains to replace

SK('Agl(.)..PnH’ an+1€)

by

* K
SAB oy XT38,
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The difference between these is at most

> #A%L

N(P)= X~

where S=P; ... P,,y,. Since we have N{S)>X'*7  from (3.8), we deduce that N(P)<K
X1=7/2_ The total contribution, when we sum over all admissible ideals S, regardless of
the value of n, is thus

> > #{S:S|1}.

XTEN(PYKX1=7/2 [ P2[e A(K)
I can, however, have O(7~1) prime ideal factors P; with N(P;)>X7, whence
#{S:S|I} < exp{ct™'}.
It follows that the error under consideration is

< exp{cr™'} Z #Aﬁ,’i). (7.5)

XTEN(P)X1-7/2

Now if P is a first degree prime ideal then

X
: < 2 y < N2
#{reZ: X<z < X(1+n), Plz+yV2} 1+N(P)2
for every integer y. Thus
# A% <« X+ X2N(P)~2, (7.6)

whence (7.5) is

X2
<<exp{CT_1} Z (X+1—V(T)2) < exp{cT—l}Xz—r/z <<X2—T/47
XTEN(P)y«X1-/2

say. This is satisfactory for Lemma 3.7, and completes the treatment of U™(A).
In order to deal with the sequence B, it will be convenient to record the estimate

#B; < XN(J)™, (7.7)

which follows from Lemma 4.1. To handle U(™(B) we shall first remove those terms in
which some P; (call it Pp) has degree 2. The total effect of this, after summing over n,

S S #{s:s)1),

XTEN(Py)<X 17 I:PoleB

is an error at most
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where S runs over all products of distinct prime ideals P, subject to N(P)>X". Just as
in the analysis of the previous paragraph, we may bound this as

<expier !} Z #Bp,.

XTEN(Py) < X1

However, #Bp, < X3N(Py)™1, by (7.7). Since P, is restricted to be of degree 2 the total
error is thus

< X3exp{cr™1} Z NPy '« X3expfer 1} X2« X377/4
XTEN(Py) < X7

say, which is satisfactory, in view of (2.5). Primes of degree 3 may be handled similarly.
In the same way we may remove those terms in which there are two prime ideals

P;, P11 with the same norm. The analysis is much as above, save that we use the bound

Z #Bpp,,, < X® Z N(P;Piy) ' X7,
XTN(P)=N(Pijy1)<X1—7 XTEN(P)=N(Piy1)< X1~ ™

This having been done, we proceed to estimate the effect of confining the primes F; so
that N(P;)e€J(m;), with the m; satisfying (3.5), (3.6) and the other relevant constraints.
The analysis mimics that used for U(™)(A) precisely. Similarly we can bound the error
caused by introducing the factor dg, by the same argument as previously. Finally, when

we replace

SK(BED;j?.Pn+17 X i)
by

S, X0

we again copy the argument used before, using (7.7) instead of (7.6). This completes our
discussion of Lemma 3.7 as far as U((B) is concerned.

The treatment of Ul(l) and Ul(z), and also of Sy, follows the lines given above, both
for A and for B. In fact we get errors which are O((n°X?/log X)&773), since we are able
to use a bound n<1 instead of n< 771

There remain the terms Uz(l)(.A) and UQ(U(B). Here too we follow the same argument
as used for U(™. We first restrict each of P; and P5 to have its norm in the relevant
interval J(n;), and replace

Sk (An )., N(P2))

by
Sk(AGh,, X28).
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The errors here are estimated just as before. Note that, in applying Lemma 7.1, we have
N(P;P,)<X?72". Then, when we introduce the ideals Q, ..., @Qn41 all the errors in the
subsequent manceuvres can still be estimated via Lemma 7.1, in view of the bound

K .
#{P1, Py PP € Ag, gy} SSk(AGY o L X7).

Since we still have n< 77! in this new situation, the rest of the argument proceeds just
as with U™,

8. Proof of Lemma 3.8—the contribution from the terms e(g,

We shall begin our treatment of Lemma 3.8 by considering the function es. Here we
shall prove the following result.

LEMMA 8.1. Let CCR3 be as in Lemma 3.8. Define
N((z,y,2)) = 2°+2y3+42° - 62y2

and
I= / w'(N(x)) dz dy dz.
¢

Then for any positive integer ¢< LY/ and any integer a€Z[V/2] we have

Z €@ :,-)/O—IM—l(glogX)~n_1IE(a7 Q) +O(S§M_17(q)cexp{—c /logL })’
B=a(mod q) ¢K (Q)
Bec

where €(a,q)=1 if a and g are coprime, and e(a,q)=0 otherwise. Moreover we have

defined
n+1

M= H mg,
i=1
and we have written ¢ for the Euler function over the field K.
According to the definition (3.12) we have
_ e L

Y e =MTNElog X)) 3 ulog s 3o wNG). (8
B=a(mod g) N(J)<L Bec,J|B

Bec B=a(mod q)

The two conditions J|8 and S=a (mod ¢) are compatible only when (J,¢)|e, and in
this latter case they define a unique residue class for 8 modulo the lowest common
multiple [J, g.
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We therefore investigate the sum

S w(N), (8:2)
gec
B=v (modr)

where 7 is a rational integer multiple of [J,g]. To be specific, we shall take r=N([J, q]).
We begin by considering the case n>1. We write, temporarily, J(m,)=[a,b) and

J(mpy1)=[c,d). Then
w’(t):/dmldm",
Ty...Tp

where the integration is subject to z;€.J(m;) for 1<i<n and

It follows that

T1--Tp—1
where ot
t/v
L(t) = X[a,5)(T) da
z
0
and
n—1
=1
We may therefore deduce that
(t+h)/oIl g0,
osnG+n-L< [ T
t/vll r t
if h>0, whence
-1
h dr h _
w'(t+h)—w'(t)| < = / — < (Elog X)L (8.3)
[/ (1) —w'(8)] t[[ oy S
Moreover, we have
0<w'(t) < (Elog X)™, (8.4)

since

/ @-zélogX.
zed(m) T
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For each vector B we take C(8) to be the cube of side r, centred at 3, and with sides
parallel to those of C. Then, since

r<N(J)@P <L Sy < VI3,

we have

N(x)=N(B)+0(V*3r)
for any xe€C(f). Thus (8.3) shows that
w'(N(x)) =w'(N(8)+O0(V~?r(¢log X)" 1),

whence

W' (N(B)) =1 /C (mw’(zv(x)) da dy dz+ O(V—"31(¢ log X)" ).

The cubes C(3) for 3=~ (mod r) will be disjoint, except for their boundaries. Moreover
as (3 runs over C the union of the cubes C (8) will be a set which differs from C only at
points within a distance O(r) of the boundary. Since r< .Sy it follows that

Z w'(N(B))=r—3 Z / w'(N(x)) dz dy dz
Bec gec c®
B=+~ (modr) A=~ (mod r)

3
—
= 7‘_3/6 w'(N(x)) dx dydz+ O(r 3783 (¢ log X)™)

3
+0(V_1/3r(§ logX)"—1 (%Q) )

=r3T+0(r 282 (¢log X)),

(8.5)

by (8.4).

We proceed to derive the analogous estimate in the case n=0. Here we find that
w'(t,m) is just the characteristic function of J(m;). (Since we chose the right-hand
derivative, this is correct even at the endpoints of the interval.) In particular, (8.4)
remains true. If we write, temporarily, J(m,)=[a,b), we find that

w(N(B))=r"3 /C (ﬁ)w’(N(x)) dz dy dz (8.6)

unless N(x)=a or b, for some xeC(8). Since

x-VN(x)=3N(x)>>V,
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we have [VN(x)|>>V?2/3 so that Lemma 4.9 may be applied with ‘R’<V'/3, ‘Sy’=r and
‘Ry’<Sp. The number of cubes for which (8.6) fails is therefore O(S2r~—2), whence we
may deduce as before that

Z W(N(G))= Z / N(x))dzdydz+O(Szr~2)
pec jec C(ﬁ)
B=v (mod r) B=~ (modr)
=r3I+0(S5r7?).

Thus (8.5) holds for n=0 too.

We now observe that

> w(NB)
gec, Jip
B=« (mod q)
is composed of r3/N([J, q]) subsums of the form (8.2), whence
2. w(N(B)=N(J.a) ' T+O0(S5(Elog X)),
gec.J|B
B=a (mod q)

providing that (J,q)|a. The error term clearly contributes
L SEM(Elog X) ' Llog L< SAM ¢ L < S3M ' exp{~cy/log L }

to (8.1), by (3.13), (2.5) and (3.4). The main term of {8.1) may be written in the form

-1 n—1 — J) L
(€log X)™" g 3IN(;<LN( 7y V(@) log 77
(J.9)|ex
We write I=(.J, q) so that
uJ ) lo N(I) ) R CAR
N(JZ)<L N ) gN II; N(g)iL{AlJI—Z%qI‘l }N(J) N(T)
(V@) 11J
= 3N Y ) (o (8.7
Ilq,x AlqI—1t

w(B) . L/N(IA)
X log .
N(B)<zL;N(1A) (B) N(B)
(B,1A)=1
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To handle the innermost sum we therefore investigate

N(B)<z N (B)
(B,CY=1

using the Dirichlet series

9= 3 gt [Ta-NE)

B:(B,0)=1 P|IC

The Perron formula shows that

[\
i

14icc ds
Hx® —.
| e

—i00
Now if Re(s)>3 then

[Ta-ne)y=)- 1<<ex1.o{ZN 3/4}<<exp{c

P|C PiC

< exp{c(log N(C))/*}.

> o]

n<w(C)

Using the standard zero-free region for (x(s) we may therefore change the path of inte-
gration in the usual way to obtain

Y =res{f(s+1)a%s *:s=1}+O(exp{—cy/logz })

for a suitable constant ¢, whenever N{C)<xz. The residue is easily found to be
7 IN(C)/¢K (C). Moreover, since ¢< L%, we will have N(IA)<L/N(IA) in (8.7), and
L/N(ITA)>LY? so that it becomes

%! Z N(I) Z w(A) (;;(Zz) +O<exp{—c\/logL} Z N(A)_l).

I|g, Algl—1 IAlq

Using multiplicativity, the main term is readily evaluated as ~; 'N(q)/¢x(q), if ¢
and « are coprime, and zero otherwise. The error term is also easily estimated as
O(7(q)¢exp{—c+/log L }). Lemma 8.1 then follows, since (8.4) yields

T < S3(¢log X)™.
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9. Proof of Lemmma 3.8—the contribution from the terms d 3

We now turn to the analysis of dg. We begin by disposing of the trivial case, in which

(a, @) #1.

LEMMA 9.1. Let CCR3 be as in Lemma 3.8. Then for any q<L'/® and any integer
a€Z[V2] we have
Y. dp=0

Bzah(mod q)
Bec
whenever o and q have a common factor.
For the proof we merely note that (3) will be a product of prime ideals P, with
N(P,)>XT>2L>N(q), whence § and g must be coprime.
For the remaining case we shall prove the following estimate.

LEMMA 9.2. Let CCR3 be as in Lemma 3.8, and let a positive integer A be given.
Then for any natural number q<(log L)4 and any integer a€ Z[\3/§ ] coprime to q we
have

> digy=7"Mpx(q) " (Elog X) " T+ 0a(V exp{—cy/log L }),
B=a {mod gq)
gec
where T 1s as in Lemma 8.1.

We remark that the implied constant is ineffective, because of problems with Siegel
Z€eros.

A comparison of Lemmas 8.1, 9.1 and 9.2 immediately yields Lemma 3.8.

In order to establish Lemma 9.2 we begin by using characters to modulus ¢ to pick
out the condition f=a (mod ¢). Thus

Yo dg =0k Y. x(@))_ dex(B). 9.1)
ﬁEaA(mod q) x (mod q) Bec
Bec

Here we stress that x runs over characters of the multiplicative group for Z[\z/?] mod-
ulo g. In order to handle the condition 3€C we shall use Hecke Gréssencharacters. For
any non-zero S=a+by/2 +c\3/Z€Z[\7§] we shall write

B =a+bwv2 +cw? V4,

where w=3(—1++/=3). We then set

/

X £ ,
X(_l):(_l)sv X(e()):e”, ﬁ:ezu7 10g50=?1-
0
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Here we shall choose s=0 or 1, 0<t,u<27 and veR. We now define

vO(6)=X(ﬁ)(%> exp{—itv~log 6]}, 9.2)

s’

1B) =157

exp{—iuv~log ||}
and

v2(B) = exp{—2miv ™" log |B]}.

Then, for each index 1, the function v;(3) is completely multiplicative, and has modulus 1
(or possibly 0 when i=0). Moreover, v;(8;)=v;(82) whenever 3; and (3 are associates.
If S is an integral ideal generated by 3, we may then define v;(S)=v;(3). For any x€R3?
such that N(x)#0, we shall write

B(x)=z1+22V2 +23V4 and F'(X)=z1+22wV2 +a30? V4.

‘We then set () (%)
n{x = AP xp{—iuv ! b d
100 = 00 iy (i log 860}
and
va(x) = exp{—2miv ™" log |B(x)|}.
We define

1 2 2
M=[11 2],
111

and note that B(Mx)=¢ep0(x) and §'(Mx)=e,3'(x). Thus, if we say that two vectors
x and x’ are associates when x'=+M"x for some n€Z, then we will have v;(x)=v,(x’)
(i=1,2) whenever x and x’ are associates.

We proceed to introduce a weight function W(S; A, x), defined for positive A<% by

vt ()i o(22)

1-A~Mz/2n, |lz/27] <A,
h(z)=
0, |z/27}| = A,

where

and

[[¢]| = min [t—n],
nez
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as usual. We note that
sin(mnA)
h nz
(@)= Z( ™A )
We proceed to study
(x) = > dsve(S)W(S; A, %),
N()<N(S)EN(x)+AV

where x€C, so that V< N(x)< V.
Our goal is the following result.

LEMMA 9.3. Let x€C and suppose that q<(log L}*. Then

2

¥ (x) :s(x)m(x)% (Elog X )" '+ 0a(A™2M " 'Wexp{—cy/log L }),

where
m(x) =w(N(x)+AV)—w(N(x))
and €{x)=1 or 0 depending on whether y is trivial or not.
We begin by observing that

-5 5 (S (S, 1,

Jk=—00

where
Sk = S dsuUR(s)
N(x)<N(8)<N(x)+AV
and

VIR(8) = u(8) = 1p(S) 1 (S ) 1y (S)F.

(9.3)

(9.4)

We shall say that the character v(S) is trivial if it takes the value 1 whenever S

is coprime to g. This corresponds to having the trivial character x modulo ¢, letting

s=t=0 in the definition of 1y, and taking j=k=0. In our situation the condition that

(S, g)=1 is redundant, since, if dg is non-zero, then S and g are automatically coprime,

as in the proof of Lemma 9.1.

For the case in which v is trivial we now apply Lemma 4.10. Since J(m;)=
[X™i€, XA+mIe) with X™€>XT>L, we may take p=X¢ and A=L. Moreover we
note that m(x) is the measure of the set of (n+1)-tuples (1, ..., tn41) with t,€J(m;) and

N(x)<J]t;<N(x)+AV. In view of the bound n< 771, the lemma then yields

n+1

> HlOgN(Pi):m(X)+O(—‘;({lOgX)"exp{—c(logL)1/2}>,

Py,...,Ppy1 i=1



PRIMES REPRESENTED BY z3 423 55

since

c Y cn crt
—— _} < — < < 1 .5
(1+£logX) o0 gropx) <0 giagx ) <p(OW) 03
by (2.5) and (3.4). We therefore conclude that

Zik= m(x)M 1 (€log X)™ " 1+ O(VM L exp{—c(log L)1/2}), (9.6)

for the trivial character, in view of (2.5) and (3.4) again.

In order to bound X; x in the remaining cases, we shall use a version of the Prime
Number Theorem with Gréssencharacters, due to Mitsui [15, Lemma, 5], which yields the
following.

LEMMA 9.4. If the character vU® is non-trivial then, for any positive constant A,
we have

Z log N(P)vUR)(P) « 4 zexp{—cy/log z }

N(P)<z

uniformly for

|5, |k| < exp{y/log z }

and ¢<(log 2)4.

Note that Mitsui imposes his bound on the modulus (g in our notation) on [15, p. 11].
It does not appear explicitly in his statement of the result. For non-quadratic characters
one may in fact allow qgexp{\/ log = } As usual, however, quadratic characters are a
potential problem, and Mitsui’s treatment employs the familiar arguments concerning
Siegel zeros. In particular, one should note that the implied constant in Lemma 9.4 is
ineffective.

We now write
Sik=(m1€log X)™1> gyu(1) > v(P)log N(P),
J P
where J runs over products P ... P,41 with N(P;)eJ(m;), and

_ ﬁ log N(P)
97= ol m;€log X
Moreover the sum over P is for

N{x)+AV

N(P)e J(m;) and %?<Mm< TR (9.7)
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where
n+1

=[] ~¥&).

The sum X; ; therefore vanishes unless V/II>>X7>>L. Lemma 9.4 now yields

v
Tik<<am! Z 9§ exp{—cy/log L }
J

for |j|, |k|<exp{cy/log L } and q<(log L)*. Since

log N( ) -1
3 <«m (9-8)
NPT (m) N( ymélog X

we deduce that
Yk <4 M 'WeT exp{—cy/log L }.
In view of the bounds (2.5) and (2.6) we conclude that
Tk <a M 'Wexp{—cylogL}. (9.9)

We also have the trivial bound
Eik << (mi€log X )~ ZgJZng

The inner sum, which is subject to (9.7), is O(V/II). Thus if we use (9.8) for m=
Mg, ..., Mnp4+1 We see that

Lk < VM ¢log X) e < VM, (9.10)

in view of (2.5), (2.6) and (3.4). To complete the proof of Lemma 9.3, we insert the
estimates (9.6) and (9.9) into (9.4) when |j|, |k|<exp{cy/logL }, and use the bound
(9.10) otherwise.
Our next task is to investigate the relationship between values of (3 and x for which
=(53} is counted by X(x).

LEMMA 9.5. Let VK N(S), N(x)<V, and suppose that W(S;A,x)#0 and that
N(x)<N(S)KN(x)+AV. Then S has a generator 3 for which

B=(1+0(A))x. (9.11)
Similarly, if B is any generator of S, then x has an associate X' for which

B=(1+0(8))x’
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We begin by noting that 3(x)|3'(x)|*=N(x) is positive, whence 5(x) must also be
positive. Now, if S and x are as above, and S=(/), then

arg(l/g(ﬂ))—;‘g(lfz(ﬁ(x))) H <A.

Thus
<A,

log B(x)~log 1/3\‘

where v=log ¢g. We may therefore replace 3 by a suitable associate so that #>0 and

log g < A.

A(x)

This latter condition implies that

B=(1+0(A))A(x). (9.12)

Since S={g) is counted by 3{x) we also have

) -arsn BN |
2 ST
Now, since log G=log 3(x)+O(A), we conclude that
arg(8') = arg(8'(x)) +O(A). (9.13)

Finally, since N{(x)<N(B)<N(x)+AV we have

BIB'? = (1+0(8)) B(x) |5 (%),

so that (9.12) yields
18| = (1+0(A))15'(x)]. (9.14)
A comparison of (9.13) and (9.14) shows that 3'=(14+O(A))#'(x), whence (9.12) yields

B=(1+0(A))x, as required for (9.11). The second assertion of Lemma 9.5 follows simi-
larly.

If xeC then Lemma 9.5 shows that =x+O(V/3A). Taking the implied constant
to be ¢, say, we therefore define C’ as the set of vectors t for which there is at least one
x€C with [t —x|<cV'/3A. Thus, if S is counted by ¥(x) then S=(83) for some 3 with
BeC’. Moreover, if A and SoV~1/3 are small enough, as we now assume, there is at most

one such 8. In view of (9.2) we may also note that we will have

vo(B) = (1+0(A)) x(B) exp(—itv™ " log B(x)).
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We therefore set
¥'(x) = exp(itv~ ! log f(x)) £(x)
= S dapx(AW(B): A X){1+0(A)}. (9.15)

gec’
N(x)<N(B)EN(x)+AV

In view of the definition of £(x) it then follows from (9.3) that
A2
¥ (x) =e(x)m(x) i (Elog X) ™'+ 04(A™*M 'V exp{—cy/log L }). (9.16)

We proceed to investigate
/ Y(x)dzdydz=J,
c

say. On the one hand, the estimate (9.16) shows that

J=¢(x) %; (Elog X) ! f m(x)dz dydz+O0a(A™2M 'VSE exp{—c\/log L }).
¢ (9.17)
When 1221 we may estimate m(x) via the Mean Value Theorem, in conjunction with (8.3).
Thus there is a real number Ac(0, AV') such that

m(x) =w(N{x)+AV)—w(N(x)) = AVw'(N(x)+A)
— AV{w/(N(x))+ O(AVN (%) (€ log X))}
=AVw/'(N(x))+O(A?*V(Elog X )™ 1).

In this case the integral in (9.17) is

AV / w'(N(x))dz dydz+O(A?VS3(Elog X)" 1) = AVI+O(A*VS3 (£ log X )™ 1).
c
(9.18)
When n=0 we observe that 0<m(x) <AV for all x, and that if J(m,)=[a,b), say, then

AV, a< N(x)<b-AV,
m(x) =
0, N(x)<a—-AV or N(x)>b.

When x is confined to the cube C, the set for which |N(x)—a|< AV has measure O(AV),
and similarly for [N(x)—-b|<AV. Since w'(t) is the characteristic function of J{(m;), as
was noted in the previous section, it follows that

/ m(x)dz dydz = AV / w'(N(x)) dz dy dz+ O(A?V?). (9.19)
Cc C
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We may now compare the bounds (9.18), for the case n>1, or (9.19), for the case
n=0, with (9.17), to deduce that

3
T =e(x) AMV (Elog X) "' T+ O(A VM) + 04 (AT M VS exp{—cy/log L }).
(9.20)
On the other hand, (9.15) shows that
T =3 dipx(B){1+0(A)} W((8); A, x) da dy dz.
Bec’ x€C, N(x)< N(B)SN(x)+AV

At this point it will be convenient to assume that C is inside some appropriate ‘funda-
mental domain’

F={xeR3*: A< B(x)<co)}.

This is certainly the case if So<cV'/? with a sufficiently small absolute constant ¢, and
it is clearly enough to prove Lemma 9.2 under such an assumption. The set F has the
property that each non-zero x has a unique associate in F.

Now suppose that 3€C and that |3 —t|>c’AV1/3 for all t on the boundary of C,
where ¢’ is a suitably chosen large absolute constant. Then, according to Lemma 9.5,
if W((8); A, x)#0 there is some associate X’ of x for which |3—x'|<c’AV'/3, whence
x'eC. In particular, if xeF it follows that x'=x, so that xeC. For such 8 we may
therefore deduce that

/ W((8); A x) de dy dz
X€C, N(x)<N(B) < N(x)+ AV

:/ W((8); A, x) dx dy dz = 1(),

EF, N(x)<N(B)SN(x)+AV

say. We now conclude that

7= 3 dix(B1+ O (8)+0( 3y 16 (0:21)
Bec 8
where S°* counts those 3 for which |§—t|<AV/3 for some t on the boundary of C.
We now examine I(5) more closely. We make a change of variables by setting

Bx)=y, O(x)=re”.

A straightforward computation shows that the Jacobian of this transformation is r/v/27.
Thus, if 6;=arg(v;(5)), then

egA
I(B):\/%ﬂ h(Gz—Zglogy>I1(y)fz(§)dy,
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where AV
Ly =/ rdr=—
N(B)~AV<r2y<N(B) 2y

and
2w "
L(y)= / h(91 % logy—6’) df =27 A.
0
An easy calculation now reveals that

logeg
V2T

To estimate the error terms in (9.21) we use the trivial bound

I(8) = —=2= A%V =y A3V.

n+1
ds < H mitd <2< liklog X, (9.22)
m

(]

=1
whence (9.21) produces
T =18V Y dis) x(8)+0(A*V? log X).
pec

We compare this estimate with (9.20) to deduce that

2_ dx(0) )(51 g X) 1T+ 04 (AT M 1SS exp{—cy/log L }) +O(AV log X)
gec
= z(L_) (€log X)) " 1T+ 04(A™ PV exp{~cy/log L })+O(AV log X).
0

We may now choose
A=exp{—c\/logL },

with an appropriate constant ¢/, to conclude that

Zd(B)X( )= ( )(510 X) "'+ 04(Vexp{—cy/log L }).
Bec

This may now be fed into (9.1) to deduce Lemma 9.2.

10. Proof of Lemma 3.9

To handle U, (.A) we begin by replacing N(S) by 3X3/N(R), where it occurs in w/(N(S)).
We shall first suppose that n>1. Since

3X3

NS)= 5w

~ 7y (1+0m),
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we conclude from (8.3) that

w'(N(S))  w'(3X3/N(R)) B
M(Elog X)»*t1  M(£log X )+l +0<M(§logX) )

The total contribution of the error term to U.(A) is thus

<<% Z CR Z IOgN(J) (logX) Z 7(I)?

RSe A(K) J|8 1€ AUO
N(J)<L (10'1)
1/4 5/2 x2
7’ 3 8 7] C
<<M(logX){#.A(K)}3/4{ Z T(m+nV2) } <7 (log X)

Xmn&X

in view of (3.12) and Lemma 4.7.
We turn now to the case n=0. Here we note, as in §8, that w'(t) is just the charac-

teristic function of J{m;). If we write, temporarily, F to denote the error on replacing
N(S) by 3X3/N(R), we sce that

E<(mlogX)™" Y cp

RSe A(K)

L

log ———_
> u(J)log N(J)‘,
J|S
N(J)<L
where the outer sum is restricted to values for which exactly one out of N(S) and
3X3/N(R) belongs to J(m1). On setting J(m,)=[a1,as), the above condition requires
that N(R)=3X3a;'{1+0(n)} for i=1 or 2. It follows that

E< (M¢)” Zc (T 2 H#AGS,

with the sum restricted to such ideals R. We note that cg and u(J)? are supported
on square-free ideals. Moreover all prime ideal factors of R have N(P)>X", while
N(J)<L=X"/2. Thus R and J are coprime, whence RJ may be assumed to be square-
free. We also have N(RJ)< X?~7/2 in view of (3.8). We are therefore in a position to
apply Lemma 3.2. In conjunction with Lemma 4.2, this yields

3 eru(J)P#AGY < E X

R,J

+X2 /4 (log X )°
N(RT) (10.2)

<<'r)QXz-n(logX)C+X2_T/4(log X)e<n*X?%(log X)°

in view of the restriction on N(R). Here we have used the fact that

X7 (log X )% < 1 (10.3)
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for any positive constants ¢;, as one sees from (2.1) and (2.5).
In view of (10.1) and (10.2) we deduce that

5/2X2
Ue(A) = ZCRJ#-A(K) <_7IM (10gX)C>,

where
w'(3X3/N(R))

Cns = g0 Xyt )18 NIy
As above, RJ may be assumed to have norm at most X2~ 7/2. We may therefore apply

Lemma 3.2, which yields

UelA)= D Crugrrer 02(RI)+O(M X/ (log X))

R,J:RJER

+O(M ™12 X?(log X }°),

N(RJ)

by (8.4). The second error term dominates the first, by (10.3). The main term above is

6772ng o WEXYN(R)) w'(3X?/N(R ))

N(R) '02(R)%y,

M(€log X )™+
where
= ¥ fe ey
N(J)<L N(J)
JER

To estimate ¥; we set N(J)=gq, and observe that u(J)=u(g) and
S
gg(J)=H(1+E) :
plq

Moreover a given value of ¢ will arise from []
of Lemma 2.1. Thus

plq Vp different ideals J€R, in the notation

¥ = Z Qo(q q

g<L

We therefore define a Dirichlet series

=Y ol9u(@)q*,

and conclude from Perron’s formula that

1 1+icc s

L
Yh=— 1) — ds.
1= omi oo f(S+ ) s2 8
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However, f(s)=Cx(s)"'fo(s), where fo(s) has an Euler product which converges abso-
lutely and uniformly for Re(s)> 4, say. The function fy(s) is therefore uniformly bounded
in this latter region. We now move the line of integration to a path joining the points

—ico, —iT, —iT—@, QT*B;_T’ iT,  ico.

Here the constant c€(0,1) is suitably chosen, using standard results on the zero-free
region, so that one has (i (s+1)"!<log(2+]s|) to the right of the path. On choosing
T=exp((log L)/?) we deduce via (6.8) that

Y1 =Res{f(s+1)L%s2: 5 =0} +O(exp{—c(log L)'/?})
= ' fo(1)+O(exp{—c(log L)'/?})

1 H{(k%) g(l—ﬁ)ﬁl}+0(exp{—c(log )2}

{( *5&)(1—%>_1}+O(exp{ (log L)1/2})

= {(1_ l/pp—l > (1—1%)_1 } +O(exp{—c(log L)}/?})

= %w200+0(exp{—c(log L)Y/?}),

where 7 is the residue of (x(s) at s=1, as usual.

We may now conclude that
U.(A) = 00n*X 282 {14 O(exp{—c(log L)/*})} + O(M~11>/2X?(log X )°),
e WEXYN(R) oy
Z M(glog Sy VB ealR).

‘We note that

oa(R) = [[a+N(P)™).

P|R

Since N(P)> X7, there are O(r~!) factors, so that
02(R) =14 0(771X ") = 1+ O(exp{—c(log L)/?}),
by (2.5). Hence

Ue(A) = 00n’X*S3{1+ O(exp{—c(log L)/*}) }+O(M~'n*? X*(log X )°),
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where X3/N( S
=2 RM(élogX) PR

We now deduce the bound

“log X,

Y3 < (M€ log X) 1ZN
R

using (8.4), so that

Ue(A) =00n* X253+ O0(M~'?X? log X exp{—c(log L)*/?})
+O(M 1952 X2%(log X )°) (10.4)
=007’ X* T3+ 0(M ™ n** X (log X)°),

by (2.1) and (2.5).
We turn now to the analysis of U(B). We begin by considering

n41
Z ds=M"(Elog X))~ Z HlogN
SGB(K) ..... Ppiy =1

where N(P;)€J(m;) and
n+1

3X3
R)<H N(P)< ( )(1+17)

We now apply Lemma 4.10, as in the previous section. Since
J(m;) = [X™€, X (1+me)

with X™€>X7> L, we may take p==X¢ and A=L. In view of the bound n< 71, this
yields

5 Hemer-o(0e0) (25)

Py, . P,y i=1
X3
+O( N(R )(§logX) exp{—c(logL)l/2}),

by (9.5). The error term above contributes to }_ ds a total
X3

< 3 Pl —ellog L)'/%},
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by (2.5), which produces a contribution

3
X exp{—c(log L)'/?}

x3
& i exp{—c(log L) i

to U(B).
When n>1 the Mean Value Theorem shows that

o 22X 1)) —w 22 202 iy
NR) V) T\ N®R) ) T "NER)
for some A in the range

3x3 3Xx3
NE) <AL N (1+n).

We may then use (8.3) to deduce that

3
W) = (3775 )+ O og X" )

Thus
+0(M—(g—o)§—X)—22 NE) >+o(§]\;exp{—c(1ogL)1/2}) (10.5)
=3nX323+O(XM3(n2+exp{—c(logL)1/2})> = 317X323+0(";§3),

by (2.1). A comparison of (10.4) and (10.5) then establishes the first part of Lemma 3.9
for n>1.

When n=0 we recall that w'(t) is the characteristic function of J(m;). A little
thought then reveals that

(3w ) () = (Kam)

unless one of the endpoints of J(m;) lies in the interval between 3X3/N(R) and
3X3(14n)/N(R). In the latter case we have

(%) () - (;f(;))«";ﬁ)'
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It therefore follows that

_ 3nx3 cr [ 3X3
YB)= Mglog X 2 vt (vm)

nX3 CR X3 1/2 )
O Of — —c(log L ,
+ (Mglogx : N(R))+ (MeXp{ c(log L)}
where the sum over R in the error term is for

3x3 3Xx3
N(R)= m{1+o(ﬁ)} or m{l"FO(ﬂ)}-

We deduce from Lemma 4.1 that the corresponding sum is O(5), whence

- cn  3X3 /3x3 X3
ve)=2. JvfslogX”N(R)w(N(R)>+O< i)

and the first part of Lemma 3.9 follows as in the case n>1.

In order to complete the proof of the lemma we have to sum the error term
O(M~175/2X?(log X )¢) over the various possibilities for n and my,...,m,;;. We note
that m; <« ¢! and that the m; are distinct. Thus

1
Z Z (ml...mn+1)—1<;m{

no oMy, ,Mayl

jz: ni—l}n+1

m<&§-1

1 -1 n+1
< Xn: D) {log&™ " +0(1)}
<exp{log¢ ' +O(1)} <€

The final part of Lemrﬁa 3.9 then follows.

11. The proof of Lemma 3.10—first steps
In this section we shall begin our treatment of Lemma 3.10. We write

Z crfs=Sv,

RSe A}
V< N(S)<2V

where
X<V X327 (11.1)
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If p(x)=x+y¥/2 for x=(z,y), and

1, X<z,y<X(1+7n),
W(x):{ y<X(14+7)

0, otherwise,

we will have

Sv=>en Y, fs Y, W),
R

V< N(8)K2V x€Z?
(¢(x))=RS

where x is restricted to run over primitive integer vectors. We shall call an integer of K
‘primitive’ if it has no rational prime factor, and we shall write P for the set of ideals
generated by primitive integers. Thus R and S may be taken to belong to P, in the
above sum. In the case of R this is automatic, since cg is supported on R.

We proceed to remove the condition that x is a primitive vector, by writing

Sy = Z p(d) Z CR Z fs Z W(x).

d<X REP  V<N(S)<2V dlx
SeP ($(x))=RS

If d>1 then (d, R)#1, whence there is a prime ideal P dividing d for which N(P)>X".
It follows that d>X7/2. We may therefore conclude that

Sy=Ycr Y. fs Y. WE+Ev,

ReP V<N(§)K2V x€Z?
SeP ($(x))=RS

where the error term FEy, satisfies

B S Y sl Y w.

X7/2<deX R V<N(S}<2V dlx
vVep ($(x))=RS

From (3.12) and (8.4) we see that eg<7(S)log X, whence fs<7(S)log X, by (3.11)
and (9.22). Thus

Ey K Z Z Z 7(S)log X Z W(x)

XT/2<d< X R V<N(S)<2V dix
(#(x))=RS

<log X Z ZW(X)T(x+y\3/§)2

X /2€d< X d|x

<log X Z 7(d)° Z T(m+n\3/—2—)2

XT/2Ldg X m,n&X/d

(11.2)

2
<logX Y T(d)c(%(-) (log X)° < X2 7/?(log X)°,
X/2<d< X
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by Lemmas 4.7 and 4.2. This will be satisfactory for our purposes.

We now replace R and S by their generators o and 3, say, and write Q for the set
of primitive integers of K. If we take 8 to run over a suitable set @' of non-associated
primitive integers of K, and require that ¢(x)=af, then we will obtain exactly one value
of o from each relevant set of associates. It therefore follows that

Sv=D D, Fp Y, WE+OX**(log X)),
a€Q V<IN(B)|<2V xeZ?
#(x)=aB

where Fg=f(g if 8cQ’, and F3=0 otherwise. In order to specify a suitable set of
non-associated integers 3 we take 3>0 and require that

N(B)3e* < B N(B) 362, (11.3)

where eg=1+ ¥/2 + ¥/4 is the fundamental unit of K.
Since N{a)< X3/V, an application of Cauchy’s inequality yields

1/2
Do D Fs > W(x)<<( 3 1) SR (XY V2SR

a€Q  VIN(B)L2V  xeZ? N(a)< X3V
¢(x)=ap

where )
S=>" .

a€Q

Yo Fp ) W)

VLIN(BNL2Y xeZ?
d(x)=af

We proceed to expand the square of the sum over 3 to obtain
S= Z F/31F52 Z W(XI)W(X2)5»
Bi,62 X1,X2

where

d=#{aeQ:a=¢(x1)/Br1=0(x2)/B:},

so that 6=1 or 0.
We now split S as S;+.855,, where S; consists of the terms for which §;=0;, and S,
consists of the terms for which 8y #8>. Since Fg<7(3)log X, we find that

S <y F? W(x) < (log X)? T(z+yv2 3<<X2(logX)°,
8
fél x: B¢(x) z,y<LX

by Lemma 4.7.
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To handle the off-diagonal terms we write
a=r+sV2+tV4

and

BGi ='U,i+1)i\:7§ +wi\3/41.
It will also be convenient to set
a:(’r757t)1 /B’i:(ui)vi,wi)-

The conditions aﬂi:xi—kyif/i for 1=1,2 then yield rw;+sv;+tu;=0. Thus, unless
Br1=0,, we see that the primitive vector &€ Z> must be given by

a= :’:D_I(U1U,2-—U1’U2, ULW2 —wWiU2, wlvz—vlwz), (114)

where

D = h.c.f.(vius —uyvg, Uy wo —wy g, W1ts — V1 Wa).

We may note at once that the condition V<|N(3;}|<2V, along with the requirement
{11.3), leads to the constraints

VIR« |G| < VA, (11.5)

Similarly we observe that

r, 8.t < max |al)],
J

where a)) denotes the jth conjugate. However, o930« X for any conjugate, and
[BD|>V1/3 by (11.5). It follows that

XV P« lal« XV3, (11.6)
In view of (11.4) we therefore deduce that V?/3D~'>> XV ~1/3 whence
D< VXL (11.7)

Our next task in this section is to show that values of D which are appreciably smaller
than VX! make a negligible contribution. To be more precise, we shall introduce a new
parameter Y=Y (X) such that

1Y (X))« X™/3, (11.8)



70 D.R. HEATH-BROWN

and we shall deal with the case DKVX 1Y ~!. We shall specify Y later, see (13.7).
We begin by observing that

|Fﬂ1FB2l < %(lFﬂ1|2+|Fﬁ2|2)a
so that it suffices to estimate

Ss=> " 7(61)* Y W(x)W(x2)$,
B1,B2 X1,X2
where the sum is subject to the condition DL VX 1YL
It will be convenient to argue in slightly greater generality than we actually need at
this point. We begin by proving the following estimate.

LEMMA 11.1. Let Cy,Cy be cubes of side Sy, not necessarily containing the origin.
Suppose that C and Co are included in a sphere, centred on the origin, of radius S§' for
some positive constant A. Then, if the vectors B; are restricted to be primitive, we will
have

> () < 5§D *(log Sp)
Biec:
D|B1AB2
for some constant c(A), providing that D« Sp.

For the proof of the lemma we begin by observing that if D|B1A 32 then for each
prime power p¢||D there is a corresponding integer A, depending on [31 and Bg, such that

Bg = Aﬁl (mod p°).

Here we use the fact that pfﬁl, since 3y is primitive. The Chinese Remainder Theorem
then shows that Bo=A8; (mod D) for some integer A. If 3, is given there are therefore
at most D possible residue classes modulo D in which B, may lie. Since D« S it follows
that there are O(S5D~2) values of (3> corresponding to each B1. The sum in Lemma 11.1
is therefore
<KSiD™2 Y 7(B1)* < S§D72- 53 (log Sp) Y,
pecy
by Lemma 4.5. This completes the proof of Lemma 11.1.
We are now ready to estimate S;. Here we observe that

BBy =+£Da,

whence
|B1AB2| < DXVT3,
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by (11.6). In view of (11.5) we therefore see that 3, is confined to a circular cylinder of
radius O(DXV ~%/3) and length O(V'/3), whose axis is parallel to the vector 3;. Since
D« VX~ we see that DXV ~2/3«V1/3. We now decompose the available region for 5

into
V1/3 3
< (DXV—Q/?’)

cubes C; with side Sy of order DXV ~2/3. For ﬁl in a given cube C; the available region
for B, may be covered by
V1/3
< W '
cubes C; with side Sy, giving O(V4D~4X~4) pairs C1,Cs in total. If D2V3/4X "1 we
have So>>V1/12 and Lemma 11.1 shows that each hypercube contributes
< S§D(log X)° < D*XV~4(log X)°

to S3, making a total O(X2(log X)°). In the alternative case DK V34X~ we ignore the
condition D],@l A Bg, and merely note that the cylindrical region for 32 described above
contains O(V/3(DXV ~%/3)2) points, since

DXV™3 > xv—28 1,
Each such D therefore contributes
<VTIDPX? Y r(B)? < VTID?X2V(log X)° = D*X?(log X )
R
to S3. We may now sum over all DLVX 1Y ! to find that
S3 < X2 (log X)¢- VXY 1 (V¥4X 13 X2 (log X )°
< (VXY 14V¥4X 1) (log X ) < VXY *(log X)°,
by (11.8), since V< X3/2.

We may now summarize our conclusions thus far in the following lemma.

LEMMA 11.2. There exists an absolute constant ¢ such that
Sy < X2Y~12(log X e+ X3/2y~1/281/2

where
Sa=Y Fg,Fg, > W(x1)W(x2)9,
B1,82 X1,X2

subject to the condition D>VX 'Y 1,

Note that the first term in the above estimate dominates (11.2), by virtue of the
bound (11.8).
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12. The proof of Lemma 3.10—separation of the variables

In this section we shall convert the sum Sy into one in which the variables 3; and - are
independent. This will enable us to put the sum into a form suitable for a large sieve
estimate.

Since af;=z;+v; ¥/2 we see from (11.4) that z; and y; may be expressed in terms
of 5, and 35 as

(Ti,3:) =D 'pi(B1, B2) = D7 (pi(B1, B2), 4 b1, B2)), =1,2,
say. It then follows that

Sy = Z Fp, Fp, Z W(ED'p1(61, 52)) W(£D ' pa( 1, B2))-
B1#0B2 +
Since p1(81, B2)=—p2(B2, 61), our expression for Sy may be reduced to
S4=2 > Fy,F,W(D7'p1(B1, 52)) W(D ™' p2(B1, B2))-
B1#B2

We shall write
V= (U1u2—ulv27 U1W2 —W1U2, w1vz—v1w2)'

The conditions on the variables §; require that D is the highest common factor of the
entries of v. We shall write this as D=h.c.f.(v). The remaining constraints may be
written in the form (81, 82)€ Rp, where Rp CRS is defined by the inequalities

V<IN(B:)I <2V,
N(Bi) 25 % < B < N(Bi) ey
and
XD <pi(5,B2), ¢:(Br, B2), pi( B, Br), qi( B2, B1) < XD(1+1n).

Note that p;(3, 3)=0, so that the condition 1+ 3, is redundant. In order to remove the
dependence of the region Rp on the modulus D, we shall decompose the range for D
firstly into intervals A< D<2A, and then into subintervals

m—1 m
= ———A. — <2N. 12.1
Del, ( I A,NA:I, N<m<2N (12.1)

Here
N« X%/3 (12.2)
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is a large integer parameter which we shall specify later (see (12.7)). We may note that
A< VXL in view of (11.7). It follows that there is at least one pair of values A, m for
which
S4 < N(log X} Ss,
where
5=Y | T b

Delm (8,82)eRp
D=h.cf(v)

We now proceed to cover the region of summation by means of hypercubes
C(ny1,na,n3) xC(ny,ns, ng), where

C(ng,nj, ) =I(n;) xI(nj)xI(nyg), (12.3)

with
= ysn=l s 12.4
I(n) (V N’V Nl (12.4)

Clearly we may suppose that n; < N, whence there are O(N®) possible hypercubes C; xCs
to consider. We shall say that a hypercube is of Class I if it lies completely inside Rp
for each D€, and of Class II if there is at least one D€ I,,, for which

RDﬂ(C1XCQ)7é® and Ci;xCy g'RD.

Hypercubes which are neither of Class I nor of Class II clearly make no contribution
to Ss, so that we may write S5=SU+S5UD with the obvious notation.

Our next task is to make a trivial estimate for SD. To do this we shall begin by
bounding the number of Class II hypercubes, using Lemma, 4.9. Each Class II hypercube
contains a point for which one of the equations

N(B;)=Vor2V, i=1or?2,
B =N(Bi)eg ' or N(B)eg/?, i=lor2,
pi(B1,B2) = XD or XD(1+7), i=1or?2, (12.5)
or
qi(B1,82) = XD or XD(1+n), i=1lor2, (12.6)

holds. We may write each equation in the form F;( ,@1, ,ég):Hi, for some positive integer
1< 16, where F; is homogeneous of degree 3. In the case of the equations (12.5) and (12.6)
we may use (12.1) and (11.7) to replace H;=XD or XD{1+7) by H/+O(V/N), where

ngng or XENR—(H—??).
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This produces a value independent of D. In each case we therefore find, in the notation
of (12.3), that the vertices of the hypercube satisfy an equation of the form

Fi(nl, ...,77,6) :H;,+O(N2),

with H/ fixed.
We now observe that the polynomials F; are non-singular in the relevant region.

This is a straightforward calculation, and we shall give the details only for the case =1
of (12.6). Here we find that

ql(ﬂl, ,32) = :I:D(v17"+u1$+2w1t),
with (r, s, t) given by (11.4). It follows that
F(zxq,...,x6) =z2{x2xg—2125)+x1(2126 — T3T4)+ 223(T325 — T2 Tg).

We may then calculate

Oz, 27T B

oF

_—= xf —2z2%3.
816

= 2x§ —I1T2,
Now the hypercube under consideration contains a point of Rp, for some D. This point
therefore satisfies |N(1)|>V, whence

n3+2n3+4n3 —6ninang > N3,

if N is large enough. Since

OF OF OF
34223 +423 —6x 1025 :xla—xﬁ-i-?:vza—m-i—?msg;;,
we deduce that |VF(n)[> N2, as required.
We may therefore apply Lemma 4.9 with Sp=1 and R=Ry< N, to show that there

are O(N®) Class II hypercubes. This allows us to deduce as follows.

LEMMA 12.1. We have
S4 < N(log X)Ss,

where

Ss= Z} SN FpFy,

Delm "(51.82)ERD
D=h.c.f.(v)
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Moreover, there are cubes C1=C(my,ma, m3), Ca=C(myq, ms, mg), C;=C(n1,n2,n3) and
Cy,=C(n4,n5,ng), given by (12.3) and (12.4), such that

S5 < N8Sg+ N°(log X )25,

with

Se = Z‘ > FsFg

D=h.cf.(v)

Sy = Z Z 7(B1)7(B2)-

Deln giec:
Dlv

and

The hypercube CyxCs is of Class 1, so that C, and Co are distinct, and therefore disjoint.

We proceed to estimate S7, using Lemma 11.1, along with the bound
T(B1)7(82) < 7(B1)* +7(82)%.
Note that the condition D< Sy follows from (11.1), (11.7) and (12.2). We deduce that

Sr< Y VEND2(log X)* < AT'NTTV?(log X )* < VXY N ~"(log X )°,
Del,,

since A>>VX 'YL This yields
S4 < VXYN " (log X)*+N"(log X)S.

We therefore define
N=Y?2, (12.7)

so that (12.2) follows from (11.8). We now see that Lemma 11.2 yields
Sy < X2Y "2 (log X )4 X312y =12y 781 (log X )°. (12.8)

We turn now to the sum Sg. Since D=h.c.f.(v) we have

S¢ = Z Z/"(d) Z Fp, Fp, |-
Del,, ld=1 iec;

Dd|v

Our remaining goal in this section is to show that values dD >dy, where

do=YPVX14V1/6, (12.9)
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make a negligible contribution. To handle the range H<dD<2H, say, we write v=rw
for some primitive w. Note that v#0, as 3; and 3, are positive, primitive and unequal.
Since dD|r we have |w|< V2/3H~1. We now denote the contribution to Ss arising from
each pair H,w by Sg(H,w). We observe that w- Bz:O, so that each ﬁl lies on a certain
2-dimensional lattice A. It then follows from Lemma 4.8 that there exist z,,z5 with
|Z1|<|22| such that

Bi=Aiz1+iZ2
for appropriate integers A;, u; with

Vi3 y1/3
) i <K —.
izl S gy

Moreover we have

BinBe = (Mpz—pde) 2aAze = £( A pig — i A2) W,

by Lemma 4.8, whence r==4(Apu2 —p1A2). It therefore follows that

Se(H,w) < (log X)* Y 7(81)7(B2)T(Mpa— 1 r2)*.
B1,B2€A
We note that if g1 =ps=0 then B; are primitive and scalar multiples of each other. Thus
Blzi,ég, contradicting the fact that the hypercube C; x C5 is of Class I. We may therefore
assume that |zo| < V'1/3,
Since
ABC < 3(A3+B3+C%)

for any positive numbers A, B, C, we deduce that

Se(H,w) < (log X)* Y 7(7)",
BrBaEA
where v is 31, B2 or Ay s —p1 Ao, We may suppose that we have y=0, say, or Ay s — i1 Aa.
We then write v as y=ma@+ny, where m=X\; and n=p, and ¢, % may depend on 2z, z»,
A2 and pa. Since ¢0), (D« V1/3 for any conjugate, we may apply Lemma 4.6 with
VS e

r=——++4+V
|2

and y=2+V1/3|z,|~1. This yields

3 () <zy(log X )°.

BlEA
H1#0
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However, since Bl must be primitive there are at most two terms with 13 =0, and 7'(7)6<<
V12« for each of these. It follows that

V2/3 V5/12 2/3  y5/12

6 c v v . K_ Vs . .
B%:Ar(v) < zy(log X) <<{121H22[+ ™ }(logX) <<{ = +iWI1/2}(1 £ X)

Since the number of values taken by [32 is

Vi3 vi/3 V2/3 V2/3
< <1+-—~)<1+ ) <K < s
|21 |22 |21 [z2] W]

we deduce that

4/3 13/12
Z ISG(H»WN«Z(“‘%';‘FT/—M%)(IOSX)C

|wl< V2/3H-1

& {V4/3'V2/3H_1+V13/12(V2/3H_1)3/2}(10gX)c
2

< —% (log X)°,

for H>dy. We may now sum up over the available ranges (H,2H| with H>dj to get a
bound O(VXY ~13(log X )°), so that

Se < Sz+VXY " 1(log X)°,

where
Ss= > > | FsFs (12.10)
Delm d 'Biccy
Dd|v

with d restricted by the inequality dD<dy.
On combining this with (12.8) we finally deduce as follows.

LEMMA 12.2. There is an absolute constant ¢>0 such that
Sy < X2Y " V2(log X)°+ X3V -1/2y"5 2 (log X )°,

where Sg is given by (12.10).

As we shall see in the next section Sg is ready for a large sieve estimation.
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13. Proof of Lemma 3.10—a large sieve estimate

In this section we shall express the condition dD|v in Sg by means of additive characters,
and use a 3-dimensional large sieve to complete the proof of Lemma 3.10.

We have already remarked in §11 that the condition D|v may be rewritten as 325/\,51
(mod D) for some integer A, which is necessarily coprime to D. We apply this remark
with D replaced by dD. If we introduce the exponential sum

S(a)=S(a,C) =Y _ exp{2mia-B}Gj, (13.1)
gec
where GB=FB’ we find that
Y FpFa=(Dd)™® 3 > S((dD)™*Aa,C1) S((dD) Ta,Cy).

Bi€c; A (mod dD) a(mod dD)
Ddiv (A, dD)=1

It follows that
1Ssl< S (Dd)~3|S((dD)~"ra,C1) S((dD) 12, Co)),
D.d,\a

where D runs over I,,, d runs over positive integers d<dy/D, X runs over positive integers
less than and coprime to dD, and a runs modulo dD. Cauchy’s inequality then yields

1Ssl< - D (Dd)* Y- IS((dD)'a,0)F,
Delr, d a(moddD)
for C=C; or C5. Here we have used the observation that
> 1S(@D)Maa0)P= > |S((dD)'a,0)f
a(mod dD) a(moddD)

whenever A is coprime to dD. Finally we reduce the fractions (dD)~'a to lowest terms.
A given vector ¢~ b with h.c.f.(g, by, b2, b3)=1 will occur with weight at most

2. Y D)< 3 e ‘2<<QXYIO$/V

D>VX-1Y-1d.q|dD VX ~ly—!
qlv

Moreover, only values g<dp will arise. We therefore conclude that
logV
Ss< XY &2 Og Z Z (¢~ 'b)2 (13.2)
q<do b (mod q)

where 3" denotes summation for h.c.f.(g, by, by, bs)=1
Our principal tool in handling the above sum will be the following large sieve bound.
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LEMMA 13.1. Let S(a) be given by (13.1), with C a cube of side Sy. Then
> Y ISP <(S3R7S+QY Y1651
Q<9<2Q b(modgq) Bec

Various multi-dimensional forms of the large sieve appear in the literature, but none
seem quite suited to our purpose. In particular, the estimate of Huxley [13] would have
the factor S3+Q° when applied to our situation, and this is too large.

To prove Lemma 13.1 we observe at the outset that

|S(a,C) |—’ Z exp{27rza,8} B x|
BeCc—x

for any translation C—x of the cube C by an integral vector x. It therefore suffices to
prove Lemma 13.1 for

We now start our estimations with the Sobolev—Gallagher inequality, which states that

8 5
fon< @)™ [ w2t [ ir)ae

By iterating this we deduce that

f(0)] < Z §#1- 3/ / / | FE)(¢)| dt, dta dts,

zc{1 2,3}

where f*) denotes the partial derivative, of order #Z, with respect to each variable t;
for i€Z. An application of Cauchy’s inequality now produces

fOP< Y 823 / / / | FEN )2 dty iy dts.
IC{123}

We employ this, with
f()=35(g"'b+t)

and 6=5; ! It then follows that
Y seibers Y s / / / #(6)|SO(E)? dby dts dts,
Q<g<2Q b(modq) IC{1,2,3}

where
v(t) ={(g,b): lg™ bi—t:| <S5 *, for 1<i <3},
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We set
7 =sup #(t),

and we note that Parseval’s identity gives

1 p1 p1
/0/0/0IS(I)(t)|2dt1dt2dt3<<S§#IZ|G[§|2.

Bec

It follows that

Yo Y IS )P Sir Y 1G

Q<q<2Q b (mod q) Bec

It therefore remains to show that
#r(t) <1+Q%S; 1 + QS (13.3)

uniformly in t.

Since we may clearly assume that v(t)#©@, we may begin by fixing a particular
point (r,a)ev(t). We classify the remaining elements into three types v;, not neces-
sarily disjoint, where ¢~ 'b;#7r~1a; for each point (g,b)€v;. Since the vectors ¢~'b
with h.c.f.(g, b1, b2, b3)=1 are necessarily distinct, this classification does indeed cover all
(g,b)ev(t) apart from (r,a) itself.

We now proceed to examine the contribution from elements of v, the other cases
being similar. For a point (g, b) of 11 we have

a b

r o q

2
< =

0 <5

Thus if ga; —rb,=s, say, then 0#|s|<8Q?%/Sy. Moreover, if h.c.f.(a;,r)=d, then d|s. It
follows that there are at most 16Q?/Syd possible values for s. (In particular, if Q?/Sod
is small enough, there are no available integers s.) Moreover, once s is also fixed, the

congruence

determines ¢ modulo r/d, since a;/d and r/d are coprime. It follows that there are at
most O(d) values for g. Once a1, 7, s and g are fixed, the value of b; is also determined.
We therefore find that there can be at most O(Q2Sy ') pairs by, g. Finally, we see that
b, satisfies
B e

So = So

bg—gag
r
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so that there are O(1+QS; ") possible values, and similarly for b3. We therefore conclude
that

2 Q 2
#r(t) <K 1+?0 <1+S—0> ,

as required for (13.3). This completes the proof of Lemma 13.1.

We shall now use Lemma 13.1 to handle the contribution to (13.2) arising from terms
with ¢>Qq, say. We cover the range Q¢ <g<dy with intervals Q<¢<2Q, where @ runs
over powers of 2. Since

D s < (log X)* )~ 7(6)* < V(log X)°,
gec pec
by Lemma 4.5, we conclude that the range Q@ <¢<2@Q contributes
logV log @
XY —— 1 . S 2172/3 4 log X )¢
< v Q eXp{cloglogQ (V+QV>+Q*)V(log X)

to Sg. (This is one point where it suffices to use the simple upper bound for the divisor
function.) We sum this over the relevant values of @Q to get a total

_ lOg Q() lOg d()
Xy|vQgt 2 AL (V23 dy+-dd —= 2% ) (log X )°.
< ( Qo eXp{cloglong}+( do+dg) exp cloglogdo (log X)
To handle the exponentials we note that
log Qo 1/2
eXp{clog log Qo} <o

and

log do log X
=Rl e XT/G
exp{c loglog dp } < exp{c loglog X < ’

by (12.9) and (2.5). The range Qo<g<dy therefore contributes a total
L XY (VQy 2 +{V¥3dy+d3} X7/6)(log X )°
to Sg. In view of (12.9) and (11.1) we see that this is
L XV(YQy 2 +Y4X~7/2)(log X )°. (13.4)

There remains the range ¢<Qy, where we shall use the hypothesis (3.14). We begin
by observing that

S(g7b)= Y exp{m%} > Fs (13.5)

¢ (mod g) ,@EC
B=c (mod q)
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In the terminology of §12, the hypercube C;xCs corresponding to the estimate (13.2)
for Sg is of Class I. Thus (11.3) holds for any B€C;. Referring to the definition of Fj
in §11, we therefore see that for 3€C in (13.5) we have Fg= fs) for primitive 3, and
Fj3=0 otherwise. It therefore follows that

o B Y e ud= Y w@d Y fe,

Bec Bec dl3 d:(@dle  Bec
B=c (mod g) B=c (mod q) B=c (mod q)
d|g
whence
S@ey< > Y > f(ﬂ)’. (13.6)
c(modgq) d BGC
ﬁsc(rqodq)
d|B

The conditions f=c (mod ¢) and d|3 confine £ to a single residue class modulo [g, d]. The
inner sum above is therefore O(V exp{—cy/log L }), by the hypothesis of Lemma 3.10,

providing that [g,d]<@Q;. Consequently, if qgQi/ ?. then the contribution to (13.6)

corresponding to values d< Q}/ %is

<<Q3Qi/2V8Xp{—c\/log L}« QfVexp{—c\/logL }.

For the remaining values of d we use the trivial bound f(g) < 7(8)log X. This produces
a contribution

<(logX) Y M"r(B) Y. 1=(logX) > DY 7(8)

d>QY/? Bec c=f(modq) d>Q;’* fec
d|p dig

to (13.6). According to Lemma 4.5, however, we have
Z T(B) < 7(d)° Z T(m1+x2\3/§ +x3\3/41) < 7(d)°*Vd—3(log X )°.

Bec Ix|&V1/3/d
dig

It follows that values d>Q}/ ? contribute

<V(log X)° Y 7(d)°d~* < VQy (log X)°

a>Ql/?

to (13.6).

We now have a bound

S(g7'b) < QIVexp{—c\/log L } +VQT '(log X )°.
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The terms with ¢<Qy therefore contribute

< XYV(Qfexp{—cy/log L } +Q7?)(log X )°

to (13.2), providing that QogQ}/ 2. Taken in conjunction with our estimate (13.4) for
the terms with Qo <g<dy we therefore deduce that

Sy < XV(YQiexp{~c\/log L} +YQT2+YQy /> +Y %X~ 7/2) (log X )°.

We now choose
QO = 1/27
so that
Sy < XV(YQtexp{—c/log L }+Y Q7 /* +Y*0 X 7/2)(log X )°,

whence Lemma 12.2 yields
Sy < X2 (Y~ V240X 4L y8Q 34 YBQ2 exp{—cy/log L }) (log X )°.

We now choose
Y =@/, (13.7)

which is in accordance with the condition (11.8), since
Q1< exp{ \3/@(— }
By virtue of this bound for ; we finally see that our estimate reduces to
Sy < X2Q7 % (1og X)°,

as required for Lemma 3.10.

Acknowledgement. Part of this paper was written while the author was a visitor at
the Isaac Newton Institute, Cambridge. The hospitality and financial support of the
institute is gratefully acknowledged.



84 D.R. HEATH-BROWN

References

(1] DANIEL, S., On the divisor-sum problem for binary forms. J. Reine Angew. Math., 507
(1999), 107-129.

(2] FRIEDLANDER, J. & IwaNiec, H., The polynomial X?+Y* captures its primes. Ann. of
Math., 148 (1998), 945-1040.

[3] — Asymptotic sieve for primes. Ann. of Math., 148 (1998), 1041-1065.

[4] GoLpsTON, D. A., On Bombieri and Davenport’s theorem concerning small gaps between
primes. Mathematika, 39 (1992), 10-17.

[5] GREAVES, G.R.H., Large prime factors of binary forms. J. Number Theory, 3 (1971),
35-59.

[6] HALBERSTAM, H. & RICHERT, H.-E., Sieve Methods. London Math. Soc. Monographs, 4.
Academic Press, London—-New York, 1974.

[7] HarDY, G.H. & LITTLEWOOD, J.E., Some problems of ‘Partitio Numerorum’; III:
On the expression of a number as a sum of primes. Acta Math., 44 (1923), 1-70.

[8] HEATH-BrOWN, D.R., Diophantine approximation with square-free numbers. Math. Z.,
187 (1984), 335-344.

{9] — The ternary Goldbach problem. Rev. Mat. Iberoamericana, 1 (1985), 45-59.

0] — The number of primes in a short interval. J. Reine Angew. Math., 389 (1988), 22-63.

1] — The solubility of diagonal cubic Diophantine equations. Proc. London Math. Soc. (3),
79 (1999), 241-259.

[12] HooLEY, C., On a problem of Hardy and Littlewood. Acta Arith., 79 (1997), 289-311.

[13] HUXLEY, M. N., The large sieve inequality for algebraic number fields. Mathematika, 15

(1968), 178-187.
[14] IwANIEC, H., Primes represented by quadratic polynomials in two variables. Acta Arith.,
24 (1974), 435-459.
[15] Mitsul, T'., Generalized prime number theorem. Japan J. Math., 26 (1956), 1-42.

[

1
(1

D.R. HEATH-BROWN
Mathematical Institute
University of Oxford
24-29 St. Giles’
Oxford OX1 3LB
England, U.K.
rhb@maths.ox.ac.uk

Received April 29, 1999



