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1. I n t r o d u c t i o n  

I t  is con jec tu red  t h a t  if f(X) is any  i r reducib le  integer  po lynomia l  such t h a t  f (1 ) ,  f (2 ) ,  ... 

t e n d  to  inf ini ty  and  have no c o m m o n  factor  g rea te r  t h a n  1, t hen  f(n) takes  inf ini tely m a n y  

p r ime  values.  Unfo r tuna t e ly  th is  has  only been  proved for l inear  po lynomia ls ,  in which 

case the  asser t ion  is the  famous t he o re m of Dir ichlet .  One m a y  seek to  fo rmula te  a weaker  

con jec ture  concerning  i r reducib le  b ina ry  forms f(X, Y). Here the  necessary  condi t ion  is 

t h a t  t he  values of f(m, n) for pos i t ive  integers  m,  n are  u n b o u n d e d  above  and  have no 

non- t r iv ia l  c o m m o n  factor .  Aga in  one might  hope  t h a t  such a form a t t a i n s  inf ini te ly  

m a n y  pr ime  values.  Th is  is t r iv ia l  for l inear  forms, as such a form takes  all sufficiently 

large integer  values.  For  q u a d r a t i c  forms it was proved by  Dir ichlet ,  a l though  in ce r ta in  

specia l  cases, such as f(X,Y)=X2+Y 2, the  resul t  goes back  to  Fe rma t .  Di r ich le t ' s  

resul t  was ex t ended  by  Iwaniec [14] to  quad ra t i c  po lynomia l s  in two variables .  Our  goal  
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in the present paper  is to make progress in the case of binary cubic forms. We shall prove 

the following. 

THEOREM. There are infinitely many primes of the form x3+2y  3 with integer x, y. 

More specifically, there is a positive constant c such that, if 

,7 = , 7 ( x )  = (log x )  

then the number of such primes with X < x, y~<X(l+r / )  is 

~2X2 
ao ~ { l +O( (log log X )- l /6)  } 

as X - + a ,  where 

P 

and Up denotes the number of solutions of the congruence x 3 ~ 2  (rood p). 

It  may be noted that  the product  a0 is conditionally convergent, but not absolutely 

convergent. 

There is nothing special about  the particular range chosen for x and y, and a similar 

theorem could be proved for 

aX<x<~aX+7]X, bX<y<<, bX+~X,  

for any non-zero a, b such that  a+b~/2 50.  Indeed it seems likely that  one could do this 

with sufficient uniformity to deduce a result for an arbi t rary bounded set 7~C_R ~ with a 

positive Jordan content. Specifically, for such a set ~ one would hope to deduce that  

X 2 
~{(x ,  y) E Z 2 : X - l ( x ,  y) c T4, x 3 + 2 y  3 prime} ~ a0 meas(7~) 3 log X 

as X tends to infinity. 

Hardy and Littlewood [7, Conjecture N] asked whether there are infinitely many 

primes which are the sum of three non-negative cubes. Our result shows that  this is 

indeed the case. Hardy and Littlewood went on to give a conjectural asymptot ic  formula 

for the number of such representations, but our approach gives no information about  

this. I t  is the fact that  x3+2y  3 factorizes while x3+y3+z 3 does not which makes the 

latter problem more difficult. 

It  is not hard to prove results on the representation of primes by diagonal cubic 

forms in four variables, by using the circle method. For general non-singular cubic 

forms, however, it would appear  that  such techniques require five or more variables. It  
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seems likely that  our method will extend to arbitrary irreducible binary cubic forms, in 

which case one would be able to tackle irreducible cubic forms in two or more variables, 

whether they are non-singular or not. One may indeed hope to tackle binary cubic 

polynomials, providing that  they are irreducible over Q and factor completely over Q. 

There are, however, unpleasant technical difficulties to be dealt with, notably the lack of 

unique factorization in general cubic fields. None the less, it seems unlikely that  these 

are insurmountable. In particular, one should be able to establish the form of Schinzel's 

Hypothesis required for the author's work [11] on solutions of diagonal cubic equations 

in five variables. 

Another way in which one might hope to extend the theorem would be to consider 

incomplete norm forms for fields of higher degree. For example, one might a t tempt  to 

handle 
Nq(~)/Q(Xl+X221/d+...+Xn2(n-1)/d ) 

for appropriate n< d .  

In measuring the quality of any theorem on the representation of primes by an integer 

polynomial f ( x l ,  ..., xn) in several variables, it is useful to consider the exponent a ( f ) ,  

defined as follows. Let lfl denote the polynomial obtained by replacing each coefficient 

of f by its absolute value, and define c~(f) to be the infimum of those real numbers c~ for 

which 

~/~{ (xl, ..., xn)  e N n  : I f l ( x l  , ..., Xn) < X } << X c~. 

Thus a ( f )  measures the frequency of values taken by f .  If (~>~ 1 we expect f to represent 

at least X 1-~ of the integers up to X, while if a < l  we expect around X ~ such integers 

to be representable. Thus the smaller the value of c~, the harder it will be to prove that  

f represents primes. The two classical theorems of Dirichlet both correspond to a =  1. 

For representation by diagonal cubic forms in four variables, as handled by the circle 

method, one has a =  4. Before the present work there was only one theorem proved in 

which c~<l, namely the result of Friedlander and Iwaniec [2] that  there are infinitely 

Our theorem corresponds to the still many primes of the form x2+y  4, for which a = ~ .  

smaller value a =  2, while the conjecture that  x2+1 takes infinitely many prime values 

has a -~ . -  1 The groundbreaking work of Friedlander and Iwaniec was the inspiration for 

the present paper, although the techniques used are quite different. 

One needs to be rather careful in formulating conjectures concerning the represen- 

ration of primes by polynomials in more than one variable, as the example 

f ( x , y ) = ( y 2 + 1 5 ) { 1 - ( x 2 - 2 3 y 2 - 1 ) 2 } - 5  

shows. One easily verifies that  f ( x ,  y) takes arbitrarily large positive values for x, yE Z, 
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is absolutely irreducible, and that  it takes values coprime to any prescribed integer. 

However, f(x, y) does not take any positive prime value. 

It may be appropriate to mention that  one can prove results on the distribution of 

prime elements in Z[~/2] by the use of Hecke L-functions with Grhssencharacters. If 

one has a suitably smooth region TCC R3N [0, X] 3, with volume at least X 3/2+~ for some 

positive constant e, then one can hope to pick out the elements x+y~/2 +z~/4  E Z [s~/2] 

for which (x,y, z)CTr by using sums of Grhssencharacters. In this way one may be 

able to find infinitely many prime elements, if one assumes the Generalized Riemann 

Hypothesis, or has suitable zero-density theorems available. Unfortunately the region 

[0, X] • [0, X] • [0, 1) is not 'suitably smooth',  even though its volume is amply large 

enough. None the less, the above approach can be used to produce first degree prime 

elements with z <<~ (]x I + ]Yl)~, under the Generalized Riemann Hypothesis, for any e > 0. 

2. A b r o a d  o u t l i n e  o f  t h e  p r o o f  

In this section we shall describe the overall plan of attack. The next section will go into 

greater detail, giving precise statements of various lemmas which together suffice for the 

proof of our theorem. The later sections will then prove these subsidiary results. 

We should mention at the outset that  our approach to the sieve procedure has 

much in common with that  given by Friedlander and Iwaniec [3]. They describe a quite 

general approach to problems involving primes in ' thin'  sequences. Unfortunately their 

condition (R1) is not quite met in our case, so that  their work cannot be used as it 

stands. Although it seems possible that  Friedlander and Iwaniec's hypothesis (R1) might 

be relaxed sufficiently for our application, we have chosen instead to present our own 

version of the sieve argument. In the light of these remarks, it should be stressed that  it 

is the 'Type II' bound, described below, which is the most novel part of our proof, and 

not the sieve procedure. 

It will be convenient to define the weighted sequence 

`4=  {x3+2y3: x, ye(X,X( l+rl )]NN , (x,y)  = 1), 

where integers in `4 are counted according to the multiplicity of representations. In order 

to motivate our choice of U in the theorem we shall work with an arbitrary ~ in the range 

exp{- ( log  X)  1/3 } ~< r/~< 1. (2.1) 

We shall write 7r(`4) for the number of primes in ,4, and prove that  

T]2X 2 
= {1+ O((log log x ) -1 /6 ) } .  (2.2) 
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This clearly suffices for our purposes. To establish (2.2) we shall compare 7r(A) with 7r(/3), 

in which 

/3 = { N ( J )  e ( a x  3, 323(1 +w)l}, 

where J runs over integral ideals of K = Q ( ~ / 2 ) ,  and N is the norm from K to Q. The 

primes in/3 therefore correspond to first degree prime ideals. However, the Prime Ideal 

Theorem may be stated in the form 

rcK(x) = Li(x)+O(x e x p { - c  l o x / ~  }) (2.3) 

for a suitable positive constant c, where 7rK(X ) is the number of prime ideals of norm at 

most x. Thus our constraints (2.1) imply that  

3rlX3 ( l + O ( l o g ~ ) )  
7r (/3) - 3 log X 

In order to establish (2.2) it therefore suffices to show that  

k, tog A / r12X2 ) 7r(.A) = x ~ ( / 3 ) + O | , _ ~  (log log X )  -1/6 , (2.4) 

where 

x = ao~?(3X) -1. 

To compare 7r(A) with re(B) we shall perform identical sieve operations on the two 

sequences, and show that  the leading terms correspond. Providing that  the error terms 

are acceptable, this will produce the required asymptotic formula (2.4). This is much 

easier than trying to evaluate explicitly the leading terms produced by the sequence A 

alone, and summing them to produce (2.2). 

The argument will require 'Type I' and 'Type II' estimates for the sequences .4 

and/3.  The Type I bounds are provided by the following lemmas. 

LEMMA 2.1. For any qEN let ~o(q) be the multiplicative function defined by 

 0(pO) = 
1 +p- : t ,  

where Up is the number of first degree prime ideals above p. 

integer, there exists c(A) such that 

#Aq 6 2x2 eo q) 
7r 2 - << (Q+XQU2+X3/2) ( logQX)  c(A). 

Q<q<~ZQ 

Then if A is any positive 
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LEMMA 2.2. For any qEN let Ql(q) be the multiplicative function defined by 

ol(pe) =p(l_H(l 1 

PIP 

where P runs over prime ideals of K.  

c( A ) such that 

E T(q)A~t(q)2 ~:~q--')'o 
Q<q<~2Q 

Here 

Then if A is any positive integer, there exists 

3Uq X3 al(q) << x2Q.U3(logQ) ~(A). 

~- log Eo 
Vo-- 

is the residue of the pole of the Dedekind zeta-function ~K(S) at s= l ,  where ~o= 

1 + ~/2 + ~ is the fundamental unit of K.  

The function 7(q) occurring here is the ordinary divisor function. Note also that  

the function t~p described in Lemma 2.1 agrees with tha t  defined in the s ta tement  of our 

theorem. 

I t  is appropriate  to introduce at this point a notational device which will be used 

throughout this paper. The letter c will be used to denote a positive absolute constant, 

though not necessarily the same at each occurrence. Similarly, given a parameter  A, 

we use c(A) to denote a 'constant '  depending only on A, again potentially different 

at each occurrence. The reader should however be warned that  the parameter  A may 

have different meanings in different places. Thus, for example, the exponent c(A) in 

Lemma 2.1 is a function of the parameter  A in Lemma 2.1, rather  than that  which 

occurs in Lemma 2.2. In practice, the meaning should be clear from the context. Note 

that  all implied constants are allowed to depend on A. 

Lemmas 2.1 and 2.2 show in particular tha t  ,4 and B have 'level of distribution'  

X 2-~ and X 3-~ respectively, for any ~>0. The result for /3 is unsurprising, but it is 

certainly worthy of comment  that  one can prove such a sharp result for .A. Est imates 

of this type are not hard to obtain, and go back to Greaves [5], (see also the recent 

work of" Daniel [1] for an alternative approach).  I t  should be noted that  for the ternary 
form 3 3 3 xl+x2+x3,  only a level of distribution X 3/2-~ has been proved unconditionally. 

Assuming the Riemann Hypothesis for certain Dedekind zeta-functions, Hooley [12] has 

extended the range for this latter problem to X 2 - L  As remarked in the introduction it 

is the fact that  the form x3+2y  3 factorizes which enables such a strong Type  I bound to 

be established. 
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The 'Type  I I '  est imate will be more complicated to state, but, roughly speaking, it 

will allow us to handle sums 

E E ,o b 
U < a ~ 2 U  V < b ~ 2 V : a b E . A  

when XI+~ <<V<<X 3/2-~. 

A standard application of the identity of Vaughan, or the author 's  generalization 

of it, shows that  a Type  I bound with level of distribution X 2-~, together with a Type  II  

bound covering the range XI-~<<V<<X3/2+~, suffice for an easy proof that  A contains 

the expected number of primes. The reader will observe that ,  by symmetry,  if one has 

a Type  II  bound for VI<<V<<V2, then one can also cover the range X3/V2<<V<<X3/V1. 
It  is thus apparent  that  we have two small intervals XI-~<<V<<X 1+~ and X3/2-~<<V<< 
X 3/2+~ which we are unable to handle by Vaughan's  method. This forces us to resort to 

a more delicate sieve procedure, in which relatively trivial bounds are applied on these 

ranges. The two intervals are sufficiently small that  their total  contribution is negligible. 

This technique is typical in situations where sieve methods are used to prove asymptot ic  

formulae. The author 's  work [10] on the asymptot ic  formula for the number of primes 

in the interval (x, x+x 7/12-~] is a good illustration of this, though by no means the first 

occurrence of the method. 

At this point we introduce a new parameter  

= (log log X )  - ~ ,  (2.5) 

where w is a positive absolute constant. The parameter  7 will play the r61e of the 

exponent e above, making precise its dependence on X.  We shall eventually choose 

_ 1 but we shall motivate this choice by recording at each stage of the argument  any 

constraints that  must be imposed on the size of ~ in order for the proof to proceed. 

In order to describe the sieve process in simple terms we shall depart  from the 

analysis tha t  is to be adopted in practice. Thus, what follows is for illustrative purposes, 

the actual procedure being described in the next section. 

We start  by observing that  

7r(.A) = S(,.A,., 2 X 3 / 2 ) .  

Buchstab's  identity now yields 

s ( A ,  2 x  3/2) = s(A, x E s(A ,p) 
X~-<~p<XI-~" X x ~-<p<Xa+~- 

- s(A ,p) 

X l + r ~ p < X 3 / 2 - r  X 3 / 2 - - r ~ p < 2 X 3 / 2  

= S 1  ( A )  --  S 2  (.fit) --  S 3 (.fit) --  S 4 (.fit) --  S 5 ( A ) ,  
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say. Since T tends to zero as X goes to infinity, we shall be able to handle SI(.A) by 

a sieve estimate of 'Fundamental Lemma'  type. The sums S3(A) and S5(A) run over 

ranges that cannot be handled by our Type II estimate. They will therefore be bounded 

below by 0, and above via a crude sieve bound. For the latter we only require that p is 

smaller than our level of distribution X2-% This will produce estimates 

,q2X3 
S3 (A), $5 (,A) '~< 7" log X '  

which are acceptably small. The sum S4(A) is already in a form close to that required 

for our Type II estimate. However, S2(,A) requires some further manipulation. We set 

s(")(A) -- Z pn), 
X~ ~p~<. . .<p l<X  ~-~ 

p l . . . pn<X l+r 

so that S2(A)=S(1)(.A). We now observe that Buchstab's identity yields 

s ( n ) ( A )  = T ( ' ) ( A )  - U ( ' ) ( A )  - 

where 

and 

T('~)(A) = E S(Ap~...p~, X ~) 
XT ~pn . ( . . .<p l<X 1-'r 

p l . . .pn<X I+T 

v ( n ) ( ~ A )  ~- E S ( ' A p l ' " P n + I ' P n + I ) "  

Xr<~Pn+l<.. . ,~pl~X 1-r  
p l . . . p n ( X l + r  ~pz.. .pn+l 

By iteration this leads to 

s2(A)= (-1)n-I(T(n)(A)-U(")(A)), 
l ~n<~ no 

with 

no << ~_-1, (2.6) 

since any term of the sum S(n)(A) will vanish for Pl ...pn>4 X3. We may now at tempt 

to handle S2(A) by applying a Fhndamental Lemma sieve to the terms T(n)(A), and a 

Type II estimate to the terms U(n)(A). For T(n)(A) we have Pl ..-Pn< Xl+r ,  which is 

certainly small enough for the available level of distribution. For U(n)(.A) we note that 

xl+~- ~ Pl .-- Pn+l ~ (Pl ... Pn) ('~+l)/n < X 4(1+'0/3 <~ X3/2-r 
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for n~>3. However, U(~)(A) and U(2)(A) have to be decomposed as 

u(~)(A) = F_, s(.a~,p~)+ Z s(A~p~,p~) 
X.<~p2<pi<X I .- X .  ~ p 2 < p 1 < X I - ~  

Xl+~ ~ p l p e ~ X 3 / 2 - .  xa /2 - ' r  <plp~<X3/2+" 

+ ~ s(Ap,~,p~) 
X~ ~p.~<pl<X 1-'c 

plp2>/X 3/2+~ 

= U~1) (c4 )~ -S6(~4) -~ -U~1) (~ t ) ,  

say, and 

u(~)(A) = Z s(Ap~p~p3, ;3)+ Z s(Ap,p~3,p3) 
X ~  ~-~  X'r ~ p 3 ~ p 2 ~ p l  ~ X 1- ~ .~.p3~P2<(pl ~ X 

plp2<Xl+'r  ~ p l p 2 p a ~ X 3 / 2 - ~  plp2<Xl+'r ,  p lp2p3>X3/2- ' r  

= u~)(.A)+sT(A), 

say. We shall bound S6(A) and S7(A) from below by zero, and from above by a crude 

sieve bound, in the same way as for Sa(A) and Sa(A). Moreover U}I)(A) and U}2)(A) 
are in an appropriate form for our Type II estimate, while for U(21)(A) we merely have to 

note that  the integer a=(xa+2ya)p{lp~ 1 lies in the range XI+2~<<a<<X a/2-~, which is 

also suitable. 

A precisely analogous sieve decomposition applies to S(B, 2X3/2). We can then 

compare leading terms from the two decompositions to establish the asymptotic equal- 

ity (2.4). 

We now discuss the Type II bound. We shall do this in the context of the sums 

S4(A) and S4(B), this being the simplest example. It is clear that  we cannot get any 

cancellation from the two sums individually, since they are composed of non-negative 

terms. We wish, however, to avoid a Type II estimate for the difference S4(A)-xS4(B), 
which would involve the two sequences simultaneously. We therefore plan to remove a 

leading term from S4(A). This latter sum is essentially 

log n 

w-~ shall decompose a(~) as AI(~)+A~ (~), where 

L A~(~) = ~ ~(d)log 
d]n:d<L 



10 D.R.  H E A T H - B R O W N  

and L = X  ~-/2. This type of splitting (with a slightly different function Al(n)) seems to 

have been introduced by the author [9]. The precise form given above was first used in 

this type of context by Goldston [4]. The function At(n) is so constructed as to mimic the 

distribution of A(n) over residue classes. Thus the average of A2 (n) in residue classes will 

be small. Moreover the function Al(n) is easily handled if L is small, and its contribution 

will be shown to match S4(B) closely. In fact the sum S4(B) can be estimated directly, 

as one can give asymptotic formulae for the individual terms 

s(Bp,p). 

The outcome of the above discussion is that  we require a Type II bound for a sum 

U<a<~2U V<b~2V:abEA 

where ~b comes from the function A2 (n). We may therefore assume that  the average of 

Cb over arithmetic progressions is small. Thus it is no longer necessary to demonstrate 

cancellation between the two sequences .4 and B. Instead the saving will come from sign 

changes in Cb. 

The treatment of the above Type II sum forms the core of the paper. Eventually the 

estimation is made to depend on a large sieve inequality, but there is much preparatory 

work, which the reader will find described in the relevant sections. 

3. O u t l i n e  o f  t h e  p r o o f - - f u r t h e r  de ta i l s  

Although the description in the previous section was given purely in terms of the arith- 

metic of Z it is more natural to consider also the corresponding sieve problem for ideals 

of the field K = Q ( ~ ) .  We therefore set 

A (K) = { ( x+y~ /2 )  : x, y C (X, X(1 +r/)] MN, (x, y) = 1} 

and 

B (K) = {J :  N(J)  E (3X 3, 3X3(1 +r/)]}. 

The superscript (K) is intended to remind the reader that  we are working over the 

field K.  It should be observed at this point that  if 77 is small enough, no two values of 

x+y~/-2 are associates, so that  `4(/<) contains distinct ideals. The following elementary 

fact, which will be proved in the next section, will also be used repeatedly. 
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LEMMA 3.1. No prime ideal of degree greater than 1 can divide an element of .4 (K), 

nor can a product of two distinct first degree prime ideals of the same norm. Thus if a 

square-free ideal R divides an element of A (K), then N(R)  must be square-free. 

The Type t bounds for A (K) and B (K) are the following. 

LEMMA 3.2. Let ~92(R) be the multiplicative function on ideals defined by 

Q2(P ~) = (1 + N ( p ) - I )  -1" 

Then for any positive integer A there exists a corresponding c(A) such that 

T(R) A K) 

Q<N(R)~2Q 
RCTr 

67/2X 2 
7r2N(R ) Q2(R) << (Q+XQU2+X3/2)( log QX )  c(A). 

Here 7r is the set of ideals R for which N(R)  is square-free. 

LEMMA 3.3. For any positive integer A there exists a corresponding c(A) such that 

T(R) A 3 _7ON~_(~ << X 2 Q 1 / 3 ( l o g  Q)c(A). 
Q<N(R)~2Q 

We shall use the Buchstab identity over the field K,  sieving x+y~/2 by prime ideals. 

If every prime ideal factor P of x + y  ~/2 has N(P)>1 2X 3/2 then (x + y  ~f2) will be a prime 

ideal, whence x3+2y ~ is a prime, by Lemma 3.1. 

For a set 27 of integral ideals of K,  and any integral ideal E,  we write 

z ={IeZ:EII}. 

We also set 

SK(Z, z) = # { I E Z :  PII  ~ N(P)  >~ z}, 

for any real z > l. The subscript K is again intended to remind the reader that  we are 

working over the field K. With this obvious extension of the standard notation we see 

that  

A ) = A ( 2x /2). 
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Buchstab's identity now yields 

SK(A(K)' 2X3/2) = SK(A(K)' X~')- E SK(A (K), N(P)) 
X ~ < N ( P ) < X  ~-'~ 

-- E SK(J~(K)'N(P)) 
X I - ~ N ( P ) < X I + ~ -  

- E SK('A(K)'N(P)) 
XI+*'<~N(P)<X3/2-r 

- E SK(A(K)'N(P)) 
X 3 / 2 -  ~" <~ N( P)<2X3/2  

= S1 (,A)- S2 (,A)- $3 (,A)- $4 (,A)- $5 (,A), 

as in the previous section. Similarly we set 

s ( n ) ( A )  = .o,N(Pn)), 
XT ~ N ( P n ) < . . . < N ( P 1 ) < X  1-'r 

N(P1 . . . pn )<X l+'r 

T(n)('A) : E SK(~(KI.!.P,~ 'x'r) 
X~ ~N(P,~)<. . .<N(P1)<X 1-'r 

N(P1. . .Pn)<X 1+~ 

(3.1) 

and 

v ( n ) ( ' A )  = E SK( 'A(pK)  P,~+l N ( P n + , ) ) .  

X r  ~ N ( P n + I ) < . . . < N ( P 1 ) < X  1-'r 
N(P1 ...Pn)<XI+T<~N(P1...Pn+I) 

We should note here that the various prime ideals P~ which occur when Buchstab's 

identity is applied must have distinct norms, by Lemma 3.1. It now follows that 

S2(,A)= E ( - 1 ) n - I ( T ( n ) ( A ) - u ( n ) ( A ) ) '  

l <~ n <~ no 

with n0<<'r -1. As before we note that  

X 1+~ <. N(P1 ... Pn+l) <~ N(P1 ... Pn) (n+l)/n < X 4(1+~')/3 ~ X 3/2-r (3.2) 

for n>~3, so that u(n)(.A) can be handled as a Type II sum for n~>3. 
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Following the procedure of the previous section we also put 

U}I)('A) = 2 SK('A(pK;2 ' N ( P 2 ) ) '  

X~ <.N( P2)<N( P1)<X x- ~- 
XI+" ~N(P1p2)~Xa/2-" 

UO)(A) = E SK('A(pK)p2'N(P2))' 
X'r ~N(P2)<N(p1)<X 1-~" 

N( p1p2 )>/ Xa/2+'~ 

P1P P ' i (P3) ) ,  
Xr<~N(P3)<N(P2)<N(P1)<X 1-'r 

N( PI P2)<XI+'r ~ N( P1P2 P3)~X3/2-" 

S6(A) = E S Kt'A (K) p~p~, N(P2)) 
Xr ~N(P2)<N(P1)<X 1-r 
xa/2-'r <N(p1p2)<X3/2+T 

and 

X" KN N( Pa)<N( P2)<N( P1)<X 1-'r 
N( P1P2)<X I+T 

N(P1P2p3)>X 3/2-" 

We then have 

and 

U (1) (.,4) ---- U~ 1) (,A) -~- S 6 (~)  -~- U2 (1) (A) 

u (2) (A)  = 

A precisely analogous sieve decomposition applies to SK(/3 (K), 2X3/2), where 

B (K) = {A: N(A) e (3X 3, 3X3(1 +7])]}. 

In this case, however, the various prime ideals Pi that  arise need not have distinct norms, 

although the ideals themselves must be distinct. A further difference is that  JE  B(K) can 

be a prime ideal without N(J )  being prime. Thus 

7F(/3) = S K (  /3 ( K), 2X3 /2 ) - } -O(  X 2 ) .  

We can extend the definition (3.1) to the case n = 0  in the natural way, so that  SI(A)= 

T(~ and similarly for/3. This gives us the following basic sieve decomposition, in 

the obvious notation. 
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LEMMA 3.4. We have 

7r(A)-xlr(13) <<X3/2+ ~ [T(')(A)-xT(')(B)[ 
O ~ n ( n o  

--t-[V~ 1)(.A)- xV} 1)(~)I J-IV~2)(,A ) - xu2(l ) (~) ] 

3<~ n<<. no 

+ ~ (Sj(Al+~Sj(m)+ls4(A)-~S4(ml. 
j:3,5,6,7 

For this expression we shall establish the following bound via the Fundamental 

Lemma sieve. 

LEMMA 3.5. We have 

T]2X 2 
IT('~)(A)-gT('~)(B)[ <<Tlog ~ -  

O ~ n ~ n o  

Moreover an upper bound sieve will yield the following estimate. 

LEMMA 3.6. We have 

for j =3, 5, 6 or 7. 

r/2X 2 
sj (A) + x s j  (m << T log 

We now prepare the terms UJn)(A), U(n)(A) and S4(A) for the Type II estimate. 

Our goal is to approximate each of these by a combination of sums 

Z cR Z ds. (3.3) 
R S : R S ~ . A ( K )  

The coefficients cR will take only the values 1 or 0, and will be supported on ideals RETr 

all of whose prime factors P satisfy N(P)>~X ~. Similarly the coefficients ds will be 

supported on ideals 
n+l 

s = I I P ~ ,  
i = l  

where Pi are first degree prime ideals with N(Pi)EJ(mi). Here the intervals d(m) take 

the form [X m~, x(m+X)~), where 

r = (log log x )  -~o (3.4) 
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for some constant w0E[w, 1). Moreover we shall require that  

rn l  > ... > m n + l  ~ T ~  - 1  , (3.5) 

whence the intervals J(mi) are disjoint, and the ideals S are square-free. In addition we 

shall need 
n + l  

E rni ~> (1+~-)~ -1 (3.6) 
i = 1  

and 

so that 

n + l  

Z (3.7) 
i = 1  

X 1+~ <~ N(S) < X 3/2-~'. (3.8) 

Finally, for S as above, the coefficient ds will take the form 

n+l log N(Pi) 
d8 = ds(m) = 1-I m i ~ l o g X '  

i = 1  

where m- - (ml ,  . . . ,  ran+l). 

In order to show how this is achieved, we begin by discussing u(n)(A) for n>~3. Here 

we shall define 

u ( m ' n ) ( A ) :  E r ~Ymn+~'~+l" ]1 logN(Pi) 
~K ~"~s , / a.... mi~ log X '  

N(Pi )eJ (mi )  i = 1  

where m satisfies both 
n 

E ( m i + l )  ~< (I+T)~ -1 
i = 1  

and m1+1~<(1-~-)~ -1, in addition to the constraints (3.5), (3.6) and (3.7). The nota- 

tion S~ ) indicates that  only elements RSEA (K) for which N(R) is square-free are to be 

counted. It is now clear that  u(m,n)(.A) takes the required form (3.3), where CR=l pre- 

cisely for those RcT~ which have no prime ideal factor P with N(P)< X mn+l~. Moreover 

we set 
= Z O(in'n)(A)' 

i n  

which will be the required approximation to U(n)(A). 

We can handle U~n)(A) in exactly the same way for n = l  and 2, to produce approx- 

imations u~n)(.A). We may also treat S4(A) along the same lines. Here we set 

m log N(P)  
S4(m)(A) = E S~)(A(PK)'x ~ - - )  m ~ l o g X '  

N(P)CJ(m)  
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where 

We then take 

as our approximation to S4(A). 

(I+T)~ -1 < m  ~ (3_T)~-1_1.  

In the case of U(1)(A) the rbles of R and S are reversed. 

N(P2) to intervals J(nl) and J(n2) respectively, where 

T~ -I ~<n2 < n l  ~< (1--v)~ - 1 - 1  

We confine N(P1) and 

and 

and we replace 

by 

This counts products 

of prime ideals in which 

n l + n : ~ >  ( 3 + T ) ~  - '  , 

SK(A(pK)p2, N(P2)) 

S IA(K) v,~2~ 
K~, p ip2  ~'x 2" 

P1P2Q1Q2 ... Q,~+t 

N(Q1) ~ .../> N(Qn+I) ~ X n2r 

We therefore introduce intervals J(m~) as before, with 

m l  > ... > m n + l  >1 n2~ 

and require that N(Qi)cJ(mi). If we now define 

n+l log N(Qi) D(-,~,i) 
v2 : E E IIm   ogx' 

R=P1P2 S=Q1.. .Qn+I i=1  
RSEA(K) 

we may approximate U2(1)(.A) satisfactorily by 

n~m 
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where we sum over appropriate vectors m, regardless of their length. We may note, 

however, that  n<<'r -1, just as before. 

The corresponding approximations with A replaced by B are defined analogously, 

though we must bear in mind that  only prime ideals of first degree may divide S. The 

following lemma, whose proof uses simple sieve upper bounds, estimates the errors in- 

volved in all these approximations. Anticipating the form of the result, it is natural to 

s e t  

~ = T  5, (3.9) 

which we now do. Thus w0=5w,  and we therefore require that 

in order to ensure that  Wo < 1. 

LEMMA 3.7. We have 

and 

1 ( 3 . 1 0 )  0 < ~ < ~  

~ 2 X 2  
E Iu(n)(A)-u(n)( 'A)I << 'tl A ~ T _ 4  

log X 
n/>3 

r/ZX 2 _ 
Iu~)(A)-~)(A)I << i o - ~  3 

.~2X2 

I&(A)-~4( .4 ) I  <<" ~" r log X 

2 2 ~l X ,. -4 Iu~)(A)-~(2~(A)I << ~ r  . 

Similarly  we have 

X3 ~_-4, 

n~>3 

~/X 3 

~/X 3 
I S 4 ( B ) - S 4 ( B ) I  << io---~ ~ -3 

for  n =  l and 2, 

for  n =  l and 2, 

and 

- ? ~ X 3 .  - - 4  ru~I)W)-G(1)W)I ~ ~ . 
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We have now to consider sums of the form 

eR Z ds=U(A), 
RE'R S: RSE.4(K)  

say. It  is clear that  we cannot get any cancellation from U(A) and U(B) individually, 

but only from the difference 

U(A) -xU(B) .  

In order to avoid a Type  II  est imate involving the two sequences ,4 and B simultaneously, 

we remove a leading term from the first sum, by writing 

ds = e s + f s ,  (3.11) 

where the 'leading par t '  es  is given by 

w'(N(S)) 
es = r~n+l, . E # ( J )  log - -  

I L = I / m i r 1 7 6  X )  JIS:N(J)<L 

Here 

L 
(3.12) 

N(J)" 

L = X ~-/2 (3.13) 

and 

w ( t ) = w ( t , m ) = m e a s { x E R n + l  :xiE J(m~), I l x i  <~ t}.  

Note that  for the case n = 0 ,  the function w(t) is only piecewise continuously differentiable, 

in which case we define the derivative wt(t) to be the right-hand derivative, for precision. 

The function w(t) which occurs here has been constructed so that  

w(t) 
IL=I log x) 

is an approximation to 

E ds, 
N(S)~<t 

according to the Prime Ideal Theorem. We shall see that  es is easily handled if L is small, 

and is so constructed as to mimic the distribution of ds over residue classes. Thus the 

average of f s  in residue classes will be small. The following lemma makes this precise. 

LEMMA 3.8. Let CC_R 3 be a cube of side So• L 2 and edges parallel to the coordinate 
axes. Suppose that for every vector (x, y, z)EC we have x, y, z<<V 1/3 and 

x3+2y3+4z 3 - 6 x y z  >> V. 
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For each g=a+b~2 +c~/4 e K  let 3 be the vector (a, b, c). Let a constant A > 0  be given. 

Then for any integer c~cZ[~Z2] we have 

E f ( ~ ) < < V e x p { - c ~ }  
g - a  (rood q) 

~CC 

uniformly for q~ (log X) d. 

The reader should note that the implied constant is ineffective, as a result of potential 

problems with Siegel zeros. The reader should also observe that Lemma 3.8 does not 

require a to be coprime to q. 

We can now decompose our sums as U= Ur + Uf, with 

R S:RScA(K) 

and 

  (A):EcR E fs 
R S:RSEA(K) 

The parameter L has been chosen so that  N(JR)<<X 2-~/2, as we shall see. This is 

sufficiently small that  U~(A) can be readily handled via Lemma 3.2. On the other hand, 

U(B) can be estimated directly by the Prime Ideal Theorem. This leads to the following 

bound. 

LEMMA 3.9. 

where 

There is an absolute constant c such that 

U~(A)- xU(B) << M-l@/2X2(log X)~, 

n + l  

M =  n m i  . 
i=1  

Moreover, in the obvious notation, each of 

E IU(en)(A)-xu(n)(~) l '  
n~3 

A(n) - X u ~ n ) ( ~ )  for and 2, Vl,e (A) n = 1 

and 

A(1) 

is O(~5/2X2(log X)O. 
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Having removed the leading terms from U(A) we can proceed to estimate the re- 

maining parts Uf (A) individually. It is no longer necessary to demonstrate cancellation 

between the two sequences A and B. Instead the cancellation will come from fs .  The 

following result shows how Uf (A) can be bounded in terms of averages of fs.  

LEMMA 3.10. Suppose that we have a bound of the form 

E f ( g ) < < V e x p { - c ~ } ,  
/3=c~ (mod q) 

subject to the conditions of Lemrna 3.8, uniformly in a range 

(3.14) 

q~<Q1 ~ < e x p { ~  }. 

Then there exists an absolute positive constant c such that 

cRf s << X2Q  (log X ) 
RSEA(K) 

V<N(S)<.2V 

for XI+'r <<v<<x3/2-r. 

This result, which is our Type II estimate, is the most novel part of our entire 

argument, and it is here that  the structure of the form x3+2y  a is most crucially used. 

One readily sees that  each term Uf (A) may be written as a sum of O(log X)  sums of 

the form considered in Lemma 3.10. Moreover, since n<<~ --1 and rn~ <<4 -1, the number 

of possibilities for n, m is 
<< T-I(c~-I)e~'-I<< Iog X, 

by (2.5), (3.4) and (3.10). It follows, in the obvious notation, that  each of 

E 
n/>3 

0~,~;(A) for n =  1 and 2, 

and 

is O(X2Q11/16~ (log X)C). 
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We can now combine this with the estimates of Lemmas 3.5, 3.6, 3.7 and 3.9, to 

deduce from Lemma 3.4 that  

~2X2 r~2X 2 
7r(.A)- x~-(B) < < 7 - ~  +~7--4 logX +(@/2+Qa1/16~176 (3.15) 

We have already chosen ~=7-5 in (3.9). In order to specify our choices for ~1 and Q1 we 

suppose that  (3.15) holds with the constant C=Co, say. We then take 

rj = (log X)  -2e~ 

and 

Q1 = (log X)  16~176176 = (log X )  600(c~ . 

These choices are consistent with (2.1) and Lemma 3.8, and lead to 

?~2X2 

7r(M)- xTr(B) << 7-log-----X" 

1 We may then choose w = g  to produce (2.4), and the theorem follows. 

4. P r e l i m i n a r i e s  

In this section we establish Lemma 3.1, and prove a number of results about divisor sums 

over the ring Z [~/2 ]. For most stages in the proof of our theorem a loss of an arbitrary 

power of logX will be acceptable, while a loss of exp(logX/loglogX) is not. Thus it 

is important  to have estimates for divisor sums which only lose powers of log X. We 

shall also give sundry other results, including some elementary facts from the geometry 

of numbers, and a tool for counting points 'near' a non-singular hypersurface. 

We begin with Lemma 3.1. Let P be a prime ideal factor of x+y~,/2. If Ply then 

P[x so that  (x, y ) r  Otherwise ~/2 - - x y  -1 (mod P) ,  so that  any element of Z [~/2] is 

congruent to a rational integer. It follows that  the residue field modulo P has p elements, 

where p is the rational prime above P.  We then have N(P)=p, so that  P has degree 1. 

If p is any rational prime then, according to Dedekind's theorem, the first degree prime 

ideals above p take the form (p, n -  ~/2), where n runs over the distinct solutions of the 

congruence n 3 -  2 (mod p). Thus distinct first degree primes P1, P2 above p correspond to 

distinct values of n. If P1, P2]x +y ~ this leads to a contradiction, on taking n =--xy- 1 
(mod p). This proves Lemma 3.1. 

We next record the following estimate, which goes back to Weber. 
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LEMMA 4.1. The number of integral ideals of K =  Q ( ~f2 ) with norvn at most x is 

70x +O(x2/3), 

where 70 is as in Lemma 2.2. 

We now move on to the divisor function estimates. We shall use the notation T(. ) 

both for the divisor function in Z and for the divisor function in Z[~/2].  The meaning 

will always be clear from the context. We begin with the following bounds. 

LEMMA 4.2. For any integer A > 0  there is a constant e(A) such that 

E T(n)A << X(1Og X) c(A) 
n<.x 

and 

E T(I)A <<X(Iogx)c(A)" 
N(1)<<.~ 

Indeed there is a positive constant 6=6(A) such that 

Z A << Y(l~ c(A) 
x<n~x+y 

and 

E 7(I)A ((y(Iogx)c(A) 
x<N(1)<~x+y 

for xl-~<<.y<.x. 

The estimates for ~ T(n) A are well known, and indeed one may take the constant 

e(A) to be 2A--1. For the bounds for ~ - ( I )  m one may note that there are at most v(n) 2 

ideals I with N(I )=n,  and that T(I)<~T(n) 3 for each. Thus 

Z  (I)A 3A+2' 
N(X):~ 

so that the required results follow from the estimates for ~ 7-(n) A. 

We shall make frequent use of the following elementary fact, without further com- 

ment. 

LEMMA 4.3. We have T(IJ)<~ 7-(I)T(J) for any two non-zero integral ideals. 

Since the divisor function is multiplicative, it suffices to prove this when I and J are 

powers of the same prime ideal P. The lemma is then a consequence of the inequality 

T(P e+f) = e + f + l  ~< ( e + l ) ( f + l ) = r ( P e ) v ( P I ) .  

Our next result will be used in an auxiliary capacity, to establish the main estimates 

of this section. 
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LEMMA 4.4. Let n be a positive integer. For any number field k and any non-zero 

integral ideal I of k there is an ideal J lI with 

N(J)  <~ N(I)  1/~ and "r(I) <~ 2n-lT(J) 2n-1. 

To prove this write I=IlI2,  where [1 is the product of all prime ideal divisors of 

I with norm at most N(I)  1/~. Then Is is a product of at most n - 1  primes, whence 

7(Is),.<2 n-1. We can write I1 as a product J1 ... Jt with N(J~)<~N(I) 1/n and N(JTJs) > 

N(I)  1/~ for r#s .  It follows that  tE2n-1 .  We therefore deduce that  

t 

T(I) ~< 2~--IT(It) <~ 2 n-1 I-[ 7(Ji) <~ 2n-l(max T(J,i) ) t <~ 2n-l(maxT( Ji)) sn-1, 
i=1  

which suffices for the lemma. 

We can now give our first main result. 

LEMMA 4.5. Let C-~(al, al+So] x (as, a2+So] x (a3, a3+So] be a cube of side So, and 

suppose that max lailKSo A for some positive constant A. For any f l = x + y ~  +z~/4EK 

write /~=(x,y, z). Then there is a constant c(A) such that 

E T(fl)2 << S3(l~ S~ 

3eC 

For the proof we apply Lemma 4.4, with n >  (3A) -1, to show that  

T(fl)2~<max{T(I)c(A): I l f l  , N ( I ) < < S o }  ~ Z T(1)c(A)" 
~1~ 

N(I)<<So 

It follows that  

3cc lv(t)<<so 

<< Z 7(I)C(A)S3N(I)-l <<Sg(logSo)c(A)' 
NU)<<& 

by Lemma 4.2. Here we have used the fact that  if C ~ is a cube of side N(I) ,  then there 

are O(N(I) s) values of/3EC' for which Ilfl.  This completes the proof of Lemma 4.5. 

Our second main result is the following. 
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LEMMA 4.6. Let x~y~2  be given, and let a,~ be coprime integers of K. Suppose 
that there is an integer r such that 

for each conjugate. Then for any positive integer A there exists a positive constant c( A, r) 
such that 

E ~-(ma+n/~)A<<xy(l~ 
Irnl <~ x, ln] <<.y 

nr 

We begin the proof by observing that  the terms of our sum will have 

0 < IN(ma+nZ)l << x 3r+3. 

According to Lemma 4.4 we have 

~(ma+nZ) << ~(I) ~+~ 

for some ideal I [ m a  + n ~  such that  N(I) <~ N(ma + n/3) 1/(3r+3) I t  follows that  

~_(.~+~)A << ~ T(I)(~+~)A#(I.~I ~ ,  Lnl ~y: t lm~+~ ,  n#o}. 
Iml<~x, lnl<~y N(I)<<z 

We put ( I , a ) = I 1  and I=I~I2. Since ( a , ~ ) = l  we see that  Ilin. We now write v ( J )  for 

the smallest rational multiple of the ideal J ,  whence v(I1)]n. As n cannot be zero there 

are O(y/v(I1)) possible values for n. Moreover each such value of n will determine m to 

modulus/2 .  Since 

~(I2) ~< N(I2) ~< N(I) << x, 

it follows that there are O(xv(I2) -1) possible values of m corresponding to each n. For 

any A in the range (0, 1), we now find that  

E T(m(~+n~)A<<xY E ~_(i)(6r+5)A E I/(I1)-ltt(I2)-l<<xl+Ayf(A) (4.1) 
Ira] ~<x, In[ <~y N( I )<<x I=I112 

n#0 

uniformly in A, where f(cr) is the Dirichlet series 

~_(i)(6r+5)A 
f ( a )  = E  N(I)~ E u(I1)-1r ' ( I2)- l"  

I I=l112 

The function f(a) has an Euler product, with factors 

1+ E em'Pp-ma 
m=] 
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where 
7(Ili2)( 6r+5)A 

em,p = E u(I1) L,(I2) 
N(I1 Is) =pro 

We note that  there are at most ( r e + l )  5 pairs I1,/2,  and that  T ( I l I 2 ) ~ ( m + l )  3 for each 

pair. In order to give a lower bound for u(I1)v(/2)  we note that  I l lu( /1) ,  whence, 

on taking norms, we have N(I1)]u(I1) 3. Since N(I2)lr,(I2) 3 similarly we deduce that  

pm=N(I) lu(I1)3t / ( I2)  a. I t  follows that  u(I1)L,( I2))p  m/3. We also have u ( I 1 ) u ( I 2 ) ) p  

for r n ) 1 .  It  therefore follows that  

whence 

em,p ~ (re+l) 5+(18r +15)A min(p - '~/3, p - I ) ,  

1+ E e --.~A m,pP ~ I+e (A , r )P  -1 -A  ~ ( l + p - l - a )  c(A'r), 
m = l  

for a suitable constant e(A, r). We therefore deduce that  

f ( a )  <~ ~ ( I + A )  c(A'r) << A -c(A'r). 

If  we choose A = ( l o g x )  - i  the lemma then follows from (4.1). 

Our final result on divisor function sums is a corollary of Lemma 4.6. 

LEMMA 4.7. Let x,y>~2 be given. Then for any positive integer A there exists a 

positive constant c( A ) such that 

E g(m+n~r2)A<<xy(l~ 
Irnl•x, ln[•y 

mn~O 

We turn now to the following result from the geometry of numbers. 

LEMMA 4.8. Let w C Z  3 be a primitive integer vector. Then the set of x E Z  3 for 

which w . x = 0  forms a 2-dimensional lattice of deter~ninant [w[. I f  zl ,z2 is any basis 

of this lattice, then ZlAZ2=:i:w. 

and 

and with the property that 

for any scalars )~, ft. 

The basis can be chosen in such a way that IZl[~[z2[ 

Iwl << I  l'lz l << Iwl, 

I Azl+ Z21 I 1" Izl I+ Iftl" Iz2l 

We note that  an integer vector is said to be 'primitive'  if its coordinates have no 

non-trivial common factor. If we let A be the set of integer multiples of w then the set of 
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vectors x described in the lemma will be the 'dual lattice'  A*, as described in the author 's  

paper  [8, w The first assertion of the lemma is therefore an immediate consequence 

of [8, Lemma 1]. I t  follows that  

IzlAz21 = d(A*) = d(A) = Iwl, 

in the notat ion of [8]. However, zlAz2 is orthogonal to zl and z2, and so lies in A**=A. 

I t  therefore follows tha t  z f f ~ z 2 = •  as asserted. The remainder of Lemma 4.8 follows 

from the argument used to prove [8, Lemma 2]. 

Our next result allows us to count non-singular points near to a hypersurface. 

LEMMA 4.9. Let CiC_R n be disjoint hypercubes with parallel edges of length So, and 

contained in a ball of radius R, centred on the origin. Let F be a real cubic form in n 

variables, and let Fo be a real constant. Suppose that each hypercube contains a point x 

for which F(x)=Fo+O(RZSo) and ]VF(x)[>>R 2. Then the number of hypereubes Ci 

contained in any ball of radius Ro is <<F1T(Ro/So) n-1. 

For the proof we may clearly suppose tha t  So<<.coRo with a suitably small abso- 

lute constant c0, since the result is trivial otherwise. It  follows that  each vertex v of 

every hypercube Ci satisfies both  F ( v )  =Fo + O(R2So) and IVF(v)[>>R 2. We divide the 

vertices into sets Bj, not necessarily disjoint, for which IOF/OvjI>>R 2 for any v in Bj. 

We shall examine the case j = l ,  the other cases being similar. For a given choice of 

u=(v2 ,  ..., vn) let 

U (u) = {vl: (vl, u) 

Now if vl and v~=vl+6 are any two elements of/31(u) we will have 

However, 

OF 
Y(vl, u) = F~(Vl, u) + 6 ~ (Vl, u) + O(R52). 

UXl 

F(vl,  u), F l (v l , - )  = Fo+O(n2So), 

whence 
6 OF ~ x l  (vl, u) << R2So+R62. 

I t  therefore follows tha t  6<<So+R-152. We deduce that  either 6<<So or 16[)>R. Since 

this holds for any two elements of /~l(u) ,  it follows that  

~ I ( U )  << 1, 

and therefore that  #BI<<(Ro/So) n-1. The lemma then follows. 

Finally we have the following corollary of the Prime Ideal Theorem. 
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LEMMA 4.10. Let Jl, ..., Jm be intervals of the form J i=[a i ,  Qai), with ~>1 and a ~  
A> I for each i~m. Let Y ~  I be given and define J ( Y , m ) C R  m as the set of (xl,  ...,Xm) 
with xi E Ji and l-I x~ ~ Y. Then there are positive absolute constants cl and c2 such that 

m 

E l-[ l~ 
(N(P1) ..... N(Pm))CJ(Y,m) i = l  

+ O(mY(c, + log p)m-1 exp{-c2 (log A)'/2 }), 

uniformly in rn. 

For the proof we use induction on rn. For m =  1 the result is an immediate conse- 

quence of the Prime Ideal Theorem, in the form given by (2.3). For the induction step 

we shall write c3 for the constant implied by the O(.  )-notation. When we have m + l  

variables Pi we fix the first m, so that  the final prime ideal has N(Prn+l)EJm+l and 

Y 
N(Pm+l) ~ F[im=l N(Pi)" 

The contribution from the factor log N(P,~+I) is thus 

dt+O(i_ I Y ~tEJm+l,t~Y/~i(Pi) N( pi ) exp{-ca(l~ ' 

by the Prime Ideal Theorem. We write e5 for the implicit constant. The contribution 

from the error term is then at most 

csYexp{-c4(log A) 1/z} E r I  logN(Pi)  
N(P,)EJi i = 1  N(P~) 

m 
c5Yexp{-c4(logA) 1/2 } H(c6+logaig-logai) (4.2) 

i : l  

= csYexp{-c4 (log A)1/  } (c6 +log Q)m. 

The main term produces 

Z ~I l~ dt" 
Jm+l ( N ( F 1 )  ..... N(I~m))EJ(Y/t ,m ) i :1  

According to our induction hypothesis this differs from 

f ~  meas(J(Y/t, rn)) dt 
Jm+l 
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by at most 

c3 f m Y (el+lOg 0) m-1 exp{-e2(log A) U2 } dt 
Jted.~+~ t 

<. c3mY(cl + log 0)'~ exp{-  c2 (log A) 1/2 }. 

We may note that  

(4.3) 

lIE meas(fl(Y/t, m)) dt = meas(J(Y,  m +  1)), 
dm+l 

which produces the required main term. Moreover the two error terms (4.2) and (4.3) 

will produce a total at most 

providing that 

c3 ( m +  1) Y(cl + log Lo) m exp{-cz (log A)1/2 } 

c3 ~>c5, cl/> c6 and c2 ~c4. 

Since we may clearly choose c3, cl and c2 in this way, the induction step is complete. 

This proves Lemma 4.10. 

5. T h e  T y p e  I e s t i m a t e s - - L e m m a s  2.1,  2 .2 ,  3.2 and  3.3 

We begin this section by examining 

# { x ,  y �9 (X, X(I+~)]  : RIx+y~/2 } = S(n; X)  = S(R), 

say. We shall establish the following estimate. 

LEMMA 5.1. If A is any positive integer, there exists c(A) such that 

Z A S(R) - ~ << (X+Q)(log Q)c(A), (5.1) 
Q<N(R) K~2Q 

RET4 

for X>~I. 

We begin the proof of Lemma 5.1 by splitting the vectors (x,y) into congruence 

classes modulo N(R), whence 

S(R) = Z #{x ,  yE(X,X(I+~?)] :x=-u, y=_v(modg(R))}.  
u,v (mod N(R)) 

Rlu + v~/~ 
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Using the notation eq(x)=exp(2~rix/q), this becomes 

N(R) -2 F_, 
u,v (rood N(R)) a,b (rood N(R)) X<x ,y~X( l+r l )  

Rlu + v~'~ 

= N(R) -2  E So(R, a, b) Z eN(R) (-ax-by)) 
a,b (rnod N(R)) X <x,y<~ X ( l  +rl) 

where 

So(R,a,b) = Z eN(R)(au+bv). 
u,v (mod N(R)) 

Rlu + v'~ 
To evaluate the sum So(R, a, b) we note that there is a multiplicative property 

S0(RIR2, a, b) = Sl(R1, a, b)So(R2, a, b), 

for R~R2ETr so that it suffices to investigate the case in which R is a prime. When 

a = b = 0  we note that the number of pairs u, v modulo N(R), for which Rlu+v~,  will 

be N(R). We therefore see in general that So(R, 0, 0)=N(R) ,  whence 

S(R) = rl2X2 +O(X)N(R) t-0(\ z_-,~ - N(-R-~IS~ b)[ min{X,  --[-~-- j N ( R )  ~ min{X,  N(R)[b[ J ]  ~'~" 
--lal,[bl<.N(R)/2 . . 

(a,b) 7~(0,0) 
(5.2) 

The total contribution from the first error term on the right is 

<<X E N(R)-I"r(R)A << X(l~ 
N(n)~<2Q 

in view of Lemma 4.2. This is satisfactory for Lemma 5.1. 

To handle So(R, a, b) when (a, 6)5(0,  0) we first examine the case in which N(R) is 

a prime p. For any integer t coprime to p, the pairs tu, tv run over the residues modulo p 

when u, v do. Hence 

So(R,a,b) = E ep(atu+btv) = Z ep(atu+btv). 
u,v (mod p) u,v (mod p) 

It follows that 
p--1 p -1  

(P-1)S~ Z ep(atu+btv)= Z Z ep(atu+btv) 
t = l  u,v (mod p) u,v (mod p) t = l  

Rl~+v~/~ Rl~+v~ 

=p# {u, v (mod p):  Rlu+v~/~ , plau+bv} 

- # { u , v  (rood p ) : R l u + v ~ } .  
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If pO((a,b) then the condition plau§ shows that  we have u-)~b (mod p), v=_-)~a 
(mod p), for some integer )~. If we also have Rlu+v~'2 then either pl~ or RIb-a~/2. 
Thus So(R, a, b)=O for R~b-a4/2 and p~(a, b). The final condition is clearly superfluous. 

It follows for a general R that  So(R,a,b) vanishes if R~b-a~'2, while if Rib-a4/2 we 

have the trivial bound 

]So( R, a, b)l <~ N( R) << Q. 

We proceed to estimate the contribution to (5.1) arising from terms in (5.2) for 

which a, b are both non-zero. This is 

<<Q E ]abl-1 E r (R)A<<Q E labl- 'r(b-a~) c(A)=EI' 
O<lal,lbl<~Q Q<N(R)<~2Q O<IaHbKQ 

say. We split the available a,b into ranges M<~IaI~2M, N<~IbI<2N, where M,N run 

over powers of 2. There will be O((logQ) 2) such pairs M,N. We use Lemma 4.7 for 

each range, whence 

E1 << q E (MN)-lMg(l~ MN)C(A) << Q(log Q)c(A) 
M,N 

which is satisfactory. 

We turn now to the terms of (5.2) in which a, say, is zero. By the same argument 

as before we find that  the corresponding contribution to (5.1) is 

<<x hb1-1 T(R) A<<x Z Ibh-lT(Ibl)  A <<X(l~ 
O<]b[<~Q Q<N(R)<~aQ O<lbl<~ Q 

Rib 

by Lemma 4.2. Again this is satisfactory for Lemma 5.1. An entirely analogous argument 

applies for terms with b=0. 

We may now deduce Lemma 3.2. We have 

O O  

#.A(R K) = ~ p(d) #{x, y e (X, X(1 +U)]: d Ix, Y, R Ix+Y ~ }. 
d = l  

Writing x=dx', y=dy ~ we find that  

, , X ( I + u ) ]  : R x,+y,~/~ } 

(5.3) 

= # ( d )  S ( R , d ) '  d " 
d = l  
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Moreover, for RETr we have 

_2X2 ~/2X2 ~ pd(~d ) E #(d)~2-2 N(R/(R'd))-I- N(R) N((R,d)) (5.4) 
d=l d=l 

T]2X2 l 1 1 1 

p{N(n)" "pIN(R)" " 

_ 1 - 1  

7r2N(R) pIN(R)\ P/ 

which produces the leading terms in Lemma 3.2. 

We shall split the sums (5.3) and (5.4) at d=A,  where I ~ A ~ X  will be specified 

below. Terms in (5.4) for which d > A  contribute a total 

~2X2 
<< E N(R) "r(R)A E d-2N((R' d)) 

Q<N(R)<~2Q d>A 
R6Tr 

in Lemma 3.2. We put (R, d)=S and R=ST. Thus N(S)Id, and on setting d=N(S)e, 
the above becomes 

<< r/2X2 E T(s)AT(T)AN(S)-2N(T)-I E e-2 
Q<N(ST)<~2Q e>A /N(S) 

<( ?]2X2 E r(s)A'r(T)AN(S)-2N(T) -1 min{ 1, N(S)/A} (5.5) 
N(S),N(T)<~2Q 

<< ~/2XeA- 1 (log Q)c(A) 

by Lemma 4.2. 

Similarly, the contribution from the terms of (5.3) in which d > A  is 

Q<N(R)<~2Q d>A ( )' 

<<~ E E T(S)c(A) E T(T)c (A)S (T ;X)  
d>~ N(S)Id Q/N(S)<N(T)~2Q/N(S) 

<< E T(d)c(A) E T(X-~y~/2 )c(A)" 
d> A X/d<x,y<~( l +rl)X/d 

Here we shall use Lemma 4.7 again, so that the above expression is 

<< E T(d)c(A) (I~176 (5.6) 
A<d<<X 
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by Lemma 4.2. 

If we now write S = ( R ,  d) and R=ST once more, it follows via Lemma 5.1 that  the 

overall contribution from terms of (5.3) and (5.4) with d~<A is 

A R 

Q<N( R)<~2Q d<~ A 
RETs 

d<~A N(S)Id Q/N(S)<N(T)<~2Q/N(S) N(T) I 
TETZ 

<<  (s)A 
d~<a N(S)Id 

<< (X +Q)(l~ Z "r(d) << (x +q)(logQ)c(a) A log X. 
d~<A 

On comparing this with (5.5) and (5.6) we find that  the sum in Lemma 3.2 is 

X 2 
<< -~- (log XQ) c(A) + (X +Q)(log Q)c(A)A log X. 

The choice A = l + m i n { X  1/2 XQ-1/2}, which is essentially optimal, then yields a bound 

4< (Q+ XQ1/2 + X3/2)(logQX) c(A), 

for a suitable constant c(A), thus completing the proof of Lemma 3.2. 

The proof of Lemma 3.3 is, by contrast, almost trivial. We have 

{ ( 3 X 3  3X3 (1+~)]} .  
#B(R K)-=- ~f I: N(I)e \ N ( R ) '  N(R~ 

According to Lemma 4.1 we deduce that  

•13(nK) = 3,70X3~TN( R )- I + O( X2 N( R )- 2/3), (5.7) 

The sum in Lemma 3.3 is thus 

<< Z A -  
Q<N(R)<~2Q 

by Lemma 4.2. 

X 2 

N ( R ) 2 / 3  
<< X2Q1/3(log Q)c(A) 

It remains to deduce Lemmas 2.1 and 2.2. For any rational prime p we have 

( 1, pIN(J), 
- ~ •(R) = 

RIp~RIJ, R~(1 ) [ 0, p{N(J), 
(5.8) 
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where R runs over ideals. We may rewrite the condition RT~(1) as pIN(R). It follows 

that  
#•q K), 

RIq, q[N(R) 

if q is square-free. By Lemma 3.1 we have #A(RK)=0 unless RE7~, in which case we 

must have q=N(R). We use this to substitute in Lemma 2.1, so that  Lemma 3.2 may 

be applied. The contribution to #Aq arising from the main term in Lemma 3.2 is 

This is multiplicative in q, and for q=p, prime, it reduces to Qo(P)/P. Thus 

r(q)A#(q) 2 #Aq 6r]2X2 0o(q)[ 
Z ,a.2 q 

Q<q<2Q 

Q<q~2Q N(R)=q 
RET~ 

<< Z r(N(R))AI#A(K) wZN(R)6r/2X2 02(/7) 

Q<N(R)~2Q 
RET~ 

<< (Q+ XQU2 + X3/2)(log Qx) c(A), 

since T(N(R))=r(R) for RcT~. This completes our treatment of Lemma 2.1. 

Finally, to handle Lemma 2.2, we proceed as above using (5.8). We find that  

RIq, qlN(R) 

It follows from (5.7) that  

RIq, qlN(R) " nlq, qIN(R) - -  

We readily find that  the main term is 

3~?X 3 
"TO C01(q)- q 

Moreover the contribution of the error term to the sum in Lemma 2.2 is 

<<X2 Z r(q)A E N(R)-2/a 
Q<q~2Q RIq , qlN(R) 

<<X 2 ~ 7"(q)Ar(q)aq -2/3 << X2Q1/a(logQ) c(A), 
Q<q<.2Q 

as required. 
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6. T h e  Fk ln d am en ta l  L e m m a  s ieve b o u n d s  

The first object of this section is to derive an asymptotic formula for 

S 'A ---~ KI ,  p 1 . . . p n ,  X ~ ' )  . 

X .  <~ N( pn)<... < N( p1)< X I ~" 
N(P1...Pn)<X 1+" 

This will be done via a 'Fundamental Lemma'. We could obtain versions of the classical 

Fundamental Lemma appropriate to the field K,  but it seems simpler to relate our sieve 

functions to ones over the rationals. We shall think of SI(A) as T(~ in what follows. 

We therefore proceed to show that  

T(n) ( 'A)  = E S ( A m ' " P ' ~ ' X T ) '  

Xr  <~pn<... <pl< X 1-" 
pl..,p,~<X 1+~ 

by demonstrating that  

(6.1) 

s(Apl po,z)= z), (6.2) 
N(Pi)=pi 

if pi>~z. To this end we observe that  if x3+2y  3 is counted by ~4, and plxaw2y 3, then 

the ideal (x+y~/2 ,p)  will be a first degree prime, P,  say. Thus, for each relevant pair 

x,y ,  every prime Pi determines a unique first degree prime ideal Pi with N(Pi)=-pi. 
Conversely, if PIx+y~/2 ,  then P will be a first degree prime ideal. Thus each Pi gives 

rise to a corresponding prime pi. This suffices for the proof of (6.2), and hence of (6.1). 

We proceed to estimate 

S(Aw .p~,X') 

via a classical 'Fundamental Lemma', in the form given by Theorem 7.1 of Halberstam 

and Richert [6]. We apply this with 'w(p)' =00(P), 'X '  =6r/2X2/~r 2, ' ~ ' = X  1/6 and 'z' = X ' .  

It then follows that  

S(.Aq, X ~') = M(q) { l+O(exp ( -T -1 ) ) }+O(E(q ) ) ,  

where 

and 

M(q) -g~  H (1-Q~ 
q 7r 2 p<Xr P 

E(q) = E #(d)2~-(d) 2 #.,4qd 
d<X1/a 

pld ~ p<X" 

6r/2X27r2q d oo(qd) . 
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Taking q=pl ...p~, the error term E(q) contributes to T(n)(M) a total 

<< 

<< 

6712X 2 
E E #(d)2~-(d) 2 r - ~  po(qd) 

X r ~ p n < . . . < p l < X  1-r  d<X1/3  
p l . . . pn<X z+~ pld =~ p < X  r 

Z #(r)2T(r)2 #A~ 6~2X2 
r ~ X 3 / 2  7r2r 

- -  Po(r) ~< XV/4(log X) c 

by Lemma 2.1. Note here that  qd is square-free. We now find that 

6r/2X2 H ( 1 - p ~  ) ~ f ' ] O { l - ~ - O ( e X p ( - T - 1 ) ) } - ~ - O ( x T / 4 ( l O g x ) c ) '  (6.3) T(n)(A) ~2 p<x~ P 

where 
V" ..pn) E o =  

X~. p n < . . . < p l < X  1 ~ p l . " P n  
p l . . . p n ~ X  l+~r 

The above procedure may be repeated with the sequence A replaced by B. We begin 

by showing that  

S(Bq, Z)= E S(B(K)'z)+O(T(q)Tq-IX3z-1/2(IogX)C)' (6.4) 
N(Q)=q 

if q=Pl ...P~ is square-free, with pi>~z. If N(J) is counted on the left-hand side, and 

N(J) has no factor p/2, then Q=(q, J) must have N(Q)=q, so that  J is counted on' the 

right-hand side. Clearly any J appearing on the right also contributes on the left, unless 

P]J for some second degree prime ideal with N(P)=p2E[z, z2), or for some inert prime 

ideal P with N(P)=-p3E[z, z3). Moreover, again assuming that  N(J) has no factor p~, 

there cannot be distinct divisors Q,Q'  of J with N(Q)=N(Q')=q. Since there are at 

most T(n) 3 possible ideals of norm n, it follows that  

N(Q)=q zl/2<~p<z zl/3<~p<z 

x p[q n ~ X  3 z l / 2 ~ p < z  n ~ X  3 
pq ]n peq[ n 

z l / 3 ~ p < z  n ~ Z  3 
p3q[n 
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<<T(q)a{E(Pq)-l"r(q)3+ E (P2q)--lT(q)3 
p[q zl/2~p<z 

+ E (p3q)-lT(q)3} x3(l~ 
zl/S<~p<z 

<< T(q)7 q - 1X3  z - 1 / 2  (log X)C, 

as required for (6.4). 

We now write 

T(~ = E S(I~Pl-P~'  x ' r ) '  
X'r<~pn<...<pl<X 1-T 

pl.. .pn<X l+T 

and proceed to compare T(on)(13) with T(n)(B). We shall do this in two stages, passing 

via 
T~n)(]3) = E (1) S(~(pK!.p,~,XV),  

X~ ~N(Pn)<...<N(P1)<X 1-" 
N(P1...Pn)<X 1+~ 

in which ~(1) indicates that N(P1 ... Pn) must be square-free. According to (6.4) and 

Lemma 4.2, we have 

T('*)(B)-T~n)(B)<<X3-'/2(I~ E T(q)Vq-l<<X3-"/2(logX)C" (6.5) 
q<Xl+ r 

Moreover 
T(n) ( ]3 )_T~n) (B)<< E (2) ~13(pK!.p,~, 

XT<~N(P,~)<~... <~N(P1)<X 1-~ 
N(p1...Pn)<X l+'r 

where ~(2)  indicates that  the ideals P~ are distinct, and that N(P1 ... Pn) is not square- 

free. In view of Lemma 4.1, together with the fact that  q=N(Q) has at most ~.(q)3 

solutions Q, we conclude that  

T(n)(13)-T~n)(B)<<X3 E E "r(q)3q-1 
p•X'r/3 q<X 1+" 

p2[q 

<<X3 E (l~176 
p>.X~/a 

When we compare this with (6.5) we conclude that  

T(n)(I3) -T(on)(B) << X 3 - T / 3 ( l o g  X)  c. 
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We may now proceed as before to deduce that 

T(n)(B) = 37or/X3p<I~x, (1-01p(P))E1 { 1+ O(exp(--T-1))}+ O(X3-r /4) ,  (6.6) 

where 
L) I ( P l  "-Pn) 

•1  = 
X~<~p~<...<pl<Xl_ Pl ...Pn 

Pl...Pn<X l+r 

We must now compare the main terms in (6.3) and (6.6). 
product involving the function ~o(P)- Since 

We look first at the 

E Up_-1 E N~P)- E I+O(y-U3)<<(I~ 
Y<p<~z P Y<N(P)<~Z Y<p<~Z p 

by the Prime Number Theorem and the Prime Ideal Theorem, it follows that the infinite 
product 

p~>l-Iy (1 -  u ~  1 ) 

is convergent, and is l+O((log Y)-~). This shows that 

- p - - ] - I  1 p<I-[(1 Q 0 ( P ) ) _ p < ~ ( U p ; 1 ) ( l _ ~ ) ( l _ ~ )  -1 

7r 2 
:ao~(l+O((logz)-2))p<l-Iz(l-~). 

(6.7) 

For the product in (6.6) we begin by observing that 

1 _ H  1 pl-iip (1_ N@p)) (1_ ~) -1" p<IIz(1-~~ N (P ) ) - p< z ( - ; ) " p~< z I 

On the other hand, for any a> l  we have 

Z E l~ 1 N(p)~ -log 1- = E N(p)~ 
Y<p<.Z PIP Y<p<~Z Y<N(P)<~Z 

- -  + O ( Y - ~ / 2 ) ,  

after consideration of the contribution from prime ideals of degree 2. Partial summation, 
using the Prime Number Theorem and the Prime Ideal Theorem, reveals that 

1 1 
E p--J= Y~ N(p)~ +O((l~ 

Y<p<~Z Y<N(P)<~Z 
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uniformly in a. Thus, taking Y=z and letting Z--+oc we conclude that 

1 1 1 
P~I<z pII~p (1 N(~P)a)(-Y)-I--~(~ P II>z PII'p (11  N(~~ ) - 1 ( 1 - ~ )  

_ r ( l + O ( O o g z ) - ~ ) ) .  
CK(~) 

We may now let a tend to 1 to deduce that 

1 p<l~Iz pl-Iip (1 N(p))(1-~)-l="/o l(l+O((l~ 

It follows that 

II (1--QI(P)) ="fol(I+O((logz)-2)) H (1--~), 
p<z P p<z 

whence (6.7) yields 

H(1--~)1(P)Xl="/01Cr016 (l+O((l~ )" 
p<z \ P / 

Moreover we may note that 

I]  (1- ~  << (logz) -1 , 
p<z 

again via (6.7). 
We have also to compare the sum 

~0= E OO(Pl...Pn) 
Pl... Pn Xr<~pn<...<pl<X 1-~ 

pl...pn<X l+r 

(6.8) 

(6.9) 

(6.10) 

by (2.5) and (2.6), unless q is divisible by an inert primep, say. In the latter case 00(q)=0 
and 

Ol(q)<<.3np-X<<X -~/2, 

Ol(q)=oo(q){l+O(X-r)}n=90(q){l+O((logXr)-2)}, 

with the corresponding sum El, in which the function O0 is replaced by 01. At this point 
we observe that Oo(p)=up+O(p-1), and similarly 01(p)=up+O(p-1). Thus 
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again by (2.5) and (2.6). We may now compare our various estimates to show that 

@X 2 
T (~) (A) - x T  (n) (~) <( ~ (~o {exp(--T -1 ) -{- (log X r) -2 } q_ r ;  X -T /2 )q -X2- r /4  

r/2X 2 
<< ~ {ro exp(-T-1)+EtoX-r/2}+X 2-T/4, 

where 
, 1 

~'0 = Z Pl ... P~" 
xr<~pn<...<pl<X 1-'~ 

--xl+r p l . . . p n  <. 

Moreover, since Oo(P)~<Up, we have 

E0 << 
U;x ... � 8 9  

Xr<~pn<...<pl<X1 r Pl . ' .Pn 
p l . . . p n < X  l + r  

and similarly 

1 ( Z  u P ~ < < ~ ! ( l ~  n << ? + o(1)), 
~" \x.<~v<x p / 

? + o(1)). E~ << ~! (log 1 

When we sum over n we therefore deduce that 
~2X~ 

E [T(n)('A)-xT(n)(~)l << ~ {exp(--T--1)~-x-r/2} 
n 

•  2-r/4 

TT~2X 2 
< < -  

log X ' 

by (2.5). This proves Lemma 3.5. 

7. U p p e r  b o u n d  sieve resul ts  

This section is devoted to the proof of Lemmas 3.6 and 3.7. We begin by establishing 

the following result, which we shall use repeatedly. 

LEMMA 7.1. 

z>>X r and N<<X 2-T. Then 
~]2X2 

Z SK('A(K)'z)<< E qlogmin(z, X2-,-/U) 
N(Q)EQ qEQ 

and 

Let Q be a set of square-free integers q with N<q<~2N. Suppose that 

~ X2-~/5 

~X 3 X3_~/5. 
E SK(13; K)'z)<< E qlogmin(z, X2-,/N) ~- 

N(Q)CQ qEQ 
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For the proof we begin by converting our problem into one which involves only 

rational numbers. For the sequence ,4 we may use (6.2) to show that  

SK(/Q% z) = 
N(Q)eQ qeQ 

while for the sequence B, we find that  

E SK(B(K)'z): E S(Bq'z)+O(X3z-1/2(I~ T(q)Tq-1) 
N(Q)cQ qeQ qeQ 

= E S(Bq, z) + O(X3z-U2(log X) ~) 
qEQ 

by (6.4) and Lemma 4.2. 

We now apply the form of Selberg's upper bound sieve given by Halberstam and 

Richert [6, Theorem 4.1]. We set 

Zo = min(z 1/2, N-1/2X1-r/2), 

and for A we take 'z '=zo,  'w(p)'=Oo(p) and 'X'=6rl2X2/~r2q. Similarly for B we take 

'z'=zo, 'w(p)'=Ol(p) and 'X'=3~/orlX3/q. We then deduce that  

q2 X2 
S(Aq, z) <~ S(Aq, zo) << - - ( l o g  2:0)-1+ E r(d)2#(d)2[Rdq('A)[ 

q d<~?~ 

and 

where 

S(Bq, z ) <  S(Bq, Zo)<~ z/X3 (log Zo) - l+  ~ T(d)21z(d)2[Rdq(B)l, 
q d<~z~ 

6 ~ 2 X  2 oo(m) 
R m ( A )  = # A m  7r 2 m ' 

and similarly for R,~(B). Note that  we have used (6.9) and (6.10) to bound the prod- 

ucts 'W(z) '  (in the notation of Halberstam and Richert). Clearly we may suppose that  

every prime factor p of an element q C Q satisfies p ~> z, since otherwise S(Aq, z) vanishes, 

and similarly for S(Bq, z). Thus we may suppose that  dq is square-free for d<~z~. We 

may now sum for qE Q, and use Lemmas 3.2 and 3.3 to bound the error terms. Since 

N z ~ X  2-'r/2, by choice of z0, we deduce that  

~2X2 
E S(Aq, z) << ~ E q-1 +O(X2- ' /4 ( log  X)C), 
qeQ qeQ 
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and 

N(P3) ~ < N(PIP2) < X 1+'. 

We thus have a sum over (plp2p3) -1 in which X1/2-~/2<p2,Pl<Xl-~ and X1/2-2~< 

p3<X 1/2+~-/2. This therefore produces a total  0(7-) as for $6. For S6(B) and ST(B) we 

~]X 3 
E S(]3q'Z)<<l~gzo E q-l+O(X3-.~/4(logX)C). 
qEQ qEQ 

The lemma then follows. 

It  is now a straightforward mat te r  to establish Lemma 3.6. For $3(.4) we have 

S3(A) = E SK('A(K)'N(P)) ~ E SK('A(pK)'x1/2)" 
X I - ~ N ( P ) < X I +  "r X I - ~ N ( P ) < X I +  ~" 

By Lemma  3.1, we may assume that, N(P) is prime. Thus Lemma 7.1 yields 

_ _  T~2X 2 ?7222 TI]2X 2 -~- X 2-r/5 << _ _  S3(A) << E +X2-~-/s  << 
plogX logX ]ogX 

X l - ~ p < X X + ~  

by (2.1) and (2.5). This is satisfactory for Lemma 3.6. One may handle S3(B) in much 

the same way. We no longer know that  N(P) is prime. The contribution from prime 

ideals P of degree 2, however, is 

<< Z ~=B(PK) << E X3/N(P) << xli/4' 
N(P)>~X1/2 N(P)~X1/2 

the sum being over such primes. Inert  primes may be handled similarly. 

The t rea tment  of $5 is entirely analogous to that  used for $3. For $6 (.4) we have to 

observe that  

E (pip2)-1 < Z: 
XT~p2<PI<X l-'r XI/2<p2<XI-T X3/2-T/p2<Pl<Xa/2+r/p 2 

X3/2-~r <plp 2 <X3/2~ -T 

p 2 1 T  << T. << 

X1/~<p2<XI-~ 

Similarly we note that  the summation conditions for $7 imply that  

N(P3) - N(PIP2P3) > xl/2_2r 
N(P~P2) 
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again have to note that  prime ideals of degree greater than 1 may occur. As for S3(B) 

these contribute O(X3-Wh), say, which is negligible. This completes our discussion of 

Lemma 3.6. 

For our treatment of Lemma 3.7 we note at the outset that in every application 

of Lemma 7.1 we will have z>>X ~ and N<<X 2-2r, s o  that  min(z,X2-~/N)>>X r. We 

begin by examining U(n)(A) for n~>3. We shall record at the outset two estimates which 

we shall use repeatedly. If z>~X ~ we have 

N(P) -1 <<~T -1. (7.1) 

z~N(P)<~zX~ 

Moreover we have 

Z N(P)-I ~ tog(T-l--  1)+O(lo--~X~ ) 
X~<N(P)<XX-~ (7.2) 

~ l o g ( T - 1 ) - - 7 + O ( ~ )  ~ log(T--a). 

In each case we use partial summation, based on the Prime Ideal Theorem, together 

with (2.5). 

The contribution to U(n)(.A) arising from terms in which 

X T <~ N(Pn+I) < X r+~ 

may now be estimated via Lemma 7.1 as 

~/2X2 
<< Z SK('A(K)'xr)<< Z qlogX ~ + X 2 - ~ / 5 '  (7.3) 

N(Q)EQ qeQ 

for an appropriate set Q. Moreover 

1 1 1 (  1 ; 
Z N-(Q) <~ Z NIF~ 1' n! Z N(P) 

N(Q)cQ X~<~N(P~+I)<X~+~ ~" + ] X~-~N(P)<X 1-~ (7.4) 
<< ~7-1~.W (log r - t ) n ,  

by (7.1) and (7.2). In view of (7.3), the total error when we sum over n is 

T ] 2 X 2  ,~ --1 r .  / I  2 X 2  -- 
< < ~ r  exptlog7 - - 1 } < < ~ f  3, 

which is satisfactory. The term X 2-~/5 in (7.3) contributes O(T-1X 2-~/5) after summing 

over n, which is also satisfactory. 
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Those terms of U('O(A) for which XI-~-5<~N(P1)<X 1-~ may be estimated in a 

similar fashion. We must also handle the cases in which 

X 1+~'-~ <~ N(Px ... Pn) < X 1+~, 

as well as those for which 

X 1+~- <<. N(P1 ... Pn+l)  < x l+ r+~-  

In each case we have 

X ~ < N(Pn+I) < N(Pn) < ... < N(P2) < X 1-~- 

and 

Y<~ N(P1) < Y X  ~. 

Here Y may depend on N(Pi) for i>~2, and satisfies Y>~X ~'. Thus the total  contribution, 

after summing over n, is again O((rl2X2/logX)~T-3). 
Finally we shall est imate the terms for which there are primes Pi-1, Pi with 

N(Pi)  < N(Pi-1) <~ Xr 

To estimate 

E N ( Q ) - I  
N(Q)cQ 

in this case, we fix i, so that  the sum over Pi-1 produces 0 ( ~ - - 1 ) ,  by (7.1). The 

remaining prime ideals produce a factor O((log ~--1)"/n!) as before. We therefore obtain 

a contribution 
T]2X 2 

<< 10--~-~ ~T--2~l (1ogT) n, 

on allowing for the various indices i~n ,  which produces O((~12X2/logX)~T -4) after 

summing over n. 

The net effect of these estimates is that  we may restrict the prime ideals P~ so that  

N(P~) eg(mO, with integers rn~ satisfying (3.5), (3.6) and the other relevant conditions, 

providing that  we allow for an error O((~2X2/logX)~'r-4). Our next step is to replace 

by 

SK(.A(pK.!.pn+ I, N( Pn+ I ) ) 
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According to Buchstab's formula this introduces an error 

SK(A(2! p,,+Ip,N(P)). 
xmn+Ir 

We sum over the various prime ideals 1:)1, ..., Pn+l, using Lemma 7.1, along with (7.1) 

and (7.4), to show that the error is 

r/2X 2 1 
<< ~ ~'r-1 (n+  1)-----~ (log 7 --1)n+1. 

When this is summed over n we get a total O((~2X2/log X)~T-a) ,  which is satisfactory. 

We proceed to introduce the factor 

Since N(Pi)EJ(mi)  we find that 

~+a log N(Pi)  
ds = n rni( log X '  

i=1 

1 ~< logN(Pi)  ~< l + r n / 1  ~< I+~T_I ,  
rni ~ log X 

by (3.5). Thus (2.6), (3.4) and (3.9) yield 

1 <~ds ~ 1+O(~7--2). 

We must therefore allow for an error O((T-2u(n)(A)). Since Lemma 7.1 shows that 

r/2X 2 1 ( logv_l)n+l ,  
v(n)( 'A)  << log X ~ (n+  1)~ 

by (7.2), the total contribution to Lemma 3.7 is 

~?2X2 rl2X 2 _ 
<< ~ r  -1} = ~ r  4, 

which is again satisfactory. 

To complete the proof of Lemma 3.7 for U(n)(A), it remains to replace 

S K t  A (K) xrnn+x() 
t P1...P,~+I' 

by 
S(*)rA(K) X.~n+~) K \ P1...P~+I' 
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The difference between these is at most 
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E ~ ( K )  
Tr-c-',.p2s~ 

N(P)>/X  ~ 

where S=P1  ... Pn+l. Since we have N(S)>~X 1+~, from (3.8), we deduce that N(P)<< 

X 1-'/2. The total contribution, when we sum over all admissible ideals S, regardless of 

the value of n, is thus 

Z #{s:sl,}. 
X T ~ N ( P ) ( ( X  J-~/2 I: p2IE,A(K) 

I can, however, have O(T -1) prime ideal factors P~ with N(P~)>~X ~, whence 

# { S :  S i t }  << exp{c'r- l}.  

It follows that  the error under consideration is 

<< exp{cT-1} E ~i/: "4(K )" (7.5) 
X r<~ N( P)<<X I -  "/2 

Now if P is a first degree prime ideal then 

~X 
# { x r  Z: X <  x ~< X ( l + q ) ,  P2lx+y~'2 } ~< 1+ N~-)2  

for every integer y. Thus 
# A(K) X+X2N(p) -2, (7.6) �9 r~p2 << 

whence (7.5) is 

<< (X+ N-----~) <<: explcT-1} x2-r/2 << x2-r/4' 
X 2 

k Xr<~N(P)<KX1- ' /2  

say. This is satisfactory for Lemma 3.7, and completes the treatment of u(n)(A). 
In order to deal with the sequence B, it will be convenient to record the estimate 

7~Bj << X3N(j) -', (7.7) 

which follows from Lemma 4.1. To handle U(n)(13) we shall first remove those terms in 

which some Pi (call it Po) has degree 2. The total effect of this, after summing over n, 

is an error at most 

Xr 1-"  I : P o l E N  
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where S runs over all products of distinct prime ideals P,  subject to N(P)>~X ~. Just as 

in the analysis of the previous paragraph, we may bound this as 

<'< exp{cT-- 1 } E #UPo" 
X . <~ N( Po)<<X I -  ~" 

However, ~BPo<<X3N(Po) -1, by (7.7). Since P0 is restricted to be of degree 2 the total 

error is thus 

<< X3 exp{c'r-1 } E N ( P ~  

X ~- <<. N( Po)<<X ~- ~ 

say, which is satisfactory, in view of (2.5). Primes of degree 3 may be handled similarly. 

In the same way we may remove those terms in which there are two prime ideals 

Pi, Pi+l with the same norm. The analysis is much as above, save that  we use the bound 

# u p ,  p~+, << x 3 ~ N(P~ P~+,) -~ << X 3-T. 

X ~ N ( P I ) = N ( P i + I ) < X  1 - T  X ~ N ( P i ) = N ( P i + I ) < X  I-~ 

This having been done, we proceed to estimate the effect of confining the primes Pi so 

that  N(Pi )CJ(mi ) ,  with the mi satisfying (3.5), (3.6) and the other relevant constraints. 

The analysis mimics that  used for U(~)(,4) precisely. Similarly we can bound the error 

caused by introducing the factor ds, by the same argument as previously. Finally, when 

we replace 

by 

S(*)[R(K) ymn+l~  
K k~P1. . .  Pn+ 1 ' ~*  2'  

we again copy the argument used before, using (7.7) instead of (7.6). This completes our 

discussion of Lemma 3.7 as far as U(n)(B) is concerned. 

The treatment of U~ 1) and U} 2), and also of $4, follows the lines given above, both 

for .A and for B. In fact we get errors which are O((~72X2/logX)~T-3), since we are able 

to use a bound n<<l instead of n<<T -1. 

There remain the terms U~(1)(A) and U~(1)(~). Here too we fonow the same argument 

as used for U (n). We first restrict each of P1 and P2 to have its norm in the relevant 

interval J(ni) ,  and replace 
S tA(K) K( pip:, N(P2)) 

by 
S IA(t() Xn2~ 

K l,.i'~ p 1 p 2  , ) .  
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The errors here are estimated just as before. Note that, in applying Lemma 7.1, we have 

N(PIP2)<~X 2-2~. Then, when we introduce the ideals Q1, ..., Q,~+I all the errors in the 

subsequent manoeuvres can still be estimated via Lemma 7.1, in view of the bound 

#{/~ P2 : PIP2 E .AQ1...Q~+~ } <~ ~ [~(K) ~9 K k~'~Q1...Q~+ I , XT ). 

Since we still have n<<~ --1 in this new situation, the rest of the argument proceeds just 

as with U (n). 

8. P r o o f  o f  L e m m a  3 . 8 - - t h e  c o n t r i b u t i o n  f r o m  t h e  t e r m s  e(~) 

We shall begin our treatment of Lemma 3.8 by considering the function as. Here we 

shall prove the following result. 

LEMMA 8.1. Let CC_R 3 be as in Lamina 3.8. Define 

N( (x, y, z) ) = x3 + 2y3 +4z 3 -6xyz  

and 

Z = Jc w' (N(x))  dx dy dz. 

Then for any positive integer q•L 1/6 and any integer a E Z [ ~ / 2 ]  we have 

E e(~) = ~ / o l M - l ( ~ l o g X ) - n - l z ~ T O ( S 3 M - 1 7 - ( q ) C e x p { - c ~  }),  

~c~  (rood q) 
~cc 

where e(ct, q ) = l  if c~ and q are coprime, and e(c~,q)=0 otherwise. Moreover we have 

defined 
n+l 

M =  I-[ mi, 
i=1 

and we have written CK for the Euler function over the field K.  

According to the definition (3.12) we have 

L 
E e(~) = M - l ( ~ l ~  E # ( J ) l ~  E w'(N(/~)). 

~----c~ (mod q) N( J )< L ~CC, Jl~ 
~EC ~--=~ (rood q) 

(8.1) 

The two conditions JI/~ and fl-=a (mod q) are compatible only when (J,q)[a, and in 

this latter case they define a unique residue class for /3 modulo the lowest common 

multiple [J, qJ. 
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We therefore investigate the sum 

E w'(N(fl)), 
3~c 

f l~7  (mod r) 

(8.2) 

where r is a rational integer multiple of [J, q]. To be specific, we shall take r=N([J, q]). 

We begin by considering the case n~>l. We write, temporarily, d(mn)=[a,b) and 

g(m~+l)=[c, d). Then 

w'(t) = / dXlxl "'" xndXn' 

where the integration is subject to xi E J(m~) for 1 ~ i ~ n and 

t n t 
- I I  d ~ xi~-.c 

i=l 

It follows that  

where 

and 

w'(t) =/ ( I t ( t )  --Id(t)) dXlxl ..."" xn-ldxn-1 

_ ft/vrIx[a, (x) 
Iv(t) -- dx 

--JO 

n--1 
I I=  H xi. 

i=1 

We may therefore deduce that  

f 
(t+h)/vH dx <~ h 

0 <~ Iv(t+h)-Iv(t) <. Jt/vn x t' 

if h>~O, whence 

Iw'(t+h)-w'(t)l <" t ~ JxeJ(m,) x <<" t - (~ lOgx)n - l "  (8.3) 

Moreover, we have 

0 <. w'(t) <~ (~ log X)  n, (8.4) 

since 
dx 
- -  = ~ l o g  X .  

EJ(m) X 
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For each vector fl we take C(fl) to be the cube of side r, centred at/3, and with sides 

parallel to those of C. Then, since 

we have 

r <~ N(J)q 3 ~ L 2 <. So << V 1/3, 

N(x)  = N(9 )  + O(V2/3r) 

for any xeC(f l ) .  Thus (8.3) shows that 

w ' ( g ( x ) )  = w'(N(fl)) + O(V-1/3r(~ log X )  '~- a), 

whence 

w'(N(fl)) = r - 3 [  w'(N(x)) dxdydz+O(V-1/3r(~logX)n-1). 
dC (~) 

The cubes C(fl) for fl=V (rood r) will be disjoint, except for their boundaries. Moreover 

as/3 runs over C the union of the cubes C(fl) will be a set which differs from C only at 

points within a distance O(r) of the boundary. Since r<.So it follows that  

E w'(N(fl))=r-3 Z f w'(N(x))dxdydz 
3~c 3ec ac(~) 

fl--'~ (rnod r) fl~')' (rood r) 

+ O(V-1/3r(~ log X)n-l ( ~ ) 3) 
(8.5) f 

= r-3/c w'(N(x)) dx dy dz + O(r -3. rS 2. (~ log X )n) 

-k-O(V-1/3r(~ log X )n-l (-~ ) 3) 
= r-3Z+ 0(r-2S2(~ log x)n), 

by (8.4). 

We proceed to derive the analogous estimate in the case n=0.  Here we find that  

w'(t,m) is just the characteristic function of J(ma). (Since we chose the right-hand 

derivative, this is correct even at the endpoints of the interval.) In particular, (8.4) 

remains true. If we write, temporarily, J(ma)=[a, b), we find that  

w'(N(fl)) =r-3 f w' (N(x ) )dxdydz  (8.6) 
ac(~) 

unless N ( x ) = a  or b, for some xEC(fl). Since 

x-VN(x) = 3N(x) >> V, 
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we have [VN(x)I>>V2/3, so that  Lemma 4.9 may be applied with 'R'<<V 1/3, ' So '=r  and 

'Ro'<<So. The number of cubes for which (8.6) fails is therefore 0($2r-2), whence we 

may deduce as before that  

Z w'(N(fl))=r-3 E f w'(N(x))dxdydz+O(Sgr-2) 
3~c ~ec ac(~) 

fl~'~ (mod r) f l~ ,  (mod r) 

= r - 3 Z +  O(Sgr-2) .  

Thus (8.5) holds for n = 0  too. 

We now observe that  

E w'(N(fl)) 

/3~a (mod q) 

is composed of r3/N([J, q]) subsums of the form (8.2), whence 

E w'(N(fl))=N([J'q])-'Z+O(S2(~l~ 
~C. Jl~ 

fl--a (mod q) 

providing that  (J, q)]a. The error term clearly contributes 

<< SgM-I(~ log X)-IL log L << SgM-'~-IL << S3M -1 exp{-c  v/log L } 

to (8.1), by (3.13), (2.5) and (3.4). The main term of (8.1) may be written in the form 

M-t(~l~ E 
N ( J ) K L  
(J,q)]a 

it(J) N((J,q))log L 
N(J) N(J)" 

We write I = ( J ,  q) so that  

N(J) { I .(J) L L = E N(I) E Z it(A) ~(j)log N(J) Z i((J, q))log 
N ( J ) < L  " " I[q,(~ N ( J ) < L  A [ J I - l , q 1 - 1  " 
(J,q)[~ I ] J  

it(IA) (8.7) = E U(I) E it(A)N(IA) 
I[q,c~ A l q l  - t  

E it(B) L/N(IA) 
N(S)<L/N(IA)N(B) log N(B) 

X 

( B , I A ) = I  
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To handle the innermost sum we therefore investigate 

V" ,(B) x 
E =  z..., N(B) l o g , / ~ ,  

N(B)<x 
(B,c)=i 

using the Dirichlet series 

f ( s ) =  
B:(B,C)=I 

.(B) 
g(B)s  -- ~K(S)-I H (1 - N ( P ) - S )  -1. 

PIC 

The Perron formula shows that  

f l + i o o  
E = I  f (s+l)xS ds 

J l--ioo 82 " 

Now if Re(s) >~ 3 then 

PIC "P[C " " n<~w(C) " 

<< exp{c(log N(C))1/4}. 

Using the standard zero-free region for ~K(S) we may therefore change the path of inte- 

gration in the usual way to obtain 

E = r e s{ f ( s+  1)xSs-2: s = 1} + O ( e x p { - c ~  }) 

for a suitable constant c, whenever N(C)<.x. The residue is easily found to be 

"7olN(C)/r Moreover, since q<<.L 1/6, we will have N(IA)<~L/N(IA) in (8.7), and 

L/N(IA) ) L  1/2, so that  it becomes 

#(IA) 
~o 1 ~ N(x) ~ .(d)CK(/A) 

IIq,o~ Alq1-1 

0 
IAlq 

Using multiplicativity, the main term is readily evaluated as "YolN(q)/r if q 

and c~ are coprime, and zero otherwise. The error term is also easily estimated as 

O ( ' r ( q ) C e x p { - c ~  }). Lemma 8.1 then follows, since (8.4) yields 

z << s~)(r log X p .  
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9. P r o o f  o f  L e m m a  3 . 8 - - t h e  c o n t r i b u t i o n  f rom t h e  t e r m s  d(~) 

We now turn to the analysis of d8. We begin by disposing of the trivial case, in which 

(a ,q )~ l .  

LEMMA 9.1. Let CC_R 3 be as in Lemma 3.8. Then for any q<~ L 1/6 and any integer 

w e  have 

Z = 0 d(~) 
13----a (rood q) 

fi~c 

whenever a and q have a common factor. 

For the proof we merely note that  (/~) will be a product of prime ideals Pi with 

N(Pi)>>-X'>>.L>N(q), whence/3 and q must be coprime. 

For the remaining case we shall prove the following estimate. 

LEMMA 9.2. Let CC_R a be as in Lemma 3.8, and let a positive integer A be given. 

Then for any natural number q<.(logL) A and any integer a e Z [ ~ / 2 ]  coprime to q we 

have 

Z d(~) = ~ / o l M - l C K ( q ) - l ( ~ l o g X ) - n - l Z + O A ( V e x p { - c  l v / ~  }), 
/3~o~ (rood q) 

~EC 

where Z is as in Lemma 8.1. 

We remark that the implied constant is ineffective, because of problems with Siegel 

zeros. 

A comparison of Lemmas 8.1, 9.1 and 9.2 immediately yields Lemma 3.8. 

In order to establish Lemma 9.2 we begin by using characters to modulus q to pick 

out the condi t ion/~=a (rood q). Thus 

E d ( ~ ) = O K ( q ) - l E  ;~(a) E d(~)X(/3). (9.1) 
/~_=~ (rood q) X (mod q) ~EC 

~ c  

Here we stress that  X runs over characters of the multiplicative group for Z [~/2] mod- 

ulo q. In order to handle the condition/3CC we shall use Hecke Gr6ssencharacters. For 

any non-zero/3 = a +  b ~f2 + c ~ E Z [ ~/2 ] we shall write 

~'= a+bw~/2 +cw 2 ~/4, 

where w= �89 ( -  1 + x/-Z3). We then set 

X ( - 1 ) = ( - 1 ) %  X(Co)=e it, r176 =ei~, log~o=v.  
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Here we shall choose s=0  or 1, 0~<t,u<27r and vER.  We now define 

"o(fl) = X(fl) exp{-itv -1 log Ifll}, 

,~ ,  tiff' ul~P) = ~ exp{-iuv -1 log Ifll} 

and 

(9.2) 

~2(fi) = exp{ -27riv-1 log Ifll). 

Then, for each index i, the function u~(fl) is completely multiplicative, and has modulus 1 

(or possibly 0 when i=0).  Moreover, vi(fll)=u/(fl2) whenever fll and ~2 are associates. 

If S is an integral ideal generated by fl, we may then define u~(S)=L,~(fl). For any x C R  3 

such that  N(x)#0 ,  we shall write 

fl(x)=xl+x2dc~ +x3~/4 and fl'(x)=xl+x2w~/2 +x3w2"~z4. 

V~re then set 

and 

~,a(x)-- fi(x)fl '(x) e x p { _ i u v _  1 log Ifl(x)l} 
Ifl(x)~'(x)l 

/-'2 (x) = exp{ - 27riv- 1 log I fl(x)l }. 

We define 
( 1 2 2 )  

M =  1 1 2 , 

1 1 1 

and note that  f l (Mx)=e0fl(x)  and fl'(Mx)=e~)fl'(x). Thus, if we say that  two vectors 

x and x' are associates when x ' = + M n x  for some n c Z ,  then we will have ~i(x)=v~(x') 

( i= 1, 2) whenever x and x' are associates. 

We proceed to introduce a weight function W(S; A, x), defined for positive A <  1 by 

W ( S ; A , x ) = h ( a r g ( ~ ) ) h ( a r g ( ~ ) ) ,  

where 

and 

f 1-Lx-l l lx/2~l l ,  IIx/2~ll~<~, 
h(x) 

I o, IIz/2~r[I/> A, 

Iltll = n ~  It--hi, 
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as usual. We note that  

We proceed to study 

r ( x )  = 

sm(~nA) ~ ~ 

ds.o( S) W( S; ZX,x), 
N(x) < N(S) ~ N(x) q- AV 

where xCC, so that  V<<N(x)<<V. 

Our goal is the following result. 

LEMMA 9.3. Let xEC and suppose that q~(logL) A. 

where 

Then 

A 2 
E(x) = e(x) m(x) ~ -  (~ log X ) - ~ -  1 + OA(A-2M - '  V e x p { - c ~  }), 

. ~ ( x )  = ~ ( ~ ( x ) + Z x V ) - ~ ( N ( x ) )  

and e(X)=I  or 0 depending on whether X is trivial or not. 

We begin by observing that  

k_~ ( " " ) ( s ln(TrkA)  I , k E(x) A 2 sm(Tr3A) 2 . 2 
= . l ( x ) -  ~2(x)- zj,k, 

, _ _ ~  ~ 

where 

and 

Ej,k = E dsu(J'k)(S) 
N(x)<N(S)<~ N(x)+AV 

(9.3) 

(9.4) 

.r = . i s )  = .o ( s ) . , ( s ) J .~ ( s )  ~. 

We shall say that  the character u(S) is trivial if it takes the value 1 whenever S 

is coprime to q. This corresponds to having the trivial character X modulo q, letting 

s = t = 0  in the definition of u0, and taking j = k = 0 .  In our situation the condition that  

(S, q)=l is redundant, since, if ds is non-zero, then S and q are automatically copriine, 

as in the proof of Lemma 9.1. 

For the case in which u is trivial we now apply Lemma 4.10. Since J(mi)= 
[ x m ~ , X  (l+md~) with xm~>~ X ~)L ,  we may take Q=X ~ and A=L. Moreover we 

note that  re(x) is the measure of the set of (n+ 1)-tuples (tl,..., tn+l) with ti E J(mi) and 

N(x) < 1-I t~ ~< N(x) + AV. In view of the bound r t~<T-  1, the lemma then yields 

n + l  

II 0 
P1,-..,Pn+I i=1  
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since 
C n 

( l + ~ l ~ g X /  ~ < e x p ( ~ l o g X )  [" e'r-1 "~ cn ~< exp ~ l~g ~2) ~< exp{O(1)} 

by (2.5) and (3.4). We therefore conclude that 

(9.5) 

Ej,k = m ( x ) M - l ( ~ l o g X ) - n - l + O ( V M - l e x p { - e ( l o g L ) l / 2 } ) ,  (9.6) 

for the trivial character, in view of (2.5) and (3.4) again. 

In order to bound Ej,k in the remaining cases, we shall use a version of the Prime 

Number Theorem with Gr6ssencharacters, due to Mitsui [15, Lemma 5], which yields the 

following. 

If the character ~(j,k) is non-trivial then, for any positive constant A, LEMMA 9.4. 

we have 

uniformly for 

E l~ zexp{ -cv / logz  } 
N(P)~z 

IJl, Ikl <<exp{ 1V/~Z } 

and q<~(logzj A. 

Note that  Mitsui imposes his bound on the modulus (q in our notation) on [15, p. 11]. 

It does not appear explicitly in his statement of the result. For non-quadratic characters 

one may in fact allow q ~ < e x p { @ ~ } .  As usual, however, quadratic characters are a 

potential problem, and Mitsui's treatment employs the familiar arguments concerning 

Siegel zeros. In particular, one should note that the implied constant in Lemma 9.4 is 

ineffective. 

We now write 

Y]j,k = (ml~  log X )  -1 ~ gjl/(J) ~ v(P)log N ( P ) ,  

J P 

where J runs over products/)2 ... Pn+l with N(Pi)EJ(m~), and 

n+l log N(Pi) 
gJ = 1-[ mi~logX" 

i=2 

Moreover the sum over P is for 

N(P) �9 d(ml) and N(x)  < N ( P )  <. N ( x ) + A V  
H 11 

(9.7) 
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where 
n + l  

n =  H N(Pi). 
i = 2  

The sum Ej,k therefore vanishes unless V/II>>X'~>>L. Lemma 9.4 now yields 

V exp{_c lov/lx/i ~ } ~]j,k <<A 77~1 1 Z gJ 
J 

for IJl, Ikl~exp{c~} and q~(logL) A. Since 

V" log N(P) 

N(p~e j(m) N( P)m~ l~ x 
<<:m -1 (9.8) 

we deduce that 
Y]3,k <<A ~I -1yecn  e x p { - c ~  }. 

In view of the bounds (2.5) and (2.6) we conclude that 

Ej,k <<A M - 1 V e x v { - c  lX/~g ~ }. (9.9) 

We also have the trivial bound 

Ej,k << (rnl~ log X) - 1 E  9J E log N(P). 
J P 

The inner sum, which is subject to (9.7), is O(V/II). Thus if we use (9.8) for m =  

m2~ ...,mn+l w e  see that 

ELk << VM-I(~ log x ) - l  e cn << VM -1, (9.10) 

in view of (2.5), (2.6) and (3.4). To complete the proof of Lemma 9.3, we insert the 

estimates (9.6) and (9.9) into (9.4) when [ j l , l k i < e x p { c ~ } ,  and use the bound 

(9.10) otherwise. 

Our next task is to investigate the relationship between values of/3 and x for which 

S=(/3) is counted by E(x). 

LEMMA 9.5. Let V<<N(S), N(x)<<V, and suppose that W ( S ; A , x ) r  and that 
N(x)<N(S)<N(x)+AV.  Then S has a generator/3 for which 

/~= ( l+O(A))x .  (9.11) 

Similarly, if /3 is any generator of S, then x has an associate x' for which 

/3 = (1 + O(A))x'. 
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We begin by noting that/3(x)l/3 '(x)lZ=N(x) is positive, whence/3(x) must also be 

positive. Now, if S and x are as above, and S=(/3), then 

Thus 

arg(~(/3))-arg(~,~(~(x)))  <~ A. 
27c 

log/3(x~log)- I/3t ~ A, 

where v = log Co. We may therefore replace/3 by a suitable associate so that  3 > 0 and 

log ~@x) << A. 

This latter condition implies that  

9 = (1+ o(A))9(x). 

Since S=(/3) is counted by E(x) we also have 

arg('l(9))2-~g('l(9(x))) ~< zx. 

Now, since l o g 3 = l o g 3 ( x ) + O ( A ) ,  we conclude that  

arg(9') = arg(/3'(x)) + O(A).  

Finally, since N ( x ) <  N(3)~< N ( x ) + A V  we have 

3 I~' [ 2 = (1 + O(A) )  3(x)1/31(x)i =, 

so that  (9.12) yields 

(9.1~) 

(9.13) 

]3'] = (1+ O(A))13'(x) [. (9.14) 

A comparison of (9.13) and (9.14) shows t h a t / Y = ( I + O ( A ) ) 3 ' ( x ) ,  whence (9.12) yields 

r  as required for (9.11). The second assertion of Lemma 9.5 follows simi- 

larly. 

If xEC then Lemma 9.5 shows that  3=x+O(V1/3A). Taking the implied constant 

to be c, say, we therefore define C as the set of vectors t for which there is at least one 

xEC with [t-x[<~cVU3A. Thus, if S is counted by E(x) then S = ( 3 )  for some 3 with 

/3EC I. Moreover, if A and SoV -1/3 are small enough, as we now assume, there is at most 

one such/3. In view of (9.2) we may also note that  we will have 

u0(3) = ( I+O(A))  X(3) exp(-itv -1 log/3(x)). 
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We therefore set 

G'(x) = exp(itv -1 log fl(x)) F,(x) 

= E d(z)X(fl)W((fl); A, x){l+O(A)}.  (9.15) 
flCC' 

N(x)<N(fl)<~ N(x)+AV 

In view of the definition of c(X ) it then follows from (9.3) that 

A 2 
X'(x)=~(x)m(x)-Ff(~logX)- '~-l+OA(A-2M-lVexp{--cv/~L }). (9.16) 

We proceed to investigate 

c E'(x) dx dy dz = ,7, 

say. On the one hand, the estimate (9.16) shows that 

A2 
,7 =~(X) ~ (~ log X) -n-1 [ ,~(x) & @ d z +  OA(A-2M -1VS 3 e x p { - c ~  }). 

(9.17) 

When n ~> 1 we may estimate re(x) via the Mean Value Theorem, in conjunction with (8.3). 

Thus there is a real number AC(0, AV) such that 

,~(• = w(N(• - w(N(x)) = A W ' ( N ( x ) + A )  

= AV{w'(U(x))+O(AVN(x)-I(~ log x)n-1)}  

= AVw'(N(x)) + O(A 2 V(~ log X)n-  1). 

In this case the integral in (9.17) is 

A V ~ w'(N(x)) dx @ dz + O( A2VS3o(~ log X) n-l)  = A VZ + O( A 2 VS~,(~ log x)n-a ) .  

(9.18) 

When n=0  we observe that 0~<m(x)~< AV for all x, and that if J(ml)= [a, b), say, then 

m ( x ) = ~ A V '  a < N ( x ) < b - A V ,  

t 0, N(x) < a - A V  or N(x) > b. 

When x is confined to the cube C, the set for which IN(x) -a  I ~<AV has measure 0(AV),  

and similarly for IN(x)-bI<~AV. Since w'(t) is the characteristic function of J(ml) ,  as 

was noted in the previous section, it follows that 

fc m(x )dxdydz=AV fc w'(N(x))dxdydz+O(A2V2)" (9.19) 
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We may now compare the bounds (9.18), for the case n~>l, or (9.19), for the case 

n=0,  with (9.17), to deduce that  

A3V (,I log X)-n-~Z+ O(A ~ V~M - ' )  + O~(A-2M -1 VSg e x p { - c ~  }). J=dx) - 
(9.20) 

On the other hand, (9.15) shows that  

'-7= E d(z) X(/3){I+O(A)} f W((/3); A , x ) d x d y d z .  
~cc' J• N(x)<N(~)<~N(• 

At this point it will be convenient to assume that  C is inside some appropriate 'funda- 

mental domain' 

~-= {xER3 : A </3(x) ~< ~0A}. 

This is certainly the case if So<~cV 1/3 with a sufficiently small absolute constant c, and 

it is clearly enough to prove Lemma 9.2 under such an assumption. The set ~- has the 

property that  each non-zero x has a unique associate in 9 c. 

Now suppose that  ~EC and that  I~-t i>c'AV 1/3 for all t on the boundary of C, 

where c ~ is a suitably chosen large absolute constant. Then, according to Lemma 9.5, 

if W((/3); A, x ) r  there is some associate x' of x for which I~-x'L<~c'Ar 1/3, whence 

x'EC. In particular, if xE5 c it follows that  x ' = x ,  so that  xEC. For such /3 we may 

therefore deduce that  

j f  W((/3); A, x) dx dy dz 
EC, N ( x ) < N ( ~ ) ~ N ( x ) + A V  

= f W((/3); A, x) dx dy dz = 1(/3), 
d xE.T', N ( x ) < N ( ~ ) < N ( x ) + A V  

say. We now conclude that  

(z" (4 ff = E d(~)X(/3){I+O(A)}I(/3)+0 d(z)I , (9.21) 
^ \ t3 ZEC 

where }-~* counts those/3 for which I~- t I<<AV 1/a for some t on the boundary of d. 

We now examine 1(/3) more closely. We make a change of variables by setting 

/ 3 ( x )  = y ,  / 3 ' ( x )  = 

A straightforward computation shows that  the Jacobian of this transformation is rive7.  
Thus, if 0i=arg(v.~(/3)), then 

f~oA [ ) 
1 JA h~02 -2--~ logy Ii(y)I2(y)dy, 1(/3) = ~ v 
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where 

fN AV 11 (y) = r dr = 
(Z)-~V <~ r2y<N(Z) 2y 

and 

I2(y)= 0 1 - - l o g y - O  dO=2TrA. 
,Io v 

An easy calculation now reveals that  

1(/3) = ~ A3V = %A3V. 

To estimate the error terms in (9.21) we use the trivial bound 

n+l 
ds~< 1-I m i + t  ~<n+2<<7._l<<logX, (9.22) 

mi i=1 

whence (9.21) produces 

,7 = % A 3 V Z d(z) X(/3) + O(A 4 V 2 log X). 

3cc 

We compare this estimate with (9.20) to deduce that  

~(X) X ) - n - l Z + O A ( A - 5 M - 1 S 3 e x p { - e  1 v / ~ } ) + O ( A V I o g X )  d(~)x(/3) = ~ (~ log 
3~c 

_ ~(X) (~ logX) -n - lZWOA(A-5Vexp{_c  lv /]~})+O(AVlogX)"  
7oM 

We may now choose 

A = e x p { - c '  l o v / i ~ } ,  

with an appropriate constant e', to conclude that  

~(x) d(,)x(/3) = ~ (~ logX)-n-lZ+OA(Ve• lv/g~ }). 

This may now be fed into (9.1) to deduce Lemma 9.2. 

10.  P r o o f  o f  L e m m a  3 . 9  

To handle Ue(.A) we begin by replacing N(S) by 3X3/N(R), where it occurs in w'(N(S)). 
We shall first suppose that  n>~ 1. Since 

3X 3 
N(S) = ~(R)  (1-t-O(~/)), 
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we conclude from (8.3) that  

w'(N(S)) _ w'(3X3/N(R)) 
M(~ log X)  ~+1 M ( (  log X)n+l  

The total contribution of the error term to U~(.A) is thus 

RS6,A(K) J[S ~ ( J )  IE.A(K) 
N(J)<L 

0 

~5/2X2 
( logX)  ~ 

M 

(10.1) 

in view of (3.12) and Lemma 4.7. 

We turn now to the case n= 0 .  Here we note, as in w that  w'(t) is just the charac- 

teristic function of J(mJ. If we write, temporarily, E to denote the error on replacing 

N(S) by 3X3/N(R), we see that  

E ~ (ml~ l~ X ) - I  RS6AE K)CR EjIS # ( J )  log N ~ L  , 

N(J)<L 

where the outer sum is restricted to values for which exactly one out of N(S) and 

3X3/N(R) belongs to J (ml ) .  On setting J ( m j = [ a l , a z ) ,  the above condition requires 

that  N(R)=3X3aT~I{1+O(~I) } for i=1  or 2. It follows that  

E << (M()  -1 E CR#(J)2•A(KJ)' 
R,J 

with the sum restricted to such ideals R. We note that  CR and # ( j ) 2  are supported 

on square-free ideals. Moreover all prime ideal factors of R have N(P)>~X ~', while 

N(J)<~L=X ~/2. Thus R and J are coprime, whence RJ may be assumed to be square- 

free. We also have N(RJ)<<X ~-~'/2, in view of (3.8). We are therefore in a position to 

apply Lemma 3.2. In conjunction with Lemma 4.2, this yields 

~2X2 
Z CR#(J)2(cA(K) << Z N(RJ~---) +X2-'r/4(lOgx)c 
R,J R,J (10.2) 

<< ~2X2. ~(log X)r +X 2-~/4 (log X)C << ~3X2 (log X)C 

in view of the restriction on N(R). Here we have used the fact that  

x- , (log x) 2 << (10.3) 
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for any positive constants c~, as one sees from (2.1) and (2.5). 

In view of (10.1) and (10.2) we deduce that  

Ue(A)= E CR, jC~.A(K) +o(  ~ ( l o g X ) C ) ,  
R,J  

where 
w'(3X3/N(R)) L 

Cn,g = cn M(~ log X)  n+x p( J) log N( J)" 

As above, RJ may be assumed to have norm at most X 2-~/2. We may therefore apply 

Lemma 3.2, which yields 

6TI2X 2 
Ue(.A) = E Cn,y 7r2N(RJ) o2(RJ)+O(M-1X2-~/4(logX) c) 

R, J  : RJET~ 

+O(M-lrls/2X2(log X)C), 

by (8.4). The second error term dominates the first, by (10.3). The main term above is 

6T/2X 2 w'(3X3/N(R)) N(R)-]Lo2(R)E1, 
7r 2 ZCRM(~logX)n+I 

R 

where 
~ff, p(J) L 

~ 1  -~- N ( ~ ) ~ L  N(J) Q2(J)log N(J-----)" 
JET~ 

To estimate E1 we set N(J)=q, and observe that  #(J)=#(q) and 

g( 0 2 ( J )  = 

Moreover a given value of q will arise from Hvlq up different ideals J E g ,  in the notation 

of Lemma 2.1. Thus 

E1 = E P0(q) #(q)log L 
q<~ L q q 

We therefore define a Dirichlet series 

oo 

f(s) = ~ Oo(q)#(q)q -~, 
q = l  

and conclude from Perron's formula that  

1 fl+izr L s 
~1 = ~ /  ]l--ioe f(s"~'l) V d8. 
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However, f(s)=(K(S)-lfo(S), where fo(s) has an Euler product which converges abso- 
lutely and uniformly for Re(s)~> 3, say. The function fo(s) is therefore uniformly bounded 
in this latter region. We now move the line of integration to a path joining the points 

c c 
-ioo, -iT, -iT-log--T, iT-log---T, iT, icx~. 

Here the constant cE(0, 1) is suitably chosen, using standard results on the zero-free 
region, so that one has (K(s+l)-l<<log(2+lsl) to the right of the path. On choosing 
T=exp((log L)U2) we deduce via (6.8) that 

E1 = Res{f(s+ 1)LSs-2: s = 0} + O(exp{-c(log L)U2}) 

= ~/o if0 (1) + O(exp{-c(log L) 1/2 }) 

= .7o 1 pYi { ( 1 -  p~l)pl_ip (1 _ N__~p) )-1 }+O(exp{_c(logL)U2}) 

= ~ { (1-p~l ) ( l -~  )-l } + o(exp{-c(l~ L)U2} ) 

gp--l"~(1 1"~-1 p j ,  }+O(exp(-c(logL)l/2,) 

= 17r2ao+O(exp{-c(logL)U2}), 

where ~0 is the residue of (K(S) at s= l ,  as usual. 
We may now conclude that 

U~(A) = ao~X2E2{ l +O(exp{-c(log L)1/2} ) } +O(M-1~75/2X2(log X)r 

where 
w'(3X3/N(R)) 

E2 = E C R U X - -  ~ N(R)-I~2(R)" 
R 

We note that 
~02(R) = n ( l + N ( p ) - l ) - l "  

PIR 

Since N(P)~X "~, there are O(T -1) factors, so that 

02(R) = I +O(T-1X -r) = l+O(exp{-c( log L)1/2}), 

by (2.5). Hence 

Ve(A) = 00~2X2 E3 { 1 + O(exp{-c(log L) 1/2})}+ O(M-lrlS/2X2(log X)c), 
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where 
w'(3X3/N(R)) 

F~3 = E cR M(~logX)n+ 1 N(R) -1. 
R 

We now deduce the bound 

CR 
X 3 ~< (M~ log X) -1 E N(R----) <</~I--1 log X, 

R 

using (8.4), so that 

ge  (,A) -= cro r/2X 2 Y]'3+ O(M-1TI  2X2 log X e x p { - c ( l o g  L)1/2}) 

+O(M-lrlS/2X2(log X) ~) 
=aorl2X2Ea+O(M-lrls/2X2(log X)~), 

(10.4) 

by (2.1) and (2.5). 

We turn now to the analysis of U(B). We begin by considering 

n + l  

E ds=M-l(~l~ Z H I ~  
SC]3(R K) P1,...,Pn+l i=1 

where N(Pi)EJ(mi) and 

3X 3 n+l 3X 3 

N(R~ < H N(Pi)<~ N-----~ (I+T]). 
i=l 

We now apply Lemma 4.10, as in the previous section. Since 

J(mi) = IX re'C, X O+m')~) 

with Xm~>~xr>~L, we may take Q=X~ and A=L. In view of the bound n<<r -1, this 
yields 

n+l [ 3X 3 ~ [ 3X 3 ,~ 
E H logN(Pi)=w~-~-(-~(l+~?)/-w~(R)) 

PI,...,P~+I i=1 

X 3 + O( ~ ( '  log X)n exp{-c(log L)l/2}), 

by (9.5). The error term above contributes to ~ ds a total 

X 3 
<< - -  exp{-c( log  L)1/2}, 

MN(R) 
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by (2.5), which produces a contribution 

X 3 CR 
<< M-  exp{-c(l~ Z N(R) 

R 

to U(B). 

Z 3 
- -  << ~-- exp{-c( log  L) 1/2 } 

When n ) 1  the Mean Value Theorem shows that 

/" 3X3 (1+~)) ( 3x 3 h 3x3 
~t,N--~-7 -~tN-~) ='N--(~ ~'(~) 

3X 3 3X 3 
N(R----) < A < ~ (1 +r/). 

for some A in the range 

We may then use (8.3) to deduce that 

, [  3X 3 
w'(,~) = ~  (,~(R))+o(,7(~logX)"-'). 

Thus 

oR , f  3 x  3 v(m=3'x3(~ l~ ~ ~(R) w ~,~(R),) 
M R 

( r/2X3 CR "~ - - / 'X3 exp{-c(logL)l/2}) (10.5) 

X 3 =3rlX3E3+O(-~(~2+exp{-c(logL)U2})) = 3rIX3E3 + O (~M-~X3), 

by (2.1). A comparison of (10.4) and (10,5) then establishes the first part of Lemma 3.9 

for n~>l. 

When n = 0  we recall that w'(t) is the characteristic function of J(ml). A little 

thought then reveals that  

3X 3 W [ N ~ ( ~  ( l + 7 / ) ' ~ t j  I/3X3"~ 3X 3 ,/z 3X3-~ 

unless one of the endpoints of J(ml) lies in the interval between 3X31N(R) and 

3X3(I+rl)/N(R). In the latter case we have 

f 3X 3 (1+~)'~) [ 3X 3 "~ 3X 3 
~ C N - - ~  - ~ t ,N- - - (~ )  <<'7 ~--~(R) ' 
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It therefore follows that  

v(~)- 3,7x~ ~ , {  3x~ 
M~ log x ~ N--~ \ ~ ]  

) M~ClogX E N ~  + O  ~ - e x p { - c ( l o g L )  1/2} , 
R 

where the sum over R in the error term is for 

3X 3 
N ( R ) -  Xmx~ (1-~O(~)} or 

3X 3 
X(l+ml)~ {1%'O(7])}. 

We deduce from Lemma 4.1 that  the corresponding sum is O(r/), whence 

CR 3X a ,{ 3X a "~ {r/2X a'~ 
U(B) = E M ~ l o g X r l ~ ~ w ~ ( R ) ) + O ~ ) ,  

R 

and the first part of Lemma 3.9 follows as in the case n>~l. 

In order to complete the proof of the lemma we have to sum the error term 

O(M-XrlS/2X2(logX) c) over the various possibilities for n and rnl,. . . ,  mn+l.  We note 

that mi<<~ -1 and that  the mi are distinct. Thus 

1 ( ]n+l 

Zn m,,...,m,++lE (ml"'mn+l)-lvE (n+l)[ 

1 { l o g { _ l + O ( 1 ) } n + l  
~ < E  ( n + l ) !  

n 

~< exp{log {-1 +O(1)}  << ~-1. 

The final part of Lemma 3.9 then follows. 

11. T h e  p r o o f  o f  L e m m a  3 . 1 0 - - f i r s t  s t eps  

In this section we shall begin our t reatment  of Lemma 3.10. We write 

E fs = Sv, CR 

RScA(K) 
V<N(S)<<.ZV 

where 

X 1+~ << V<< X 3/2-'~. (11.1) 
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If r  for x : ( x , y ) ,  and 

W(x): ~ 1, 
[ 0, 

we will have 

X <  x, y ~< X ( I + u ) ,  

otherwise, 

s . : E ~ .  E is E ~(x), 
R V < N ( S ) ~ 2 V  x 6 Z  2 

(r 

where x is restricted to run over primitive integer vectors. We shall call an integer of K 

'primitive' if it has no rational prime factor, and we shall write P for the set of ideals 

generated by primitive integers. Thus R and S may be taken to belong to P,  in the 

above sum. In the case of R this is automatic, since cR is supported on 74. 

We proceed to remove the condition that  x is a primitive vector, by writing 

~ :  E,(d) E cR E i~ E w(x) 
d<<X RCT' V<N(S)~2V dix 

s~p (r 

If d> 1 then (d, R ) #  1, whence there is a prime ideal P dividing d for which N(P)>/X ~. 

It follows that  d ~ X  ~/2. We may therefore conclude that  

t{67' V<N(S)<~2V x C Z  2 
s~p (r 

where the error term Ev satisfies 

Ev<< E E E Is~l E w(x). 
X','I2~d<<X R V < N ( S ) 6 2 V  d ix  

v ~ ,  (r 

From (3.12) and (8.4) we see that  es<<T(S)logX, whence fs<<T(S)logX, by (3.11) 

and (9.22). Thus 

~ < <  E E E ~(s)logx E w(x) 
X~-/2<<d<<X R V<N(S)<~2V dlx 

(r 

<<logX E E W ( x ) ' r ( x + y ~ ' 2 )  2 
X~/2<~d<<X dJx (11.2) 

<<logX ~ ~-(d)~ ~ ~-(~+,~)~ 
X ~/2 ~d<<X m,n<<X/d 

X'r/2~d<<X 
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by Lemmas 4.7 and 4.2. This will be satisfactory for our purposes. 

We now replace R and S by their generators a and/3,  say, and write Q for the set 

of primitive integers of K.  If we take/3 to run over a suitable set Q~ of non-associated 

primitive integers of K ,  and require that  r  =a/3, then we will obtain exactly one value 

of a from each relevant set of associates. It  therefore follows that  

sv= ~ c(~) Z y, ~ W(x)+O(X2-~/~(logX)~), 
o~EQ V<[N(~)[~2V x e Z  2 

r 

where F~=f(~)  if /3EQ', and F Z = 0  otherwise. In order to specify a suitable set of 

non-associated integers/3 we t a k e / 3 > 0  and require tha t  

N(fl)l/3~ol/2 </3 < g(/3)x/3r (11.3) 

where So = 1 + ~/2 + ~/4 is the fundamental  unit of K.  

Since N(a)<< X3/V, an application of Cauchy's  inequality yields 

~eQ V<IN(~)I<~2V x~Z 2 N(a)<<X31V 
r  

where 

s= E E E 
ot6Q V< N(~)I<~2V x e Z  2 

r 

We proceed to expand the square of the sum over/3 to obtain 

where 

so tha t  (~= 1 or 0. 

s = ~ F~IF~ Z W ( x l ) w ( x 2 ) ~ ,  
~1,~2 xl,x2 

6 = # { ~  Q : ~  = r  = r 

We now split S as $1+$2, where $1 consists of the terms for which/31=fl2, and $2 

consists of the terms for which/31 r Since FZ<<~-(fl)log X,  we find tha t  

SI<<E F~ E W ( x ) < < ( l ~  E ' r ( x + y ~ r 2 )  3<<X2(l~ 
t~ x:t3[r :%y<<X 

by Lemma 4.7. 
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To handle the off-diagonal terms we write 

a=r+se/~ + t ~  

Zi =u~+vi~/2 +wi~/4. 

It  will also be convenient to set 

a = (r,  , ,  t ) ,  /~ = (u~, v~, ~ ) .  

The conditions c~/3i=xi+Yi~/2 for i = 1 , 2  then yield rwi+sv i+tu i=O.  

~1=/32, we see that  the primitive vector GC Z a must be given by 

= •  - u l v 2 ,  ulw2 - w l u 2 ,  wlv2 - Vl w2), 

69 

Thus, unless 

(11.4) 

(11.6) 

In view of (11.4) we therefore deduce tha t  V2/3D-I>>XV -1/3, whence 

D C V X  -1. (11.7) 

Our next task in this section is to show that  values of D which are appreciably smaller 

than  V X  -1 make a negligible contribution. To be more precise, we shall introduce a new 

parameter  Y = Y ( X )  such tha t  

1 << Y(X) << x ~/3, (11.8) 

X V - 1 / 3  << ]~[ << X V  -1/3. 

Similarly we observe that  

r, s, t << max ]aO)[, 
J 

where a (j) denotes the j t h  conjugate. However, aO)/30)<<X for any conjugate, and 

[/3(i)[>>v1/a, by (11.5). It  follows that  

where 

D = h.c.f.(vlu2 -UlV2, UlW2 - - W l U 2 ,  WlV2 --  UlW2) .  

We may note at once that  the condition V<IN(/3i)]<~2V , along with the requirement 

(11.3), leads to the constraints 

V Ua << I/3i[ << V U3. (11.5) 
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and we shall deal with the case D < . V X - 1 y  -i .  We shall specify Y later, see (13.7). 

We begin by observing that  

so that  it suffices to estimate 

E E 
~1,~32 xl,x2 

where the sum is subject to the condition D<~VX-1Y -a. 

It will be convenient to argue in slightly greater generality than we actually need at 

this point. We begin by proving the following estimate. 

LEMMA 11.1. Let C1,C2 be cubes of side So, not necessarily containing the origin. 

Suppose that C1 and C2 are included in a sphere, centred on the origin, of radius S A for 

some positive constant A. Then, if the vectors 8~ are restricted to be primitive, we will 

have 
E T(B1)2 << S~176 So)C(A) 

DI~IA~2 

for some constant c(A), providing that D<<S0. 

For the proof of the lemma we begin by observing that  if D]/3iA82 then for each 

prime power P~IID there is a corresponding integer A, depending on 81 and 82, such that  

82--=A81 (mod pC). 

Here we use the fact that  P~81, since 81 is primitive. The Chinese Remainder Theorem 

then shows that  82~-~)~1 (rood D) for some integer A. If 81 is given there are therefore 

at most D possible residue classes modulo D in which 82 may lie. Since D<<So it follows 

that  there are O(S3D -2) values of 82 corresponding to each 81. The sum in Lemma 11.1 

is therefore 

<< S~ D-2 E 7(/31)2 << S3 D-2" S3~176 S~ 

~iECi 

by Lemma 4.5, This completes the proof of Lemma 11.1. 

We are now ready to estimate $3. Here we observe that  

31A 82 = •  

whence 

I~1A821 << D X V  -1/a, 
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by (11.6). In view of (11.5) we therefore see that/~2 is confined to a circular cylinder of 

radius O ( D X V  -2/3) and length 0(V1/3), whose axis is parallel to the vector/31- Since 

D<<VX -1 we see that  DXV-2/3<<V 1/3. We now decompose the available region for/31 

into 
[ V 1/3 ? 

<< ~ DX-~-2/3 J 

cubes 61 with side So of order D X V  -2/3. For/31 in a given cube dl the available region 

for/)2 may be covered by 
V1/3 

<< 
DXV-2/3  

cubes C2 with side So, giving O(V4D-4X• pairs C1,C2 in total. If D>>.V3/4X -1 we 

have So>>V 1/12, and Lemma 11.1 shows that  each hypercube contributes 

<< S6D -2 (log X)  c << D4X 6 V-4(log X)  ~ 

to $3, making a total O(X2(logX)r In the alternative case D<.V3/4X -1 we ignore the 

condition DI/~1A/32, and merely note that  the cylindrical region for/32 described above 

c o n t a i n s  O(V1/3(DXV-2/3) 2) points, since 

DXV -2/3 >/XV -2/3 >1 1. 

Each such D therefore contributes 

<< V-tD2X2 E "r(/31)2 << V-'D2X2"V(I~ X )  r = D2X2( log X )  r 
~a<<VI/3 

to $3. We may now sum over all D <. VX-1  y -1  to find that  

$3 << X2 (log X)  c. V X  -1 y - l +  (V3/4X-1)3X2(1og X)c 

<< ( V X Y - I  + Vg/4X-1)(log X)  r << V X Y - I ( l o g  X)  ~, 

by (11.8), since V<~X 3/2. 

We may now summarize our conclusions thus far in the following lemma. 

LEMMA 11.2. There exists an absolute constant c such that 

where 

Sv << X2Y-1/2(log X)c + X 3/2 V-1/2S 1/2, 

S4 : 2 ]?~lF~2 2 W(xI)W(x2){~' 
/~1,/32 xl,x2 

subject to the condition D > V X -  1 y -  1. 

Note that  the first term in the above estimate dominates (11.2), by virtue of the 

bound (11.8). 
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12. T h e  p r o o f  of  L e m m a  3 . 1 0 - - s e p a r a t i o n  of  t h e  var iab les  

In this section we shall convert the sum $4 into one in which the variables t31 and/32 are 

independent. This will enable us to put the sum into a form suitable for a large sieve 

estimate. 

Since a/3i=xi+yi~/2 we see from (11.4) that  xi and Yi may be expressed in terms 

of/31 and/32 as 

(xi,yi) =:kD- lp i (31 ,32)  =-t-D-l(pi(/31,32),qi(/31,32)), i =  1,2, 

say. It then follows that  

$4 = E F~IF~ E W(-t-D-lp1(/31'/32)) W(4-D-lp2(~l ,  t32)). 

Since P1(/31, ~2)=--P2(~2, j31), our expression for $4 may be reduced to 

84 = 2 ~ Fz~Fz~W(D-tp1(/31, Z~)) W(D-lp2(/31,/32)). 

We shall write 

V : (Vl t t  2 -u lv2 ,  UlW 2-wlu2 ,  WlV 2-vlw2). 

The conditions on the variables/3i require that  D is the highest common factor of the 

entries of v. We shall write this as D=h.c.f .(v) .  The remaining constraints may be 

written in the form (~)1,/~2) E T4D, where ~ 0  C_ R 6 is defined by the inequalities 

and 

V< IN(/3~)[ ~ 2V, 

N(/3i)1/3 ~01/2 </3i ~ N(3i)1/3c10/2 

XD < pi(/31, ~32), qi(/31,32), Pi(/32,/31), qi(/)2,/31) ~ XD(I+~?). 

Note that  Pi(/3,/3) =0, so that  the condition/31 r is redundant. In order to remove the 

dependence of the region T~D on the modulus D, we shall decompose the range for D 

firstly into intervals A<D<~2A, and then into subintervals 

Here 

( m - 1 A  m A ]  D E I ~ = \  N '-N , N<m<~2N. (12.1) 

N<< X 2~/3 (12.2) 
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is a large integer parameter  which we shall specify later (see (12.7)). We may note tha t  

A<<VX -1, in view of (11.7). I t  follows that  there is at least one pair of values A, m for 

which 

S 4 << N(logX)S~,  

where 

$ 5 :  DEIraE ( ~ I , ~ T ~ )  1F]~2 ' 
D=h.c.f.(v) 

We now proceed to cover the region of summation 

C(nl, n2, n3) • C(n4, n5, n6), where 

with 

c(ni ,  nj, nk) = I(~i)  • I (~j )  • I ( ~ ) ,  

by means of hypercubes 

(12.3) 

N ' VU3 " (12.4) 

Clearly we may suppose that  ni <<N, whence there are O ( N  6) possible hypercubes C1 • C2 

to consider. We shall say that  a hypercube is of Class I if it lies completely inside "~'~D 
for each DEIm, and of Class I I  if there is at least one DEIm for which 

T~DN(ClXC2) r ~ and ClXC2 ~ J'~D . 

Hypercubes which are neither of Class I nor of Class II  clearly make no contribution 

to $5, so that  we may write Ss=S(I)+S(n), with the obvious notation. 

Our next task is to make a trivial est imate for S (II). To do this we shall begin by 

bounding the number of Class II  hypercubes, using Lemma 4.9. Each Class I I  hypercube 

contains a point for which one of the equations 

N ( / 3 i ) = V o r 2 V ,  i = l  or 2, 

3 / 2  fla=N(/3i)Co 3/2 or N(/3i)eo , i = l  or 2, 

pi(/31,/32)=XD or XD(I+~/ ) ,  i = 1  or 2, (12.5) 

or 
qi(/31,~2)=XD or X D ( I + ~ ) ,  i = 1  or 2, (12.6) 

holds. We may write each equation in the form F~(/31,/32) = H i ,  for some positive integer 

i~< 16, where Fi is homogeneous of degree 3. In the case of the equations (12.5) and (12.6) 

we may use (12.1) and (11.7) to replace H~=XD or X D ( I + ~ )  by H~+O(V/N),  where 

x ~  H~=X~--A or (1+7). 
N N 
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This produces a value independent of D. In each case we therefore find, in the notation 

of (12.3), that  the vertices of the hypercube satisfy an equation of the form 

Fi(nl,..., n6) = H~' +O(N2),  

with H~' fixed. 

We now observe that  the polynomials Fi are non-singular in the relevant region. 

This is a straightforward calculation, and we shall give the details only for the case i =  1 

of (12.6). Here we find that  

q1(/31,/32) = +D(v l r+u t s+2wl t ) ,  

with (r, s, t) given by (11.4). It follows that  

F(Xl,  ..., X6) = X2(X2X4 --XtX5)-~ Xl(XlX 6 --X3X4)-~ 2X3(X3X 5 --X2X6). 

We may then calculate 

OF OF OF 
OX4 = x2 --XlX3, OX5 -- 2x2 --XlX2, OX6 = x2 --2X2X3. 

Now the hypercube under consideration contains a point of ~r~D, for some D. This point 

therefore satisfies ]N(/31 ) I >> V, whence 

3 3 3 n] + 2 n  2 +4 n  3 --6nln2n3 >> N 3, 

if N is large enough. Since 

3 3 3 OF OF OF 
X 1 + 2X 2 + 4 X  3 -- 6XlX2X3 = Xl ~ + 2X2 ~ X  4 + 2 X 3 0 x 5 '  

we deduce that IVF(n) I>>N 2, as required. 

We may therefore apply Lemma 4.9 with So=l and R=Ro<<N, to show that  there 

are O(N 5) Class II hypercubes. This allows us to deduce as follows. 

LEMMA 12.1. We have 

S4 << g(log X )Ss ,  

where 

D=h.c.f.(v) 
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Moreover, there are cubes C l : C ( m l ,  m2, Trt3) , C 2 =C(m4, m5, m6) , C~ =C(~tl, n2, n3) and 

C~=C(n4, ns,n6), given by (12.3) and (12.4), such that 

$5 ~ N6S6 + N  g (log X)2S7, 

with 

and 

s :E E F,1F,  
D~h.c.f.(v) 

DN 

The hypercube 01 • Cu is of Class I, so that 01 and 02 are distinct, and therefore disjoint. 

We proceed to estimate $7, using Lemma 11.1, along with the bound 

T(fl l )T(/~2)  <~ T(fl l)2-}-T(fl2) 2. 

Note that the condition D<<S0 follows from (11.1), (11.7) and (12.2). We deduce that 

$7 << E V2N-6D-Z(l~ X)~ << A-iN-7 V2 (log X) ~ << VXYN-7( log  X) ~, 
DE I.~ 

since A>>VX -1Y-1 .  This yields 

$4 << V X Y N - I ( l o g  X)r X)$6. 

We therefore define 
N = Y 2, 

so that (12.2) follows from (11.8). We now see that Lemma 11.2 yields 

(12.7) 

Sv << X2y-1/2(log X)r + X 3/2 V -1/2 YT S~/2(log X)  ~. (12.8) 

We turn now to the sum $6. Since D=h.c.f.(v) we have 

s6= E ,(d) Z F,1F,  
DC Im -- ~iC=Ci 

Ddlv 

Our remaining goal in this section is to show that values dD>do, where 

do = y15 VX-1  + V1/6, (12.9) 
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make a negligible contribution. To handle the range H<dD<~2H, say, we write v = r w  

for some primitive w. Note that  v # 0 ,  as/31 and/3~ are positive, primitive and unequal. 

Since dDIr we have IwI<<V2/3H -1. We now denote the contribution to $6 arising from 

each pair H, w by S6(H, w). We observe that  w./3~=0, so that  each/3i lies on a certain 

2-dimensional lattice A. It then follows from Lemma 4.8 that  there exist zl,  z2 with 

Izll~<lz21 such that  

~i :/~iZ1 "3t-l-ti Z2 

for appropriate integers Ai, Pi with 

Ai << - -  

Moreover we have 

V1/3 V1/3 

I .11 ' << Iz21 " 

~1A~2 = (AI]~ 2 --~tlA2) z1Az2 = ::[:(A1]~ 2 --~1/~2)W, 

by Lemma 4.8, whence r=:J=(~lpt 2-#1)~2). It therefore follows that  

S6(H,w)  ( ( ( l o g X )  2 E T(/31)T(/32)T()tl~t2--~l')t2)2" 
~l,~2~A 

We note that  if # 1 = # 2 = 0  then ~i are primitive and scalar multiples of each other. Thus 

/31=• contradicting the fact that  the hypercube C1 • C2 is of Class I. We may therefore 

assume that  Iz2]<< V 1/3. 
Since 

ABC <. �89 

for any positive numbers A, B, C, we deduce that  

S6(H,w) << ( logX)  2 E T(~)6' 

where 7 is/31,/32 or Al#2-#lA2.  We may suppose that  we have "Y=/31, say, or Al#2-plzk2. 

We then write 3/as ,7=mr where re=A1 and n = # l ,  and r may depend on zl, z2, 

A2 and #2. Since r ~(J)((V 1/3 for any conjugate, we may apply Lemma 4.6 with 

V1/3 
x - -  ~-V 1/12 

I z l l  

and y = 2 + V1/3 I z 2 I- 1. This yields 

E T ('y)6 <<xy(l~ 
~IEA 
~,1#0 
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However, since fll must be primitive there are at most two terms with/.t 1= 0, and 7('y)6<< 

V1/12<<x for each of these. It follows that  

V2/3 
E T(~)6<<xy(IogX)C<< lZlI.IZ21 

fllcA 

V5/12 } ( l o g X )  c f V2/3 V5/12 "1 
- - + - G 7  << / Iw-7 J  (l~ 

Since the number of values taken by/32 is 

~ (1+ V1/3 "~// V1/3"~ 
< < - -  

V2/3 V2/3 
< < - -  

I z d ' l ~ l  Iwl ' 

we deduce that  

/ V4/3 V13/12 

Iw]<< V2/a H --I 

<< { V4/3. V2/3 H -  l + V13/12 (V2/3 H-1)3/2} (log X )C 

V 2 
<< ~ -  (log X)  c, 

for H>.do. We may now sum up over the available ranges (H, 2H] with H>-do to get a 

bound O(VXY-15(logX)r so that  

S~ << $8 + VX Y -  a5 (log X)  ~, 

where 

S s : E E  E 
DGIm d fliGCi 

Dd[v 

with d restricted by the inequality dD<~do. 

On combining this with (12.8) we finally deduce as follows. 

LEMMA 12.2. There is an absolute constant c>0  such that 

(12.10) 

Sv << X2Y-1/2(log X)c + X 3/2 V -1/2 Y7S~/2 (log X)  c, 

where $8 is given by (12.10). 

As we shall see in the next section Ss is ready for a large sieve estimation. 
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13. P r o o f  of  Lemma  3 . 1 0 - - a  large sieve es t imate  

In this section we shall express the condition dD[v in Ss by means of additive characters, 

and use a 3-dimensional large sieve to complete the proof of Lemma 3.10. 

We have already remarked in w that the condition D[v may be rewritten as r ~-Ar 

(rood D) for some integer A, which is necessarily coprime to D. We apply this remark 

with D replaced by dD. If we introduce the exponential sum 

S(a) = S(a, C) = E exp{27ria.C)}Gf~, (13.1) 
f)ec 

where G~=Ff~, we find that 

E F~IF~2 --- ( Dd)-3 E E S((dD)-lAa'C1) S((dD)-la, C2). 
~CCi A (mod dD) a (mod dD) 
Ddlv (A,dD)=l  

It follows that 

[$8[ ~< E (Dd)-31S((dD)-IAa'C1)S((dD)-la'C2)I' 
D,d,A,a 

where D runs over In, d runs over positive integers d<~do/D, A runs over positive integers 

less than and coprime to dD, and a runs modulo dD. Cauchy's inequality then yields 

]Ss[~< E E (Dd)-2 E [S((dD)-la'C)]2' 
D E I m  d a ( m o d d D )  

for C=C1 or C2. Here we have used the observation that 

E [S((dD)-IAa'C)[2= E IS((dD)-la'C)[2 
a (rood dD) a (rood dD) 

whenever A is coprime to dD. Finally we reduce the fractions (dD)- la  to lowest terms. 

A given vector q - l b  with h.c.f.(q, bl, b2, b3)=l will occur with weight at most 

E E (Dd)-2 << E 7(v)v-2<<'r(q)xyl~ 
q V 

D>~VX-1Y -1 d:qldD v>/VX-1y -1 
qlv 

Moreover, only values q<~do will arise. We therefore conclude that 

logV T(q) 
E *  ]S(q-lb)[2' (13.2) ss<<xv-  q 

q~do b (mod q) 

where ~-~* denotes summation for h.c.f.(q, bl, b2, b3)=l. 

Our principal tool in handling the above sum will be the following large sieve bound. 
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LEMMA 13.1. Let S(a) be given by (13.1), with C a cube #side So. Then 

~_, ~_,* IS(q-lb)lU <<(S~)+OUSg+O4) ~'[G~l u. 
Q<q<~2Q b (moO q) /~CC 

Various multi-dimensional forms of the large sieve appear in the literature, but none 

seem quite suited to our purpose. In particular, the estimate of Huxley [13] would have 

the factor So 3 + Q6 when applied to our situation, and this is too large. 

To prove Lemma 13.1 we observe at the outset that  

IS(a,C)]= ~ exp{27ria./~}G~+ x , 

f3EC--x 

for any translation C - x  of the cube C by an integral vector x. It therefore suffices to 

prove Lemma 13.1 for 

C={b:0~<b~-..<S0}. 

We now start our estimations with the Sobolev-Gallagher inequality, which states that  

l f(0)[ ~ (25) -1 [ 5  If(t)] dt+ 2 -1[~ [f'(t)] dt. 
J-5 J -5  

By iterating this we deduce that  

1 5#z_3f  ff ]f(O)l ~< ~ E ]f(z)(t)[dtldt2dt3, 
Z_C{1,2,3} J- -5  J - -5  5 

where f(z) denotes the partial derivative, of order # I ,  with respect to each variable ti 

for iEZ. An application of Cauchy's inequality now produces 

[f(0)12 ~ E (~2#z-3 f s / i / ~  If(~)(t)] 2 dtldt2dt3. 
zc_{1,2,3} J -~ ~ 5 

We employ this, with 

and 5 = S o  1. It then follows that  

~ *  IS(q-lb)l 2~< 
Q<q<~2Q b (mod q) 

where 

f ( t )  = S ( q - l b + t )  

ZC_{1,2,3} 

/](t) = {(q, b ) ;  I q - l b i - t i [  ~ So  1, for 1 ~< i ~< 3}. 
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We set 

# = sup 7~t'(t), 

and we note that  Parseval's identity gives 

folfolfoXlS(z)(t)12dttdt2dta<<Sg#z~_,[G~[L 
3ec 

It follows that 

E E "  ]S(q-lb)12 << Sg~ E Ia/~[2" 
Q<q<~2Q b(modq) ~eC 

It therefore remains to show that  

# u ( t )  << 1 +Q2S01 + Q4S03 (13.3) 

uniformly in t. 

Since we may clearly assume that  t~( t ) r  we may begin by fixing a particular 

point ( r , a )Eu( t ) .  We classify the remaining elements into three types uj, not neces- 

sarily disjoint, where q-lbjCr-laj for each point (q ,b)Euj .  Since the vectors q - l b  

with h.c.f. (% bl, b2, ba)= 1 are necessarily distinct, this classification does indeed cover all 

(q, b )Eu( t )  apart from (r, a) itself. 

We now proceed to examine the contribution from elements of ut, the other cases 

being similar. For a point (q, b) of Ux we have 

0r a~_r ~ 

Thus if qal-rbl=s, say, then 0r Moreover, if h.c.f.(al,r)=d, then dis. It 

follows that  there are at most 16Q2/Sod possible values for s. (In particular, if Q2/Sod 
is small enough, there are no available integers s.) Moreover, once s is also fixed, the 

congruence 

a l _ s  (m o d  d )  qd - d  

determines q modulo r/d, since al/d and r/d are coprime. It follows that  there are at 

most O(d) values for q. Once ax, r, s and q are fixed, the value of bl is also determined. 

We therefore find that  there can be at most O(Q2So 1) pairs bl, q. Finally, we see that  

b2 satisfies 

b~ 2q 4Q - a2 
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so that there are O(1+ QSo 1) possible values, and similarly for b3. We therefore conclude 
that 

#u(t)<<l+~02(l+Q) 2, 

as required for (13.3). This completes the proof of Lemma 13.1. 

We shall now use Lemma 13.1 to handle the contribution to (13.2) arising from terms 

with q>Qo, say. We cover the range Qo<q<~do with intervals Q<q<<.2Q, where Q runs 
over powers of 2. Since 

E [F~I2 << (l~ X)2 E ~_(fl)2 << V(logX)C, 

by Lemma 4.5, we conclude that the range Q<q<~2Q contributes 

<< X Y  ~ - Q - l  exp{ c ~ } ( V +Q2V2/3 +Q4) V(log X ) c 

to Ss. (This is one point where it suffices to use the simple upper bound for the divisor 
function.) We sum this over the relevant values of Q to get a total 

<<XY(VQolexp~c ' logQo }+(V2/3do+d~)exp{c logd0 
�9 

To handle the exponentials we note that 

( log Q0 ~ c11/2 exp~c,  1 ~ <<~0 
( log log r162 J 

and 
( log do ( log X 

exp~,c log log d0 } << exp ic  l~-gg 1-0g-g X } << X~/6, 

by (12.9) and (2.5). The range Qo<q<~do therefore contributes a total 

<< X Y  ( VQo 1/2 + { V2/3 do + d 3 } X ~/6 )(log X) c 

to Ss. In view of (12.9) and (11.1) we see that this is 

<< X V(YQo 1/2 + y46 X_ r )(log X )% (13.4) 

There remains the range q~Qo, where we shall use the hypothesis (3.14). We begin 
by observing that 

S ( q - l b ) =  E expI2~i?} E Ff~. (13.5) 
c (rood q) x ~CC 

r162 (rood q) 
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In the terminology of w the hypercube C1 xC2 corresponding to the estimate (13.2) 
for Ss is of Class I. Thus (11.3) holds for any r Referring to the definition of F~ 

in w we therefore see that for /)cC in (13.5) we have Fz=f(z) for primitive/3, and 
FZ =0 otherwise. It therefore follows that 

E F:_- E :<.>E.(d) = E E :<:>, 
[~eC ~EC dl~ d:(q,d)le ~C=C 

r (mod q) r (rood q) ~ c  (rood q) 

whence 

S(q-lb)<< ~ ~--~1 ~ f ( , ) .  (13.6) 
c (modq) d /~EC 

/~-c (rood q) 

The conditions/)-=c (mod q) and d]r confine ~) to a single residue class modulo [q, d]. The 

inner sum above is therefore O ( V e x p { - c ~  }), by the hypothesis of Lemma 3.10, 

providing that [q,d]<.Q1. Consequently, if q<<Q~/2, then the contribution to (13.6) 

corresponding to values d<~Q11/2 is 

<< q3Ql/2Vexp{-c lv/i ~ } << Q~V exp{-c  lo~/T@ }. 

For the remaining values of d we use the trivial bound f(~)<<v(fl)log X. This produces 

a contribution 

<(( logX) E E 7(fi) E l = ( l o g X ) E  E 7(/3) 
d>Qll/2 ~eC c--=~(modq) d>Q11/2 ~eC 

df~ al~ 

to (13.6). According to Lemma 4.5, however, we have 

E T(~) ~T(d)  c E T(Xl-t-x2~f2-~-X3~//4) <<T(d)CVd-3(l~162 
flCd Ixl<<V1/3/d 

:~1/2 It follows that values d.~r contribute 

<< V(l~ E 7(d)Cd-3 << VQ-{I(I~ 
d>Qll/~ 

to (13.6). 

We now have a bound 

S(q- lb)  << Q2V e•  L } § VQ~l(log X ) c. 
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The terms with q<<.Qo therefore contribute 

~ XYV(Q 4 exp{-c  l x / ~  L } + Q12) (log X) ~ 

1/2 to (13.2), providing that Qo<~Q1 . Taken in conjunction with our estimate (13.4) for 

the terms with Qo<q<~do we therefore deduce that 

Ss <( X V(YQ 4 exp{ - c ~  } + yQ~2 ..b yQoX/2 q_ y46x-~-/2 ) (log X) c. 

We now choose 

so that 

/~)1/2 

$8 << X V(YQ~ exp{ - c ~  } ~- YQ11/4 + y46x-'r/2) (log X) c, 

whence Lemma 12.2 yields 

Sv << X 2 (y-1/2.+.y30x-~-/4 ~_y8Q;1/8 +y8Q2 exp{ - c ~  })(log X)C. 

We now choose 
r)1/8~ (13.7) Y-----~I 

which is in accordance with the condition (11.8), since 

Q1 ~< e x p { ~ } .  

By virtue of this bound for Q1 we finally see that our estimate reduces to 

Sv << X2Q11/160 (log X) c, 

as required for Lemma 3.10. 
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