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1. Introduction

Throughout the paper, unless otherwise stated explicitly, we always assume that M and N
are compact smooth Riemannian manifolds without boundary and that they are isomet-
rically embedded into R! and R! respectively. Denote n=dim M.

For any 1< p<oo, we consider the space of Sobolev mappings

WLYP(M,N)={u:uec WHP(M, Rl_), u(z)€N for a.e. xe M}, (1.1)

with d(u, v)=|u—v|y1.,(y, riy 8 the metric. In [BL], Brezis and Li initiated the study of
path connectedness of the space W1P(M, N). As in [BL], one defines u~pv for two maps
u, veWHP(M, N) if there exists a continuous path w( - )€C([0, 1], WHP(M, N)) such that
w(0)=u and w(l)=v. Then it was shown in [BL] that W'P(M, N) is path-connected
when 1<p<?2, n>22 and N is connected. In fact, Brezis and Li showed that if 1<p<n,
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and N is ([p]—1)-connected, that is, m;(N)=0 for 0<i<[p]—1, then WLP(M,N) is
path-connected. On the other hand, they observed the following facts:

(i) Wh2(Stx A, S) is not path-connected for any compact Riemannian manifold A
with dim(A)>1. Similarly WhP(S"x A, S™) is not path-connected for p>n+1>2.

(i) WbHP(S™ N) is path-connected if 1<p<n and N is connected.

(iii) For any m>1, 1<p<n+1 and any connected N, W1P(S"x BT, N) is path-
connected.

One of the main results of the present work is the following (see Theorem 5.1)

THEOREM 1.1. Assume that 1<p<n and u,veWLP(M,N). Then u~uv if and
only if u is ([p]—1)-homotopic to v.

For an accurate description of “([p]—1)-homotopy”, one should refer to Defini-
tion 4.1. Roughly speaking, we say that two maps u,veW'P(M,N) are ([p]—-1)-
homotopic, if for a generic ([p]—1)-skeleton M!PI=! of M, u|pp-1 and v|pp-1 are
homotopic. Note that on generic ([p]—1)-skeletons, u and v are both in WP, and hence
they are essentially continuous. It, therefore, makes sense to say whether or not they
are homotopic in the usual sense. It was proved by B. White in §3 of [Wh2] that this
definition does not depend on the specific choice of generic skeletons. With Theorem 1.1
we are able to reduce the question of path connectedness for W1P(M, N) to a purely
topological problem. For the latter the answers are standard in topology. Indeed we have
(see Corollary 5.3)

COROLLARY 1.1. Assume that M and N are connected, and 1< p<n. If there exists
a k€Z with 0<k<[p|—1, such that m;(M)=0 for 1<i<k, m(N)=0 for k+1<i<[p]-1,
then W1P(M, N) is path-connected.

Note that when 1<p<2, we may simply take k=0. Hence WP(M, N) is always
path-connected as long as n>2 and both M and N are connected. Corollary 1.1 gen-
eralizes Theorem 0.2, Theorem 0.3 and Proposition 0.1 in [BL]. Recall that for any
1<g<p, we have a map i, WHP(M,N)/~, -5 W19(M,N)/~, defined in a natural
way (see [BL]). Then another interesting implication of Theorem 1.1 is the following
positive answer to Conjecture 2 (and its strengthened version Conjecture 2') of [BL] (see
Coroliary 5.1).

COROLLARY 1.2. Assume that k€N and k<qg<p<k+1. Then ipq is a bijection.

We now turn to the question whether a given map ue W?(M, N) can be connected
to a smooth map by a continuous path in W1P(M, N). It was shown in Theorem 0.4,
Theorem 0.5 in [BL] that either if dim M=3 and OM#@ (for any 1<p<oo and any
connected N) or if N=8! (for any 1<p<oo and any M), then any ue WHP(M, N') can



TOPOLOGY OF SOBOLEV MAPPINGS, II 57

be connected to a smooth map by a continuous path in W?(M, N). It was conjectured
in [BL] that this is always the case for general smooth compact connected Riemannian
manifolds. However, we find that the issue is closely related to the question whether such
a map u can be weakly approximated by a sequence of smooth maps in WHP(M, N).
Recall two mapping spaces closely related to W1.P(M, N):

Hé’p(M,N) = the strong closure of C*°(M, N) in WHP(M, N);
Hé[’,”(M,N) ={u:ueW"P(M, N), there exists a sequence u; € C>°(M, N)
such that u; —u in WHP(M, Rl_)}.

Obviously we have
HyP(M,N)C HpP(M,N)Cc WYP(M, N). (1.2)

Whether the above inclusions in (1.2) are strict or not is a difficult question and has been
studied by various authors. For the case M=B3 N=S52 and p=2, it was shown in [BBC]
that Hy? (B3 5%)=W12(B3 §2). On the other hand, it is easy to check Hg?(B3, §2)+
W12(B3,8%). In fact, in [B1], Bethuel gave a characterization of maps in Ha?(B3,§2).
Recently, Hardt and Rivieére [HR] proved a necessary and sufficient condition of maps
in H é’S(B“, S?) in terms of a certain quasi-mass of “minimal connections”. For general
manifolds M and N, some remarkable results were first established in [B2] (see [Hj]
for an alternative approach of the main result of {B2] under some additional topological
conditions). Recently some interesting progresses were made in [PR] for sequentially weak
closure of smooth maps and geometric control on the so-called “minimal connections”.
In general, it does not seem to be feasible to construct such “minimal connections” with
geometric and analytic controls. Indeed, there is a global topological obstruction. More
precisely we have (see Proposition 5.2 and Theorem 7.1)

THEOREM 1.2, Assume that 1<p<n, ue WVP(M,N), and that h: K— M is a Lip-
schitz rectilinear cell decomposition. Then u can be connected to a smooth map by a
continuous path in WHP(M,N) if and only if ug (k) is extendible to M with respect
to N. This topological condition on uy ,(h) is also a necessary condition for u to be in
HyP(M,N).

For the meaning of “uy ,(h)” and “extendible to M with respect to N” one should
refer to Definition 2.2 and Remark 4.1. As a consequence of Theorem 1.2, we have (see
Corollary 5.4 and the statement after Theorem 7.1)

COROLLARY 1.3. Assume 1<p<n. Then every map in WHP(M,N) can be con-
nected by a continuous path in WHP(M, N) to a smooth map if and only if M satisfies
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the ([p]—1)-extension property with respect to N. The latter topological condition is also
a necessary condition for HyP(M,N) to be equal to WYP(M, N).

For the meaning of the “([p]—1)-extension property with respect to N”, one should
refer to Definition 2.3. In particular, we have (see Remark 5.1)

COROLLARY 1.4. Assume that N is connected and 1<p<n. If either [p]=1 or
[p]>2 and 7;(N)=0 for [p]|<i<n—1, then every map in WHP(M, N) can be connected

to a smooth map.

We note that Theorem 0.5 of [BL] follows from Corollary 1.4. As for counterexamples
to Conjecture 1 of [BL] and to the sequential weak density of C*°(M, N) in WHP(M, N)
we have (see Corollary 5.5, Remark 5.2 and the discussions after Theorem 7.1)

COROLLARY 1.5. Assume my,mz€N, mo<m,,

(1) If 3<p<2mgz+2, then there are maps in WHP(CP™ CP™?) which cannot be
connected to any smooth map by continuous paths in WHP(CP™,CP™?). In addition
H,P(CP™, CP™)#WLP(CP™, CP™).

(2) If 2<p<my+1, then there are maps in WHP(RP™ RP™?) which cannot be
connected to any smooth map by continuous paths in WHP(RP™, RP™?). In addition
HyP(RP™ RP™)£WL2(RP™, RP™).

In connection with Theorem 1.2 and Corollary 1.3, we have the following (see Con-
jecture 7.1)

CONJECTURE 1.1. Assume that 2<p<n, p€EN, and that h: K—M 1is a Lipschitz
rectilinear cell decomposition of M. If e W1 P(M, N) such that uy o(h) is extendible
to M with respect to N, then uEHé",p(M,N).

One may also conjecture that if 2<p<n, peN, and M satisfies the (p—1)-extension
property with respect to N, then Hé‘}p(M,N)=W1”’(M, N).

Finally we come to the question of strong density of smooth maps in W1'P(M, N).
The following result was proved in [B2].

THEOREM ([B2, pp. 153-154]). Let 1<p<n. Smooth maps between M™ and N* are
dense in WHP(M™, N¥) if and only if ﬂ[p](N’“)=O ([p] represents the largest integer less
than or equal to p).

Here we find that this result has to be corrected. We have (see Theorem 6.3)

THEOREM 1.3. Let 1<p<n. Smooth maps between M and N are dense in
WY2(M,N) if and only if m,(N)=0 and M satisfies the ([p]—1)-extension property
with respect to N.
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We note that without the ([p]—1)-extension property of M with respect to N, the
strong density of smooth maps in W1P(M, N) is definitely false as seen from the cases
WL3(CP? CP?) and W12(RP* RP?) by Corollary 1.5 (see also [HnL1]). Theorem 1.3
has two interesting consequences (see Corollary 6.2 and Corollary 6.3):

COROLLARY 1.6. Assume that M and N are connected, 1<p<n, k is an integer
such that 0<k<[p]—-1 and 7;(M)=0 for 1<i<k, m(N)=0 for k+1<i<[p]. Then
HYP(M,N)=WbH?(M, N).

COROLLARY 1.7. Assume that N is connected, 1<p<n, m;(N)=0 for [p]<i<n—1.
Then HgP(M,N)=W'P(M,N).

Part (a) of Theorem 1 in [Hj] is a special case of Corollary 1.6.

The present paper is written as follows. In §2, we introduce various basic concepts
and notations for the topological aspects of our problem. One of the very crucial facts
that we used repeatedly in our proof is the homotopy extension theorem (property). We
also discuss briefly k-homotopy of maps and a problem from obstruction theory. In the
last part of §2 we discuss how a continuous homotopy can be replaced by a Lipschitz
homotopy. Repeated applications of Fubini-type (and mean value-type) theorems are
used in the study of generic slices of Sobolev mappings in §3. Some quantitative controls
of the W1 P-norm of maps when they are restricted to generic k-dimensional rectilinear
cells are obtained. Some fine properties of Sobolev mappings such as approximate conti-
nuity and approximate differentiability (Federer-Ziemer, Calderon-Zygmund theorems)
as well as area and coarea formulas are also briefly discussed.

In §4, we discuss the k-homotopy property of W1P(M, N )-maps for 0<k<[p]. These
issues were first studied carefully by B. White in {Whl], [Wh2]. Here we use somewhat
different arguments to obtain the main conclusions of [Wh2] as well as some generaliza-
tions. We have included this part of proof here not only to make the discussion clear and
complete but also to facilitate our arguments in later sections.

In §5, we first establish the equivalence between (1) u~,v and (2) u is ([p|—-1)-
homotopic to v (cf. Theorem 5.1). This leads to the proof of Conjectures 2 and 2’
of [BL] as well as results which generalize those in [BL]. We also derive a necessary
and sufficient condition for a map ue WHP(M, N) to be connected to a smooth map
by a continuous path in W1P(M, N). Thus we see the connection between the classical
topological obstruction theory and the problem of connecting a Sobolev map to a smooth
map in the Sobolev spaces W1P(M, N).

§6 is devoted to prove a corrected version of the strong density theorem. To do so, we
have to give another proof of the fact ([B2, p. 154, Theorem 2|} that maps with canonical
singularities (R?’*°(M, N)) are always strongly dense in W?(M, N) (see Theorem 6.1).
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Our proof is somewhat different from the one in [B2]. This modification becomes nec-
essary because we have troubles with the original proof, given in [B2], with regard to
matching the boundary values when patching cubes for the case n—p>1. Moreover, in
studying the problem whether a specific map can be approximated in the strong topol-
ogy by a sequence of smooth maps, we need the explicit construction in our proof of
Theorem 6.1. As a consequence we know that for 1<p<n, if p¢Z or p=1 or 2< p<n but
p€Z and m,(N)=0, then HyP(M,N)=Hy?(M,N) (see [B2], Theorem 7.2 and [Hn]).
The case 2<p<n, p€Z and 7,(N)##0 is much more subtle. On the other hand, we have
(see Theorem 7.2), for 1<p<n, HyP(M, N)=W'?(M, N) if and only if Tp)(N)=0 and
Hél’,p (M,N)=W?Y?(M,N). Our proof of Theorem 6.1 also relies on various analytical
estimates, some of which were obtained in the earlier work of Bethuel [B2]. The proof
of the main theorem in §6 (Theorem 6.3) uses in a crucial way certain new deformations
from the so-called dual skeletons, which is obviously motivated by the well-known work
of Federer and Fleming on normal and integral currents (see [Fe|, in particular Chap-
ter 4). The construction of such deformations with the right analytical estimates is the
key point of the whole proof. We note that the previously constructed deformations due
to B. White [Wh1] (or that in [Hj]) do not seem to work for our purpose.

Finally in §7, we discuss weak sequential density of smooth maps in Sobolev spaces.
Several technical estimates concerning generic slices of Sobolev maps as well as estimates
relative to the deformations constructed in §6 are included in the appendices.

The present paper treats only compact manifolds without boundary. Essentially all
the results discussed here can be generalized to the case that M has a smooth nonempty
boundary M. We shall return to these in a future article.

Acknowledgement. Both authors wish to thank S. Cappell and F. Bogomolov for
valuable discussions and suggestions concerning the obstruction theory and counter-
examples in Corollary 5.5 and Remark 5.2. The second author also wishes to thank
H. Brezis and Y. Li for sending him the preprint [BL] and for their interesting lectures.
The research of the first author is supported by a Dean’s Dissertation Fellowship of
New York University. The research of the second author is supported by an NSF grant.

2. Some preparations

For concepts of rectilinear cell complex and simplicial complex, we use those from [Whn]
(see Appendix II of [Whn]; the notion of rectilinear cell complex used in this paper means
the complex defined on p. 357 of [Whn]). [Mu] is also an excellent reference for basics in
differential topology, but one needs to be careful with some small differences in definitions
(the name rectilinear cell complex comes from [Mu], but the notion of rectilinear cell
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complex defined on p. 70 of [Mu] is different from the definition of complex on p. 357
of [Whn]: the notion in [Mu] does not allow any subdivision of the proper face of any
cell, but the notion in [Whn] does allow it, even though this kind of complex is not used
in [Whn], see p. 357 of [Whn]). If after a rotation and a translation, a rectilinear cell is of
the form ]—[;.i:1 [0,a%], a* >0, then we say that it is a cube. We have cubic complexes similar
to simplicial complexes. By mimicking the notion of smooth triangulation of a manifold,
we have the concepts of smooth cubeulation and smooth rectilinear cell decomposition
of a manifold. In addition, if M is a smooth compact manifold, possibly with boundary,
K is a finite simplicial complex, and h: |K|— M is a bi-Lipschitz map, then we say that
h: K— M is a Lipschitz triangulation of M. Here |K| is the polytope of K, that is,
the union of all simplices in K. Similarly we have Lipschitz cubeulation and Lipschitz
rectilinear cell decomposition of a smooth compact manifold.

2.1. The homotopy extension property

The homotopy extension theorem will play a crucial role in several of our proofs. We
start with

Definition 2.1. Let (X, A) be a topological pair and Y be a topological space. If
every continuous map

Hy: (X x{0HU(Ax[0,1)) =Y

has a continuous extension to H: X x[0,1]—Y, then we say that (X, A) satisfies the
homotopy extension property with respect to Y (HEP with respect to Y').

If a topological pair (X, A) satisfies the homotopy extension property with respect
to any topological space Y, then we say that (X, A) satisfies the homotopy extension
property (HEP).

For a general discussion of HEP (cofibration), one may refer to Chapter I of [Hu| and
Chapter 6 of [Ma]. For basics in CW complex theory, one may refer to [LW| and [Whd)].
The following fact is well known and its proof may be found on p. 68 of [LW].

PROPOSITION 2.1. Let X be a CW complex and A be a subcomplex. Then (X, A)
satisfies the homotopy extension property.

Another version, which is more analytical, is also important to us (cf. p. 14 of [Hu]).

PROPOSITION 2.2. Let YCR™ be a retraction of an open subset VCR™. Suppose
that X is a topological space such that X x[0,1] is normal, and AC X is a closed subset,
then (X, A) satisfies the homotopy extension property with respect to Y.
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Since we will need to use the construction in the proof of this latter proposition, we
present the arguments here.

Proof of Proposition 2.2. Given a continuous map
Hp: (Xx{0}hu(Ax][0,1)) =Y,

by Tietze’s extension theorem we may find a continuous map G: X x [0, 1] +R" such that
G(z,0)=Hy(z,0) for z€ X, G(a,t)=Hy(a,t) for ac A and 0<t<1. Now U=G~}(V) is
open and Ax[0,1]CU, and hence there exists an open set W D> A such that Wx [0, 1]CU.
Choose n€C(X,[0,1]) such that n|a=1, n]x\w=0. Let 7: V=Y be the retraction map.
Define H(z,t)=r(G(z,tn(z))) for ze X, 0<t<1. Then H is the needed extension. O

Later on we also need

Definition 2.2. Let A, X and Y be topological spaces, and i: A— X be an embedding.
Assume that (X,i(A)) satisfies the HEP with respect to Y. Let ¢, a homotopy class of
maps from A to Y, be given. If for any representative f of a, foi~! has a continuous
extension to X, then we say that « is extendible to X with respect to Y.

2.2. k-homotopic maps and problems from obstruction theory

We review now several basic definitions and facts concerning k-homotopy theory which
has a lot to do with our main results.

Let X and Y be two topological spaces, f,geC(X,Y). If f is homotopic to g as
maps from X to Y, then we write f~g as maps from X to Y. When it is clear what X
and Y are, we simply write f~g.

LEMMA 2.1. Assume that X and Y are topological spaces, X; and X5 are CW
complezes, f,geC(X,Y), ¢i: X; > X is a homotopy equivalence for i=1,2, ke€Z, k>0.
If fodilxs~godilxk, then foda|xs~godo|xy. Here XF means the k-skeleton of X;.

Proof. Assume that v;: X — X; is a homotopy inverse of ¢;. By the cellular approx-
imation theorem (see p. 77 of [Whd]), we may find a cellular map ¢€C(X2, X;) such
that p~110¢2. Then we have

fodalxx ~ foprothioda|xs ~ fodrop|xs ~ godrop|xy
~ gogrovioda|xx ~ goda|x- O

Suppose that X is homotopy equivalent to some CW complex X, and let ¢: Xo— X
be a homotopy equivalence. Given f,geC(X,Y ). We say hat f and g are k-homotopic
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as maps from X to Y if (fo¢)|xs ~(go¢)|xs. Lemma 2.1 says that the choice of Xo and
¢ plays no role. Usually we write f~rg as maps from X to Y, or simply f~rg when
it is clear what X and Y are. It is easy to see that k-homotopicity between maps is an
equivalence relation.

Similar to homotopy equivalence, we have k-homotopy equivalence between special
topological spaces. Indeed, let X and Y be two topological spaces. Assume that both
X and Y are homotopy equivalent to some CW complexes, and that k€Z is given with
k>0. If we can find ¢€C(X,Y), v€C(Y, X) such that Yo~ridx and ¢ip~idy, then
we say that X and Y are k-homotopy equivalent.

The classical obstruction theory deals with the extension problem for maps. The
following problem is closely related to our discussion.

Let X be a CW complex, Y be a topological space, k€Z, k=0. Given an f€
C(X*+1Y), we want to know whether there exists a g€ C(X,Y) such that g|xt=f|x*,
that is, whether f|x« has a continuous extension to the whole of X.

We have the following

LEMMA 2.2. Let X, Y and Z be topological spaces, X and Y be endowed with
CW complez structures (X7)jez and (Y7);ez respectively, k€Z, k>0. If X is (k+1)-
homotopy equivalent to Y and for every fo€C(X**,Z), folx+ has a continuous exten-
sion to the whole of X, then for any feC(Y**\,Z), fly+ has a continuous extension
to Y.

Proof. We may find ¢€C(X,Y) and ¢ €C(Y, X) such that yp~p1idx, p9~pe1idy.
By the cellular approximation theorem, we may assume that ¢ and ¢ are both cellular.
Let i be the map from Y* to Y**+! such that i(y)=y for every yeY*.

We claim that ¢t ~i as maps from Y* to Y*+1, In fact, since ¢t~y 1idy, we may
find a continuous map Hy from Y*+1x [0, 1] to Y such that Ho(y,0)=¢(¥(y)), Ho(y,1)=y
for any ycY*+1, By the cellular approximation theorem we may find a cellular map H
from Y**1x[0,1] to Y such that H(y,0)=¢(¥(y)), H(y,1)=y for any yeY**!. Since
H(Ykx[0,1)CY**! the claim follows. Next, for any given feC(Y*+1 Z), we define
fo(z)=f(¢(z)) for z€ X*+1. Then we may find go€C(X, Z) such that go|x+ = fo|x*- Set
g=gooy. By the above claim we see that g|yr~f|y«. It follows from Proposition 2.1
that fly« has a continuous extension to Y. a

Now let us introduce

Definition 2.3. Let X and Y be topological spaces where X possesses some CW
complex structure, and k€Z, k>0. If for some CW complex structure (X7 )jez of X,
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every f€C(X*+1Y), f|x+ has a continuous extension to X, then we say that X satisfies
the k-extension property with respect to Y.

By Lemma 2.2, we see that the k-extension property does not depend on the par-
ticular choice of CW complex structure on X. This fact will be useful to us later in
constructions of various examples. In other words, it suffices to check this property for
a particular CW complex structure of X.

2.3. From continuous maps to Lipschitz maps
Let X be a compact metric space with metric denoted as d. For any function f: X —+R,
f(z1)—flz2
oo =sp 7@l fluipe =_sup LEI=L),
z

enaaex  A(Z1,T2)
T1# T2

we set

We simply write | f|o and [f]Lip when it is clear what X is. Define
Llp(X, R) = {f X->R: [f]Llp(X) < OO}
It is a Banach space under the norm

[flLip(x) = | floo, x + [fLip(x)-

It is always convenient to replace usual continuous homotopies by Lipschitz homotopies
when the image spaces are compact smooth manifolds as in present article. We describe
a few elementary results below which will be sufficient for our purposes.

LEMMA 2.3. Let X be a compact metric space. Then Lip(X,R) is dense in C(X,R)
under the uniform convergence topology.

Proof. Indeed this follows easily from the Stone~Weierstrass theorem. But we may
also give a direct proof. Let there be given an feC(X,R), and for any a€R, a>0, define

folz)=min{(f(y)+a-d(z,y)) for any z€ X.
) yeX

We easily check that [fo]Lip<a and |f,— f|loc—0 8s a—00. a

PROPOSITION 2.3. Let X be a compact metric space. Then we have:

(1) Lip(X,N) is dense in C(X,N) under the uniform convergence topology.

(2) For any feC(X,N), there ezrists a geLip(X,N) such that f~g.

(3) For any f,g€Lip(X,N), if f~g, then there exists a continuous path in
Lip(X,N), say HeC([0,1],Lip(X, N)), such that H(0)=f, H(1)=g. Usually we write
the latter statement as f~vLipg.
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Proof. Choose €>0 small enough such that
Voe ={y:ye R, dist(y, N) < 2¢}

is a tubular neighborhood of N. Let m: V5. — N be the nearest point projection map,
which is smooth because of the smallness of ¢.

Given any feC(X,N). By Lemma 2.3 we may find f;eLip(X, R‘_) such that f;
converges to f uniformly. For j large enough, we have f;(X)CV,. Let g;=mof;. Then
g;j€Lip(X, N) and g; converges uniformly to f. This proves (1).

Given any feC(X, N), choose a geLip(X, N) such that |f—g|.<e. Let

H(z,t)=7n((1-t)f(z)+tg(z)) forzeX,0<t<1.

Then H is a homotopy from f to g. This proves (2).

Given f,g€Lip(X,N) such that f~g, let G: Xx[0,1]—N be a continuous map
such that G(z,0)=f(z), G(z,1)=g(z) for z€ X. Choose §>0 small enough such that
for z1,z2€ X, t1,t2€(0, 1], we have |G(z1,t1) — G(z2, t2)| < és when d(z,, z2)+[t1 —t2| <6.
Let G¢: X — N be defined by G¢(z)=G(z,t) for t€X. Choose meN such that 1/m<$§.
For 1<k<m—1, choose Ly/m€Lip(X,N) such that |L/m(z)—Gx/m(z)|<3e for any
z€X. Set Lo=f, Ly=g. For any 0<k<m~1, t€[k/m, (k+1)/m], z€ X, set

L(t)(@) = (k4 1—11) L (2) + (71~ ) L i1y (2)-
Clearly LeC([0, 1], Lip(X, R%)). Let H(t)(z)=n(L(t)(x)) for z€ X, 0<¢<1. Then clearly
[H(t2) = H(t1)loo < c(IV)[L(t2) = L(t1) oo (2.1)

On the other hand, 7|y, clearly has a smooth extension 7: R! >R/, which satisfies #(y)=0
for all y outside a big ball. For 0<t;,t2<1, z1,22€ X, we have

[(H (t2)(x2)— H(t1)(z2)) — (H(t2)(z1) = H(t1)(z1))]
= |7(L(t2)(x2)) —7(L(t2)(z1)) =T (L(t1)(x2)) + 7 (L(t1)(z1))]

/7?'((1~S)L(t2)($1)+8L(t2)(x2))(L(t2)(xz)—L(tz)(wl))ds
o (2.2)

- /0 7((1= ) L(t2)(22)+sL{t2)(@2)) (E(tr) (2) — L(t1) (1)) ds

< e(N)[L(t2) - L(ty)Lipd(e1, x2) + (N ) [L{t2)]Lip | L(t2) — L(t1) oo d(z1, Z2).-

Inequalities (2.1) and (2.2) together implies that HeC([0, 1], Lip(X, N)), and hence we
get (3). O
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3. Generic slices of Sobolev functions

One of the technical steps in our proofs involves restrictions of given Sobolev maps to
various lower-dimensional skeletons in general positions. Thus we have to obtain analytic
controls on generic slices of Sobolev functions.

Let K be a finite rectilinear cell complex, 1< p<oo. Then we define

WYP(K,R)={f: f:|K| =R is a Borel function such that flx€ W"?(A R)
and the trace T(f|a) = f|Baca), for any A€ K}.

Here Bd(A) denotes the boundary of A. We also write

Ifwrry =Y Iflalwrea)-

A€eK

If feWbLP(K,R), k€Z, 0<k<p, then there exists a unique g€ C(|K*|, R) such that for
any A€K* we have fla=g|an H%-a.e. on A, with d=dim(A). Here K* is the complex
of all cells in K with dimension less than or equal to k. We also remark that, whenever
necessary, we use the following equivalence relation for Borel functions f,g:|K|—R:
f and g are equivalent if and only if for any A€K, fla=gla H%a.e. on A, where
d=dim(A).

In the future, we also need a similar function space as follows. Let K be a finite
rectilinear cell complex, m=dim K, 1< p<oo. Assume that K satisfies

Kl= U A.
A€EK
dim(A)=m

If f:]K|—R is a Borel function such that

(i) flaeWIP(A,R) for any A€ K with dim(A)=m;

(if) for any X € K with dim(X)=m—1, ECBd(4;), dim(A;)=m for i=1, 2, we have
T(Fadls=T(ladls
then we say that f lies in W1P(K,R), and we write

flaean= 2, |flalwisa)

AEK
dim(A)=m

For convenience, we also make a convention that, whenever necessary, we always fix a
suitable representative of an equivalence class of measurable functions.
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LEMMA 3.1. Assume that 1< p<oo, and that ue WHP(BT, R) with the trace T(u)=
feLip(8B1,R). Then there ezists a sequence u;€Lip(B1,R) such that u;|op,=f and
u;—u in WHP(By, R).

Proof. This is a well-known fact, but because the way it is proved is going to be

used many times in the future, we present it here. For any 0<§ <1, we define

{u(w/(l—é)) for |z| < 1-4,
us(z) =
F(z/|z)) for 1-6 < |z| < 1.

Then us€WVP(B;) and us—u in WHP(B;) as §—0*. Hence we may assume that
for some d€(0,1), u(z)=f(z/|z]) for 1-d<]z|<1. Choose neC®(B1,R) such that
N8, _s2=1, n|31\31_6/3=0 and 0<n<1. Choose a mollifier g€ C°(R™ R) such that
020, olrm\5,=0 and ;.. o(z) dr=1. Let g (x)=(1/e™)p(x/e). For £>0 small enough,
let v, be defined on B;_s/4 by va(x):fBl p{z—y)u(y) dy. Now set

We () = n(z)ve (z) + (1~ n(z)) u(z).
Then clearly we have w.€Lip(B;,R) and w. —u in WHP(B;,R) as e —0*. O

Let A be a rectilinear cell, y€Int(A). Then for any z€ A, we set
|z|y,a =inf{t:t >0, zey+t(A—y)}. (3.1)

This is the usual Minkowski functional of A with respect to y. When it is clear what y
is, we simply write |z|a instead of |2y, A.

LEMMA 3.2. Assume that K is a finite rectilinear cell complez, 1< p<oco. Then:
(1) Lip(|K],R) is dense in W'P(K,R).
(2) If we define a space E=W'P(K,R)NC(|K|,R) with norm

|fle = flwre i)+ floo, 1k
then Lip(|K|,R) is dense in £.

Proof. We use induction to prove the first assertion. In fact, it is clearly true when
dim K=0. Assume that it has been proved for dim K=m—1 for some m>1. Now
assume dim K=m. Given any ve WHP(K,R), we may find a sequence of maps f;€
Lip(|K™~!|,R) such that f;—u|jgm-1) in WHP(K™ 1, R). For any AeK\K™ !, we
pick a point y,€Int(A). Since A is bi-Lipschitz to B]® by the obvious map, from the
proof of Lemma 3.1 we may assume that for some € (0, 1), for each A€ K\K™"!, one
has

u(x) =u<yA+z|_|yA) for e A with 1-6 < |z]a < 1.
T\a
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Choose an n€C*(R, R) such that 0<n<1, 7}(_co,1-6/2)=1, Nl[1-5/3,00)=0. Let u; be
defined as
fi(z), ze|K™ Y,
ui(z)= i
n(lzla)u(@)+(1-n(lz|a)) filya+(z—ya)/|x|a), z€A, AcK\K™™".
Then clearly u;eW'P(K,R) and u;—u in WHP(K). By using Lemma 3.1 on each
Ae K\K™~! we get that u; can be approximated in W!?(K) by functions in Lip(| K|, R),

and hence so can u. The proof of the second assertion is exactly the same as the first

one. O

Henceforth till the end of this section we shall assume that M is an n-dimensional
Riemannian manifold without boundary, QCM is a domain with compact closure and
Lipschitz boundary. Assume that the parameter space P is an m-dimensional Rie-
mannien manifold, Q is a d-dimensional Riemannian manifold without boundary, DCQ
is a domain with compact closure and Lipschitz boundary, and the dimensions satisfy
d+m2n.

Given a map H: Dx P— M, we assume that H satisfies:

(H:) HeLip(Dx P) and [H(-,&)]Lip(5y<co for any £€P.

(Hz) There exists a positive number ¢; such that the n-dimensional Jacobian
Ju(x,6)>c1, H* ™-a.e. (z,)e D x P.

(H3) There exists a positive number ¢, such that H4+*™"(H~1(y))<cp for H-a.e.
yeEM.

For convenience we use H* and H to denote the maps defined by H*(§)=H¢(z)=

H(z, ).

LEMMA 3.3. Let H: Dx P—M be a map satisfying (H,), (H) and (Hs). Then for
any Borel function x: M—)ﬁ:RU{:I:oo} with x 20, we have

[anm© [ xttc@)ante) <ete [ xwanw)
P D M
Especially for any Borel subset ECM, we have
[ iz @) anm ) < eattn(B)
P

If in addition H™(E)=0, then HU(H; (E))=0 for H™-a.c. E€P.
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Proof. By the coarea formula (see [Fe, p. 258] or [Si, §§ 10 and 12]) we have

[awm© [ xanani@r s [ (@) Ju@g ant @)
P D D

x P

=CI1/M X@)YH™ " (H T (y)) dH" (1)

<clle /M x(y) dH" (y).

Note that here we need condition (H;) to insure the validity of the coarea formula quoted
above. Though the coarea formula is true for a larger class of Sobolev maps (see [MSZ]},
the present form is sufficient for our purposes. O

LEMMA 3.4. Assume that 1<p<oo, fEWIP(Q,R), and that H: Dx P—QCM is
a map satisfying (Hy), (Hz2) and (Hs). Then:

(1) There exists a Borel set ECP such that H™(E)=0, and for any £€ P\E,

(i) foHeWhP(D),

(ii) f is approzimately differentiable at He(x) for H%-a.e. €D, and in addition,

d*(foHg)y =d™fy (gyo(He)sz  for H%-a.e. z€D,

where (He).,; denotes the tangent map of He at .

(2) If f:€Lip(Q,R) satisfies fi— f in WHP(Q), then there ezists a subsequence f;
and a Borel set ECP such that H™(E)=0, and for any EEP\E, fyoH¢— foH¢ in
wbp(D).

(3) If we define f by f~(£)=foH5 for any £€P, then fEL"(P,W“’(D)), and in
addition,

|fleepwir(py) < clflwrr(),

where ¢ depends only on p, cg, ¢1 and ca.

Proof. From [EG, p. 233] or [Fe, p. 214] we know that there exists a Borel set X,
such that H"(X,)=0, and for any x€Q\ Xy, f is approximately differentiable at z, and
fi is differentiable at z. For x€Q\ Xy, d®*Pf(z) and df;(x) has already been defined. For
x€ Xy, we simply set d*Pf(z)=0, df;(z)=0. From Lemma 3.3 we may find a Borel set
E;, CP such that H™(E;)=0 and 'Hd(Hgl(Xo))=0 for £ P\E,. On the other hand,
from Lemma 3.3 we know that

[ aum©) [ (5:(He@) = S He@)P+ Ao =4 oo P a4 2)
P b (3.2)

gcl_lq/Q(Ifi(y)—f(y)]p-}-[(dfi)y_dapfyy’)d’)-gn(y)__>g as 7 — 00.
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Hence we may find a subsequence fi; and a Borel set E;C P such that H™(E;)=0 and
for any £€ P\ E»,

/D(lfi'(Hs () — £ (He @) +1(dfi) e (2) — 0% Frre (3 7)) dHE () — 0. (3.3)

Then for any £€ P\(E1UE,), we have fyoHg— foH, in LP(D); also for Ha.e. zeD,
f is approximately differentiable at He(z), fir is differentiable at H¢(z) and dfy|p (. )~
d®Pfly,(.y in LP(D), which clearly implies that (dfir)p,(.)o(He)x, = d*Pfr,(.yo(He)x,.
in L¥(D). Hence we have foH,cWY?(D) and fiyoHg— foHg in WHP(D), d*P(foHe),=
d*®fy, (z)°(He)s,z for H4-a.e. zeD. This implies that f;y —f H™-a.e. on P, and hence
f is Lebesgue measurable. In addition, we have

LV @17(€) = [ ™€) [ (F(He))+ a7 ire (Ho o) ab(0)
P P D

<c /Q (£ )P+ 14, P) dH™ (1), (3.4)

where ¢ depends only on p, ¢y, ¢; and c3. This clearly implies Lemma 3.4. 0

COROLLARY 3.1. Let 1<p<oo, fEWDIP(Q,R), K be a finite rectilinear cell com-
plex, H: |K|x P>QCM be a map such that H|axp satisfies (H,), (Hz) and (Hz) for any
AeK. Then there exists a Borel set ECP such that H™(F)=0 and for any £€ P\E,
we have foHe€WVP(K); in addition, the map fe LP(P,W'P(K)), where f&)=foHe
for £€P.

Proof. Choose a sequence f;€Lip(Q, R) such that f; —f in W1'?(Q). Then we may
find a Borel set ECP and a subsequence f;; such that H"(E)}=0 and for any £€ P\E,
we have

(i) foH¢laeWUP(A) for any A€K;

(ii) firoHela— foHela in WHP(A), for any A€K.

Since T(firoH¢|a)=fioHe|paca), by taking a limit we get T'(foHe|a)=foHe|paca). O

We also have the following interpolation inequality for the curvilinear case, which is
an easy consequence of the classical Gagliado—-Nirenberg—Sobolev inequality.

LEMMA 3.5. Assume that H: Dx P—»QCM is a map satisfying (H;), (Hz), (Hz),
and that d<q<p<oo and feW'P(Q,R). Then
1/p / g/
(1ol aH7(©)) < a1y 137885+ o)
Here c is a positive constant depending only on p, q, D, cg, ¢, and ca.
Proof. By the usual Sobolev inequality, for any ¢€Lip(D,R), we have

|¢ LoDy < c(g, D)(1dd| LDy + 18| Le(D))- (3.5)
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Since p/q>1, for any ¢€Lip(D, R), applying (3.5) to |¢|P/9, we get
(622 ) < (P, g, DY(|1$P/97" ol oy + 1652 1,)-

Taking the gth power on both sides and applying Hoélder’s inequality to the right-hand
side, we get
1615 0y < (P, 4 D) (1315 ) |80 + 1610 1) (3.6)

A simple approximation procedure shows that (3.6) is also true for ¢ in WHP(Q,R). It
follows from Lemma 3.4 and (3.6) that for H™-a.e. £€P,

|f°H£|TI)J°O(D)<C(PaQ7 )(ld(f H&) LP(D) |f HE L”(D +|f HEILP(D)
<e(p,q, D, CO)(I(df)HE(-)lLP(D)|f°H§ILP(D)+|f°H£|LP(D))'

Integrating both sides with respect to £, and using Hélder’s inequality, we get
q/p
[ Het oy am@ < [ 1Py 2H(0))

» 1-q/p
([ 1oHelts a7 )

v [ |FoHelfs ) U7 (€

< e(ldf17p ) 1 17r iy + 1 1Lr @))-

Here ¢ depends on p, ¢, D, ¢, ¢; and c;. In the last inequality above, we have used
Lemma 3.3. 0

4. Homotopy of Sobolev mappings

Let X and Y be topological spaces. We use {X,Y] to denote the set of all homotopy
classes of continuous maps from X to Y. Given any feC(X,Y ), we use [f]x y to denote
the homotopy class corresponding to f as a map from X to Y. When it is clear what X
and Y are, we simply write [f] instead of [f]x.y.

For £9>0, denote

Vaeo (M) = {y: ye R, dist(y, M) < 2¢0}.

We assume that gg is small enough such that V5, (M) is a tubular neighborhood of M,
and denote s Voo (M)— M as the nearest point projection map, which is smooth
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because of the smallness of £9. Given any map h: A— M, we define the corresponding
H:AxB. —M by H(a,&)=mp(h(a)+€). If A is a rectilinear cell, and h: A—M is a
Lipschitz map, then it is easy to see that (H;), (Hz) and (H3) in §3 are satisfied by H.
For the reader’s convenience, we write down the proof of (Hj). Let d=dim(A). Given
any y€ M, denote M, as the tangent space of M at y. Define a map

Y:Ax{CeR:¢CL M, |(|<eo} = AxR!

by ¢(z,{)=(z,y+(—h(z)). Then clearly H~!(y)Cim(¢). It follows from the area for-
mula that H**-"(H 1 (y)) <H " (im(¥)) <c(d, |, [AlLip(a), M ). This verifies (Hs).
Often we write h¢ instead of He. The notations Vo5, (N) and 7y are defined similarly.
When no confusions would occur, we write 7 instead of 73, and 7. We start with a
few simple facts.

LEMMA 4.1. Let X be any topological space, and ug and uy be continuous maps
from X to N. If |ug—u1|oo,x SE0=&0(N), then ug~u; as maps from X to N.

Proof. Simply take H(z,t)=nn((1—t)uo(z)+tui(z)) for z€X, 0<t<1, as the
homotopy. a

LEMMA 4.2. If X is a compact metric space, then [X, N] is countable.

Proof. This follows from Lemma 4.1 and the fact that C(X,R) has a countable
dense subset. a

The next lemma is concerned with certain topological classes introduced by a given
Sobolev map when it is restricted to a lower-dimensional set.

LEMMA 4.3. Assume that 1<p<n, ue WHP(M,N), that K is a finite rectilinear
cell complex, that the parameter space P is an m-dimensional Riemannian manifold, and
that H:|K|x P—M is a map such that H|axp satisfies (Hy), (Hz) and (H3) for any
A€K. Then there exists a Borel set EC P such that H™(E)=0 and uoH¢e W'P(K,N)
for any E€ P\E. Assume that either k=1 or k is an integer with 0<k<p. Define a map
X=Xk, 1 P {|K*|, N1 by setting x(€)=[ucH¢|\gr|]. Then x is Lebesgue measurable,
that is, x~1({a}) is Lebesgue measurable for any a€[|K*|,N]. Here K* is the finite
rectilinear cell complex defined by

K*={AecK:dim(A)<k}.

Proof. The existence of such an F follows from Lemma 3.3 and Corollary 3.1. Note
that Lemma 3.3 is needed because we only know that u(z)€ N for H™-a.e. zt€ M. But by



TOPOLOGY OF SOBOLEV MAPPINGS, II 73

the second half of Lemma 3.3, we conclude that for H™-a.e. £€P, for each A€ K with
d=dim(A), uoH takes values in N, H%a.e. on A. The Sobolev embedding theorem
implies that x is pointwise well defined away from E. Note that k=1 is special because
a Wbl function on a closed interval is absolutely continuous after a modification on a
set of measure zero, but in general one does not have this for a W1*-function on a
k-dimensional disk for k>1. Instead we will handle this issue in Lemma 4.6. Define
@(€)=ucH, for (e P\E. It follows from Corollary 3.1 that € LP(P,W'P(K,N)). By
Lusin’s theorem, we see that the function @ is continuous on the whole parameter space P
away from an arbitrary small measure set. Using the Sobolev embedding theorem and
Lemma 4.1, one concludes that the corresponding yx is locally constant away from such
small measure sets. This along with Lemma 4.2 implies the measurability of x. O

The next result is useful for the critical case peN, p>2, which is not covered by the
previous Lemma 4.3 (see Lemma 4.6 below).

LEMMA 4.4. Assume that m is a natural number, and ue WH™(B N) is such
that the trace T(u)=feW1™(8By, N)CC(6B1,N). Then for any €>0, there ezists a
veWL™(By, N)NC(By, N) such that [v—u|w.m(p,) <€ and v|op,=f. In addition, there
exists an e=e(m,u, N)>0 such that if vi,v2€ WH™(By, NYNC(By, N) satisfy vilog,=f
and |v;—u|w1.m(p,) <€ for i=1,2, then we have vi~wv; relative to 8By, that is, during
the homotopy, the value on 0B is always fized.

Proof. As in the proof of Lemma 3.1, we may assume that for some §€(0,1), u(z)=
f(z/|z}) for 1-6<|z|<1. Choose an n€C° (B, R) such that 0<n<1, nip,_;,,=1 and
nNlB\B,_s,,=0. For £>0 small enough, we set v5($)=fB€(x)u for z€ By_5/5. Then we
define

we(z) = (1-n(z)) f(z/|z]) +n(z)ve(z) for z€ By,

Clearly wEGWIY’"(Bl,R'_)ﬂC(El) and we—u in WH™(By). For z€B;_s/2, from the

Poincaré inequality we have
B 1/m
ay<emD( [ @)
Be(x)

f o fuw-f
B;(:E) BE(I)

and hence dist(ve(x), N)—0 uniformly for z€B;_s/2. This implies that the same thing

is true for w. on B;_s/; because U5|Bl—6/2:w5|31—6/2' On the other hand, from the
uniform continuity of f we know that w,(z)— f(z/|z|)—0 uniformly for x€B\B;_s/2
as e—0*. Hence dist(we(z), N)—0 uniformly for € B as e—0*, from which we deduce
that mowe —u in WH™(B;) as e 0%, mow. e WH™ (B, N)NC(By, N) and mowe|sp,=f.
The first half of Lemma 4.4 follows. To prove the second half, clearly we may assume that
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u(z)=v1(z)=va(z)=f(z/|z|) for 1<|z|<1. Choose an n€CZ*(B1, R) such that 0<n<1,
17|B2/3:1, n|31\33/4:0. For 6 >0 small, we define

(vi)a(x)=(1—n(w))f(w/|$|)+n(x)]{? o (4.1)

for z€B; and i=1,2. From the continuity of f we know that (v;)s(z)—f(z/|z|)—0
uniformly for 2<|z|<1. On the other hand, for |z|< 2, we have (v,-)(;(x)szé(x) v;, and
dist((v:)s(z), N) <][

1/m
vi—][ vi| € ¢(m,1) (/ |V'U,-|m)
Bs(x) Bs(z) Bs(zx)
1/m
<e(m,l) (E-l- (/ IVulm) ) < 1o
Bs(x)

when 0<d<do(m,,u) and c¢(m,l)e<}&. In addition we may assume that do(m, [, u) is

hence

(4.2)

small enough so that
l(vi)s(z)— fz/|z])| < 1&g for 2 <z| <1, 0< 8 < Bo(m,l,u). (4.3)
(4.2) and (4.3) tell us that
dist((vi)s(x), N) < jé0  for z€ By, 0< 8 < bp(m, 1, u). (4.4)

Note that for 1>|z|>2, (v1)s,(x)=(va)s,(z). For |z|<2, we have

1/m
3
s -(a@I<f  mmnl<(f mewr) <cmDi. @
350(1) B,SO(I) 0
By taking e=¢(m, u, N) small enough, we have

|(1)65(2) = (v2)5o ()| < 80 for z€ By (4.6)

From (4.4) and (4.6) we see easily that mo(v;)s, ~7o(vg)s, relative to dB;; indeed, the
map H(z, t)=n((1—t)(v1)s,(x)+t(v2)s,(z)) is the needed homotopy. On the other hand,
it is easy to see that v; ~(v;)s, relative to 9B for i=1, 2, and the second half of Lemma 4.4
follows. We should mention that for this part one may also use the so-called VMO space
theory by [BN]. O
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COROLLARY 4.1. Assume that meN, and ue W™ (B, N) is such that the trace
T(u)=feWY™(8By, N)CC(8By1, N). Then there exists an e1=¢,(m,u, N)>0 such that,
for any vy, v1€ C(B1, NYNWH™(By, N) with fo=volop, and fi=v1|e5,E W™ (8B, N),
if Jvi—ulwrm(p)<e1 and |fi— flwim(op,)<e1 for i=0,1, then |fo(x)— fi(z)|<E(N)
for any x€0B1, and we may find a homotopy v(-)eC([0,1],C(By,N)) such that
v(0)=vp, v(1)=v1 and v(t)(z)=nN((1—-1t)fo(z)+tf1(z)) for x€BB, and 0Kt

Proof. By the Sobolev embedding theorem, we may take £;(m, u, N) small enough
such that |fi— floc,08, < 2€0(N) for i=0,1. Let

B u(2x), T € By,
Hr) = { f(z/lzl), z€B\Bya.
Also for ¢=0, 1, denote
SN vi(2z), r € Bya,
w) = { mn((2-22)) fi(z/|2])+(2]2|-1) f(z/lz])), x€Bi\Byjs.

A simple computation shows that
lﬁi—ﬂfwl,m(Bl) < c(m,u, N)("l)i—"ll,lwl,nt(Bl)"',fi—flwl,m(aBl)).

Hence it follows from Lemma 4.4 that if we pick £;(m,u, N') small enough, then we may
find a map HeC(B;x[0,1], N) such that H(z,0)=0y(z), H(z,1)=0;(x) for z€B; and
H(z,t)=f(z) for £€8B,;, 0<t<1. Let us define a map H on 8(B, x [0, 1]) by

( vo(x), z€ B, t=0,
an(3tf(z)+(1-3¢t) fo(x)), r€0B;, 0<t< 4§,
H(z,t)=1{ f(x), z€dBy, 1<t<E,
N ((3=3t) f(2)+(3t—2) fi(x)), x€8B, $<t<],

\ v1(z), TeB;, t=1.

Then it is clear that Hla(ﬁlx[o‘l])“’ﬁ- On the other hand, if we set

vo(x), zeB;, t=0,
H(z,t)=< an((1-t)fo(zx)+tf1(z)), z€dBy, 0<t<],
v1(z), T€B, t=1,

then, clearly |H_ﬁ|oo,a(z‘31x[0,1])<5—0(N)- By Lemma 4.1, we know that H~H on
d(B1x[0,1]). Hence H~H|y5,xp,1))- It follows from Proposition 2.2 that H has a
continuous extension to Bjx [0, 1] which takes values in N. The extension map is the

needed homotopy. O
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LEMMA 4.5. Let m be a natural number, and K be a finite rectilinear cell com-
plez with dim K<m. Given any ue WH™(K,N). Choose a veC(|K|, N)NW'™(K, N)
such that uljgm-11=v||gm-1| and [u—vlwr.mgy<e(m,K,N,u), a very small number.
Define O(u)€[|K|,N| by ©(u)=[v]. Then © is a well-defined map from WH™(K,N)
to [|K|,N]. In addition, © is a locally constant map.

Proof. The existence of v and the well-definedness of ©(u) follow from Lemma 4.4.
Note that in Lemma 4.4, the homotopy between two approximation maps preserves the
boundary value. This helps in patching the homotopy of all m-dimensional cells into a
global homotopy. The fact that © is a locally constant map follows from Corollary 4.1.
Again one just needs to apply Corollary 4.1 to m-dimensional cells. O

The conclusion of Lemma 4.5 is in the same spirit as degree theory for VMO maps
as studied in [BN]. By Lemma 4.5, Lemma 4.3 and its proof, one can easily deduce the
following

LEMMA 4.6. Assume that peN, 2<p<n, and that K, P,M are the same as in
Lemma 4.3. Then there exists a Borel set ECP such that H™(E)=0 and for any
E€P\E, we have ucH¢eW'P(K,N). Define a map x=x,p n.: P—[|KP|,N] by set-
ting x(§)=O(ucH¢) (here © is the map defined in Lemma 4.5). Then x is Lebesgue
measurable.

The next proposition is in the same spirit as Lemma 4.5. It says that the homo-
topy classes we defined are stable under the weak and strong convergences of Sobolev
mappings.

PROPOSITION 4.1. Assume that 1<p<n, k€Z, that K, P,H are the same as in
Lemma 4.3, and that u;,uc W4P(M, N). If either 0<k<p and u;—u in WHP(M, N)
or 0<k<p and u;—u in WHP(M,N), then after passing to a subsequence we have

Xk, Hyuy — Xk, Hyu H™-a.e. on P.

Proof. It follows from Lemma 4.3 and Lemma 3.4 that we may find a Borel set
E,\C P such that H™(E1)=0, for any £€ P\Ey, uoHe, u;ohe eW'P(K, N) for every i.
In addition, for £€ P\E;, A€ K, d=dim(A), we have that u; and u are approximately
differentiable at H¢(z) for H%-a.e. z€A, and

d*® (uioHg)e = d* (Ui H(0)°(He)wzy  d*P(uoHg)e = d*Pup(z)°(He)u,o

for He-a.e. z€A.,
First assume that 0<k<p and u;—u in WYP(M, N ). It follows from the proof of
Lemma 3.4 that after passing to a subsequence u;, there exists a Borel set EC P, with
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E\CE, H™(E)=0, such that for any £€ P\E, uyoH¢—ucH in WYP(K,N). If k<p,
it follows from the Sobolev embedding theorem (applied to every cell with dimension
less than or equal to k) and Lemma 4.1 that x g, ,(§) =Xk #u(€). If k=p, the same
conclusion follows from Lemma 4.5.

Now assume that 0<k<p and uw;—u in WHP(M, N). Fix a ge(k,p). Given any
AeK with dim(A)<k, it follows from Lemma 3.5 that

] o He=usHel v ) a7 €
<e(p,q, Al co,c1,co)(|du; — dulL,,(M)|u, u|L,, )+|u, u|L,,(M))

Summing up, using the condition u; —u, we get

/P S fusoHe — o Helf m ) 4H™() =

AcK
dim(A)<k

as 1—00. After passing to a subsequence u;;, we may find a Borel set £ C P such that
E,CE, H™(E)=0 and for any {€ P\E,

> furoHe—uoHe[}w n) =0
A€eK
dim(A)<k

as i —o0. This together with Lemma 4.1 implies x g .., (€)= X, r,u(£)- O

In the rest of this section, we want to present some results closely related to
B. White’s paper (Wh2|. These results will be needed later on. The following lemma
says that W1 P-maps have well-defined ([p]—1)-homotopy classes. The reader should
compare it with Lemma 4.3 and Lemma 4.6.

LEMMA 4.7. Assume that 1<p<n, ue WHP(M, N), that K, P, H are the same as in
Lemma 4.3 and P is connected, k€Z, 0<k<[p]—1, X=X g - Then x=const H™-a.e.
on P,

Proof. By standard arguments, we only need to show that when P=BJ", one has
X=const H™-a.e. on BT".

Define a new rectilinear cell complex K by
K={Ax{0},Ax{1},Ax[0,1]: AeK};

then |K|=|K|x[0,1].
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We claim the following fact. For any (€B7®, there exists a Borel set E.C B3
such that H™(E¢)=0 and for any £€ By*\ E¢, we have uoHg,uoHegyc €WHP(K,N) and
wo He || gx|~uoHe i ¢| kx| as maps from |[K*| to N. To show this fact, let us define
H:|K|xB;=|K|x[0,1]x Bo—M by H(z,t,£)=H(z,£+t(). First assume k+1<p. Then
by Lemma 4.3, we may find a Borel set E;CB; such that H™(E;)=0 and uoﬁge
whp (I? , ) for any £€ By\ E;. By the Sobolev embedding theorem we may assume that
uoHg is continuous on |[K**1|. Since u(ﬁg(x,O))zu(Hf(:c)), w(He(x,1))=u(Hei((z))
and |K*|x[0,1]C|K**1|, we get uoHe| g ~uoHey¢| k|- If k4+1=p, then we only need
to note that by Lemma 4.4, for the above chosen E¢, given any {€ B>\ E;, we may find a
continuous map v: |[K**1|— N such that for any A€ K with d=dim(A)<k, % and uOI-I§
are equal H%a.e. on A. This clearly implies the needed homotopy.

Let Ey be the set of measure zero on which x is not defined. If x is not constant
H™-a.e. on Bi\Ey, since [|K*|, N] is countable (by Lemma 4.2), we may find two differ-
ent elements a1, az € [|K*|, N] such that H™(E;)>0, where E;=x"'({a;})N By, i=1,2.
Choose a density point §; € F;, that is,

i 2 (Bo&)NED)

=1.
r—0+  H™(B.(£))

Let (=§1—§€B,. Then x(§)=x(§+¢) for (€ Bo\E3, where Es=E.UEyU(Ey—(),
H™(E3)=0. Because £ is a density point for both E), and (+(E5\E}3), we find that
(C+(E2\E3))NE|#@. Choose £,€ E; and &€ E,\ E3 such that £, =(+£&,. Then we have
x(€1)=x(&2), that is, oy =02, a contradiction. |

Remark 4.1. Assume that 1<p<n, ueW"?(M,N), that K is a finite recti-
linear cell complex, and that h:|K|{—M is a Lipschitz map. Denote the correspond-
ing H:|K|x B, —»M as H(z,§)=n(h(x)+€). Then x[,j_1 u.,=const a.e. on B! , and

we denote this constant as ug ,(h).

The next two lemmas say that the object uy ,(h) defined in Remark 4.1 is indeed
well behaved topologically.

LEMMA 4.8. Assume that 1<p<n, ue WVP(M,N), that K is a finite rectilinear
cell complex, ho, h1:|K|— M are Lipschitz maps, and ho~h, as maps from |K| to M.
Then ug p(ho)=ug ,(h1).

Proof. Let K be the same rectilinear cell complex as in the proof of Lemma 4.7. Then
|K|=|K|x[0,1). We may find a geLip(|K|x[0,1], N) such that g(z,0)=he(x), g{z,1)=
hi(z) for any x€|K|. Indeed the homotopy constructed in the proof of Proposition 2.3 (3)
satisfies this requirement. It follows from Lemma 4.3 that there exists a Borel set EC Béo
with H'(E)=0 and for any £€ B, \E, ucge GWI*”(I?,N). Observing that uege(z,0)=
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uo(ho)e(x) and uoge (x, 1)=ue(h1)e(x) for z€|K]|, it follows from the proof of Lemma 4.7
that we(ho)eljxizi-1]~uo(h1)¢l|kipi-1|- This clearly implies ug p(ho)=ug p(h1). O

Remark 4.2. Assume that 1<p<n, ue WHP(M, N), and that K is a finite rectilinear
cell complex. Given any a€[|K|, M], choose an feLip(|K|, M) with [f]=q; then we
write . p(a)=ux »(f). By Proposition 2.3 and Lemma 4.8, we see that this gives us a
well-defined map from [| K|, M] to [|K!PI=1|, N].

LEMMA 4.9. Assume that 1<p<n, u,v€WHP(M,N), that K is a finite rectilinear
cell complex, and that h:|K|—M is a Lipschitz map. If h is a homeomorphism and
ug p(h)=vx p(h), then for any finite rectilinear cell complex L, and any Lipschitz map
g:|L|—M, we have ug p(g)=v# p(g).

Proof. Without loss of generality, we may assume that dim L<[p] —1. By the cellular
approximation theorem, we may find a go€C(|L|, M) such that g~go as maps from
|L| to M and go(JL|)Ch(|K!P1=1|). Then h~legoeC(|L|,|K!P)~1|). Since |[KIPI~1|is a
Lipschitz neighborhood retractor in the corresponding Euclidean space, we may find a
peLip(|L], | KP1=1]) such that ¢~h~logy as maps from |L| to |K[PI=1|. Hence hod~gy
as maps from |L| to h(|K[P1=1|). It clearly follows from Remark 4.1 that ug ,(hod)=
v#,p(ho@), and this plus Lemma 4.8 tell us that ug ,(g)=vx p(g). O

We note that Lemma 4.9 implies in particular that if 1<p<n, u,ve WHP(M, N),
hi: K;—»M are Lipschitz rectilinear cell decompositions for i=0,1, and ug p(ho)=
vg p(ho), then uyg ,(h1)=vx p(h,). Hence we introduce

Definition 4.1. Assume that 1<p<n and u,veWHP(M,N). If for any Lipschitz
rectilinear cell decomposition h: K— M, we have ug ,(h)=vz p(h), then we say that u
is ([p]—1)-homotopic to v.

It is easy to see that the relation of ([p]—1)-homotopy is an equivalence relation on
WLP(M,N) for the M, N,p in Definition 4.1. The following result, which was proved
by B. White in {Wh2], plays an important role in our future arguments. With the new
concept WHP(K) and its properties in §3, we may use the classical Sobolev embedding
theorem and Poincaré inequality on the unit ball instead of somewhat more complicated
ones in §2 of (Wh1] and §1 in [Wh2]|. This makes our proof technically simpler.

THEOREM 4.1. If 1<p<n, u,veWHP(M,N) and A>0, then there exists a positive
number e=¢e(p, A, M, N) such that

|dulpr(ary, [dvlrny < A and lu—v|pr(py<e = u is ([p]—1)-homotopic to v.
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Proof. Indeed this theorem follows from Proposition 4.1 and a simple compactness
argument. Since the details of the proof below would be quite helpful for understand-
ing the subsequent materials, we present it here. Fix a smooth triangulation of M,
say h: K—M. By Remark 4.1 we may find a Borel set E;C B! such that H!(E;)=0
and for any £€Be,\E1, we have uohe,vohe EWLP(K, N) and [uohg| gizi-1)] =ug p(h),
[vohe| kin1-1]]=vg,p(h). Let m be a natural number which will be determined later.
From Lemma 3.3 and Lemma 3.4 we know that, for any A€ K, d=dim(A), we have

£ a1 [ luthe(e)-vlhe@)P (@)
B N (4.7)

<c(M) /Mm(y)—v(y)lpd%"(y) <c(M)eP
and

£ 0@ [ 107 whela)e=a(whela)ol? dH! )
B, A s

< (M) /M |dPu(y) - d*Pv(y)P K™ (4) < c(p, A, M).

This implies

lipl
" ({&Béo:/A’“(’%(x))—v(hdx))l”dwd(x) > mc(M)e”}) S g
and
gl
! ({eeBlys [ 1o (uohela)s—a® uehela).l? dHt(a) > mep, 4,4 }) < T Bey)
(4.10)

From (4.9), (4.10), Lemma 3.3, Lemma 3.4 and Corollary 3.1, and by taking m large
enough (depending only on M), we may find a Borel set E;C B! such that H'(E;)>0
and for any £€ E;, we have:

(i) uohg, vohee WHP(K, N).

(ii) For any A€ K, denote d=dim(A). We have that u and v are approximately dif-
ferentiable at he(z) for Hi-a.e. z€A; d®P(uche|a)s =d*upg(zyo(he)s,z, d*P(vohela)z=
d®Pp, ()0 (he)x o for H-ae. zEA.

(iii) For any A€ K, d=dim(A), we have

/ |u(he (2)) —v(he(2))IP dH (z) <m-c(M)e? = c(M)e?,
JAN

/A 4% (uohe|a)a — d*P (vohela)a|P dHY(z) < m-c(p, A, M) = c(p, A, M).
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Hence for any A€ KPI-1 d=dim(A),
luohe|a—vohe|alL=(a) < ¢(p, A, M)e1+c(p, M)er PP~ Ve, (4.11)

Choose e1=¢1(p, A, M, N) such that c(p, A, M)e1< 3, then choose e=¢(p, A, M, N)
small enough such that c(p, M)e; ?/P~Peg 3€0. By (4.11) we easily see that

|u0h§||1({p]—1|—UOh,gIIK[p]—IHOO<E_0. (4.12)

By Lemma 4.1, (4.12) implies that wohg| kipi-1|~vohe| kir1-1| as maps from |[KlPI=1
to N. Choosing a £€ Fo\ Ey, we conclude Theorem 4.1. O

5. Path connectedness of spaces of Sobolev mappings

We use the same notations as in §4. Recall that for u,veWHP(M, N), if there exists
a continuous path in W1P(M, N) connecting them, then we write u~,v. We have the

following

THEOREM 5.1. Assume that 1<p<n and v, v€W'P(M,N). Then u~ypv if and
only if u is ([p]—1)-homotopic to v.

Before we proceed, we note that if p>n, then by the Sobolev embedding theorem
and Poincaré inequality (see [SU] or [BN]), one easily deduces that the path-connected
components of WHP(M, N) corresponds bijectively to [M, N] by a natural map.

We need some simple observations before proving Theorem 5.1.

Observation 5.1. Assume that meN, 1<p<oo, and that ue WHP(BJ*, N) is such
that the trace T(u)=feW?'P(0B;, N). For 0<t<1, define

u(x/t)  for |z| <t
f(z/|z) fort<|z|<1.

w(t)(z) = {

Then weC((0,1], WHP(By, N)) with w(l)=u. Note that usually we cannot extend w
continuously to t=0 if p=m.

Observation 5.2. Assume that meN, 1<p<m, and that ue W}P(BT*, N) is such
that the trace T(u)=feW!P(8B;, N). For 0<t<1, define

w(t)(@) = { u(z/t) for |z|<t,

flz/lz]) fort<|z| <1
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Then w is a continuous path in WhHP(B;, N) with w(0)(x)=f(z/|z|), w(l)=u and
T(w(t))=f for any 0<t< 1. Especially, this gives us the following important boundary de-
termination principle: for any u,v€ W1P(By, N), if T(u)=T(v)=f€W'P(8B;, N), then
we may find a continuous path w in W?(Bj, N) connecting u and v, with T(w(t))=f
for any 0<t<1.

Observation 5.3. Assume that meN, 1<p<m, and that f is a continuous path in
WLP(8B, N). Define f by f(t)(z)=f(t)(z/|z|) for 0<t<1 and z€B™. Then f is a
continuous path in W1P(B*, N).

Proof of Theorem 5.1. Assume u~pv. Then there exists a continuous path w in
WLP(M, N) with w(0)=u, w(1)=v. By compactness we may find an A>0 such that

sup |dw(t)| r(m) < A.
0<t<1

We may also find a §>0 such that for any 0<t1,t2<1,
'tl‘t2|<6 = Iw(tl)"w(t2),LP(M)ge(p,AvMaN)a

where £(p, A, M, N) is the number in Theorem 4.1. Choose an m€N such that 1/m<4.
Then for any 0<i<m—1, w(i/m) is ([p]—1)-homotopic to w((i+1)/m). This implies
that w(0)=u is ([p]—1)-homotopic to w(1l)=v.

On the other hand, suppose that we are given two maps u,ve W"P(M, N) which
are ([p]—1)-homotopic. First let us assume p¢Z. For convenience we denote k=[p]—1.
Choose a smooth triangulation of M, say h: K— M. From §3 and §4 we may find a EEBéo
such that uohg,vohe €WVP(K,N) and uohe| x| ~vohe| x| as maps from |K*| to N.
By Lemma 3.2 we may find a sequence f;€Lip(|/K**!|,R!) such that fi—ruohe|jgrs,
in WhP(K*+1 RY). By using the Sobolev embedding theorem on each simplex we see
that for j large enough we have

sup | fj(x)—ulhe(x))| < &o.
z€|Kk+1|

It follows that the path

w(t)(z) =n((1-t)f;(z)+tulhe(z)))

is continuous in WHP(K*+1 N). We extend each w(t) to a map @w(t)eWLP(K,N) in
the following way: For each (k+2)-simplex A, in view of the fact that @w(t) has already
been defined on Bd(A), we choose the barycenter of A as origin and do homogeneous
degree-zero extension to get w(¢) on A. Simply by induction we finish after working with
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n-simplices. It is easy to see that @ is a continuous path in WH?(K, N). In addition,
from Observation 5.2 and Observation 5.3 we easily deduce that w(1) can be connected
to uohg by a continuous path in WHP(K, N). Using k¢ to go from |K| to M, we may
assume that uwohgjgr+1) is in Lip(|K**!|, N) and that uche is a homogeneous degree-
zero extension on each simplex with dimension strictly higher than k+1. A similar
procedure can also be applied to v. What we have shown so far is that we may assume
that both u and v have the additional properties that after composition with h¢, they
are in WHP(K, N), Lipschitz on |K**!| and homogeneous of degree zero (in the sense
just described above) on any A€ K with dim(A)>k+2. Indeed any u,ve WLP(M, N)
can be connected by a continuous path in WHP(M, N) to maps with these additional
properties. Since uohg| gx)~vohe| gr) as maps from |K k| to N, from the proof of Propo-
sition 2.2 (HEP), we may find an feLip(|K**!|,N) such that f| g+ =vohe|xx and
fr~uohg||gr+1| as maps from |[K**1| to N. From Proposition 2.3, we may find a continu-
ous path in Lip(|JK**1|, N) connecting f and wuoh¢| gr+1}; clearly it is also a continu-
ous path in WHP(K*+1 N). Any such f can be viewed as the restriction of a map in
WULP(K, N), still denoted by £, to |K**!|. Indeed we simply define inductively, for each
A€ K with dim({A)>k+2, f to be the homogeneous degree-zero extension (with respect
to the barycenter of A} of its value on BA(A). Then we see that uche can be connected
by a continuous path in W1P(K, N) to f by Observation 5.3. Therefore we only need to
show that f can be connected to voh; by a continuous path in W”’(K ,N). But now f
and vohe have the additional property that f=vohe on |K*|. Applying Observation 5.1
to each (k+1)-simplex, we may assume that for any A€ K with dim(A)=k+1, we have
Sfla\Bstca)=vohela\B,(ca)- Here ca is the barycenter of A, and 6 is a small number.
Fix such a A. It must be the face of several (k+2)-simplices, say £,,...,X,, 7=2. Now
consider Q=J]_, Q;, where Q,CE; is formally equal to (Bas(ca)NA)x [0, €], for which
the product means that we go in the ; in the normal direction by length €, another
small number. Define

Q) =(Ba(ca)NA)x [0, 3], @ =(Ba(ea)nA)x[de,e], =0, @'=0 Q.

i=1 i=1

Now consider a w defined on |K**+2| by setting w|o: =vohe, w| gr+2po=uche||xr+2)\q-
On each © we simply do homogeneous degree-zero extension with respect to a point in
Int(Q2). Clearly we WHP(K**+2 N). We note that the set £ is star-shaped with respect
to ca, the barycenter of A. One may use simple radial (with the origin ca) deformations
as in Observation 5.2 to see that a similar boundary determination principle is valid for .
In particular, w can be connected to f| xx+2 by a continuous path in WIYP(K'““‘?, N).
Define w inductively to be the homogeneous degree-zero extension of w on each higher-
dimensional simplex A with dim(A)>k+3, from its value on Bd(A) as described before.
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Then for ﬂzzT)ohE_l, one has dwpfohgl/vpu. Moreover, since @iohg||gr+1)=vohe||gr+1),
it~ v follows. Therefore we complete the proof of uw~ypv.

If peZ, we only need to use Lemma 3.2 and Lemma 4.4 to show that the original
maps « and v can be connected by continuous paths in WP(M, N) to maps with the
additional properties uohg,vohe € WHP(K, N), uohe| ks and vohe| k| are Lipschitz, and
uohe|(kr|~vohelikr). The rest of the proof is the same as before. a

Now we will show how Theorem 5.1 reduces certain problems about Sobolev map-
pings, which are analytical problems, to pure topology problems.

PROPOSITION 5.1. Assume that 1< p<n. For any Lipschitz rectilinear cell decom-
position of M, say h: K—M, we set MI=h(|K|) for any j. Then the following two
natural maps are bijections:

C(MP N/ ~ppini— ¢— Lip(MPL N )/ ~ppipion i — WP (M, N) [~

Here for f,géC(M[”],N), f~aip—1g means that f|pie-1 and glpsie1-1 are homotopic as
maps from MP1=1 to N. For f,geLip(MPl N), F~ptni-1 Lip g means that flppn-1 can
be connected to g|pim-1 by a continuous path in Lip(MIP)=1 N). The natural map for
the left-pointing arrow is the obvious one. The map for the right-pointing arrow is defined
as follows: For any f€ Lip(M[”], N), using h to pull f to K'?!, after doing homogeneous
degree-zero extension on higher-dimensional cells, we pull it to M by h and get u. Then
we send the equivalence class corresponding to f to the equivalence class corresponding

to u. This map is well defined by Theorem 5.1.

Proof. 1t clearly follows from Proposition 2.3 that the left-pointing arrow is a bijec-
tion. To prove that the right-pointing arrow is a bijection, first let us show that it is one-
to-one. Assume that f,geLip(|K!Pl|, N), and let f and § be homogeneous degree-zero ex-
tensions of f and g respectively to |K'| (as we described in the proof of Theorem 5.1). Let
u=foh™!, v=goh~L. It is clear that ug p(R)=[fl|ktwi-1}}; v.p(R) =gl k1r1-1 )] If u~pu,
then it follows from Theorem 5.1 that f| gis1-1|~9g| k(pi-1|. This shows that the map is
one-to-one. On the other hand, given any map uc WH?(M, N ), we may find a £€ B, such
that uche eWHP(K, N). Tt follows from the proof of Theorem 5.1 that after going through
a continuous path in WP(M, N) we may assume that uoh5||K(p1|€Lip(|K[”]|,N) and
uohe EWVP(K,N). Since uch¢oh™!~,u, we may assume that uche WHP(K,N) and
uoh|| k101 € Lip(| K [Pl|, N). Now it is easy to see that the equivalence class corresponding
to u|pe is mapped to the equivalence class corresponding to u. That is, the right-
pointing arrow is onto. O

Recall that for any 1<g<p<oo, we have a map

iP»q: Wl’p(Mv N)/NP — Wl’q(M’ N)/Nq
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defined in the obvious way (see [BL]). An immediate consequence of the above proposition
is the following

COROLLARY 5.1. Assume that keN, k<g<p<k+1. Then i, is a bijection.
Note that Corollary 5.1 gives a positive answer to Conjectures 2 and 2’ in [BL].

COROLLARY 5.2. Assume that 1<p<n, and m;(N)=0 for [p]<i<n. Then the two

natural maps
C(MaN)/NM A LIP(M, N)/NM,LiP_) WIYP(M’N)/NP
are bijections. The notations are understood similarly as in Proposition 5.1.

Proof. By Proposition 5.1 we only need to verify that the natural map
C(M, N)/~pg — O(MP, N) [ ~pg1-3

is a bijection for a smooth triangulation of M. But this clearly follows from cell-by-cell
extension in view of the vanishing condition of homotopy groups of N. O

We note that Corollary 5.2 generalizes Theorem 0.6 in [BL].

COROLLARY 5.3. Assume that M and N are connected and 1< p<n. If there exists
a k€Z, 0<k<[p] -1, such that m;(M)=0 for 1<i<k, and m;(N)=0 for k+1<i<[p] -1,
then WULP(M, N) is path-connected.

Proof. By Proposition 5.1 we only need to verify that for a smooth triangulation
of M, C(MPl, N)/~ps1s-1 has only one element. But this follows easily from Theorem 3
and the proof of Theorem 3’ in [Whl]. O

Corollary 5.3 generalizes Theorem 0.2, Theorem 0.3 and Proposition 0.1 in [BL].

We now turn to the question whether a given Sobolev map in W1?(M, N) can be
connected to a smooth map by a continuous path in W1?(M, N). It turns out that there
is a necessary and sufficient topological condition for that to be true.

PROPOSITION 5.2. Assume that 1<p<n, ue WHP(M,N), and that h: K~ M is a
Lipschitz rectilinear cell decomposition. Then u can be connected to a smooth map by a
continuous path in WHP(M, N} if and only if ug »(h) is extendible to M with respect
to N.

Proof. Assume that u~,v for some veC*(M, N}. Then from Theorem 5.1 we have
ug p(h)=vg p(h), but clearly vy ,(h) is extendible to M with respect to N.

On the other hand, if ux ,(h) is extendible to M with respect to N, then we may find
a v€C™ (M, N) such that [veh||kis-1)]=ug,p(h). Thus u and v are ([p|—1)-homotopic,
and hence u~pv by Theorem 5.1. g
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COROLLARY 5.4. Assume that 1<p<n. Then every map in WHP(M,N) can be
connected by a continuous path in WHP(M, N) to a smooth map if and only if M satisfies
the ([p]—1)-extension property with respect to N.

Proof. Fix a smooth triangulation of M, say h: K+ M.

Assume that every map in WHP(M, N) can be connected continuously to a smooth
map. For any feLip(M (p] N ), let g be the homogeneous degree-zero extension of
feohlikiz) to |K|. Then u=goh~'eW'P(M, N) and ug p(h)=[gl kii-1|]. Since u can be
connected continuously to a smooth map, from Proposition 5.2 we know that f|,;5-1
has a continuous extension to M. By Propositions 2.2 and 2.3 we know that M has the
([p]—1)-extension property with respect to N.

On the other hand, assume that M satisfies the ([p]—1)-extension property with
respect to N. Given any ue WHP(M, N), after going through a continuous path in
WbLP(M,N), we may assume that there exists a £€B. such that uohg ke €
Lip(|K"!|, N) and ug,p(h)=[uchg| k1s1-1)]. Hence by Proposition 5.2, u may be con-
nected continuously to a smooth map. O

Remark 5.1. Corollary 5.4 covers Theorem 0.5 of [BL]. It is the particular case when
M satisfies the ([p]—1)-extension property with respect to N. We also have the following
statements. Assume that M and N are connected, 1< p<n. If either [p]=1 or [p]>2 but
7;(N)=0 for [p]<i<n—1, then every map in W!'P(M, N) can be connected to a smooth
map. This, again, is because M has the ([p]—1)-extension property with respect to N.

Because of this necessary and sufficient topological condition for every map in
W1P(M,N) to be connected to some smooth map by a continuous path in W?(M, N),
we obtain the following corollary, which provides a class of counterexamples to Conjec-
ture 1 of [BL].

COROLLARY 5.5. If my,ma€N, mo<m; and 3<p<2mo+2, then some maps in
WLP(CP™, CP™?) cannot be connected to smooth maps by continuous paths.

Proof. For any meN, CP™ has a natural CW complex structure as
CP’cCP'c..ccp™.

In addition, by considering the fibration CP™=82"*+1/S! we know that m;(CP™)=0
for 0<i<2m—1, i#2.

We claim that there is no continuous map feC(CP™!,CP™?) such that f|cp::
CP!cCP™ - CP!CCP™ is the identity map. To see that the claim is true, let o; be
the cohomology class in H2(CP™*) corresponding to CP*! for i=1,2. We know that the
cohomology ring H*(CP™) is isomorphic to Z[a;]/{a"T1=0} (see [Vi, pp. 174-175]). If
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such an f exists, then a; =f*(or2), which implies that af*2t1=0. The latter is impossible.
Next we observe that the identity map from CPP/ZcCP™ to CP!?2cCP™, when
restricted to CPI(P~1)/ 2], has no continuous extension by the claim above, and using
Corollary 5.4 we conclude the proof. O

Remark 5.2. By considering cohomology rings with Z,-coefficients (see [Vi, p. 175]),
the same proof gives us the following statement: If m, me €N, my<m, and 2<p<my+1,
then in W1 P(RP™, RP™?) there are some maps which cannot be connected to smooth

maps by continuous paths.

6. The strong density problem for Sobolev mappings

An important technique in the study of approximation problems for Sobolev mappings
is to use certain deformations with respect to the dual skeletons, which was used in the
geometrical proof of the Poincaré duality theorem and in Federer—Fleming’s theory of
normal and integral currents. We present a version for finite rectilinear cell complex here.
One should compare with [Wh1, §1], [Hj, §2] and [Vi, pp. 143-146].

Let K be a finite rectilinear cell complex with dim K=m. For each A€ K, we pick
a point yo€Int(A). Denote Y=(ya)acx- Given an integer k, 0<k<m—1, for z€|K¥|
we set |z|x=1. For k+1<i<m, if | - |x has been defined on |K*~}|, then for each A€ K
with dim(A)=1, and each €A, we set

T—Ya

Yat o (6.1)

[k = |z|a-

k
For the definition of |z|a, one should see (3.1). Hence by induction, we eventually get a
function | - | on |K|. In fact, the function | - |, depends on K as well as on the choice of Y,
but to avoid heavy notations, we don’t explicitly write them out. Similar conventions
apply for many notations in this section, but will not cause confusion in practice. For
0<e<1 we set T*={z€|K|:|z|x=¢}. Then we may decompose |K| as

[K|= U T¢, Ti=|K*| (6.2)
0ge<1
If we denote L™ *~1=T%k and set L™=|K|, then we call L the dual i-skeleton of K.
Now we want to define a map ¢¥: {z:0<|z|, <1} =»T¥=|K*|. First look at |[K**1|.
For any ze|K**!|, if z€|K¥|, then we set ¢¥(z)=z. Otherwise, there exists a unique
A€K with dim(A)=k+1 such that z€Int(A). Then we set

k(@) =yat -2, (6.3)
lz|a
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Assume that for some k+2<i<m, ¢%: {z:0<|z|,<1}N|K*"1|=T% has been defined.
Then for z€|K*|, 0<|z|x <1, if z€|K*~}|, then ¢¥(z) has already been defined. Other-
wise, there exists a unique A€ K such that dim(A)=:¢ and z€Int(A). In the latter case

we set

ohta) = ot (vt 1), (6.4

|z|a
By induction we eventually get a map ¢¥ from {z:0<|z[x <1} to T'%.
Next we want to define a map ¢*: {x:0<|z|x <1} x(0,1)—|K| with the property

|p*(z,€)lk=¢ for 0<|z|p<1,0<e<]. (6.5)

For convenience we write ¢¥(z)=¢*(z,¢). Hence ¢*(z,1) is also defined for 0< |z|x<1.
To define the needed ¢, we first look at |K**1|. For any z€|K**1|, 0<|xz|x <1, there

exists a unique A€ K such that dim(A)=k+1 and z€Int(A). Then we set
€

¢k(a:,€)=yA+M(x—yA) for 0<e< 1. (6.6)
Assume that for some k+2<i<m, ¢*(z, ) has been defined for z€|K*~!| with 0< |z, <1,
0<e<1. Then for any z€|K*| with 0<|z|x <1, if z€|K?|, then ¢*(z, €) has already been
defined for 0<e<1. Otherwise, there exists a unique A€ K such that dim(A)=3: and
z€Int(A). Then we set
1-|z|a
1-|alx’

¢’°(x,e>=yA+0-(¢’°(yA+f"—yA 5)—yA)- (6.8)

lz|a ' 6

0=1-(1-¢)

(6.7)

By induction, we eventually get the needed map ¢*.
In the future, we shall need a map F,;fs: |K|—|K| for 0<d<e<1, which is defined

by
z, when e < |z]x <1,

FE () = ¢:(x,a)_,1 when 6 < |z|k <, 69)
¢*(z,87'e|z|x), when 0< |z|x <4,
z, when |z|x=0.
Let 1<p<n. Then we denote
RP®°(M,N)={u:u€W"P(M,N), there exists a smooth rectilinear
cell decomposition of M, say h: K— M,
and a dual (n—[p]—1)-skeleton L"~[PI=1
such that u is C*° on M \h(L"~[PI=1)},
The following statement was due to F. Bethuel (see [B2, p. 154, Theorem 2]). But for
reasons explained in the introduction we need to give a somewhat different proof.

(6.10)
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THEOREM 6.1. Assume that 1<p<n. Then R""*°(M,N) is dense in WY“P(M, N)
under the strong topology.

We need some preparations before proving this theorem.

LEMMA 6.1. Let Q be any separable Riemannian manifold without boundary { pos-
sibly noncompact, incomplete and nonconnected), and 1<p<oco. If £ is the Banach
space C(Q, R)NL®(Q)NWP(Q) with norm |ule =|u| e (o) +|ulw1.(q), then C®(Q)NE
is dense in £.

Proof. Fix a u€€& and an £>0, and choose a locally finite open cover of Q, say
{U; }‘]?‘;1, such that U. ;CQ is compact. Choose a corresponding partition of unity {¢; }J"‘;l
(see [Wa, p.10]). Let u;=(;u and choose v;€C®(U;) such that |v; —u;|le<e/27. Let
vzz;’ilvj. Then veC>=(Q). For any VCQ open with V compact, we may find an
m>0 such that VNU;=@ for j>m. Hence uly =370, 45, vlv =37, v;, and we easily
see that ju—wv|g <e. This implies the conclusion. d

Lemma 6.1 along with the nearest point projection 7y imply in particular that, if
€2 is the same as in the lemma, then for any 1<p<oo and any ue W1?(Q2, N)NC(Q, N),
we may find u;€C°°(Q, N)NWHP(Q, N) such that sup ¢ Ju;(z) —u(z)| =0 and u;—u
in WhP(Q, N).

To facilitate the proof of Theorem 6.1, we need to introduce various notions. Given
two rectilinear cell complexes K, and K such that |K;|=]K3|. Let

K= {AlﬂAg A €Ky, ArEK,, AlﬂAz#Q}.

Then K is a rectilinear cell complex which is a subdivision of both K; and K;. We say
that K is the rectilinear cell complex generated by K, and Ks.

For any cube Q, we use K¢ to denote the rectilinear cell complex defined by Kg=
{all faces of Q}. We note that Q is a face of itself.

Assume that deN. If a cube in R is of the form HLI [a%, 8], @', b €R, a*<b', then
we say that it is a normal cube. If K is a finite rectilinear cell complex such that each
cell in K is a normal cube, then we say that K is a normal complex. If K; and K>
are two normal complexes such that |K;|=|K3|, then clearly the rectilinear cell complex
generated by K; and K5 is a normal complex too.

For k€Z, 1<k<d, we write Hy ;={z:zcR? z*=t}, where z* is the kth coordinate
of z. For a€(R*)4, we denote I,=[]%_,[0,a]. For any 0<t<aF, let

Q1={$€Ia:0<xk<t} and Q2={x€Ia:t<wk<ak}.

Then we denote K, x ;=Kq,UKg,.
The following lemma is an easy consequence of a Fubini-type theorem (see also
Corollary 3.1).
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LEMMA 6.2. Assume that a€(R*)%, and that K is a normal complex such that the
polytope |K|=1,, 1<p<oo, i€Z, 1<i<d. For any te(0,a’), we may use H;, to slice
K to form another normal complex, say Ly; that is, Ly is the normal complex generated
by K and K, it Assume that ueWLP(K,R). Then for H!'-a.e. t€(0,a"), we have
u€WHP(Ly).

We remark that Lemma 6.2 says that almost every slice is nice. Hence when we
choose generic slices in the future, we may always assume that we are choosing slices
among the nice ones.

Let ac(R*)4. If we are given m; €N, 0=t; 0<t; 1<...<t; m,=a’ for 1<i<d, then we
say that {H; ;,,N1,:1<i<d, 0<j<m;} is a net on I,, and denote it as N. Given 0<6<
min; gigq @', set m;=[a’/8]. If for some A>1, we have §/A<t; j41—t; ;< AS for 1<i<d,
0<j<m;—1, then we say that N is a (4, A)-net. N divides I, into m; ... mg small cubes.
That it is a (6, A)-net simply means that every small cube is [0,4]? after a translation
and an inhomogeneous dilation. Also the Lipschitz constants of this transformation and
its inverse are dominated by A.

We note that for any net A on I,, we have a natural normal complex K such
that |Kx|=1,. Indeed we just take it as the normal complex generated by {Kq,,:
1<i<d,0<j<m;}. Given any face @ of I, and any net N on Q, N generates a normal
complex Kg, n such that |Kg n|=Q. Then we define a normal complex

Ky =Ko nU{A: A€ K, such that AZQ}.

Clearly |Kn|=1,. If we are given m faces of I, say Q1,...,@m, and for each ¢ a net
N; on Q;, then we call the normal complex generated by Ky, ..., Kx;,, as the normal
complex generated by N1, ...,Np.

For any Riemannian manifold (2, given a k-rectifiable subset S of §2 and a suitable
differentiable function v on S, 1< p<oo, we denote E,(u, k, S) =f5 |dsulP dHF, where H*
is the k-dimensional Hausdorff measure. We simply write E(u, k, S) when it is clear what
p is.

The next lemma contains one of the key analytic estimates that are needed in our
proof of Theorem 6.1. We postpone the proof of it to Appendix A.

LEMMA 6.3 (generic slicing lemma). Assume that a€(R*)?. For each face of I,,
we pick a net on it, and all these nets together generate a normal complex K such that
|K|=1,, 1<p<oo, ue WVP(K,R). Then there exists an absolute constant A>1 such that
for any 8, 0<d<min;g,cqa’, there exists a (5, A)-net N on I, such that ue WhP(K),
where K is the normal complex created from K and N, and we have

E(u,i, [K*|N(IK7\|K77Y) < c(d)(1/8Y T E(u, 5, |K?))  for 1<i<j<d.
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The above inequalities imply in particular that
J
E(u,i, |[K'|N|K7|) <e(d) Y (1/6)* E(u, k, |K*))+ E(u,i, |K*])
k=i+1
for 1<i<j<d.
We also introduce the map @, : N x RSN , which is defined by

m(x+&(y—x)/|ly—=z|) for [y—z|> &,

on(z,y) ={

m(y) for ly—z| < &.

We have Lip(oy|yyn)Sc(N).

Finally we observe the following fact. Assume that K is a finite rectilinear cell
complex, 1<p<oo, k€Z, k>0, and that ue WHP(K,R) with u|jg+€C(|K*|). Then
there exists a sequence u; EW"P(K,R)NC(|K]) such that w;||x«=u| g+ and u;—u
in WHP(K). This fact follows from the proofs of Lemma 3.1 and Lemma 3.2. As a
consequence, we have

COROLLARY 6.1. Assume that K is a finite rectilinear cell compler, 1<p<oo,
k€Z, k20, ucW'P(K,N), u| xx €C(|K*|,N), and that there exists a yy€ N such that
u(|K|)CB£0(yO). Then there exists a sequence u; EWVP(K,N)NC(|K|,N) such that
U; U N Wl,p(K)’ ui||Kk|=U||Kk| and ui(|K|)CBéEO/2(yO).

Proof. By the observed fact above, we may find a sequence
v e WP (K, RHNC(IK|,RY)

such that vg||gr| =u| g+ and v; »u in WHP(K). Then u;(z)=py (3, vi(z)) is the needed
sequence of maps. O

With all these preparations, we can proceed now with the proof of Theorem 6.1.

Proof of Theorem 6.1. Define RP(M, N) as the set similar to R”°°(M, N) but with
C® replaced by C°. By the fact that we stated after the proof of Lemma 6.1, it suf-
fices to show that RP(M, N)=WU'P(M,N). For convenience, we assume p¢Z at first.
Fix a smooth cubeulation of M, say h: K—M, such that each cube in K is normal.
Given ue WVH?(M, N), by Lemma 4.3 we may assume f=uche W"P(K,N). Applying
Lemma 6.3 on the n-cells in an arbitrary order, we get a (8, A)-net on each of them.
These nets together with the original K create a normal complex, called K,,. We have

fewWlP(K,,N) and

E(f,i, |KL) <c(M) Y (1/8) 7 E(f,5,|K? ) < e(M)(1/6)"E(f,n, [K"|)  (6.11)

g=i
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for 1<i<n and all sufficiently small 6.
Fix a v€(0,p). For each n-cube @ in K, if for every 1<i<n, we have the normalized

energy
SPTUE(f, 14, |Ké2|) <6, (6.12)

then we say that @ is a good cube; otherwise we call it a bad cube. Denote G as the union
of all good cubes, and B as the union of all bad cubes. Clearly we have

H™(B) <c(M)6"""E(f,n, |K]), (6.13)

and hence H"(B)—0 as §—0*.

Let us first look at good cubes. Fix two positive numbers §; and §> such that
0<9;<b2<1/A. If Q is a good cube, from the Sobolev embedding theorem we know
that f II K is continuous and

osc(f, |KZY) < c(p, M)6"/?. (6.14)

Choose a yQGf(|Kg] ). By Lemma 6.3 we may find a (019, A)-net A such that flp€
Whp(K, @, N), NV induces a net on each (n—1)-face of @, and K, @ is the normal complex
created from K together with all these induced nets. Moreover, we have

E(f,4, IKGIN(IKLHN\KS ) < e(M)(1/6:8) 7 E(f, 3, |1KD)) (6.15)

for 1<i<j<n. Here A is an absolute constant. This, combined with (6.12), implies

(610" E(f,4,|K5)) < c(81,p, M)§*  for 1<i<n. (6.16)
By the Sobolev embedding theorem we have that f || R is continuous and
Q
osc(f, IKG']) <e(81,p, M)/ (6.17)

If we set & to be small enough (depending on §,) and f(z)=cpN(yQ,f(x)) for z€Q,
then we have that f=f on |K g’ ]|. From Corollary 6.1 we may find a sequence f;€
WHP(Kq, N)NC(Q, N) such that f;—f in W'P(Kq, N) and f;=f=f on |[KJ1]. Set f
to be f; on Q for some j large enough. This j depends on Q. Let xg be the barycenter
of Q. Then for any a€(0,1), we denote Qo=zg9+(1—-a)(Q—zg). For any z€Q, we
define 7(x) to be the unique nonnegative number such that z€zg+r(z)(Bd(Q)—zq),
that is, 7(z)=[|q,z,- Then we define a map ¢: Qs5,—Q by

z, TE€Qs,,
b(a) = 5\ a (©18)
xQ+(1—62+(r(a:)—1+52) 62—61)Tw)’ T €Q5,\Qs, -
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For any z€Qjs,, we set f(z)=f(¢(z)). Now we want to define f on Q\Qs,.- We observe
that

f(z)=f(¢(z)) for zed™ (IKZ)). (6.19)

This relation is important for the final construction of f. Assume that f has already
been defined on [K"~!| such that for any good cube @,

flaa@ €WPP(KLLN), f(z)=f(z) for ze|KY)| (6.20)
and
B(f,1,|Kb)) <c(p, M)E(f,i,|KS) for [pl+1<i<n—1. (6:21)

Then we define f on Q\Qs, as follows. First set ¥: Q\Qs,—Bd(Qs,) as

W(z) =z0+(1-01) ””r‘(j;? for € Q\Qs,. (6.22)
Let C be a [p]-cell in I?Q. On ¢~1(C) we simply define f(z)=F(¥(z)). Now for any
([p]+1)-cell C in Kq, we observe that 1~!(C) is Lipschitz equivalent to [0,5;5]PI+1,
where the Lipschitz constants are dominated by a constant depending only on n; we sim-

ply do homogeneous degree-zero extension on ¥~1(C) for f of its value on Bd(y~1(C)).
Inductively, we finish after having done this for the (n—1)-cell in K - We need to em-
phasize that we have not fixed the choice of f on |K7~1| yet, we just need it to satisfy
(6.20) and (6.21) for good cubes up to now, so there are still lots of freedom in choosing
such an f .

Next we look at bad cubes. If @ is a bad cube, for any a€(0,1/4), we may find an
(ad, A)-net Ng such that f |Q€W1'P(Rq, N), where K o is the normal complex created

by NMg. Moreover, o
c
ad

E(f,n—1,|K3') < E(f,n,|K3) (6.23)

for o sufficiently small. Assume that f has already been defined on |I? 5_1| such that
fllks—llewl’p(kg_l,]v), and in addition that f satisfies

E(f,n—1,|K37) <clp, M)E(f,in—1,|K57")). (6.24)

Then on @, we simply set f as the homogeneous degree-zero extension for each n-cell
in K Q-

We have not finished defining f yet, because we still need to define f on the union
of |K 5"1| for all n-cells @ in K,. It needs to satisfy (6.20), (6.21) for good cubes and
(6.24) for bad cubes. To find such an f, we introduce a new normal complex K, _;.
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K,_1 is created from the union of K 5_1 for all n-cells in K,. In view of Lemma 6.2

we know that feWVP(K, 1, N). For any (n—1)-cell Q€K,_1, let A be the minimal

side length of Q. For any a€(0,1), we may find an (a), A)-net, say Np, such that

floEW'P(Kq,N) and

c(M)
a\

E(f,n—2,|K372)) < E(f,n-1,Q) (6.25)

for sufficiently small . Again if f has already been defined on the union of |I? 5_2|, and
B(f,n-2,|K5"%) <c(p, M)E(f,n—2,|K37?)), (6.26)

then on @ we simply put f to be the homogeneous degree-zero extension on each (n—1)-
cell in K @- We keep this procedure going until we reach K|,. On |K [[5 ]]], we simply put
f=Ff. Going back we get the needed f.

Let @=foh~'. Then a careful computation shows that (see also [B2, pp. 170-173])

|&—ulwi.pmy < B1(6, 61, 02)+B2(1, 62)+B3(d2) +e,

where (1(6,01,02)—0 if we fix 61,02 and let §—0%, B2(d;,82)—0 if we fix 6, and let
81 —0%, B3(d2) =0 when 62 —0%. Thus in order to make @ close to u, we first choose ¢
to be very small, then choose d; so small that 85(d2) also will be small. Next for such
fixed &3, we choose 0; even smaller so that the resulting 85(d1,82) is also very small.
Finally we choose d to be so small that (3;(9, §1,d2) is small. In this way we will be able
to find a sequence of maps in R”(M, N) converging to u strongly, and hence we get the
theorem. If p=1, the same proof goes through. If p€Z and p>2, then we only need to
add Lemma 4.4 on the p-skeleton. This completes the proof of Theorem 6.1. O

Our next goal is to show that under certain topological conditions, a map in
RP*°(M,N) can be approximated by smooth maps. We need some more notation.
Let X and Y be two topological spaces, A be a subset of X, and a€{X,Y]. Then we
may define a|4€[A,Y] by aja=|f|a] for any f€a. It is clear that {f| 4] does not depend
on the specific choice of f in a.

THEOREM 6.2. Assume that 1<p<n, h: K—M is a Lipschitz rectilinear cell de-
composition, M*=h(|K?|) for i>0, L"~P1=1 is one of the dual (n—[p]—1)-skeletons, and
ueWhP(M, N) is such that u is continuous on M\R(L"~P1=1). Then ue Hy?(M,N) if
and only if u|pim has a continuous extension to M. In addition, if for some a€[M, N],
we have upip €0 prim, then we may find a sequence u;€C>*(M,N) such that [u;]=a
and u;—u in WHP(M, N).

Proof. If uEHé’p(M,N), then we may find a sequence u;€C*(M, N) such that
u;—u in WHP(M, N). Let eg=£o(M) be a small positive number, H(z,&)=n(h(z)+&)
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for z€|K|, €€ BL,. Then X, i,u, =[tioh| k)] a.€. on B! . 1t is clear that for some £;>0
small, X(p), #r,u=[uh| kx| 2.€. o0 B! . By Proposition 4.1, we see that, after passing to
a subsequence, we have [u;oh|| K[pll]z[uohh K[p]|] for ¢ large enough. This implies that
uoh||kp1| has a continuous extension to [K|, and hence that u|y- has a continuous
extension to M.

To prove the inverse, first we observe that we may assume u to be smooth on
M\A(L™[PI=1), Indeed if this has been proved, then the theorem follows from the fact
after Lemma 6.1.

To proceed we use the idea of the proof of Theorem 1 in [Wh1], but with the new
deformations that we constructed at the beginning of this section. Let k=[p]. Since k
is fixed, we shall write I, ¢ and Fj . instead of '}, ¢* and F¥_ for convenience. For
0<e<1, |K*| is a deformation retractor of {x€|K|:|z|x >¢}; indeed F; for e<t<1 is the
needed deformation. Choose a v€C(M, N) such that [v]=a. Let gg=v<h, f=uch. Since
flix»~9ol|kir)s it follows that f~go on {z€|K|:|z|x =€}, and from Proposition 2.2
(the homotopy extension theorem) we conclude that there exists a geLip(|K|, N) such
that g=f on {z€|K|:|z|;>¢c} and g~go. For 0<d<e<, we set f5.(x)=g(Fs.(z)) for
z€|K|. Then f5.€Lip(|K|,N) and fs5.~g~go. In fact, we only need to consider goFj ,
for e<t<1 and goF,; for §<s<1 to see the homotopy relation. We have the following
basic facts {see Lemma B.2 and Corollaries B.1, B.2 and B.3 in Appendix B):

(P1) H*({z<|K|:|z|r<e}) <c(K, Y)ekt! for 0<e<d;

(P2) 0<ce(K,Y)71<|d(] - |x)|<e(K,Y) H™-a.e. on |K|;

(P3) |dFs.c(z)|<c(K,Y)e/ ||k for 6< |zl <e<y;

(Pa) |dFs.e(z)|<c(K,Y)eb™! for |z|p<b<e<y;

(Ps) for 0<d<e<3, J(%lrc)gc(K, Y)(6/e)* H™ l-a.e. on T..

It is clear that

{ze|K]|: fs..(z) #f(z)} C{z€|K]|: |zlx <}

Hence to estimate |f5.— f |V~V1,p( k) We only need to control
[ Wh@pP .
|zlx<e

First of all we have

/ |dfs,e(2)[P dH™(z) < e(p, K, V)91 10x / |dFs.c(x)P dH™ (z)
) <6 P [z <8 (6.27)

<ce(p K, )) [g]iipqxl)ep‘skH_IJ [by (P1) and (P4)}.
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Secondly we know that

/ (dfs,c ()P dH" (z)
d<|z|k e

<e(p, K, Y)e? /5 o A E @ ) by (Po)
<e(p, K, V)e? /5 o JADEP A @) @) oy ) (628)

=c¢(p, K, y)s”/ dr/ r7P|(df)(¢e(2))|PdH™ (x) [by the coarea formula)
é lz|=r
£
=c(p, K, y)ep/ dr/ r"’]dfl”J(q) I )d’H"_l [by the change-of-variable formula]
s Jr. mile

<o(p K, Y)e /F dfiPdH™" [by (Ps)]

Next we observe that for any 0<t< %,
2t
/ dr/ |df|P dH™ ! =/ ldf(z)|PJ|. | (z) dH™(z) [by the coarea formula]
t r. t< |l <2t

<c(p, K, ) / |df (@) dH™z) [by (P2)). (6.29)

t< x| <2t

Hence we may find an e; €[t, 2¢] such that

c(p,K,Y)

t t<]el <2t

/1" |df|PdH™ ! < |df (x)|P dH" (). (6.30)

The latter inequality implies that

e | |dfPAH ! <co(p, K, V) / df ()P dH™ (@) =0 as t—0*.  (6.31)
Le, t<|z| <2t

Putting (6.26), (6.27) and (6.30) together we get

lf&,ee_fIWI,p(KiN) <a1(d,t)+az(t), (6.32)

where a;(6,t)—0" if we fix ¢ and let §—0%, az(t)—0 as t—0*. We conclude that u is a
strong limit of a sequence of Lipschitz maps of the form us .= fs5 .ch~! in WHP(M, N).
Since [us,]=a, Theorem 6.2 follows. O
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Now we describe several interesting consequences of Theorem 6.2.

THEOREM 6.3. Assume that N is connected and 1<p<n. Then Hé’p(M,N)z
WhHP(M,N) if and only if 7, (N)=0 and M satisfies the ([p|—1)-eztension property
with respect to N.

We need the following topological lemma to prove this theorem.

LEMMA 6.4. Assume that X and Y are two topological spaces, that X can possess
some CW complex structures, that Y is path-connected, k€N and 7 (Y )=0. Then X
satisfies the (k—1)-extension property with respect to Y if and only if X satisfies the
k-extension property with respect to Y.

Proof. Fix a CW complex structure of X.

If X satisfies the (k—1)-extension property with respect to Y, then given any fe
C(X**+1Y), there exists a geC(X,Y) such that f|yx—1=g|x«-:. Because m(Y)=0,
we have f|xr«~g|xx, and hence f|x+ has a continuous extension to X by Proposi-
tion 2.1 (HEP). That is, X satisfies the k-extension property with respect to Y.

On the other hand, if X satisfies the k-extension property with respect to Y, then
for any feC(X*,Y), there exists an f;cC(X**1,Y) such that f|x«=f. We may find a
g€C(X,Y) such that g|x+=f1|x+=f, and hence g is a continuous extension of f|yr-1
to X; that is, X satisfies the (k—1)-extension property with respect to Y. Indeed, what
we have proved is that any f€C(X*,Y) has a continuous extension to X. a

Proof of Theorem 6.3. Assume that we have Hé”’(M,N):W“’(M,N). Pick a
smooth triangulation of M, say h: K— M, and denote M*=h(|K*|), i>0. For each A€ K,
choose a yy€Int(A). Given any f in Lip(M!P}, N), let fo=foh. Let fie W'“P(K, N) be
the map which we get from fy by doing homogeneous degree-zero extension with respect
to ya on all simplices A with dim(A)>[p]+1. Let u=fioh~!. Then ue WhHP(M,N).
Hence ue H, é"’ (M, N). It follows from Theorem 6.2 that |z =f has a continuous ex-
tension to M. Now it follows from Proposition 2.3 and HEP that for any fe C(MI?l, N),
f has a continuous extension to M. This clearly implies that 7, (/N)=0 and that M
satisfies the ([p]—1)-extension property with respect to N.

On the other hand, assume that mj,(N)=0 and that M satisfies the ([p]—1)-
extension property with respect to N. Then it follows from the proof of Lemma 6.4
that for any CW complex of M, and feC(M!P!, N), f has a continuous extension to M.
In view of Theorem 6.1, we only need to show that R (M, N)CC™(M, N). But this
clearly follows from the topological condition and Theorem 6.2. O

An easy consequence of Theorem 6.3 and the proof of Corollary 5.3 is the following
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COROLLARY 6.2. Assume that M and N are connected, 1< p<n, and that k is an
integer such that 0<k<[p]—1 and m(M)=0 for 1<i<k and m;(N)=0 for k+1<i<[p].
Then HyP(M,N)=W'P(M,N).

We note that Corollary 6.2 implies part (a) of Theorem 1 of [Hj]. The next corollary
gives another set of target manifolds N for which smooth maps from M into N are
strongly dense in WHP(M, N).

COROLLARY 6.3. Assume that N is connected, 1<p<n. If m;(N)=0 for [p]<i<
n—1, then Hy?(M,N)=W'?(M, N).

Proof. This follows from Theorem 6.3 and cell-by-cell extension. O

Remark 6.1. It follows from Theorem 6.2 and the proof of Theorem 6.1 that for a
map ueWHP(M, N), 1<p<n, u€ Hg?(M, N) if and only if for “generic” [p]-skeletons
MIP) when PEZ, ulpm has a continuous extension to M, when p€Z, the homotopy class
corresponding to u| s (because it is continuous on M!PI=1 and in VMO on each [p]-cell,
see Lemma 4.5) is extendible to M with respect to N. One needs to understand the word

“generic” as in the way we create cell decompositions in the proof of Theorem 6.1.

7. The weak sequential density problem for Sobolev mappings

The question whether smooth maps are sequentially weakly dense in the Sobolev space
of mappings, W1P(M, N), turns out to be much more subtle. It becomes important
in finding minimizers of suitable energy functionals defined on the Sobolev space of
mappings. Suppose that 1<p<n and p is not an integer. Then it was shown in the
earlier work of Bethuel [B2] that H,”(M,N)=Hg?(M,N). Hence, in this case, the
problem of the weak sequential density of smooth maps reduces to the strong density of
smooth maps in WHP(M, N), which we have discussed in detail in the previous section.
We also note that, in the special case p=1, one always has Hé‘}I(M,N)=H51~'1(M,N)
due to analytical facts associated with L!-weak convergence (see [Hn|). For general
integer p’s, 1<p<mn, the space Hé(,p (M, N} is hard to characterize. We have

THEOREM 7.1. Assume that 1<p<n, ue WYP(M,N), and that h: K—M is a Lip-
schitz rectilinear cell decomposition of M. If u€ HyP(M, N), then ug ,(h) is extendible
to M with respect to N. Hence u may be connected to a smooth map by a continuous
path in WhP(M, N).

Proof. This follows easily from Proposition 4.1 and Theorem 5.1. 0
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We also observe that, by Corollary 5.4 and Theorem 7.1, one has the following
statements. If Hp? (M, N)=W"'?(M, N) for some 1< p<n, then M satisfies the ([p]—1)-
extension property with respect to N.

On the other hand, let mq,ma€N, ms<m;. Then we have:

(i) If 3<p<2my+2, then

HyP(CP™,CP™) £ W"P(CP™, CP™);
(ii) If 2<p<mg+1, then
Hy?(RP™ RP™) £ W!P(RP™, RP™).

These conclusions are direct consequences of Corollary 5.5 and Theorem 7.1.

Thus we have obtained a necessary topological condition for smooth maps to be
weakly sequentially dense in W1P(M, N). In view of this and earlier works [B1], [B2],
[BBC], [Hj], [Hn], we make the following

CONJECTURE 7.1. Assume that 2<p<n, p€Z, and that h: K—M is a Lipschitz
rectilinear cell decomposition of M. If ue WYP(M, N) is such that uy ,(h) is extendible
to M with respect to N, then uc Hy?(M,N).

Conjecture 7.1 just says that the topological obstruction stated above is the only
obstruction for the weak sequential approximability by smooth maps. In [HnL2], we shall
prove Conjecture 7.1 under the additional assumption that u€ RP(M, N) (see the begin-
ning of the proof of Theorem 6.1 for the definition). That is, at least for a dense subset
of WHP(M, N), the topological condition described in Theorem 7.1 is also sufficient for
the map to be in HyP(M, N).

Let I;é[," (M, N) be the smallest subset of W!P(M, N) which is closed under the
sequential weak convergence in W!?(M, N) and contains C*(M, N). Then from [GMS,
Chapter 3, §4.1] we know that I:vlé",” (M, N) is equal to the successive sequential weak
limits of C>°(M, N) in WHP(M, N) up to the first uncountable ordinal number. It fol-
lows from Theorem 6.1, Proposition 4.1 and the above result from [HnL2] that for any
Lipschitz rectilinear cell decomposition of M, say h: K— M, and any 2<p<n, peZ,

ITI‘l,(,”(M, N)={u:u€W"P(M,N),uyg ,(h) has a continuous extension
to M with respect to N}.

On the other hand, we also see easily that I:f‘l,(,”(M, N)=Hé[’,p(M, N). Here the closure is
taken under the strong topology. This means that it suffices to take a second-time limit
instead of taking limits to the first uncountable ordinal number to get ﬁé‘}p (M, N) from
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C*(M, N). Conjecture 7.1 just says that we only need to take one-time limits, that is,
H WP (M, N y=HyP(M,N) (see [HnL2] for further discussions). One may also conjecture
that if 2<p<n, p€Z and M satisfies the (p—1)-extension property with respect to N,
then HyP(M,N)=W1'?(M,N).

In addition to Theorem 7.1, we have the following two statements.

THEOREM 7.2. Assume that M and N are both connected, and 1<p<n. Then
H;”’(M,N) is equal to WHP(M, N) if and only if w(p)(N)=0 and HyP(M,N) is equal
to WHP(M, N).

If, in addition, we know that peN, p>1 and m,(N)=0, then Hé”’(M,N):
HyP(M,N).

Proof. The first fact follows from Theorem 6.3 and the statement after Theorem 7.1.

On the other hand, if we know that p is an integer larger than 1, then given any
ueHyP (M, N), it follows from Theorem 7.1 that for a generic skeleton MP~1, u|psp-1
has a continuous extension to M. It follows then from the fact m,(N)=0 and the ho-
motopy extension theorem that the homotopy class corresponding to u|p» has a con-
tinuous extension to M (see the proof of Lemma 6.4). Thus by Remark 6.1 we have
ueHGP(M,N). O

Appendix A. A proof of the generic slicing lemma

In this appendix, we shall give the detailed proof of Lemma 6.3, that is, the generic
slicing lemma. For convenience, we first describe some notation.

Assume a€(R*)%. Let I, be defined as HLI[O, a‘]. For each face of I,, we pick a
net on it. All these nets together generate a normal complex K such that |K|=1,. For
1<i<k, we denote by S; the subset of [0,a’] of all points in the above nets in the ith
direction. S; is a finite set. We let o be a subset of {1,...,d}, and use |a| to denote
the number of elements in a. If a=, then we set K,=K. Otherwise, if for any i€a,
we have m; numbers, say 0=t,-,0<t,-,1<...<t,-,m1.=ai, then we denote K, as the normal
N1, foriea, 0K j<m,.

complex created from K together with H; .,

Proof of Lemma 6.3. We shall do slicing in each direction inductively. In view of
Lemma 6.2, we do not need to worry about getting u€ W?(K,R). Hence for convenience
we will not mention this point in the future proof.

Let us look at the first direction. For 1<i<m;—1, let J; be the closed interval
[(i—3)6, (i+3)6], Pi={z:z€l,,z'€J;}. Fix a positive constant ¢,, which will be de-
termined later. We have
[ i1 (RN 0) < Bl BOGRONEY) (A)

Ji
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for 2<j<d. If we set

Bl ={t:teJ;, B(u,j—1,Hy, N (|KI|\|K/™]))

, ‘ (A.2)
> 167 E(u, 4, BEN(IK\[K771)}
for 2<j<d, then it follows from (A.1) that
HY (B} < 2, (A.3)
A
Let
d
B=Sul Bj.
j=2
Then from (A.3) we get
d
H(B)< —3. (A.4)
1

In view of (A.4), if we take cy=c;(d) large enough, we may find a point ¢; ;€J;\B. By
setting ¢y 0=0, t1,m1=a1, we get m; numbers in the first direction. In addition, we have
c(d)

E(u, j~1,|K{5 IN(IKI N\ K1) < —5 Blw, IKINKTTY) for 2<j<d. (A5)

Indeed this follows from the way we choose t; ;.

Then we switch to the second direction. For 1<i<mo—1, let J; be the closed
interval [(i—3)d, (i+5)d], Pi={z:x€l,, 2% J;}. Fix a positive constant cz, which will
be determined later. We have

/ E(u,j—1, Hy 0 (K7 |\ K7™ ))) dt
J;

(A.6)
< E(u,j, BN(IK/\[K'™'))) for 2<j<d
and
E(u,j—2, Ho N|K{G N (KT\[K77Y))) dt
/.L- n (A7)
< E(u, j—1, BN|K{H [N (IKI\|K7Y)  for 3<j<d.
Define ) .
B2={t:teJ;, E(u,j—1,Ha, (K’ |\|KI71)) "
> 6" E(u, j, PN (IKI\ KT} for2<5<d '
and

BY? ={t:t€ Ji, E(u,j~2, Ha D|KIS N (K [KI) A9)

> 6 E(u,j—1, |K{;}l|n(|Kj|\|Kj-l|))} for 3<j<d.
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Then it follows from (A.6) and (A.7) that

8 YN
Hl(B?KE and H'(B; )ga (A.10)
Let 4
B=Su{ UB2)u( UB;?
u(UB)u(Us?)

Then 4
Hl(B)gcc—)é. (A.11)

2

In view of (A.11), if we take co=ca(d) large enough, we may find a point t2;€J;\B. By
setting ¢p 0=0, tzym2:a2, we get mo numbers in the second direction. In addition, we
have

E(u,j—l,lez‘}llﬂ(lKjl\lK”"ll))s@E(u,j,lKjl\lKj’ll) (A-12)

for 2<j<d, and

' L . o c(d . i . .
B, -2, K2 0 N1 < S B -1, K NN ) (A13)

for 3<j<d. This follows from our choices of ¢, ;. In addition,

E(u,j—1,|K] 5 IN(KI\ K 7H) < E(u, -1, |KI N (KT K1)

{1,2} {1}
+E(u, i~ LK INIKINETT) (a4
< g, 1K),

We used (A.5) and (A.12) in the last inequality.

Assume that this process has been done for the (k- 1)st direction for some 3<k<d.
Now let us look at the kth direction. For 1<i<myg—1, let J; be the closed interval
[(i-3%)8, (i+3)8], Pi={z:z€l,,a*€J;}. Fix a positive constant cx, which will be de-
termined later. For any aC{1,...,k} such that k€a, we have

s Mk (A.15)

< E(u,j—lol+1,|KZ [0 N (K9 KT7Y)

/ E(u, j |, Hye NI A (K9 |\ K1) dt

for |a|+1<j<d. Define

By ={t:teJi, E(u,j—lol, Hxe VK0 (LK [ KPL)

> ek Eu, 5ol +1, K2 In (K \ (K1)}

(A.16)
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for kea, |a|+1<j<d. Then it follows from (A.15) that

HY(BS) < 9 (A.17)
Ck
Let
B=Su U B
k€a
Ja|+1<j<d
Then i
H(B) < c—g—)é. (A.18)
k

In view of (A.18), if we take cy=c(d) large enough, we may find a point ty ;€ J;\B. By
setting tx,0=0, tk,mkzak, we get my numbers in the kth direction. In addition we have

B(u, 5~ o], Hee VKT N (KT [KI7))

| - (A.19)
<= Blu,j=lal+1, KL N (KT K1)
for k€a, |a|+1<j<d. Hence the induction gives us K . 5. If we set I?=K{1’__”k},
one then deduces that

E(u, 4, [ K )N (1KY |\ |K771))) < e(d) (1/8) ~*E(u, j, |1 K7|) (A.20)

for 1<i<j<d. This gives us the first estimate in Lemma 6.3. The second one follows
easily from the first one. O

Appendix B. Deformations associated with the dual skeletons

In this appendix, we shall give detailed proofs for some basic properties of the deforma-
tions defined at the beginning of §6. Assume that K is a finite rectilinear cell complex
with dim K=m. For each A€ K, pick a point y,€Int(A). Fix an integer 0<k<m~1.
Then we have I'¥ as the level set of the function | - | which is defined inductively by (6.3).
For §,e€(0,1), we have a natural map ¢¥|rs from I'§ to I'%.

LEMMA B.1. For any 8,e€(0,1), c;&’s"h‘:sc is a bijection from T% to T*. Its inverse
Lk
18 qﬁélr,;.

Proof. 1t follows from an induction argument that for any 4,£€(0,1) and any
0<|zje <1,

95 (¢2(2)) = 05 (). (B.1)

Lemma B.1 follows because for any §€(0,1) and any z€T%, ¢%(z)=z. 0O

From now on we always assume that K is a finite rectilinear cell complex with

dim K=n, and that for any z€|K|, there exists a A€ K with dim(A)=n such that z€A.
For each A€ K, we pick a point ya€Int(A). Let Y=(ya)ack- Fix an integer 0<k<n—1.
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LEMMA B.2. There ezists a constant c(K,Y)>0 such that

0<c(K, V) '<ld(]-|»)|<c(K,Y) H"-ae. on |K|. (B.2)

Proof. This follows from an easy induction if we observe the following two facts.
First, given any rectilinear cell A with dim(A)=meN, pick any point ypcInt(A) and
define a map 9: A— B* by

=Y
lT—yal

() =|z|a- for any z € A. (B.3)

Then % is a bi-Lipschitz map. Secondly, given any suitably differentiable function f
on 0By, set u(z)=|z|f(z/|z|) for z€ B;. Then we have

du(@)? = |f(/|2)]*+|df (z/ |z])]?, (B.4)

which proves the lemma. a
LEMMA B.3. The map ¢* satisfies

020" (z,€)| < c(K,Y) for 0<|z|p<1,0<e<1. (B.5)

Here 0y means derivative with respect to €. For derivatives with respect to x, we have

140" (2,2)| < (K, ¥) (f— + i) (B.6)

|zl 1—|z}x

Proof. This follows from induction along with the formulas (6.7) and (6.8). Note
that for any A€ K, z€A, we have |zl <|zla. O

COROLLARY B.1. For 0<6<e<%, we have

|dF5 . (2)| <c(K,Y)e/lzle  for 6< |zl <e, (B.7)
ldF§ (z)| <c(K,Y)ed™'  for |z|x <. (B.8)
Proof. This follows from Lemma B.3 and an easy computation. O

To understand more refined properties of the map ¢*, we need to introduce some
notation. Given any n—k numbers ¢;€[0,1] for k+1<i<n, we want to define the set

Y% ... .. This will be done inductively. For ex41€[0,1], we set
e, = AUK (Yater+1(Bd(A)=ya)). (B.9)
€

dim(A)=k+1
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Clearly T¥ C|K**1|. Assume that for some k+2<i<n, Y5, . | has already been
defined as a subset of |[K*~1|. Then we set

T§k+1,...,6i = U (yA+6i((AnT§k+1,...,Ei_1)_yA))’ (Blo)
A€K
dim(A)=1
Eventually we get T’;kH’Men for €,€]0,1], k+1<i<n. Clearly we have
T§k+1,...,6nc F’E‘:k_;,]‘..é‘n' (B]']‘)
The importance of Y5, . liesin

LEMMA B.4. Assume that 0<e;<1 for k+1<i<n, and e=¢eg41...en<1. Then for
any 0<6<1, we have

) <ce(K,Y)ée ! HF-a.e. on T*

€k41s-En"

(851, (B.12)

PESTRIL I

Proof. This follows easily from an induction argument in view of the definition of ¢*
by (6.7) and (6.8). O

COROLLARY B.2. For 0<5<€<%, we have

J(¢§|r§)(z) <c(K,Y)(8/e)*  for H" '-a.e. zeTk. (B.13)

Proof. 1t follows from Lemma B.3 that

Al <) (24122 ) <tk ). (B.14)

e l-¢

On the other hand, for z€T'*, we may find n—k numbers, say ¢;€(0, 1] for k+1<i<n,
such that zeYT*

cestroen- Now it follows from Lemma B.4 that

Al @) <elK,V)se, (B.15)
which implies that d(¢¥|«)(z) has operator norm bounded by c(K,Y)de! on a k-
dimensional subspace of the tangent space of I'¥ at z. Combining this last estimate
with (B.14), one concludes Corollary B.2. 0
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COROLLARY B.3. For 0<e<3, we have

H({z€|K|:|z|p <€}) < (K, Y)ertL. (B.16)

Proof. From Lemma B.1 we know that for any 0<é <%, ¢§|F;lc/ is a bijection from
2

rk /2 tO I'¥. Hence from the area formula we have

H"-l(r’g):/k Tkt (@) dH" " (z) <e(K, V)6 . (B.17)

1/2 1/2

Here we use Lemma B.4 in the last step. Now for any 0<e< %, we have

H*({z€ |K|:|z|r <c}) € e(K, y)/ Ji () dH"(z) [by Lemma B.2]

|z|x<e
=c(K, y)/ H"}(T'%)ds [by the coarea formula)
0

<c(K,V)ef1 by (B.17)). a
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