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1. I n t r o d u c t i o n  

Throughout the paper, unless otherwise stated explicitly, we always assume that M and N 

are compact smooth Riemannian manifolds without boundary and that they are isomet- 
ricaUy embedded into R z and R i respectively. Denote n = d i m M .  

For any l~<p<c~,  we consider the space of Sobolev mappings  

WI'P(M, N) = {u : u E WI'P(M, R/ ) ,  u(x) E N for a.e. x E  M},  (1.1) 

with d(u, v)= l U - - V l w I , P ( M , R ~ )  a s  the metric.  In  [BL], Brezis and  Li in i t ia ted  the s tudy  of 

pa th  connectedness  of the space WI,P(M, N). As in [BL], one defines U,~pV for two maps  

u, veWI'P(M, N) if there exists a cont inuous  pa th  w( .  ) eC([0 ,  1], WI,P(M, Y) )  such tha t  

w(O)=u and  w(1)=v. T h e n  it was shown in [BL] t ha t  WI,P(M,N) is pa th-connec ted  

when l~<p<2,  n~>2 and N is connected.  In  fact, Brezis and  Li showed tha t  if l<~p<n, 
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and N is ( [p]- l ) -connected,  that  is, ~ri(N)--0 for 0 ~ i ~ [ p ] - l ,  then WI'p(M,N) is 

path-connected. On the other hand, they observed the following facts: 

(i) WI '2 (S lx  A, S 1) is not path-connected for any compact Riemannian manifold A 

with dim(A) ~> 1. Similarly W~'P(S n x A, S n) is not path-connected for p>~n+ 1 ~ 2. 
(ii) WI'P(S n, N) is path-connected if l<.p<n and N is connected. 

(iii) For any m>~l, l ~ p < n + l  and any connected N, WI'P(SnxB'~,N) is path- 

connected. 

One of the main results of the present work is the following (see Theorem 5.1) 

THEOREM 1.1. Assume that l~p<n  and u, vEWI'P(M,N). Then u,,~pV if and 
only if u is ([p]-l)-homotopic to v. 

For an accurate description of " ( [p] - l ) -homotopy" ,  one should refer to Defini- 

tion 4.1. Roughly speaking, we say that  two maps u, veWI,p(M,N)  are ( [ p ] - l ) -  

homotopic, if for a generic ( [p]- l ) -skele ton M [p]-I of M, UIMC,]-i and VlML,]-I are 

homotopic. Note that  on generic ([p] - 1)-skeletons, u and v are both in W I'p, and hence 

they are essentially continuous. It, therefore, makes sense to say whether or not they 

are homotopic in the usual sense. It was proved by B. White in w of [Wh2] that  this 

definition does not depend on the specific choice of generic skeletons. With Theorem 1.1 

we are able to reduce the question of path connectedness for WI'p(M, N) to a purely 

topological problem. For the latter the answers are standard in topology. Indeed we have 

(see Corollary 5.3) 

COROLLARY 1.1. Assume that M and N are connected, and l <.p<n. If there exists 

a keZ  with 0~<k~<[p]-l, such thatTri(M)=O for l<~i<~k, 7ri(Y)=0 for k+l<.i<.[p]-l, 
then WI'P(M, N) is path-connected. 

Note that  when l ~ p < 2 ,  we may simply take k=O. Hence WI'P(M,N) is always 

path-connected as long as n~> 2 and both M and N are connected. Corollary 1.1 gen- 

eralizes Theorem 0.2, Theorem 0.3 and Proposition 0.1 in [BL]. Recall that  for any 

l<~q<p, we have a map ip,q: WI,B(M,N)/~p---+wI,q(M,N)/~q defined in a natural 

way (see [BL]). Then another interesting implication of Theorem 1.1 is the following 

positive answer to Conjecture 2 (and its strengthened version Conjecture 2') of [BL] (see 

Corollary 5.1). 

COROLLARY 1.2. Assume that kEN and k<.q<p<k+l. Then ip,q is a bijection. 

We now turn to the question whether a given map uEWI'p(M, N) can be connected 

to a smooth map by a continuous path in WI,p(M, N). It was shown in Theorem 0.4, 

Theorem 0.5 in [BL] that  either if d i m M = 3  and OM#O (for any l~<p<c~ and any 

connected N)  or if N=S ~ (for any l ~ p < c ~  and any M),  then any uEW~'P(M,N) can 
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be connected to a smooth map by a continuous path in WI'p(M, N). It was conjectured 

in [BL] that  this is always the case for general smooth compact connected Riemannian 

manifolds. However, we find that  the issue is closely related to the question whether such 

a map u can be weakly approximated by a sequence of smooth maps in WI,P(M, N). 

Recall two mapping spaces closely related t o  WI'p(M, N ) :  

H~'P(M, N) = the strong closure of C~(M,  N) in WI'P(M, N);  

H~P ( M, N) = { u : u e W I'p ( M, N ), there exists a sequence ui e C~  ( M, N) 

such that  ui--~ u in WI'P(M, R[)}. 

Obviously we have 

H~'P(M, N) C H#P(M, N) C WI'p(M, N). (1.2) 

Whether  the above inclusions in (1.2) are strict or not is a difficult question and has been 

studied by various authors. For the case M = B  3, N = S  2 and p=2, it was shown in [BBC] 
Tj1,2( i~3 that  " ' w  ~ , $2)=W1'2( B3, $2) �9 On the other hand, it is easy to check HI '2 /B  3 $ 2 ) r  S k , 

WI'2(B a, $2). In fact, in [B1], Bethuel gave a characterization of maps in H~'2(B 3, $2). 

Recently, Hardt and Rivi~re [HR] proved a necessary and sufficient condition of maps 

in H~'3(B 4, S 2) in terms of a certain quasi-mass of "minimal connections". For general 

manifolds M and N, some remarkable results were first established in [B2] (see [Hj] 

for an alternative approach of the main result of [B2] under some additional topological 

conditions). Recently some interesting progresses were made in [PR] for sequentially weak 

closure of smooth maps and geometric control on the so-called "minimal connections". 

In general, it does not seem to be feasible to construct such "minimal connections" with 

geometric and analytic controls. Indeed, there is a global topological obstruction. More 

precisely we have (see Proposition 5.2 and Theorem 7.1) 

THEOREM 1.2. Assume that l <.p<n, uEWI,p(M, N), and that h: K-+ M is a Lip- 

schitz rectilinear cell decomposition. Then u can be connected to a smooth map by a 

continuous path in WI,P(M, N) if and only if U#,p(h) is extendible to M with respect 

to N. This topological condition on U#,p(h) is also a necessary condition for u to be in 
H~P(M,N).  

For the meaning of "U#,p(h)" and "extendible to M with respect to N" one should 

refer to Definition 2.2 and Remark 4.1. As a consequence of Theorem 1.2, we have (see 

Corollary 5.4 and the statement after Theorem 7.1) 

COROLLARY 1.3. Assume l <.p<n. Then every map in WI 'p(M,N)  can be con- 

nected by a continuous path in WI'p(M, N) to a smooth map if and only if M satisfies 
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the ([p]- 1)-extension property with respect to N. The latter topological condition is also 

a necessary condition for H~P(M, N) to be equal to WI,P(M, N). 

For the meaning of the "([p]- 1)-extension property with respect to N", one should 

refer to Definition 2.3. In particular, we have (see Remark 5.1) 

COROLLARY 1.4. Assume that N is connected and l ~ p < n .  If  either [p]=l or 

[p]~>2 and ~ i ( g ) = 0  for [p]<i<~n-1, then every map in WI 'P(M,N) can be connected 

to a smooth map. 

We note that Theorem 0.5 of [BL] follows from Corollary 1.4. As for counterexamples 

to Conjecture 1 of [BL] and to the sequential weak density of C~(M,  N) in WI'P(M, N) 

we have (see Corollary 5.5, Remark 5.2 and the discussions after Theorem 7.1) 

COROLLARY 1.5. Assume ml ,m2EN,  m2<ml.  

(1) I f  3~<p<2m2+2, then there are maps in WI,P(CP ml, CP m2) which cannot be 

connected to any smooth map by continuous paths in WI 'p (cP  ml, cpm~).  In addition 
HLP(Cp m', C p  m2) # W 1,P (CP "u, Cpm2). 

(2) If 2 ~ p < m 2 + l ,  then there are maps in WI'P(RprnI,RP m2) which cannot be 

connected to any smooth map by continuous paths in WI,P(Rpml,Rpm2).  In addition 
H~P (Rp "u, R P  m~) r Wa'P (RP "u, Rpm2 ). 

In connection with Theorem 1.2 and Corollary 1.3, we have the following (see Con- 

jecture 7.1) 

CONJECTURE 1.1. Assume that 2<.p<n, pEN, and that h: K--+M is a Lipschitz 

rectilinear cell decomposition of M. I f  uEWI'P(M, N)  such that U#,p(h) is extendible 

to M with respect to N, then uEH~P(M, N). 

One may also conjecture that if 2<.p<n, pEN, and M satisfies the (p-1)-extension 

property with respect to N, then H~P(M, N)=WI,P(M,  N). 

Finally we come to the question of strong density of smooth maps in WI'p(M, N). 
The following result was proved in [B2]. 

THEOREM ([B2, pp. 153-154]). Let l <.p<n. Smooth maps between M" and N k are 

dense in WI'p( M n, g k) if and only if 7r[p]( Nk)=O ([p] represents the largest integer less 

than or equal to p). 

Here we find that this result has to be corrected. We have (see Theorem 6.3) 

THEOREM 1.3. Let l<.p<n. Smooth maps between M and N are dense in 

WI'P(M,N) if and only if 7r[p](N)=O and M satisfies the ([p]-l)-extension property 

with respect to N. 
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We note that  without the ([p]-1)-extension property of M with respect to N, the 

strong density of smooth maps in WI,P(M, N) is definitely false as seen from the cases 

W1,3(Cp 3, C P  2) and W1,2(Rp4, R P  a) by Corollary 1.5 (see also [HnL1]). Theorem 1.3 

has two interesting consequences (see Corollary 6.2 and Corollary 6.3): 

COROLLARY 1.6. Assume that M and N are connected, l <<.p<n, k is an integer 
such that 0<~k~<[p]-I and 7r/(M)=0 for l<~i<.k, ~h(N)=0 for k+l<.i<.[p]. Then 
H~'P(M,N)=WI'p(M,N). 

COROLLARY 1.7. Assume that N is connected, l <.p<n, ~ri(N)---0 for [p]<~i<.n-1. 
Then H~'P(M, N)=WI'P(M, N). 

Part (a) of Theorem 1 in [Hj] is a special case of Corollary 1.6. 

The present paper is written as follows. In w we introduce various basic concepts 

and notations for the topological aspects of our problem. One of the very crucial facts 

that  we used repeatedly in our proof is the homotopy extension theorem (property). We 

also discuss briefly k-homotopy of maps and a problem from obstruction theory. In the 

last part of w we discuss how a continuous homotopy can be replaced by a Lipschitz 

homotopy. Repeated applications of ~b in i - type  (and mean value-type) theorems are 

used in the study of generic slices of Sobolev mappings in w Some quantitative controls 

of the Wl,P-norm of maps when they are restricted to generic k-dimensional rectilinear 

cells are obtained. Some fine properties of Sobolev mappings such as approximate conti- 

nuity and approximate differentiability (Federer-Ziemer, Calderon-Zygmund theorems) 

as well as area and coarea formulas are also briefly discussed. 

In w we discuss the k-homotopy property of WI'p(M, N)-maps for 0~<k~ [p]. These 

issues were first studied carefully by B. White in [Whl], [Wh2]. Here we use somewhat 

different arguments to obtain the main conclusions of [Wh2] as well as some generaliza- 

tions. We have included this part of proof here not only to make the discussion clear and 

complete but also to facilitate our arguments in later sections. 

In w we first establish the equivalence between (1) U~pV and (2) u is ( [p] - l ) -  

homotopic to v (cf. Theorem 5.1). This leads to the proof of Conjectures 2 and 2 ~ 

of [BL] as well as results which generalize those in [BL]. We also derive a necessary 

and sufficient condition for a map uEWI,P(M,N) to be connected to a smooth map 

by a continuous path in WI'p(M, N). Thus we see the connection between the classical 

topological obstruction theory and the problem of connecting a Sobolev map to a smooth 

map in the Sobolev spaces WI,P(M, N). 
w is devoted to prove a corrected version of the strong density theorem. To do so, we 

have to give another proof of the fact ([B2, p. 154, Theorem 2]) that maps with canonical 

singularities (RP'~(M, N)) are always strongly dense in WI'p(M, N) (see Theorem 6.1). 
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Our proof is somewhat different from the one in [B2]. This modification becomes nec- 

essary because we have troubles with the original proof, given in [B2], with regard to 

matching the boundary values when patching cubes for the case n-p> 1. Moreover, in 

studying the problem whether a specific map can be approximated in the strong topol- 

ogy by a sequence of smooth maps, we need the explicit Construction in our proof of 

Theorem 6.1. As a consequence we know that  for 1 ~< p < n, if p ~ Z or p--  1 or 2 ~< p < n but 

p e Z  and 7rp(N)=0, then H~'P(M, N)=H~P(M, N) (see [B2], Theorem 7.2 and [Hn]). 

The case 2 ~ p < n ,  pEZ  and 7rp(N)r is much more subtle. On the other hand, we have 

(see Theorem 7.2), for l~<p<n, H~'B(M, N)=WI'P(M, N) if and only if 7r[p](N)=0 and 

H~P(M, N)=WI,B(M, N). Our proof of Theorem 6.1 also relies on various analytical 

estimates, some of which were obtained in the earlier work of Bethuel [B2]. The proof 

of the main theorem in w (Theorem 6.3) uses in a crucial way certain new deformations 

from the so-called dual skeletons, which is obviously motivated by the well-known work 

of Federer and Fleming on normal and integral currents (see [Fe], in particular Chap- 

ter 4). The construction of such deformations with the right analytical estimates is the 

key point of the whole proof. We note that  the previously constructed deformations due 

to B. White [Whl] (or that  in [Hj]) do not seem to work for our purpose. 

Finally in w we discuss weak sequential density of smooth maps in Sobolev spaces. 

Several technical estimates concerning generic slices of Sobolev maps as well as estimates 

relative to the deformations constructed in w are included in the appendices. 

The present paper treats only compact manifolds without boundary. Essentially all 

the results discussed here can be generalized to the case that  M has a smooth nonempty 

boundary OM. We shall return to these in a future article. 
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2. Some  preparat ions  

For concepts of rectilinear cell complex and simplicial complex, we use those from [Whn] 

(see Appendix II of [Whn]; the notion of rectilinear cell complex used in this paper means 

the complex defined on p. 357 of [Whn]). [Mu] is also an excellent reference for basics in 

differential topology, but one needs to be careful with some small differences in definitions 

(the name rectilinear cell complex comes from [Mu], but  the notion of rectilinear cell 
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complex defined on p. 70 of [Mu] is different from the definition of complex on p. 357 

of [Whn]: the notion in [Mu] does not allow any subdivision of the proper face of any 

cell, but the notion in [Whn] does allow it, even though this kind of complex is not used 

in [Whn], see p. 357 of [Whn]). If after a rotation and a translation, a rectilinear cell is of 

the form 1-Id_l [0, ai], a i ~>0, then we say that  it is a cube. We have cubic complexes similar 

to simplicial complexes. By mimicking the notion of smooth triangulation of a manifold, 

we have the concepts of smooth cubeulation and smooth rectilinear cell decomposition 

of a manifold. In addition, if M is a smooth compact manifold, possibly with boundary, 

K is a finite simplicial complex, and h: IKI--+M is a bi-Lipschitz map, then we say that 

h: K---+M is a Lipschitz triangulation of M. Here IKI is the polytope of K,  that  is, 

the union of all simplices in K.  Similarly we have Lipschitz cubeulation and Lipschitz 

rectilinear cell decomposition of a smooth compact manifold. 

2.1. The  h o m o t o p y  ex tens ion  property  

The homotopy extension theorem will play a crucial role in several of our proofs. We 

start  with 

Definition 2.1. Let (X, A) be a topological pair and Y be a topological space. If 

every continuous map 

H0: (X • {0})U(A • [0, 1]) -+ Y 

has a continuous extension to H: X •  [0, 1]-+Y, then we say that  ( X , A )  satisfies the 

homotopy extension property with respect to Y (HEP with respect to Y). 

If a topological pair (X, A) satisfies the homotopy extension property with respect 

to any topological space Y, then we say that  (X, A) satisfies the homotopy extension 

property (HEP). 

For a general discussion of HEP (cofibration), one may refer to Chapter I of [Hu] and 

Chapter 6 of [Ma]. For basics in CW complex theory, one may refer to [LW] and [Whd]. 

The following fact is well known and its proof may be found on p. 68 of [LW]. 

PROPOSITION 2.1. Let X be a C W  complex and A be a subcomplex. Then ( X , A )  

satisfies the homotopy extension property. 

Another version, which is more analytical, is also important to us (cf. p. 14 of [Hu]). 

PROPOSITION 2.2. Let Y c R  n be a retraction of an open subset V C R  n. Suppose 

that X is a topological space such that X •  [0, 1] is normal, and A C X  is a closed subset, 

then (X,  A) satisfies the homotopy extension property with respect to Y. 
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Since we will need to use the construction in the proof of this lat ter  proposition, we 

present the arguments here. 

Proof of Proposition 2.2. Given a continuous map 

H0: (X • {0})U(A • [0, 1]) ~ ]I, 

by Tietze's extension theorem we may find a continuous map  G: X x [0, 1]--+R n such that  

G(x,O)=Ho(x,O) for x E X ,  G(a, t )=Ho(a, t )  for aEA and 0~<t<~l. Now U = G - I ( v )  is 

open and A•  [0, 1]CU, and hence there exists an open set W D A  such tha t  W x  [0, 1]cU.  

Choose 71EC(X, [0, 1]) such that  r/IA----1 , ~]lx\w=O. Let r: V--+Y be the retraction map. 

Define H(x, t )=r(G(x , t~I(x) ) )  for x e X ,  0~<t~<l. Then H is the needed extension. [] 

Later on we also need 

Definition 2.2. Let A, X and Y be topological spaces, and i: A--+X be an embedding. 

Assume that  (X , i (A) )  satisfies the HEP with respect to Y. Let a ,  a homotopy class of 

maps from A to Y, be given. If for any representative f of a ,  fo i  -1 has a continuous 

extension to X,  then we say that  a is extendible to X with respect to Y. 

2.2. k-homotopic maps and problems from obstruction t h e o r y  

We review now several basic definitions and facts concerning k-homotopy theory which 

has a lot to do with our main results. 

Let X and Y be two topological spaces, f ,  gEC(X ,  Y) .  If f is homotopic to g as 

maps from X to Y, then we write f ~ g  as maps from X to Y. When it is clear what  X 

and Y are, we simply write f ,~g. 

LEMMA 2.1. Assume that X and Y are topological spaces, X1 and X2 are C W  

complexes, f ,  g E C ( X , Y ) , r X i ---~ X is a homotopy equivalence for i= 1, 2, k E Z , k >>. O. 

k,~ o k the k-skeleton of Xi  If  for162 then fo r  2 g r Here X k means 

Proof. Assume that  ~Pi: X - + X i  is a homotopy inverse of r By the cellular approx- 

imation theorem (see p. 77 of [Whd]), we may find a cellular map  ~ E C ( X 2 , X 1 )  such 

tha t  ~,,~blor Then we have 

f~162 IX~ ~ f~162 ~ r176162 IX~ ~ f ~ 1 6 2 1 7 6  '~ g~162176 

"g~176176  ~g~  [] 

Suppose that  X is homotopy equivalent to some CW complex X0, and let r Xo--+X 

be a homotopy equivalence. Given f ,  g E C ( X , Y ) .  We say hat f and g are k-homotopic 
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as maps from X to Y if (foe)Ix0 k ~(goO)lXo~. Lemma 2.1 says that  the choice of Xo and 

r plays no role. Usually we write f ~k  g as maps from X to Y, or simply f ~ k g  when 

it is clear what X and Y are. It is easy to see that k-homotopicity between maps is an 

equivalence relation. 

Similar to homotopy equivalence, we have k-homotopy equivalence between special 

topological spaces. Indeed, let X and Y be two topological spaces. Assume that  both 

X and Y are homotopy equivalent to some CW complexes, and that  k c Z  is given with 

k~>0. If we can find CEC(X, Y), CEC(Y,X)  such that  r 1 6 2  and r 1 6 2  then 

we say that  X and Y are k-homotopy equivalent. 

The classical obstruction theory deals with the extension problem for maps. The 

following problem is closely related to our discussion. 

Let X be a CW complex, Y be a topological space, kEZ, k>~O. Given an fE 

C(X k+l, Y), we want to know whether there exists a gEC(X, Y)  such that glxk=fixk,  

that is, whether fixk has a continuous extension to the whole of X.  

We have the following 

LEMMA 2.2. Let X,  Y and Z be topological spaces, X and Y be endowed with 

CW complex structures (xJ)jez and (YJ) jez  respectively, keZ,  k~O. If X is ( k + l ) -  

homotopy equivalent to Y and for every foEC(X k+l, Z), foixk has a continuous exten- 
sion to the whole of X,  then for any f E C ( Y  k+l, Z), fiyk has a continuous extension 
to Y. 

Proof. We may find CEC(X, Y) and CEC(Y, X) such that  ~ r  idx, r 1 6 2  ~k+l idy. 

By the cellular approximation theorem, we may assume that  r and r are both cellular. 

Let i be the map from yk  to yk+ l  such that  i(y)=y for every yEY  k. 

We claim that r 1 6 2  as maps from y k  to yk+l. In fact, since r  we may 

find a continuous map H0 from yk+l x [0, 1] to Y such that  Ho(y, 0)=r162  Ho(y, 1 )=y  

for any yEY  k+l. By the cellular approximation theorem we may find a cellular map H 

from Yk+lx[0,  1] to Y such that  H(y,O)=r162 H(y, 1 )=y  for any yEY  k+l. Since 

H(Ykx  [0, 1])CY k+l, the claim follows. Next, for any given f E C ( Y  k+l, Z), we define 

fo(x)=f(r for x e X  k+l. Then we may find goEC(X, Z) such that  goixk =foixk. Set 

g=goor By the above claim we see that  giyk ~f iyk .  It follows from Proposition 2.1 

that  f lyk has a continuous extension to Y. [] 

Now let us introduce 

Definition 2.3. Let X and Y be topological spaces where X possesses some CW 

complex structure, and kEZ,  k~>0. If for some CW complex structure (XJ) jez  of X, 
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every f E C ( X  k+l, Y) ,  f lxk  has a continuous extension to X, then we say that  X satisfies 

the k-extension property with respect to Y. 

By Lemma 2.2, we see that  the k-extension property does not depend on the par- 

ticular choice of CW complex structure on X. This fact will be useful to us later in 

constructions of various examples. In other words, it suffices to check this property for 

a particular CW complex structure of X. 

2.3. F r o m  c o n t i n u o u s  m a p s  to  Lipschitz  m a p s  

Let X be a compact metric space with metric denoted as d. For any function f :  X - + R ,  

we set 
If(xl)-f(x2)I 

Ifl~,x = s u p  I f ( x ) l ,  [f]Lip(X) ---- SUp d(Xl ,  x2) 
xEX x l , x zEX  

X1~3C2 

We simply write I f l~  and If]Lip when it is clear what X is. Define 

Lip(X, R)  = {f:  X-+  R :  [f]Lip(X) < c~}. 

It is a Banach space under the norm 

IflLip(x) = Ifl ,x +[:]Li,(x)- 

It is always convenient to replace usual continuous homotopies by Lipschitz homotopies 

when the image spaces are compact smooth manifolds as in present article. We describe 

a few elementary results below which will be sufficient for our purposes. 

LEMMA 2.3. Let X be a compact metric space. Then Lip(X, R)  is dense in C(X,  R) 

under the uniform convergence topology. 

Proof. Indeed this follows easily from the Stone--Weierstrass theorem. But we may 

also give a direct proof. Let there be given an f E C ( X ,  R), and for any a E R ,  a>O, define 

fa(X)=umei~(f(y)+a.d(x,y)) for any x E X .  

We easily check that  [fa]Lip~a and Ifa-f lor  as a--+c~. [] 

PROPOSITION 2.3. Let X be a compact metric space. Then we have: 

(1) Lip(X, N)  is dense in C(X,  N)  under the uniform convergence topology. 

(2) For any f E C ( X ,  N) ,  there exists a gELip(X,  N) such that f ~ g .  

(3) For any f ,  gELip (X ,N) ,  if f .~g, then there exists a continuous path in 

Lip(X, N),  say HEC([0,  1], Lip(X, N)) ,  such that H(O)=f ,  H(1)=g .  Usually we write 

the latter statement as f'~Lipg. 
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Proof. Choose e > 0 small enough such that 

V2~ = {y: yE R i, dist(y, N)  < 2c} 

is a tubular neighborhood of N. Let r:  V2~-+N be the nearest point projection map, 

which is smooth because of the smallness of e. 

Given any fEC(X,N). By Lemma 2.3 we may find fjELip(X,R [) such that f j  

converges to f uniformly. For j large enough, we have fj(X)cVe. Let gj=rofj. Then 

gjELip(X,  N)  and gj converges uniformly to f .  This proves (1). 

Given any fEC(X, N), choose a gELip(X,  N )  such that I f-gl~ ~ .  Let 

H(x,t)=Tr((1-t)f(x)+tg(x)) f o r x E X ,  0 < . t < . l .  

Then H is a homotopy from f to g. This proves (2). 

Given f, gELip(X, N) such that f~g, let G:X• [0, 1]--~N be a continuous map 

such that G(x,O)=f(x), G(x, 1)=g(x) for xEX. Choose 5>0  small enough such that 

for xl,  x2 E X, tl, t2 E [0, 1], we have I G(xl,  tl) - G(x2, t2)I ~ ~ c when d(Xl, x2) + Itl - t2 I~ < 5. 

Let Gt: X----~N be defined by Gt(x)=G(x, t) for xEX. Choose m E N  such that 1/m<5. 
For l<~k<.rn-1, choose Lk/mELip(X,N) such that [Lk/m(x)-Gk/m(x)[<~e for any 

xEX. Set Lo=f , Ll=g. For any O<<.k<<. rn-1, tE[k/rn, (k+ l)/m], xEX, set 

L(t)(x) = ( k + l - m t ) L k / m ( X ) + ( m t - k ) L ( a + l ) / m ( x ) .  

Clearly LEG(J0, 1], Lip(X, R~)). Let H(t)(x)=Tr(L(t)(x)) for xEX, 0~<t~< 1. Then clearly 

[H(t2) - H ( t l ) [ ~  ~< c(N)[L(t2) - L( t l ) [~ .  (2.1) 

On the other hand, ~[v~ clearly has a smooth extension ~: R [ - + R  [, which satisfies ~ ( y ) = 0  

for all y outside a big ball. For 0<~tl,t2~1, Xl,X2EX, we have 

I(U(t2)(x2)-H(tl)(x2))-(H(tu)(xl)-U(tl)(Xl))I 

= ]~(L(t2)(x2))-~(L(t2)(Xl))-~(L(tl)(X2))+~(L(tl)(Xl))I 

= ~ o i # ' ( ( 1 - s ) i ( t 2 ) ( x l ) + s L ( t 2 ) ( x 2 ) ) ( i ( t 2 ) ( x 2 ) - i ( t ~ ) ( x l ) )  ds (2.2) 

-~01~l((1-s)i(tl)(xl)+si(tl)(x2))(L(tl)(x2)-i(tl)(Xl)) ds 

~ c(N)[L(t2)-i(tl)]Lipd(xl,x2)+c(N)[L(t2)]LiplL(t2)-L(tl)i~d(xl,x2). 

Inequalities (2.1) and (2.2) together implies that HEC([0,  1], Lip(X, N)) ,  and hence we 

get (3). [] 
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3. G e n e r i c  sl ices o f  S o b o l e v  f u n c t i o n s  

One of the technical steps in our proofs involves restrictions of given Sobolev maps to 

various lower-dimensional skeletons in general positions. Thus we have to obtain analytic 

controls on generic slices of Sobolev functions. 

Let K be a finite rectilinear cell complex, l~<p<c~. Then we define 

WI'p(K, R) - { f :  f :  IKI --+ R is a Borel function such that  f i ~ E  WI'B( A, R)  

and the trace T(fiA)=fIBd(Z~), for any A E K } .  

Here Bd(A) denotes the boundary of A. We also write 

lflwl,p(K) = ~_~ lfIAIWI'p(A)" 
AEK 

If fE)4;1,p(K, R), kEZ,  O<~k<p, then there exists a unique gEC(IKkl, R) such that  for 

any AEK k, we have f iA=giA 7-/d-a.e. on A, with d=d im(A) .  Here K k is the complex 

of all cells in K with dimension less than or equal to k. We also remark that,  whenever 

necessary, we use the following equivalence relation for Borel functions f,g: IK]-+R: 

f and g are equivalent if and only if for any A E K ,  f i A = g i a  7-/d-a.e. on A, where 

d=dim(A) .  

In the future, we also need a similar function space as follows. Let K be a finite 

rectilinear cell complex, r e=d im  K, l~<p<o~. Assume that  K satisfies 

IKI = U A. 
AEK 

dim(z2L)=m 

If f :  ]KI-+R is a Borel function such that  

(i) f l A E W I , P ( A , R )  for any A E K  with d im(A)=m;  

(ii) for any E E K  with d i m ( E ) = m - 1 ,  EcBd(A~) ,  d i m ( A i ) = m  for i=1 ,2 ,  we have 

T(II:,, )Ir~ = T(f I :,=) It., 
then we say that f lies in WI'p(K, R), and we write 

[fl~:~,,(g) = ~ lflAIW~.,fA). 
AEK 

dim(A)----m 

For convenience, we also make a convention that,  whenever necessary, we always fix a 

suitable representative of an equivalence class of measurable functions. 
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LEMMA 3.1. Assume that l~<p<oc, and that u E W I'P ( B'~ , R) with the trace T ( u ) =  

fELip(OB1,R). Then there exists a sequence u iELip(B1 ,R)  such that uiioBl=f and 
ui-~u in WI'p(B1,R). 

Proof. This is a well-known fact, but because the way it is proved is going to be 

used many times in the future, we present it here. For any 0<(~<1, we define 

u(x / (1-5))  for IxI ~< 1-5 ,  

ua(x) = f(x/ix]) for 1-a~< I x ] ~< 1. 

Then uaEWI'P(B1) and ua-+u in WI'p(B1) as a--~0 +. Hence we may assume that  

for some hE(0,1),  u(x)=f(x/ ix l )  for 1-a~<lx]~<l. Choose ~ E C ~ ( B 1 , R )  such that  

r/iBl_a/2=l, ?TiBl\B,_a/a=O and 0~<r/~<l. Choose a mollifier QEC~(Rm,  R) such that  

~>0, 0Irt-~\Bl=0 and fRmO(x)dx=l.  Let Oe(x)=(1/em)o(x/e). For e > 0  small enough, 

let v~ be defined on Bl-~/4 by V~(X)=fB ' O~(x--y)u(y)dy. Now set 

we(x) = ~(x)ve(x)+(1-rl(x) )u(x ). 

Then clearly we have we E Lip(B1, R )  and we-+ u in WI'p (B1, R) as c--~ 0+. [] 

Let A be a rectilinear cell, yEIn t (A) .  Then for any xEA,  we set 

Ixi~,A = inf{t : t > 0, x E y + t ( A - y ) } .  (3.1) 

This is the usual Minkowski functional of A with respect to y. When it is clear what y 

is, we simply write Ixla instead of Ixiy, A. 

LEMMA 3.2. Assume that K is a finite rectilinear cell complex, l~<p<cx~. Then: 

(1) Lip(iK], R) is dense in 1N',"(K, R). 

(2) / f  we define a space $=WI'P(K,R)MC(IKI ,R)  with norm 

IflE = Iflw~.,(K) + Ifl~,lKI, 

then Lip( IKI ,R ) is dense in g. 

Proof. We use induction to prove the first assertion. In fact, it is clearly true when 

d i m K = 0 .  Assume that  it has been proved for d i m K - - m - 1  for some m>~l. Now 

assume d i m K = m .  Given any uEWI'P(K,R) ,  we may find a sequence of maps f~E 

L i p ( i K m - l I , R  ) such that  f/--+uilK~-~ I in WI'p(Km-I ,R) .  For any A E K \ K  m-l, we 

pick a point yAEInt(A). Since A is bi-Lipschitz to B ~  by the obvious map, from the 

proof of Lemma 3.1 we may assume that  for some hE(0, 1), for each A E K \ K  m-l,  one 

has 

u ( x ) = u  y ~ +  f o r x E A w i t h l - - 5 ~ < l x I ~ < l .  
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Choose an ~ E C ~ ( R , R )  such that  0~<~<1, ~[(_~,1_~/2]=1, ~[[1-5/3,c~)----0. Let ui be 

defined as 

{ f~(x), x~lK~-~l, 
ui(x)= ~([XlA)U(X)+(1--~([X[A))fi(yA+(x--yA)/]XIA), XE/k, AcK\K m-1. 

Then clearly uiE)/Yl,V(K,R) and ui-+u in VVLP(K). By using Lemma 3.1 on each 

A E K \ K  m-1 we get that  u~ can be approximated in )/VLP(K) by functions in Lip([K[, R),  

and hence so can u. The proof of the second assertion is exactly the same as the first 

one. [] 

Henceforth till the end of this section we shall assume that M is an n-dimensional 

Riemannian manifold without boundary, 12cM is a domain with compact closure and 

Lipschitz boundary. Assume that the parameter space P is an m-dimensional Rie- 

mannian manifold, Q is a d-dimensional Riemannian manifold without boundary, D c Q  

is a domain with compact closure and Lipschitz boundary, and the dimensions satisfy 

d+m>/n. 

Given a map H: D x P---~M, we assume that  H satisfies: 

(H1) H E L i p ( D x P )  and [H(.,()]Lip(D)~<c0 for any ~EP.  

(H2) There exists a positive number Cl such that  the n-dimensional Jacobian 

JH(X,( ) )c l ,  7-ld+m-a.e. (x ,()~ D x  P. 
(Ha) There exists a positive number c2 such that  7"ld+m-n(H -1 (y))<~c2 for 7-/n-a.e. 

yEM. 
For convenience we use H x and H~ to denote the maps defined by Hx(()=H~(x)= 

H(x,~). 

LEMMA 3.3. Let H : D x P - + M  be a map satisfying (H1), (H2) and (Ha). Then for 

any Borel function X: M - + R = R U { + o c }  with x)O,  we have 

/Pd~'~m(~) /D ~( u~(x) ) d~t~d(x) ~ CllC2/M X(Y) d~-Zn(Y) �9 

Especially for any Borel subset E c M ,  we have 

; 7-ld( H (  l ( E) ) dTtm(~) <. cll c27-Ln( E). 

I f  in addition 7t'~(E)=O, then 7-ld(H~l(E))=O for 7-lm-a.e. ~eP.  



T O P O L O G Y  O F  S O B O L E V  M A P P I N G S ,  II 69 

Proof. By the coarea formula (see [Fe, p. 258] or [Si, w167 10 and 12]) we have 

s s  (a(x))dUd(x) 1 s 

= c~1/M X(y)Ud+m-n(H-I(Y)) dUn(y) 

<<" c-11c2 /M X(Y) dUn(Y) �9 

Note that  here we need condition (H 0 to insure the validity of the coarea formula quoted 

above. Though the coarea formula is true for a larger class of Sobolev maps (see [MSZ]), 

the present form is sufficient for our purposes. [] 

LEMMA 3.4. Assume that l ~ p < c o ,  fEWI'P(f~,R), and that H:D• is 
a map satisfying (H1), (H2) and (H3). Then: 

(1) There exists a Borel set ECP such that Um(E)=O, and for any ~EP\E, 
(i) foHr 
(ii) f is approximately differentiable at H~(x) for Ud-a.e. xE D, and in addition, 

d~P(foHr =d~PfH~(~)o(H~).,~ for Ud-a.e. xED, 

where (H~).,x denotes the tangent map of H~ at x. 
(2) If f iEL ip (~ ,R)  satisfies fi'-+ f in WI'p(f~), then there exists a subsequence fi, 

and a Borel set ECP such that U'n(E)=O, and for any ~EP\E, fi, oH~--~ foH~ in 
W I , p ( D ) .  

(3) If we define ] by ](~)=foHe for any ~EP, then ]ELP(P, WLP(D)), and in 
addition, 

I]IL~(P,W',~(D)) <~ clflw',,(n), 

where c depends only on p, co, cl and c2. 

Proof. From [EG, p. 233] or [Fe, p. 214] we know that there exists a Borel set Xo 

such that  U~(Xo)=O, and for any xEf~\Xo, f is approximately differentiable at x, and 

fi is differentiable at x. For xEf~\X0, d~Pf(x) and dfi(x) has already been defined. For 

xEXo, we simply set d~Pf(x)=O, dfi(x)=O. From Lemma 3.3 we may find a Borel set 

E1cP such that  Urn(E1)=0 and Ud(H~l(Xo))=O for ~EP\E1. On the other hand, 

from Lemma 3.3 we know that  

~pdT"lm(~) ~ (Ifi(H~(x))- f(H~(x) )iP + I(dfi)H,(~)-daPfH,(~)lP) dUd(x) 
(3.2) 

/ *  

<~ c-~c2 ](I f~(y)- f (y) l  p + I ( d f d ~ - d ~ P f ~ l  p) dUn(Y) --+ 0 as  i (X) . 
3~ 
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Hence we may find a subsequence fe  and a Borel set E2cP such that  7-/m(E2)=0 and 

for any ~EP\E2, 

D(lfe(H~(x))--f(H~(x))lP+l(dfe)H~(~)-daPfH~(~)lP)dT-Id(x)--~O. (3.3) 

Then for any ~EP\(E1UE2), we have f~,oHr162 in LP(D); also for 7-/d-a.e. xED, 
f is approximately differentiable at He(x), fi' is differentiable at H~ (x) and dfe I Hr )--~ 

daPfIHr (.) in LP(D), which clearly implies that  (dfr162 
in LP(D). Hence we have foH~EWI,P(D) and fi, oH~--~ foH~ in WI'P(D), d~P(foH~)x = 
d~PfHd~)o(H~).,x for 7-/d-a.e. xED. This implies that  ]i'--+] 7"/m-a -e. on P, and hence 

] is Lebesgue measurable. In addition, we have 

IS I](~)I~VI'p(D)d~-~rr : /pd~?Tt(~) fD(if(U,(x))l p +lda'Pfu,(sE)~ 

<~ c ~ (If(y)lP + IdaPfyl p) dT-/n (y), (3.4) 

where c depends only on p, Co, c1 and c 2. This clearly implies Lemma 3.4. [] 

COROLLARY 3.1. Let l<<.p<oc, fEWI'P(f2, R), K be a finite rectilinear cell com- 
plex, H: ]K] • be a map such that HIA• satisfies (H1), (H2) and (H3) for any 
AEK. Then there exists a Borel set E c P  such that 7-/m(E)=0 and for any ~EP\E, 
we have foH~EWi'p(K); in addition, the map ]ELP(P, 1,VI,P(K)), where ](~)=foH~ 
for ~EP. 

Proof. Choose a sequence f~ELip(fl, R) such that  fi--~f in WI'p(~).  Then we may 

find a Borel set ECP and a subsequence fe such that  7-U~(E)=O and for any ~EP\E, 
we have 

(i) foH~Ip, EWI'P(A) for any A E K ;  

(ii) fi, oH~[a---~foH~[a in WLP(A), for any A E K .  

Since Z(f~,onel~)=f~,on~lBd(~), by taking a limit we get T(foHelA)=foHelBd(A). [] 

We also have the following interpolation inequality for the curvilinear case, which is 

an easy consequence of the classical Gagliado-Nirenberg-Sobolev inequality. 

LEMMA 3.5. Assume that H:DxP--+flCM is a map satisfying (Hx), (H:), (Ha), 

and that d<q<p<oo and fEWI'P(f~,R). Then 

q/p 1 --q/p ( / p l f  ~ lPL~(D) dT-~m('))~/P<~ c(ldflL,(~)[flL~(f~)-blfiL'(f~)) �9 

Here c is a positive constant depending only on p, q, D, co, c~ and c2. 

Proof. By the usual Sobolev inequality, for any r  R),  we have 

IOILo~(D) ~ c(q, D)(Idr162 (3.5) 
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Since p/q> 1, for any CELip(D, R),  applying (3.5) to Ir p/q, we get 

C P/q Ir P/q L~(D) <~c(p,q,D)(I dr162 

Taking the qth power on both sides and applying HSlder's inequality to the right-hand 

side, we get 
J r  -< q P-q r P. .~ c(p, q, D)(JdOIL.(D)ICl/~(D)+ f (D)-- (3.6) 

A simple approximation procedure shows that  (3.6) is also true for r in Wl'P(ft, R). It 

follows from Lemma 3.4 and (3.6) that  for 7-/m-a.e. ~EP, 

IfoH~lPLoo(n) <<. c(p, q, n)(Id(foSr + IfoH~IPLP(D)) 

q P--q p <~ c(p, q, D, Co)(l(df)H,(. )liP(D)If~ § II~ 

Integrating both sides with respect to ~, and using HSlder's inequality, we get 

I, (I, )" p d U ~ ( ~ )  If ~ I/~(D) p d~]'[m(~) <~ c I(df)s,( . ) I L P ( D )  

( i p ) l - g / p  • IfoH~I~.(D) dn"~(~) 

+ c/p IIoH~I[.(D) dUm(~) 

Here c depends on p, q, D, co, cl and c2. In the last inequality above, we have used 

Lemma 3.3. [] 

4. Homotopy of Sobolev mappings 

Let X and Y be topological spaces. We use IX, Y] to denote the set of all homotopy 

classes of continuous maps from X to Y. Given any f 6 C ( X ,  Y), we use [f]x,Y to denote 

the homotopy class corresponding to f as a map from X to Y. When it is clear what X 

and Y are, we simply write [f] instead of [f]x,Y. 
For e0 >0, denote 

V2~o(M) = {y: y e R  l, dist(y, M) < 2c0}. 

We assume that  r is small enough such that  V2~o(M) is a tubular neighborhood of M, 

and denote rM:V2eo(M)---~M as the nearest point projection map, which is smooth 
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because of the smallness of ~0. Given any map h: A-+M, we define the corresponding 

H: A• by H(a, ~)=~ru(h(a)+~). If A is a rectilinear cell, and h: A - + M  is a 

Lipschitz map, then it is easy to see that  (H1), (H2) and (H3) in w are satisfied by H. 

For the reader's convenience, we write down the proof of (H3). Let d=dim(A) .  Given 

any yEM, denote My as the tangent space of M at y. Define a map 

r A x {ecRU: r Ir <~o} -~ A • 

by r  ~)=(x,  y + ~ - h ( x ) ) .  Then clearly H - l ( y ) C i m ( r  It follows from the area for- 

mula that  7-ld+l-'~(H-l(y))<.7-ld+l-n(im(r This verifies (H3). 

Often we write h~ instead of H~. The notations V2eo(N) and ~N are defined similarly. 

When no confusions would occur, we write ~- instead of ~M and ~N- We start  with a 

few simple facts. 

LEMMA 4.1. Let X be any topological space, and Uo and ul be continuous maps 

from X to N. If  luo-ul i~,x<.~o=Eo(N),  then uo~ul  as maps from X to N. 

Proof. Simply take H(x , t )=~N((1- - t )uo(x)+tu l (x ) )  for x E X ,  0~t~<l,  as the 

homotopy. [] 

LEMMA 4.2. If X is a compact metric space, then [X, N] is countable. 

Proof. This follows from Lemma 4.1 and the fact that  C ( X , R )  has a countable 

dense subset. [] 

The next lemma is concerned with certain topological classes introduced by a given 

Sobolev map when it is restricted to a lower-dimensional set. 

LEMMA 4.3. Assume that l ~ p ~ n ,  uEWI 'P (M,N) ,  that K is a finite rectilinear 

cell complex, that the parameter space P is an m-dimensional Riemannian manifold, and 

that H : I K I •  is a map such that HIA• satisfies (H1), (H2) and ( H 3 ) f o r  any 

A E K .  Then there exists a Borel set E c P  such that 7-/re(E)=0 and uoH~EWI'P(K, N)  

for any ~EP\E .  Assume that either k = l  or k is an integer with O<.k<p. Define a map 

X=Xk,H,~: P-+[IKkI,N] by setting X(~)=-[uoH~ttK~I]. Then ~( is Lebesgue measurable, 

that is, X-l ({a})  is iebesgue measurable for any aE[IKkI,N]. Here K k is the finite 

rectilinear cell complex defined by 

K k =  ( A E K : d i m ( A )  ~<k}. 

Proof. The existence of such an E follows from Lemma 3.3 and Corollary 3.1. Note 

that  Lemma 3.3 is needed because we only know that  u(x)E N for 7/'~-a.e. x E M. But by 
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the second half of Lemma 3.3, we conclude that  for 7{m-a.e. ~EP,  for each A E K  with 

d = d i m ( A ) ,  uoH~ takes values in N, 7-Ld-a.e. on A. The Sobolev embedding theorem 

implies that  X is pointwise well defined away from E. Note that  k= 1 is special because 

a wl ' l - func t ion  on a closed interval is absolutely continuous after a modification on a 

set of measure zero, but in general one does not have this for a wl 'k - func t ion  on a 

k-dimensional disk for k > l .  Instead we will handle this issue in Lemma 4.6. Define 

fi(~)=uoH~ for ~EP\E. It  follows from Corollary 3.1 that  ~tELP(P, ]/Vl,p(K, g ) ) .  By 

Lusin's theorem, we see that  the function fi is continuous on the whole parameter  space P 

away from an arbi trary small measure set. Using the Sobolev embedding theorem and 

Lemma 4.1, one concludes tha t  the corresponding X is locally constant away from such 

small measure sets. This along with Lemma 4.2 implies the measurabil i ty of X. [] 

The next result is useful for the critical case p E N ,  p>~2, which is not covered by the 

previous Lemma 4.3 (see Lemma 4.6 below). 

LEMMA 4.4. Assume that m is a natural number, and uEwI 'm(B~,N)  is such 
that the trace T(u)=fEwI'm(OB1,N)cC(OB1,N). Then for any r  there exists a 
vEWI'm(B1, N)MC(B1, N) such that IV--UIwI,m(B1) ~g and ViOsl=f. In addition, there 
exists an r162 N ) > 0  such that if vl, v2EwI'm(B1, N)MC(B1, N) satisfy viioB,=f 
and ]vi-uiwl.m(B~) <.r for i=1,2, then we have Vl~V~ relative to OB1, that is, during 
the homotopy, the value on OB1 is always fixed. 

Proof. As in the proof of Lemma 3.1, we may assume tha t  for some 5E(0, 1), u(x)= 
f(x/Ixl) for 1 -~<Ix l~<l .  Choose an r / E C ~ ( B 1 , R )  such tha t  0~<~<1, ~1IB,_6/2=1 and 

~?[BAB,_~/~=O. For r  small enough, we set v~(X)=~B~(x)U for xEBI-~/4. Then we 

define 

w~(x) = (1-~(x))f(x/ixl)+~(x)v~(x) for xESl .  

Clearly w~EWI,m(B1,RI)MC(B1) and we--+u in WI,m(B1). For xeB~_~/2, from the 

Poincar@ inequality we have 

/B~(~) u(Y)--/a~(x)u dy~c(m'[)(/B~(x)'Vu'm)l/m' 

and hence dist(ve(x), N)--+0 uniformly for xEBI-~/2. This implies that  the same thing 

is true for we on B1-~/2 because VeIB~_6/2=WeIBI_~/~. On the other hand, from the 

uniform continuity of f we know that  we(x)-f(x/ixI)--+o uniformly for x eBl\B~-z/2 
as r Hence dist(w~ (x), N)--+0 uniformly for x E B1 as r +, from which we deduce 

that  zrowe--+u in wI'm(B1) as r +, 7row~EWl'm(B1, N)MC(B~, N) and 7roW~[OB~=f . 
The first half of Lemma 4.4 follows. To prove the second half, clearly we may assume tha t  
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u(x) = v l ( x ) = v 2 ( x ) = f ( x i  I Ixl) for �89 ~ Ixl ~ 1. Choose an 17E C~(Bi, R) such that 0~r#~ 1, 

171B213=1, ~71Bl\U314=O. For 5>0  small, we define 

= (1-rl(x))f(x/ixi)+r}(x)i  vi (4.1) (v~)~(x) 
J B  

for xEB1 and i=1 ,2 .  From the continuity of f we know that (vi)~(x)-f(x/Ixl)-+O 
uniformly for -~ ~ Ixl ~ 1. On the other hand, for Ix[ ~ w we have (vi)5(X)----fB~(x)Vi, and 

hence 

dist((vi)5(x)'N) <~ iB~(x) vi--iB~(x) vi ~ c(m'[)(iB~(x)iVviim)l/m 
(4.2) 

\ l /m ~, 

when 0<5~<50(m, [, u) and c(m, [)c<. ~go. In addition we may assume that 5o(m, [, u) is 

small enough so that 

I(v~)~(x)-f(xllxl)l<~lSo for ~ <~lxl<~ l, 0<6<~5o(m,f,u). (4.3) 

(4.2) and (4.3) tell us that 

dist((vi)~(x),Y)<<.�88 f o r x e B 1 , 0 < 5 < ~ 5 o ( m , [ , u ) .  (4.4) 

Note that for l>~lxl~> 2, (Vl)~,>(x)=(v2)so(x). For Ixl~< 2, we have 

i .  (f .  ?ira c (4.~) I(v,)~o(X)-(v:)~o(x)l .< Iv,-v~l ~< Ivi-v21 m) <<. c(m,[)~o. 
~o(~) ~o(~) 

By taking r u, N) small enough, we have 

I(v,)~o(X)-(v2)~o(x)l<~ �88 for xeB1. (4.6) 

From (4.4) and (4.6) we see easily that  ~o(vl)~0~Tro(v2)~0 relative to 0BI; indeed, the 

map H(x, t)=Te((1-t)(vl)~o(x)+t(v2)~o(X)) is the needed homotopy. On the other hand, 

it is easy to see that vi " (vi)~0 relative to OB1 for i--1, 2, and the second half of Lemma 4.4 

follows. We should mention that for this part one may also use the so-called VMO space 

theory by [BN]. [] 
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COROLLARY 4.1. Assume that mEN, and uEWI'~(B~,N) is such that the trace 
T(u)=fEWI"~(OB1, N)cC(OB1, N). Then there exists an ~ l=c l (m ,  u, N ) > 0  such that, 
for any vo, vlEC(B1, N)MWLm(B1, N) with fo=voloB~ and fl=vlIoBIEWLm(OB1, N), 
if Ivi-uIw~,m(B~) <.el and Ifi-flw~,m(oB,) <.c1 for i --0,1,  then Ifo(x)- fl(x)l<~o(N ) 
for any xEOB1, and we may find a homotopy v(.)EC([O, 1],C(B1,N)) such that 
v(O)=vo, v(1)=vl  and v(t)(x)=TrN((1--t)fo(X)+tfl(x)) for xEOB~ and 0~<t<l.  

Proof. By the Sobolev embedding theorem, we may take Cl(m, u, N)  small enough 

such that ]fi--f]~,OB~ <~�88 for i=O, 1. Let 

~(x) = ~ u(2x), x e B~/~,_ 

( f(x/Ixl), xEBI\B1/2. 

Also for i=O, 1, denote 

Vi(2X), X E B1/2, 

vi(x)= 7rN((2_2lxi)fi(x/lxl)_}_(2lxl_X)f(x/lxl)), zEBI \Bi /2 .  

A simple computation shows that 

[gi-(tIw~,,,(B,) <~ c(m, u, N)(Ivi-ulw~,m(B~) + [fi- fIwx,m(OB~)) �9 

Hence it follows from Lemma 4.4 that if we pick el(m,u, N) small enough, then we may 

find a m a p / t E C ( B 1  • [0, 1],N) such that /-t(x,0)=~0(x),  /~(x, 1)=~l(x)  for xEB1 and 

H(x, t)=f(x) for xEcgBi, 0~<t~<l. Let us define a m a p / ~  on 0(B1 • [0, 1]) by 

xEB1,  t = 0 ,  

xEOB1, O<.t<~ ~, 
1 2 fiI(x, t) = x E OB1, ~ <~ t <<. ~, 

xEOBI, ~ <~ t <<. l, 

xEB1, t = l .  

Then it is clear that/~1o(~1• On the other hand, if we set 

Vo(X), xEB1,  t = 0 ,  

H(x,t)= IrN((1--t)fo(X)+tfl(X)), xEOBl, 0<.t<~l, 

Vl (X), xEB1,  t = l ,  

then, clearly ]H-/~l~,a(~l• ). By Lemma 4.1, we know that H ~ / t  on 

0(BlX[0,  1]). Hence H~/~]o(~• It follows from Proposition 2.2 that H has a 

continuous extension to B1 • [0, 1] which takes values in N. The extension map is the 

needed homotopy. [] 

vo(x), 
~N(3tf(x)+(1-3t)~)(x)), 

I(x), 
~g((3--3t)f(x)+(3t--2)fl(x)), 
Vl(X), 
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LEMMA 4.5. Let m be a natural number, and K be a finite rectilinear cell com- 

plex with dim K~<m. Given any uE1/Yl'm(g, N).  Choose a vEC(IKI, N)NJ4;I'm(K, N)  

such that Uiigrn-li=Viigm-lI and l u - v i w l , m ( g ) ~ c ( m , K , N , u ) ,  a very small number. 

Define O(u)E[IKI,N] by O(u)=[v].  Then 0 is a weU-defined map from 1/vI'm(K,N) 

to [IK], N]. In addition, 0 is a locally constant map. 

Proof. The existence of v and the well-definedness of O(u) follow from Lemma 4.4. 

Note that  in Lemma 4.4, the homotopy between two approximation maps preserves the 

boundary value. This helps in patching the homotopy of all m-dimensional cells into a 

global homotopy. The fact that  O is a locally constant map follows from Corollary 4.1. 

Again one just needs to apply Corollary 4.1 to m-dimensional cells. [] 

The conclusion of Lemma 4.5 is in the same spirit as degree theory for VMO maps 

as studied in [BN]. By Lemma 4.5, Lemma 4.3 and its proof, one can easily deduce the 

following 

LEMMA 4.6. Assume that pEN,  2~p<.n, and that K , P , M  are the same as in 

Lemma 4.3. Then there exists a Borel set E c P  such that 7-/m(E)=0 and for any 

~EP\E ,  we have uoH~EI/VI'P(K,N). Define a map X=X~,H,u:P--~[IKPI,N] by set- 

ting X(~)=O(uoH~) (here 0 is the map defined in Lemma 4.5). Then ~ is Lebesgue 

measurable. 

The next proposition is in the same spirit as Lemma 4.5. It says that  the homo- 

topy classes we defined are stable under the weak and strong convergences of Sobolev 

mappings. 

PROPOSITION 4.1. Assume that l<.p<~n, kEZ,  that K , P , H  are the same as in 

Lemma 4.3, and that u i , uEWI 'P(M,N) .  If either O<.k<~p and u~-+u in WI 'P(M,N)  

or O<.k<p and ui---~u in WI 'P(M,N) ,  then after passing to a subsequence we have 

)(.k,H,ur 7-Lm-a.e. on P. 

Proof. It follows from Lemma 4.3 and Lemma 3.4 that  we may find a Borel set 

E 1 c P  such that  7-lm(E1)=O, for any ~EP\E1,  nolle, uioh~Eld;1,V(K, N)  for every i. 

In addition, for ~EP\E1,  A E K ,  d=d im(A) ,  we have that  us and u are approximately 

differentiable at H~(x) for 7{d-a.e. xEA,  and 

daP(uioH~)x = daP(ui)gr163 dap(uoHs = d~PuH,(~)o(H~).,~ 

for 7-/d-a.e. xEA.  

First assume that  O<~k<.p and ui-+u in WI'p(M, N) .  It follows from the proof of 

Lemma 3.4 that  after passing to a subsequence ui,, there exists a Borel set EC P, with 
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E1cE, 7-/m(E)=0, such tha t  for any ~eP\E ,  ui, oH~-+uoH~ in W I , p ( K , N ) .  If k<p, 
it follows from the Sobolev embedding theorem (applied to every cell with dimension 

less than  or equal to k) and Lemma 4.1 that  ~)(.k,H,ui,(~)--"~)~k,H,u(~). If k=p, the same 

conclusion follows from Lemma 4.5. 

Now assume that  O<~k<p and ui-~u in WI'p(M,N).  Fix a qE(k,p). Given any 

A E K  with dim(A)~<k, it follows from Lemma 3.5 that  

p l u ~ o g ~ - u o H ~ l ~ ( ~ )  dT-lm(~) 

<~ c(p, q, A, [, Co, cl c2)(Idui--dulqLP(M) lUi P-q P --UILP(M ) , --ulL,(M)+ lui ). 

Summing up, using the condition u~--~u, we get 

fp  E lui~176 dT"lm(~)-+O 
AEK 

dirn(A)<k 

as i--+oc. After passing to a subsequence ui,, we may find a Borel set E C P  such that  

E1cE, 7-/m(E)=0 and for any ~EP\E,  

lu,, o g~  -- uo g~  lPL~ (,x ) --+ 0 
AEK 

dim(A)~<k 

as iP--+c~. This together with Lemma 4.1 implies Xk,H,u~,(~)--"~)~k,H,u(~). [] 

In the rest of this section, we want to present some results closely related to 

B. White 's  paper [Wh2]. These results will be needed later on. The following lemma 

says that  Wl 'P-maps  have well-defined ( [ p ] - l ) - h o m o t o p y  classes. The reader should 

compare it with Lemma 4.3 and Lemma 4.6. 

LEMMA 4.7. Assume that 1 ~p<~ n, uEWI 'p (M,  N), that K, P, H are the same as in 
Lemma 4.3 and P is connected, kEZ, 0 ~ k ~ < [ p ] - l ,  X=Xk,H,u. Then X--const  7-l'n-a.e. 
on P. 

Proof. By standard arguments,  we only need to show that  when P=B'~, one has 

X - c o n s t  7-/m-a.e. on B~.  

Define a new rectilinear cell complex /~  by 

/~-- {A • {0}, A • {1}, Ax[0, 1l: AeK};  

then I /~I=IKI • [0,1]. 
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We claim the following fact. For any ~EB~ '~, there exists a Borel set Er  
such that 7tm(Er and for any ~EB~\Er we have uoH~, uoH~+r N) and 

uoH~IiKkl~UoH~+r I as maps from [Kk[ to N. To show this fact, let us define 

H: [K[ x B2 = [K[ • [0, 1] x B2 --+M by H(x, t, 4) =H(x, ~+t~). First assume k+  1 <p.  Then 

by Lemma 4.3, we may find a Borel set Er such that  7-/m(Er and u o / ~ E  

I/VI'p(/~, N)  for any ~EB2\Er By the Sobolev embedding theorem we may assume that  

u o / ~  is continuous on [/~k+l[. Since u(~I~(x,O))=u(H~(x)), u(H~(x, 1))=u(H~+r 
and ]K k] x [0, 1]C ]/(k+lI, we get uoH~IIKk I ~uoH~+r I. If k + l = p ,  then we only need 

to note that by Lemma 4.4, for the above chosen Er given any ~EB2\Er we may find a 

continuous map r IKk+II--+N such that  for any AE/~  with d=d im(A)  ~<k, r and u o / ~  

are equal 7-/d-a.e. on A. This clearly implies the needed homotopy. 

Let E0 be the set of measure zero on which X is not defined. If X is not constant 

7-/m-a.e. on BI\Eo, since [IKk], N] is countable (by Lemma 4.2), we may find two differ- 

ent elements Oil, ol 2 C []Kkl, N] such that  7"~m(Ei)>0, where Ei=X-I({o~i})AB1, i=1 ,  2. 

Choose a density point ~.iEEi, that is, 

lim ?-lm(Br(~i)NEi) = 1. 
t - + o +  

Let ( = ~ l - ~ 2 E B 2 .  Then X(~)=X(~+()  for ~EB2\E3, where E3=EcUEoU(Eo-(), 
7-lm(E3)=O. Because ~l is a density point for both E1 and ( + ( E 2 \ E 3 ) ,  we find that  

((+(E2\Ea))nEI#O. Choose ~IEE1 and ~2EE2\Ea such that  ~1=(+~2.  Then we have 

X(~l)=)/(~2), that is, Cq=O/2,  a contradiction. [] 

Remark 4.1. Assume that  l<.p<<.n, uEWI'V(M,N), that K is a finite recti- 

linear cell complex, and that  h: IK]-+M is a Lipschitz map. Denote the correspond- 

ing H:IKJxB~,--+M as H(x,~)=~r(h(x)+~). Then X[v]-LH,~--const a.e. on B l,(,, and 

we denote this constant as u#,v(h ). 

The next two lemmas say that  the object u#,v(h ) defined in Remark 4.1 is indeed 

well behaved topologically. 

LEMMA 4.8. Assume that l<~p<~n, uEWI'p(M,N),  that K is a finite rectilinear 
cell complex, ho, hl: IKI---+M are Lipschitz maps, and ho"-hl as maps from IKI to M. 
Then u#,v(h0)=u#,p(h l ) .  

Proof. Le t /~  be the same rectilinear cell complex as in the proof of Lemma 4.7. Then 

]/~I=IK] x [0, 1]. We may find a gELiP( iK I x [0, 1] ,N) such that  g(x,O)=ho(x), g(x, 1)= 

hi (x) for any x E]K I. Indeed the homotopy constructed in the proof of Proposition 2.3 (3) 

satisfies this requirement. It follows from Lemma 4.3 that  there exists a Borel set E C  B~o 

with 7 / l ( E ) = 0  and for any ~EBeo\E, uog~EI/Yl'P(K,,N). Observing that  uog~(x,O)= 
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uo(ho)~(x) and uog~(x, 1)=uo(hl)~(x) for xe[K[, it follows from the proof of Lemma 4.7 

that  uo(ho)~[]K[p]-ll,~uo(hl)~llg[p]-,i. This clearly implies U#,p(ho)=U#,p(hl). [] 

Remark 4.2. Assume that  l<~p<~n, uE WI,p(M, N),  and that  K is a finite rectilinear 

cell complex. Given any a E [ ] K I , M  ], choose an f E L i p ( I K h M  ) with [ f ]=a ;  then we 

write U,,p(a)=U#,p(f). By Proposition 2.3 and Lemma 4.8, we see that  this gives us a 

well-defined map from [IKh M] to [IK[p]-ll, N]. 

LEMMA 4.9. Assume that l <.p<.n, u, vEWI'P(M, N),  that K is a finite rectilinear 

cell complex, and that h: IKI--+ M is a Lipschitz map. If  h is a homeomorphism and 

U#,p(h)=v#,p(h), then for any finite rectilinear cell complex L, and any Lipschitz map 

g: ILI--+ M, we have U#,p(g)=V#,p(g). 

Proof. Without loss of generality, we may assume that  dim L ~< [p] :- 1. By the cellular 

approximation theorem, we may find a goEC([L[,M) such that  g~go as maps from 

ILl to M and go(IL[)ch([K[p]-I[). Then h-logoeC([L[, IK[p]-I[). Since [K[p]-I[ is a 

Lipschitz neighborhood retractor in the corresponding Euclidean space, we may find a 

CELip(IL], ]K[P]-I]) such that  r  as maps from ILl to IK[p]-I]. Hence hor  

as maps from ILl to h(IK[pl-ll). It clearly follows from Remark 4.1 that  U#,p(hor 

V#,p(hodp), and this plus Lemma 4.8 tell us that  U#,p(g)=V#,p(g). [] 

We note that Lemma 4.9 implies in particular that  if l<.p<.n, u, vEWI 'p (M,N) ,  

h i :Ki-+M are Lipschitz rectilinear cell decompositions for i=O, 1, and U#,p(ho)= 
V#,p(ho), then U#,p(hl)=V#,p(hl). Hence we introduce 

Definition 4.1. Assume that  l<~p<~n and u, vEWI'p(M, N). If for any Lipschitz 

rectilinear cell decomposition h: K-+M, we have U#,p(h)=v#,p(h), then we say that  u 

is ( [p]-1)-homotopic to v. 

It is easy to see that the relation of ( [p ] -  1)-homotopy is an equivalence relation on 

WI'P(M,N)  for the M, N,p  in Definition 4.1. The following result, which was proved 

by B. White in [Wh2], plays an important  role in our future arguments. With the new 

concept I/VI'P(K) and its properties in w we may use the classical Sobolev embedding 

theorem and Poincar6 inequality on the unit ball instead of somewhat more complicated 

ones in w of [Whl] and w in [Wh2]. This makes our proof technically simpler. 

THEOREM 4.1. If l ~p<.n, u, vEWI'P(M, N) and A>0,  then there exists a positive 

number r162 A, M, N) such that 

IdUlLP(M), IdVlLP(M) <~ A and lu--vli,(M ) <~ e ~ u is ([p]-l)-homotopic to v. 
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Proof. Indeed this theorem follows from Proposition 4.1 and a simple compactness 

argument. Since the details of the proof below would be quite helpful for understand- 

ing the subsequent materials, we present it here. Fix a smooth triangulation of M, 

say h:K---~M. By Remark 4.1 we may find a Borel set E1cB~o such that 7-/l(E1)=0 

and for any ~EB~o\E1 , we have uoh~,voh~EWl,P(K,N) and [uoh~ltKE~l-it]=U#.p(h), 
[voh~llgi,]-~l]=v#,p(h ). Let m be a natural number which will be determined later. 

From Lemma 3.3 and Lemma 3.4 we know that, for any A E K ,  d=dim(A) ,  we have 

(4.7) 
<. c(M) ]Mlu(y)-v(y)lP dT-t~(y) <<. c(M)~ p 

and 

c(M) /M IdaPu(y)-daPv(y)p dT-ln(Y) < c(p, A, M). 

This implies 

7-/l ( {  ~E B~o:/A ]u(h~(x))-v(h,(x)),PdT-ld(x)~rnc(M)E p } )  m 

and 

(4.8) 

<. nZ(B~~ (4.9) 

<. n'(B o) 
m 

(4.1o) 
From (4.9), (4.10), Lemma 3.3, Lemma 3.4 and Corollary 3.1, and by taking m large 

enough (depending only on M) ,  we may find a Borel set E2CB~o such that 7-/l(E2)>0 

and for any ~EE2, we have: 

(i) uoh~, voh~EWI,P(K, g).  
(ii) For any A E K ,  denote d=dim(A) .  We have that u and v are approximately dif- 

ferentiable at hf(x ) for nd_a.e, xEA;  daP(uoh~la)~=dapuh~(x)o(h~).,x, d~P(vohr 
d~Pvh~(x)o(hf).,x for ~d-a.e. x e A .  

(iii) For any A e K ,  d=dim(A) ,  we have 

alu(h~(x))-v(h~(x))l p dT-ld(z) <. m.c(M)e p = c(M)e p, 

/ald~P(u~ la)x - ta)~ ! p d~la(x) <~ A, M) = c(p, A, M). d~P(voh( c ( p ,  m .  
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Hence for any A E K  [p]-I, d=dim(A) ,  

luoh~lA--voh~lAIL~(A) <<. c(p,A,M)r162162 (4.11) 

Choose r  A, M, N) such that  c(p, A, M)~I <<. �89 then choose r  A, M, N) 

small enough such that  c(p, M)~Pd/(p--d)r �89 By (4.11) we easily see that  

[u~ --v~ <~ ~0. (4.12) 

By Lemma 4.1, (4.12) implies that  uohSIiKtPl-~l,~Voh~llKtP]-~l as maps from IK[P]-X I 

to N. Choosing a ~EE2\E1, we conclude Theorem 4.1. [] 

5. Pa th  connec ted n es s  of  spaces of  Sobo lev  mappings  

We use the same notations as in w Recall that  for u, vEWI,P(M,N), if there exists 

a continuous path in WI,p(M, N) connecting them, then we write u,.~pV. We have the 

following 

THEOREM 5.1. Assume that l<~p<n and u, vEWI'p(M,N).  Then u~pv if and 
only if u is ([p]-l)-homotopic to v. 

Before we proceed, we note that  if p>~n, then by the Sobolev embedding theorem 

and Poincar~ inequality (see [SU] or [BN]), one easily deduces that  the path-connected 

components of WI'P(M, N) corresponds bijectively to [M, N] by a natural map. 

We need some simple observations before proving Theorem 5.1. 

Observation 5.1. Assume that  m E N ,  l~<p<c~, and that  uEWI,B(B'~,N) is such 

that  the trace T(u)=fEWI'P(OB1, N). For 0<t~<l, define 

f ~(x/t) for Ixl < t, 

w(t)(x) = I l f(x/lxl) for t ~< Ixl ~< 1. 

Then wEC((0, 1], WI'p(B1, N)) with w(1)=u.  Note that  usually we cannot extend w 

continuously to t=0  if p>~m. 

Observation 5.2. Assume that  mEN, l<<.p<m, and that  uEWI,p(B~,N) is such 

that  the trace T(u)=fEWI'P(OB1, N). For 0~<t~<l, define 

u(x/t) for Ixl <~ t, 

w(t)(x)= f(x/ixl) for t~<[x I~<l. 
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Then w is a continuous pa th  in WI'P(B1,N) with w(O)(x)=f(x/Ixl) , w(1)=u and 

T(w(t)) =f for any 0 ~< t ~< 1. Especially, this gives us the following important  boundary de- 

termination principle: for any u, vEWI'P(B1, N),  if T(u)=T(v)=fEWI,P(OB1, N),  then 

we may find a continuous path  w in WLP(B1, N) connecting u and v, with T(w(t))=-f 
for any 0~<t~<l. 

Observation 5.3. Assume tha t  m E N ,  l ~ p < m ,  and that  f is a continuous pa th  in 

WI'P(OB'~,N). Define ] by f(t)(x)=f(t)(x/Ixl) for 0~<t~<l and xEB~. Then ] is a 

continuous pa th  in WI,P(B~, N). 

Proof of Theorem 5.1. Assume u ~pV. Then there exists a continuous path  w in 

WI'p(M, N) with w(O)=u, w(1)=v. By compactness we may find an A > 0  such that  

sup [dw(t)[LV(M ) ~ A. 
o~<t~<l 

We may also find a 5 > 0  such that  for any 0Et l , t2~<l ,  

Itl-t2[ <<. 5 ~ Iw(tl)--w(t2)lL,(M) <~ e(p,A,M,N), 

where s(p,  A, M, N)  is the number in Theorem 4.1. Choose an m E N  such that  1/m<~5. 
Then for any 0~<i~<m-1, w(i/m) is ( [p ] - l ) -homotop ic  to w((i+l)/m). This implies 

that  w ( 0 ) = u  is ( [p] -1) -homotopic  to w(1)=v .  

On the other hand, suppose that  we are given two maps u, vEWLP(M, N) which 

are ( [p ] -  1)-homotopic. First let us assume p~ Z. For convenience we denote k--[p]- 1. 

Choose a smooth triangulation of M, say h: K-+M. From w and w we may find a ~EB~o 

such that  uoh~,voh~EWI,p(K,N) and uoh~[iKkl,,~voh~[iKk I as maps from [Kkl to N. 

By Lemma 3.2 we may find a sequence fjELip(IKk+lI,Ri ) such that  fj-+uohh[iKk+l I 
in 14;I'p(Kk+I,R[). By using the Sobolev embedding theorem on each simplex we see 

that  for j large enough we have 

sup 
z~lKk+l I 

Ifj(x)-u(hr 

It  follows tha t  the path  

w(t)(x) = r ( ( 1 - t ) f j  (x) + tu(h~(x))) 

is continuous in )4;1,p(Kk+I,N). We extend each w(t) to a map  ~(t)EI4;1,p(K,N) in 

the following way: For each (k+2)-s implex A, in view of the fact that  ~( t )  has already 

been defined on Bd(A),  we choose the barycenter of A as origin and do homogeneous 

degree-zero extension to get ~ ( t )  on A. Simply by induction we finish after working with 
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n-simplices. It is easy to see that  ~ is a continuous path in ~/Vl,p(K, N).  In addition, 

from Observation 5.2 and Observation 5.3 we easily deduce that  ~(1) can be connected 

to uoh~ by a continuous path in }/VI'B(K, N).  Using h~ to go from IKI to M, we may 

assume that  uoh~llKk+l t iS in Lip(IKk+ll, N)  and that  uoh~ is a homogeneous degree- 

zero extension on each simplex with dimension strictly higher than k + l .  A similar 

procedure can also be applied to v. What  we have shown so far is that  we may assume 

that  both u and v have the additional properties that  after composition with h~, they 

are in },VI'P(K, N),  Lipschitz on IKk+ll and homogeneous of degree zero (in the sense 

just described above) on any A E K  with dim(A)~>k+2. Indeed any u, vE~/VI'p(M,N) 
can be connected by a continuous path in WI'P(M, N) to maps with these additional 

properties. Since uoh~]lKk I ,~voh~]lKk J as maps from IKkl to N, from the proof of Propo- 

sition 2.2 (HEP), we may find an fELip(IKk+lhN ) such that  fllKkl=voh~llK~ I and 

f,,~uoh~llKk+l I as maps from IKk+ll to N. From Proposition 2.3, we may find a continu- 

ous path in Lip( lKk+l l ,N ) connecting f and uoh~llKk+~l; clearly it is also a continu- 

ous path in WI'P(K k+l, N). Any such f can be viewed as the restriction of a map in 

1/VI'P(K, N) ,  still denoted by f ,  to IK k+l I. Indeed we simply define inductively, for each 

A E K  with dim(A)7> k+2,  f to be the homogeneous degree-zero extension (with respect 

to the barycenter of A) of its value on Bd(A). Then we see that  uoh~ can be connected 

by a continuous path in }/VI'P(K, N) to f by Observation 5.3. Therefore we only need to 

show that  f can be connected to voh~ by a continuous path in WI'P(K, N). But now f 

and voh~ have the additional property that  f=voh~ on [Kkl. Applying Observation 5.1 

to each (k+l)-simplex,  we may assume that  for any A E K  with d i m ( A ) = k + l ,  we have 

fl..a\B~(c,~)=voh~lA\S,~(~,~). Here c~ is the barycenter of A, and 5 is a small number. 

Fix such a A. It must be the face of several (k+2)-simplices, say El ,  ..., E~, r~>2. Now 

consider ~ t = U ~ l  ~ ,  where ~t.~cE~ is formally equal to (B2~(c~)NA)• [0,~], for which 

the product means that we go in the Ei in the normal direction by length z, another 

small number. Define 

1 ,t - - - -5  = 0 ~ i  �9 a~=(B2~(c/,)nA)• g t i = ( B 2 ~ ( c a ) n A ) • 1 8 9  ], a '  a'i, gt" " 
i=1 i=1 

Now consider a w defined on IKk+21 by setting wl~,=voh~, WlIKk+21\~=uoh~IIK~+21\~. 
On each ~t~ ~ we simply do homogeneous degree-zero extension with respect to a point in 

I n t ( ~ ' ) .  Clearly we}4~l,P(K ~+e, N) .  We note that  the set ~ is star-shaped with respect 

to cA, the barycenter of A. One may use simple radial (with the origin cA) deformations 

as in Observation 5.2 to see that  a similar boundary determination principle is valid for ~. 

In particular, w can be connected to fllgk+~l by a continuous path in ~q'P(K k+~, N). 
Define ~ inductively to be the homogeneous degree-zero extension of w on each higher- 

dimensional simplex A with dim(A)>~k+3, from its value on Bd(A) as described before. 
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Then for f i=~oh~ -], one has (t~pfoh~l,,~pU. Moreover, since ~toh~llKk+ll=Voh~llKk+ll, 
?~ ~p v follows. Therefore we complete the proof of u ~p v. 

If pEZ,  we only need to use Lemma 3.2 and Lemma 4.4 to show that  the original 

maps u and v can be connected by continuous paths in WI'p(M, N) to maps with the 

additional properties uoh~, voh~EI/V]'P(K, N),  uoh~llgp J and voh~ilK, ] are Lipschitz, and 

uo h~ I IK~ I ~ v o h f If K~ I" The rest of the proof is the same as before. [] 

Now we will show how Theorem 5.1 reduces certain problems about  Sobolev map- 

pings, which are analytical problems, to pure topology problems. 

PROPOSITION 5.1. Assume that l <~p<n. For any Lipschitz rectilinear cell decom- 

position of M, say h:K-+M,  we set MJ=h(iKJl) for any j .  Then the following two 

natural maps are bijections: 

C(M [p], N)/'~M[v]-I ( Lip(M [p], N)/~.~M[pl-l,Lip ~ WI'p(M, N)/,~p. 

Here for f ,  gEC( M [p], N),  f"~M[v]-lg means that flM[p]-~ and giM[p]-' are homotopic as 
maps from M [pl-1 to N. For f ,  gELip(M[pl, N),  f~M[,l-l,aipg means that flMIv]-~ can 
be connected to glM1,]-~ by a continuous path in Lip(M [p]-I, N).  The natural map for 

the left-pointing ar~vw is the obvious one. The map for the right-pointing arrow is defined 

as follows: For any f E L i p ( M  [p], N),  using h to pull f to K[p], after doing homogeneous 

degree-zero extension on higher-dimensional cells, we pull it to M by h and get u. Then 

we send the equivalence class corresponding to f to the equivalence class corresponding 

to u. This map is well defined by Theorem 5.1. 

Proof. It  clearly follows from Proposition 2.3 that  the left-pointing arrow is a bijec- 

tion. To prove that  the right-pointing arrow is a bijection, first let us show that  it is one- 

to-one. Assume that  f ,  gELip(IK[P] I, N),  and let ] and ~ be homogeneous degree-zero ex- 

tensions of f and g respectively to ]K I (as we described in the proof of Theorem 5.1). Let 

u=]oh -1, v=~oh -1. It  is clear that  U#,p(h)=[fllg[v]-ll] , v#,v(h)=[gilJ([~]-~l]. If u~pv, 

then it follows from Theorem 5.1 that  fllg[,l-li~glll~[,l-~l. This shows that  the map  is 

one-to-one. On the other hand, given any map uEWI'P(M, N),  we may find a ~EB~ o such 

tha t  uohr Eld;t 'P(K, N) .  It  follows from the proof of Theorem 5.1 that  after going through 

a continuous path  in WI,P(M,N)  we may assume that  uoh~llgl,]iELip(IK[P]l,N ) and 

uohr Since uohr we may assume tha t  uohEI4;1,P(K,N) and 

uo h lig[,]] E Lip(IK [p] I, N) .  Now it is easy to see that  the equivalence class corresponding 

to uiM[,l is mapped to the equivalence class corresponding to u. Tha t  is, the right- 

pointing arrow is onto. [] 

Recall that  for any l~<q<p<co ,  we have a map 

ip,q: WI'P(M, N)/,,~p > W l'q (M, N ) / ~ q  
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defined in the obvious way (see [BL]). An immediate consequence of the above proposition 

is the following 

COROLLARY 5.1. Assume that kEN,  kEq<p<k+ l. Then ip,q is a bijection. 

Note that  Corollary 5.1 gives a positive answer to Conjectures 2 and 2 p in [BL]. 

COROLLARY 5.2. Assume that l ~p<n,  and ~ri(N)=0 for [p]<~i<. n. Then the two 
natural maps 

C(M, N ) / ~ M  ( Lip(M, N)/~M, Lip ~ WI'P(M, N ) / ~ p  

are bijections. The notations are understood similarly as in Proposition 5.1. 

Proof. By Proposition 5.1 we only need to verify that  the natural map 

C(M, N)/"~M ----+ C(M [p], N)/,~MC,I-1 

is a bijection for a smooth triangulation of M. But this clearly follows from cell-by-cell 

extension in view of the vanishing condition of homotopy groups of N. [] 

We note that  Corollary 5.2 generalizes Theorem 0.6 in [BL]. 

COROLLARY 5.3. Assume that M and N are connected and l ~p<n.  If  there exists 

a k e Z ,  0<k<~ [p] -  1, such that r i ( M ) = 0  for 1 <.i<.k, and 7q(N)=0 for k + l  <i~< [p ] -  1, 

then WI 'P(M,N) is path-connected. 

Proof. By Proposition 5.1 we only need to verify that  for a smooth triangulation 

of M, C(M [p], N)/,,~MIvI-1 has only one element. But this follows easily from Theorem 3 

and the proof of Theorem 3' in [Whl]. [] 

Corollary 5.3 generalizes Theorem 0.2, Theorem 0.3 and Proposition 0.1 in [BL]. 

We now turn to the question whether a given Sobolev map in WI'V(M, N) can be 

connected to a smooth map by a continuous path in WI'p(M, N). It turns out that  there 

is a necessary and sufficient topologicM condition for that  to be true. 

PROPOSITION 5.2. Assume that l<~p<n, uEWI 'p(M,N) ,  and that h: K-+M is a 

Lipschitz rectilinear cell decomposition. Then u can be connected to a smooth map by a 

continuous path in WI'p(M, N) if and only if u#,p(h) is extendible to M with respect 

to N. 

Proof. Assume that U~pV for some vEC~(M,  N). Then from Theorem 5.1 we have 

U#,p(h)=v#,v(h), but clearly v#,p(h) is extendible to M with respect to N. 

On the other hand, if u#,p(h) is extendible to M with respect to N, then we may find 

a vEC~176 N) such that  [vohllKE~l-~l]=U#,p(h). Thus u and v are ( [p] - l ) -homotopic ,  

and hence u ~p v by Theorem 5.1. [] 
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COROLLARY 5.4. Assume that l<.p<n. Then every map in WI'P(M,N) can be 
connected by a continuous path in Wt'P(M, N) to a smooth map if and only if M satisfies 
the ( [p] -  1)-extension property with respect to N. 

Proof. Fix a smooth triangulation of M, say h: K-+M. 
Assume that  every map in WI'p(M, N) can be connected continuously to a smooth 

map. For any fELip(M[P],N), let g be the homogeneous degree-zero extension of 

foh]lgEpl I to ]K]. Then u=goh-IEWI,P(M, N) and U#,p(h)=[gilK[p]-l]]. Since u can be 

connected continuously to a smooth map, from Proposition 5.2 we know that  fIMtp]-I 
has a continuous extension to M. By Propositions 2.2 and 2.3 we know that  M has the 

( [p]- l ) -extens ion property with respect to N. 

On the other hand, assume that  M satisfies the ( [p] - l ) -extens ion  property with 

respect to N. Given any uEWI'P(M,N), after going through a continuous path in 

WI'P(M,N), we may assume that  there exists a ~EB~o such that uoh~llKiPllE 
LiP(IK[P]I,N) and U#,p(h)=[uoh~ilKEPj-,i]. Hence by Proposition 5.2, u may be con- 

nected continuously to a smooth map. [] 

Remark 5.1. Corollary 5.4 covers Theorem 0.5 of [BL]. It is the particular case when 

M satisfies the ([p]-1)-extension property with respect to N. We also have the following 

statements. Assume that  M and N are connected, l<.p<n. If either [p]=l  or [p]~>2 but 

~ i ( N ) = 0  for [PiniOn-I ,  then every map in WI'P(M, N) can be connected to a smooth 

map. This, again, is because M has the ([p]-1)-extension property with respect to N. 

Because of this necessary and sufficient topological condition for every map in 

WI'p(M, N) to be connected to some smooth map by a continuous path in WI,P(M, N), 
we obtain the following corollary, which provides a class of counterexamples to Conjec- 

ture 1 of [BL]. 

COROLLARY 5.5. If m l , m 2 E N ,  m2<ml and 3~<p<2m2+2, then some maps in 
W LP(CP  m', C P  'n2) cannot be connected to smooth maps by continuous paths. 

Proof. For any m E N ,  C P  m has a natural CW complex structure as 

CP~ CP~c ... c CP". 

In addition, by considering the fibration CPm=S2m+I/S 1, we know that 7r i(cpm)-~0 

for 0~< i~2m-1 ,  i~2 .  

We claim that  there is no continuous map fEC(Cpml,  c P  m2) such that  f lop1:  

C p 1 C c p m l - + C p 1 c c p m 2  is the identity map. To see that  the claim is true, let ai be 

the cohomology class in H 2 ( C p  m~) corresponding to C P  1 for i=1, 2. We know that  the 

cohomology ring H* ( C P  m') is isomorphic to Z [ a i ] / { a ~ + l =  0} (see [Vi, pp. 174-175]). If 
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such an f exists, then oq--f*(~2),  which implies that  c~2+1=0.  The latter is impossible. 

Next we observe that  the identity map from C P  [p/2]CCP ml to CP[p/2]ccpm~, when 

restricted to C P  [(p-I)/2], has no continuous extension by the claim above, and using 

Corollary 5.4 we conclude the proof. [] 

Remark 5.2. By considering cohomology rings with Z2-coefficients (see [Vi, p. 175]), 

the same proof gives us the following statement: If ml ,  m2 EN, m2 < m l  and 2~<p<m2+l ,  

then in W I ' P ( R P  m~, R P  m~) there are some maps which cannot be connected to smooth 

maps by continuous paths. 

6. The strong density problem for Sobolev mappings 

An important technique in the study of approximation problems for Sobolev mappings 

is to use certain deformations with respect to the dual skeletons, which was used in the 

geometrical proof of the Poincar~ duality theorem and in Federer-Fleming's theory of 

normal and integral currents. We present a version for finite rectilinear cell complex here. 

One should compare with [Whl, w [Hj, w and [Vi, pp. 143-146]. 

Let K be a finite rectilinear cell complex with dimK=m. For each A E K ,  we pick 

a point yAEInt(A). Denote Y=(YA)AeK" Given an integer k, 0~<k~<m-1, for xEIKkl 
we set IXlk=l. For k+l<.i<.m, if I" Ik has been defined on IKi- l l ,  then for each A E K  

with d im(A)=/ ,  and each xEA,  we set 

Ixlk--Ixl " k" (6.1) 

For the definition of IXlA, one should see (3.1). Hence by induction, we eventually get a 

function I �9 Ik on IKI. In fact, the function I " Ik depends on K as well as on the choice of y ,  

but to avoid heavy notations, we don't  explicitly write them out. Similar conventions 

apply for many notations in this section, but  will not cause confusion in practice. For 

0~<~<1 we set r~={zclKl:lxlk=c}. Then we may decompose IK I as 

Igl = U Fke, F~ = IKkl. (6.2) 

If we denote Lm-k-l=Fk o, and set Lm=IKI, then we call L i the dual i-skeleton of K.  

Now we want to define a map 01k: {x: 0 < IXlk ~< 1 } ~ F k = J Kk]. First look at I gk+l l .  

For any xEIKk+ll, if xEIKkl, then we set r  Otherwise, there exists a unique 

A e K  with d i m ( A ) = k + l  such that  xEIn t (A) .  Then we set 

r k (x) = y~ -+ x -  YA (6.3) 
Ixl , " 
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Assume that  for some k+2~i<~m, r ~ has been defined. 

Then for xEIgi l ,  0<lXlk~<l , if x E I g i - l l ,  then Ck(x) has already been defined. Other- 

wise, there exists a unique A e K  such that  d i m ( A ) = / a n d  x e I n t ( A ) .  In the latter case 

we set 
k x - y~ 

By induction we eventually get a map r from {x: 0< Izlk ~< 1} to r~. 
Next we want to define a map ck: { x : 0 <  Izlk < 1} x (0,1) ~ IKI with the property 

ICk(x,c)lk=~ for o<lxlk<l,  0<~<1. (6.5) 

For convenience we write r162 Hence Ck(x, 1) is also defined for 0< rxlk~<l. 

To define the needed ck, we first look at IKk+~ I. For any xEIKk+~ h 0<lzlk<l, there 

exists a unique A E K  such that  d i m ( A ) = k + l  and xEIn t (A) .  Then we set 

r for 0<~<1. (6.6/ 

Assume that  for some k+2<~i <~m, Ck(x, e) has been defined for xC IK~-~ I with 0< Ixlk < 1, 

0 < e < l .  Then for any xEIK~I with 0 < l z l k < l ,  if xEIK~h then 4)k(x,e) has already been 

defined for 0 < e < l .  Otherwise, there exists a unique A E K  such that  d i m ( A ) = i  and 

xEInt (A) .  Then we set 

t-lxl~ 
0 = 1 -  ( l - e )  , (6.7) 

1-1~1~ 

By induction, we eventually get the needed map Ck. 

by 

In the future, we shall need a map F k "[K[--+[K[ for 0<(f~<e~<l, which is defined 

x, when c~< Ixlk <~ 1, 

F~,~(x)= Ck(x' E)' when (f ~< Ixlk ~< c' (6.9) 

Ck(x,5-1elxlk), when0<lx lk<~5,  

x, when [X[k = O. 
Let l<p<n.  Then we denote 

RP'~ ( M, N)  = { u : u E W I'P ( M, N ), there exists a smooth rectilinear 

cell decomposition of M, say h: K -+  M, 

and a dual ( n - [ p ] -  1)-skeleton L n-[p]-I  (6.10) 

such that  u is C ~ on M\h(Ln-[P]-I)} .  

The following statement was due to F. Bethuel (see [B2, p. 154, Theorem 2]). But for 

reasons explained in the introduction we need to give a somewhat different proof. 
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THEOREM 6.1. Assume that l <.p<n. Then RP'~(M,N) is dense in WI'P(M, N) 
under the strong topology. 

We need some preparations before proving this theorem. 

LEMMA 6.1. Let gt be any separable Riemannian manifold without boundary (pos- 
sibly noncompact, incomplete and nonconnected), and l~<p<oz. If g is the Banach 
space C(~,R)ML~(~t)nWI,p(~) with norm ]uig=lulioc(~)-~-iuiwl,p(~), then C~(gt)Mg 
is dense in g. 

Proof. Fix a uEg and an e>0,  and choose a locally finite open cover of ~t, say 

{Uj }~=1, such that  Uj c ~ is compact. Choose a corresponding parti t ion of unity { j }j=l 
(see [Wa, p. 10]). Let uj=~ju and choose vjEC~(Uj) such that  Ivj-ujiE<~s/2J. Let 

V =~j=lvy. Then vEC~(12). For any VC~ open with V~ compact, we may find an 
m m > 0  such that  V~NUj=O for j>m. Hence uiy=~-~j~__luj, v ly=~j=lvj ,  and we easily 

see that  lu-viE <.e. This implies the conclusion. [] 

Lemma 6.1 along with the nearest point projection r g  imply in particular that ,  if 

is the same as in the lemma, then for any l~<p<c~ and any uEWl,p(gt, N ) N C ( ~ ,  N) ,  

we may find ujEC~(~,N)F)WI,p(~,N) such that  SUPxe~ luj(x)-u(x)]-+O and uj--+u 
in WI,P(~, N). 

To facilitate the proof of Theorem 6.1, we need to introduce various notions. Given 

two rectilinear cell complexes K1 a n d / ( 2  such that  IK1 ]= ]K2]. Let 

K----{AIN/X2:AIEKI, A2EK2, AINA 2~O}. 

Then K is a rectilinear cell complex which is a subdivision of both KI and K2. We say 

that K is the rectilinear cell complex generated by K1 and K2. 
For any cube Q, we use KQ to denote the rectilinear cell complex defined by KQ = 

{all faces of Q}. We note that  Q is a face of itself. 

Assume that  dE N. If a cube in R d is of the form lid= 1 [ ai, bi], ai, b~ E R, a i ~ b i, then 

we say that  it is a normal cube. If K is a finite rectilinear cell complex such that  each 

cell in K is a normal cube, then we say that  K is a normal complex. If K1 and K2 

are two normal complexes such that  ]KI]= ]K2], then clearly the rectilinear cell complex 

generated by K1 a n d / ( 2  is a normal complex too. 

For kEZ,  l<.k<.d, we write Hk,t={x: xER d, xk=t}, where x k is the k th  coordinate 
I d o fx .  For aE(R+)  d, we denote ~=l-li=l[O, ai]. For any O<~t<~a k, let 

Ql={XEIa:O~xk<t}  and Q2={XEIa:t<xk<ak}.  

Then we denote K~,k,t=KQ~UKQ2. 
The following lemma is an easy consequence of a Fubini-type theorem (see also 

Corollary 3.1). 
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LEMMA 6.2. Assume that a E ( R + )  d, and that K is a normal complex such that the 

polytope [K[=Ia, l ~ p < c o ,  iEZ ,  l ~ i ~ d .  For any tE(O, ai), we may use Hi,t to slice 

K to form another normal complex, say Lt; that is, Lt is the normal complex generated 

by K and Ka,k,t. Assume that ueWl';(K,R). Then for nl-a.e ,  tE(0, ai), w e  have 
uEI/VI,p(Lt). 

We remark tha t  Lemma 6.2 says that  almost every slice is nice. Hence when we 

choose generic slices in the future, we may always assume tha t  we are choosing slices 

among the nice ones. 

Let a E ( R + )  d. If we are given m i e N ,  O=ti,o<ti,l< . . .<ti ,mi=a i for l<~i~d, then we 

say that  (Hi,t~ A I a : l  <.i<.d, O<.j<.mi} is a net on Ia, and denote it as Af. Given 0<5~< 

minl<<.i<<.da i, set mi=[ai/5]. If for some A~>I, we have 5/A<.t i , j+l- t i , j<.A5 for l<.i<.d, 

O<.j<~mi- 1, then we say that  Af is a (5, A)-net. Af divides Ia into ml  ... md small cubes. 

Tha t  it is a (5, A)-net simply means that  every small cube is [0, 5] d after a translation 

and an inhomogeneous dilation. Also the Lipschitz constants of this t ransformation and 

its inverse are dominated by A. 

We note that  for any net Af on I , ,  we have a natural  normal complex K•  such 

that  [K~ [= I~ .  Indeed we just take it as the normal complex generated by {Ka,i,ti3: 
l<<.i<<.d, O<~j<<.mi}. Given any face Q of I~ and any net Af on Q, Af generates a normal 

complex KQ,Ar such that  ]KQ,]~[ =Q. Then we define a normal complex 

K]~ = KQ,Af U {A  : A E KIo such that  A ~ Q}. 

Clearly IKnf[=Ia. If we are given m faces of Ia, say Q1, . . . ,Qm, and for each i a net 

Afi on Qi, then we call the normal complex generated by KArl,... , KX, n as the normal 

complex generated by All,..., Arm. 

For any Riemannian manifold 12, given a k-rectifiable subset S of f~ and a suitable 

different iable function u on S, 1 ~< p < co, we denote Ep (u, k, S ) = f s  [ds u lP dT-I k, where 7-/k 

is the k-dimensional Hausdorff measure. We simply write E(u, k, S)  when it is clear what 

p is. 

The next lemma contains one of the key analytic est imates that  are needed in our 

proof of Theorem 6.1. We postpone the proof of it to Appendix A. 

LEMMA 6.3 (generic slicing lemma). Assume that aE(R+) d. For each face of Ia, 

we pick a net on it, and all these nets together generate a normal complex K such that 

[K[=Ia, l ~ p < c o ,  uE)/V~'P(K, R).  Then there exists an absolute constant A>>.I such that 

for any 5, O<5~minl<..i<..da i, there exists a (5, A)-net Af  on Ia such that UE)/~I'P(/~), 

where B[ is the normal complex created from K and fir, and we have 

E(u, i, [/~i[N ( I g J [ \  [K j -1  [)) ~< c(d)(1/5)J-iE(u,  j, [g  j [) for 1 <. i < j <. d. 
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The above inequalities imply in particular that 

J 
E(u, i, ]/~i] M ]K j ]) < c(d) ~ (1/5)k-iE(u, k, I Kk ]) § i, IK i I) 

k-~i+ l 

for l<i<j<.d. 

We also introduce the map ~Y: N• which is defined by 

( ~r(x§ for ]y-x I~>~o, 
~N(X'Y) = 7r(y) for ]y--x] <. go. 

We have Lip(~glg• 
Finally we observe the following fact. Assume that  K is a finite rectilinear cell 

complex, l~<p<c~, kEZ, k~>0, and that  uEWI,B(K,R) with UIIKklEC(IKkl). Then 

there exists a sequence uiEWI'P(K,R)nC(IKI) such t h a t  uiligkl=uligkl and ui--+u 
in ld;I'P(K). This fact follows from the proofs of Lemma 3.1 and Lemma 3.2. As a 

consequence, we have 

COROLLARY 6.1. Assume that K is a finite rectilinear cell complex, l~<p<oo, 

kEZ,  k~O, uE~4;I'p(K,N), UIIKklEC([KkI,N), and that there exists a YoEN such that 
u(iKi)CB~o(Yo). Then there exists a sequence uiEWI'P(K,N)AC(IKI,N) such that 

in wl 'p (K) ,  u l,Kkl=ull   I and u,(IKI)cB  o/ (yo). 
Proof. By the observed fact above, we may find a sequence 

vi E )4;I'P(K, R~)N C([KI, R ~) 

such that  viliKk I =UlIKk I and vi--+u in WI,P(K). Then ui(x)=~N(Yo, vi(x)) is the needed 

sequence of maps. [] 

With all these preparations, we can proceed now with the proof of Theorem 6.1. 

Proof of Theorem 6.1. Define RP(M, N) as the set similar to RP'~(M, N) but with 

C ~ replaced by C ~ By the fact that  we stated after the proof of Lemma 6.1, it suf- 

fices to show that  RP(M, N)=WI'P(M,N). For convenience, we assume p ~ Z  at first. 

Fix a smooth cubeulation of M, say h: K-+M, such that  each cube in K is normal. 

Given uEWI'p(M, N), by Lemma 4.3 we may assume f=uohEl4;l'P(K, N). Applying 

Lemma 6.3 on the n-cells in an arbitrary order, we get a (~, A)-net on each of them. 

These nets together with the original K create a normal complex, called gn. We have 

fEWI'p(Kn, N) and 

n 

E(f, i, ]K~]) ~< c ( / )  ~ (1/5)i-~E(f,j, IKJl) <. c(i)(1/5)n-~S(f, n, IK~]) (6.11) 
j = i  
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for 1 ~ i  ~ n  and all sufficiently small 5. 

Fix a u E (0, p). For each n-cube Q in Kn, if for every 1 ~<i ~< n, we have the normalized 

energy 

5P-~E(f, i, IK~l)~< 5 ~, (6.12) 

then we say that Q is a good cube; otherwise we call it a bad cube. Denote G as the union 

of all good cubes, and B as the union of all bad cubes. Clearly we have 

7-ln(B) < c(M)hP-'E(f,n, [K[), (6.13) 

and hence 7-/n(B)--+0 as 5-+0 +. 

Let us first look at good cubes. Fix two positive numbers 61 and 52 such that 

0<51<<52<1/A. If Q is a good cube, from the Sobolev embedding theorem we know 

that fllg[Qpll is continuous and 

osc(f,  IK[Q p] I)< c(p, M)5 "/p. (6.14) 

Choose a yQEf(IK[QPI]). By Lemma 6.3 we may find a (515, A)-net Af such that fIQE 
WI'P(/(Q, N),  A/" induces a net on each ( n -  1)-face of Q, a n d / ( Q  is the normal complex 

created from KQ together with all these induced nets. Moreover, we have 

E(f,i, I /~IM ( ]K~I \ IK~- '  I)) < c(M)(1/5,5)J-iE(f,j, IK~I) (6.15) 

for l<<.i<j<~n. Here A is an absolute constant. This, combined with (6.12), implies 

(hah)P-ig(f,i, 1/s for l<~i<~n. (6.16) 

By the Sobolev embedding theorem we have that fiiR~,l I is continuous and 

OSC(f, [/~[QP] l) ~ C(51 ,P, M) 5~/p. (6.17) 

If we set 5 to be small enough (depending on 51) and ](x)=%oN(yQ, f(x)) for xeQ, 
then we have that ]=f on I/~[QP] I. From Corollary 6.1 we may find a sequence ]jE 
WI'P(KQ, N)MC(Q, N) such that ] j --+] in ],VI,P(/s N)  and ]j=]=f on I/~[QPl I. Set f 

to be ]j  on Q for some j large enough. This j depends on Q. Let XQ be the barycenter 

of Q. Then for any (~E(0, 1), we denote Q,=XQ+(1-a)(Q-xQ). For any xEQ, we 

define r(x) to be the unique nonnegative number such that xexq+r(x)(Bd(Q)-xQ), 
that is, r(x)=IxIQ,~Q. Then we define a map r Q~,-+Q by 

r = x (6.18) 
XQ+ 1-62+(r(x)-l+52) r---(-~' xEQ~,\Q~. 
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For any xeQs,, we set ](x)=](r Now we want to define ] on Q\Q,h. We observe 

that 

](x) = f(O(x)) for x (6.19) 

This relation is important for the final construction of ]. Assume that ] has already 

been defined on [Kn~-l[ such that for any good cube Q, 

]]Bd(Q) e ~ /~ l ,p ( /~ - l ,  N), ](x) = f(x) for xE I/~[QP] I (6.20) 

and 

E(],i,l~C~l)<~ c(p,i)E(f,i,l~[~l ) for [pl+l <~ i<~ n-1. 

Then we define ] on Q\Q~I as follows. First set r Q\Q~I-+Bd(Q~I) as 

(6.21) 

) X-XQ r =XQ+(1-51 ~ for xEQ\Q~I. (6.22) 

Let C be a [p]-cell in /~Q. On r  we simply define ](x)=f(r Now for any 

([p]+l)-cell C in /~Q, we observe that r  is Lipschitz equivalent to [0,515] [p]+I, 

where the Lipschitz constants are dominated by a constant depending only on n; we sim- 

ply do homogeneous degree-zero extension on r  for ] of its value on nd ( r  

Inductively, we finish after having done this for the (n-1)-cell in/~Q. We need to em- 

phasize that we have not fixed the choice of ] on IKnn-ll yet, we just need it to satisfy 

(6.20) and (6.21) for good cubes up to now, so there are still lots of freedom in choosing 

such an ].  

Next we look at bad cubes. If Q is a bad cube, for any c~E(0, l/A), we may find an 

(a~, A)-net AfQ such that flQEWI,p(KQ, N), where/~Q is the normal complex created 

by AfQ. Moreover, 

E(f ,n-1, I g ~ - i l )  ~ ~ E(f,n, IK~I) (6.23) 

for ~ sufficiently small. Assume that ] has already been defined on I/~-11 such that 

]llk~-ll EI/VI'P(/~ -1, N), and in addition that f satisfies 

E(], n -  1, IK~ -1 I) <~ c(p, i ) E ( f  , n -  1, I / ~ -  1D. (6.24) 

Then on Q, we simply set ] as the homogeneous degree-zero extension for each n-cell 

in/~Q. 

We have not finished defining ] yet, because we still need to define ] on the union 

of I/~-11 for all n-cells Q in Kn. It needs to satisfy (6.20), (6.21) for good cubes and 

(6.24) for bad cubes. To find such an ],  we introduce a new normal complex Kn-1. 
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~ n - - 1  for all n-cells in Kn. In view of Lemma 6.2 gn-1 is created from the union of KQ 

we know that  fEWI'P(Kn_I,N). For any (n-1)-cell  QEKn-1, let A be the minimal 

side length of Q. For any c~E(0,1), we may find an (aA, A)-net, say A/Q, such that  

flQE~'~I'P(KQ, N) and 

E( f ,n -2 ,  ] /~-2[ )  ~< ~ E ( f , n - l , Q )  (6.25) 

for sufficiently small c~. Again if ] has already been defined on the union of I/(~)-2h and 

E( ] ,  n - 2 ,  [ /~-2[ )  ~< c(p, i ) E ( f , n - 2 ,  [fi:~-2[), (6.26) 

then on Q we simply put ] to be the homogeneous degree-zero extension on each ( n -  1)- 

cell in/~Q. We keep this procedure going until we reach Kip]. On r"[P]l, we simply put 

]=f .  Going back we get the needed ].  

Let ~- - ]oh  -1. Then a careful computation shows that  (see also [B2, pp. 170-173]) 

]~t--UJwI,p(M) ~/31 ((~, 51,52)-~-~2(51, (~2)-{-/~3 ((~2)-{- ~, 

where ~1(5,51,52)-+0 if we fix 51,52 and let 5-->0 +, ~2(51,52)-+0 if we fix 52 and let 

51-+0 +, ~3(52)-+0 when 52-+0 +. Thus in order to make ~ close to u, we first choose e 

to be very small, then choose 52 so small that  ~3(52) also will be small. Next for such 

fixed 52, we choose 51 even smaller so that  the resulting ~2(51,52) is also very small. 

Finally we choose 5 to be so small that  ~1(5, 51,52) is small. In this way we will be able 

to find a sequence of maps in RP(M, N) converging to u strongly, and hence we get the 

theorem. If p - - l ,  the same proof goes through. If pEZ and p~>2, then we only need to 

add Lemma 4.4 on the p-skeleton. This completes the proof of Theorem 6.1. [] 

Our next goal is to show that  under certain topological conditions, a map in 

RP'~(M,N) can be approximated by smooth maps. We need some more notation. 

Let X and Y be two topological spaces, A be a subset of X, and c~E[X,Y]. Then we 

may define C~IAE [A, Y] by C~]A= [flA] for any fEc~. It is clear that  ILIA] does not depend 
on the specific choice of / in c~. 

THEOREM 6.2. Assume that l <<.p<n, h:K-+M is a Lipschitz rectilinear cell de- 
composition, Mi=h(Igil) for i~O, L n-[p]-I is one of the dual (n-[p]-l)-skeletons, and 
uEWI,p(M,N) is such that u is continuous on M\h(Ln-[P]-I). Then uEHI'p(M,N) if 
and only if UlMipl has a continuous extension to M. In addition, i/for some a e [ M ,  N], 

we have U[M[p]EOIIM[p], then we may find a sequence uiEC~(M,N) such that [ui]=c~ 
and ui-+u in WI,p(M,N). 

Proof. If uEH~'P(M,N), then we may find a sequence niECe(M, N) such that  

ui-+u in WI,p(M, N). Let c0=~0(M) be a small positive number, H(x,~)=Tl(h(x)+~) 
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for xE[K[, ~EB~o. T h e n  X[p],H,ui.=[uioh[[K[p][] a.e. on B~o. It is clear that  for some ~1>0 

small, X[p],U,u= [uohiig[pl[] a.e. on BE/1. By Proposition 4.1, we see that,  after passing to 

a subsequence, we have [ui,ohi]glp]]] =-[uohiIK[pll] for i' large enough. This implies that  

uoh[ig[pl [ has a continuous extension to tKI, and hence that  UIMtpl has a continuous 

extension to M. 

To prove the inverse, first we observe that  we may assume u to be smooth on 

M\h(Ln-[p]-I). Indeed if this has been proved, then the theorem follows from the fact 

after Lemma 6.1. 

To proceed we use the idea of the proof of Theorem 1 in [Whl], but with the new 

deformations that  we constructed at the beginning of this section. Let k--[p]. Since k 

is fixed, we shall write F~, r and F~,~ instead of Fe k, Ck and F k for convenience. For ~,~ 

0<s<~l, [Kk[ is a deformation retractor of {xE[K[:[x[k>~e}; indeed Ft,1 for s~<t~<l is the 

needed deformation. Choose a vEC(M, N) such that  [v] =a. Let go=voh, f=uoh. Since 

fi]gi,ll"~go[iKi,l], it follows that  f"~go on {xEiKi:[X[k>~}, and from Proposition 2.2 

(the homotopy extension theorem) we conclude that  there exists a gELip(IK [, N) such 

that  g=f  on {xEIK[: [xik~>~} and g~go. For 0<5<~<�89  we set f~,~(x)=g(F~,~(x)) for 

xE ]K I. Then fs, eELip(IKI, N) and f~,~g'~go. In fact, we only need to consider goFs, t 
for e~<t~<l and goF~,l for (i~<s~<l to see the homotopy relation. We have the following 

basic facts (see Lemma B.2 and Corollaries B.1, B.2 and B.3 in Appendix B): 

(P1) 7-I~({xEIKI:[xIk<.~})<~c(K,Y)~ k+l for 0<~<�89 

(P2) O<c(K,y)-l<~Id(I �9 [k)l<.c(K,Y) 7"~ n-a .e ,  on  [K[; 

(P3) [dF,~,E(x)[<~c(g,Y)r for ~<[x[k~<~<�89 

(P4) ]dF~,~(x)]<~c(K,Y)r -1 for [x[k <~5<<.r �89 
(Ps) for O<(~<e~�89 J(r162 7-/~-l-a.e. on F~. 

It is clear that  

{x �9 ]KI: f,,~(x) # f(x)} C {x �9 iK]: [xlk <~ s}. 

Hence to estimate [f~,e--f[~l.p(K ) we only need to control 

f~l~<, Idf~,~(x)iP dT"ln(x) �9 

First of all we have 

j ( x l •  < ldf~,e(x)[P dTtn(x) <~ c(p, K, Y) [g]~ip(IKI) flxlk <~ [dF~,~(x)[p dTt'~(x) 

<~ c(p, K, P p k+l-p y)[glLip(igl)e 5 [by (PI) and (P4)]. 
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Secondly we know that  

~<<.lxlk <~ ldf~,~(x)lP dT"ln(x) 

<.c(p,g,Y)eP/ I(df)(F~,~(x))lPlXlkPdT-ln(x) [by (P3)] 

<~c(p,K,Y)eP/ I(df)(fe,~(x))lPlXlkPJl.lk(x)dT-l~(x) [by (P2)] (6.28) 

F [  =c(p,K,y)e p dr r-Pl(df)(r [by the coarea formula] 
,]5 Jlxlk=r 

=c(p,K,Y)eP f~dr f r-PldflPJ(r d~L~ n-1 [by the change-of-variable formula] 
,]5 JFe 

<~c(p,K,Y)~rJdfiPdTin-1 [by (es)]. 

Next we observe that  for any 0<t~< �89 

dr ldfpdT-ln-l= Idf(x)lPJi .Ik(x) dT-ln(x) [by the coarea formula] 
Jt  Jr~ Ixlk~2t 

<<.c(p,g,Y) ft< ~ Idf(x)pdT-l~(x) [by (P2)]. (6.29) 
IxJk~2t 

Hence we may find an ct E [t, 2t] such that 

r~Jdf]P dT-ln-1 <~ 

The latter inequality implies that 

c(p, K~Y)  f I Idf(x)lPdT-ln(x) �9 (6.30) 
t J t~lx lk~2t  

f f 
et[~J Jt<<.l~lk~<2tldf(x)lpdT"ln(x)-+O ast-+O +. (6.31) 

Putting (6.26), (6.27) and (6.30) together we get 

If~,~,--fl~,,,(K,N) <- al(5, t)+a2(t), (6.32) 

where 31(5, t)-+0 + if we fix t and let 5-+0 +, a2(t)-+0 as t-+0 +. We conclude that u is a 

strong limit of a sequence of Lipschitz maps of the form u~,~=f~,Eoh -1 in WI,P(M, N). 
Since [u~,~]=~, Theorem 6.2 follows. [] 
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Now we describe several interesting consequences of Theorem 6.2. 

THEOREM 6.3. Assume that N is connected and l<~p<n. Then Hls'P(M,N)= 
WI'P(M, N) if and only if Tr[p](N)=0 and M satisfies the ( [p]-1)-extension property 
with respect to N. 

We need the following topological lemma to prove this theorem. 

LEMMA 6.4. Assume that X and Y are two topological spaces, that X can possess 
some CW complex structures, that Y is path-connected, kEN and ~k(Y)=0 .  Then X 
satisfies the (k-1)-extension property with respect to Y if and only if X satisfies the 
k-extension property with respect to Y. 

Proof. Fix a CW complex structure of X. 

If X satisfies the (k-1)-extension property with respect to Y, then given any f E  

C(X k+l, Y), there exists a gEC(X,Y) such that  f[xk-1 =g[xk-~. Because ~k(Y)=O, 
we have f[xk~gIxk, and hence f[x~ has a continuous extension to X by Proposi- 

tion 2.1 (HEP). That  is, X satisfies the k-extension property with respect to Y. 

On the other hand, if X satisfies the k-extension property with respect to Y, then 

for any f 6 C ( X  k, Y), there exists an f l 6C(X  k+l, Y) such that  f l[xk=f.  We may find a 

geC(X, Y) such that  glx~=fllxk=f, and hence g is a continuous extension of flxk-1 
to X; that  is, X satisfies the (k-1)-extens ion property with respect to Y. Indeed, what 

we have proved is that  any f 6 C ( X  k, Y) has a continuous extension to X. [] 

Proof of Theorem 6.3. Assume that  we have Hls'B(M,N)=WI,P(M,N). Pick a 

smooth triangulation of M, say h: K--+M, and denote Mi=h(IKil), i>~O. For each A 6 K ,  

choose a ya6In t (A) .  Given any f in Lip(M [p], N) ,  let fo=foh. Let f16Wl'P(K, N) be 

the map which we get from f0 by doing homogeneous degree-zero extension with respect 

to YA on all simplices A with dim(A)~>[p]+l.  Let u=floh -1. Then u6WI,p(M,N). 
Hence ueH~'P(M, N). It follows from Theorem 6.2 that  UlMC,1 =f  has a continuous ex- 

tension to M. Now it follows from Proposition 2.3 and HEP that  for any f 6 C ( M  [p], N), 
f has a continuous extension to M. This clearly implies that  r[p](N)=O and that  M 

satisfies the ([p]-1)-extension property with respect to N. 

On the other hand, assume that  ~[p](N)=O and that M satisfies the ( [ p ] - l ) -  

extension property with respect to N. Then it follows from the proof of Lemma 6.4 

that for any CW complex of M, and f 6 C ( M  [p], N), f has a continuous extension to M. 

In view of Theorem 6.1, we only need to show that  RP'~176 N)cC~176 N). But this 

clearly follows from the topological condition and Theorem 6.2. [] 

An easy consequence of Theorem 6.3 and the proof of Corollary 5.3 is the following 
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COROLLARY 6.2. Assume that M and N are connected, l <.p<n, and that k is an 

integer such that 0~<k~<[p]-I and Try(M)=0 for l<<.i<<.k and 7ri(N)=0 for k+l<.i<.[p]. 

Then Hls'P(M, N)=WI'P(M, N). 

We note that Corollary 6.2 implies part (a) of Theorem 1 of [Hj]. The next corollary 

gives another set of target manifolds N for which smooth maps from M into N are 

strongly dense in WI,p(M, N). 

COROLLARY 6.3. Assume that N is connected, l <~p<n. If l r~(N)=0 for [p]<.i<. 
n -  1, then Hls'p(M, N)=WI'P(M, i ) .  

Proof. This follows from Theorem 6.3 and cell-by-cell extension. [] 

Remark 6.1. It follows from Theorem 6.2 and the proof of Theorem 6.1 that  for a 

map uEWI'p(M, N),  l<<.p<n, ueH~'P(M, N) if and only if for "generic" [pl-skeletons 

M [p], when p~Z,  UlMEpl has a continuous extension to M, when pEZ,  the homotopy class 

corresponding to UlMEpl (because it is continuous on M [p]-I and in VMO on each [p]-cell, 

see Lemma 4.5) is extendible to M with respect to N. One needs to understand the word 

"generic" as in the way we create cell decompositions ill the proof of Theorem 6.1. 

7. The weak sequential density problem for Sobolev m a p p i n g s  

The question whether smooth maps are sequentially weakly dense in the Sobolev space 

of mappings, WI,v(M,N),  turns out to be much more subtle. It becomes important  

in finding minimizers of suitable energy functionals defined on the Sobolev space of 

mappings. Suppose that  l<.p<n and p is not an integer. Then it was shown in the 

earlier work of Bettmel [B2] that  H~P(M,N)=HI'V(M,N).  Hence, in this case, the 

problem of the weak sequential density of smooth maps reduces to the strong density of 

smooth maps in WI'P(M, N), which we have discussed in detail in the previous section. 

We also note that,  in the special case p=l,  one always has 1 1 g ~  (M,N)=H~A(M,N)  

due to analytical facts associated with Ll-weak convergence (see [Hn]). For general 

integer p's, 1 <p<n, the space H~P(M, N) is hard to characterize. We have 

THEOREM 7.1. Assume that l<~p<n, uEWI'p(M, N), and that h: K-+M is a Lip- 

schitz rectilinear cell decomposition of M. If uE H~P ( M, N ), then U#,p( h ) is extendible 

to M with respect to N. Hence u may be connected to a smooth map by a continuous 
path in WI,p(M, N) .  

Proof. This follows easily from Proposition 4.1 and Theorem 5.1. [] 
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We also observe that,  by Corollary 5.4 and Theorem 7.1, one has the following 

statements. If H~/P(M, N) =WI'P(M, N) for some 1 <.p<n, then M satisfies the ([p]- 1)- 

extension property with respect to N. 

On the other hand, let ml ,  m2CN, m2 <ml .  Then we have: 

(i) If 3 ~ p < 2 m 2 + 2 ,  then 

H~P(CP m~, C p  m2 ) r W I ' p ( c P  m~, cpm2);  

(ii) If 2 ~ p < m 2 + 1 ,  then 

H~P ( R P  ml, R p  m2 ) r WI'B ( R P  ml, Rpm2). 

These conclusions are direct consequences of Corollary 5.5 and Theorem 7.1. 

Thus we have obtained a necessary topological condition for smooth maps to be 

weakly sequentially dense in WI'p(M, N). In view of this and earlier works [B1], [B2], 

[BBC], [Hj], [Hn], we make the following 

CONJECTURE 7.1. Assume that 2<.p<n, pEZ, and that h: K--+M is a Lipschitz 
rectilinear cell decomposition of M. If uE WI'P( M, N) is such that u#,p(h) is extendible 
to M with respect to N, then uEH~/P(M,N). 

Conjecture 7.1 just says that  the topological obstruction stated above is the only 

obstruction for the weak sequential approximability by smooth maps. In [HnL2], we shall 

prove Conjecture 7.1 under the additional assumption that  uERP(M, N) (see the begin- 

ning of the proof of Theorem 6.1 for the definition). That  is, at least for a dense subset 

of WI'p(M, N), the topological condition described in Theorem 7.1 is also sufficient for 

the map to be in H~/P(M, N). 
Let IYI~B(M, N) be the smallest subset of WI'P(M, N) which is closed under the 

sequential weak convergence in WI'P(M, N) and contains C~(M, N). Then from [GMS, 

Chapter 3, w we know that  ~I~P(M, N) is equal to the successive sequential weak 

limits of C~ N) in WI'P(M, N) up to the first uncountable ordinal number. It fol- 

lows from Theorem 6.1, Proposition 4.1 and the above result from [HnL2] that  for any 

Lipschitz rectilinear cell decomposition of M, say h: K-+M, and any 2<.p<n, pEZ, 

ffILP( M, N) -- {u: u C WI'p( M, N), u#,v(h ) has a continuous extension 

to M with respect to N}. 

On the other hand, we also see easily that  ~I~/P(M, N)=H~P(M, N). Here the closure is 

taken under the strong topology. This means that it suffices to take a second-time limit 

instead of taking limits to the first uncountable ordinal number to get H~P(M, N) from 
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Ca(M, N). Conjecture 7.1 just  says that  we only need to take one-time limits, that  is, 

~I~P(M, N)=H~P(M, N) (see [HnL2] for further discussions). One may also conjecture 

that  if 2<.p<n, pcZ and M satisfies the (p -1 ) -ex tens ion  property with respect to N, 

then H~P(M, N)=WI'P(M, i ) .  
In addition to Theorem 7.1, we have the following two statements.  

THEOREM 7.2. Assume that M and N are both connected, and l<.p<n. Then 
H~'P(M,N) is equal to WI'P(M,N) if and only if lr[p](Y)=O and H~P(M,N) is equal 
to WI'p(M, N). 

If, in addition, we know that pEN, p > l  and ~rp(N)=O, then H~'P(M,N)= 
H~P(M, N). 

Proof. The first fact follows from Theorem 6.3 and the s ta tement  after Theorem 7.1. 

On the other hand, if we know that  p is an integer larger than 1, then given any 

uEH~P(M, N), it follows from Theorem 7.1 that  for a generic skeleton M p-l, UlMp-1 
has a continuous extension to M. It  follows then from the fact 7rp(N)=O and the ho- 

motopy extension theorem that  the homotopy class corresponding to UlMp has a con- 

tinuous extension to M (see the proof of Lemma 6.4). Thus by Remark 6.1 we have 

uEH~'B(M,N). [] 

Appendix  A. A proof of the generic slicing lemma 

In this appendix, we shall give the detailed proof of Lemma 6.3, that  is, the generic 

slicing lemma. For convenience, we first describe some notation. 

Assume a e ( R + )  d. Let Ia be defined as 1-Id=l[O, ai]. For each face of Ia, we pick a 

net on it. All these nets together generate a normal complex K such that  IKl=Ia. For 

l<~i<.k, we denote by Si the subset of [0, a ~] of all points in the above nets in the i th  

direction. Si is a finite set. We let a be a subset of {1,. . . ,d}, and use Ic~l to denote 

the number of elements in a.  If a - - O ,  then we set K~=K. Otherwise, if for any i E a ,  

we have mi numbers, say 0--ti,o < t~,l < ... <ti,m~ = a i, then we denote K~ as the normal 

complex created from K together with Hi,t~.jNIa for iEa, O<<.j<~mi. 

Proof of Lemma 6.3. We shall do slicing in each direction inductively. In view of 

Lemma 6.2, we do not need to worry about  gett ing uEI4;1,p(K, R).  Hence for convenience 

we will not mention this point in the future proof. 

Let us look at the first direction. For l<~i<.ml-1, let Ji be the closed interval 
[(i - 1  g)5, ( i+~)(f] ,  Pi={x:xEI~, xlEJi}. Fix a positive constant el, which will be de- 

termined later. We have 

f j E ( u , j - l ,  Ul,tn(lKJl\IKJ-ll))dt<~E(u,j, PiN([KJl\lKJ-1)) (A.1) 
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for 2 ~< j ~ d. If we set 

B~ = { t :  t �9 Ji, E ( u , j - 1 ,  Hl,t  CI(IKYI\IKJ-II) ) 
c15- 'E(u, j ,  Pi fl (IKJ I\ IKJ-ll))} 

(A.2) 

for 2<~j<~d, then it follows from (A.1) that  

7_/1 (Bj) ~< --.5 (A.3) 
Cl 

Let 

Then from (A.3) we get 

d 
~ = S l U  U ~ j  . 

j=2 

q~l(]~) < d ~ .  (A.4) 
Cl 

In view of (A.4), if we take cl=cl(d) large enough, we may find a point tl,iEJi\B. By 

setting tl ,o=0, tLml=al, we get rnl numbers in the first direction. In addition, we have 

c(d) 
E (u , j -1 ,  IK~-~}I]A(IKY]\IKJ-ll)) <~ ----~-E(u,j, IKJI\IKJ-ll) for 2~<j ~<d. (A.5) 

Indeed this follows from the way we choose tl,i. 
Then we switch to the second direction. For l~<i~<m2-1, let Ji be the closed 

interval [ ( i -} )~ ,  ( i+})~] ,  P~={x: xeIa, x2eJi}. Fix a positive constant c~, which will 

be determined later. We have 

f j  E (u , j -1 ,  H2,ta(IKJl\IKJ-ll) ) dt 
i 

<~ E(u,j, P~ N(IKJ[\ [g j-I  I)) for 2 <~ j <~ d 
(A.6) 

and 

fg E ( u , j -  2, H2,t A IK~-~}II N(IKJI\ IK j-ll)  ) dt 
i 

<~ E(u, j - 1, Pi A IK~IIlN(IKJI\ I g j - l l ) )  for 3 <~ j <~ d. 
(A.7) 

Define 

and 

5~ = {t: te  Ji, E (u , j -1 ,  H2,t A(IKJI\IKJ-ll)) 

c25-1E(u,j, Pi N(IKYI\IK j-ll)  ) } for 2 E j  E d  
(A.8) 

BJ '2 = {t: t e Ji, E ( u , j -  2, H2,tNIK[-~}IIN(IKJI\IKJ-ll) ) 

>1 c25-1E(u, j - 1, IK~I}I I N (IKJ I \ IgJ-11))} for 3 <~ j <~ d. 
(A.9) 
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Then it follows from (A.6) and (A.7) that  

7_/1(B]) ~< 5_ a n d  ,~1(~1,2) < --.a (A.10) 
C2 C2 

Let 
d 2 B=S u(UBj)u 

Then 
,].~1(~) < c ( d )  (~. (A.11) 

C2 

In view of (A.11), if we take c2=c2(d) large enough, we may find a point t2,~CJi\B. By 

setting t2,0=0, t2,me=a 2, w e  get m2 numbers in the second direction. In addition, we 

have 
c(d) 

E(u,j-1, IK~}l ln(IKJI\ IKJ-l l )  ) <~ ~--E(u, j ,  IKJI\IKJ-ll) (A.12) 

for 2<~j<~d, and 

E(u,j-2, KJ-2{1,2} I n([KJ[\[KJ-I[)) < c(-~ff) E(u,J -1, [K~III[n([KJ[\[KJ-I[)) (A.13) 

for 3<.j<~d. This follows from our choices of t.2,i. In addition, 

E(u,j-1, j-1 ' IK{,,2}In(IK31\IKJ-~I) ) <<. E(u, j -  X, IK~tIIn(IKJI\IK~-~I) ) 

+E(u,j-1, IK~2--}IIn(IKJI\IKJ-I])) (A.14) 

<~ ~E(u,j, IKJl). 

We used (A.5) and (A.12) in the last inequality. 

Assume that this process has been done for the (k -1)s t  direction for some 3<~k<~d. 

Now let us look at tile kth direction. For l<~i<~mk-1, let Ji be the closed interval 

[ ( i -~)~ ,  ( i+})5] ,  Pi={x:xEI,, xkEJ~}. Fix a positive constant ek, which will be de- 

termined later. For any a t { l ,  ..., k} such that  kEa ,  we have 

n K j-Ial [n([gJ[\[KJ-l[))dt f E(u,j-[a[,Hk,t ~\{k} 
J ,li (A.15) 

<. E(u, j - I~l+X,  K j - I ' ' + i  n(Ig~l\ lKJ- ' l ) )  ~\{k} 

for ]aI+l<~j<~d. Define 

~ n K j-lal 13~ = { t : t e J ~ , E ( u , j - l a l ,  Hk,, ~\{k}ln(lKJl\lgJ-ll)  ) 
(A.16) 

ckS-iE(u,j_lal+l, ~J-I~I+l *'~\{k} [n([KJI\[KJ-'[))} 
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for kea,  [a]+l<~j<~d. Then it follows from (A.15) that  

.< - - .  
Ck 

Let 

Then 

B=s u U By. 
kEc~ 

k,l+l.<j.<d 

(A.17) 

~1(13) <~ c(d) 5. (A.18) 
Ck 

In view of (A.18), if we take ck=ck(d) large enough, we may find a point tk,iEJi\B. By 

setting tk,0=0, tk,mk=ak, we get mk numbers in the k th  direction. In addition we have 

(A.19) 
~ ! E ( u , J - ] a [  +1, r(J-lal+l"~\{k} N([KJ]\]KJ-I[)) 

for kEa, ]a[+l<~j<.d. Hence the induction gives us K U ..... k}. If we set P[=K U ..... k}, 
one then deduces that 

E(u, i, ]/4i] N (JKJ]\]KJ-1]) ) <. c(d)(1/5)J-iE(u, j, [g j [) (A.20) 

for l<~i<j<.d. This gives us the first estimate in Lemma 6.3. The second one follows 

easily from the first one. [] 

Appendix  B. Deformations  associated with  the dual skeletons 

In this appendix, we shall give detailed proofs for some basic properties of the deforma- 

tions defined at the beginning of w Assume that K is a finite rectilinear cell complex 

with dimK=m.  For each A E K ,  pick a point yAEInt(A). Fix an integer O<.k<.m-1. 
Then we have F~ k as the level set of the function [. Ik which is defined inductively by (6.3). 

For &r 1), we have a natural map r ~ from F k to F k. 

LEMMA B.1. For any 5, EE(0,1), r is a bijection from F k to F k. Its inverse 

is r 
Proof. It follows from an induction argument that  for any 5, sE(0,1)  and any 

0<lxlk<l, 
ck (r (X)) = ck (X). (S. 1) 

Lemma B.1 follows because for any 5e(0,  1) and any x e r ~ ,  Ck(x)=x. [] 

From now on we always assume that  K is a finite rectilinear cell complex with 

dimK=n,  and that  for any xehK], there exists a A E K  with d i m ( A ) = n  such that  x e A .  

For each A e K ,  we pick a point yAelnt(A).  Let Y=(YA)AeK" Fix an integer O<~k<~n-1. 
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LEMMA B.2. There exists a constant c ( K , y ) > 0  such that 

O < c ( K , y ) - l < ~ l d ( I  . I k ) I ~ c ( K , y )  7-ln-a.e. on ]K]. (B.2) 

Proof. This follows from an easy induction if we observe the following two facts. 

First, given any rectilinear cell A with d i m ( A ) = m E N ,  pick any point yACInt(A) and 

define a map r A - + B ~  by 

~ ( x ) = l x l A .  x - y A  for any x e A .  (B.3) Ix-yal 

Then ~ is a bi-Lipschitz map. Secondly, given any suitably differentiable function f 

on OB1, set u ( x ) = l x l f ( x / l x l )  for xEB1. Then we have 

Idu(x)l 2 = If(x/Ixl)12 +ld f (x / Ix l ) l  2, (B.4) 

which proves the lemma. [] 

LEMMA B.3. The map Ck satisfies 

for 0<lxlk<l,  (B.5) 

Here 02 means derivative with respect to e. For derivatives with respect to x, we have 

Id~r e)l <. c ( g , y )  + . (B.6) 

Proof. This follows from induction along with the formulas (6.7) and (6.8). Note 

that  for any A e K ,  xEA,  we have IXlk<.IXlA. [] 

COROLLARY B.1. For 0<6~<e~< 1, we have 

IdF~,~(x)] <. c ( K , y ) e / I x l k  for 5<<. IXlk <. e, 

[dF~,~(x)l <. c ( K , y ) e 5  -1 for ]xlk ~< 5. 

(B.7) 

(B.8) 

Proof. This follows from Lemma B.3 and an easy computation. [] 

To understand more refined properties of the map ck, we need to introduce some 

notation. Given any n - k  numbers eiE[0, 1] for k+l<.i<.n,  we want to define the set 

T k This will be done inductively. For ek+lE [0, 1], we set 

Tk = U ( y ~ + e k + l ( B d ( A ) - y ~ ) ) .  ~k+l 
A E K  

d i m ( ~ ) = k + l  

(B.9) 
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Clearly TklcIKk+l l .  Assume that for some k+2<.i<.n, T k has already been ~k+1~--.~s 

defined as a subset of IKi-ll. Then we set 

Tk = U (YA+Xi((AFITkk+I ~ ,)--YA))" (B.10) 
A E K  

dim(A) =i  

Eventually we get T k for r 1], k+lK~iK~n. Clearly we have Ek+l~--.?~n 

V k F k (B.11) 
~'k-}- 11... l~n C ~kq-l..*~n" 

The importance of T k lies in ~kTll...l~n 

LEMMA B.4. Assume that 0<ei~<l for k+l<.i<.n, and a=ak+l...~n<l. Then for 
any 0 < 5 <. 1, we have 

Id(r <<. c(K,Y) & - I  Hk-a.e. on T k~k+,,...,~.. (B.12) 

Proof. This follows easily from an induction argument in view of the definition of Ck 

by (6.7) and (6.8). [] 

COROLLARY B.2. For 0<5~.<E~ 1, we have 

J(r <. c(K,y)(5/e) k for ~'~n-i-a.e. x E r  k. (B.13) 

Proof. It follows from Lemma B.3 that 

/ ~  \ 1 - 5  
Id(r <~ c ( K , y ) [  ~ +-f-L--~_~ ) <. c(K,y).  (B.14) 

On the other hand, for xEF~, we may find n - k  numbers, say ~iE(0, 1] for k+l<.i<~n, 
such that xET~k+, ..... e .  Now it follows from Lemma B.4 that 

{d(r ' ....... )(x)] <. c(K, ~))) 5c -1, (8.15) 

which implies that  d(r ) has operator norm bounded by c(K,J;)& -1 on a k- 

dimensional subspace of the tangent space of F k at x. Combining this last estimate 

with (8.14), one concludes Corollary B.2. [] 
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COROLLARY B.3. For 0<e~<�89 we have 

nn({x ~ [Kl: Ixlk <~ ~}) ~< c(K, y ) e  k+l. (B.16) 

Proof. From Lemma B.1 we know that  for any 0 < ~ � 8 9  ck k is a bijection from rl/2 
Fk/2 to F~. Hence from the area formula we have 

7/n-1 (F~) = fr~/2J(r ir~/2)(x) d?-I n-  1 (x) <~ c(K, y )  5 k. (B. 17) 

Here we use Lemma B.4 in the last step. Now for any 0<e~<�89 we have 

?-tn({xelKl:lX]k<<.e})<<.c(K,y) f Jl.lk(x) dT-~n(x) [by Lemma S.2] 
JIxlk~<e 

= c ( K , y  [by the coarea formula] 

~ c ( K , y ) e  k+l [by (B.17)]. [] 
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