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# 

B(xo,  r) 

(f,g) 
BMOP(#)  

7) 

XQ 
l(Q) 
EQ, Ek 

AQ, Ak 

ab,al 

fQ,(I)Q 
II  

N o t a t i o n  

equal by definition; 

measure on RN;  

the open ball, B(xo, r) := {x E R N :  Ix--x0[ < r}; 

s t andard  linear duality, (f ,  g) := f f g d#; 
BMO-space,  see w 

a collection of  dyadic cubes, see below; 

characterist ic  funct ion (indicator) of the set Q; 

"size" of the cube Q c  R N, i.e., the length of its side; 

averaging operators ,  see w For a cube Q, EQf :=  (•(Q)-lfQ f d#).XQ; 
the opera tor  Ek is defined by Ekf : =  EQE:D,I(Q)=2 k EQf; 
mart ingale  difference operators ,  see w Ak :=  Ek-1--Ek; for a cube Q of 

size 2 k (l(Q)=2 k) define AQf := xQ.Akf; 
weighted averaging operators ,  see w E~f:= (fQ b d # ) -  1. (fQ f d#).bxQ, 

E b �9 E~f := ~Qez),l(Q)=2k Qf ,  
b b.  weighted mar t ingale  difference operators ,  see w A b := Ek_ 1 --Ek, for a 

cube Q of size 2 k (l(Q)=2 k) define AbQf := XQ" Abkf; 
average of the function f ,  fQ = (f)Q := #(Q)-l fQ f d#; 
paraproduc t ,  see w 

Cubes and dyadic lattices. Throughou t  the paper  we will speak about  dyadic cubes 

and dyadic lattices, so let us first fix some terminology. A cube in R N is an object  

obtained from the standard cube [0, 1) g by dilations and shifts. 

For a cube Q we denote  by l(Q) its size, i.e. the length of its side. Given a cube Q 

one can split it into 2 N cubes Qk of size �89 we will call such cubes Qk the subcubes 
(of Q) of the first generation, or just  s imply subcubes. 

For a cube Q and A > 0 we denote  by AQ the cube Q dilated A times with respect  to  

its center. 
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Now, let us define the standard dyadic lattice: for each k E Z  let us consider the cube 

[0,2k) N and all its shifts by elements of R N with coordinates of form j .2 k, j c Z .  The 

collection of all such cubes (union over all k) is called the standard dyadic lattice. 
A dyadic lattice is just a shift of the s tandard dyadic lattice. The collection of all 

cubes from a dyadic lattice 7) of a fixed size 2 k is called a dyadic grid. 

0. Introduct ion:  main  objec ts  and results  

The goal of this paper  is to present a (more or less) complete theory of Calder6n-Zygmund 

operators  on non-homogeneous spaces. The theory can be developed in an abstract  metric 

space with measure, but we will consider the interesting case for applications when our 

space is just  a subset of R N. 

Let # be a Borel measure on R N. Let d be a positive number (not necessarily 

integer) and let the measure # behave like a d-dimensional measure: 

, ( B ( x ,  r)) r d 

for any ball B(x, r) of radius r with center at x. A Calder6n-Zygmund kernel (of dimen- 

sion d) is a function K(s, t) of two variables satisfying: 

(i) IK(s,t)l<. CIs- t l -d;  
(ii) there exists a > 0  such that  

8 - - s o l  e~ 
IK(s, t ) -K(so ,  t)l, IK(t, s ) - K ( t ,  So)l <~ C it_sold+ ~ , 

whenever It-sol >~ 21s- so I. 
If d=N (N is the dimension of the underlying space RN),  we have just  a classical 

Calder6n-Zygmund kernel. 

We are interested in the question of when a Calder6n-Zygmund operator (integral 

operator  with kernel K, T f ( x ) = f K ( x ,  y) f (y)d#(y))  is bounded on LP(#). 

0.1. Main  results  

The main results that  we state below look like they are just  copied from some classical 

book. But let the reader not be misled, the results are new. We intentionally defined 

BMO in such a way that  our theorems could be stated exactly as the corresponding 

classical results. However, the BMO we use is not exactly the space the reader is probably 

familiar with. Actually, there is a whole plethora of BMO-spaces generalizing the classical 

BMO-space to the non-homogeneous situation from the point of view of singular integral 
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operators. There is one "more equal than o t h e r s " - - t h e  RBMO of Xavier Tolsa, which is 

discussed and used in w But we feel t h a t - - a t  least at this stage of our unders tand ing- -  

it is a good idea to work with all definitions of BMO at once. 

Our first two theorems deal with CalderSn-Zygmund operators with ant isymmetric  

kernels. 

Let us mention that  there is no canonical way to assign an operator  to a general Cal- 
derSn-Zygmund kernel. We cannot just  say that  Tf(x)=fK(x,y)f(y)d#(y), because 

for almost all x the functions K(x,.  ) and K ( . ,  x) are not integrahle, not even locally in 

the neighborhood of the singularity x. 

However, if the kernel is ant isymmetr ic  (K(x, y) = - K ( y ,  x)) there exists a canonical 

way to define an operator.  

Namely, since the kernel K is antisymmetric,  we have (formally) 

f f  K(x, y)f(y)g(x) d,(x) = - f f  g(x, y)f(x)g(,) (T f, g) 

and so 

1 I l K ( x ,  y)[f(y)g(x)-f(x)g(y)] dp(x) d#(y). ( T f ,  g) = 

But for smooth (even Lipschitz) compactly supported functions the last expression is 

well defined. 

Namely, the integrand has the singularity bounded by C/Ix-y[  d- 1 for x - y  close 

to 0. By the Comparison Lemma (see Lemma 2.1 below) such a singularity is integrable 

(say, with respect to x), so the integral is well defined. 

So, for an ant isymmetric  kernel one can canonically define a bilinear form (T f, g) 
for compactly supported Lipschitz functions. The corresponding operator  is called the 

principal value. 
We think that  unfortunately the terminology is confusing here, because principal 

value also means lim~_~Oflx_ul>~ K(x,y) f (y)d#(y) .  We would prefer to use, and we 

will use in this paper, the term canonical value, or canonical operator. Unfortunately, 

principal value is now a widely accepted term. 

Similarly, one can also define for ant isymmetr ic  kernels the bilinear form (Tbf, bg), 
bEL ~, as 

1 / / K ( x ,  y)[f(y)g(x) - f(x)g(y)] b(x)b(y) d#(x) d#(y), ( Tb f , bg} = -~ 

where bEL ~. 

THEOREM 0.1 (Tl- theorem).  Let l < p < o c .  The canonical value of a Calderdn- 
Zygmund operator T with antisymmetric kernel extends to a bounded operator on LP(#) 
if and only if T1 belongs to B M O = B M O ( # ) .  
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Moreover, the upper bound of the norm of T depends only on the dimensions N, d, 

the exponent p, the Calderdn-Zygmund constants of the kernel K, and the BMO-norm 

ofT1 .  

The definition of the space BMO is rather involved and requires separate discussion. 

We will discuss this space in detail later in w 1.1. 

Although the Tl - theorem above gives a necessary and sufficient condition for a Cal- 

der6n-Zygmund operator T to be bounded, it is not always easy to verify the condition 

T IEBMO.  But sometimes it is trivial to see that  TbEBMO for some bEL ~.  

Let us call a bounded (complex-valued) function b weakly accretive (with respect to 

the measure #) if there exists 5>0  such that  for any cube Q, 

~ (Q ) - I  f ~  b(8) d~(s) f> 5. 

Note that  if b is weakly accretive then [b[/>5 #-a.e. 

THEOREM 0.2 (Tb-theorem). Let l < p < c ~ ,  and let b be a weakly accretive func- 

tion. The canonical value of a Calderdn-Zygmund operator T with antisymmetric kernel 

extends to a bounded operator on LP(#) if and only if Tb belongs to B M O = B M O ( # ) .  

Moreover, the upper bound of the norm of T depends only on the dimensions N, d, 

the exponent p, the Calderdn-Zygmund constants of the kernel K,  the constant 5 from 

the definition of weak aecretivity, [[bi[~, and the BMO-norm of Tb. 

A similar Tb-theorem in the homogeneous case (the measure # is doubling) was used 

to prove the boundedness of the Cauchy transform on Lipschitz curves. 

The following two theorems should be treated as some kind of meta-theorems. As 

we already mentioned above, there is no canonical way to define a Calder6n-Zygmund 

operator in the general case. There are several possible interpretations, which we will 

discuss in w So for each interpretation of Calder6n-Zygmund operators, Theorems 0.3 

and 0.4 below should be interpreted accordingly. 

THEOREM 0.3 (Tl-theorem).  Let l < p < c ~ .  A Calderdn-Zygmund operator T ex- 

tends to a bounded operator on LP(#) if and only if it is weakly bounded and T1, T*I  

belong to BMO=BMO(#) .  

Being weakly bounded in the simplest case means that  there exist A~>I, C < c ~  

such that  [(TxQ, XQ)I<~C#(AQ) for any cube Q. There are alternative definitions (not 

equivalent) that  would also work. We will discuss them later in w 

Again, the estimate of the norm of T depends only on the constants involved, namely 

the dimensions N and d, the exponent p, the Calder6n-Zygmund constants of the kernel, 

the BMO-norms of T1, T* 1, and the constant C from the definition of weak boundedness. 

Suppose that  we are given two weakly accretive functions bl and b2. 
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THEOREM 0.4 (Tb-theorem). Let l < p < o c ,  and let bl,b2 be two weakly accretive 

functions. A Calderdn-Zygmund operator T extends to a bounded operator on LP(#) 

if and only if the operator b2Tbl is weakly bounded and Tbl, T'b2 belong to B M O =  

BMO(#).  

Again, the upper bound on the norm of T depends only on constants involved. 

We postpone the discussion of weak boundedness to w and one can find a more 

specific discussion in w The subtle point here is that  as one makes a weaker assump- 

tion of "weak boundedness", the assumptions of accretivity one should require become 

stronger. 

Our Tb-theorems are the extensions to the ease of non-doubling measures of the Tb- 

theorems obtained by G. David, J.-L. Journ~ and S. Semmes [6], [9], [10] for CalderSn- 

Zygmund operators on R N with respect to Lebesgue measure. It was clear that  such Tb- 

theorems apply to arbitrary spaces of homogeneous type, a general setting for singular 

integral theory introduced by Coifman and Weiss [4]. In particular, the boundedness 

of the Cauchy operator on chord-arc curves could have been obtained directly from 

homogeneous Tb-theorems. (Notice that  the more general case of Ahlfors-David curves 

required extra important  ideas [5].) The Calder6n-Zygmund theory on homogeneous 

spaces acquired a new approach from the work of M. Christ [2], where an accretive 

system Tb-theorem for homogeneous spaces has been proved (the difference with the 

Tb-theorems of David, Journ@ and Semmes is in using a collection of b's instead of one 

such function). This allowed one, for example, to obtain the boundedness of the Cauchy 

operator on Ahlfors-David curves from the homogeneous Tb-theorems of Christ 's type. 

More generally this allowed one to obtain a Tb-proof  of T. Murai's [19] theorem which 

characterized compact homogeneous sets of finite length on the plane for which the 

Cauchy operator is bounded. So almost everything homogeneous became clear. 

However, quite unexpectedly, the homogeneity is something one can dispense with. 

The first results in this direction dealt with the Cauchy integral operator. A version of the 

Tl - theorem for the Cauchy integral operator in the non-homogeneous setting was proved 

independently and with different methods by X. Tolsa [26] and by the authors [21]. Note 

that  in [211 the case of more general CalderSn-Zygmund operators was also treated. 

An alternative and very interesting approach to the Tl - theorem for the Cauchy 

operator was introduced by J. Verdera in [32]. 

Then in [22] Cotlar inequalities and weak type (1, 1) estimates were proved for Cal- 

der6n-Zygmund operators bounded on L2(#). In particular, this implied that,  as in the 

classical case, if a CalderSn-Zygmund operator is bounded on L2(#), then it also extends 

to a bounded operator on all LP(#), l < p < o o .  Thus, the theory of Calder6n-Zygmund 

operators on non-homogeneous spaces was almost complete. 
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Our T1- and Tb-theorems complete the theory.(1) Also, in [23] we prove a non- 

homogeneous analogue of Christ 's Tb-theorem, which allows us, for example, to extend 

Murai's theorem [19], and to fully describe compact sets of finite length on the plane 

for which the Cauchy operator is bounded. The technique in [23] is an extension of the 

technique we use in the present article. 

So, the main goal of this article (as well as articles [22], [21] and some subsequent 

ones) is to build a non-homogeneous theory for Calder6n-Zygmund operators. There are 

several possible applications of such a theory. One is presented below in w Also, for 

motivation, see the introduction to [22]. 

The proofs in the paper are rather technical and can be very complicated, but 

essentially everything is based on two main ideas: estimating the matrix in the Haar 

basis (weighted Haar basis for the Tb-theorem) and eliminating bad cases by averaging 

over random dyadic lattices. 

Neither idea is new. The Haar system was used by Coifman-Jones-Semmes [3] 

in their elementary proof of the L2-boundedness of the Cauchy integral operator on 

Lipschitz curves (it is the earliest use of the Haar system for estimates of singular integral 

operators we are aware of). Later it became commonplace and was used by many authors, 

see [6], [7], [11], [29], [20], [21]. 

The idea of averaging over dyadic grids is not new either. In [13], for example, it was 

used by Garnet t  and Jones to pass from results about dyadic BMO to classical ones. The 

idea of averaging was also used by E. Sawyer [24] in his proof of two weight estimates for 

the maximal operator. 

However, we introduced a new twist to this idea: we use averaging to show that  one 

can ignore bad situations if they have small probability (pulling yourself up by the hair). 

This trick was first used in [20] to simplify the presentation: an "honest" estimate, not 

resorting to the averaging trick, is also possible there. Later in [21] we noticed that the 

same trick can be used to deal with Calder6n-Zygmund operators on non-homogeneous 

spaces (measure without doubling). 

It is very well known to everybody who was working with singular integral operators 

that  if one tries to estimate the matrix of a Calder6n-Zygmund operator in the Haar 

basis, it is impossible to get good estimates when the support of one Haar function is 

close to the jumps of another. But, one has to be especially unlucky to really have the 

worst case estimate for any given pair of Haar functions: shifting a bit the boundaries of 

the cubes improves the estimates with high probability. 

(1) Of course, there are still some open questions, for example, about existence of principal values. 
For the Cauchy operator on a non-homogeneous space it was proved by X. Tolsa [25], but for general 
Calder6n-Zygmund operators the question is still open. 
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Thus, to improve the estimates, G. David and P. Mattila (see [7], [11]) used curved 

"squares" avoiding areas where the measure is concentrated. 

In our approach, we consider random dyadic grids to show that  with non-zero prob- 

ability the "bad" part  of the Haar expansion has small norm. This allows us to get an 

estimate of the norm as soon as we have some a priori estimate (usually very weak) of 

the operator. For example, it works if we know that  its bilinear form is bounded for 

smooth compactly supported functions, see w below for details. 

This idea for Calder6n-Zygmund operators on non-homogeneous spaces was intro- 

duced by us in [21] where we proved the Tl - theorem for Cauchy-type operators. Here 

we further refine it: we are relaxing all the assumptions, proving the results in most 

generality. The surprising thing for us was that  this trick allows us to relax significantly 

the weak boundedness assumptions (in comparison with [21]), see w 

0.2. An application of  the Tl- theorem: electric intensity capacity 

As a possible application of our non-homogeneous Tl - theorem we will cite the following 

result about the so-called electric intensity capacity (also known as harmonic Lipschitz 

capacity, see [11], [14], [16], [31] for some interesting related results). Let us consider the 

following problem. 

Suppose that  we have a compact set K in R 3. We want to find what maximal 

possible charge one can put on K such that  the intensity of the resulting electric field 

is bounded by 1. Note that  if we require the potential to be bounded by 1, we get the 

usual capacity from physics. But in engineering it is often very important  to have the 

intensity of the electric field bounded, so our capacity has very good physical meaning. 

In this problem we forbid negative densities. 

Let us now formally state the problem. Given a compact set K in R N, N ~> 3, consider 

the class S of all subharmonic functions ~ ( - ~  is the potential) in R N such that  

(i) qo is harmonic in R N \ K ,  ~(c~)=0;  

(ii) [V~(x)[~<l for almost all (with respect to N-dimensional Lebesgue measure) 

x E R  N (intensity is bounded by 1). 

The electric intensity capacity (also known as positive harmonic Lipschitz capacity) 

C a P e i ( g  ) of the compact set K is defined by 

capei(K ) :--- sup IC~l, 
~ES 

where C~ is the leading coefficient in the asymptotic expansion 

~ ( x )  = C~llxlN-2 § N-~) 
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of the function TE S at ec (any function ~ harmonic in a neighborhood of cc and satisfying 

~(co)=0 admits such an expansion). Note that  in R 3 the constant - C ~  is exactly the 

charge on K.  

To state our result we need to introduce one more capacity, the so-called operator 
capacity. Given a Borel measure #, consider the "Cauchy" transforms T~, I~j<.N, 
T~f(x):=fKj(x ,y) f (y)  d#(y), where Kj(x, y )=(x j -y j ) / [x-y[  g. Note that  the kernels 

Ky are antisymmetric Calder6n-Zygmund kernels of dimension d=N-1 .  Since the ker- 

nels are antisymmetric, we have no problems defining the operator (just use the canonical 

value). 

The operator capacity Capop(K ) is defined by 

caPop(K ) = sup{#(g)  : # ~> 0, supp # C K, [[T~ [[L2(/~) < 1 for 1 ~< j ~< g } ;  

here # stands for a non-negative Borel measure. 

THEOREM 0.5. The capacities caPo p and caPe i are equivalent, i.e., there exist con- 
stants c, C, 0<c~<C<oc, depending only on the dimension N, such that 

c'capop(K) < caPei(g) < C'capop(K).  

As an immediate corollary of this result we obtain that  the capacity cape i is semi- 

additive, i.e., 

caPei(gl tA K2) ~< C. (capoi ( g l )  + cap~i(g2) ). 

This follows immediately from Theorem 0.5, because for the capacity capo p we trivially 

have 

capop(K1UK2) < Capop(K1) + capop(K2). 

Sketch of the proof of Theorem 0.5. Let #:=A~=y~N=102qz/0x 2 be the Riesz mea- 

sure of the function ~. 

Since [V~(x)l<~l, it is an easy exercise using Green's formula to check that  #(B)<~ 

Cr g-1 for any ball of radius r. Indeed, let us apply Green's formula 

Ov 
f~ (uAv -vAu)dV  = fo~ ( U ~ n - V ~ n )  dS 

to u - l ,  v=~ and Q=B=B(xo,r). We get 

Since IO~/Onl ~< IV~I ~< 1, the measure #(B) is estimated by the ( N -  1)-dimensional mea- 

sure of the sphere OB, which is Cg rN-1. 
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We know that  the j t h  coordinate of the gradient V~ is given (up to a multi- 

plicative constant) by K ~ l - - f  Kj(x, y)1 d#(y). From here we conclude that  Tj~IEL m, 

]]Tj~I[]~<I, I<.j<.N. Since LCCCBMO, the Tl-theorem (Theorem 0.1) implies that the 

operators Tj are bounded, and therefore 

c. caPop (K) < CaPei(K ). 

The reverse estimate is rather standard and well known (at least in the homogeneous 

case). First of all, it was proved in [22] (for the non-homogeneous case) that  if a Cal- 

der6n-Zygmund operator T extends to a bounded operator on L2(#), then it extends 

to a bounded operator on all LP(#), l < p < o c ,  and, moreover, it is of weak type (1, 1). 

It was also proved there that  in this case the truncated operators Tr (integrals are taken 

over the set ]x-y l>r  ) are also bounded on LP(#), l < p < c o ,  and are of weak type (1, 1) 

uniformly in r. 

Therefore, the "Cauchy" transform T ~ = (T~, T2~, ..., T~)T (which maps scalar-valued 

functions to RN-valued), as well as its adjoint and the corresponding truncated operators 

are (uniformly) of weak type (1, 1). 

So, applying to the truncated "Cauchy" transform Theorem 0.6 below (see [1, The- 

orem VII.23] for the scalar version), we get the desired estimate. 

Let A/[ denote the space of all finite measures (signed, or complex) on a locally 

compact Hausdorff space X, and let C(X, R N) be the space of all functions continuous 

on 2d with values in R N. The dual of this space, A4(A', RN), is the space of all RN-valued 

finite Borel measures on X. 

THEOREM 0.6. Let A" be a locally compact Hausdorff space, let # be a Radon mea- 
sure on 2r and T: M---~C(Pd, R N) a bounded linear operator. Suppose that the adjoint 

operator T* is of weak type (1, 1), that is, there exists A<oc such that 

#{x: ]T*~(x)] > a} ~< Aa -111vll 

for all a > 0  and b,E.A4(,u Then for any Borel set E C X  with 0 < # ( E ) < c ~ ,  there 

exists h: X--+ [0, 1] satisfying 

h(x) - -0  for all x ~ E ,  /Ehd#>~ �89 and ]lT(hd~)ll~ <. 4A. 

This theorem is well known in the scalar case, although we cannot be sure where it 

first appeared. It can be found in [30], [12]. The proof below is presented only for the 

sake of completeness, since we follow the scalar case proof presented in [1] (see the proof 

of Theorem VII.23 there) almost up to the letter. 
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It is interesting that the argument below involves dualizing a weak type (1, 1) in- 

equality, although the corresponding weak space L 1,~176 has no reasonable dual. 

Proof. Suppose that the conclusion of the theorem fails for some E. Define 

Bo := { f: X-+ [O, 1] : f =O #-a.e. on X \ E  and / E f  d# >~ �89 }, 

B1 := {T(f d#): f EBo}, 
B2 := {g e C(X,  R N ) :  IIgltoc < 4A}. 

The Hahn-Banach Theorem implies that there exists a bounded linear functional l on 

C(2c',R N) separating B1 and B2, i.e., l(g)<~l(h) for all hEB1, gEB2. Let A be the 

RY-valued measure representing l, so 

f[T(fd#)]TdA>~fgTdA f o r a l l f E B 0 ,  gEB2.  

Taking the supremum on the right-hand side and using the identity f [T(fd#)]TdA= 
ff.T*Ad#, we get 

f.T*A d# >1 HAll. (0.1) 4A 

To use the weak (1, 1) estimate set a=3AIIA[I/#(E) and note that  

#{x E E :  IT*,~(x)I > ~} ~< A I1,~11/~ = l tz (E) ,  

so that 

#{xeE: [T*A(x)] ~<a} ) ~#(E) .  

Therefore we can find a closed set F C E such that #(F) /> 1 ~#(E)  and ]T*A[~<a a.e. on F.  

Take f:=XF. Then fEBo and 

I f :.r':,a. .< .< aA,, N. 

which contradicts (0.1). [] 

That  completes the proof of Theorem 0.5. [] 

0.3. How to  interpret  a C a l d e r 6 n - Z y g m u n d  operator  T 

Let us discuss here how one can interpret the above results, first how one can define the 

operator T for general kernels. Recall that  for antisymmetric kernels we can define the 

operator as the canonical value, see w 
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A typical Calderdn-Zygmund kernel (think, for example, of the kernel 1~(x-y) on 

the real line R with Lebesgue measure) is such that  for almost all x the functions K(x, �9 ), 
K ( . ,  x) are not in L 1, not even locally, in a neighborhood of the singularity x. 

In the case of the kernel 1~(x-y) on the real line one can still define the operator  on 

smooth functions with compact  support  if one interprets the integral f_~ K(x, y)f(y) dy 
as principal value, i.e., as the limit 

p.v. := lim g(x, y)f(y) dy. 
-- s--+O j ly_x]>s 

However, if one considers a general Calderdn-Zygmund kernel, it is not clear why the 

principal value exists.(2) 

The classical way to interpret T was to assume that  the bilinear form (Tf, g) of 

the operator T (or of the operator  b2Tbl in the case of the Tb-theorem) is initially well 

defined on a dense set of nice functions f,g, for example for f, gEC~ (Ca-func t ions  

with compact support) .  In other words, the bilinear form (Tf, g) is well defined and 

continuous (with respect to the topology of C ~ )  for f, gEC~. 
One can replace here C ~  by the Schwartz class S of rapidly decaying C~-funet ions:  

it really does not matter .  

The words tha t  T is an integral operator  with kernel K mean only that  

g) = f f  K(x, y ) g ( x ) f ( , )  d#(x) d#(y) (0.2) (T f, 

for compactly supported f ,  g with separated compact  supports,  when the integral is well 

defined. Notice that  the kernel K does not determine the operator uniquely: for example, 

any multiplication operator f~-~pf is a Calder6n-Zygmund operator  with kernel 0. 

This observation is a commonplace for specialists, but it can be really surprising for 

a beginner. 

Now we are going to give three ways to interpret a Calder6n-Zygmund operator  T 

with kernel K.  In all cases we assume that  a bilinear form of the operator  T is defined for 

some class of functions, and that  for functions with separated compact  supports  equality 

(0.2) holds. 

0.3.1. The bilinear form is defined on Lipschitz functions. Since for ant isymmetr ic  

kernels the bilinear form {Tf, g) (or {b2Tblf, g) for the Tb-theorem) is well defned for 

Lipschitz functions f ,  g (see w above), it seems reasonable to assume that  this is the 

case for general kernels as well. 

(2) We should  men t ion  here a remarkable  resul t  of X. Tolsa  [25] t ha t  if a Cauchy  integral  Tf (z ) :=  
f c ( f ( ~ ) / ( ~ - z ) )  d#(~) is a h o u n d e d  opera to r  on L2(#) ,  t hen  for any  g 6 L 2 ( ~ )  the  pr incipal  value of Tg 
exis ts  ~-a.e.  
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1 - r  1 

Fig. 1. T h e  func t ion  cr ~. 

Weak boundedness in this case means that  the following two conditions are satisfied: 

(i) For all pairs of Lipschitz functions ~1, ~2 satisfying [ ~ l , 2 ( X ) - - ~ l , 2 ( y ) [  <~L. Ix-Y[, 
supported by bounded sets D1, D2, respectively, and such that  ][~1,2][oo ~< 1, the inequal- 

ities 

[(Tbl~I, b2~2)1, I(Tbl~2, b2~1)] ~< eL.  ]]51 []oo. []b2[]oo. diam(Dx).#(02) 

should hold for weakly accretive functions bl,b2 (this is for the Tb-theorem, for the 

Tl-theorem bl = b2 = 1). 

As Lemma 11.3 below shows, this condition (with bl=b2 as in the corresponding 

Tb-theorem) holds for antisymmetric kernels. 

(ii) Let a e be a function as in Figure 1. For a cube Q let QQ be its Minkowski 

functional 

QQ(x) := inf{A > 0 : A Q ~ x }  

and let 
: =  

(Clearly a~ is a Lipschitz function with Lipschitz norm at most C/re.) 
We will require that  for all cubes Q, 

[(Tbw~, b2a~)[ ~< Cp(A'Q) 

for some AP~> 1, uniformly in s and Q. 

The last condition (with bl = b2 = b) definitely holds for antisymmetric kernels, since 

for such kernels (Tba~2 , ba~)=0. 
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Fig. 2. The  funct ion ~. 

0.3.2. The bilinear form is defined on smooth functions. We do not think tha t  it 

makes much sense in our situation to assume tha t  the bilinear form (b2Tblf, g) (or 

(Tf, g)) is defined for smooth (say C ~ )  functions f and g. We really do not see how 

additional smoothness (in comparison with Lipschitz functions) can help. 

However, it is still possible to assume that  the bilinear form is defined for C ~ -  

functions. In this case we have to assume more about  the functions bl,b2 in the Tb- 
theorem: we want them to be sectorial. Let us recall that  a function b is called sectorial 
if bEL ~176 and there exists a constant ~EC,  r~l=l, such that  Re~b~>(f>0. 

The advantage is that  we can relax the assumptions of the week boundedness in this 

case. Namely, fix a C~ a on [0, oo) such tha t  0~<a<~l, a_--1 on [0, a] ( 0 < a < l )  

and a - 0  on [1, oo), see Figure 2. The parameter  a is not essential here, but  we already 

have too many parameters  in what follows, so let us fix some a, say a=0.9. For a ball 

B=B(xo,  r) let aB(x):=a(Ix-xol /r  ). Clearly, a B is supported by the ball B and is 

identically 1 on the ball 0.9B. We will require that  for any concentric balls B1,B2 of 

comparable sizes, say �89 diam(B1 ) ~d iam(B2)  ~<2 diam(B1), the following inequality holds: 

I(Ta, bl, as:b2)l <~ C#(B), (0.3) 

where B is the largest of the two balls B1, B2. We can even replace # (B)  by p(AB), 
A > 1 here. 

0.3.3. A priori boundedness. We feel that  the most natural  way to interpret a Cal- 

der6n-Zygmund operator  T is to think that  we are not given the operator  T per se, 

but that  its kernel K is "approximated" in some sense by "nice" kernels K~, and we 

are interested in the question of when the operators  Te with kernels K~ are uniformly 

bounded. 
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A typical example one should think of is to consider truncated operators T~, 

T j ( x )  := flx_yl> K(x -y ) f ( y )  d#(y). 

Such truncated operators are clearly well defined on compactly supported functions. 

Moreover, for compactly supported f and g, diam(supp(f))~<A, diam(supp(g))~<A, one 

has 

I(T~I, g) l <~ C(~, A)IIfI[2 Ilgl12. (0.4) 

That  will be our main way of interpretation. It was shown in [22] that  under our 

assumptions about the measure and the kernel, if a Calder6n-Zygmund operator T is 

bounded on L2(#) (or in some L p~ l<p0  <c~), then it is bounded on all LP(#), l < p < o o ,  

and the maximal operator T #, 

T#f(x) = sup f K (x - y ) f ( y )  dp(y) 
r  J[x-y[>e 

is bounded on all Lv(#) as well. 

This implies that  all t runcated operators Ts are uniformly bounded, so it is reason- 

able to think of boundedness of T as the uniform boundedness of T~. 

So Theorem 0.3 can be interpreted in the following way: a sequence of truncated 
operators T~ is uniformly bounded if and only if the sequence is weakly bounded (with 
uniform estimates) and T 1 , T * I E B M O  with uniform estimates on the norms. 

There is a small technical problem with such an interpretation: the truncated oper- 

ators Te are not Calder6n-Zygmund operators (their kernels do not satisfy the property 

(ii) above). 

Fortunately, this is not a real problem, and we know at least two ways of coping 

with it. First, two lemmas below where we use property (ii), namely Lemma 6.1 and 

Lemma 7.3, are true for truncated Calder6n-Zygmund kernels as well: one just has to 

integrate a positive function not over a cube, but over a "truncated" cube, and that  can 

only yield a bet ter  estimate. 

Another possibility is to replace truncated operators by nicer regularizations of the 

operator T which have Calder6n-Zygmund kernels. Namely, let 

'be(t)={ tic' 1, t>~r t e [0, e], 

see Figure 3. Then the kernels Kdx, y):=K(x,y)r162 are clearly Calder6n- 

Zygmund kernels with uniform estimates on all Calder6n-Zygmund constants. 
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J 

0 e 
Fig. 3. The function ~ .  

It is also easy to see that  for Ix-Y[ ~e we have [K~(x, Y)I ~C/Ix-Yl d-l" So, applying 

the Comparison Lemma below (see Lemma 2.1), we get that  for measures with compact 

support, f IK~(x,y)l d#(x)~C, f IK~(x,y)l d#(y)~C, and by the Schur Lemma the op- 

erators with kernels K~ are bounded (but not necessarily uniformly in e). Moreover, 

the same Comparison Lemma together with the Schur Test imply that  the CalderSn- 

Zygmund operator with kernel K~ and the corresponding truncated operator T~ differ by 

a bounded operator (uniformly in e). 

One can also consider two-sided truncations Tr,~ of the operator T, 

Tr,ef(x) := ~<lx_ul<rK(x-y) f(y) d#(y). 

Such operators are clearly bounded. Moreover, such operators T~.e are uniformly bounded 

(or T~,E1, T~,el are uniformly in BMO) if and only if the corresponding property holds 

for all one-sided truncations T~. 

However, it is possible that  we only have information about the truncations Te 

for small ~. Therefore, it makes sense to consider the case of one-sided truncations T~ 

separately. So we will prove the main results under the assumption of boundedness only 

on compactly supported functions. 

For two-sided truncations one can also replace (without losing anything) the trun- 

cated operator Tr, e by a nicer regularization, for example by the integral operator with 

kernel K(x, y)(~e,r(lx-yl), where r is the function in Figure 4. 

There are several possible definitions of weak boundedness for the regularized oper- 

ators T~ (or T~,~). The simplest is to call the operator T weakly bounded if there exist 

A~>I, C<c~  such that  

[<TxQ, Xq>[ <<. Cp(AQ) 

for any cube Q. Another possibility is to consider the cube Q':=aQ (for some fixed a> i) 
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Fig. 4. T h e  func t ion  Oe,r .  

and require that  

I(TXQ,, XQ)I ~< C#(AQ), I(TxQ, XQ,)I <~ C#(AQ') .  

One can also replace cubes by balls, to obtain two more definitions. 

None of the four definitions above follows from any other (at least formally, we have 

not constructed any counterexamples), but any one of the definitions works if we assume 

a priori boundedness on compactly supported functions. 

0.4.  P l a n  o f  t h e  p a p e r  

w is devoted to a discussion of the different BMO-spaces and the relations between them. 

In w we deal with necessity. We will prove that  if a CalderSn-Zygmund operator T 

is bounded on LP(#), then for bEL ~ we have TbGBMO~(#).  In the same w we will also 

prove that  if TbEBMO~(#)  for some p, l~<p<:x~, then TbERBMO(#) ,  and, therefore, 

TbEBMO~(#)  for all p, l~<p<co. We would like to emphasize that  for an arbitrary 

function f the condition f e B M O P ( # ) ,  p<2,  doesn't  imply f e B M O 2 ( # ) ,  see w But 

Tb is not an arbitrary function, it possesses some additional regularity. 

The rest of the paper is devoted to the sufficiency. We will only need to prove that  

the operator T is bounded on L2(#), because it was already proved in [22] that  the 

boundedness on L 2 (#) implies the boundedness on all LP(#), 1 < p< co. 

The idea of the proof is quite simple: consider a basis of "Haar functions" with 

respect to the measure # (or weighted "Haar functions" for the Tb-theorem), and estimate 

the matrix of the operator T in this basis. To simplify the notation, it is more convenient 

to use the "coordinate-free" form of the decomposition with respect to the "Haar system", 

the so-called martingale difference decomposition. 

In w167 we introduce the main technical tools and gather all necessary estimates. 

Let us mention that  in w we prove a generalization of the famous Carleson Embedding 
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Theorem to weighted Triebel-Lizorkin spaces. Although we only need the classical case 

p=2, we think that  the theorem and its proof are of independent interest. However, the 

reader can skip this section if he or she wants, and use his or her favorite proof of the 

Carleson Embedding Theorem. 

Then we do all necessary (and rather standard) constructions and estimates, such as 

decomposing functions into a martingale difference decomposition, estimating the matr ix 

of the operator, constructing paraproducts, and getting the Carleson measure condition 

from TbEBMO. All the ingredients should be very well known to a specialist, although 

non-homogeneity (non-doubling) of the measure adds quite a bit of specifics. 

Finally, in w167 we gather everything together to prove the theorems. 

One of the main difficulties that  appear when one works with non-doubling measures 

is an absence of good estimates of (T~Q, ~bR) for functions ~@, ~PR supported by the cubes 

Q and R respectively, when the cubes are close to each other. To overcome this difficulty 

we use averaging over random dyadic lattices and the "pulling yourself up by the hair" 

trick. One needs to use the trick several times to get the most general version of the 

theorem. 

To give the reader a better  understanding of the trick without getting lost in technical 

details, we first prove in w a weaker version of the Tb-theorem, where we use a stronger 

condition of weak boundedness. w deals with the full version of the theorem. 

In w167 we assume that  the operator T is bounded on compactly supported func- 

tions (one should think of the truncated operators T~), i.e., I(Tf, g)l<...C(A)llfll.llgll, 
where A = max{diam(supp f ) ,  diam(supp g) }. 

For many readers that  will be enough because, as we already discussed above, the 

most natural way to interpret a Calder6n-Zygmund operator T is to think of the sequence 

of truncated operators T~. 

And finally, in the last section (w we reduce everything to the case of truncated 

operators. We consider the most general case, when the bilinear form of the operator is 

defined for smooth functions, or for Lipschitz functions, as in the case of the canonical 
value of an antisymmetric operator. We show that  if such an operator satisfies the 

assumptions of our Tb-theorem, then the sequence of the truncated operators Te also 

satisfies these assumptions (uniformly in r 

w has some ideas in common with w and uses some lemmas from this section, 

so it would be logical to place w right after w 

However, the section is rather long and technical. Since we think that  for many it 

is enough to just consider truncated operators Te, we decided to put w at the end of 

the paper. 
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1. Definitions of BMO-spaces 

There are infinitely many different BMO-spaces that  can be used in our theorems. 

In the classical case, when p is N-dimensional Lebesgue measure in R N, all of the 

definitions below give the well-known classical BMO. 

First of all, there is a two-parameter family of spaces BMOP(p),  l~<p<oc, ~>1,  

defined below in w The spaces BMOP(#) are quite different from classical BMO: in 

particular, the John-Nirenberg inequality fails for such spaces. 

Then, there is a regular BMO-space RBMO(p) that  was introduced by X. Tolsa [27]. 

This space is contained in Nl~p<cx),X>l BMOP(#),  and it seems to be the most natural 

generalization of the classical BMO. 

So, what space should we use in our theorems? And the answer is: it doesn't  matter,  

one can use any one of the above spaces! 

The space RBMO seems to be the most natural analogue of the classical BMO. How- 

ever, the condition T1 ERBMO(#)  (or TbERBMO(#) )  is rather hard to verify. Therefore, 

let us think that  BMO in the statements of our results means one of the spaces BMO~ (#). 

1.1. BMO~ 

Let l~<p<c~ and A>I.  We say that an L~oc(#)-function f belongs to BMO~(#) if for 

any cube Q there exists a constant aQ such that  

( 4  If -aQIP d#) 1/p<~ C#( )~Q) 1/p, 

where the constant C does not depend on Q. The best constant C is called the BMO~(#)- 

norm of f .  

Using the standard reasoning from the classical BMO-theory one can replace the 

constant aQ in the definition by the average fQ=#(Q)-lfQ f d#. Indeed, 

IfQ-aQI = m(Q)-l fQ(f-aQ) d# 

<<. (,(o)-i L lf -aQlP d,)'/P<~ llfll,MO: (,) \ - - -~  ] , 

and so, if we replace aQ by fQ in the definition, we just get an equivalent norm in 

BMO~(#). 

Now we make several observations about the properties of BMO-spaces. 

First we have the trivial inclusions: BMO~2(#)cBMO~I(#)  if Pl<P2 (HSlder in- 

equality) and B M O ~ ( p ) C B M O ~ ( p ) i f  A<A. 
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It  is not so trivial, but we will show this just below, that  both  inclusions are proper. 

Namely, the space B M O[(# )  depends on p for ,~>1. 

Also, the space BMO~(#)  does depend on A. However, in the s ta tement  of the 

theorem any A> 1 would work. 

And finally, BMO~(#) ( I = 1 )  is a wrong object for our theory: boundedness of T 

does not imply T1 E BMOP(#).  

Notice that  one can introduce BMO-spaces where averages are taken over balls, not 

over cubes. But it is easy to see that  if a function belongs to such a "ball" BMOP(#)  

then it belongs to the "cube" BMO~(#)  with A = v / - N I .  So, in the s tatements  of the 

main results one can use the "ball" BMO as well. 

Also, it does not mat te r  whether we consider closed or open cubes (balls) in the 

definition of BMOP(#).  Formally, definitions with open cubes and with closed ones 

give us different spaces (because the boundary can have non-zero measure), but if the 

BMO~(#)-condit ion is satisfied for open cubes, then for all closed ones the condition 

BMO~(#)  holds true for any A>A. 

Strangely enough, we will be using the assumptions TbEBMO~ without requiring 

that  T maps b to locally integrable functions. The interpretation follows the classical 

one- - see  w below. 

This makes it slightly difficult to interpret TbERBMO,  where RBMO is the "right" 

BMO-space found by Xavier Tolsa for non-homogeneous measures. The space RBMO is 

used in w and it is extremely useful because the space RBMO has the John-Nirenberg 

property (unlike BMO~ see the subsection below). 

1.1.1. Example: BMO~(#)  does depend on p. Let us explain why BMO~(#)  does 

depend on p. Notice that  the Hblder inequality ilnplies that  there is a trivial inclusion 

BMO~ ~ (#) C BMO~' (#) if Pl < P2. 

Let us have a careful look at the proof of the inclusion BMO 2 (#)C BMO~(#):  

,,1/2 

Clearly #(AQ)I/2p(Q) W2~<#(AQ), but since tile measure # is not doubling, the in- 

verse inequality (with a constant) does not hold, and moreover, the gap can be huge. 

This can lead to the following example. 

Let # be a measure on R defined by dp=wdt where w=eX[o,1]+XR\[o,1]. Take 

f=X[o,1]. It is an easy exercise to show that  

IIflIBMO~,(.) ~ s  
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(the interval I= [0, 1+r almost gives a supremum). Therefore the norms for different p 

are not equivalent as e--+0. 

Now take a sequence ek"~0 and a sequence of intervals Ik such that  the intervals 

2Ik are disjoint. Put  W=~k ekXik+XE where E = R \ U k I  k. We leave to the reader to 

check that for dp=w dr, 

BMO 2(It)  BMO  (It), pl<p . 

1.1.2. Example: BMO~(#) does depend on A. Let us consider the following measure 

# on R: on the intervals [-2, -1] and [1, 2] it is just Lebesgue measure dx; on the intervals 

[ -3 ,  - 5 ]  and [~, �89 it is edx where e>0  is small; everywhere else # is zero. 

Define the function f:=r Then for A<~2 we have 

IIflIBMO~,(~) ~ r 

(consider the interval I =  [ -3 ,  3])" However, IlfllsMo~(,)~ 1. Indeed, if for an interval I 

we have f ~ f l ,  then I has to contain one of the following three intervals: [ 5 ,  5 ] ,  

[3,1] or [ - 1 , - � 8 9  Then #(3I)~>�88 so if we put a I from the definition of BMO~(#) to 

be 0, we get /, /, 1 
I f-al lPd#= If-OlVd#<~ -~ <~ #(3I) .  

Take a sequence ek-+O, and let #k, fk be the pair constructed above for e=ek. 
Put d#(x)=~-'~kdpk(x-lOk), f(x)=y:~kfk(x-lOk ). Then clearly feBMO~(#) ,  but 

f~BMO~(#)  with A~<2. 

Of course, the constants 3 and 2 are not essential here: for any pair A1, A2 satisfying 

1 < A l<  A2 one can easily modify the example to get a function f E BMO~2(# ) such that 

f~t SMOg1(#). 

1.1.3. Example: T is bounded on LP(#) =i~ T1EBMO~(#) �9 Let us notice that  this 

was proved independently, using another method, by J. Verdera [32]. 

Define a measure It on R as follows: on the intervals [1, 2] and [ -2 , -1 ]  it is just 

Lebesgue measure dx; on the intervals [ - 1 , - l + e ]  and [ l - e ,  1] it is 0.1 dx; everywhere 

else It is zero. Let T be the operator with kernel K(s, t )= l / ( t - s )  (defined as principal 

value, i.e., as lime flt_81>~ ...). 
The operator T is bounded on LP(It), l < p < o c ,  because the operator with kernel 

1~(t-s) is bounded on LP(R, dx) (the operator is just the Hilbert transform up to a 

constant). 

On the middle third 2 [1-he, l - �89 ] of the interval [1-e,1] we can estimate (for 

small e) T1 ~>clog(1/r where c is some absolute constant. 
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Similarly, on the middle third of the interval [ - 1 , - 1 + r  we have Tl<~-clog(1/E). 
This implies that  the norm of T1 in BMOP(#) is at least cll/p log(l /e) .  

Again let r and let #k be the measures constructed above with E=Ck. We 

leave to the reader as an easy exercise to check that  for d#(x)=~k d # ( x - 1 0  k) we have 

TI~BMOP(#) .  (It is trivial that  T is bounded on LP(#).) 

1.2. R B M O  and related spaces wi th  the John-Nirenberg  property 

Recall that the measure # under consideration satisfies 

#(B(x, r)) <. r d. (1.1) 

We will consider fEL~oc(#) having the following property: for each cube Q there 

exists a number fQ such that  

Q lf -fQI <. Blp(eQ) (1.2) 

and such that  for all cubes QcR,  

ifR_fQl<~B2.(i+~.\ Q iX--cold] "~ (1.3) 

Such functions f will be called RBMO-functions, and the infimum of B1 +B2 can be 

called the RBMO-norm. Let us make four remarks. 

First, if we change 2R to AR, A>I ,  the space does not change. This follows imme- 

diately from (1.1). 

Second, we can change the parameter e in (1.2) without changing the space. This fol- 

lows from the following important  lemma (we repeat the proof of [27] for the convenience 

of the reader). 

LEMMA 1.1. Let l < A < e  and let f E R B M O  in the sense that (1.2) and (1.3) are 
satisfied. Then 

QlY-YQI B(B,,B2, A)#(AQ). 6, 

Before proving the lemma, let us make a remark. For two cubes Q, R, we denote by 

Q(R) the smallest cube concentric with Q and containing R. We call Q, R neighbors if 

the size of Q(R) is at most 10 times the size of Q, and the size of R(Q) is at most 10 

times the size of Q. Given a function from RBMO (with its collection of fQ's), it is easy 

to see from (1.3) and (1.1) that,  if Q and R are neighbors, then 

IfQ-f.I ~< S3. (1.4) 
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Let us also notice that  (1.3) can be replaced by 

( ~ d#(x) ~ d#(x) ~ for all Q. RlfQ-fRI <~ B4 1+ ix_cQi d + R(Q)\Q Q(R)\R ]X--CR]d ] 
(1.5) 

Proof. It is convenient to think that  6 is a large number, and that  A is only slightly 

bigger than 1. Fix a cube R in our Euclidean space R N, fix a first integer M greater than 

2 /6(A-1) ,  and divide R into M y equal cubes Qi. Each Qi can be connected with R by 

a chain of neighbors, and the length of the chain Li is bounded by a constant depending 

only on 6, ~: Li<.L=L(6, A). In particular, 

We know by (1.2) that  

]fQ~-- fR] <~ B(B3, L). (1.6) 

Q lf - fQ, I <~ Blp(6Qi). 

By (1.6) we can replace fQ, here by fR: 

fQ l f - f , I  <% B(B,, B3, L)#(6Q~). 
i 

Now let us sum up all these inequalities. The cubes Qi constitute a disjoint covering 

of R, the cubes 6Qi all lie in AR, and their multiplicity is bounded by C(d)6 -d. This 

follows trivially from volume considerations. Thus we have 

f lf-f.l<.S(B,,B3, A)#(AR), 6, 

and the lemma is proved. [] 

Our third remark: we could have changed the definition by considering only cubes 

centered at the support of #. Again this does not change the space. In fact, if we are 

given a cube Q not centered at K :--supp # and such that  2Q intersects K,  we assign fQ 
by the following rule: fix a point xEKN2Q, and let R be the smallest cube centered at 

x and 4QcR. Then put fQ:=fR" The amount of ambiguity is very small, because any 

o the r /~  (with a different center) will have almost the same f~ by (1.4). If KN2Q=O, 
then we put fQ=O. It is easy to see that  if a function f and its collection of fQ's satisfy 

(1.2), (1.3) with a certain 6>1 and only for cubes centered at K,  then, by extending 

the collection of fQ's to all cubes as it has been done above, we obtain (1.2), (1.3) with 

a certain 6 '>1  which is a constant times bigger than 6. But Lemma 1.1 claims the 

independence from 6> 1. So our remark follows. 
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And the fourth remark is that  we could have replaced cubes by balls without chang- 

ing the space RBMO. This is an easy consequence of Lemma 1.1. By the way, the similar 

lemma is true when cubes are changed to balls (just instead of disjoint coverings we will 

have coverings of finite multiplicity), which means that the corresponding "ball" space 

also allows the change of L)E (1, ec) without changing the space. 

Now we are ready to formulate the main result of this section: the John-Nirenberg 

property of functions from RBMO. It has been proved by Tolsa in [27]. For the sake of 

completeness we will prove this result. 

THEOREM 1.2. Let J E R B M O ,  let A>l ,  l~<p<oc. Then for any cube Q, 

L l f - fQI  p <. B(A,p, IlfllRBMO)(#(AQ)) p. 

To prove this result we will use the notion of doubling cube (exactly as in [27]). Fix 

any a >  1 a n d / ~ > a  d (d is from (1.1)). A cube Q is called (c~,/~)-doubling (just doubling 

if the parameters are clear, or when they do not matter) if 

#(c~Q) ~< ~#(Q). (1.7) 

For a given Q we consider Qj :--oJQ, j ) 0 ,  and the first Qj which is (a, ~)-doubling 

is called Q' (we omit parameters for the sake of brevity). We will use the notation Q" 

for (aQ')'. Every cube has a supercube which is (a, fl)-doubling. This follows immedi- 

ately from (1.1). 

On the other hand, i f /~>a  N, (N is the dimension of the ambient space), then almost 

every point of K = s u p p  # has a nest of cubes centered at it and shrinking to it such that  

they are (a, ~)-doubling. 

Indeed, consider a cube Q, l(Q)=l, and let M:=#(3Q) .  Take a point xEQ, and let 

Q~x be the cube of size a - r l  centered at x. 

Let us call the point x bad, if none of the cubes k ,. a Qx, O<~k~r, is doubling. Then 

(since 2rQ~: c 3Q) #(Q~) <. M.I~-T = M. (ag/~)Ta - N~ = M. (ag/~) ~ Vol Q~. 

Applying the Besicovitch Covering Lemma, we get that  the set of all bad points x 

is covered by a family of cubes Q~j, )--]~j #(Q~j)<~c(aN/3)~-+O as r--+oc. This implies 

that #-almost all points x have a doubling cube of size at most 1 centered at x. Since 

this is true for arbitrary l, almost all points have a sequence of doubling cubes centered 

at this point and shrinking to it. 

LEMMA 1.3. Let f E R B M O ,  and let a > l  and /~>(~d be fixed arbitrarily. Then 

IfQ - fQ,  I ~ C(IIflIRBMO, C~, r 
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Proof. Let Q'=Qj:=~JQ. Then 

d#(x) ~ f2 "'" ~j /Q <~C+2 d ~  #(Qi) 
Q,\q I x - ~ V  Q,\Q, +7~= ,\Q~-:'" ~=1 I(Q~-~V" 

But #(Q~)<<./3~-Jp(Qj) and l(Qi_l)-d~cedo~d(j-i)l(Qj) -d. We substitute these two in- 

equalities into the previous one to obtain a convergent geometric progression (recall that 

o~d//3<l). The lemma is proved. [] 

LEMMA 1.4. If f E R B M O  with fixed B1,B2, Q, then there exist numbers fQ and 
positive numbers C', C', C"  depending only on B1, B2, 6, ~, /3, d, N such that 

1 fQ i f _ f q t  < C,, (1.8) #(eQ) 

I fQ- fQ,  I <<. c",  (1.9) 
IfQl-fQ21 <. C"  for all neighbors Q1,Q2. (1.10) 

There is nothing to prove--fQ's  are the numbers from the definition of RBMO, and 

Lemma 1.3 completes the explanation. 

Notice that one could have considered (1.8), (1.9) and (1.10) as the definition of 

the "right" BMO-space (we will see that  the John-Nirenberg property is satisfied under 

this definition). However, the disadvantage is that it would probably depend on two 

parameters: (~,/3. Such a space should have been called BMO(c~,/3) (dependence on ~ does 

not ex is t - - the  analogue of Lemma 1.1 applies). Being a scale of spaces (unlike RBMO 

which is one canonical space) BMO(c~,/3) has the advantage that it can be described in 

terms of averages of our function over cubes (while RBMO involves some fQ, which, as 

the reader will see, are often not averages at all). Here is this description: 

For a function f let (f)Q denote its average over Q, (f)Q:=#(Q)-lfQ fd#. 

LEMMA 1.5. If fEBMO(c~,/3), there exist positive numbers A ~, A', A "~ such that 

Q I f - < .  AP#(c~Q), (1.11) <:)Qi 

A 'p#((~Q) (1.12) I<f>Q-(f>Q,I <<. ~ , 

I<I>(Q1)' - <f>(Q=)' I <. A"' for all neighbors Q1, Q2. (1.13) 

Conversely, any function f satisfying (1.11), (1.12) and (1.13) belongs to BMO(c~,/3). 

Proof. We remarked already that Lemma 1.1 holds in the setting of BMO(c~,/3) 

(the proof does not change at all). So, if f belongs to BMO(c~,/3), then in (1.8) we can 
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replace Q by a with a cost of maybe changing a constant. Now 

[(f)Q--fQI ~ ~ # ( ~ Q )  .~ v ~(Q) . 

This follows immediately from (1.8). The same for Q': 

Cg ! ~:::Q~"-'~.--.'- .~ ,(  Q ) ~ .  ~ <c(:~). 

Now (1.11) and (1.12) follow from these inequalities and from (1.8). To prove (1.13) 

we write [(f)Q,-fQ, l<.C for Q=QI,Q2 and compare f(Q1),,f(Q2),: If(Q~),-f(Q2),l< 
If Q1 - f(Q,), I + If Q2 - f(Q2)' I + I fQ~- fQ2 I. The first two terms are bounded by (1.9). The 

third term is bounded by (1.10). 

Conversely, let f satisfy (1.11), (1.12) and (1.13). Put  fQ:= (f)Q,. Then 

Q I f -  fQI 4 /Q I f -  (f)QI+I(f)Q - if)Q, I~(Q) 4 C#(c~Q). (1.14) 

Also (1.10) follows immediately from (1.13) by definition. So f belongs to BMO(a, fl) 

because, as we already pointed out, the constant a on the right-hand side of (1.14) can 

be replaced by Q (by changing C).  [] 

Remark. Let us emphasize that  Lemmas 1.4 and 1.5 describe the same space. The 

change of ~> 1 in (1.8) does not change the space, and because of that  the change of c~ to 

a 'E (1, c 0 on the right-hand sides of the inequalities of Lemma 1.5 does not diminish the 

space. It is the same BMO(a, ~). But the dependence on c~, ~ probably persists, because 

the definition of the doubling cube Q' depends on these parameters. What  we proved is 

that  RBMOcBMO((~,~)  for all parameters. 

Now we are ready to prove Theorem 1.2. It follows immediately from the following 

lemma. 

LEMMA 1.6. 

Then 
Let f satisfy all assumptions of Lemma 1.4 with certain Q, C', C", C". 

#{x e Q: [f(x)- fQ[ > t} <. DI#(aQ) exp(-t/D2), (1.15) 

where D1, D2 depend only on Q, ~, ~, N, d, C', C", C'" but not on t. 

Proof. Recall that  Q"=((~Q~)'. Let L be a very large constant depending only on 

0, a,/~, m, C ~, C", C'", which will be chosen during the proof. Find n such that  nL<.t< 
( n + l ) L .  Consider all maximal q~ having the following properties: they are centered 
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at xEQ, q ' cv~Q and Ifq,-fQl>t. We can freely change ~ in (1.8), which implies 

I(f)q' - fq' I<~ C#(aq')/#(q') <. C(~). This inequality and I fq' -'fQI > L imply 

I(f)q'-- fQ] > �89 

if L is large enough. In particular, 

I # , If-fQ[ >i ~L (q ). (1.16) 

The maximality of q' implies that  either Ifq"-fQl~ L, or, if it happened that  q" is not 

in v ~ Q ,  we can consider first qi:=oLiq ', which is not inside x/~Q. The cube q" equals 

qj for a certain j ,  and j~i.  If j=i, then q" has a size comparable to Q, and thus, 

I fq" - fQl~ C. If j >i,  then still [fq~- fQl~ C because the sizes are comparable. But also 

q'=(qi)', and so Ifq,,-fq,]~C because of (1.9). So in all cases, 

Ifq"-fQI <- L (1.17) 

if L is large enough. 

The choice of q', the inequality Ifq"-fq'l<<. C and (1.17) imply 

L < I f q ' - f Q [  < 2L.  (1.18) 

So, 

{xeQ: l f ( x ) - fQl>t}cU{xeq ' : l f ( x ) - f41>t -2L>~(n-2)L} ,  (1.19) 
q' 

where the union is taken over our maximal q' chosen above. 

From our cover by q' of {xeQ: If(x)-fQl>t} let us choose the subcover Qi of finite 

multiplicity (by the theorem of Besicovitch). 

Then, using (1.16), we conclude that  (the C are different, but depend only on 

a,  f~, m, d, C', C", C'" ) 

[ <<. J: ~--~. #(c~Q')<~C(/3)~_,#(Q ~) < E T ]f - fQl 
i i i JQ~ Q 

<<" -LC fv~ Q lf - fv~Ql+lfQ- f~Ql#(vf~Q) 

C 1 

if L is sufficiently large. The estimate before the last follows again by the fact that  we 

can freely change 6>1 in (1.8) if f E B M O ( a , ~ ) .  Here we used e = v ~ .  

Now we repeat our consideration for each Qi instead of Q. By (1.9) and the last 

inequality we will get 
1 n/2--1 ~{xe Q: ]f(x)-fQ] > t} <~ (~) #(~Q), 

which proves the lemma. [] 
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2. N e c e s s a r y  c o n d i t i o n s  

2.1. H o w  to  interpret the  condi t ion  T b E B M O ~ ( p )  

Even if we assume that  the operator T is bounded on L2(#), it takes some time to 

define what it means for T1 (or for Tb, bEL ~) to belong to BMO~(#),  since for infinite 

measures #, 1 ~ L2(#), and the expression T1 formally is not defined for such measures. 

However, one can make perfect sense of the above condition, even without assuming that  

T is bounded. 

We will need the following simple lemma, see also [22]. It means simply that  if 

#(B(x, r))•r d, then radially symmetric singularities (like I X-Xol s) admit the same es- 

timates as in the case of Lebesgue measure in R d. In particular, the singularity Ixl - r  is 

integrable at oc if r > d, and is integrable at 0 if r < d. 

LEMMA 2.1 (Comparison Lemma). Let F>.O be a decreasing function on (O, oc), 
and let the measure it satisfy #(B(xo,r))<.r d (here d>0)  for a fixed xo and for all r>.O. 
Then for 5>0,  

~x:Lx_xol>~sF([x-xol) d#(x) ~ F(5)5 d + d ~5~F(t)t d-1 dr. 

In particular, for F(t)=t -d-~ we have 

/ :,x_xo,>~ lx--xol-d-~dp(x) <. (d/a+ l)5 -~. 

Proof. We can assume l imt- ,~  F(t)=O, since otherwise we have c~ on the right-hand 

side, and the lemma is trivial. Clearly 

fF(5) 
f F(lx-xol)d#(x)<~]o #({x:F(Ix-xo]>-t})dt 
Jx:lx-xol)5 

rF(5) ~5 ~ <" ]o [F-l(t)]d dt = - Td dF(r) 

= rdF(,)l  + d f F( )r  r d- ld  r 

F(5)~d-t - d F(T)T d-1 dr. [] 

Let us suppose (for the case of the Tb-theorem) that  the bilinear form (Tblf, b2g) of 

the operator Mb2TMb~ (Mb stands for the operator of multiplication on b) is well defined 

for smooth (say C a )  compactly supported f and g. Note that  the bilinear form is well 

defined for arbitrary L2(#)-functions with separated compact supports. 

Let qo be an arbitrary smooth function supported by a cube Q, satisfying f ~b2 d#=0.  

Then we claim that the expression (Tbl, b2~} is well defined. 
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LEMMA 2.2. Let ~=~Q be a function supported by the cube Q and orthogonal to 
constants, i.e., such that fQ ~d#=O. Then for x outside the cube Q, 

l(Q) ~ 
[(T~Q )(x)l <~ C dist(x ' Q)d+a "I[~Q IILl(~) �9 

As one can see from the proof below, the lemma holds for truncated Calder6n- 

Zygmund operators Tr as well. 

Proof. Let Y0 be the center of the cube Q. If dist(x, Q)~>/(Q), then by property (ii) 

of Calderdn-Zygmund kernels, 

IT~(x)l = /K(x ,y)~(y)  dp(y) 

= f [g(x , , ) -g(x , ,o) ]  d,(y) 

= f ]Y-YoI" d#(y) 
J 

l(Q)" 
~< C dist (x, Q)d+~" I1~]]51 (,) '  

If dist(x,Q)<.l(Q),  then we have a trivial estimate using property (i) of Calderbn- 

Zygmund kernels: 

C l(Q)" 
IT~(x)] ~< dist(x, Q)d" II~]]L ~(~) ~< Cdis t (x  ' Q)d+~ I]~]]51(,) �9 [] 

Let ~1 be a smooth compactly supported function, identically equal to 1 on 2Q, 

satisfying 0~<~141. Let ~ 2 = 1 - ~ 1 .  

The above Lemma 2.2, applied to the function ~b2 and the operator T*, implies 

l(Q) ~ 
(T* ~b2)(x) <~ C#(Q)]]b2]]~ dist~,-,-,-~ 1+ �9 

Then, the Comparison Lemma (Lemma 2.1) implies 

/ f l(Q) ~ I(T*~b:)~2bl I d~ ~< CC~(Q)IIb~11~ lib111~ JRN\2Q dist(x, Q)~§ d~(x) < ~ ,  

so (T~2bl, ~b2} is well defined. 

Since by the assumption (Tr is well defined (~1 is a smooth compactly 

supported function), the expression (Tbl, ~b2) is well defined as well. 
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It is not difficult to show that  the above expression does not depend on a choice of 

the function r One can also replace the requirement r 1 on 2Q by •1-1 on kQ for 

some k>  1. 

Now we can say that  the condition Tb1EBMO2(#) means that  for any cube Q, 

I(Tbl, ~b2)] ~< C limb2 IlL 2(#) #(AQ)1/2 

for any smooth function ~ supported by the cube Q and satisfying f~b2 d#=O. 
Notice that  if Tbl is well defined, then the last condition means exactly that  TblE 

BMO2(#). 

Similarly, condition TblcBMOP~(#) can be interpreted as 

](Tbl, ~b2)l < C]]~b2[[Lq(,)#(AQ) 1/p 

(1/p+1/q=1) for all cubes Q and for all smooth functions ~ supported by the cube Q 

and satisfying f~b2 d~=0. 
Notice that if the bilinear form (b2Tbl f, g) is defined for Lipschitz compactly sup- 

ported functions, or simply for bounded compactly supported functions (as for truncated 

operators T~), we can assume that  the above function ~ belongs to the same class. 

2.2. Necessary  condit ions  

THEOREM 2.3. Let a Calderdn-Zygmund operator T be bounded on LP(~), l < p < e c ,  and 

let bEL~ Ilblloo <. l. Then TbEBMO~(#), and moreover, IITblIBMO~(~) is bounded 
by a constant depending on the norm of T and the constants in the definition of the 
Calderdn-Zygmund kernel. 

Proof. Take gELq(#), 1/p+ 1/q= 1, supported by a cube Q, and such that  f g  d# =0. 
Here g=qvb2 in terms of Lemma 2.2. Since we already know that  T is bounded on LP(#), 
we do not have to worry about smoothness. 

Decompose b as 

b=bxAQ+b.(1-XAQ) = b l + b  2. 

It is easy to estimate 

[( bl, T'g)[ <<- [[bIIv" HTI[ "[[gllq <<- HbII~'#(AQ) l/p" IITI[ �9 Hg]]q. 

Let us now estimate [{b2,T*g}[. By Lemma 2.2, 

l(Q)" l(Q)" 
IT*g(y)l <. C dist(y, Q)d+, Ilgiiil( ) <- C dist(y, Q)d+, .#(Q)l/p Ilglliq(~) 

(the last inequality is just the H61der inequality). 
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Using the Comparison Lemma (Lemma 2.1) we get 

I<b2'T* g>] < C#(Q)I/PlIgIIL~(~') /RN\;~Q dist(y,l(Q)~Q)d+~ dp(y) <<. C#(Q) ~/" ]lgHq. [] 

2.3. TbEBMO~(~u) =~ T b E R B M O ( ~ )  =~ TbEBMO~,(Iz) 

In this section we show that it does not matter what BMO-space to pick. We will show 

here that if Tb belongs to the largest possible BMO-space BMO~(#), then it belongs 

to RBMO(#) and, since the space RBMO satisfies the John-Nirenberg property, see 

Theorem 1.2, it belongs to the space BMO2(#). 

Let us discuss how to interpret the condition TbERBMO. The problem is, that 

even if we know that the operator T is bounded on LP(#), Tb is not defined generally. 

In w we avoided this difficulty interpreting the condition TbEBMO~(#) by duality. 

Unfortunately, we do not know any such simple interpretation for the case of RBMO. 

So our interpretation will be a bit more complicated. 

Namely, given a cube G, we say that a function f belongs to RBMO(G, #) if the 

inequalities (1.2) and (1.3) defining RBMO hold for all cubes Q c R c G .  
It is easy to say what it means that TblE RBMO(G, #): consider a smooth compactly 

supported function ~, 0~<~<1, such that ~ ( x ) - i  on the cube 10G. Since <b2Tbl~, f> is 

defined for all smooth compactly supported f ,  the function Tbl~ is well defined. 

We say that Tbl belongs to RBMO(G, #) if Tbl~ERBMO(G, #). It is not difficult 

to see that this condition does not depend on the choice of cut-off function ~. 

And finally, we say that Tbl E RBMO(p) if Tb~ belongs to RBMO(G, p) (with uni- 

form estimates on the norms) for all cubes G. 

Clearly, if Tb~ E RBMO(#) then Tbl E BMO~ (#) for all pe [1, c~), A > 1; in particular, 

TblEBMO~(#). 

In this section we treat the a priori bounded case, i.e., the case when the operator T is 

well defined on bounded compactly supported functions. One can think about truncated 

operators T~ here. 

THEOREM 2.4. Let the bilinear form (Tblf, b2g> be defined for bounded compactly 
supported f and g. Let also blEL ~ and let b2EL ~ be a weakly accretive function. 

Suppose that TblEBMO~(#) for some p, l<~p<cx~, and suppose that Mb2TMbl is 
weakly bounded, in the sense that there exist At) l ,  a < l  such that 

[<TblXQ, b2xaQ>l ~< C~(A'Q) (2.1) 

for all cubes Q. 
Then TblERBMO(#) (and therefore TblEBMO~(#)). 
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Under the assumptions of the previous theorem, 

/QI Tblx2Q [P d# <<. C#(AQ), 

where A=max(A, A'). 

Proof. First notice that if the weak boundedness condition (2.1) holds for some a < 1, 

then it holds for any other value of a, probably with different C. 

Fix a cube Q. Pick gEL ~ supported by the cube Q, such that Ilgllq=l, where 

1/p+l/q=1. We want to show that (TblX2Q,b2g) is bounded. So, let us assume that 
1 a = 5 .  

Pick a constant c such that 

c/Qb2d#=/Qb2gd#, 

i.e., such that f(b~g-cb2xQ)d#=O. 
Since ]fQ b2 d# I ~ 5#( Q) (b~ is weakly accretive), 

[c[ ~< 5-1tt(Q) - 1 / Q  [b2g[ d# ~< 5 - I# (Q)  -1Hb2 Hcr HgI[Lq(tL)#(Q) 1/p = (~-1Hb 2 Hor .#(Q)-l/q, 

and so IIc QllL ( ,)< c. 
Therefore Ilb2.(g-cxQ)[iL~(,)<~C+I and the condition TblEBMO~,(#) implies 

I(TblX2Q, b2"(g-cxQ))l <~ C#(AQ) ~< C#(AQ). 

We know (weak boundedness) that 

It follows that 

[(TbIx2Q, b2XQ)] ~< C#(A'2Q) ~< C#(AQ). 

[(TblX2Q, b2g>l <<. C, 

and that is exactly what we need. [] 

Proof of Theorem 2.4. Let QcRcG. Property (ii) of CalderSn-Zygmund ker- 

nels and the Comparison Lemma 2.1 imply that for any cube QcG the function ~ : =  

TblXloG\2Q is almost constant on Q, namely 

c, x,x' Q, 
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The above Lemma 2.5 implies that  for aQ=~(CQ), where CQ is the center of the cube Q, 

\ l /p  

fqlTb Xloc-aoIdt'<  (Q)l/q(folTb XloG-aQIPdt' ) 
<. C#(Q)~/qp(AQ) lip <. C#(AQ). 

Let us compare 

Hence 

laQ--aRI = I(Tb,XloG\Q)(CQ)--(TblXIoG\R)(CR)I 
.< I(TblXl0G\2q)(eq)- (TblX oG\2.)(eQ)l+C. 

laQ-aR] <. C+ ~2R\2QIK(CQ, Y)I d#(y)<~ C \(1+ J2R\Q f dist (y, cQ)-d d#(y)). [] 

Now we are going to prove an analogue of Theorem 2.4 under the classical assumption 

of weak boundedness 

](TblXQ,b2xQ>] • C#(A'Q), A'> 1, (2.2) 

for all cubes Q. 

THEOREM 2.6. Let the bilinear form (Tblf, beg) be defined for bounded compactly 
supported f and g. Let also bleL ~ and let b2EL ~ be a weakly accretive function. 

Suppose that TbleBMO~(#)  for some p, l ~ p < c ~ ,  and that Mb2TMbl is weakly 
bounded, in the sense that (2.2) holds for all cubes Q. 

Then TblERBMO(#)  (and therefore TbleBMO~(#) ) .  

To prove the theorem we will need the following analogue of Lemma 2.5. 

LEMMA 2.7. Under the assumptions of Theorem 2.6, 

JQ]TblX2 Q I p d# <. C#(AQ), 

where A=max(2A, 2A', 3). 

If this lemma is proved, Theorem 2.6 follows immediately; one has simply to repeat 

the proof of Theorem 2.4. 

If one tries to repeat the proof of Lemma 2.5 to prove Lemma 2.7, one would en- 

counter a problem: at some point we need to estimate <TblX2Q, b2XQ>, and we only know 

that  (TblXQ,b2xQ> is bounded. 

The following two lemmas below help us to cope with this problem. In these 

two lemmas I" ! denotes a fixed norm in R N, and "ball" means the ball in this norm, 

B(x0, r):={xERN: IX--Xo[<r}. We will need the lemmas for the case when the norm 

I" I is t h e / a - n o r m ,  Ixl=max{Ixkl: l<.k<.N}, so the "balls" are cubes. 
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LEMMA 2.8. Let B(xo,R) be a ball. There exists Ro, R<~Ro<~I.2R, such that for 
all sE[0, 1.5], 

~({x: R o - R s  < Ix-xol < Ro+Rs}) <. Cs#(B(xo, 3R)). 

Proof. Define the measure u on [0, 3R) as the radial projection of the measure 

#lB(xo,3n), 
,([0, t)):= ~(B(xo, t)), 0 <. t < 3R. 

Consider the centered maximal operator M, M~(x):=sups>o~,((x-s,x+s))/2s. It is 

well known that  M is of weak type (1, 1), i.e., that  

measl{X:Mv(x)> A} <~Av[o, 3R), A>0,  

where measl is one-dimensional Lebesgue measure on R, and A is some absolute constant. 

Therefore 
IOAp(B(xo, 3R)) 

My(x) > 
R 

on a set of length at most 0.1R. Therefore for some RoE[R, 1.2R] the inequality 

Mv(Ro) <. lOA#(B(xo, 3R))/R holds. That  implies the conclusion of the lemma. [] 

LEMMA 2.9. Let Ro be as above in Lemma 2.8, and let K be a Calderdn-Zygmund 
kernel. Then 

l IB  [g (z, y)[ d#(x) d#(y) <~ C v/ #( S(xo, R0)) x/#( S(xo, 3R)) 
(xo, Ro) X [B(xo,3R) \B(xo ,  Ro)] 

<~ C#(B(xo, 3R)). 

Note that  the lemma is not true for arbitrary R0. We use the fact that  the measure 

behaves regularly, as it is described in Lemma 2.8, in a neighborhood of the sphere 

SRo := {x : Ix-xol =Ro}. 

Proof of Lemma 2.9. Consider 

f(x) :----/B(xo,3R)\B(xo,Ro)lK(x, Y)[ d#(y). 

Let xEB(xo, Ro) and let ~:--dist(x, Sno), where Sno:={x:lx-xol=Ro}. Clearly 

f(x) <~ ~ 1 d#(y), 
~<ly-xl<5n lY--Xl d 
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and the Comparison Lemma (Lemma 2.1) implies 

f5R dt R R 
f(x) ~< l+j~ 7 < Clog 7 = Clog 

dist(x, SRo) " 

The Cauchy-Schwarz inequality implies 

JB f(x)dp(x) <~ Cg(B(x~176 f l~ R dp(x)) 1/2" 
(xo,Ro) \JB(xo,Ro) dist(x, SRo) 

Since the measure of the strip {xEB(xo, Ro):dist(x, SRo)<T} is at most 

T 
C-~.#(B(xo,3R)), 

see Lemma 2.8, we get 

f R 3 R ) ) l  fro 2R 
] log 2 dp(x) <~ C#(B(xo, R -- dT <~ C'#(B(xo, 3R)). o log JB(x0,R0) dist(x, SRo) T 

We are done. [] 

Proof of Lemma 2.7. Let I' I denote t he /~ -no rm on R N, Ixl=max{Ixkl: l<.k<.N}, 
so a cube Q is just a ball in this norm, Q=B(xo, R)={xERN:Ix-xoI<R}. Let Q ' =  

B(xo, Ro) be the cube (ball) from Lemma 2.8 above. 

By Lemma 2.9, 

I<TblX2Q\Q,, b2XQ,>I <~ C#(3Q) ~< C#(AQ), 

so, since I(Tbl XQ,, b2XQ, >1 ~ C#(A~Q ') <~ C#(AQ), we have 

i( Tb' X2Q, b2 XQ, >l <~ C#(3Q) ~< C#(AQ). (2.3) 

The rest of the proof goes exactly the same way as the proof of Lemma 2.5: take a 

bounded function g supported by the cube Q, and pick a number c such that 

CJQ,b2d#=jQgb2d#. 

As in Lemma 2.5, Ileb2XQ, IIL,(t,)~C. The condition TblEBMO~,(#) implies that  

liTb,x2Q, b2. (g-cxQ,)>l <~ C#(AQ') ~< C#(AQ), 

and together with (2.3) this implies I(Tbl)(.2Q, b2g>l <~C#(AQ). [] 
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3. A n  e m b e d d i n g  t h e o r e m  

As people familiar with proofs of classical T1- or Tb-theorems can remember, the Car- 

leson Embedding Theorem plays an important role there. 

Here we present and prove a version of the theorem we need. We will use Theorem 3.1 

below only with p=2.  In this case it is just the classical Carleson Embedding Theorem, 

and any known proof (with obvious modifications) would work. 

We think that  this theorem is of independent interest, so we will present the proof 

of the general case. 

Let :D be a collection of dyadic cubes in R N. Let {aQ}Q~ be a collection of 

non-negative numbers, and let fQ be the average, fQ:=p(Q)-l fo f dp. Consider a (non- 

linear) operator S defined on, say, locally p-integrable functions by 

(Q~z~ ,1/2 
Sf(x):= aQfgXo(X)) . 

We are interested in the question of when this operator is bounded on LP(#), i.e., when 

[]Sf[[Lp(t,) <<.C[[f[[LV(t,) for all feLP(#). 

T H E O R E M  3 . 1 .  The following statements are equivalent: 
(i) the operator S is bounded on LP(#); 

(ii) supQe~ ~ l f Q ( ~ c Q a n ~ R ( x ) ) P / 2 d # ( x ) = C < c r  

(iii) the family { aQ } Qe ~ satisfies the following "Carleson measure condition": 

1 
sup y ~  aR#(R) = C1 < cr 
QE~ ~ RcQ 

Moreover, the constants C 2/p, C1 and IISII 2 are equivalent in the sense of two-sided 
estimates with absolute constants. 

When p=2,  condition (i) means that  ~-]~Qe~ aQf'~#(Q)<. 2 CllflIL2(,), and the theo- 

rem is simply a dyadic version of the famous Carleson Embedding Theorem. For p # 2  

the theorem can be interpreted as a result about embedding an LP-space into a weighted 

Triebel-Lizorkin space. 

Proof of Theorem 3.1. (i) =~ (ii). Take f=XQ. Then 

Q /  \p/2 

( ~ a.x.(x)) d,(x)<. IlSxQII[~(.)-< IISlI'" IIxQII~(.)= IISIP',(Q), 
\RcQ / 

i.e., condition (ii) holds with C =  ilSll p. 
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(ii) =~ (iii). If p~>2, the H51der inequality implies 

#(Q)I r(Q)I/Q E aR'r(R)-  E aRXR (z) dr(x) 
RCQ RCQ 

1 \p/2 \2/p ~(--~/Q(~cQaRxR(x)) dr(x)) ~C '/'. 

Let us now consider the case p<2. First notice that in this case the inequality 

X p/2 -- ( X  - A X )  p/2 ~ l p X P / 2 - 1 A X  (3.1) 

holds for X, X - A X > 0 .  
For a cube Q let us define the function ~Q(X):=y~nc Q anXn(x). 
Let Qk, 1<~k<~2 N, be the cubes of size �89 contained in Q. Notice that for xEQk 

we have ~Qk(x)=~Q(x)-aQ, so the inequality (3.1) (with X=~Q, AX=aQ) implies 

~ PQ/ 2 ( x ) - ~PQ/ : ( x ) ~ l p ~ppQ/ 2 -1( x ) . a Q 

Integrating over Qk and summing up over k we get 

for xEQk. 

2 N 
1 /Q~PQ/2d#>~P 1 / q ~ / 2  1 + E  1 /Q r(Q) - dr G/2 dr 

k = l  k 

p/2-1 1 Let us notice that (1/r(Q))fQ ~PQ a r is bounded below. Indeed 

1/Qfl-p/2WQ _~Q)/Q_p/2-1WQ 
1 <~ - ~  dr. dr. 

On the other hand, HSlder's inequality implies 

1 f 1--p/2~ [ 1 f p/2 x2/p--1 
r(Q) JQCPQ at<-.. ~,p-~ JQ~Q dr) ~ C2/p-1, 

and so 

Therefore (3.2) implies 

#(Q) ~p(~/2-- 1 dr  ~ C '-21p. 

2 N 
aQ ~ 2Cp/2-1 1 2 d # p ~ ~PQ/ - E  ~ JQk / 

k=l 

(3.2) 
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Writing such inequalities for all dyadic cubes RcQ, multiplying them by #(R)  and 

summing them up, we get 

anP(R) < 2-C /2-1fQ  /2d# <. 2-Cp/2-1.(Q)C = Rcp/2 (Q), 
RcQ P P P 

which is exactly condition (iii). 

(iii) ::~ (i). To prove the implication, we use the Bellman function method. What  

a Bellman function is and how to find it is discussed in  great detail in [20], so here our 

presentation will be very sketchy. 

Clearly, it is enough to consider only f/>0. 

For a dyadic cube Q consider the averages 

FQ :=#(Q)-t /QfP d#, 

AQ : = # ( Q ) - I  ~ anlR[, 
R c Q  

fQ :=#(Q)-l /Qf d#, 

/ \a/2 
C Q : = (  ~ aR f2) �9 

\ R : R ~ Q  " 

(3.3) 

(3.4) 

Our goal is to construct a function B=B( f ,  F, c, A) of four real variables. We want the 

function to be defined on the set 

0 < ~ f ~ F  l/p, 0 ~ < A ~ I ,  c ) 0 .  

We want it to satisfy 

7c v ~ B(f, F, c, A) ~< F-(F +c" )  

where F~>'~/>0 are some constants. We also want it to satisfy 

(3.5) 

B(f, F, c, A) ~> �89 (B(ft, F1, cl, A1) +/3(f2, F2, c2, A2)) (3.6) 

for any three sets of arguments satisfying 

F =  �89 (F1 +F2) ,  f =  1( f1+f2) ,  

A = � 8 9  C l = C 2 : V / c 2 + a f  2. 

If we construct such a function B, we are done! 

To show this, let us first notice that if a function B satisfies (3.6), then 

M 

B(f, F, c, A) ~> ~-~ #kB(fk, Fk,Ck, Ak) 
k = l  

(3.7) 
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for any #k ~>0 such that ~-~k #k = 1, and any M +  1 sets of variables satisfying 

M M 
F = Z /~kFk, f = Z #kfk, 

k = l  k = l  

M 

A = Z # k A k + a ,  
k = l  

C 1 =  C2 = . . .  = E M  = V/-~ + a f  2 . 

(3.8) 

(3.9) 

Suppose that  we are given a family {aR}RE D. Withou t  loss of generality we can 

always assume that  its Carleson constant is 1, i.e., that  

#(Q)-I Z aRP(R) ~< 1 for all Qe:D. 
R c Q  

Clearly, it is enough to prove the implication ( i i i )~  (i) for finite families, so we 

assume that  only finitely many a R are non-zero and that  aR=O for R~Q. 
Fix this cube Q, and let Q~, k=l, 2, ..., 2 Nn, be the cubes of size 2-nl(Q) contained 

in Q. Pick a non-negative function f in LP(#). Condition (3.7) implies that  

2 N 

B(fQ, FQ, cQ, AQ)/> ~ ,k ~(fQ~, FQ~, %~, AQ~), 
k = l  

where fQ, FQ, cQ, AQ are the averages defined above in (3.3), (3.4), and #k: =#(Qk)/p(Q). 
Notice that  the averages satisfy (3.8), (3.9) with fk=fQ.~, ..., and a=aQ. 

Let us apply this inequality for each cube Ql,k then for each cube Q~, etc. Going n 

generations down we get 

2Nn n 

B(fQ, Fq, c~, AQ) ~> ~ "U~) ) ~(fQ~, FQ~, cQ~, AQ~). 
k----1 

The inequality (3.5) implies 

1 
2Nn 2Nn n ~(Qk) 

(cQ~)PXQ~ (x) d#(x) = ~ ~ #(Q) �9 (cQ;)P ~ F.FQ 
k = l  k = l  

(cQ=0 since aR=O for R~Q). Since the family {aR}Re D is finite, for sufficiently large 
2Nn 

n the function ~'~,k=I(CQ,~)PxQ,~ coincides with ISfl p. So we get 

#(Q) ISflPd#<~ ~ [flPd#' 
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which is exactly what we need. 

So, to complete the proof we need to present a Bellman function B. Here is one of 

the possible choices: 

f l + ~ c p - ~ - I  
B(f, F, c, A) := K F  ~- 2~/c p, 

( I + A )  ~ 

where K > 0  is large and ~>0 is small, such that  p - e > l .  The function B satisfies 

estimates (3.5): the upper estimate is trivial, and the lower one hold for sufficiently 

large K (it follows from Young's inequality ab<~ aP/p + bP'/p ' with appropriate p). 

Let us show that  (3.6) holds. Since the function f l+~ / ( l+A)~  is convex, it is enough 

to check that  the term 
f l + e c p - ~ - i  

increases more than ~c p when one replaces c ~ - ~ c ~ - - ~ ,  A ~ + A - a .  

Notice that  for any c~>0, 

C l ( c ' ) " - 2 a f  2 <~ ( c ' ) " - c "  ~< C~(c ' ) " -2a f  2. 

Therefore, all we need to show is the inequality 

f l+e(c ' )p -e -3af2  + f l + e ( c ' ) p - l - e  a ~> ~ ' (c ' )p-2af2 . 

inc rease  c f irst  dec rease  A t h e n  i n c r e m e n t  of -)'c p 

This inequality follows immediately from Young's inequality 

x r  _ _  

xy  <~ - -  + yr' 
r r ! 

with r = 2 / ( 1 - e )  and x=f(3+~)(1-~)/2c ~(p-a-~)(1-e)/2. 

There is also a simple way to see, without computations, that  Young's inequality 

with some r would work. First, notice that  the sum of exponents of f and c ~ is p for each 

term. Then, compare exponents, say of f ,  of each term: 

1 + ~ < 2 < 3 + e .  [] 

4. Martingale difference d e c o m p o s i t i o n  

Fix a dyadic lattice :D in R N. Just for our convenience we will consider only lattices 

constructed of cubes with sides 2 k, k EZ  (we consider cubes of all sizes, not only with a 

fixed k). 



T H E  T b - T H E O R E M  ON N O N - H O M O G E N E O U S  S P A C E S  191 

Denote by Ek the averaging operator over dyadic cubes of size (length of the side) 2 k, 

namely Ekf(x)=#(Q)-lfQ f d#, where Q is a dyadic cube of size 2 k containing x (for the 

sake of definiteness, we consider cubes of the form x0 + In, b)g). If Q is a cube of size 2 k, 

we denote by EQf the restriction of Ekf to Q: EQf=(#(Q)-lfQfd#)xQ=XQEkf. 
Let Ak :=Ek-1 -Ek. Again for a dyadic cube Q of size 2 k, denote by AQf the restric- 

tion of Akf to Q. Clearly, for any fEL~(p), the functions AQf, QEZ), are orthogonal 

to each other, and for any fixed n, 

f=  ~ AQf + ~ EQf, 
Q~ QEz~ 

l (Q)<2  n / ( Q ) = 2  '~ 

2 llfllL~<.) = ~ [lAdll 2+ ~ IIEQfII 2. 
Qc~ Q~D 

l(Q)~<2 ~ z(Q)=2 ~ 

For the Tb-theorem we need a weighted version of the above decomposition. Namely, 

let b be a weakly accretive function. Define 

where Q is the dyadic cube of size 2 k containing x. Again for a cube Q of size 2 k let E~ 

denote the restriction of E b to Q. Similarly to the non-weighted case define operators 

Ak_Ek_lb._ b _E bk, and for a dyadic cube Q of size 2 k, let the symbol A ~ f  denote the 

restriction of Abf  to Q. 

Notice that all operators E b, E~, A~, A b are (generally non-orthogonal) projections. 

Notice also that  for any fEL2(#)  the function /X~f is always orthogonal to constants, 

i.e., f Abof d#=O. 
Similarly to the non-weighted case, for any fcL2(#) one can write down a decom- 

position 

:: Z 
I ( Q ) ~ 2  n / ( Q ) = 2  n 

(we discuss the convergence a bit later). Unfortunately, the terms in this decomposition 

are not orthogonal, so we cannot get such a nice formula for the norm IlfllL2(~) as 
in the non-weighted case. Fortunately, the system of subspaces {Range A~:/(Q)~<2n}, 

{Range E~: l(Q)=2 n} forms an unconditional basis in n2(#), i.e., the following lemma 

holds. 
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LEMMA 4.1. Let b be a weakly accretive function, and let nEZ.  Then, any f E L 2 ( # )  

can be decomposed as 

:= E E F4:, 
QcT~ Q~Z~ 

/ (Q)~2 n l ( Q ) = 2  n 

where the series converges in L2(p).  Moreover, 

d-1  2 I lf l l : ( . )  ~< ~ b 2 ,...,3--" b 2 2 IIAQfIIL2(,)+ IIEQfII:(.) ~< Al l f l l : ( . ) ,  
Q~7~ Q~7~ 

/ (Q)~2 n l ( Q ) = 2  n 

where the constant A=A(b) depends only on b (more precisely on Hbl]~ and the con- 

stant 5 in the definition of weak accretivity). 

Proof. If f=~-~Qev, t(O)=2_k cQX O. b (the sum is finite), then the decomposition con- 

verges, because the sum contains only finitely many terms. So, the decomposition con- 

verges on a dense subset of L2(#), and to prove the lemma we only need to prove the 

estimates. 

Let us first prove the est imate from above. Notice that  the est imate for the second 

sum is trivial, so to prove the est imate it is enough to show that  

E b 2 2 IIAQflI:(,)  ~< CllfllL=(,), (4.1) 
QE/~ 

or equivalently, 

Notice that  

E b 2 2 IIAkfllL~(.) ~< CIIf l l : ( . ) .  
k 

A b f =  b b 1 E k _ l f  - E k f  = [(Ek-lb)- "Ek - l f  - (Ekb ) - lEk f ] ' b  

= (Ek_ lb ) - l . [Ek_ l f -Ek f ] .b+Ekf . [ (Ek_ lb )  -1 - (Ekb)- l] .b  

= ( E k _ l b ) - l A k f . b - E k f  �9 Akb b. 
Ekb'Ek-lb  

Since bEL ~, and since b is weakly accretive, 

- 2  2 2 E ]l(Ek-lb)-lAkf'bN2 <~5 Ilbll~'llfll:(.). 
k 

To estimate the second sum, notice that  according to Lemma 4.2 below, the family 

aQ :=p(Q)-I.IIAQblI2L2(t,), Qe:D, satisfies the Carleson measure condition (iii) from The- 

orem 3.1 above. Therefore Theorem 3.1 (for p = 2 )  implies 

2 2 2 E ]lEkfllL2(•)" IlAkbllL2(.) E 2 = IIEdlJL~( .  ). II AQbII~(.) ~< CHflIL2(~,), 
k Q~Z~ 
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and we are done with the est imate from above. 

Notice that  for p = 2  Theorem 3.1 is well known: essentially it is a dyadic version 

of the famous Carleson Embedding Theorem. One of the possible proofs can be found 

in [21], see the proof of Theorem 3.1 there. 

The estimate from below follows from a s tandard duality argument.  First of all 

notice that  

(Ek b)*f = (Ek b)- 1. Ek (b f) = b- 1 E b  (b f ) ,  

and so (Ab)*f=b-lAb(bf) (here we use bilinear duality ( f ,g)=ffgd#).  Since 

b,b-lEL ~, it follows from (4.1) that  for any f E L 2 ( # ) ,  

ii(/x~)./ll~:(.) = ~ --1 b 2 : 2 lib Ak(bf)ll:( .)-~CIIfll:( .) .  
k k 

Take 

f =Ebf+~ Abf 
k<~ n 

(to avoid complications with the convergence, assume that  the sum contains only finitely 

b b_ AbAD--n for k<n and l~k, we have many terms). Since A~En--0 ,  ~k  t - - "  

2 b b * -  b = (Ak) f )  Ilfll:r ) ( f , f )=(E.f ,(E. , , )  f ) w E ( A k f ,  b * -  
k<~n 

\ 1 / 2 /  \ 1 / 2  
b 2 A b  2 E b * -  2 II(Ak) ) Q 

The second factor is bounded from above by Cllfl l :00,  so tile first, one is bounded from 

below. 

Since the estimate from below holds for all f in a dense set, it holds for all 

fEL2(#). [] 

Now Lemma 4.1 is proved modulo the following simple lemma. 

LEMMA 4.2. Let fEL ~. Define aQ:=#(Q)-l.ilAQb[122(~ ), QE:D. Then the family 
{ aQ } Qe~ satisfies the Carleson measure condition 

E anp(R)<C#(Q) foralIQGT). 
R c Q  

Proof. 

II/XRb11~O0 < fQIbl2d/z< Ilbll~'/z(Q). 
R c Q  

[] 
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5. B M O ~ ( ~ )  a n d  a C a r l e s o n  m e a s u r e  c o n d i t i o n  

If the measure is doubling, a function in BMO can be characterized in terms of a Carleson 

measure condition on its Haar  coefficients. 

For general measures some characterization of this type is given in the lemma below. 

For technical reasons, in what follows, it is convenient for us to consider two different 

dyadic lattices, say T) and/)~.  Suppose that  the sides of the cubes in both  lattices are 

exactly 2 -k, kEZ,  and that  the lattices are shifted with respect to one another. 

Fix r large enough so that  2r ~>4A. For a function ~ and a dyadic cube Q E / )  define 

-- IIAr 
Q'ET)':I(Q')=2-~I(Q) 

dist( Q',OQ ) >/ &l( Q') 

Notice that  QET), and the smaller cubes Q'  are taken from another dyadic lattice T)C 

LEMMA 5.1. Let b be a weakly accretive function. If ~ E B M O 2 ( p ) ,  then for any 
n > l  the family b {aQ(~) }QET) defined above satisfies the Carleson measure condition 

a R<~C#(Q) for a l lQED.  
RCQ 

Proof. It  is sufficient to prove that  for any dyadic cube QED,  

Z b, 2 IIAQ ~llg~(,,) <~ C#(Q) (5.1) 
Q' E'D': Q' C Q 

l(Q')<~ 2-"l(Q) 
dist ( Q',OQ ) >~ Al ( Q') 

(all terms in the sum we want to est imate are contained in the above sum). 

Consider the following Whitney- type covering of the cube Q by cubes RCD~: Take 

all cubes R c Q  of size 2 - " I (Q)  such that  d i s t (R ,0Q)~ ,k l (R)  (the assumption 2r~>4,~ 

guarantees that  there exists at least one such R), then take the layer around them 

consisting of all cubes of size 2 - r - l l ( Q )  such that  d is t (R,0Q)>-Al(R) ,  then the layer 

of cubes of size 2 - r - 2 ,  etc., see Figure 5. Let us call the collection of such Whitney 

cubes W. 

Pick a cube R E W .  By the definition of BMO~(#) ,  

Lemma 4.1 implies 

JR I~-~RI2 d# <<. C#(,~R). 

Q'ED' 
Q'C R 

(5.2) 
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I I I 

I I I 

I I 

i I 

Fig. 5. Whitney type decomposition of the cube Q (here N--2,  so cubes are squares). There 

are four squares R of size 2-2/(Q) (here r=2) ,  around are squares of size 2-3/(R),  then 

squares of size 2-4/(R).  

Estimate (5.2) implies 

X: ~ iiA~'~lib(.)<.C~,(~R). 
REV~' QtETpr R 

QcR 

(5.3) 

Since for any cube R from the Whitney-type decomposition W we have dist(R, OQ) >1 
M(R), any point in Q is covered by at most M=M(N,,k) cubes AR, RE14;. Therefore 

ER #(An) <~ M#(Q). 
To complete the proof of the lemma, it is enough to notice that  the sum on the 

left-hand side of (5.3) coincides with the sum in (5.1). [] 

6. Est imates  of  (TA~f, A~g) for disjoint Q and R 

The idea of the proof of the main results is pretty simple. We would like to estimate 

(Tf, g). To do that,  let us take two dyadic lattices 7) and 7)~, decompose f and g in 

the martingale difference decomposition given by Lemma 4.1, then estimate the matrix 

(TA~f, Ab~g), QET), RET)', and conclude that  the operator T is bounded. 
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L E M M A  6 . 1 .  Let Q,R be two cubes, l(Q)<.l(R), and let dist(Q,R)~l(Q). Let 
~Q,~REL2(#) be functions supported by the cubes Q and R respectively. Suppose also 
that ~Q is orthogonal to constants. Then 

l(Q) '~ , [ r ~ 1 / 2 .  tR~l/2 
[(T~Q,~bR)[ < ~ C d i s t ( Q ~ d + j U ~ w J  U~ ] [ [~Q[[L2(# ) [ [~R[[L2(~ )  �9 

Proof. Let so be the center of the cube Q. Then we get 

[(T~Q, %)1 = ] j ' g ( t ,  S)~Q(S)Vu(t ) dp(s) dp(t) 

ff s ) -K( t ,  So)]~Q(S)r ) da(s) dp(t) 

I/Is-sop 
<. C it_sold+ ~ [pQ(s)[.]r d#(s) dp(t) 

<<. C l(Q)" 
dist(Q, R) d+~ [[~QIILI(~)rr~Rlli~(~) 

<<. C l(Q)" dist(Q,R)d+~P(Q)I/2#(R)I/2H~QHL2(t~)[[~bRllL2(~,). [] 

Definition 6.2. Let ~/=a/(2a+2d), and so ~/d+~/a=la. Let r be some positive 

integer to be fixed later. Consider a pair of cubes Q and R such that dist(Q, R) >0. 

Suppose tbr definiteness that l(Q)<~l(R). We will call this pair singular if dist(Q, R)~< 

l(Q) ~. l(R) l-~, and essentially singular if, in addition, l(Q) <. 2 -~l(R). 

Definition 6.3. Let D(Q, R) denote the so called long distance between cubes: 

D(Q, R):= dist(Q, R)+I(Q)+I(R). 

LEMMA 6.4. Let T be a Calderdn Zygmund operator and let ~Q,gz~EL2(#) be 
functions supported by the cubes Q and R respectively and normalized by [[~QII L.,(f,)= 

#(Q)-1/2, [[~b~[[L.2(,,)=#(R)-I/2" Suppose also that l(Q)<l(R) and that ~Q is orthogonal 
to constants. Then 

cl(Q)~/21(R)~/2 
[(T~Q,r D(Q,R)d+, ' 

provided that dist(Q, R)~>min(l(Q), l( R) ) and the pair Q, R is not essentially singular. 

Proof. Without loss of generality one can assume that  l(q)<<.l(R). If dist(Q,R)~> 

l(R), then D(Q, R ) ~ 3  dist(Q, R); thus, the estimate from Lamina 6.1 implies 

l(Q) '~ ~ ..l(Q)~/21(R)'~/: 
](T~Q,~R}] ~ C D(Q, R)d+c~ ~ ~ ~(Q~R-- -~  " 
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Now let us suppose tha t  dist(Q,R)<~l(R), but the pair Q, R is not singular. 

means 

dist(Q, R) >~ l(Q)~ l(R) 1-~. 

The estimate of Lemma 6.1 and the identity ~/d+~/a= �89 imply 

That 

C.I(Q) ~ C.I(Q)~/21(R) <'/2 I(Q)"/21(R)<U 2 
I(T~Q,eR)I ~< l(Q)~121(R)d+<~/2 -- l(R)d+ ~ <<. C D(Q,R)d+ ~ [] 

Note tha t  if we do not normalize the functions ~Q and r the est imate from 

Lemma 6.4 can be rewritten as 

l(Q)<~121(R)<~l ~ 
[(T~OQ,r <. C D(Q,R)d+ ~ v(Q)ll2v(R)ll211~OQIIL2(v)IICRIIL~(.). 

The following theorem shows that  the m a t r i x  {TQ, R}QE~,RE D, defined by 

l(Q)~/2l(R) ~/2 , ((9~112, (R~112 
TQ'R := D(Q, R) d+(~ '~"~" '~'-" 

generates a bounded operator  on 12. 

THEOREM 6.5. Let the measure # satisfy #(Q)<<.CI(Q) d for all squares Q. 

for the matrix {TQ, R}QeV, ReZ), defined above, one has 

/ \ 1 / 2  ,, \ 1 / 2  

QET) "QET) " " R e D  ' y R  
RET) ~ 

Then 

for any sequences of non-negative numbers (XQ}QeV, {yR}Rez),E/2. 

Proof. The symmetry  of Q and R implies that  it is enough to consider only the sum 

over Q, R such tha t  l(Q)<~l(R). So we can just  assume tha t  TQ,R=O if l(Q)>l(R). 

Let us "slice" the matr ix  (TQ, R}QeV, Rev,. Namely, for any n = 0 ,  1, 2 .... define the 

s~v(n) ~ by putt ing matr ix  t~ Q,RI QET), RE'D' 

TQ(n) { Tq,., I(Q)=2-nZ(R), 
,n ---- 0, otherwise. 

If we show tha t  the norms of the operators T (n) decrease as a geometric progression, i.e., 

that  
i \1121 \1/2 

E E 4) ( E 
QE'D " Q E ' D  " " R E D '  " 
RET)  ~ 
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for some fl>0,  then we are done. 

We can split the matrices T (n) into layers T (~'k), where 

{ re(n) l(R) = 2 k, ~F(n,k) ~Q,R' 
"Q,R = 0, otherwise. 

Clearly, the layers T (n,k) of T (n) do not interfere, therefore it is enough to estimate 

each layer separately. So, it is enough to show that for any sequences of non-negative 

X:{XQ}QE:D, Y={YR} ReV'EI 2, 

m ( n , k )  ( \ 1 / 2 /  \ 1 / 2  
(T(n,k)x, Y) IQ, R XQ yR ~ 2-nf lC\  E X2~) ~ E Y2 ) " 

QET~, RET?' QE:D RE:D 
l(Q)=2 k-",/(R)=2 k / (Q)=2 k-'~ / (R)=2  k 

One can rewrite the matrix T (ink) as an integral operator. Namely, if we define 

X := E #(Q)-I/2XQXo' Y := E #(R)-I/2yRxR' 
QE'D: / (Q)=2 k-~' RET)': l( R)=2 k 

then 

QeZ): l(Q)=2~- ~ R ~ ' :  Z(R)=2 k 
Now the estimate we need can be rewritten as 

E IQ, R~(n'k) XQYR = / /  g (")(s, t)X(s).Y(t) dp(s) dtt(t) <. CtIXllL:(.)ttYllL~(.), 
/ (Q)=2 k - n  
l(R)=2 k 

where the kernel k'(n)(~ t) is defined by ~L k I'~, 

K(n)(s't) = E TQ, n#(Q)-I/2#(R)-W2XQ(S)XR (t)" 
Q~: l(Q)=2 k-" 

RE'D': I (R)=2  k 

Note that  for each pair s, t, the sum has only one non-zero term, so the kernel K~ ~)(s, t) 

can be easily estimated: 

K(k ~) (s, t) <. C2 -n~/2 2ka 
(2 k + i t _ s l ) a +  ~ = C2-"~/2Kk(t - s), 

where tCk(S)=2k~/(2k+lsl)d+~. Using the Comparison Lemma (Lemma 2.1) one can 

show that  

sup ]]Ck(s) dp(s) ~< const < oo. 
k J 

So, by the Schur Lemma the integral operators with kernels ~k(s-t)  are uniformly 

bounded, therefore the norms of the operators T (n'k) (and hence of T (~)) decrease as 

a geometric progression, and we are done. [] 
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7. Paraproducts  and the est imate  of  (TcpQ, ~2R) when QCR 

As usual in the theory of singular integral operators, to estimate <T~Q, ~R) when QcR, 
one can use the so-called paraproducts. The classical construction will not work in our 

case, and we will slightly modify it. 

7.1. Paraproducts  

Let bl, b2 be weakly accretive functions from the statement of the Tb-theorem (Theo- 

rem 0.4). Let r be a positive integer to be defined later (it is the same number we used 

in the definition of essentially singular pairs, see Definition 6.2). We define a paraproduct 
II----IIT. by 

Hf := ~ ~ (ERb2)-I.Enf.(A~)*T*b2. 
R~Z), Q~Z): Z(Q)=2-~(R) 

dist( Q ,OR ) ~ Al( Q ) 

If we are working with a "nice" operator T, then T'b2 is well defined. Note that  

even if T'b2 is not well defined, we still can define (A~)*T 'b2  by duality as the function 

f satisfying 

(f,g) =(b2,TAb~g) for all geL2( t t ) .  

Let us study the matrix of H. Let QE:D, RED'.  Let ~Q and ~b R be functions of the 

form 

~Q(X)= ~ AQ,.)~Q,(X)'bl(x), 
QE :QCQ 
I(Q')=I(Q)/2 

% ( x )  = B.,.x.,(x).b2(x), 
R'E ~': Q'C R 
t(R')=Z(R)/2 

(7.1) 

(7.2) 

where AQ,, B R, are some constants. Suppose also that  the functions ~Q, ~b R are orthogo- 

hal to constants, i.e., f~Q  d#=O, fCR d#=O. 
The above representation, together with orthogonality to constants, means simply 

that  A S ~Q----~Q and A~ ~R = ~bR" One should think of ~Q, ~b R as terms in the martingale 

difference decompositions, ~Q = A S f, C n= A ~ g, f, geL2(#). 
Notice that  (~Q,IICR) is non-zero only if QcR, I(Q)<2-rl(R). Moreover, there 

should exist a dyadic cube SET)', l(S)=2rl(Q), QcScR, and for this cube S the in- 

equality dist(Q, OS)~Al(Q) should hold. Let R1EI)' be the dyadic cube of size �89 
containing S (it may coincide with S). 
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In this case, 

<~Q, H@R) = <~Q, (A S)* T*b2>BR, = {T~Q, b2>BRI, (7.3) 

where BR1 is the corresponding constant B R, in (7.2). 

THEOREM 7.1. Let bl and be be weakly accretive functions. If T*b2eBMO2(#) ,  

then the paraproduct II is bounded on L2(#). 

Proof. First notice that [Enb2[ ~< 1/5. Therefore Lemma 4.1 and a standard duality 

argument imply that it is sufficient to prove the following embedding theorem: 

E JfRJ2 E b,. , 2 . II(AO) T b2]JL.(. ) <<.CllfllL.(.); 
RE19' QE~):I(Q)=2-rl(R) 

dist(Q,i)R)>/Al(Q) 

here fR denotes the average of f,  fR:=P(R)-lfR fdp.  
Let 

~__. ~ bl * * 2 II(AQ) T b211L.(.). aR 
QEI): I( Q)=2-~I( R) 
dist(Q,OR)>~Al(Q) 

Since T*b2EBMO2(#),  Lemma 5.1 implies that  the family {an}Re ~, satisfies the Car- 

leson measure condition 

E an' <<" C#(R). 
RIC R 

Therefore the Carleson Embedding Theorem (Theorem 3.1) implies 

E IfRJ2aR <~ cllfll2L2(.) �9 [] 
R@T) ~ 

Since we know that the paraproduct II is bounded, we only need to estimate the 

matrix {(T-II*)~Q,~R),  QE:D, RED' .  

Definition 7.2. Let Q , R  be a pair of cubes. Suppose for the definiteness that 

l(Q)<.l(R). We call this pair singular if 

dist(Q, OR) <~ l(Q)~l(R) 1-~, 

o r  

dist(Q, ORk) <. l(Q)~l(Rk) 1-~ 

for some subcube R k c R  of size �89 here ~=(~/(2~+2d), and so ~d+~/a=�89 We 

call the singular pair Q, R essentially singular if, in addition, l(Q)<2-~I(R). 

Note that the definitions are consistent with the ones we had for disjoint Q and R, 

see Definition 6.2. 
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7.2. E s t i m a t e s  of  t h e  m a t r i x  

From here on we assume that r in the definition of essentially singular pairs is large 

enough such that 2r0-'Y)~>A. Suppose that we have two dyadic cubes QET:), SET) ~, 

QcS, l(Q)=2-~l(S). Suppose also that dist(Q, c9S)>~ I(Q)~I(S)I-'L Then the inequality 

2 ~0-~) ~>A implies that 

dist(Q, cOS) >1 I(Q)'Yl(S) ~-'~ = / ( Q ) 2  ~0-~)/> A/(Q). 

Therefore, if R is a dyadic cube of size at least 2/(S), QcScR ,  and the pair Q, R is not 

singular, then (~Q, I-I~pR) is given by (7.3). 

Let ~Q, CR be two functions of the form (7.1), (7.2), and let ~Q be orthogonal to 

constants. Suppose also that  the functions ~Q, CR are normalized in L2(#): 

2 2 IICRIIL~(.) II~qllL~(~,) = 1, = 1. 

Let RkE~D ~, k = l ,  2, ..., 2 N, be the dyadic cubes of size �89 contained in R. Then 

~R can be written as 
2 N 

% (x) = Z Bk. XR~(x). b~ (x). 
k = l  

Without loss of generality one can assume that QcR1. Then (see (7.3)), 

h((T-n')~Q, %)1 = I(T~Q,~bR-Blb2)I 
2 N 

<~ IBll'I(T~Q, (Xn-1 )b2 ) l  + E'I(T~Q, Bk'xnk'b2)l 
k = 2  

The first term is easy to estimate. Using property (ii) of Calder6n-Zygmund kernels 

and the orthogonality of pQ to constants, we can write for xERN\Q, 

Z(Q) ,~ ~(Q)" 
I(TcPQ)( x)l <~ Cdist(x ' Q)d+. iI~QIIL~(~) < Cdist(x ' Q)d+~ #(Q)1/2. 

Applying the Comparison Lemma (Lemma 2.1) one can get 

fR l(Q)~ I(T~Q,(XR,-1)b2)b <- N\RIT~QI'IB21dtt<- C dist(Q, OR1)~ I~(Q) 1/2. 

Since II~bRIIL2(~)----1, we have IBII<.p(R1) -1/2 and therefore 

l(Q)~ ( #(Q) ~1/2 
IBI['I(T~Q' (XRI-1)b2)I ~< Cdis t (Q,0R1)  ~ " P-~I).] " 
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The pair Q, R is not singular, which implies 

dist(Q, on,) >1 l(Q)~ l(n~) ~-~ >1 l(Q)~/21(n~) ~/~, 
and therefore 

IBII.I(T~Q,(XRI_I)b2)I~C.{ l(Q) ~/2( ~(Q) ~1/~ 
\l(nl)] \ ~ ( n l ) ]  " 

To estimate (T~Q, BkXRkb2) , k=2, 3, ..., 2 N, we can use Lemma 6.4. It implies (if we 

take into account that  in our case D(Q, R)~I(R),  and that  l(R1)=�89 that  

l(Q)~/2 
I(T~Q, BkXRkb2)I < C. l(R)d+cU 2 #(Q)I/2#(Rk)U2 

<. C. (l--(~)l(Q) ./2( l__(~) 2/2 C.(l__(_~l ~/2 P-~)J ~/2 
So we have proved the following lemma. 

LEMMA 7.3. Let r be large enough so that 2r~>4A (see Lemma 5.1) and 2r(1-~)~A. 

Let QET), RET) ~ be dyadic cubes, QcR ,  l(Q)<2-rl(R). Suppose also that the pair Q, R 
is not singular. Let ~Q and r be functions of the form (7.1), (7.2), and let ~Q be 
orthogonal to constants. Let also R1ET) ~ be the dyadic cube of size �89 containing Q 
(clearly R1c R ). Then for the Calderdn-Zygmund operator T, 

,. [l(Q)~ [ #(Q) ~/2 
I((T-n*)~Q,r O'(l-(-~) ~ j  II~QIIL~(,.)IIr 

Let the matrix {TQ, n}QeV, ne v, be defined by 

{ (I(Q)/I(R))"/:(p(Q)/p(R~)) ~/:, QcR, l(Q) < 2-rl(R), 
TQ'R = O, otherwise, 

where R1 is the subcube of R of the first generation (l(R1)= �89 containing Q. 

LEMMA 7.4. The matrix (TQ, n}QcZ),ReV, defined above generates a bounded oper- 
ator on 12, i.e., 

\i12/ 012 

Q E D  Q E ~  ~ \ R E ~ '  / 

RET) ~ 

for any sequences of non-negative numbers (XQ}QeZ) , {yn} ne~,E l 2. 

Proof. Let us "slice" the matrix {TQ, n}QeV, R~Z),. Namely, for n=r+l , r+2 ,  
�9 " ,  / q ' ( n )  "t , r+3,  define the matrix I~Q,RIQ~V,R~V by 

TQ(~) { TQ,n' I(Q)=2-~I(R), 

,R = 0, otherwise. 
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If we show that  the norms of the operators T (~) decrease as a geometric progression, i.e., 

that  
\~/2/  \1/2 

E r~(n) 2 2 

Q E D  QET~ " " Q E D  " 
RE~' 

for some ~>0, then we are done. 

We can split the matrices T (~) into layers T (n'k), where 

( T(~) l(Q) 2 Ir ' 

Q,n ~( O, otherwise. 

Clearly, the layers T (n'k) of T (~) do not interfere; therefore it is enough to estimate each 

layer separately. 

Note that  the "rows" { T ( ~ ) :  QCR} (R is f ixed , / (R)=2  k+n) are uniformly (in R) 

bounded on 12: 

E (T(~,'Rk))2 <" C.          \l(R).] (l(Q) ~'~ 
l (~ E (T(~,'Rk)) 2 <" C. \l(R).] (l(Q) ~'~ ~ R  #(Q) 2NC ((Q) ~ 2Nc2-n~ 

Z - = �9 
. l : R l c .  Q : Q c  Q : Q c R  

I(Q)=2 k I ( R 1 ) = l ( R ) / 2  l ( Q ) = 2  k 

Note that the supports of the "rows" of T (n,k) are pairwise disjoint. Therefore the rows 

do not interfere, and so the norm of T (~'k) is bounded by C2 ..... /2. We are done. [] 

8. Est imates  of  the regular part of  the matrix 

Let dyadic lattices 7) and 7)' be given. A dyadic square Q in one lattice (say, in 7)) is 

called "bad" if there exists a bigger square R in the other lattice (in 7)' in this case) such 

that  the pair Q, R is essentially singular; otherwise the square is called "good". 

Let a function fEL2(#)  be supported by a cube of size 2 n. We call the function f 

"good" (/)-good) if A ~ f = 0  for any "bad" square Q E D , / ( Q ) < 2  n. 

If one replaces 7) by 7)' and bl by b2, one gets the definition of / ) ' -good functions. 

Here and in what follows, to avoid notation like (n, 7), bl)-good function, we assume 

that  n is fixed, and we will always associate the dyadic lattice 7) with the function bl, 

and the lattice 7)' with b2. 

In the following lemma we assume that r from the definition of completely singular 

pairs (Definition 6.2) is given. As in w we assume that  r is large enough so that  

2r0-~)~>A and 2r>~4A. 

Also, let two dyadic lattices 7) and 7)' be fixed. 
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LEMMA 8.1. Suppose that T is a Calder6n-Zygmund operator such that Tbl, T*b2E 

BMO~(#) ,  where bl, b2 are weakly accretive functions from Theorem 0.4. Suppose also 

that 

I<TblXQ, b2 XR) r <~ Cp(Q)1/2p(R)1/2 (8.1) 

for cubes Q, R of comparable size which are close, i.e., for Q, R such that 2-r<~ 

l (Q) / l (R)  ~< 2L dist (Q, R) ~< min(l(Q),  I(R)). 

Then, for any :D-good function f and any l)'-good function g ( f ,  gEL~(#),  both 

supported by some cubes of size 2 n) we have 

l(Tf, g>l ~ CIIIIIL2(.)llgll:(.). 

Proof. We can write the decomposi t ion (see L e m m a  4.1) 

and similarly for g, 

:-- E E 
Q~)  Qez) 

I(Q)<~2 n /(Q)=2 n 

g-- E . 2g+ Z .2 A R g .  
REI) I RET~ t 

I(R)<2 n l(R)=2 n 

Let us es t imate  the sum ~QeZ),nez), 51 52 (TAQ f,  A n g). First  notice tha t  the condit ion 

(8.1) implies 

I(TA~ f, a~g) l ~< CIIAQflIL=(,)IIA,glI:(.). 

Therefore 

/ \ V 2 /  \1/2 
bl 2 b2 2 

2-'I(R)<~I(Q)<~2"I(R) "QE'D " "RED' " 
dist( Q,R)<~ min(l( Q),l( R) ) 

= CllfllL.<.)llgll:(.) 

(finitely many  bounded  diagonals).  

On  the o ther  hand,  L e m m a  6.4 and Theorem 6.5 imply tha t  

I \ 1 /2 /  \1/2 
I (TAQf,  ARg)I<~ b, 2 b2 2 

2-"l(R)<l(Q)<~2"l(R) "QeD " "RED' " 
dist (Q, R)>/min(l(Q), l( R) ) 

= Cll:ll:(.)llgll :(.), 
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So, we need to  est imate the sums over l(Q)<2-rl(R) and l(R)~2-rl(Q). Due to 

the s y m m e t r y  of the conditions of the lemma, it is enough to est imate  only the sum over 

l(Q)<~2-rl(R). 
I t  remains to  es t imate  the sum 

= E ... + Z . . . .  

l(Q)~2-~l(n) Q c R  QMR=o 
l(Q)~2-~l(n) l(Q)~2-"l(R) 

The second sum can be es t imated by L e m m a  6.4 and Theorem 6.5: 

E I(TAbQ f'A~g)l 
QAR~-~ 

l(Q)~<2-~z(n) 

E C D(Q,R)d+ a #(Q)I/2p(R)I/2IIA~flIL:(~IlIA~gIIL2(~ ) 
QNR=O 

l(Q)<~2-~l(R) 

<~ CilfIii~(.)]Igll/~<.) 

(since the functions f,g are "good",  the entries (TAb~f,A~g> corresponding to  es- 

sentially singular pairs Q, R are zero, and all others  can be es t imated as above, see 

Lemma 6.4). 

To est imate  the first sum, notice tha t  11 has a very special " tr iangular" matrix.  

Namely, in the sum (f, Hg)=~~Q,~(Ab~f, HAb~g) only the terms with QcR, I(Q)<~ 
2 - r / ( R )  may  be non-zero. Thus  

E bl b2 (TAQf'ARg) E ((T-H*)A~f,A~g)+<f, IIg). 
Q c R  Q c R  

l(Q)<2-"l(R) I(Q)<2-"I(R) 

We know tha t  the paraproduc t  II is bounded,  so we have to est imate the sum. The  

est imate of the sum follows immediately  from Lemmas  7.3 and 7.4. 

The  sums of  terms with E~f or E~g, 

E I(TE~ ~f'Ab~g>I' 
QcZ), ~(Q)=2 '~ 

ReD' 

can be estimated similarly. 

And finally, the sum 

E I(TA~ f' E~g) I' 
RET~', I( R )=2 '~ 

Q6D 

I<TE• f, E~g) l 
l n Q~z), (Q)=2 

ReT~',/(R)=2 '~ 

is bounded  because it contains at most  22N non-zero terms (recall tha t  f ,  g are suppor ted  

on a cube of size 2 n ) .  [] 
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9. The Tb- theorem w i t h  a stronger weak boundedness  assumption 

In this section we will prove the following, weaker version of the Tb-theorem (Theo- 

rem 0.4), using a stronger version of the weak boundedness assumption. In this section 

we assume that  the operator T is well defined on compactly supported functions and sat- 

isfies the conditions (0.4) above in the Introduction (one should think of the truncated 

operators T~ here). 

THEOREM 9.1. Let T be a Caldergn-Zygmund operator such that Tba, T'b2 are in 

BMO~(#) for some weakly accretive functions bl, b2. Suppose also that 

[(TblXQ, 52 XR) [ < C#(Q)W2#(R)1/2 (9.1) 

for all cubes Q, R such that 

�89 <. l(Q) ~ 2I(R) and dist(Q, R) < 0.1.man(/(Q), I(R)) 

(this assumption is a bit stronger than weak boundedness of b2Tbl). 
Then the operator T is bounded on L2(#). 

First notice that  the assumptions of the theorem imply that  inequality (9.1) holds 

for all cubes Q, R satisfying 

2-r l (R)  <~l(Q) ~<2rl(R) and dist(Q,R) <O.l.min(l(Q),l(R)), 

with constant depending on r, of course. 

We will need this estimate for r satisfying 

1 { 29N24N A2\,) r log  , 

where A=max(A(bl),  A(b2)), A(bx), A(b2) are equivalence constants from Lemma 4.1. 

Note that  it is an easy exercise to check that  condition (9.1) implies 

I(TA~f, /X~g)I  ~< CIIA~ flIL~(,)IIA~gIIL2(,). 

To prove the theorem we would like to estimate the bilinear form (Tf, g). We already 

estimated it for "good" functions f and g, see Lemma 8.1. 

After we have proved the estimate for "good" functions, the question arises: What  

should we do about the "bad" ones? And the surprising answer is--nothing, just ignore 

them! The point is that  "bad" cubes are extremely rare, so we do not have to worry 

about them. 

Let us explain why. 
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9.1. A r a n d o m  d y a d i c  l a t t i ce  

Our random lattice will contain the dyadic cubes of standard size 2 k (kEZ),  but will be 

"randomly shifted" with respect to the standard dyadic lattice Do. The simplest idea 

would be to pick up a random variable ~ uniformly distributed over R N and to define 

the random lattice as ~+D0. Unfortunately, there exists no such ~, and we have to act 

in a little bit more sophisticated way. 

Let us construct a random lattice of dyadic intervals on the real line R ,  and then 

define a random lattice in R N as the product  of the lattices of intervals. 

Let ~1 be some probability space and let x(w) be a random variable uniformly 

distributed over the interval [0, 1) N. 

Let ~j(w) be random variables satisfying P { ~ j = + I } = P { ~ j - - - 1 } = � 8 9  Assume also 

that x(w), ~j(a,,) are independent. Define the random lattice D(w) as follows: 

(i) Let Io(w)= Ix(w)-  1, x(w)] ED(w). This uniquely determines all intervals in D(w) 

of length 2 k where k~0.  

(ii) The intervals Ik(w)ED(w) of length 2 k with k >0  are determined inductively: 

if Ik_ l (w)ED is already chosen, Ik(w) is determined by the following rule: (Ik(w))+= 
/k - l (w)  if ~k(W)----+l and (Ik(w))_ =Ik- l (W) if ~k (~) ---- --1. In other words, at every step 

we extend the interval Ik-l(w) to the left if ~k (w)= + 1 and to the right otherwise. Clearly, 

to know one interval of length 2 k in the lattice is enough to determine all of them. 

To get a random dyadic lattice in R g we just take a product of N independent 

random lattices in R.  

It is easy to check that  the random lattice D(w) in R N constructed in this way is 

uniformly distributed over R N and satisfies the following 

Equidistribution property. For x E R N, k E Z, the probability that  dist(x, OQ) >1 r 
for some cube of size 2 k is exactly (1-2E)  N. 

9.2.  B a d  c u b e s  

Let 7)(w) and D'(w') ( (w,w' )e~•  be two independent random dyadic lattices, con- 

structed above. We will call a cube QET)(w) bad if there exists a cube RED'(w') of 

length l(R)>1 l(Q) such that the pair Q, R is essentially singular. Otherwise we will call 

the cube Q good. 
The definition of bad cubes in D'(w') is the same (now we look for a bigger cube 

in D(w)). 
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. . . . . .  . . . . .  

2 - ~  - _ _ 

i_ . . . . . . . . . . . . . . . . . . . . . .  

Fig. 6. E s t i m a t e  of p robab i l i ty  Pk. 

LEMMA 9.2. Let r, 7 be from the definition of essentially singular pairs, see Defini- 

tion 6.2. Then for any fixed w and a cube QEI)(w)  we have 

2 - r ' ~  

P : =  P~,{Q is bad} ~< 2N 1_2_--------- ~.  

Proof. Given a cube QE:D(w) (w is fixed) the probability pk that  there exists a cube 

RET~'(w'), Q c R ,  of size 2kl(Q) such that  

dist(Q, OR) <. l (Q)~l(R) 1-'y 

can be estimated as 

pk  ~< 1-- (1-- (2 -k +2 -~k) )g  ~< 2N2-~k,  

see Figure 6. So, the probability P can be estimated as 

p =  E pk <~ 2N E 2-'Yk = 2N--2 -~'Y [] 
1-2- '+"  

k>/r k~r 

9.3. Wi th  large probability "bad" parts are small 

Consider functions f and g supported on some cube of size 2 n. One can write down the 

decomposition 

:= E %:+ E 
QEZ~ Qe~ 

/ (Q)<2  '~ / (Q)=2"  
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where the series converges in L2(/z), see Lemma 4.1. 

Let us split f = fgood + fbad, where 

QE~ 
KQ)~<2" 
Q is bad 

Here "bad" means "D/-bad '' where D'=79:(w I) is the other random dyadic lattice. 

Similarly, one can decompose g=ggood +gbad, where 

g b a d : =  ~ A~g; 
QED' 

Q is bad 

here "bad" means "D-bad". 

Let us estimate the mathematical expectation 2 EIIfb~dllL2(~ ) (taken over the ran- 

dom dyadic lattices constructed above). To do that,  let us consider (for a fixed dyadic 

lattice 79) the so-called square function S(x) defined for x E R  n by 

Sf(x) = $79f ~ b, 2 --1 := [IAQfIIL2(.)#(Q) XQ+ ~ b, 2 IIE~fIIL2(.)#(Q)-IxQ �9 
QED: Qgx QET): QBx 
l(Q)~<2" t(Q)=2 n 

Clearly, 

frt II~XQZIIL=(.)+ ~ b, ~ = Sf(x) d#(=) = ~_. b, = IIEo. YlIL=(.) • II:IIL=(.), 
QED: Q~x QE~9: Qgx 
I(Q)~<2 '~ / (Q)=2 n 

where • means equivalence in the sense of two-sided estimate, see Lemma 4.1. Note that 

fRN Sf(x) d#(x)<.A(bl) 2 IlfllL2(~), where A(bl) is the constant from Lemma 4.1. 

Consider the average square function E~Sf(x)  (for each x E R  N take the mathemat-  

ical expectation over all dyadic lattices 79=79(w)). Changing the order of integration, 

one can see that  frtNE~Sf(x)d#(x)<~A(bl)[[f[[~L2(#). 
The (conditional, w is fixed) probability P~, that  a square Q is bad, is at most 

2N2-"V(1-2-'~)<~A-22-s2 -4N, where A=max(A(bx), A(b2)), see Lemma 9.2, so 

E~'Sfbad(Z) <~ A-22-s2-4NSf(z).  

Since 

E~,[[fbad[[ 2 <~AE~, ( fS fbaddlZ)=A/Ew'S fbadd#  

< A-12-S2-4N f S f  dlz < ~ -s --4N 2 2 2 [Ifl]L2(/~), 
J R  g 
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we get E~,,,.,llfbadJl2=E~E~,llfbadll2<~2-S2-4Nllfll2L~(~,). 
2 >-4 2 - s 2  -4N 2 The  probabi l i ty  t ha t  IIfbadllL2(u ) ~ ' IlfllL2(~) cannot  be  more  t h a n  �88 and  

therefore wi th  probabi l i ty  3 we have 

[[fbad[[L2(/z) • 2"2-42-2N[[f[[L2(I~). 

So, if we have two functions f and g, and two r a n d o m  dyadic  lat t ices :D(a;) and  

:D~(a/), then  with probabi l i ty  a t  least 1 we have s imul taneous ly  

Ilfb~dllL=(~) ~< 2-32-2NllfllL~(~,), Ilgb~dllL~(.) ~<2-32-2NIIgIIL=(.). 

9.4. Pull ing yourself  up by the hair: proof  of  Theorem 9.1 under the a priori 

assumption that T is bounded 

Let us now prove T h e o r e m  9.1 under  the a s sumpt ion  t ha t  we know a priori t ha t  T is 

bounded.  Let  us pick functions f, gEL2(#), I I f [ ]=l lg l l= l ,  such t ha t  I (Tf ,  g)l~> 1 ~r[Tll. 
Since compac t ly  suppor ted  funct ions are dense in L2(#) ,  we can always assume t h a t  

bo th  functions are suppor ted  by some cube of size 2 n. 

Pick dyadic  lat t ices :D, 7Y such tha t  

2 - 3 2  -2N  f 2 [[fbad[[L2(~) ~ L (~) and [[gbad[[L2(tt) ~ 2-32-2N]]g[[L2(tt) .  

We can always pick such a lat t ice because,  as we have shown above,  a r a n d o m  pair  of 

lat t ices fits wi th  probabi l i ty  at  least 1 2" 
First,  let us recall t ha t  by L e m m a  8.1 we have the es t ima te  

](Tf~oo,l, ggo,,d)] < CIIA,,odllL~(,.)llgg.,,dllL~(.)" 
We can write 

I(Tf, g)l <~ J(Tfgood,g)l+l(Tfb~d,g}l ~ I(Tf~ooa,g~,,od)l+I(Tfgood,gb~,d)l+l(Tfb~d,g)l. 

We have 

[(Tfgood, ggood)] ~< CIIfgoodllL~(~,)llggoodllL~(,.) <~ CIIflIL~(.)IIglIL=(~,) <~ C, 
I (Zfgood, gbad)l ~< 2-32 -2N IITII, 

[(Tfb~,d,g>l <~ 2-32--2N HTII , 

because Ilfb~dllL=(~)<<.2-32-2N, IlfgoodllL=(~,)<~llfllL=(~)<~l, and the  same  is t rue  for g. 

Therefore,  since I(Tf, g)[~> �89 IITII, and 2 -2N ~< X, 

�89 ~< C+2"2  -3 IITII. 

So IlZll ~<4C and we are done. [] 
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Remark 9.3. As one could see from the proof, to prove the limited version of Theo- 

rem 9.1, it was enough to assume that  

1 / 29A 2 \ 

We will need the term 2 4N below, in the proof of the full version of Theorem 9.1. 

9.5. P u l l i n g  y o u r s e l f  u p  by the hair: proof  of  the full version of  Theorem 9.1 

Now let us discuss what we should do to prove the theorem without the a priori assump- 

tion that  the operator T is bounded. 

The easiest way to do that  is to restrict the operator  T on a subspace where we 

know that  it is bounded. 

For example, let us consider a fixed dyadic grid of cubes of size 2 -n~ and let a set X 

consist of all functions f E L 2(#), H fll ~ 1, constant on the grid and supported by a cube 

of size 2 n. Define 

M(no,n) = sup{ l (TL  g)] :f,g~X} 

( f  and g can be supported by different cubes). 

Clearly, if we show that  M(no, n)<~C (C independent of no, n), then we are done. 

It  looks like everything works fine in this case. The construction of random dyadic 

lattices, for example, even gets simpler. We star t  with the fixed grid of cubes of size 2 ..... 

(base), and we want to construct grids of bigger cubes. There are 2 N possibilities of how 

to position a grid of size 2.2 -n~ and we assign each of them probabili ty 2 -N. For each 

choice of the grid of size 2.2 -n~ there are 2 N possibilities of how to arrange a grid of size 

22.2-n~ assign to each of them probability 2 -N, etc. 

Pick functions f, geX  such that  I(Tf, f)l >1 �89 n), split them into "good" and 

"bad" parts, pick dyadic lattices so that  the norms Ilfb~dll, Ilgbadll are small, and pull 

yourself out. 

There is only one little problem here: fb~d, gbad are not in X anymore: their support  

can become bigger. However, this problem is not hard to take care of. 

Namely, the support  of f b a d  cannot be too big. Let R be a cube of size 2 n, support-  

ing f .  Then (for any dyadic lattice 7:)) R can be covered by at most 2 N dyadic cubes 

QkE:D, l(Qk)=2 n. Therefore fb~d and fgood are supported by the union of the cubes Qk. 
Similarly, gb~d is supported by a union of at most 2 g cubes Q~k, l(Q~) =2n. 
As in the proof of the limited version of Theorem 9.1, we split the functions into 

good and bad parts, and write the estimate 

I(Tf, g)l < [(Tfgood,g)]+l(Tfbad,g)l < I(Tfgood,ggood)[+l(Tfgood,gbad)l+l(Tfbad,g)l. 
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We have 

] {Tfgood, ggood)I ~< CHfgoodIIL2(t,)[IggoodHL~(~) <. eli filL2(,)IIgIIL2(~) <~ c. 

Since fbad is supported by 2 N cubes of size 2 n, we can split it into a sum of 2 N functions 

such that  each function is supported by a cube of size 2 n. Thereibre 

I(Tfbad, g}] ~< 2N2-32-2NM(no, n) <~ } M(no, n), 

because Ilfbad]]n2(,)~2-32 -2N. Similarly, since both fbad and ggood are supported by 2 y 

cubes of size 2 n, 

[ (T.fgood, gbad)l < (2N) 2 2 - 3 2 - 2 N M ( n o ,  n)= ~M(no, n), 

because IlfgoodllL:(,) <~llf[IL2(,) <.l and Ilgb~dlln2(,) <.2-32-2N. Now, since I(Tf, g)l>~ 
1M(no, n), we get 

�89 n) ~< C + 2 .  ~M(uo, n). 

Therefore, M(n0, n) ~<4C. [] 

10. P r o o f  o f  t h e  full  v e r s i o n  o f  t h e  T b - t h e o r e m  

Now we are in a position to prove the Tb-theorem (Theorem 0.4). Again, we first consider 

a special, simpler case of the theorem (see w below), and then treat  the general case. 

10.1. S p e c i a l  c a s e  o f  t h e  T b - t h e o r e m :  w e a k  b o u n d e d n e s s  o n  p a r a l l e l e p i p e d s  

Let us first consider a special case, namely, let us suppose that  we have a stronger 

assumption of weak boundedness: 

I(TxQbl,~(Qb2)I <. C#(Q) for any parallelepiped Q. 

Recall that  we assume that we have some kind of a priori estimate on the norm 

of the operator T (for example, we have a sequence of regularized operators), and we 

would like to get an estimate depending only on quantities in the theorem (independent 

of the parameter of regularization). Let us point out also that  in w we will get rid 

of the assumption of a priori boundedness of T (at least sometimes). But now, in this 

section T is always already bounded (one should think of two-sided truncations of a 

Calderbn-Zygmund operator), and we are proving only the correct estimate of its norm. 
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The case of the weaker a priori boundedness assumption, when T is bounded on 

compactly supported functions (one-sided truncations), is treated in w 

We can pick functions f ,  gEL2(#) ,  [[f[[ = [[g[[ =1,  such that (Tf, g} >! 3 iiT[[. As above 

we can assume that  each function is supported by a cube of size 2 n. As in the previous 

section we can split the functions into "good" and "bad" parts, and write the estimate 

I ( T f  , g)l <<. I(Tfgood, g)l+l(Tfbad,g)[ 
(10.1) 

~< I (Tfgood, ggood}l+l(Tfgood, gbad)I + I(Tfb~d, g) l. 

As we have shown in the previous section (w we can pick dyadic lattices 79 and 79 ~ 

such that  Ilfbad ILL2(.) ~<2-32 -2N, Ilgbad II L=(.) ~<2--32 -2N, and therefore 

1 I (Tfgood, gbad}lWl(Tfbad,  g}l <~ "~ IITII" (10.2) 

Unfortunately, now we cannot estimate I(Tfgood, ggood)l~<C, because in the sum 

E (TA~f,A~g) 
Q E D  

R E D  ~ 

we have infinitely many terms with Q and R of comparable size such that  QfqR~o. 
And we do not have any estimate for such terms! 

10.1.1. Idea of the proof. Recall that  in the weak version of the Tb-theorem (Theo- 

rem 9.1), we did not have any good estimate for terms where the pair Q, R is essentially 

singular. We dumped these terms into "bad" parts of the functions, and we were able to 

"pull ourselves up by the hair". We will t ry  to do the same trick with I(Tfgood,ggood)l 
now. 

Namely, we want to get the estimate 

I (Tfgood, ggood) I <~ C +  �88 IITII . 

Together with (10.1), (10.2) this implies 

Since I(Tf, g}l~> 3 IITII, we get 

and we are done! 

I<Tf, g>l < 1 IITII+C, 

�88 IITII ~< c ,  

To estimate I(Tfgood, ggood}l it is enough to estimate the sum 

E I(TA~f'AbQ g)l 
I ( Q ) , l ( n ) ~ 2  '~ 

(10.3) 

(10.4) 
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over all cubes Q, R of comparable size 

2-~/(Q) < l(R) ~ 2rl(Q), 

where r is the same as in Theorem 9.1. Here A ~ f  should be replaced by E~f  if l(Q)=2 n, 
and similarly for R. Let us recall that  since f is supported by a cube of size 2 n there are 

at most 2 N terms E~f,  l(Q)=2 ~, in the decomposition of f ,  and similarly for g. 

If in the above sum (10.4) we consider only the terms such that  the cubes Q and R are 

separated (dist(Q, R ) ) ~  min(/(Q), l(R)), e>0) ,  then the sum is bounded by a constant 

C=C(E) .  Therefore, we only need to est imate the sum over all cubes Q, R such that  

dist(Q,R)<emin(l(Q),l(R)), and : > 0  can be as small as we want. Of course, the 

estimate of [[TII we finally obtain will increase as ~-+0, but  we are not after the optimal  

estimate, so we can stop at arbi t rary small s. 

To est imate the sum (10.4) over all cubes of comparable size (2-rl(Q)~l(R)~ 
2r/(Q)),  dist(Q, R)<cmin(l(Q),l(R)), it is convenient to write it in a different form. 

Namely, we can rewrite the layer 

a s  

QET) 
/ (Q)=2 k 

A~,f= ~ cQ(f)b,, 
QED 

l(Q)=2 ~- : 

w h e r e  CQ(f]._. are some constants. We can write 

k <~ n, 

k <~ n, 

f= E fk E E CQ ( f )b l '  
k~n k~n QE"D 

t(Q)=2 k 

fn _ ~ ,~ _ E b ~  where tile "top layer" --z..~QEV, t(Q)=2-cQ(f)bl is given by f - k f" 

Let us remind the reader that  by Lemma 4.1, 

A - 1  2 2 2 fffllL2(,~) < E fffk < II:(.) AIIfll:(.), 
k 

where the constant A=A(bl) depends only on the accretive function b:. 

Similarly, 
b2 A b~ g = g = r ,  R c;(g)b2, k < n, 

RE'D' RED' 
l(R)=2 k / (R)=2  k-1 
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~///////////////////7/////~/////////////~ 
v/AT//~/Jf/f//////J/J/Jf//_//J~f/f///f///?~ 

v~/j/j////j/_/f/f//j/j/j/jf//j/j/j//f////j~ 

Fig. 7. The set ~ (the sh~ed one). 

2el(Q) 

t 

and 

g-= E -" E E c;(g)b2 
k~n k~n RED' 

I(R)----2 k 

To estimate the sum (10.4) it is enough to estimate the sum 

~ IcQ(f)cn(g)(TXQ bl, XRb2>[ 
kEZ Q,R 

over all QET) and RED'  such that l(Q), l(R)<~2 '~, 2-nl(Q)<~ I(R)~<2nl(Q), dist(Q, R)<~ 

10 max(/(Q), l(R)). 
Since for each cube Q there are finitely many (at most C(N,r)) cubes RE:D ~ satis- 

fying the above condition, and since for separated cubes Q, R (i.e. for cubes such that  

dist(Q, R)/> e min(/(Q), l(R)) we have the estimate I(TXQbl, xnb2>I<.Cp(Q)I/2#(R) 1/2, 
it is enough to consider the pairs Q, R satisfying dist(Q, R ) < e  min(/(Q), l(R)). 

10.1.2. "Cutting out" the "bad" part fk. For a cube Q let 5Q:=(I+2e)Q\(1-2e)Q, 
see Figure 7. For a fixed point x E R  n and fixed k, let p~ be the probability that  xE5 n 
for some cube R E 7?' (w'), 2k- ~ ~ l (R) ~ 2k +r, where D ' (ca') is the random dyadic lattice 

constructed above in w Note that  Pe does not depend on k, and that  pc-+0 as e-+0. 

Of course, if we consider the random dyadic lat t ice/)(w),  we get the same probability p~. 

Note that  one can compute the probability p~, but  we only need the fact that  it can be 

arbitrarily small. 
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For a cube QE79 let Qb be its "bad" part, 

Qb =QA( U ( in )"  
RED' 

2- ki(Q)<~l(n)~<2kt(p) 

For a function fEL2(#) define the "bad" parts f~ of fk as 

fk:= E cQ(f)XQbbl; 
QED 

/(Q)=2 ~ 

here we use the subscript "b" instead of "bad" to avoid confusion with fbad" 
Let us estimate the mathematical expectation E~,(~--~ k k 2 IIf~ IIL~(~)) over all random 

lattices D'(w') (the lattice D=D(w)  is fixed). First of all notice that  for a fixed x E R  n, 

E,~, l fbk(X)l  2 ~< p~lfk(x)l 2, 

where p~ is the probability that  a point x belongs to (i n for some cube RET)'(w') of fixed 

size 2 k, see above. Therefore, changing the order of integration we get 

pe E k 2 = I l l  IIL~c.)<P~A(bl)IIIII~:(,.), 
k~<~ 

where A(bl) is the equivalence constant from Lemma 4.1. 

Since the above inequality holds for any dyadic grid D=/ ) (w) ,  we get for the mathe- 

matical expectation E=E~,~ , ,  

(~_, k 2 ) <p~A(bl)llfll~2(,,)=p~A(bl). E II1/, ILL:(,,) 

Similarly, for the "bad" parts gt~ of the functions gk, 

k 

RED' QED 
I(R)=2 k /(Q)=2 k 

6QnR:~g 

we get 

k~n 
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Q 

Rsep 

~JJJJJJJJJJJJJJJS~ 
Q~ep 

R 

Fig. 8. Cutting out the bad part. The sets Q~) and R;/ are the shaded parts of the squares Q 

and R respectively. 

So, for A=max(A(bl), A(b2)) we can est imate the probability 

Hf~)HL2(,,)~8Ape <~-~, 
k<~ n 

1 1 1 1 1 and similarly for g. So, with probability at least 1 4 4 s ~ - 4  we get 

2 2 2 - 3 2 - 2 N  Ilfba'illL~(i,) <~ 2 - a 2 - 2 N ,  IlgbadllL2(tt) <~ 

and 

(10.5) 

E k 2 IIf~'lli~(~) <~ 8Ap~' E Ilgkll2i2(~) <~ 8Ap~" (10.6) 
k<~n k<~n 

10.1.3. Estimates of I(TxQbl, XRb2)I. Take two dyadic lattices D and :D' such that  

1 random lattices would fit). all the above inequalities hold (with probabili ty at least  

Consider two squares 

Q~D, R~7?', 2-kl(Q)<<.l(R)<.2kl(Q), dist(Q,R)<~min(l(Q),l(R)), 

see Figure 8. We would like to est imate 

I(TxQb~, ~.b2>r. 
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Consider first the case when the cubes Q and R are in general position, as in Figure 8: 

the estimate for cases when QNR=o or one of the cubes contains the other can be done 

similarly. 

Let A:=QNR, Q~ep=Q\A\SR (the square Q without A and without the shaded 

part  in Figure 8), "sep" means separated (from R and from A). Let also Qo=Q\A\Q~ep 
(the shaded part  of Q in Figure 8). The symbol 0 here means boundary, i.e., this set 

touches R and A. Note that  QocQfq(f n. 
Similarly, let us split R as R=R~epORoOA, where all sets are disjoint. Then 

(TXQbl, XRb2 ) = (TXQbl, XRsepb2> "]- (TXQbl, xRob2) + (TXQbl, xAb2>. 

The first two terms are easy to estimate: since Q and R~ep are separated, 

I<TXQ bl, XRsepb2> [ ~< C#(Q)1/2#(nsep)l/2 ~ C/.z(Q)I/21z(R ) !/2 

(the constant C here of course depends on ~). The second term can be est imated as 

]<TXQbI, xRob2>l <~ IITII" II XQblll 5~(~,)IIXRbb2 II/~(j~), 

because Ro C Rb. 
To estimate the last term, let us write it as 

(TXQbl , XAb2> = (TX Abl , XAb2> + (TXQ~ bl , x ~b2> + <TXQs,,pbl , XAb2>. 

The first term is bounded by Cp(Q)I/2p(R)I/2 by the assumption of the theorem. The 

other two can be estimated as above (the measure of Qo is small, and Q,~,,p and A are 

separated),  so summarizing all we get 

]<TXQb,, XRb2>[ <~ C#(Q)I/2 #( R) 1/2 

+ IITII (11XQb~ II L=0.)II X.bb211L20.)+ II XQbb' II L~(,.)II X.b2 II L=(.))' 

10.1.4. Final estimates. We know that  

b 2 k 2 IcQ(f)l 2 IIXQb IlIL~(,,) : ~ IIf~ IIL~(,./~< 8Ap~, 

Ic~(g)l 2 b 2 ~< 8Ape, IIxRu 211L~(.)=Y~ IIg~ll~(.) 

and that  

IcQ(f)12~(Q) < CIIfll2L20~) = C, 

2 Ic~(g)12~(R) ~< CIIglIL2(~) = C. 



THE Tb-THEOREM ON NON-HOMOGENEOUS SPACES 219 

Since for a cube QET) there are at most M(N,r) cubes RED',  2-rl(Q)~l(R)~ 
2r/(Q) satisfying dist(Q, R) ~ min(/(Q),l(R)),  we get, using the Cauchy-Schwarz in- 

equality, 

IcQ(f)c~(g)i'i(TXQ bl, xRb2)[ 

~C]]f]l ]]gH-t-M(N,r)[[T[[(( E \1/2 (k~<~n ,1 /2 ,  IIf l?)  11.11+4-211f11 I1. 17) ) 
~< Cllf[[" Hg[[ + M ( N ,  r)d.4v/2p~ IITII - [If[[. [[g[[ = C+M(N, r)A. 4 X / ~  lIT[I, 

where the sum is taken over all QET), RE/ ) '  such that  l(Q), l(R)<2 n, 2-rl(Q)<l(R)< 
2~/(Q), dist(Q, R) <e  min(/(Q), l(R)). 

As we said above, this is enough to get the estimate 

[(Tfgood, ggood}[ < C+4Av/~M(N, r)[[TI[ (10.7) 

(of course, C here depends on r Taking r sufficiently small so that  4Av/~M(N, r)< �88 
we get 

I (Tfgoo,:l, ggoo<d I ~< C +  �88 IITll, 
and we are done. [] 

10.2. The  T b - t h e o r e m  under  the  a pr ior i  a s s u m p t i o n  that  T is b o u n d e d  

Now we are going to prove the full version of the Tb-theorem (Theorem 0.4), assuming 

that the operator T is bounded. The case when the operator is only well defined for 

compactly supported functions is treated later in w 

We are going to prove the theorem under the definition that  weak boundedness means 

that  for some A > I  the inequality [(TXQbl, XQb2)i~C#(AQ) holds for all cubes Q. 

To do this we need to modify a little the estimate of[(TXQbl, xRb: ) [, where Q and R 

are intersecting cubes of comparable size. 

The construction goes as above. Let us recall that we have picked f,g in L2(#), 

IifiiL2(#) =[[giiL2(~L)= 1, such that  [(Tf, g) I >1 3 [iT[I, and we now want to estimate [(Tf, g)[. 

First we pick r in the definition of essentially singular pairs such that  with large 

probability the norms Ilfb~d[[L20,), [[gb~dllL2(u) are small, which implies the estimate 

1 I(Tfgood, gbad)l+l(Tfbad, g) l <~ x iITIi 

for any dyadic lattice where the norms are small, cf. (10.2). Also, with large probability 

(at least �88 not only the norms of "bad parts" of f and g are small, but also the sums 

Ek IIf~IIL~(.) and Ek IIg~llL=(.1 are small, see (10.5), (10.6). 
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Q 

jt~se p 

R 

Fig. 9. C u t t i n g  ou t  the  bad  part .  Qo is the  shaded  part .  

Take a sufficiently small v such that  4Av /~M(N,  r ) <  �88 Here, as above, M(N, r) is 

the upper bound on the number of cubes RET) ~, of comparable size with a given cube Q 

(2-"l(Q)<~l(R)<~2"l(Q)), and such that  dist(Q, R)<~cmin(l(Q),l(R)). 

So, now we have ~ fixed, as well as two dyadic lattices T) and/)1 such that  inequalities 

(10.5), (10.6) hold. 

10.2.1. Cutting out more of the bad stuff. Fix now two intersecting cubes R and Q 

of comparable size ((2-"l(Q)<~l(R)~2"l(Q))). Fix the size 

s = (10A)- le  min( / (Q) , / (R)) ,  

and "drop" on the set A:=QnR a random grid G of cubes of size s. We want this 

random grid to be uniformly distributed over R N, for example we can take a fixed grid 

and consider all its shifts by ~(w), where ~ is a random vector uniformly distr ibuted over 

the cube [0, 8) N. 

For ~ '>  0 let G~, be an els-neighborhood of the boundaries of the cubes in the grid G. 

Then for a fixed point x E R  N the probabili ty that  xEG~, is ~(e~), where ~ ( ~ ) - + 0  as 

c1-+0. (Again, here one can write a formula for ~(EI), but we only need the fact that  
~(~1)-~0.) 
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A ...... 

A ~ L~n 

A R . . . . . . .  

AQ 

Fig. 10. The intersection A:=QNR and the grid Ge, (grid of small squares). /XQ and AR 

are rectangles bounded by thick lines, A is the rectangle bounded by a thinner line. Notice 

that  the boundary of the intersection /kQCIA R goes along the grid Ge,. 

Clearly, the expectation E(p(G~,NA)=~(Et)p(A), so with positive probabili ty 

#(C~,NA)~<~(c ' )#(A) .  So, for a given e' (and A) one can always find at least one 

grid G such that  the above inequality holds. 

10.2.2. Estimates of I(TXQbl,xRb2)[. To est imate I(TXQbl, XRb2}] l e t  u s  split the 

cubes Q and R into three parts. As above, define Q.~ep by Q.~ep:=Q\A\~R, where we 

recall that  ~Q := (1 + 2 e ) Q \ ( 1  - 2e)Q, see Figure 7. 

The main difference with the previous case is in the definition of Qo. We want it now 

to be almost 5nNQ, see Figure 9. By "almost" we mean the following. We want that  the 

boundary hyperplanes of Qo that  lie inside A do not cut the cubes of the grid G, but go 

along the boundaries of the grid, see Figure 10. One can always pick hyperplanes such 

that  the distance to the corresponding (parallel) side of R is between �89 and el(R). 
It is possible because we assumed that  the size s of the cubes of the grid G is at most 

( 1 0h ) - l e / (R ) .  

So, that  is how we define Qo, and let us call the rest AQ, AQ:=Q\Q~ep\Qo,  see 

Figure 9. Note also that  Qo CQb. 
Let us now est imate 

(TXQbl, xnb2) = (TXQbl, XRsepb21 + (TXQbl, xnob2) + (TxQbl, Xzxnb2). 

The first two terms are easy to estimate: since Q and Rsep are separated, 

I(TXQbl, Xnsepb2)l < CI-t(Q)l/2IZ(Rsep) 1/2 • Cl~(Q)l/21z(R) 1/2 
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(the constant C here of course depends on ~). The second term can be estimated as 

](TXQbl, xaob2)[ <~ [[T[[.[[xQbl [[L2(~)[[XRbb2[[L2(~ ), 

because Ro C Rb. 
To estimate the last term, let us write it as 

(TXQ bl ,  X A Rb2 > = (T XAcjbl , X A Rb2 > + (Txc2obl , XA Rb2 > -}- ( r  xQ, sepbl , X A Rb2 > . 

Clearly we have the estimates 

[ (TxQobl , X A RD2) [ <~ ]IT]] . H XQbbl H L2(u) [[ X RD2 [[L~(,) 

and 

](TXQsepbl, XARb2)I <~ C#(Q) I /2# (R)  1/2 

since Qsep and An  are separated. 

Now we only need to estimate the first term. Let us denote A~:=Ac2NG~,, /~Q:= 

AQ\Ge,, and similarly for An. Then 

(TxAQbl, XARb2 ) = (TxA,Qbl, XARb2 > + (TxAQbl, XA,Rb2 > + (TxAQbl, x•Rb2). (10.8) 

The first two terms are easy to estimate: 

[(TxA~bx, X/,Rb2>] <~ ]]TII'[lxa~b, HL~(.)llx~Rb2[[L~(. ) 

<~ [IrH.llb, ll~llb2llo~.~( A'o,)'/2#(An) 1/2 
~< IlTl['llbl I[~ [[bal[o~" ~ ' # ( A Q ) x / 2 # ( / X n ) I / 2  

[[TI]" Ilbl Hoe lib211~" x ~  "P(Q)'/2#(R) 1/2, 

and similarly 

[<TxAQbl, XAhb~) [ ~< [[Zl[. [[bl [Ioo [[b211o~ V/~0(e ') #(Q)1/2#(R)1/2 

The last term (Txz, c2bl , xhgb2) is bounded by 

C.(A) <~ C.(Q)~/2~(R)~/2, 

where the constant C depends on the parameters in the theorem, as well as on e, r, e ~. 

Indeed, the set /~QU/~Q consists of finitely many disjoint parallelepipeds Sk (most of 
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which are cubes). Moreover, the set /~Q is just a union of some of these parallelepipeds, 

and similarly for /~R. 

Since any two disjoint parallelepipeds $1 and $2 are separated, and bl,b2EL ~, we 

have 
[(Txslbl, xs2b2)[ <~ C].t(S1)I/2p(S2)I/2 ~ C#(Q)I/2#(R) 1/2. 

If a parallelepiped S belongs to both /~Q and ~R, then it must be a cube, see 

Figure 10. Then by the assumption of weak boundedness, 

[(TXsbl, xsb2) ] <~ C#(AS) ~< C#(A) ~< C#(Q)I/2#(R) 1/2. 

Since the number of the parallelepipeds Sk is bounded above by a constant depending 

only on r, r A, r then taking the sum over all the parallelepipeds we get the desired 

estimate. 

Summarizing all, we get 

I(TXQbl, XRD2)I <~ CI#(Q)I/2#(R) 1/2 

+ IIT[[ ([[XQ b] HL2(•)l[ Xnbb2 [[L2(.)+ I[)(.Qbbl ILL2(,)I]XRbZIIL2(.)) 
+ C2 IITII ~ ~(Q)1/2#(R) 1/2. 

Here only the last term is new in comparison with the estimate (10.7) from w 

10.2.3. Final estimates. Acting as in the previous section (i.e., taking the sum over 

all Q, R, see above), we can get the estimate 

[(Tfgood, ggood) [ < C+ 4Ax/~ M(N, r)[[T[[ + C' [[T[I - ~ ; 

here again, only the last term is new. 

Let us remind the reader that  c was chosen to be small enough such that  the second 

term is bounded by �88 IITII. 

Let us also remind the reader that  

3 [[TI[ ~< I(Tf, g)[ ~< �88 

So, if we pick e p to be sufficiently small such that  C ~ < ~  1, we get 

}IITH ~< C+I I ITI  I+�88 N+}HTI[ ' 

and therefore [[T[[ ~<8C. 

We are done! [] 
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10.3.  T h e  full T b - t h e o r e m  

Now let us discuss the proof of the full version of the Tb-theorem. We need to relax 

the assumption that  T is bounded, i.e., to replace it by the weaker assumption that  for 

compactly supported functions f ,  g, 

I(Tf, g}l <~ C(A)[[fI[L2(~)Ilglli2(t,), 

where 

A = max{diam(supp f ) ,  diam(supp g) }. 

The definition of weak boundedness remains the same as in w 

To prove the theorem under the above assumptions, we combine ideas from w167 9.5 

and 10.2. 

Namely, let us introduce a set X consisting of all functions fEL2(p), Ilfll ~< 1, sup- 

ported by a cube of size 2 n (each function can be supported by its own cube, so X is not 

a linear space). Define 

M(n) =sup{](Tf, g}[: f,g eX} 

(f ,  g can be supported by different cubes). 

Clearly, if we show that  .M(n)<~C (C independent of n), then we are done. 

Pick functions f, gEX such that [(Tf, g)l>~3.M(n). Acting as in w split the 

functions f and g into "good" and "bad" parts, then get the estimates 

I(Tfb~d,g}l <~ 2N2-32-2NM(n) <. ~M(n) 

and 

[(Tfgood,gbad}[ • (2N)22-32-2NA4(n) = gM1 (n). 

Then, acting as in w we get the estimate 

I(Tfgood,ggood}l <~ C+4AvI~ M(N,r )M(n)+C'J~(n) ' x /~ .  

Note that  the crucial part of the above estimate is the estimate of I(TXQbl, xRb21 I. 
Since by the construction both XQ and XR are supported by cubes of size 2 n, one does 

not need to change anything in the reasoning, except replacing IITII by A~(n). 

We leave the rest and all details to the reader as an easy exercise. One does not 

need even to change constants. 
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10.4 .  R e m a r k s  a b o u t  o t h e r  w e a k  b o u n d e d n e s s  c o n d i t i o n s  

All the results of the above w167 10.2 and 10.3 remain true if we consider a different weak 

boundedness condition, 

I(TblX~Q, b2XQ)I ~ C#(AQ) 

for some A ~> A > 1. This kind of weak boundedness appears when we regularize (consider 

truncations of) Calder6n-Zygmund operators,  defined initially on Lipschitz or smooth 

functions, see w below. 

Clearly, if the above condition holds for some A>I ,  it holds for all AE(1, A), so we 

can assume tha t  A is as close to 1 as we want. 

The only modification one has to do to the proof concerns w One just  has to 

cut off different neighborhoods of the grid G (see w from the cubes Q and R. For 

example, cut G~, off R, but cut only G~,/2 off Q. 

More precisely, in doing estimate (10.8) one has to define A~, /~R exactly as they 
! . were defined, but put AQ.=AQNG~,/2 and AQ:=Ac2\G~,/2. 

The rest of the proof remains the same. 

11. R e d u c t i o n  t o  t h e  c a s e  o f  a pr ior i  b o u n d s  

In this section we are going to consider the case when the bilinear form is defined for 

smooth functions or for Lipschitz functions, as in w167 0.3.2 and 0.3.1 respectively. 

We are going to reduce these cases to the case when we have a priori bounds on T. 

Namely, first we are going to show that  if TblEBMO~(#) for some p, l<~p<c~ (in 

particular, if TblEBMO~(p)), and the operator  T is weakly bounded, then Tb lERBMO,  

and therefore Tbl E BMO 2 (p). 

Then we show that  under the same assumptions the condition Tb lEBMO~(#)  im- 

plies T~blEBMO2(#)  (for some A>)~) for all t runcated operators T~ with uniform esti- 

mates on BMO-norms, and that  the truncated operators Mb2T~Mbl are weakly bounded 

(with uniform estimates on constants). 

11.1 .  T h e  b i l i n e a r  f o r m  is d e f i n e d  o n  s m o o t h  f u n c t i o n s  

We assume that  the bilinear form (Tblf, b2g) of the operator Mh2TMbl is well defined 

for all smooth (say, C ~ )  compactly supported f and g. 

We consider the following version of the weak boundedness assumption. Fix a C a -  

function a on [0, c~) such that  0~<a~<l, a - 1  on [0, a] ( 0 < a < l )  and a - 0  on [1, c~), see 
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Figure 2. The parameter a is not essential here, but we will already have too many 

parameters in what follows, so let us fix some a, say a--0.9. 

For a ball B=B(xo,  r), let aB(x):=a(IX--Xol/r ). Clearly, a B is supported by the 

ball B and is identically 1 on the ball 0.9B. We will require that  for any ball B, 

I(TaBbl , a2Bb2)l <~ C#(3B),  I(Ta2Bbl , aBb2)l • C#(3B).  (11.1) 

The parameters 3 and 2 are not essential here, and can be replaced by any numbers /3> 

a> 1/a> 1. In the classical theory an even stronger version of this condition is assumed, 

see [1, p. 49]. We should also mention that  for antisymmetric kernels (when the operator 

is treated as the canonical value) and bl=b2=b, this condition holds, see Corollary 11.4 

below. 

Let us recall that  a function b is called sectorial if bcL a and there exists a constant 

~EC, I~1=1, such that  Re~b~>(~>0. 

THEOREM 11.1. Let the bilinear form (Tbl f, b2g) be defined for smooth (C a)  com- 

pactly supported functions, and let Tr be truncated operators. Suppose also that for a 

function blEL a and a sectorial function b2, the estimate (11.1) holds for any ball B. 

Then the condition TblEBMOPA(p) (for some p, l~<p<oe) implies that TblE 

RBMO(#) (and therefore, TbleBMO2A (#) ). 

THEOREM 11.2. Let T be a Calderdn Zygmund operator (with bilinear form 

(Tblf, b2g) defined for smooth (C a)  compactly supported functions), and let Tr be trun- 

cated operators. Suppose also that for a function blEL a and a sectorial function b2, the 

estimate (11.1) holds for any ball B. Then the condition TblEBMO'2A(#) implies that 

T,.baeBM02 (#), 

uniformly in r, where A--14A. 

Moreover, 

I(Tbl XAQ, 52XQ)I <~ C#(AQ) 

for all cubes Q. 

As we said above, the estimate (11.1) holds for antisymmetric Calderdn-Zygmund 

operators. Namely, let K be an antisymmetric Calder6n-Zygmund kernel (K(x ,y)= 

- K ( y ,  x)). Let T be the corresponding operator defined in the sense of canonical value, 

i.e., 

1 ffg(x, b(x)b(,) dp(x) dp(y) (Tb f , bg) = -~ 

for Lipschitz compactly supported f and g. 
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LEMMA 11.3. Let ~1,~2 be Lipschitz functions, 1~l,2(x)-~l,2(y)l<.L.Ix-yl, sup- 
ported by bounded sets D1, D2, respectively, and such that 11~1,211~ <<- 1. Then for bE L ~, 

I(Tb~l, b~2)l < CL. Ilbll 2.  diam(D1).#(02) .  

Proof. Notice that 

<<. 2LIx-y  I. 

By property (i) of Calder6n-Zygmund kernels we have for the function 

F(x, y) = K(x, y). [~1 (y)~2 ( x ) - ~ 1  (x)~2 (Y)]" b(x)b(y) 

the est~imate IF(x,y)I<. CL. Ilbll 2.  Ix-yl -d+l. One can estimate 

IF(x,y),d,(x)d,(,)+ f f  ~ IF(x,y)ldp(x)d#(y). 
1xD2 2xD1  

The Comparison Lemma (Lemma 2.1) implies 

D IF( x, Y)I d#(x) <<. C'L. I]b]]L diam(D1). 

Integrating once more over D2 with respect to d#(y) we get 

/ 0  IF( x, Y)I dp(x) dp(y) <~ C'L diam(D1)p(D2). 
I x D 2  

The second integral can be estimated similarly, one only has to change the order of 

integration. [] 

COROLLARY 11.4. For the antisymmetric operator T defined above as canonical 
value the inequality 

I(TbaB~,baB2}l<~ Clz(B2) (ben ~ 

holds for concentric balls B1C B2 of comparable diameter, diam(B2) ~<2 diam(B1). 

Proof. Let r be the radius of the ball B1. The functions aB,.2 are Lipschitz functions 

with norms at most C/r, i.e., 

Icrl(x)-~ < CIx-YI'r la2(x)-a2(Y)l <~ CIx-Y['  

and the result follows trivially from Lemma 11.3. [] 

The next lemma holds for an arbitrary integral operator (whose bilinear form 

(Tf, g) is defined on smooth functions with compact supports) with kernel K satisfy- 

ing IK(x,y)l<~CIx-y[-d. We are going to apply it later to the operator (Mb2TMb,)* 
where T is a Calder6n-Zygmund operator. 
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LEMMA 11.5. Suppose that the operator T satisfies 

I(TaB,a2B}[ <. C#(3B) 

for any B. 
Then for any two concentric balls B1cB2 of radii r and R respectively, R / r )2 ,  

I(TcrBl ,aB~)l <~ C. (p(3B1)+#(B1) log R ) .  (11.2) 

Remark 11.6. Clearly, in the conclusion of the lemma one can replace aB2 by ) @ :  

the result will be the same. 

Remark 11.7. In what follows, the exact expression C. (1 + l o g ( R / r ) )  for the multi- 

plier at #(3B1) in the estimate is not essential. Wha t  is essential is tha t  this expression 

depends only on the ratio R/r (which will be large but fixed in what follows), but does 

not depend on the ratio #(B2)/#(B1), which can be arbi t rary large, because the measure 

# is not doubling. 

Proof of Lemma 11.5. First, we can assume that  R > l . 2 r ,  because otherwise the 

conclusion is trivial. 

Let xo be the center of the balls Bi ,  B2. Denote ~1,2:=crui.2, and let ~a:=a2B1, 

r  1 -- ~v. Then 

(Tal, a2) = (Tal, ~} + (Tal , r 

because ~a2 = ~a. 

By the assumption, we have 

I (Tal ,  :)l ~< C#(3B1). 

Tile second term is also easy to estimate. Due to the est imate oll the kernel K,  

C#(B1) C#(Bl) 
I[T~l](x)l  

dist(x, B1) d (IX-Xol-r) d' 

where xo is the center of the balls B1, B2. Since r  for Ix-xol < 1.8r, we can write 

i(Tal, ~a~) I <~ / Cp(B1) 
~.~,..<, . . . . .  ,<R ( I x - x o l - r )  d 

C#(B1 ) 13 4 R 
~< 

1.8~<~1 . . . . .  I<n IX-Xol d ~<C~(B1)log-- .r  

Adding the estimates, we get the desired conclusion. [] 

Let us remind the reader that  in the following lemma BMO means the "ball" BMO, 

i.e., all averages are taken over balls, not over the cubes. 

Let us also remind the reader that  a function f is called sectoriat if f E  L ~ and there 

exists ~ e C ,  I~1=1, such that  Re~f>~5>0.  
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LEMMA 11.8. Let T be a Calderdn-Zygmund operator, let blEL ~, and let b2 be a 
sectorial function. Suppose also that 

[(Tbla2B , b2aB) I <~ C#(3B) 

for any concentric balls BcBq  
l~<p<oc. 

Then for a ball B, 

where B=2AB. 

Suppose also that TblEBMOP~(#), A>~2, for some p, 

s lTb~crt3l v d# <<. Cry(B), 

Proof. The idea of the proof is quite simple. First of all notice that  the assumption 

A)2  is not a restriction. The condition TblEBMO[(#)  implies that  Tbl restricted to 

the ball B belongs "up to an additive constant" to LP(#IB), and the weak boundedness 

(11.1) will imply that  the constant is not too big. 

Let g be a smooth function supported by the ball B, I[~[[Lq(t~)--1, 1/p+l/q=l. We 

want to estimate I(Tblx~, b2g}[. 

Pick a constant c such that  

C f2Ba2Bb2 dp = /Bb2g d#, 

i.e., such that f (b2g-cb2a2B ) d#=O. 
Since b2 is sectorial, I f2B a2B b2 d#[>~ 5#(B), and we have 

[c I • 5-1#(B)-I/B [b2g[ d# ~< 5-1/z(B) -1 [[b2[[o~ [[g[lLq(,,)#(B) l /v=  5-11152 [[oo'Iz(B) -1/q" 

Since [a2B [ ~< 1 and b2 is sectorial, 

f la2BIqd#<, f la2BId#<.5-x /a2Bb2d#. 

On the other hand, we know that 

Icl. o2.b2d. = ] f.b2gd. IIb ll llgll.(.).(ml/P= ILb2II .(B) 

Combining this with the above estimate for Ic[ we get 

Icl q [ [dr2BI q d/t <<. [clq-l[c[.5 -1 f o'2Bb2dlz <~ c1/qlz( e)-(q-t)/q lz( B)l/P : C 1/q , 
J J 
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i.e., Ile~2Bb21lLq(. ) ~ C. 
Therefore for qo=g--Ca2B we have [[yg[[/q(.)~<C+1 and f~b2 d#=0.  
Then 

(Tbl , qob2) = (T(1 -ate)b1, ~pb2) + (Tbl at3, b2cp). 

Since the supports of ~ and 1-(r  B are separated, using Lemma 2.2 (for balls instead 

of cubes) and the Comparison Lemma (Lemma 2.1) we can estimate the first term as 

liT(1--aB)bl, b2~)[ ~< CII~IIL'(.) ~< C~(B)I/PlI~IILq(.)=C#(B) 1/p. 

We know that  TblEBMO[(#) ,  and therefore 

[(Tbl, b2w) l ~< C#(2AB) 1/plI~IILq(.) 

(~ is supported by 2B). It follows that  

[(Tbla B, b2~)l ~< C#(2AB) 1/p II~IIL~(.)' 

Lemma 11.5 implies that  I(TbloB, b2O'B)l<~ C#(3B) <~C#(B), so 

I(Tb~at3, cb2a,)l <~ C'#(B)#(B) -a/q <~ C'~(13)i/v. 

Thus 

I(Tbla~, b2g)[ ~< C#(B) 1/p. 

We are done. [] 

Proof of Theorem 11.1. This proof follows the lines of the proof of Theorem 2.4 with 

the only modification that  one has to use Lemma 11.8 instead of Lemma 2.5. We leave 

the details to the reader. [] 

Proof of Theorem 11.2. Fix some ball B. First of all notice that  we need to prove 

the conclusion of the theorem only for small r, say for r<0.1 diam(B). 

Indeed, let r~>0.1 diam(B). Then 

and so 

ITrbxX2s(X)l ~ ~d #(2B) <~ C', 

BITrblX2B [2 d# <. C#(B). 

On the other hand, for ~ supported by the ball B and satisfying f~d#=O we have (cf. 

Lemmas 2.2 and 2.1) 

[(Tr (1--X2B), ~)1 ~< CII~IILI(.) <~ Cp(B) W2 IlfllL=(.) (11.3) 
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(this inequality holds for all r), so for r~>0.1 diam(B) we even have inclusion in BMO2(p). 

So, let us suppose that  r<0 .1d iam(B) .  Define B0:=7B,  and let B:=2ABo=AB. 
We want to show that  

BITrblaBI2 <~ (11.4) d# C#(B). 

This would imply T~blEBMO~(#), because as we already know, for any T supported by 

the ball B and satisfying f~d~=O, we have (cf. (11.3)) 

I(T~(1-XB), ~>1 ~< CII~IIL,(,)<. C#(B)I/211~IIL2(,). 

The condition (11.4) also implies the weak boundedness condition 

I(TblXAB, b2XB}I ~ Cp(AB),  

so if we prove (11.4), we are done. 

To prove the inequality (11.4) we are going to apply a modification of what we called 

"the Guy David trick" in [22, w 

Let xEB and r<0 .1d iam(B)  be fixed. Consider a sequence of balls BJ=B(x, rj), 
rj=2Jr. Let #j:=#(BJ). Let n be the smallest number such that  either #n~2 .3d#n_ l  

or BcB n. 
Let R=rn_l=3n-lr. Let us estimate the difference 

I[Trblas](x)-[TanblaBl(x)] <. s y)bl(y)aB(y)l dp(y) 

n n 

<-CE/B IK(x,y)Id#(Y)=EZj. 
j = l  k \ B k - I  j = l  

Let us recall now that [K(x, y)[~< A Ix- Yl a, and therefore 

A #j #J Zj <~ =7---= A-7--, j= l,...,n. 
r j _  1 i j _  1 

By construction, #j ~ [2"3d]J+l-n#n_ 1 for j =0, ,.., n-- 1, and therefore 

n--1 n--1 n--1 

E Z J < ~ A E  ~#J <<.A.2.3ay'~2,-k4A.2.3a. 
j = l  j = l  rJ - 1  j = l  

The last term can be estimated as Zn<.Apn/rd_I <.C, and therefore 

I[TrblaBl(x)--[T3RblaBl(X)l <~ C. 
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Now we want to estimate ][T3RblaB](x)[. If we stopped because BCB ~, then 3R~> 

!diam(B) , 2  and in this case we know that [[T3ablaB](x)[<~C. Therefore we now can 

assume that #~ ~ 2.3dpn-I, i.e., we are now in the doubling situation! 
Let cr:=aB(x,j.2a), so a--1 on Bn-I=B(x,R). 
Denote A:= f b2a d#, and let us compare [T3RblaB] (x) to the average 

: =  VR(x) := A-l f bl<Tbl ,; dr. (11.s) V(x) 

Since b2 is sectorial, A>~Sp(B(x, R)), and therefore 

1 
/B [bla[TblaB][ dr [VR(x)l <~ 5.#(B(x,R)) (~,L2R) 

#(B(x,3R)) 
<~ cS.#( B(x, R)"[[b2[[~ " TblaB] 

cS-12" 3d ]]b2]]oo" ~/I [XBo" Tblo13[, 

where M is the maximal operator, 

~/lf(x) := sup #(B(x, 2.5r)) -1 . f  ]f(Y)l dlz(y) 
r>o YB(x,r) 

(in the last inequality we replaced XB(,,12R) by XB,, because B(x, 1.2R)CB0). 

We know that  the opera to r /~  is bounded on L2(#), see Lemma 3.1 in [22]. 
We have 

[TanblO',](z)-V,c(x ) = ~ b,a~[T*~Sa:] dr(y ) 
l~\B(x,?,R) 

- A- 1/ab2. [Tbl. (1 - XB(~,3R) ) aB] dr 

- A - 1 /  ab2 �9 [Tbl. XB(~:,3R) at~] d# 

= f biaB.[T*(Sx-A-lo'b2)]d# 
Jt~\B(x,3R) 

�9 [Tbl XB(x,aR )] dr.  

We know that  fS~-A-lab2 d#=O, and therefore the first term is bounded by 

CIAI -~ Ilab2llL~(~,) ~ C'. 
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The second term also can be estimated using Lemma 11.5 (see Remark 11.6) by 

A-1C.#(B(x ,  1.22R)) ~ A-1C.p(B(x ,  3R)) 

<~ A-~C.2.3d.#(B(x,  R)) <. 5-1C.2.3 ~. 

Summarizing everything we get for x E B  the estimate 

I[T blOB](x)I C +C2 lX.o.Tb o-BI. 
By Lemma 11.8 for p--2, 

II Bo.Tblo-BIl  (.) < 

Since the operator 2~ is bounded on L2(#), 

; I[rrbl (x)12 d#(x) ~ C#(B), O'B ] 

and we are done! [] 

The modified maximal function operator ff/I is bounded on LP(#) for LEMMA 1 1 . 9 .  

each pe(1,+c~]  and acts from LI(#)  to LI '~(#) .  

Proof. The boundedness on L ~ ( # )  is obvious. To prove the weak type (1, 1) esti- 

mate, we will use the celebrated 

VITALI COVERING THEOREM. Let 2r be a separable measure space with measure. 

Fix some R>0.  Let EC2d be any set and let {B(x, rx)}x~E be a family of balls of 
radii 0 < r x < R .  Then there exists a countable subfamily {B(xj,rj)}~=l (where x j E E  

and rj := rxj) of disjoint balls such that E C Uj B(xj ,  2.brj) (2.5 can be replaced by 2+s ,  

~>0, here). 

For the proof of the Vitali covering theorem, we refer the reader to his favorite 

textbook in geometric measure theory. 

Now, to prove the lemma, fix some t>0.  Pick R > 0  and consider the set E of the 

points x E supp # for which 

ff/I(R)f(x) := sup 1 /B  Ill d# > t. 
0<r<R #(B(x, 3r)) (x,r) 

For every such x, there exists some radius r~ E (0, R) such that  

/8(x,~) lf I dtt > t#( B(x, 3rx)). 
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Choose the corresponding collection of pairwise disjoint balls B(xj, rj). We have 

lz/  p(E) <~ E #(B(xy, 3rj))  ~ ~ If[ d# <~ llfllL~(.)t 
(xj,rj)3 J 

It  remains only to note that  ffi(R)f/~fflf as R - + + o e .  

The boundedness on LP(#) for 1 < p <  +oc  follows now from the Marcinkiewicz inter- 

polation theorem. [] 

11.2. T h e  b i l i n e a r  f o r m  is d e f i n e d  o n  Lipschitz functions 

In  this section we assume that  the bilinear form (b2Tblf, g) is well defined for compactly 

supported Lipschitz functions f ,  g. 

Let [. [ denote the "/W-norm" on R N, [x[:=max{[xk[:l~k~N}, so the "balls" in 

this norm are just cubes. We fixed the "/W-norm" on R g because we have to use cubes 

in the definition of weak accretivity. The results of this section hold for an arbi t rary 

norm [-[, if weak accretivity means that  the averages over the balls in this norm are 

large. 

By weak boundedness in this case we mean the following two conditions: 

(i) For all pairs of Lipschitz functions Pl,  ~2 satisfying [~1,2 (x) - ~1,2 (Y)[ ~< L. I x -  y I, 

supported by bounded sets D1, D2, respectively, and such that  [[~1,2[[~ ~< 1, the inequal- 

ities 

](Tbl~I, b2~2)], [(Tbl~, b2~1)[ ~< CL. [[bl []~" [[b2[[o~.diam(D1).#(D2) 

should hold for weakly accretive flmctions bl,b2 (this is for the Tb-theorem, for the 

T l - theorem bl = b2 = 1). 

As Lemma 11.3 above shows, this is true for ant isymmetr ic  kernels. 

(ii) Let a ~ be the function as in Figure 1. For a ball (cube) Q=Q(xo,r)={xEl:tg: 
[X-Xo[<~r} let 

: =  

(Clearly a~ is a Lipschitz function with Lipschitz norm at most C/rs.) 
We will require that  for all cubes Q, 

I<Tb:~,b2a~>[ < C#(A'Q) 

for some Ar~> 1, uniformly in e and Q. 

Definitely, the last condition holds for ant isymmetric  kernels, since (Tba~, ba~} =0.  
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THEOREM 11.10. Let T be a Calderdn-Zygmund operator such that the bilinear 

form (Tblf ,  b2g} is defined for Lipschitz compactly supported f and g. Suppose that T 
is weakly bounded as above. 

If  TbleBMOP~(#) for some pe[1,oc),  A>I ,  then TbleRBMO(#)  (and therefore 

TbleBMO~(#)) .  

THEOREM 11.11. Let T be a Calderdn Zygmund operator as in the previous the- 

orem, blEL ~, and let b2 be a weakly accretive function. If TblEBMO~(#),  then for 

truncated operators Tr we have TrblEBMO~(#),  A=14A, with uniform estimates on 
the norms. Moreover, the weak boundedness condition 

I(T~blX2Q, b2XQ)I <. C#(3Q) 

holds for all cubes Q. 

Let us recall that weakly accretive means #(q) - l ] fQ b d#l >1 5 for all cubes Q. Let us 

also recall that  I ' ] means the "l~-distance '' Ix-y] := Hx-yll~ :=max{Ixk--Yk]: 1 <.N} 
on R N, and the theorem implies that  for "cubic" truncated operators T~, 

Tt:f(x) := f g ( x ,  y) f (y)  d#(y), 
JII x--Yllcc >r 

we have T~ EBMO~(#) (with uniform estimates on norms). However, since the differences 

T~-T~ (Tr is the usual truncation, where one integrates over the set IIx-yH2>r) are 

uniformly bounded, the same holds for Tr. 

The proof of the theorem is very similar to the proof of Theorem 11.2. Let us 

introduce functions a e as in Figure 1. We denote a:=a ~ 

For a cube (ball in the norm I" I) B=B(xo ,r )  let a~:=a~(]X-Xol/r). Clearly a~ is 

a Lipschitz function with Lipschitz norm 1/rE. 

LEMMA 11.12. Let Mb2TMbl be weakly bounded, as it was defined in the beginning 

of this section, and let A ~ be the blow-up constant in the definition of weak boundedness, 

i.e., 

I(Tbla 5, b2a~}] <. C#(A'Q) 

for all cubes Q (uniformly in ~ and Q). 

Given R > 0  let Ro, R ~ R o ~ I . 2 R ,  be as above in Lemma 2.8. Then for all ~>0, 

I(TblaB(z,,,3R ), b2a~(xo,Ro)}] <. C#(B(xo, AR)), 

where A=max(1.2A', 3), and C does not depend on ~. 

Proof. Since Mb2TMb~ is weakly bounded, 

I(Tbla~(~o,Ro), b2a~(xo,Ro)) l < C#( B(xo, A'R0)) ~< C#( B(xo, AR)), 
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~ O . - -  a b ( x o  ' Ro) 

0 

r  aB(~o,aR) -- ab(~o, Ro) 
�9 m m m m m m , l . . . m m m m e m |  t im"  I' 

X 
r 

0 I I 
I I 
I I I 

'~Ro'cRo' 
k 

I ! I 

. . . . . . . . . . . . . . . . .  

�9 " ffJ2, 
I �9 I I I ~  I 
I l l  l I l l  I 

' , ' I . ' ,  
I I �9 I 
I �9 I �9 I 
l ~ll I i I 
I I  I i i  
I I  I i I 

0 Ro Ro+~Ro 

Fig. 11. Spl i t t ing of the function ~b. 

so it remains to estimate 

<Tbl. (aB(~o,3R) --a~(xo,Ro) ), b2a~(~o,Ro) > = (TCbl , ~ob2), 

where r ~:=a~(xo,Ro). 
Split r 1 6 2 1 6 2  as in Figure 11. Then 

<Tbl r b2cfl) = <Tbl r b2cp> + (Tbl r b2~o). 

Since ]]~]1o~<1, ]]r and the functions ~ and r are supported by B(zo, Ro) and 

B(xo, 3R)\B(xo, Ro) respectively, the first term can be estimated by Lemma 2.9: 

I<Tblr b2~>] ~< C#(B(xo, 3R)). 
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By condit ion (i) in the  definit ion of weak boundedness  the  second t e rm  can be 

es t imated  as 

C . _ _ _  1 I(Tb1r b2~>l <~ cRo 'R0"#({x  : dist(x,  SRo) < ~R0}), 

where Sno:-~{x:lx-xol=Ro}; here d i am(supp~)~<2R0 ,  and r is suppor t ed  by the 

"annulus" (x :  dist(x,  S n o ) < ~ R 0 } .  L e m m a  2.8 implies t ha t  

# ({x :  dist(x,  SRo) < ~R0}) ~< Ce.#(B(xo, 3R)) ,  

and therefore  ](Tb1r b2~)l<.Cp(B(xo, 3R)) .  [] 

To prove Theo rem 11.11 we need the  following analogues  of L e m m a s  2.5, 2.7 and 11.8. 

LEMMA 11.13. Under the assumptions of Theorem 11.11, for any cube Q, 

]Q ITblxeQ I p d# ~ C # ( A Q ) ,  

where A = m a x ( 2 A ,  2A', 3). 

Proof. Pick a ball (cube) B(xo, R). L e m m a  11.12 implies t ha t  

I(TblXB(xo,2R), b2a~(xo,Ro)>l <~ C#(B(xo, AR))  

uniformly in e. Taking the  limit as ~-+0 we get 

](TblXB(xo,2R), b2XB(xo,Ro)> I < C#( B(xo, AR)) .  (11.6) 

Now we jus t  repea t  the proof  of L e m m a  2.5. 

Let  g be  a smooth  (Lipschitz) function suppor t ed  by the  ball B(xo ,  R)  and  such tha t  

Ilgllq=l, 1/p+l/q=l. Pick a cons tan t  c such t ha t  

e / b2 dp = / b2g d#, 
J B(xo, Ro) 

so t ha t  f(b2g-cb2xB(xo,Ro))dp=0. 
Weak accret ivi ty  of b2 implies(a) I fB(xo, no)b2 d# I >~ 5 #( B ( xo, Ro ) ), therefore  

Icl < Ro))-' f Ib .J d# 

<~ C#(S(xo, R 0 ) ) - '  IIo..qllq]-t(B(xo, R)) lip < C~(S(xo, Ro)) -l/q, 

(3) There is a little detail here: In the definition of weak accretivity we deal with cubes that are 
obtained from the cube [0, 1) N by shifts and dilations, but our cube (ball) B(xo, Ro) is an open one. 
However, Lemma 2.8 implies that the measure ~ of the boundary of the ball B(xo, Ro) is 0, so this does 
not present a problem. 
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so Ilcx.(xo,R)rlq ~c.  Then ]]b2.(g-e)C.(~o,R))[[~C+l, and the condition Tb lEBMOP(#)  

implies 

[(TblXB(~o,2n), b2. (g--cXB(xo,Ro))>[ ~ Cp(B(xo,  2AR)) ~ C#((B(xo,  AR)).  

This inequality together with estimate (11.6) implies 

[ (TbxX B(xo,2R) , b2g> [ <~ Cp( B(xo, AR)), 

and that  is exactly what we need. [] 

Proof of Theorems 11.10 and 11.11. The proof of Theorem 11.10 follows the proof 

of Theorem 2.4 without any modifications. One only has to use the above Lemma 11.13 

instead of Lemma 2.5. 

The proof of Theorem 11.11 follows the proof of Theorem 11.2, only instead of 

Lemma 11.5 one has to use Lemma 11.13. We leave all the details to the reader. [] 
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