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Notation

= equal by definition;

7 measure on RV;

B(xg,T) the open ball, B(zo,7):={z € RN:|z—xo| <7};

{(f, 9 standard linear duality, (f,g):= [ fgdu;

BMO%(n)  BMO-space, see §1.1;

D a collection of dyadic cubes, see below;

Xg characteristic function (indicator) of the set Q;

Q) “size” of the cube QCRY, i.e., the length of its side;

Eg,Ex averaging operators, see §4. For a cube Q, Eqf = (,u(Q)‘lfQ fdu)~xQ;
the operator Ej is defined by Ei f := EQGD,Z(Q)=2’° Eqf;

Ag, Qg martingale difference operators, see §4: Ay := Ex_, — Ek; for a cube @ of
size 2F (1(Q) = 2*) define Ag f:= Xo Ok fs

E%, E} weighted averaging operators, see §4: E}f:= (Jo bd,u)_1~(fodu) bX g
Ef= 2-QeD, (@) =2* EQ f;

Al Ab weighted martingale difference operators, see §4: Ab:=E?_| —E%; for a

cube @Q of size 2F (I(Q) = 2¥) define AY f:= XQ-AZf;

fo. () average of the function f, fo= (f)Q:=,u(Q)‘1fodu;
II paraproduct, see §7.1.

Cubes and dyadic lattices. Throughout the paper we will speak about dyadic cubes
and dyadic lattices, so let us first fix some terminology. A cube in RN is an object
obtained from the standard cube [0,1)" by dilations and shifts.

For a cube @ we denote by {(Q) its size, i.e. the length of its side. Given a cube @
one can split it into 2V cubes Qy of size %I(Q): we will call such cubes Q@ the subcubes
(of Q) of the first generation, or just simply subcubes.

For a cube @ and A>0 we denote by AQ the cube @ dilated A times with respect to
its center.
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Now, let us define the standard dyadic lattice: for each k€Z let us consider the cube
[0,2¥)N and all its shifts by elements of RY with coordinates of form j-2%, j€Z. The
collection of all such cubes (union over all k) is called the standard dyadic lattice.

A dyadic lattice is just a shift of the standard dyadic lattice. The collection of all
cubes from a dyadic lattice D of a fixed size 2* is called a dyadic grid.

0. Introduction: main objects and results

The goal of this paper is to present a (more or less) complete theory of Calderén—Zygmund
operators on non-homogeneous spaces. The theory can be developed in an abstract metric
space with measure, but we will consider the interesting case for applications when our
space is just a subset of RV,

Let u be a Borel measure on R". Let d be a positive number (not necessarily
integer) and let the measure p behave like a d-dimensional measure:

u(B(z,r)) <r

for any ball B(z, ) of radius  with center at z. A Calderé6n-Zygmund kernel (of dimen-
sion d) is a function K(s,t) of two variables satisfying:

(i) K (s,t)|<Cls—t|7%

(ii) there exists >0 such that

|8—s0]|*

-K - SCo——am
1K (5,8)= K (s0, )1, 1K (8, )= K (8, 0) | < Oy

whenever |t—s¢|22|s—sg].

If d=N (N is the dimension of the underlying space R"), we have just a classical
Calderén-Zygmund kernel.

We are interested in the question of when a Calderén-Zygmund operator (integral
operator with kernel K, Tf(z)=[ K(z,y) f(y) du(y)) is bounded on LP(u).

0.1. Main results

The main results that we state below look like they are just copied from some classical
book. But let the reader not be misled, the results are new. We intentionally defined
BMO in such a way that our theorems could be stated exactly as the corresponding
classical results. However, the BMO we use is not exactly the space the reader is probably
familiar with. Actually, there is a whole plethora of BMO-spaces generalizing the classical
BMO-space to the non-homogeneous situation from the point of view of singular integral
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operators. There is one “more equal than others”—the RBMO of Xavier Tolsa, which is
discussed and used in §1.2. But we feel that—at least at this stage of our understanding—
it is a good idea to work with all definitions of BMO at once.

Our first two theorems deal with Calderén—Zygmund operators with antisymmetric
kernels.

Let us mention that there is no canonical way to assign an operator to a general Cal-
der6n-Zygmund kernel. We cannot just say that T'f(z)=[ K(z,y)f(y)du(y), because
for almost all z the functions K(z,-) and K(-,x) are not integrable, not even locally in
the neighborhood of the singularity z.

However, if the kernel is antisymmetric (K (z,y)=—K(y, z)) there exists a canonical
way to define an operator.

Namely, since the kernel K is antisymmetric, we have (formally)

(Tf,g) / K(z,y) f(4)9(z) du(z / K(2,9) f(2)(y) du() du(y),

and so

(Tf,q) /ny[f (@)~ £(2)9()) du(z) du(y).

But for smooth (even Lipschitz) compactly supported functions the last expression is
well defined.

Namely, the integrand has the singularity bounded by C/|r—y|¢~! for z—y close
to 0. By the Comparison Lemma (see Lemma 2.1 below) such a singularity is integrable
(say, with respect to z), so the integral is well defined.

So, for an antisymmetric kernel one can canonically define a bilinear form (Tf, g)
for compactly supported Lipschitz functions. The corresponding operator is called the
principal value.

We think that unfortunately the terminology is confusing here, because principal
value also means lim._,o flz_y!>€ K(z,y)f(y)du(y). We would prefer to use, and we
will use in this paper, the term canonical value, or canonical operator. Unfortunately,
principal value is now a widely accepted term.

Similarly, one can also define for antisymmetric kernels the bilinear form (Tbf, bg),
be L, as

(Tbf, bg) = /ny[f a(z)~ £(2)9(w)]b(2)b(y) du(z) du(y),

where be L*>°.

THEOREM 0.1 (T1-theorem). Let 1<p<oo. The canonical value of a Calderdn—
Zygmund operator T with antisymmetric kernel extends to a bounded operator on LP(p)
if and only if T1 belongs to BMO=BMO(y).
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Moreover, the upper bound of the norm of T depends only on the dimensions N,d,
the exponent p, the Calderon—Zygmund constants of the kernel K, and the BMO-norm
of T1.

The definition of the space BMO is rather involved and requires separate discussion.
We will discuss this space in detail later in §1.1.

Although the T'1-theorem above gives a necessary and sufficient condition for a Cal-
derén-Zygmund operator T to be bounded, it is not always easy to verify the condition
T1eBMO. But sometimes it is trivial to see that Th€ BMO for some be L.

Let us call a bounded (complex-valued) function b weakly accretive (with respect to
the measure ) if there exists 6 >0 such that for any cube Q,

W@ /Q b(s) dys(s)

Note that if b is weakly accretive then [b| 26 u-a.e.

=4.

THEOREM 0.2 (Tb-theorem). Let 1<p<oo, and let b be a weakly accretive func-
tion. The canonical value of a Calderéon-Zygmund operator T with antisymmetric kernel
extends to a bounded operator on LP(u) if and only if Tb belongs to BMO=BMO(u).

Moreover, the upper bound of the norm of T depends only on the dimensions N,d,
the exponent p, the Calderén-Zygmund constants of the kernel K, the constant § from
the definition of weak accretivity, ||blloo, and the BMO-norm of Tb.

A similar Tb-theorem in the homogeneous case (the measure g is doubling) was used
to prove the boundedness of the Cauchy transform on Lipschitz curves.

The following two theorems should be treated as some kind of meta-theorems. As
we already mentioned above, there is no canonical way to define a Calderén-Zygmund
operator in the general case. There are several possible interpretations, which we will
discuss in §0.3. So for each interpretation of Calderén-Zygmund operators, Theorems 0.3
and 0.4 below should be interpreted accordingly.

THEOREM 0.3 (T'1-theorem). Let 1<p<oco. A Calderén-Zygmund operator T ex-
tends to a bounded operator on LP(u) if and only if it is weakly bounded and T1,T*1
belong to BMO=BMO(y).

Being weakly bounded in the simplest case means that there exist A>1, C<oo
such that |(TXQ, XQHSCM(AQ) for any cube Q. There are alternative definitions (not
equivalent) that would also work. We will discuss them later in §0.3.

Again, the estimate of the norm of T depends only on the constants involved, namely
the dimensions N and d, the exponent p, the Calderén-Zygmund constants of the kernel,
the BMO-norms of T'1, T*1, and the constant C from the definition of weak boundedness.

Suppose that we are given two weakly accretive functions b, and bo.
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THEOREM 0.4 (Th-theorem). Let 1<p<oo, and let by,bs be two weakly accretive
functions. A Calderén-Zygmund operator T extends to a bounded operator on LP(u)
if and only if the operator baTb; is weakly bounded and Tby, T*by belong to BMO=
BMO(p).

Again, the upper bound on the norm of 7" depends only on constants involved.

We postpone the discussion of weak boundedness to §0.3, and one can find a more
specific discussion in §11. The subtle point here is that as one makes a weaker assump-
tion of “weak boundedness”, the assumptions of accretivity one should require become
stronger.

Our Tb-theorems are the extensions to the case of non-doubling measures of the T'b-
theorems obtained by G. David, J.-L. Journé and S. Semmes [6], [9], [10] for Calderén-
Zygmund operators on RY with respect to Lebesgue measure. It was clear that such Tb-
theorems apply to arbitrary spaces of homogeneous type, a general setting for singular
integral theory introduced by Coifman and Weiss [4]. In particular, the boundedness
of the Cauchy operator on chord-arc curves could have been obtained directly from
homogeneous Tb-theorems. (Notice that the more general case of Ahlfors-David curves
required extra important ideas [5].) The Calderén-Zygmund theory on homogeneous
spaces acquired a new approach from the work of M. Christ [2], where an accretive
system Tb-theorem for homogeneous spaces has been proved (the difference with the
Tb-theorems of David, Journé and Semmes is in using a collection of b’s instead of one
such function). This allowed one, for example, to obtain the boundedness of the Cauchy
operator on Ahlfors—David curves from the homogeneous Th-theorems of Christ’s type.
More generally this allowed one to obtain a Th-proof of T. Murai’s [19] theorem which
characterized compact homogeneous sets of finite length on the plane for which the
Cauchy operator is bounded. So almost everything homogeneous became clear.

However, quite unexpectedly, the homogeneity is something one can dispense with.
The first results in this direction dealt with the Cauchy integral operator. A version of the
T1-theorem for the Cauchy integral operator in the non-homogeneous setting was proved
independently and with different methods by X. Tolsa [26] and by the authors [21]. Note
that in [21] the case of more general Calderén-Zygmund operators was also treated.

An alternative and very interesting approach to the T'1-theorem for the Cauchy
operator was introduced by J. Verdera in {32].

Then in [22] Cotlar inequalities and weak type (1, 1) estimates were proved for Cal-
derén-Zygmund operators bounded on L?(u). In particular, this implied that, as in the
classical case, if a Calderén-Zygmund operator is bounded on L?(y), then it also extends
to a bounded operator on all LP(u), 1<p<oco. Thus, the theory of Calderé6n-Zygmund
operators on non-homogeneous spaces was almost complete.
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Our T1- and Tb-theorems complete the theory.(!) Also, in [23] we prove a non-
homogeneous analogue of Christ’s Tb-theorem, which allows us, for example, to extend
Murai’s theorem [19], and to fully describe compact sets of finite length on the plane
for which the Cauchy operator is bounded. The technique in [23] is an extension of the
technique we use in the present article.

So, the main goal of this article (as well as articles [22], [21] and some subsequent
ones) is to build a non-homogeneous theory for Calderén-Zygmund operators. There are
several possible applications of such a theory. One is presented below in §0.2. Also, for
motivation, see the introduction to [22].

The proofs in the paper are rather technical and can be very complicated, but
essentially everything is based on two main ideas: estimating the matrix in the Haar
basis (weighted Haar basis for the Th-theorem) and eliminating bad cases by averaging
over random dyadic lattices.

Neither idea is new. The Haar system was used by Coifman-Jones-Semmes [3]
in their elementary proof of the L?-boundedness of the Cauchy integral operator on
Lipschitz curves (it is the earliest use of the Haar system for estimates of singular integral
operators we are aware of ). Later it became commonplace and was used by many authors,
see [6], [7], [11], [29], [20], [21].

The idea of averaging over dyadic grids is not new either. In [13], for example, it was
used by Garnett and Jones to pass from results about dyadic BMO to classical ones. The
idea of averaging was also used by E. Sawyer [24] in his proof of two weight estimates for
the maximal operator.

However, we introduced a new twist to this idea: we use averaging to show that one
can ignore bad situations if they have small probability (pulling yourself up by the hair).
This trick was first used in [20] to simplify the presentation: an “honest” estimate, not
resorting to the averaging trick, is also possible there. Later in [21] we noticed that the
same trick can be used to deal with Calderén~Zygmund operators on non-homogeneous
spaces (measure without doubling).

It is very well known to everybody who was working with singular integral operators
that if one tries to estimate the matrix of a Calderén-Zygmund operator in the Haar
basis, it is impossible to get good estimates when the support of one Haar function is
close to the jumps of another. But, one has to be especially unlucky to really have the
worst case estimate for any given pair of Haar functions: shifting a bit the boundaries of
the cubes improves the estimates with high probability.

(1) Of course, there are still some open questions, for example, about existence of principal values.
For the Cauchy operator on a non-homogeneous space it was proved by X. Tolsa [25], but for general
Calderén—Zygmund operators the question is still open.
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Thus, to improve the estimates, G. David and P. Mattila (see [7], [11]) used curved
“squares” avoiding areas where the measure is concentrated.

In our approach, we consider random dyadic grids to show that with non-zero prob-
ability the “bad” part of the Haar expansion has small norm. This allows us to get an
estimate of the norm as soon as we have some a priori estimate (usually very weak) of
the operator. For example, it works if we know that its bilinear form is bounded for
smooth compactly supported functions, see §0.3 below for details.

This idea for Calderén—Zygmund operators on non-homogeneous spaces was intro-
duced by us in [21] where we proved the T'1-theorem for Cauchy-type operators. Here
we further refine it: we are relaxing all the assumptions, proving the results in most
generality. The surprising thing for us was that this trick allows us to relax significantly
the weak boundedness assumptions (in comparison with [21]), see §10.

0.2. An application of the T'1-theorem: electric intensity capacity

As a possible application of our non-homogeneous T'1-theorem we will cite the following
result about the so-called electric intensity capacity (also known as harmonic Lipschitz
capacity, see [11}, [14], [16], [31] for some interesting related results). Let us consider the
following problem.

Suppose that we have a compact set K in R3. We want to find what maximal
possible charge one can put on K such that the intensity of the resulting electric field
is bounded by 1. Note that if we require the potential to be bounded by 1, we get the
usual capacity from physics. But in engineering it is often very important to have the
intensity of the electric field bounded, so our capacity has very good physical meaning.

In this problem we forbid negative densities.

Let us now formally state the problem. Given a compact set K in R, N >3, consider
the class S of all subharmonic functions ¢ (—y is the potential) in R" such that

(i) ¢ is harmonic in RV \ K, ¢(00)=0;

(i) |Ve(z)|<1 for almost all (with respect to N-dimensional Lebesgue measure)
z€RY (intensity is bounded by 1).

The electric intensity capacity (also known as positive harmonic Lipschitz capacity)
cap,;(K') of the compact set K is defined by

capg;(K) :=sup |Cy|,
peS
where C,, is the leading coefficient in the asymptotic expansion

p(x)=Cp/ 2|V 2 +0(1/|2|V~?)
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of the function p€.5 at co (any function ¢ harmonic in a neighborhood of co and satisfying
¢(00)=0 admits such an expansion). Note that in R3 the constant —C|, is exactly the
charge on K.

To state our result we need to introduce one more capacity, the so-called operator
capacity. Given a Borel measure u, consider the “Cauchy” transforms TJ“ , 1<j<N,
T} f(x):=[ K;(z,y) f(y) du(y), where K;(z,y)=(z; —y;)/|z—y|N. Note that the kernels
K; are antisymmetric Calderén-Zygmund kernels of dimension d=N —1. Since the ker-
nels are antisymmetric, we have no problems defining the operator (just use the canonical
value).

The operator capacity cap,,(K) is defined by

cap,p, (K ) =sup{u(K):pu>0,suppuC K, ||T}|| 12,y <1 for ISF< N}

here p stands for a non-negative Borel measure.
THEOREM 0.5. The capacities cap,, and cap,; are equivalent, i.e., there exist con-
stants ¢,C, 0<ec<C<oo, depending only on the dimension N, such that

c-cap,, (K) < cape; (K) < C-cap,,(K).

As an immediate corollary of this result we obtain that the capacity cap,; is semi-
additive, i.e.,
cape;(K1UK2) < C-(cape; (K1) +cape; (K2)).

This follows immediately from Theorem 0.5, because for the capacity cap,, we trivially
have
Ca‘pop(Kl UK2) < Ca‘pop(Kl ) + Capop(K2)'

Sketch of the proof of Theorem 0.5. Let u:=Acp=Z§V=1 32g0/8m? be the Riesz mea-
sure of the function ¢.

Since |Vp(x)|<1, it is an easy exercise using Green’s formula to check that p(B)<
CrN-1 for any ball of radius r. Indeed, let us apply Green’s formula

v Ou
/Q(uAv—vAu) dv_/an <ua—n—v55) ds

to u=1, v=yp and Q=B=B(z¢,r). We get

O
d =/A dV=/ 9% 4s.
/Bu BSO o On

Since |0p/0n|<|Vp|<1, the measure p(B) is estimated by the (N —1)-dimensional mea-
sure of the sphere 8B, which is CnyrV 1.
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We know that the jth coordinate of the gradient Vo is given (up to a multi-
plicative constant) by K}1= [ K;(x,y)1dp(y). From here we conclude that T} 1€ L®,
IT#1]lo <1, 1<K N. Since L*CBMO, the T'1-theorem (Theorem 0.1) implies that the
operators T} are bounded, and therefore

c-capop(K) < Ca'pei(K)'

The reverse estimate is rather standard and well known (at least in the homogeneous
case). First of all, it was proved in [22] (for the non-homogeneous case) that if a Cal-
derén-Zygmund operator T extends to a bounded operator on L?(u), then it extends
to a bounded operator on all LP(u), 1<p<oo, and, moreover, it is of weak type (1,1).
It was also proved there that in this case the truncated operators T, (integrals are taken
over the set |z—y|>r) are also bounded on L*(u), 1<p<oo, and are of weak type (1,1)
uniformly in r.

Therefore, the “Cauchy” transform T#=(T}{, T}, ..., Tk )T (which maps scalar-valued
functions to R™V-valued), as well as its adjoint and the corresponding truncated operators
are (uniformly) of weak type (1,1).

So, applying to the truncated “Cauchy” transform Theorem 0.6 below (see [1, The-
orem VII.23] for the scalar version), we get the desired estimate.

Let M denote the space of all finite measures (signed, or complex) on a locally
compact Hausdorff space X, and let C(X,R") be the space of all functions continuous
on X with values in RY. The dual of this space, M(X,R"), is the space of all RV -valued
finite Borel measures on X.

THEOREM 0.6. Let X be a locally compact Hausdorff space, let u be a Radon mea-
sure on X, and T: M—C(X,R") a bounded linear operator. Suppose that the adjoint
operator T* is of weak type (1,1), that is, there exists A<oo such that

w{z: [T v(z)| > o} < Ao v

for all a>0 and ve M(X,RN). Then for any Borel set EC X with 0<u(E)<oo, there
exists h: X —[0, 1] satisfying

h(z)=0 forall z¢E, /hd,u;%,u(E) and ||T(hdu)|sc <4A4.
E

This theorem is well known in the scalar case, although we cannot be sure where it
first appeared. It can be found in [30], [12]. The proof below is presented only for the
sake of completeness, since we follow the scalar case proof presented in [1] (see the proof
of Theorem VII.23 there) almost up to the letter.
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It is interesting that the argument below involves dualizing a weak type (1,1) in-
equality, although the corresponding weak space L** has no reasonable dual.

Proof. Suppose that the conclusion of the theorem fails for some E. Define
By := {f:X—) [0,1): f=0 p-a.e. on X\ E and/ fdu> %N(E)},
, E
By := {T(f d/.t) : fEB()},
By :={9€C(X,R"): [igllc <4A}.

The Hahn-Banach Theorem implies that there exists a bounded linear functional [ on
C(X,R") separating B; and By, i.e., I(g)<I(h) for all he By, g€ B,. Let A be the
R~ -valued measure representing I, so

/[T(fdu)]Td)\>/gTd)\ for all f€ By, g€ Bs.
Taking the supremum on the right-hand side and using the identity f [T(f dw)]Tdr=
J f-T*\du, we get
/f-T*)\du>4A|[/\H. (0.1)
To use the weak (1,1) estimate set a=3A}|\||/u(E) and note that
p{z € E:|T*Nz)| > o} < Al /e = 3u(E),

so that
wlz e E:[T* @) <a} > 3u(E).

Therefore we can find a closed set F'CE such that u(F)>1u(E) and |T*A|[<a a.e. on F.
Take f:=x.. Then fe By and

l/f-T*Adu‘ <au(F) <3AIN,

which contradicts (0.1). O

That completes the proof of Theqrem 0.5. O

0.3. How to interpret a Calderén—Zygmund operator T

Let us discuss here how one can interpret the above results, first how one can define the
operator T for general kernels. Recall that for antisymmetric kernels we can define the
operator as the canonical value, see §0.1.
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A typical Calderén-Zygmund kernel (think, for example, of the kernel 1/{(x—y) on
the real line R with Lebesgue measure) is such that for almost all z the functions K(z, - ),
K(-,z) are not in L, not even locally, in a neighborhood of the singularity .

In the case of the kernel 1/(z—y) on the real line one can still define the operator on
smooth functions with compact support if one interprets the integral ffooo K(z,y)f(y)dy
as principal value, i.e., as the limit

pv. [ " K(e,9) f(y) = lim K(,9)f(4) dy.

e—=0 |y—$l>5

However, if one considers a general Calderén—~Zygmund kernel, it is not clear why the
principal value exists.(2)

The classical way to interpret T was to assume that the bilinear form (T'f,g) of
the operator T (or of the operator byTb; in the case of the Th-theorem) is initially well
defined on a dense set of nice functions f,g, for example for f,geC§° (C°°-functions
with compact support). In other words, the bilinear form (Tf,g) is well defined and
continuous (with respect to the topology of C§°) for f,geCge.

One can replace here C§° by the Schwartz class S of rapidly decaying C*°-functions:
it really does not matter.

The words that T is an integral operator with kernel X' mean only that

<Tf,g>=//K(x,y)g(z)f(y) du(z) duly) (0.2)

for compactly supported f, g with separated compact supports, when the integral is well
defined. Notice that the kernel K does not determine the operator uniquely: for example,
any multiplication operator f—pf is a Calderén-Zygmund operator with kernel 0.

This observation is a commonplace for specialists, but it can be really surprising for
a beginner.

Now we are going to give three ways to interpret a Calderén-Zygmund operator T
with kernel K. In all cases we assumc that a bilinear form of the operator T is defined for
some class of functions, and that for functions with separated compact supports equality
(0.2) holds.

0.3.1. The bilinear form is defined on Lipschitz functions. Since for antisymmetric
kernels the bilinear form (T'f, g) (or (b2Tb1f,g) for the Th-theorem) is well defined for
Lipschitz functions f, g (see §0.1 above), it seems reasonable to assume that this is the
case for general kernels as well.

(?) We should mention here a remarkable result of X. Tolsa [25] that if a Cauchy integral T'f(z):=
Jo(F(€)/(€—2)) du(€) is a bounded operator on L2(y), then for any g€ L?(p) the principal value of T'g
exists g-a.e. ’
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Fig. 1. The function ¢°.

Weak boundedness in this case means that the following two conditions are satisfied:

(i) For all pairs of Lipschitz functions 1, @2 satisfying |1,2(x)—¢1,2(y)|<L-|z—y|,
supported by bounded sets Dy, Dy, respectively, and such that ||¢1,z|l00 <1, the inequal-
ities

HTbro1, bapa)l, [{Thypz, bawr)| < CL-||b1||oo- ||b2lloo- diam(Dy) - (Do)

should hold for weakly accretive functions by, by (this is for the Tb-theorem, for the
T1-theorem by=by=1).

As Lemma 11.3 below shows, this condition (with by=b2 as in the corresponding
Tb-theorem) holds for antisymmetric kernels.

(i) Let o° be a function as in Figure 1. For a cube Q let g, be its Minkowski

functional
0(z):= inf{A>0:2Q>x}
and let
05(2) i= 0% (0q ().
(Clearly o, is a Lipschitz function with Lipschitz norm at most C/re.)
We will require that for all cubes @,

[(Tbi0g,b200)| < Cu(N'Q)

for some A’ >1, uniformly in € and Q.
The last condition (with b;=by=0b) definitely holds for antisymmetric kernels, since
for such kernels (T'bog), bag)=0.
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0.3.2. The bilinear form is defined on smooth functions. We do not think that it
makes much sense in our situation to assume that the bilinear form (b;T'0;f,g) (or
(Tf,g)) is defined for smooth (say C§°) functions f and g. We really do not see how
additional smoothness (in comparison with Lipschitz functions) can help.

However, it is still possible to assume that the bilinear form is defined for C§°-
functions. In this case we have to assume more about the functions b;,b; in the Th-
theorem: we want them to be sectorial. Let us recall that a function b is called sectorial
if b€ L, and there exists a constant £€C, |£|=1, such that Re&b>4§>0.

The advantage is that we can relax the assumptions of the week boundedness in this
case. Namely, fix a C*-function o on [0, c0) such that 0o <1, o=1 on [0,a] (0<a<1)
and 0=0 on [1,00), see Figure 2. The parameter a is not essential here, but we already
have too many parameters in what follows, so let us fix some a, say a=0.9. For a ball
B=B(xg,r) let og(z):=0(|xr—z0|/7). Clearly, o5 is supported by the ball B and is
identically 1 on the ball 0.9B. We will require that for any concentric balls B;, By of
comparable sizes, say 3 diam(B; ) <diam(B;)<2diam(B ), the following inequality holds:

|<TUBlbl’Usz2>I SCN(B), (03)

where B is the largest of the two balls B, B;. We can even replace u(B) by u(AB),
A>1 here.

0.3.3. A priori boundedness. We feel that the most natural way to interpret a Cal-
derén—-Zygmund operator T is to think that we are not given the operator T per se,
but that its kernel K is “approximated” in some sense by “nice” kernels K., and we
are interested in the question of when the operators T, with kernels K. are uniformly
bounded.
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A typical example one should think of is to consider truncated operators T¢,
Ti@=[ K@=/ dus).
Jz—y|>e

Such truncated operators are clearly well defined on compactly supported functions.
Moreover, for compactly supported f and g, diam(supp(f))< A, diam(supp(g))< A, one
has

(Tef, 9} < Cle, A)[| fllzgll2- (0.4)

That will be our main way of interpretation. It was shown in [22] that under our
assumptions about the measure and the kernel, if a Calderén-Zygmund operator T is
bounded on L%(y) (or in some LP°, 1<pg <o), then it is bounded on all L*(u), 1<p<oo,
and the maximal operator T#

T#f(x) =sup
e>0

/I | K(z—y) f(y) du(y)|,
T—Y|>E

is bounded on all LP(u) as well.

This implies that all truncated operators T, are uniformly bounded, so it is reason-
able to think of boundedness of T as the uniform boundedness of T.

So Theorem 0.3 can be interpreted in the following way: a sequence of truncated
operators T, is uniformly bounded if and only if the sequence is weakly bounded (with
uniform estimates) and T1,T*1€ BMO with uniform estimates on the norms.

There is a small technical problem with such an interpretation: the truncated oper-
ators T, are not Calderén-Zygmund operators (their kernels do not satisfy the property
(ii) above).

Fortunately, this is not a real problem, and we know at least two ways of coping
with it. First, two lemmas below where we use property (ii), namely Lemma 6.1 and
Lemma 7.3, are true for truncated Calderén-Zygmund kernels as well: one just has to
integrate a positive function not over a cube, but over a “truncated” cube, and that can
only yield a better estimate.

Another possibility is to replace truncated operators by nicer regularizations of the
operator T which have Calderén-Zygmund kernels. Namely, let

t/e, tel0,e],
(I)E(t)={1 t>e

see Figure 3. Then the kernels K.(z,y):=K(z,y)®.(|Jz—y|) are clearly Calderén—
Zygmund kernels with uniform estimates on all Calderén-Zygmund constants.
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It is also easy to see that for |z —y|<e we have |K.(x,y)|<C/|z—y|*"!. So, applying
the Comparison Lemma below (see Lemma 2.1), we get that for measures with compact
support, [ |K.(z,y)|du(z)<C, [|K.(z,y)|dp(y)<C, and by the Schur Lemma the op-
erators with kernels K, are bounded (but not necessarily uniformly in ). Moreover,
the same Comparison Lemma together with the Schur Test imply that the Calderén—
Zygmund operator with kernel K, and the corresponding truncated operator T differ by
a bounded operator (uniformly in ¢).

One can also consider two-sided truncations T . of the operator T,

T, f(z) = / o K@) duo).

Such operators are clearly bounded. Moreover, such operators 7} . are uniformly bounded
(or T;c1, T} 1 are uniformly in BMO) if and only if the corresponding property holds
for all one-sided truncations 7.

However, it is possible that we only have information about the truncations T,
for small . Therefore, it makes sense to consider the case of one-sided truncations T,
separately. So we will prove the main results under the assumption of boundedness only
on compactly supported functions.

For two-sided truncations one can also replace (without losing anything) the trun-
cated operator T . by a nicer regularization, for example by the integral operator with
kernel K{xz,y)®, .(lz—yl|), where ®. . is the function in Figure 4.

There are several possible definitions of weak boundedness for the regularized oper-
ators T, (or T, ). The simplest is to call the operator T weakly bounded if there exist
A>1, C<oo such that

(Txgs xg) S Cr(AQ)

for any cube Q. Another possibility is to consider the cube Q’:=aQ (for some fixed a>1)
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and require that

|<TXQ’7XQ>| QCH(AQ), |<TXQ7XQ’>| <CN(AQI)

One can also replace cubes by balls, to obtain two more definitions.

None of the four definitions above follows from any other (at least formally, we have
not constructed any counterexamples), but any one of the definitions works if we assume
a priori boundedness on compactly supported functions.

0.4. Plan of the paper

81 is devoted to a discussion of the different BMO-spaces and the relations between them.

In §2 we deal with necessity. We will prove that if a Calderén-Zygmund operator T°
is bounded on L”(y), then for b€ L™ we have Th€ BMOA (). In the same §2 we will also
prove that if The BMOX (p) for some p, 1<p<oo, then The RBMO(y), and, therefore,
TheBMOX (p) for all p, 1<p<oco. We would like to emphasize that for an arbitrary
function f the condition f€e BMO?X (u), p<2, doesn’t imply f& BMO?2 (1), see §1.1.1. But
Tb is not an arbitrary function, it possesses some additional regularity.

The rest of the paper is devoted to the sufficiency. We will only need to prove that
the operator T is bounded on L?(u), because it was already proved in [22] that the
boundedness on L?(y) implies the boundedness on all LP(u), 1<p<oo.

The idea of the proof is quite simple: consider a basis of “Haar functions” with
respect to the measure g (or weighted “Haar functions” for the Th-theorem), and estimate
the matrix of the operator T in this basis. To simplify the notation, it is more convenient
to use the “coordinate-free” form of the decomposition with respect to the “Haar system”,
the so-called martingale difference decomposition.

In §§3-8 we introduce the main technical tools and gather all necessary estimates.
Let us mention that in §3 we prove a generalization of the famous Carleson Embedding
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Theorem to weighted Triebel-Lizorkin spaces. Although we only need the classical case
p=2, we think that the theorem and its proof are of independent interest. However, the
reader can skip this section if he or she wants, and use his or her favorite proof of the
Carleson Embedding Theorem.

Then we do all necessary (and rather standard) constructions and estimates, such as
decomposing functions into a martingale difference decomposition, estimating the matrix
of the operator, constructing paraproducts, and getting the Carleson measure condition
from T BMO. All the ingredients should be very well known to a specialist, although
non-homogeneity (non-doubling) of the measure adds quite a bit of specifics.

Finally, in §§9-10 we gather everything together to prove the theorems.

One of the main difficulties that appear when one works with non-doubling measures
is an absence of good estimates of (Tch, v’;R) for functions Por ¥, supported by the cubes
Q@ and R respectively, when the cubes are close to each other. To overcome this difficulty
we use averaging over random dyadic lattices and the “pulling yourself up by the hair”
trick. One needs to use the trick several times to get the most general version of the
theorem.

To give the reader a better understanding of the trick without getting lost in technical
details, we first prove in §9 a weaker version of the Tb-theorem, where we use a stronger
condition of weak boundedness. §10 deals with the full version of the theorem.

In §§9-10 we assume that the operator T is bounded on compactly supported func-
tions (one should think of the truncated operators T.), i.e., |[(Tf,9)|<CA)I|fll-lgll,
where A=max{diam(supp f), diam(supp g)}.

For many readers that will be enough because, as we already discussed above, the
most natural way to interpret a Calderén-Zygmund operator T is to think of the sequence
of truncated operators 7.

And finally, in the last section (§11) we reduce everything to the case of truncated
operators. We consider the most general case, when the bilinear form of the operator is
defined for smooth functions, or for Lipschitz functions, as in the case of the canonical
value of an antisymmetric operator. We show that if such an operator satisfies the
assumptions of our Th-theorem, then the sequence of the truncated operators T, also
satisfies these assumptions (uniformly in €).

§11 has some ideas in common with §2.3, and uses some lemmas from this section,
so it would be logical to place §11 right after §2.3.

However, the section is rather long and technical. Since we think that for many it
is enough to just consider truncated operators T, we decided to put §11 at the end of
the paper.
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1. Definitions of BMO-spaces

There are infinitely many different BMQO-spaces that can be used in our theorems.

In the classical case, when p is N-dimensional Lebesgue measure in RY, all of the
definitions below give the well-known classical BMO.

First of all, there is a two-parameter family of spaces BMO? (p), 1<p<oo, A>1,
defined below in §1.1. The spaces BMO? (1) are quite different from classical BMO: in
particular, the John-Nirenberg inequality fails for such spaces.

Then, there is a regular BMO-space RBMO( 1) that was introduced by X. Tolsa [27].
This space is contained in (;¢,c 00 251 BMOX (p), and it seems to be the most natural
generalization of the classical BMO.

So, what space should we use in our theorems? And the answer is: it doesn’t matter,
one can use any one of the above spaces!

The space RBMO seems to be the most natural analogue of the classical BMO. How-
ever, the condition 71€ RBMO(u) (or Toe RBMO( 1)) is rather hard to verify. Therefore,
let us think that BMO in the statements of our results means one of the spaces BMOX ().

1.1. BMO?

Let 1<p<oc and A>1. We say that an L} (u)-function f belongs to BMO? () if for
any cube () there exists a constant ag such that

1/p
( /Q |f—aQ|Pdu) <CUOQY,

where the constant C does not depend on Q. The best constant C is called the BMOX ()-
norm of f.

Using the standard reasoning from the classical BMO-theory one can replace the
constant a,, in the definition by the average fQ=u(Q)‘1 fQ f du. Indeed,

g=aol=[u@! [ (7=ag)

< (H(Q)_I/QU—GQI"dH)l/pS I lBpoz (1) (EIE?TQ)))I/I’»

and so, if we replace ag by fQ in the definition, we just get an equivalent norm in
BMO (4).

Now we make several observations about the properties of BMO-spaces.

First we have the trivial inclusions: BMOZ?(u) CBMOX' () if p1<p, (Holder in-
equality) and BMO? () CBMOA (u) if A<A.
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It is not so trivial, but we will show this just below, that both inclusions are proper.

Namely, the space BMO? (1) depends on p for A>1.

Also, the space BMOX () does depend on A. However, in the statement of the
theorem any A>1 would work.

And finally, BMOY (i) (A=1) is a wrong object for our theory: boundedness of T
does not imply T1€ BMOY (p).

Notice that one can introduce BMO-spaces where averages are taken over balls, not
over cubes. But it is easy to see that if a function belongs to such a “ball” BMO? (p)
then it belongs to the “cube” BMOA (1) with A=v/N X. So, in the statements of the
main results one can use the “ball” BMO as well.

Also, it does not matter whether we consider closed or open cubes (balls) in the
definition of BMOY(u). Formally, definitions with open cubes and with closed ones
give us different spaces (because the boundary can have non-zero measure), but if the
BMOX, (p)-condition is satisfied for open cubes, then for all closed ones the condition
BMOZ, (1) holds true for any A> .

Strangely enough, we will be using the assumptions Tbe BMO% without requiring
that T maps b to locally integrable functions. The interpretation follows the classical
one—see §2 below.

This makes it slightly difficult to interpret The RBMO, where RBMO is the “right”
BMO-space found by Xavier Tolsa for non-homogeneous measures. The space RBMO is
used in §1.2, and it is extremely useful because the space RBMO has the John-Nirenberg
property (unlike BMO} —see the subsection below).

1.1.1. Ezample: BMOX (1) does depend on p. Let us explain why BMOX (1) does
depend on p. Notice that the Holder inequality implies that there is a trivial inclusion
BMOZR?* () CBMOA! () if p1<pa.

Let us have a careful look at the proof of the inclusion BMO3 (1) € BMOj (1):

1/2
= talaws ([ 15=soPdn) @) < Cur0) (@)

Clearly p(AQ)'/?u(Q)Y/2<pu(AQ), but since the measure 4 is not doubling, the in-
verse inequality (with a constant) does not hold, and moreover, the gap can be huge.
This can lead to the following example.

Let 1 be a measure on R defined by du=wdt where w=sxl0,1]+xR\[OY1]. Take
f:X[O,l]' It is an easy exercise to show that

||f||BMOZ;(,L) ~el/P
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(the interval I=[0,1+¢] almost gives a supremum). Therefore the norms for different p
are not equivalent as € —0.

Now take a sequence €,\,0 and a sequence of intervals I such that the intervals
2I}; are disjoint. Put w=>", €kX;, T X where E=R\U, k. We leave to the reader to
check that for du=w dt,

BMO%? (1) & BMOY! (1), p1<p2.

1.1.2. Ezample: BMOX (1) does depend on A. Let us consider the following measure
won R: on the intervals [—-2, —1] and (1, 2] it is just Lebesgue measure dz; on the intervals
[-3,—3] and [, 4] it is e dz where £>0 is small; everywhere else y is zero.

12° 2
Define the function f:=¢~1/P(x . Then for A<2 we have

[5/12,1/2]—X[—1/2,—5/12])

”f”BMOI;(#) ~eTl/P

(consider the interval I=[-3, 1]). However, £ lsmoz(uy~1- Indeed, if for an interval I

we have f#f,, then I has to contain one of the following three intervals: -5, %],
[3,1] or [-1,—3%]. Then u(3I)>1, so if we put a; from the definition of BMO% (1) to
be 0, we get

1
J1r-ardu= [ \r-opaus< g <utsn)
I

Take a sequence e,—0, and let u,, f, be the pair constructed above for e=¢x.
Put du(z)=3, du,(z—10k), f(z)=3_, f,(z—10k). Then clearly feBMO%(u), but
f¢BMO? (u) with A<2.

Of course, the constants 3 and 2 are not essential here: for any pair A;, A2 satisfying
1< A; <Az one can easily modify the example to get a function fe BMOKz(,u) such that
FEBMOZ, (u).

1.1.3. Ezample: T is bounded on L*(u) =% T1€BMOY(u). Let us notice that this
was proved independently, using another method, by J. Verdera [32].

Define a measure g on R as follows: on the intervals [1,2] and [-2,—1] it is just
Lebesgue measure dz; on the intervals [—1, —1+¢] and [1—¢,1] it is 0.1 dz; everywhere
else u is zero. Let T be the operator with kernel K(s,t)=1/(t—s) (defined as principal
value, i.e., as lim, f|t_sl>€ )

The operator T is bounded on LP(u), 1<p<oo, because the operator with kernel
1/(t—s) is bounded on LP(R,dz) (the operator is just the Hilbert transform up to a
constant).

On the middle third [1—2e,1—1¢] of the interval [I—¢,1] we can estimate (for

small €) T1>clog(1/e), where ¢ is some absolute constant.
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Similarly, on the middle third of the interval [~1, —1+¢] we have T1<~clog(1/e).
This implies that the norm of T'1 in BMOY(u) is at least ci/ Plog(1/e).

Again let €, —0, and let p, be the measures constructed above with e=¢;,. We
leave to the reader as an easy exercise to check that for du(z)=Y, du(z—10*) we have
T1¢BMOY (). (It is trivial that T is bounded on LP(u).)

1.2. RBMO and related spaces with the John—Nirenberg property

Recall that the measure y under consideration satisfies
p(B(z,r)) <7l (1.1)

We will consider fe€ L] (p) having the following property: for each cube @ there
exists a number fQ such that

/Qlf-fQI < B1p(eQ) (1.2)

and such that for all cubes QCR,

IfR—fQI<Bz~(1+/2 M). (1.3)

r\@ [z—cgl?

Such functions f will be called RBMO-functions, and the infimum of B;+B; can be
called the RBMO-norm. Let us make four remarks.

First, if we change 2R to AR, A>1, the space does not change. This follows imme-
diately from (1.1).

Second, we can change the parameter g in (1.2) without changing the space. This fol-
lows from the following important lemma (we repeat the proof of [27] for the convenience
of the reader).

LEMMA 1.1. Let 1<A<p and let feRBMO in the sense that (1.2) and (1.3) are
satisfied. Then

JL15=1ol < BB Bar0 NuOQ)

Before proving the lemma, let us make a remark. For two cubes Q, R, we denote by
Q(R) the smallest cube concentric with @ and containing R. We call @, R neighbors if
the size of Q(R) is at most 10 times the size of ), and the size of R(Q) is at most 10
times the size of Q. Given a function from RBMO (with its collection of fQ’s), it is easy
to see from (1.3) and (1.1) that, if @ and R are neighbors, then

|fg—fa! < Bs. (1.4)
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Let us also notice that (1.3) can be replaced by

du(z) du(z)
R|f,—fr|<B (1+/ ————+/ for all Q. 1.5
o~ Jrl< By 2r@\@ 17—l Jagry\r IT—cpl? (15)

Proof. It is convenient to think that p is a large number, and that A is only slightly
bigger than 1. Fix a cube R in our Euclidean space R", fix a first integer M greater than
2/0(A—1), and divide R into M ¥ equal cubes Q;. Each Q; can be connected with R by
a chain of neighbors, and the length of the chain L; is bounded by a constant depending
only on g, A: L;<L=L(g, ). In particular,

g, —fol < B(Bs, L). (1.6)

We know by (1.2) that
/Q |~ fo.| < Bus(0Qs).

By (1.6) we can replace fo, here by fo:

| 17- 521 < B(B1, By Douto@)

Now let us sum up all these inequalities. The cubes Q; constitute a disjoint covering
of R, the cubes gQ; all lie in AR, and their multiplicity is bounded by C(d)e~¢. This
follows trivially from volume considerations. Thus we have

/R |f— £ < B(Br, Bs, 0, N i(AR),

and the lemma is proved. a

Our third remark: we could have changed the definition by considering only cubes
centered at the support of u. Again this does not change the space. In fact, if we are
given a cube @ not centered at K:=supp u and such that 2Q) intersects K, we assign fQ
by the following rule: fix a point z€ KN2@Q, and let R be the smallest cube centered at
z and 4QC R. Then put fQ:= fp- The amount of ambiguity is very small, because any
other R (with a different center) will have almost the same fz by (1.4). If KN2Q=2,
then we put fQ=0. It is easy to see that if a function f and its collection of fQ’s satisfy
(1.2), (1.3) with a certain p>1 and only for cubes centered at K, then, by extending
the collection of fQ’s to all cubes as it has been done above, we obtain (1.2), (1.3) with
a certain ¢’>1 which is a constant times bigger than g. But Lemma 1.1 claims the
independence from ¢>1. So our remark follows.
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And the fourth remark is that we could have replaced cubes by balls without chang-
ing the space RBMO. This is an easy consequence of Lemma 1.1. By the way, the similar
lemma, is true when cubes are changed to balls (just instead of disjoint coverings we will
have coverings of finite multiplicity), which means that the corresponding “ball” space
also allows the change of p€ (1, 00) without changing the space.

Now we are ready to formulate the main result of this section: the John-Nirenberg
property of functions from RBMO. It has been proved by Tolsa in [27]. For the sake of
completeness we will prove this result.

THEOREM 1.2. Let feRBMO, let A>1, 1<p<co. Then for any cube @,

/Q [F= ol < BOWD, [ flrmnio) (HOQ))P.

To prove this result we will use the notion of doubling cube (exactly as in [27]). Fix
any a>1 and >0 (d is from (1.1)). A cube Q is called (a, 3)-doubling (just doubling
if the parameters are clear, or when they do not matter) if

w(aQ) < Bu(Q)- (1.7)

For a given @ we consider Q;:=a7Q, j >0, and the first Q; which is (a, 3)-doubling
is called Q' (we omit parameters for the sake of brevity). We will use the notation Q"
for (aQ’)’. Every cube has a supercube which is (@, 8)-doubling. This follows immedi-
ately from (1.1).

On the other hand, if 5>aV, (N is the dimension of the ambient space), then almost
every point of K=supp ¢ has a nest of cubes centered at it and shrinking to it such that
they are («, §)-doubling.

Indeed, consider a cube Q, [(Q)=!, and let M:=u(3Q). Take a point z€Q, and let
Q~. be the cube of size a7l centered at x.

Let us call the point z bad, if none of the cubes a*Q%, 0<k<r, is doubling. Then
(since 27 QL C3Q) w(QL)<M-A"=M-(a¥/8) a~N"=M-(aV/B)" Vol Q1.

Applying the Besicovitch Covering Lemma, we get that the set of all bad points z
is covered by a family of cubes Q7 , 3. u( ;j)gC(aN/ﬂ)’—m as 7—oo. This implies
that p-almost all points £ have a doubling cube of size at most [ centered at x. Since
this is true for arbitrary {, almost all points have a sequence of doubling cubes centered
at this point and shrinking to it.

LEMMA 1.3. Let feRBMO, and let a>1 and B>a? be fized arbitrarily. Then

IfQ—fol < C(Hf”R,BMO’aaB)-
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Proof. Let @ =Q;:=a’Q. Then

du(z) / ! / i~ 1@
< et LK< CH2 —_
-/ZQ'\Q |$—CQ|d 20\Q ; Qi\Qi-1 ;Z(Qi-l)d

But p(Q:)<B7u(Q;) and 1(Q;-1)"¢<aa?U-D](Q,)~¢. We substitute these two in-
equalities into the previous one to obtain a convergent geometric progression (recall that
a?/B<1). The lemma is proved. a

LEMMA 1.4. If fERBMO with fixed Bi, B, 0, then there exist numbers fQ and
positive numbers C',C",C"" depending only on By, Bs,0,a,3,d, N such that

1
—_— - X CI, '
0@ Lol < 18
IfQ—fQ/l gcﬂl7 (1.9)
|fg,—fo,| SC"  for all neighbors Q1, Q. (1.10)

There is nothing to prove— fQ’s are the numbers from the definition of RBMO, and
Lemma 1.3 completes the explanation.

Notice that one could have considered (1.8), (1.9) and (1.10) as the definition of
the “right” BMO-space (we will see that the John-Nirenberg property is satisfied under
this definition). However, the disadvantage is that it would probably depend on two
parameters: a, (. Such a space should have been called BMO(q, 3) (dependence on g does
not exist—the analogue of Lemma 1.1 applies). Being a scale of spaces (unlike RBMO
which is one canonical space) BMO(a, 8) has the advantage that it can be described in
terms of averages of our function over cubes (while RBMO involves some fQ, which, as
the reader will see, are often not averages at all). Here is this description:

For a function f let (f)Q denote its average over @, (f)szp(Q)‘lfQ fdu.

LEMMA 1.5. If feBMO(a, 3), there exist positive numbers A’, A", A" such that

5=l < A'uta) (1.11)

_ ni(aQ)
(g =g < A"= ey (1.12)
K@y = igay | SA”  for all neighbors Q1,Qa. (1.13)

Conversely, any function f satisfying {(1.11), (1.12}) and (1.13) belongs to BMO{(a, 83).

Proof. We remarked already that Lemma 1.1 holds in the setting of BMO{q, 3)
(the proof does not change at all). So, if f belongs to BMO(q, 3), then in (1.8) we can
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replace g by a with a cost of maybe changing a constant. Now

p(aQ)
[(Flg—fol <C=—= 0

This follows immediately from (1.8). The same for Q"

(2Q")
(F)g fQ|<c“(Q) <C(B).

Now (1.11) and (1.12) follow from these inequalities and from (1.8). To prove (1.13)
we write |(f) —fQ |<C for @Q=Q1,Q2 and compare f(Ql)l’f(Qz) |f(Q) f(Qz)’|<
|le—f(Ql),|—i-|fQ2 f(Qz),I-l-Ile fo,!- The first two terms are bounded by (1.9). The
third term is bounded by (1.10).

Conversely, let f satisfy (1.11), (1.12) and (1.13). Put fQ:=<f)Q,. Then

L15=5al< [ 1= 0gl 4110 ~Dg M@ < Cto) (1.14)

Also (1.10) follows immediately from (1.13) by definition. So f belongs to BMO(a, 3)
because, as we already pointed out, the constant a on the right-hand side of (1.14) can
be replaced by g (by changing C). a

Remark. Let us emphasize that Lemmas 1.4 and 1.5 describe the same space. The
change of ¢>1 in (1.8) does not change the space, and because of that the change of a to
o’€(1, ) on the right-hand sides of the inequalities of Lemma 1.5 does not diminish the
space. It is the same BMO(a, 3). But the dependence on ¢, § probably persists, because
the definition of the doubling cube Q' depends on these parameters. What we proved is
that RBMOCBMO(«, §) for all parameters.

Now we are ready to prove Theorem 1.2. It follows immediately from the following

lemma.

LEMMA 1.6. Let f satisfy all assumptions of Lemma 1.4 with certain o,C’,C",C"".
Then

p{zeQ: |f(z)—fol >t} < Dip(aQ) exp(—t/D2), (1.15)
where D1, Do depend only on ¢,0,8,N,d,C',C",C"" but not on t.

Proof. Recall that Q"=(aQ’)’. Let L be a very large constant depending only on
g,a,3,m,C',C" C", which will be chosen during the proof. Find n such that nL<t<
(n+1)L. Consider all mazimal ¢’ having the following properties: they are centered
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at z€Q, ¢'Cv/aQ and |fq/—fQ|>t. We can freely change ¢ in (1.8), which implies
[(Fg = Fy|<Culagq’)/u(q’)<C(B). This inequality and |f, —'f,|>L imply
[YEARSY?

if L is large enough. In particular,
J1=to1> 3200 (1.16)
ql

The maximality of ¢’ implies that either |f - fQ|<L, or, if it happened that ¢” is not
in \/a @, we can consider first ¢;:=a‘q’, which is not inside y/a@. The cube ¢” equals
g; for a certain j, and j>4. If j=i, then ¢” has a size comparable to @, and thus,
[fyr = fQ|<C’. If j>i, then still [f, — fQKC’ because the sizes are comparable. But also
q"=(¢:)', and so | f,»— f, |<C because of (1.9). So in all cases,

[fgr=fol <L (1.17)
if L is large enough.
The choice of ¢, the inequality |f»—f/|<C and (1.17) imply
L<|fy—f,l<2L. (1.18)
So,
{2€Q:1f(@)-fyl >t} C Ulaeq's|f(z)fy| > t-2L> (n-2)L}, (1.19)
ql
where the union is taken over our maximal ¢’ chosen above.
From our cover by ¢’ of {z€Q:|f(z) —le >t} let us choose the subcover Q* of finite
multiplicity (by the theorem of Besicovitch).

Then, using {1.16), we conclude that (the C are different, but depend only on
a,B,m,d,C’,C",C")

S ue@) <O U@ T [ sl < [ -5l
C
sf/ﬁQlf—melfQ—fmm(\/aQ)

< 2 #(aQ) < 3H(a@)
if L is sufficiently large. The estimate before the last follows again by the fact that we
can freely change ¢>1 in (1.8) if feBMO(a, 8). Here we used p=+/cx.
Now we repeat our consideration for each @Q* instead of @. By (1.9) and the last
inequality we will get
wzeQ:1£(@)—fo| >t} < (1) (@),

which proves the lemma. a
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2. Necessary conditions

2.1. How to interpret the condition Tbe BMOY (1)

Even if we assume that the operator T is bounded on L?(u), it takes some time to
define what it means for T'1 (or for Th, be L) to belong to BMO? (), since for infinite
measures u, 1¢ L?(u), and the expression T'1 formally is not defined for such measures.
However, one can make perfect sense of the above condition, even without assuming that
T is bounded.

We will need the following simple lemma, see also [22]. It means simply that if
w(B(z,7))<r? then radially symmetric singularities (like |x—20|*) admit the same es-
timates as in the case of Lebesgue measure in R%. In particular, the singularity |z]™" is
integrable at oo if r>d, and is integrable at 0 if r<d.

LEMMA 2.1 (Comparison Lemma). Let F >0 be a decreasing function on (0,00),
and let the measure p satisfy u(B(zo,7))<r? (here d>0) for a fived xo and for all r>0.
Then for 6>0,

/ F(lz=20l) du(z) <F(5)5"+d/ F(t)t?= " dt.
z:|lz—zg]28 s

In particular, for F(t)=t"9~ we have
/ |z —z0| 4" *du(z) < (d/a+1)57%.
z:|lz—x0|26

Proof. We can assume lim;_,, F'(t)=0, since otherwise we have oo on the right-hand

side, and the lemma is trivial. Clearly

F(8)
/ L Flas du) < [ wtta: Flla—aol > )
z:lz—xg| 28 0

F(8) o)
—1pd g dqF(r
<[ Eteras- [are)
=7'dF(T)|§°-i—d/(S F(r)yr¢ldr

< F(8)§%+d / F(r)r4ldr. O
8

Let us suppose (for the case of the Th-theorem) that the bilinear form (T, f, bag) of
the operator My, TM,, (M, stands for the operator of multiplication on b) is well defined
for smooth (say C'*) compactly supported f and g. Note that the bilinear form is well
defined for arbitrary L?(u)-functions with separated compact supports.

Let ¢ be an arbitrary smooth function supported by a cube Q, satisfying [ b du=0.
Then we claim that the expression (Thy, bop) is well defined.
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LEMMA 2.2. Let P=¢q be a function supported by the cube @ and orthogonal to
constants, i.e., such that ngodu=0. Then for x outside the cube Q,

HQ)*
|(T‘PQ)(1')| < CW'”@Q“LI(M‘

As one can see from the proof below, the lemma holds for truncated Calderén—
Zygmund operators T, as well.

Proof. Let yo be the center of the cube Q. If dist(z, Q) >1(Q), then by property (ii)
of Calderén—Zygmund kernels,

To(a)|=| [ K@ v)ew) du(y)'

= /[K(z,y)—K(x,yo)]sO(y) dﬂ(y)‘

y—yol®
= hi_—y()i),,L—aW(y) d#(y)l
HQ)*
< Cdlst(m, Q)d+a ’ IISOHLI(;;,)'

If dist(z, Q)<!(Q), then we have a trivial estimate using property (i) of Calderén—
Zygmund kernels:

C l(Q)a
T'o(z)| € —— |l : <(:—-——-—-<p 17,8 O
| ( < dist(z,Q)d | ”L (W) = dist(x,Q)d‘H’ I ”L (w)

Let ¥; be a smooth compactly supported function, identically equal to 1 on 2@,
satisfying 0< ) €1. Let ¥o=1—1.
The above Lemma 2.2, applied to the function @b, and the operator T*, implies

lQ)"

(T*pbe)(z) < Cu(Q) IIbzllmW'

Then, the Comparison Lemma (Lemma 2.1) implies

[ gty bl < Q) ale Il [ Q1 u(z) < oo,

RN\2Q diSt(.’L‘, Q)d+a
80 {Thab1, pbs) is well defined.

Since by the assumption (Ty;b;,bs) is well defined (v is a smooth compactly
supported function), the expression (T'hy, bs) is well defined as well.
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It is not difficult to show that the above expression does not depend on a choice of
the function ;. One can also replace the requirement ¢ =1 on 2Q by ¥1=1 on kQ for
some k>1.

Now we can say that the condition Th;€ BMO3 (1) means that for any cube @,

|(Tb1, pba)| < C||<Pb2||L2(u)#()\Q)l/2

for any smooth function ¢ supported by the cube @ and satisfying f pbg du=0.

Notice that if Th; is well defined, then the last condition means exactly that Th;€
BMO3 ()-

Similarly, condition Th; € BMOX (1) can be interpreted as

(Tb1, 0b2)| < Cllball o,y HOQ)Y?

(1/p+1/g=1) for all cubes Q and for all smooth functions ¢ supported by the cube @
and satisfying [ @b, du=0.

Notice that if the bilinear form (b7, f,g) is defined for Lipschitz compactly sup-
ported functions, or simply for bounded compactly supported functions (as for truncated
operators T ), we can assume that the above function ¢ belongs to the same class.

2.2. Necessary conditions

THEOREM 2.3. Let a Calderén-Zygmund operator T be bounded on L*(u), 1<p<oo, and
let be L=(u), |Ibllc<1. Then Tb€BMOX(u), and moreover, ||Tb||gmoz () is bounded
by a constant depending on the norm of T and the constants in the definition of the
Calderén-Zygmund kernel.

Proof. Take ge L), 1/p+1/q=1, supported by a cube @, and such that [ gdu=0.
Here g=¢b, in terms of Lemma 2.2. Since we already know that T is bounded on LP(u),
we do not have to worry about smoothness.

Decompose b as

- 1. p2
b—bX,\Q"'b'(l_X,\Q) =b +b°

It is easy to estimate
|01, T < 1Bl IT Il llgllg < Nolloo- (AR P-IT |-l gl-

Let us now estimate |(b?, T*g)|. By Lemma 2.2,

HQ)* HQ)*

" <C—9) C—F"L—
T < C gy ayaa 1910 < Oy, gyeve

/“(Q)l/p ”g”LQ(M)

(the last inequality is just the Holder inequality).
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Using the Comparison Lemma (Lemma 2.1) we get

l o
6% T*9)| < (@) P llgl o e

—r—d <C 1/p ’ O
/R”\AQ dist(y, Q)4+ w(y)| SCu@) " Pliglly

2.3. Tbe BMO, () = Tbe RBMO(p) = Thbe BMO3 ()

In this section we show that it does not matter what BMO-space to pick. We will show
here that if Th belongs to the largest possible BMO-space BMO} (1), then it belongs
to RBMO(u) and, since the space RBMO satisfles the John-Nirenberg property, see
Theorem 1.2, it belongs to the space BMO3 (u).

Let us discuss how to interpret the condition Tbe RBMO. The problem is, that
even if we know that the operator T is bounded on L”(u), Tb is not defined generally.
In §2.1 we avoided this difficulty interpreting the condition Tb€ BMOX (1) by duality.
Unfortunately, we do not know any such simple interpretation for the case of RBMO.
So our interpretation will be a bit more complicated.

Namely, given a cube G, we say that a function f belongs to RBMO(G, p) if the
inequalities (1.2) and (1.3) defining RBMO hold for all cubes QCRCG.

It is easy to say what it means that Tb; e RBMO(G, u): consider a smooth compactly
supported function ¢, 0<p<1, such that ¢(z)=1 on the cube 10G. Since (b2Thy, f) is
defined for all smooth compactly supported f, the function Tb;¢p is well defined.

We say that Th; belongs to RBMO(G, p) if Thyp€ RBMO(G, p). It is not difficult
to see that this condition does not depend on the choice of cut-off function .

And finally, we say that Th; € RBMO(p) if Th; belongs to RBMO(G, ) (with uni-
form estimates on the norms) for all cubes G.

Clearly, if Thy€ RBMO(y) then Tbh;€ BMOS (p) for all p€[1, 00), A>1; in particular,
Tb;€BMO? ().

In this section we treat the a priori bounded case, i.e., the case when the operator T is
well defined on bounded compactly supported functions. One can think about truncated
operators T, here.

THEOREM 2.4. Let the bilinear form (Th, f,bag) be defined for bounded compactly
supported f and g. Let also bje L™ and let bo€ L™ be a weakly accretive function.

Suppose that TheBMOX (u) for some p, 1<p<oo, and suppose that My, TMy, is
weakly bounded, in the sense that there exist X' 21, a<1 such that

(Tbixg, box o) < CHNQ) (2.1)

for all cubes Q.
Then TbyeRBMO(y) (and therefore Th;€ BMO3 (u)).
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LEMMA 2.5. Under the assumptions of the previous theorem,
/ ITb1 X0l du < Cu(AQ),
Q

where A=max(A, \').

Proof. First notice that if the weak boundedness condition (2.1) holds for some a<1,
then it holds for any other value of a, probably with different C.

Fix a cube Q. Pick g&L> supported by the cube @, such that ||g|l;=1, where
1/p+1/g=1. We want to show that (Tb1X2Q,bzg) is bounded. So, let us assume that
a=3.

Pick a constant ¢ such that

c/bzdu=/bzgdu,
Q Q

i.e., such that f(bgg—Cbsz) du=0.
Since ]fQ ba dp|>6p(Q) (b2 is weakly accretive),

Icl<5_1N(Q)_1/C;|b2g|dus(s_l/-"(Q)_l||b2||oo||g|‘Lq(“)/~l'(Q)l/p=5—1”b2”oo'/‘(Q)_1/q,

and so ||ch||LQ(#)<C.
Therefore ||b2-(g—CXQ)”Lv(,,)<C+1 and the condition Tb; € BMO?, (1) implies

HTbix,yq, b2 (9—ex o) < Cp(AQ) < Cr(AQ).
We know (weak boundedness) that
[(Tbix,q, bax ) < Cu(N2Q) < Cu(AQ).

It follows that
|<Tb1X2Qa b29>| < Ca

and that is exactly what we need. O

Proof of Theorem 2.4. Let QCRCG. Property (ii) of Calderén—Zygmund ker-
nels and the Comparison Lemma 2.1 imply that for any cube QCG the function p:=

Thy X106\2Q is almost constant on @, namely

lo(z)— ()| <C, z,2'€Q.
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The above Lemma 2.5 implies that for ag=(cg), where cg is the center of the cube @,

1/p
/QITblxloc:—aQIdu<M(Q)1/"(/QITblxloc—“QPd“>

<Cu(@Q)u(AQ) P < Cu(AQ).

Let us compare

|aQ _a’R| = |(Tb1X10G\Q)(CQ) —(Tblxloc\R)(cR)|
< |(rﬂ’lxloc:\zc))(CQ)_(Tblxloc\m)(cQ)| +C.

Hence

lag—ag| < C+/2R\2QIK(CQ, y)iduly) < C(1+/2R\Qdist(y, cg) ¢ dﬂ(y))- O

Now we are going to prove an analogue of Theorem 2.4 under the classical assumption
of weak boundedness

|<Tb1XQ7 b2XQ>I < Cﬂ(’\/Q)v by > 17 (22)
for all cubes Q.

THEOREM 2.6. Let the bilinear form (Tby f,bag) be defined for bounded compactly
supported f and g. Let also bi€ L™ and let bo€ L™ be a weakly accretive function.

Suppose that TbleBMO}\(p) for some p, 1<p<oo, and that My, TM,, is weakly
bounded, in the sense that (2.2) holds for all cubes Q.

Then Tb;eRBMO(p) (and therefore Th;€BMO? ().

To prove the theorem we will need the following analogue of Lemma 2.5.

LEMMA 2.7. Under the assumptions of Theorem 2.6,
/Q IThixyol? du < Cu(AQ),

where A=max(2X,2X,3).

If this lemma is proved, Theorem 2.6 follows immediately; one has simply to repeat
the proof of Theorem 2.4.

If one tries to repeat the proof of Lemma 2.5 to prove Lemma 2.7, one would en-
counter a problem: at some point we need to estimate (7Tb; Xag bax Q), and we only know
that (Tble,bsz) is bounded.

The following two lemmas below help us to cope with this problem. In these
two lemmas |- | denotes a fixed norm in R¥, and “ball” means the ball in this norm,
B(zg,r):={z€R":|z—zo|<r}. We will need the lemmas for the case when the norm
| - | is the °°-norm, |z|=max{|zk|: 1<k< N}, so the “balls” are cubes.
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LEMMA 2.8. Let B(xg,R) be a ball. There exists Ry, R<Ro<1.2R, such that for
all s€(0,1.5],

u({z:Ro—Rs <|z—x¢| < Ro+Rs}) < Csu(B(zg,3R)).

Proof. Define the measure v on [0,3R) as the radial projection of the measure
NIB(wOa?’R)v
v([0,t)) := u(B(zo,t)), 0<t<3R.

Consider the centered maximal operator M, My(z):=sup,.ov((z—s,x+s))/2s. It is
well known that M is of weak type (1,1), i.e., that

meas) {z: Mv(z) > A} < A v[0,3R), A>0,

where meas; is one-dimensional Lebesgue measure on R, and A is some absolute constant.

Therefore
10Ap(B(zo,3R))

R
on a set of length at most 0.1R. Therefore for some Ro€[R,1.2R] the inequality
Mv(Ry)<10Au(B(zo,3R))/R holds. That implies the conclusion of the lemma. a

Mv(z) >

LEMMA 2.9. Let Ry be as above in Lemma 2.8, and let K be a Calderdn-Zygmund
kernel. Then

/ / K (2,9)| dyu(z) du(y) < Cv/a(Bor Ra)) /a(B(zo, 3R))
B(zo,Ro)x[B(z0,3R)\B(x0,Ro)]

Note that the lemma is not true for arbitrary Ry. We use the fact that the measure
behaves regularly, as it is described in Lemma 2.8, in a neighborhood of the sphere
Sgoi={z:|z—zo|=Ro}.

Proof of Lemma 2.9. Consider
f@= [ K (z,9)] du(y).
B(zo,3R)\B(1:o,Ro)
Let z€ B(zg, Ro) and let §:=dist(z, Sg,), where Sp,:={z:|z—2z¢|=Ro}. Clearly

f(m)</ & =T du(y),

6<|ly—z|<5R ly €z
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and the Comparison Lemma (Lemma 2.1) implies

5Rt

d R R
< — < — = _—.
f(gv)\H—/‘s " < Clog 3 C'log Bist(z, S

The Cauchy-Schwarz inequality implies

1/2
/B(xO,Ro)f(x) du(z) <C,U(B(330,Ro))1/2 (/B 1 2 R dﬂ@)) .

0, :
(z0, Ro) & dist(z, Sg,)
Since the measure of the strip {z€B(xg, Ry):dist(z, Sg,)<7} is at most
T

see Lemma 2.8, we get

R 1 (R R
log? ————— < = | log® = dr <C'u(B(z0,3R)).
/ o8 g (@) < OB, 3R) | o8 T ar < Clu(B(eo. 3R)

We are done. 0O

Proof of Lemma 2.7. Let |- | denote the [°-norm on RV, |z|=max{|zx|: 1<k< N},
so a cube Q is just a ball in this norm, Q=B(z¢, R)={z€RN:|z—z¢|<R}. Let Q'=
B(zg, Ro) be the cube (ball) from Lemma 2.8 above.

By Lemma 2.9,

[(Tb1 X0 g+ X ) < CH(3Q) < CH(AQ),
s0, since |(Tb1xQ,,bzXQ,)KCp()\'Q’)SC’p(AQ), we have
(Tb1 X0 b2 )| < CHBQ) < C(AQ). (23)

The rest of the proof goes exactly the same way as the proof of Lemma 2.5: take a
bounded function g supported by the cube @, and pick a number ¢ such that

c | bodp= / gbs dpu.
Q Q
As in Lemma 2.5, ||cb2xQ,||Lp(“) <C. The condition Th; € BMO? (1) implies that

{Tb1x,q b2 (9—cx o)) S Cu(AQ") < Cu(AQ),

and together with (2.3) this implies l(TleQQ,bggHSC,u(AQ). O
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3. An embedding theorem

As people familiar with proofs of classical T'1- or Th-theorems can remember, the Car-
leson Embedding Theorem plays an important role there.

Here we present and prove a version of the theorem we need. We will use Theorem 3.1
below only with p=2. In this case it is just the classical Carleson Embedding Theorem,
and any known proof (with obvious modifications) would work.

We think that this theorem is of independent interest, so we will present the proof
of the general case.

Let D be a collection of dyadic cubes in RM. Let {ag}gep be a collection of
non-negative numbers, and let f;, be the average, fQ:=u(Q)’1 fQ f du. Consider a (non-
linear) operator S defined on, say, locally p-integrable functions by

Sf(z):= ( > anng(z)>l/2.

Q€D
We are interested in the question of when this operator is bounded on LP(p), i.e., when

”SfIILP(“) <C||f”Lp(“) for all feLp(’u)

THEOREM 3.1. The following statements are equivalent:
(i) the operator S is bounded on L*(u);

1 p/2

ii) sup —— a T du(z)=C<oo;

() sup s | (RZQ wXa(@))  dula)

i) the family {a satisfies the following “Carleson measure condition”:
QIQeD

sup ——— app(R)=Ci<00.
Qep 1(Q) RCZQ ni(R) !

Moreover, the constants C?/?, C, and ||S||?> are equivalent in the sense of two-sided

estimates with absolute constants.

When p=2, condition (i) means that ZQGDangu(Q)sCHf“ig(“), and the theo-
rem is simply a dyadic version of the famous Carleson Embedding Theorem. For p#2
the theorem can be interpreted as a result about embedding an L”-space into a weighted

Triebel-Lizorkin space.

Proof of Theorem 3.1. (i) = (ii). Take f=XQ- Then

p/2
/Q ( > aRme) dp(@) < 18X QIE s 0y < ISIP Xl = ISIP-1(Q),
RCQ

i.e., condition (ii} holds with C=||S||?.
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(i) = (iii). If p=2, the Holder inequality implies

1
W@ 2= u(@)/z“ﬂ"“)d“ ?

RCQ RCQ

(ot (5 e

RCQ

Let us now consider the case p<2. First notice that in this case the inequality
XPPP—(X-AX)P? > 1pxP/P-1AX (3.1)

holds for X, X —AX >0.

For a cube @ let us define the function @Q(x):zchQ apX (7).

Let Qk, 1<k<2V, be the cubes of size 31(Q) contained in Q. Notice that for z€Qx
we have @Qk(x)=<pQ (z)—ag, so the inequality (3.1) (with X=,, AX=ag) implies

oy (@)l (@) > dpely " H(a)-aq  for z€Qu.

Integrating over @ and summing up over k we get

__1_ p/2 1 p/2— 1 p/2
#(Q)/ d“/2 u(Q)/ ¥ +Z Q)/ ?q, 4 (3.2)

Let us notice that (1/u(Q)) [, ¥ /271 441 is bounded below. Indeed

1 / 1-p/2 1 / p/2-1
1< —= [ ¢g ' "du- @ du.
Q) Jo @) Jo @

On the other hand, Holder’s inequality implies

1 1-p/2 1 p/2 2/ 2/p—1
—— | ¥q dué(—-—/so du) <C¥PTh
M(Q)/Q @ wQ) Jo

1 / p/2-1 1-2/
= | ¥ dp>C P,
w@) Jo7 ¢

and so

Therefore (3.2) implies
2N

2 p/z—1<; o2, N~ L [ w2 )
Q<3¢ u(Q)/¢Q au ZN(Q)/Q%" )

k=1
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Writing such inequalities for all dyadic cubes RC(Q, multiplying them by u(R) and
summing them up, we get

2 _ 2
> apu(R)< = C”” 1 / P2 du< 2 CPP Q) C = S0P u(Q),
RCQ Q p p

which is exactly condition (iii).

(iii) = (i). To prove the implication, we use the Bellman function method. What
a Bellman function is and how to find it is discussed in great detail in [20], so here our
presentation will be very sketchy.

Clearly, it is enough to consider only f=0.

For a dyadic cube @ consider the averages

= -1 Pdy, £, = -1 du, 3.3
MQ).Lf " Q /AQ)‘éf " (3.3)
1/2
=pu(Q)"? Z aplRl, cg ::( Z aRf,%) . (3.4)
RCQ R:RDQ

Our goal is to construct a function B=B(f,F,c, A) of four real variables. We want the

function to be defined on the set
0SFSFYP, 0<A<1, c¢>0.

We want it to satisfy
ve? < B(f,F,c, A)<T-(F+c?) (3.5)

where I' >y >0 are some constants. We also want it to satisfy
B(f, F, C, A) P %(B(fh F1, Cy, A;)+B(f2, Fg, Co, Az)) (36)

for any three sets of arguments satisfying

F %(F1+F2)7 f=%(f1+f2)1
A=1(A;+Ay)+a, ci=cy=vc2+af?.

If we construct such a function B, we are done!
To show this, let us first notice that if a function B satisfies (3.6), then

M
B(f,F,c,A) 2w, B(f, Fi,cx, Ax) (3.7)
k=1
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for any p, >0 such that >, =1, and any M +1 sets of variables satisfying

M M

F=) uFy, £=" ek, (3.8)
k=1 k=1
M

A=ZukAk—|—a, ci=cCy=..=cy =Vc2+af?. (3.9)
k=1

Suppose that we are given a family {ay}pcp- Without loss of generality we can
always assume that its Carleson constant is 1, i.e., that

w(@)t Z api(R)<1 for all Q€D.
RCQ

Clearly, it is enough to prove the implication (iii) = (i) for finite families, so we
assume that only finitely many ap are non-zero and that ap=0 for RZQ.

Fix this cube Q, and let QF, k=1,2,...,2V", be the cubes of size 27"(Q) contained
in Q. Pick a non-negative function f in L(u). Condition (3.7) implies that

2N

B(fq.Fqg.cq:AQ) > Y mB(fo1, Fayr 0o Agy),
k=1

where g, Fg, ¢g, Ag are the averages defined above in (3.3), (3.4), and p:=p(Qx)/p1(Q)-
Notice that the averages satisfy (3.8), (3.9) with fy=f,1, ..., and a=a,,

Let us apply this inequality for each cube @}, then for each cube @2, etc. Going n
generations down we get

B(fq Fq,cq,Aq) 2 ; “lf(cg)) B(fq;, Fop»cop: Agp)-
The inequality (3.5) implies
1 T
1257/ D (car gy i) =7 3 B (ear P < T Fg

(cg=0 since ap=0 for RZQ). Since the family {ag}pcp is finite, for sufficiently large
n the function Zi:(ch‘)pryg coincides with |Sf|P. So we get

T I
o / SFPdu< 7 /Q Hzn
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which is exactly what we need.
So, to complete the proof we need to present a Bellman function B. Here is one of
the possible choices:

f1+scp—s—1

B(f,ch, A) =KF—W

+2vyc?,
where K >0 is large and €>0 is small, such that p—e>1. The function B satisfies
estimates (3.5): the upper estimate is trivial, and the lower one hold for sufficiently
large K (it follows from Young’s inequality ab<a?/p-+b?/p’ with appropriate D).

Let us show that (3.6) holds. Since the function f17¢/(1+A)¢ is convex, it is enough

to check that the term
f1+Ecp—e—1

(1+A)
increases more than vc? when one replaces c—~¢’'=vc2+4af?, A—A—a.
Notice that for any a>0,

Cl (c/)a—2af2 < (c/)a —c® < CQ(C/)Q_2af2.
Therefore, all we need to show is the inequality

f1+e(c/)p—s—3af2 + f1+e(c/)p—l—ea > 7’(c’)p_2af2 .

s

~~ ~~ ~
increase c first decrease A then increment of ycP

This inequality follows immediately from Young’s inequality

Ty
YL —
S

with r=2/(1—¢) and x=f3+e)(1-€)/2¢/ (P=3=€)(1-)/2

There is al§0 a simple way to see, without computations, that Young’s inequality
with some r would work. First, notice that the sum of exponents of f and ¢’ is p for each
term. Then, compare exponents, say of f, of each term:

1+e<2<3+e. O

4. Martingale difference decomposition

Fix a dyadic lattice D in R". Just for our convenience we will consider only lattices
constructed of cubes with sides 2%, k€Z (we consider cubes of all sizes, not only with a
fixed k).
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Denote by Ej, the averaging operator over dyadic cubes of size (length of the side) 2%,
namely Ej f(z)=p(Q)~* [, o f du, where Q is a dyadic cube of size 2* containing z (for the
sake of definiteness, we consider cubes of the form zo+[a, 5)V). If Q is a cube of size 2,
we denote by Eq f the restriction of Ef to Q: Esz(u(Q)_lfod,u)XQ=XQEkf.

Let Ay:=Ey_1— Ex. Again for a dyadic cube Q of size 2%, denote by Aq f the restric-
tion of Agf to Q. Clearly, for any fe L?(u), the functions Ag f, Q€D, are orthogonal
to each other, and for any fixed n,

f= 3 Bof+ Y Eof,

QeD QeED

Q)2 {Q)=2"
11320 = D 18afIP+ D IEofI*

Q€D QeD

()il {Q)=2"

For the Th-theorem we need a weighted version of the above decomposition. Namely,
let b be a weakly accretive function. Define

Bf(@)= /Q bdu)_l' ( / fau)-b(a),

where Q is the dyadic cube of size 2* containing z. Again for a cube Q of size 2* let E&
denote the restriction of E,‘; to @. Similarly to the non-weighted case define operators
Abl:=E} | —E}, and for a dyadic cube Q of size 2, let the symbol A} f denote the
restriction of Al f to Q.

Notice that all operators Ep, Eg), Ay, A} are (generally non-orthogonal) projections.
Notice also that for any feL?(u) the function AZ, f is always orthogonal to constants,
ie., [AYfdu=0.

Similarly to the non-weighted case, for any f& L?(u) one can write down a decom-
position

f= ) Abf+ Y ERf

QeD QED
(<2r (Q)=2"
(we discuss the convergence a bit later). Unfortunately, the terms in this decomposition
are not orthogonal, so we cannot get such a nice formula for the norm | f|| L2(y) 88
in the non-weighted case. Fortunately, the system of subspaces {Range A”Q: lQy<saery,
{Range E&:l(Q)=2”} forms an unconditional basis in L?(y), i.e., the following lemma
holds.
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LEMMA 4.1. Let b be a weakly accretive function, and let n€Z. Then, any f€ L?(u)

= Y Abf+ > Eyf

QeD QeD
) (Q)=2"

where the series converges in L?(u). Moreover,

AN 22y < S0 IAS Bt 3o IES A2 < ANFIZ2 0,

QeD QeD
<2t HQ)y=2"

can be decomposed as

where the constant A=A(b) depends only on b (more precisely on ||b|l and the con-
stant & in the definition of weak accretivity).

Proof. If J”=ZQ€DJ(®=2_,c CQXQ‘b (the sum is finite), then the decomposition con-
verges, because the sum contains only finitely many terms. So, the decomposition con-
verges on a dense subset of L?(u), and to prove the lemma we only need to prove the
estimates.

Let us first prove the estimate from above. Notice that the estimate for the second
sum is trivial, so to prove the estimate it is enough to show that

> 188132, <CI 32, 4.1)
QeED

or equivalently,

Z ”A f”L?(#) \C”f”[ﬁ(“)'
k

Notice that

AYf=ER_\f—ERf=[(Ex-1b) " Ex_1f—(Exb) 'Eif]-b

= (Ex-1b) " [Bro1 f—Ex f]-b+ Ex f-[(Ex-1b) "' — (Exb) ']
Arb
_— _1 . — . -—k .
=(Ey_1b) A f-b—Eif Erb Er_ib
Since be L*°, and since b is weakly accretive,

D (Eieord) T Ak Sl < 62BN 11152 -
k

To estimate the second sum, notice that according to Lemma 4.2 below, the family
ag:=u(@)""- ”AQb”iz(u), Q€eD, satisfies the Carleson measure condition (iii) from The-
orem 3.1 above. Therefore Theorem 3.1 (for p=2) implies

ZnEkfnm 188D[122 C;DIIEQflliz(“)-HAQbII 220 SCIf 1320
€
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and we are done with the estimate from above.

Notice that for p=2 Theorem 3.1 is well known: essentially it is a dyadic version
of the famous Carleson Embedding Theorem. One of the possible proofs can be found
in [21], see the proof of Theorem 3.1 there.

The estimate from below follows from a standard duality argument. First of all
notice that

(Exb)"f = (Exb) ™' Ex(bf) = b EQ (),
and so (Ab)*f=b"1AL(bf) (here we use bilinear duality (f,g)=[fgdu). Since
b,b-te L™, it follows from (4.1) that for any f€L?(pu),

SIAY FIZ2 = S 167 AL B, < CUAR
k k

Take
f=ELf+> AMf

k<n

(to avoid complications with the convergence, assume that the sum contains only finitely
many terms). Since A E2=0, A’ A?=0 for k<n and l#k, we have

1122,y = F: ) = (ELE, (BL) Py + (a4 (AL)"

k<n
1/2 1/2
< (s sz ,L>+ZIIA’ZfHLz(,L)) (II(E” Mg+ I T

The second factor is bounded from above by C||f||.2(,,, so the first one is bounded from
below.

Since the estimate from below holds for all f in a dense set, it holds for all
feL?(p). O

Now Lemma 4.1 is proved modulo the following simple lemma.

LEMMA 4.2. Let feL>®. Define aQ:=u(Q)—1.||AQb||iz(#), QeD. Then the family
{ag}gep satisfies the Carleson measure condition

> apu(R)<Cp(Q)  for all QED.

RCQ

Proof.
S 18sbl < | 7 du< 1012 n(@) 0

RCQ
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5. BMO3(u) and a Carleson measure condition

If the measure is doubling, a function in BMO can be characterized in terms of a Carleson
measure condition on its Haar coefficients.

For general measures some characterization of this type is given in the lemma below.

For technical reasons, in what follows, it is convenient for us to consider two different
dyadic lattices, say D and D’. Suppose that the sides of the cubes in both lattices are
exactly 27%, k€Z, and that the lattices are shifted with respect to one another.

Fix r large enough so that 2" >4\. For a function ¢ and a dyadic cube Q€D define

aQ:abQ((p): Z ”Alég"P"i?(“)-
Q€D 1(Q")=2"T1(Q)
dist(Q",0Q) 2 Q")
Notice that Q€D, and the smaller cubes @’ are taken from another dyadic lattice D’.

LEMMA 5.1. Let b be a weakly accretive function. If p€BMO3(u), then for any
n>1 the family {a’é(go)}QeD defined above satisfies the Carleson measure condition

Z ap <Cu(Q) forall QeD.

RCQ

Proof. It is sufficient to prove that for any dyadic cube Q€D,

Y. Ay el <CuQ) (5.1)
Q'eD":Q'cq
UQN<L2TTHQ)
dist(Q",8Q) 2 (Q")
(all terms in the sum we want to estimate are contained in the above sum).

Consider the following Whitney-type covering of the cube Q by cubes RCD’: Take
all cubes RCQ of size 277{(Q) such that dist(R,9Q)=Al(R) (the assumption 2" >4\
guarantees that there exists at least one such R), then take the layer around them
consisting of all cubes of size 277~1{(Q) such that dist(R,dQ)=\l(R), then the layer
of cubes of size 27772, etc., see Figure 5. Let us call the collection of such Whitney
cubes W.

Pick a cube REW. By the definition of BMO?(u),

/R lo— g2 du < Cu(AR).

Lemma 4.1 implies

> 118G @l7a(,,) SCH(AR). (5:2)
Q’GD/
Q'CR
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Fig. 5. Whitney type decomposition of the cube @ (here N=2, so cubes are squares). There
are four squares R of size 2-21(Q) (here r=2), around are squares of size 273I(R), then
squares of size 27 4/(R).

Estimate (5.2) implies

> Y Al <CY o n(AR). (5.3)
R

ReW Q'cD’
QCR

Since for any cube R from the Whitney-type decomposition W we have dist(R, 9Q) >
M(R), any point in @ is covered by at most M=M(N, A) cubes AR, ReW. Therefore

S r HAR) < Mu(Q).
To complete the proof of the lemma, it is enough to notice that the sum on the
left-hand side of (5.3) coincides with the sum in (5.1). O

6. Estimates of (TAY I A%g) for disjoint Q and R
Q R

The idea of the proof of the main results is pretty simple. We would like to estimate
(Tf,9). To do that, let us take two dyadic lattices D and D', decompose f and g in
the martingale difference decomposition given by Lemma 4.1, then estimate the matrix
(TA%‘ f _A%’ 9), QED, ReD’, and conclude that the operator T is bounded.
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LEMMA 6.1. Let Q,R be two cubes, [(Q)<I(R), and let dist(Q,R)=1(Q). Let
@Q,wRELZ(u) be functions supported by the cubes @ and R respectively. Suppose also
that Po is orthogonal to constants. Then

HQ)*

|<T¢Q’¢R>|<CW,U(Q)U2H( )1/2||<PQ||L2(H)||1/JR||L2(,L)-

Proof. Let sy be the center of the cube . Then we get

(T )] =

[ K906 8,0 duts) dutt

l// (£, 8)—K(t, 50 WQ 8) YR (t) du(s) du(t).

< C// |t|s SS,(()1|+01 (8), : I"/)R(t)| d,u(s) d/t(t)

Q)"
<€ grto my 2l Wel iy

W)
<Cdist(Q,R)d+" w@) 2 (R el o 10l 2y 0

Definition 6.2. Let y=a/(2a+2d), and so 'yd+'7a=%a. Let r be some positive
integer to be fixed later. Consider a pair of cubes @ and R such that dist(Q, R)>0.
Suppose for definiteness that I(Q)<I(R). We will call this pair singular if dist(Q, R)<
Q)" I(R)' 7, and essentially singular if, in addition, [(Q)<2 "I(R).

Definition 6.3. Let D(Q, R) denote the so called long distance between cubes:
D(Q, R):=dist(Q, R)+1(Q)+I(R).

LEMMA 6.4. Let T be a Calderdn-Zygmund operator and let <pQ,wR€L2(u) be
functions supported by the cubes @ and R respectively and normalized by ||<pQH 12
—-1/2
//'(Q) / ’ ||1/}R”L2([L)

to constants. Then

(=
=u(R)~Y/2. Suppose also that I(Q)<I(R) and that ¢, is orthogonal

l(Q)a/2l(R)a/2
<cOoXx/ N
I(TSOQ?’IJ)RM\C D(Q,R)d+a ’
provided that dist(Q, R)2min({(Q),(R)) and the pair Q, R is not essentially singular.
Proof. Without loss of generality one can assume that {(Q)<I(R). If dist(Q, R)>
I(R), then D(Q, R)<3dist(Q, R); thus, the estimate from Lemma 6.1 implies

UQ  _  UQ A UR)

|(T<PQ7 Yl < CD(Q, R)d+a D(Q, R+«
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Now let us suppose that dist(@, R)<I(R), but the pair @, R is not singular. That
means

dist(Q, R) > Q)" I(R)* ™.

The estimate of Lemma 6.1 and the identity 'yd—i—'ya:%a imply

CUQ*  _CUQPUR)  UQ2UR)

@ RE=E = mEe D@ R O

(Togubal <

Note that if we do not normalize the functions Yo and ¢, the estimate from
Lemma 6.4 can be rewritten as

l 01/21 R af2
|<T<PQ’ wRH < C—(—g)(Q'—}z()d.)y.E—N(Q)l/zp‘(R)l/z ”()OQ”Lz(”) “wR”LQ(#)'

The following theorem shows that the matrix {Tg g}gep, rep defined by

UQ) 21 (R)*?

TQ,R:= D(Q R)d+a IU’(Q)I/2IJ’(R)1/2

generates a bounded operator on [2.

THEOREM 6.5. Let the measure p satisfy u(Q)<CUQ)? for all squares Q. Then
for the matriz {Tg p}oep, rep’ defined above, one has

1/2 1/2
> Tonsgunsc( L eb) (3 vh)

QG‘DI Q€ED ReD’
ReD

for any sequences of non-negative numbers {zg}oep, {yR}Revlelz.

Proof. The symmetry of @ and R implies that it is enough to consider only the sum
over @, R such that [(Q)<I(R). So we can just assume that T p=0 if (Q)>I(R).
Let us “slice” the matrix {TQ’ R}Qe‘D, rep’- Namely, for any n=0,1,2, .., define the

matrix {Tg,ll)i}QeD, rep' DY putting

T _ { Tor, UQ)=27"UR),

R= .
@ 0, otherwise.

If we show that the norms of the operators T(™) decrease as a geometric progression, i.e.,

that
1/2 1/2
> 1§hrqu<z e o) (X o)
ReD’

QeD
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for some >0, then we are done.
We can split the matrices 7(™ into layers T(m:k) where

7™ I(R) =2k,
T(n,k)_{ Q.R (R)

R = .
@ 0, otherwise.

Clearly, the layers T(™*) of T(") do not interfere, therefore it is enough to estimate
each layer separately. So, it is enough to show that for any sequences of non-negative

z={zg}qepr ¥={Yr}rep' € 12,
1/2
S k) -

1/2
k _
TR S R S K
QeD, ReD’ QeD ReD’

UQ)=2F—", I(R)=2* Qy=2*"n I(R)=2*

One can rewrite the matrix T(*) as an integral operator. Namely, if we define

Xe= 3w Vagxg Yi= Y. wB) TV ypxg
QED: 1(Q)=2F—= ReD": I(R)=2*
then
XUy = Do @& IYliegy= D> vk
QED: 1(Q)=2k—  ReD":I(R)=2*

Now the estimate we need can be rewritten as

S 1§ rqup= [[ K 60X ¥ (0)du(s) due) < CIXNaal¥ e,

UQ)=2*~"
I(R)=2*

where the kernel K™ (s, t) is defined by

KM(st)= 3 Torm(@V2u(R) x4 (5)xp(t).
QeD:(Q)=2F""

ReD': I(R)=2F
Note that for each pair s, ¢, the sum has only one non-zero term, so the kernel K ,(“")(s, t)
can be easily estimated:
oka
where Kj(s)=25/(2%+|s|)4*+*. Using the Comparison Lemma (Lemma 2.1) one can
show that

KW (s,t) < C27 /2, =02 "2k , (t-3),

sup/le(s) du(s) < const < 00.
k

So, by the Schur Lemma the integral operators with kernels KCr(s—t) are uniformly
bounded, therefore the norms of the operators T(™*) (and hence of T(™) decrease as
a geometric progression, and we are done. O
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7. Paraproducts and the estimate of (Tcpq, z,bR) when QCR

As usual in the theory of singular integral operators, to estimate (Tch, ¥g) when QCR,
one can use the so-called paraproducts. The classical construction will not work in our
case, and we will slightly modify it.

7.1. Paraproducts

Let b1, by be weakly accretive functions from the statement of the Th-theorem (Theo-
rem 0.4). Let r be a positive integer to be defined later (it is the same number we used
in the definition of essentially singular pairs, see Definition 6.2). We define a paraproduct
II=IIr- by
If =y > (Egbe) ™ - Erf-(A%) T*bs.
RED QeD:U(Q)=2 "UR)
dist(Q,8R) 2 A(Q)

If we are working with a “nice” operator T, then T*by is well defined. Note that
even if T*by is not well defined, we still can define (Az?1 )*T™*bs by duality as the function
f satisfying

(f:9)=(b2, TA%g) for all g L? ().

Let us study the matrix of I1. Let QeD, ReD’. Let Yo and ¥, be functions of the
form

pol@)= Y Ag-xy(@)-bi(z), (7.1)
QED:Q'CQ
UQN=1(Q)/2

¢R(x)= Z BR"XR;(.Z')-bz(ZL‘), (7.2)
ReD:Q'CR
IR')=I(R)/2

where A/, Bp are some constants. Suppose also that the functions Yo ¥y, are orthogo-
nal to constants, i.e., fgoQ du=0, [, du=0.

The above representation, together with orthogonality to constants, means simply
that Ag Po="q and All’f Yr="%g. One should think of Po» ¥, as terms in the martingale
difference decompositions, <pQ=A2; f, ¢R=A'1’§g, f,geL?(p).

Notice that (ch,HwR) is non-zero only if QCR, [(Q)<2 "I(R). Moreover, there
should exist a dyadic cube SeD’, I(S)=2"1(Q), QCSCR, and for this cube S the in-
equality dist(Q,dS)>A1(Q) should hold. Let Ry€D’ be the dyadic cube of size 1I(R)
containing .S (it may coincide with S).
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In this case,
<¢Q7 H¢R> = <(an (Ale )* T*b2>BR1 = <TSOQ$ b2>BR1 ’ (73)
where Bg, is the corresponding constant By in (7.2).

THEOREM 7.1. Let by and by be weakly accretive functions. If T*by€ BMO3(p),
then the paraproduct 11 is bounded on L?(pu).

Proof. First notice that |Egbe|<1/6. Therefore Lemma 4.1 and a standard duality
argument imply that it is sufficient to prove the following embedding theorem:

P AR T bl <Ol
ReD’ QeD:I(Q)=2"TI(R)
dist(Q,8R) 2 A (Q)

here g denotes the average of f, fp:=u(R)~! [, f dpu.
Let
ap= > I(AZ) T ball3z,,)-

QED:U(Q)=2"T"I(R)
dist(Q,8R) 2 Q)

Since T*b,€ BMO3 (1), Lemma 5.1 implies that the family {ar} pep satisfies the Car-

leson measure condition

> ap <CW(R).
R'CR

Therefore the Carleson Embedding Theorem (Theorem 3.1) implies

S falar < ClfIEa . =
ReD’

Since we know that the paraproduct Il is bounded, we only need to estimate the
matrix ((T—H*)ch,wR), QeD, ReD'.

Definition 7.2. Let Q, R be a pair of cubes. Suppose for the definiteness that
H{Q)<I(R). We call this pair singular if

dist(Q, OR) < U(Q) " I(R)* 7,
or
dist(Q, dRy) < Q)" U(Rk) ™

for some subcube RyCR of size 3I(R); here y=a/(20:+2d), and so vd+ya=3a. We
call the singular pair Q, R essentially singular if, in addition, {(Q)<2~"I(R).

Note that the definitions are consistent with the ones we had for disjoint Q and R,
see Definition 6.2.
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7.2. Estimates of the matrix

From here on we assume that r in the definition of essentially singular pairs is large
enough such that 2"~ >\, Suppose that we have two dyadic cubes QeD, SeD’,
QCS, 1(Q)=2""1(8S). Suppose also that dist(Q,8S)>1(Q)"1(S)' ™. Then the inequality
2r(1=7) > X implies that

dist(Q,85) > U(Q)"US) " =UQ) 2"V > N(Q).

Therefore, if R is a dyadic cube of size at least 2{(S), QCSCR, and the pair @, R is not
singular, then (ch,Hz/JR) is given by (7.3).

Let @5, ¥p be two functions of the form (7.1), (7.2), and let ¢, be orthogonal to
constants. Suppose also that the functions Por ¥, are normalized in L2(p):

||(10Q||%2(p)=17 ”wR”%?(;L):l'

Let RyeD’, k=1,2,...,2", be the dyadic cubes of size %Z(R) contained in R. Then
¥, can be written as

2N
Yp(@) = Bi-xp, (@) b2(2).
k=1
Without loss of generality one can assume that QCRy. Then (see (7.3)),

I((T”H,)¢Q1¢R>| = |<T‘PQ» wR'—Blb2>|
2N
<IBL (T (g, =100 + 3 (T B b
=2
The first term is easy to estimate. Using property (ii) of Calderén-Zygmund kernels
and the orthogonality of ¢ to constants, we can write for te RV\Q,

()" (@)
[(Tog) (@)l < CW‘IWQHU(#) < CW (@),

Applying the Comparison Lemma (Lemma 2.1) one can get

l 03
(Teq (DI [ (Tl 1Baldn < C gz mi@)

—-1/2

Since ||1/1R||L2(#)=1, we have |By|<u(R;) and therefore

1Q)" ( Q) )”"’_

Bl [(Teq (xp, = Do)l < € i are \ utmy)
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The pair @, R is not singular, which implies
dist(Q, 0R1) > U(Q) U(R1)' 7 2 Q) *U(R1) 2,

and therefore

a/2 1/2
BT -0l <0 (5 (iRy)

To estimate (T, BxX,, b2), k=2,3,...,2V, we can use Lemma 6.4. It implies (if we
Q Ry

take into account that in our case D(Q, R)=<((R), and that I(R;)=3I(R)) that

HQ)?

So we have proved the following lemma.

{T¢gr Brixp,ba)| <C (@) ?u(Ry)'?

LEMMA 7.3. Let r be large enough so that 2" >4\ (see Lemma 5.1) and 271~ > ),
Let Q€D, ReD’ be dyadic cubes, QCR, [(Q)<2 "I(R). Suppose also that the pair Q, R
is not singular. Let Yo and P, be functions of the form (7.1), (7.2), and let Yo be
orthogonal to constants. Let also Ri€D' be the dyadic cube of size %l(R) containing Q
(clearly RiCR). Then for the Calderén-Zygmund operator T,

/2 1/2
(T-10g vl <0 (1) (L52) gl Wl

Let the matrix {T plgep, rep’ be defined by
UQ)/UR)* (W(@)/u(Ra)?, QCR, Q) <27"I(R),
Tor= .
0, otherwise,
where R is the subcube of R of the first generation (I(R,)=3!(R)) containing Q.

LEMMA 7.4. The matriz {T p}gep, rep' defined above generates a bounded oper-

1/2 1/2
S Tonsqun<c( o) (X vk)
QeD QeD ReD!
ReD’

ator on 12, i.e.,

for any sequences of non-negative numbers {zg}gep, {Up}t e € 2.

Proof. Let us “slice” the matrix {Tg p}gep rep’- Namely, for n=r+1,r+2,
r+3, ..., define the matrix {Tgf}a}czev,ReD’ by
T(n) _ { TQ,R’ S(Q) = 2—nz(R)’

@R 0, otherwise.
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If we show that the norms of the operators T(™) decrease as a geometric progression, i.e.,

that
(n) s ) 1/2 \ 1/2
S T5heque<rme( X b)) (X 1h)
QeD QED QeD
ReD’

for some B3>0, then we are done.

We can split the matrices T(™ into layers T(:k) where

Tink) _ { Toh UQ)=2%,
QR =

0, otherwise.
Clearly, the layers T(™*) of T(™ do not interfere; therefore it is enough to estimate each
layer separately.

Note that the “rows” {Téi‘gc): QCR} (R is fixed, {{R)=2%"") are uniformly (in R)
bounded on /2

n Q)Y Q) N, Q) ¥ Novo—
S mgr<o () % may=re (i) =2
Q:QCR g(R) Ry:RiCR Q:QCR; “(Rl) Z(R)
1(Q)=2" I(R)=U(R)/2 UQ)=2*

Note that the supports of the “rows” of T(™*) are pairwise disjoint. Therefore the rows
do not interfere, and so the norm of T(™* is bounded by C27"*/2, We are done. [

8. Estimates of the regular part of the matrix

Let dyadic lattices D and D’ be given. A dyadic square @ in one lattice (say, in D) is
called “bad” if there exists a bigger square R in the other lattice (in D’ in this case} such
that the pair @, R is essentially singular; otherwise the square is called “good”.

Let a function f€L?(u) be supported by a cube of size 2". We call the function f
“good” (D-good) if Ag‘f:O for any “bad” square Q€D, I(Q)<2".

If one replaces D by D’ and b, by b, one gets the definition of D’-good functions.

Here and in what follows, to avoid notation like (n, D, b1)-good function, we assume
that n is fixed, and we will always associate the dyadic lattice D with the function b,
and the lattice D’ with bs.

In the following lemma we assume that r from the definition of completely singular
pairs (Definition 6.2) is given. As in §7.2 we assume that r is large enough so that
2r(1=7> A and 27 >4\,

Also, let two dyadic lattices D and D’ be fixed.
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LEMMA 8.1. Suppose that T is o Calderén-Zygmund operator such that Tby, T*by€
BMO3 (), where by, by are weakly accretive functions from Theorem 0.4. Suppose also
that

[{Tb1x g bax )| < Cu(@)?u(R)/? (8.1)

for cubes Q, R of comparable size which are close, i.e., for Q, R such that 277K
HQ)/I(R)<2", dist{Q, R)<min(l(Q),(R)).

Then, for any D-good function f and any D’-good function g (f,g€L*(p), both
supported by some cubes of size 2™) we have

KTH DS CUFN L2y llgll L2y

Proof. We can write the decomposition (see Lemma 4.1)

1= X e 3 A
QeD QeD
()il HQ)=2"

and similarly for g,

9= > Efg+ ) ARy

ReD’ ReD’
I(R)K2" I(R)=2"

Let us estimate the sum 3" p pepr (TA'(’Ql f, A% g). First notice that the condition
(8.1) implies
b b
KTAGf, AR S ClAQfll L2y I ARIN L2 (-
Therefore

1/2

1/2
S (TayfAlg) <C( T ||A'3f||iz(,¢>) ( ) ||A’:,3gniu,t>>

27T R)KUQ)K2"I(R) QeD ReD’
dist(Q, R)<min({(Q),{(R))

=C”f”L2([l)||g“L2(u)

(finitely many bounded diagonals).
On the other hand, Lemma 6.4 and Theorem 6.5 imply that

1/2
> (TA S, A%g)l@(z ||A8f||%2<m) (

27T R)SHQ)S2TUR) QeD
dist(Q, R)2min(1(Q),I(R))

1/2
S alkg) )/
RINL2(p)

ReD’

=Cll N2 (191l 22 uy-
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So, we need to estimate the sums over I(Q)<2 "l(R) and [(R)<27"l(Q). Due to
the symmetry of the conditions of the lemma, it is enough to estimate only the sum over
UQ)K2™TI(R).

It remains to estimate the sum

So (TagfAge) = Y o+ )

HQ)<2-"I(R) QCR QNR=2
HQR)L2TTUR)  UQIS2TTUR)

The second sum can be estimated by Lemma 6.4 and Theorem 6.5:
> KTARf, AR

QNR=o
H{Q)<27"UR)

B Ll

D(Q R)d+a “’(Q)l/zu(R)l/Q “Azlf“[,z(y,) ”Allj{zg”L2(u)

QNR=2
H(Q)<27TU(R)

SOz ullolizu

(since the functions f,g are “good”, the entries <TA8 £ Alﬁg) corresponding to es-
sentially singular pairs Q, R are zero, and all others can be estimated as above, see
Lemma 6.4).

To estimate the first sum, notice that II has a very special “triangular” matrix.
Namely, in the sum (f, Hg)=ZQ,R(AI’Q‘f,HAI,’§g) only the terms with QCR, [{(Q)<
2-"l(R) may be non-zero. Thus

3 (TA%f A% = Y (T-TI")AYS Alg)+(f,Tg).
QCR QCR
UQ)<2™"I(R) HQ)K2UR)

We know that the paraproduct II is bounded, so we have to estimate the sum. The
estimate of the sum follows immediately from Lemmas 7.3 and 7.4.
The sums of terms with EZ,‘ for Ef{*’g,

> KTEZfA%9), S (TALS ERg),
QeD, I(Q)=2" ReD',I(R)=2"
ReD’ QeD

can be estimated similarly.
And finally, the sum
Y. KTEGS ER)l

QEeD, [(Q)=2"
ReD'I(R)=2"

is bounded because it contains at most 22" non-zero terms (recall that f, g are supported
on a cube of size 2™). 0O



206 F. NAZAROV, S. TREIL AND A. VOLBERG

9. The Tb-theorem with a stronger weak boundedness assumption

In this section we will prove the following, weaker version of the Tb-theorem (Theo-
rem 0.4), using a stronger version of the weak boundedness assumption. In this section
we assume that the operator T is well defined on compactly supported functions and sat-
isfies the conditions (0.4) above in the Introduction (one should think of the truncated

operators T, here).

THEOREM 9.1. Let T be a Calderén—Zygmund operator such that Tbhy, T*by are in
BMO3 (1) for some weakly accretive functions by, bs. Suppose also that

{Tb1x g, baxp)| < Cu(@Q)?u(R)/? (9.1)
for all cubes @, R such that

I(R)SUQ)<2l(R) and dist(Q,R)<0.1-min(l(Q),!(R))

Nl=

(this assumption is a bit stronger than weak boundedness of by Thy).
Then the operator T is bounded on L?(u).

First notice that the assumptions of the theorem imply that inequality (9.1) holds
for all cubes Q, R satisfying

2-"I(R)<UQ)<2'I(R) and dist(Q, R) <0.1-min({(Q), [(R)),

with constant depending on r, of course.
We will need this estimate for r satisfying

1 PNV
r;;logz(—l—:FA >,

where A=max(A(b1), A(b2)), A(by), A(bs) are equivalence constants from Lemma 4.1.
Note that it is an easy exercise to check that condition (9.1) implies

(TAZf, ARG < CIAY fll L2, 1A% gl 2 -

To prove the theorem we would like to estimate the bilinear form (T'f, g). We already
estimated it for “good” functions f and g, see Lemma 8.1.

After we have proved the estimate for “good” functions, the question arises: What
should we do about the “bad” ones? And the surprising answer is—nothing, just ignore
them! The point is that “bad” cubes are extremely rare, so we do not have to worry
about them.

Let us explain why.
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9.1. A random dyadic lattice

Our random lattice will contain the dyadic cubes of standard size 2% (k€Z), but will be
“randomly shifted” with respect to the standard dyadic lattice Dy. The simplest idea
would be to pick up a random variable & uniformly distributed over RY and to define
the random lattice as £+ Dy. Unfortunately, there exists no such £, and we have to act
in a little bit more sophisticated way.

Let us construct a random lattice of dyadic intervals on the real line R, and then
define a random lattice in R" as the product of the lattices of intervals.

Let Q; be some probability space and let z(w) be a random variable uniformly
distributed over the interval [0, 1)N.

Let &;(w) be random variables satisfying P{£j=+1}=P{£j=—‘l}=%. Assume also
that z{w), {;(w) are independent. Define the random lattice D(w) as follows:

(i) Let Ip(w)=[z(w)—1,z(w)|€D(w). This uniquely determines all intervals in D(w)
of length 2* where k<O0.

(ii) The intervals Ix(w)€D(w) of length 2% with k>0 are determined inductively:
if It_1(w)€D is already chosen, Ix(w) is determined by the following rule: (Ix(w))+=
Iy (w) if &{w)=41 and (Ix(w))_=1Ix_1(w) if &(w)=—1. In other words, at every step
we extend the interval Iy {(w) to the left if £, (w)=41 and to the right otherwise. Clearly,
to know one interval of length 2% in the lattice is enough to determine all of them.

To get a random dyadic lattice in R we just take a product of N independent
random lattices in R.

It is easy to check that the random lattice D(w) in R constructed in this way is
uniformly distributed over R" and satisfies the following

Equidistribution property. For z€RY, k€Z, the probability that dist(z, 0Q)>el(Q)
for some cube of size 2F is exactly (1—2¢)V.

9.2. Bad cubes

Let D(w) and D'(v') {(w,w')ex Q) be two independent random dyadic lattices, con-
structed above. We will call a cube QeD(w) bad if there exists a cube ReD'(w') of
length I[(R)>1(Q) such that the pair Q, R is essentially singular. Otherwise we will call
the cube @ good.

The definition of bad cubes in D’'(w’) is the same (now we look for a bigger cube
in D(w)).
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Fig. 6. Estimate of probability Pj.

LEMMA 9.2. Let r,~ be from the definition of essentially singular pairs, see Defini-
tion 6.2. Then for any fired w and a cube QEeD(w) we have
2=

=y is b S .
P:=P,{Q is bad} 2N1_2_7

Proof. Given a cube Qe D(w) (w is fixed) the probability P* that there exists a cube
ReD'(w'), QCR, of size 2¥1(Q) such that

dist(Q, OR) < L(Q)"I(R)!™”
can be estimated as
PFC1-(1—(27F 427k )N ganN2k,

see Figure 6. So, the probability P can be estimated as
27

— -k —
P=)"P.<2N) 2 =2N—=. ]
k2T k>r

9.3. With large probability “bad” parts are small

Consider functions f and g supported on some cube of size 2. One can write down the

decomposition
f= D Abf+ ) Edf,
QeD QeD
HQ)<2" HQ)=2"
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where the series converges in L?(u), see Lemma 4.1.
Let us split f= feo0d + foad, Where

fbad = Z Agf
QeD

(<2
Q is bad

Here “bad” means “D’-bad” where D'=D!(w’) is the other random dyadic lattice.

Similarly, one can decompose g=ggood +gbad, Where

gbad := Z A’éjg;
QeD’

ey<2n
Q is bad

here “bad” means “D-bad”.

Let us estimate the mathematical expectation E|| fbad“%z( .y (taken over the ran-
dom dyadic lattices constructed above). To do that, let us consider (for a fixed dyadic
lattice D) the so-called square function S{(x) defined for zeR"™ by

Sf@)=Spfi=" Y NAGfIEr@ xo+ D IEGf T2 k(@) Xg

QED:Q>3x QeD:Q>x
()2" (Q)=2"
Clearly,
b b
/ Sf@)du@)= 3 1AL e+ 3 IEGAIRe = 112
RN QED:Q>x QED:Q>3x
Qy<2n (Q)=2"

where > means equivalence in the sense of two-sided estimate, see Lemma 4.1. Note that
Jan Sf(z) d,u(x)SA(bl)llinz(#), where A(b;) is the constant from Lemma 4.1.
Consider the average square function E,Sf(x) (for each z€R”" take the mathemat-
ical expectation over all dyadic lattices D=D(w)). Changing the order of integration,
one can see that [pyE,Sf(z)du(z)< A(b) ||f||2L2(“).
The (conditional, w is fixed) probability P, that a square @ is bad, is at most
2N2-™/(1-277)< A™2278274N where A=max(A(b;), A(b2)), see Lemma 9.2, so

E. Sfoaa(z) < A72278274Ngf(2).
Since

Eu | foad]? < AE., ( / Sfond du) —A / E. Sfonq du

<A_12—82~4N/RNSde<2_82_4N”f”i2(u)’
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we get By, o | foaal|?=E Ew'||fbad||2<2*82_4N“f||1,2(;4)
The probability that || foaall72(,) >4-27527*"||f||72(,, cannot be more than %, and
therefore with probability % we have

foaallz(uy 2272721 £l 2

So, if we have two functions f and g, and two random dyadic lattices D(w) and
D’(w'), then with probability at least 3 we have simultaneously

fomllzz 272272 £l Ngvaallizgm <2222V gl 2 .

9.4. Pulling yourself up by the hair: proof of Theorem 9.1 under the a priori
assumption that T is bounded

Let us now prove Theorem 9.1 under the assumption that we know a priori that T is
bounded. Let us pick functions f,geL?(n), (f||=|lgll=1, such that |(Tf,g)|>1|T].
Since compactly supported functions are dense in L?(u), we can always assume that
both functions are supported by some cube of size 2™.

Pick dyadic lattices D, D’ such that

I foadll 2y 272272 fll g2y and  llgbaall 2y < 272272V |igll 2,

We can always pick such a lattice because, as we have shown above, a random pair of
lattices fits with probability at least %
First, let us recall that by Lemma 8.1 we have the estimate

|<ng()o(h ggm)d)l <C ”fgood “ L% () ”ggnod ” L3(p)*

We can write

|<Tf7 g)l < |<ngoodag>|+|<beadv g)l < l(ngoodagg()0d>l+‘<ngood’gbad>|+|<bead»g>“

We have

i(ngoodyggoodH < C‘”.fgoocl”Lz(u)”ggood“L2 (o) = C“f”Lz(u ”g“Lz(p) C,
|<ngood gbad)l < 32_2N“T”
|<beada >|< 32_2NHT||’

because || foad |l 12 () 272272, || fgoodll £2() SN FllL2(,) <1, and the same is true for g.
Therefore, since |{(T'f, g)|> 2||T||, and 272V(1,

sITII<Cc+2:272| 7).

So ||T||<€4C and we are done. O
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Remark 9.3. As one could see from the proof, to prove the limited version of Theo-
rem 9.1, it was enough to assume that

1 2942
= — —_— .
> 7log2(1_2_7)

We will need the term 24V below, in the proof of the full version of Theorem 9.1.

9.5. Pulling yourself up by the hair: proof of the full version of Theorem 9.1

Now let us discuss what we should do to prove the theorem without the a priori assump-
tion that the operator T is bounded.

The easiest way to do that is to restrict the operator T on a subspace where we
know that it is bounded.

For example, let us consider a fixed dyadic grid of cubes of size 27™°, and let a set X
consist of all functions f€ L?(u), || f[|<1, constant on the grid and supported by a cube
of size 2. Define

M(nOan)=Sup{I<Tfag>l .fageX}

(f and g can be supported by different cubes).

Clearly, if we show that M (ng,n)<C (C independent of ng,n), then we are done.

It looks like everything works fine in this case. The construction of random dyadic
lattices, for example, even gets simpler. We start with the fixed grid of cubes of size 27
(base), and we want to construct grids of bigger cubes. There are 2"V possibilities of how
to position a grid of size 2-27™°, and we assign each of them probability 2~%. For each
choice of the grid of size 2-2-™°, there are 2V possibilities of how to arrange a grid of size
22.27™0: assign to each of them probability 2V, etc.

Pick functions f,g€ X such that |[{Tf, f )|2%M (ng, n), split them into “good” and
“bad” parts, pick dyadic lattices so that the norms || foadl|l; ||gbedl|l are small, and pull
yourself out.

There is only one little problem here: fi,.4, gbad are not in X anymore: their support
can become bigger. However, this problem is not hard to take care of.

Namely, the support of fyaq cannot be too big. Let R be a cube of size 2™, support-
ing f. Then (for any dyadic lattice D) R can be covered by at most 2V dyadic cubes
Qr€D, I(Qr)=2". Therefore fyaq and fzooa are supported by the union of the cubes Q.

Similarly, gnaq is supported by a union of at most 2V cubes @}, I(Q})=2".

As in the proof of the limited version of Theorem 9.1, we split the functions into
good and bad parts, and write the estimate

|<Tf’g>| < |<ng00dag>i+|<beadag>| < ‘<ngood,ggood>l+|<ngood7 gbad>|+|<bead,g>l'
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We have

|<ngoodaggood>| < CHngOd||L2(y,)”gg00d“L2(y,) < C”f”[ﬁ(M ”gHL"’(#) <C.

Since fuaq is supported by 2V cubes of size 27, we can split it into a sum of 2V functions
such that each function is supported by a cube of size 2. Therefore

,<beadvg>l < 2N2_32_2NM(n07 7’7,) < %M(nOa Tl),

because || foadll2(,) <272272". Similarly, since both fiaq and ggooa are supported by 2V
cubes of size 27,

' l(ng00d7 gbad)l < (2N)22—32_2NM(n07 n) = %M(n()’n)’

because || fgoodllz2(,y <N FllL2(y <1 and |lgbaall 12,y <27°272N. Now, since [(Tf,g)|>
3 M (no, n), we get
%M(no,n)<0+2-§-M(n0,n).

Therefore, M(ng,n)<4C. O

10. Proof of the full version of the Tb-theorem

Now we are in a position to prove the Th-theorem (Theorem 0.4). Again, we first consider
a special, simpler case of the theorem (see §10.1 below), and then treat the general case.

10.1. Special case of the Tb-theorem: weak boundedness on parallelepipeds

Let us first consider a special case, namely, let us suppose that we have a stronger

assumption of weak boundedness:

|(Tbe1,be2)| <Cu(Q) for any parallelepiped Q.

Recall that we assume that we have some kind of a priori estimate on the norm
of the operator T (for example, we have a sequence of regularized operators), and we
would like to get an estimate depending only on quantities in the theorem (independent
of the parameter of regularization). Let us point out also that in §11 we will get rid
of the assumption of a priori boundedness of T' (at least sometimes). But now, in this
section T is always already bounded (one should think of two-sided truncations of a
Calderén-Zygmund operator), and we are proving only the correct estimate of its norm.
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The case of the weaker a priori boundedness assumption, when T is bounded on
compactly supported functions (one-sided truncations), is treated in §10.3.

We can pick functions f, ge L*(u), || fll=Ilgll=1, such that (T'f,g)>3||T|. As above
we can assume that each function is supported by a cube of size 2". As in the previous
section we can split the functions into “good” and “bad” parts, and write the estimate

|<Tfag>| < I(ngoodag>|+|<beadag>l

(10.1)
< |<ngood, ggood>|+|<ngooda gbad>|+|<bead’g>|-

As we have shown in the previous section (§9), we can pick dyadic lattices D and D’
such that | foadll2() <273272N, ||gbad|| L2y <273272%, and therefore

KT fgo0d; gbad) |+ (T foad, 9| < 7 I TI- (10.2)

Unfortunately, now we cannot estimate |(T'fgood, ggood)| <C, because in the sum

> (TA%f,ARg)
QeD
ReD’

we have infinitely many terms with ) and R of comparable size such that QNR#@.

And we do not have any estimate for such terms!

10.1.1. Idea of the proof. Recall that in the weak version of the T'b-theorem (Theo-
rem 9.1), we did not have any good estimate for terms where the pair Q, R is essentially
singular. We dumped these terms into “bad” parts of the functions, and we were able to
“pull ourselves up by the hair”. We will try to do the same trick with |(Tfzood; ggood)|
now.

Namely, we want to get the estimate
T fgood; ggooa)| < C+|IT. (10.3)
Together with (10.1), (10.2) this implies
(Tf, 9 < 3ITI+C.

Since |(Tf,g)|>3(IT|l, we get
HiTi<c,

and we are done!
To estimate |(T'fgo0d, ggood)| it is enough to estimate the sum

> (TARf,A%g) (10.4)
Q) (R)<2"
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over all cubes @, R of comparable size
27TUQ) S UR) L 27UQ),

where r is the same as in Theorem 9.1. Here AS f should be replaced by Eg‘ fifl(@)y=2",
and similarly for R. Let us recall that since f is supported by a cube of size 2" there are
at most 2V terms Eg‘ £, 1(Q)=2", in the decomposition of f, and similarly for g.

If in the above sum (10.4) we consider only the terms such that the cubes  and R are
separated (dist(Q@, R)>emin(l(Q),!(R)), €¢>0), then the sum is bounded by a constant
C=C(e). Therefore, we only need to estimate the sum over all cubes @, R such that
dist(@, R)<e min(l(Q),(R)), and £>0 can be as small as we want. Of course, the
estimate of ||T'|| we finally obtain will increase as e—0, but we are not after the optimal
estimate, so we can stop at arbitrary small .

To estimate the sum {10.4) over all cubes of comparable size (27"I(Q)<!(R)<
271(Q)), dist(Q, R)<emin(l(Q), {{R)), it is convenient to write it in a different form.
Namely, we can rewrite the layer

Apf= > ABf, k<n,
QeD
(Q)=2"*

Afif= )" colf)br, k<,
Q€eD
HQy=2k"!

where c,(f) are some constants. We can write

F=Y =303 cqlh)b,

k<n k€<n Q€D
H(Q)=2"

where the “top layer” f"=ZQ€D‘l(Q)=2n co(f)b1 is given by f”=E2‘f.
Let us remind the reader that by Lemma 4.1,

AT W2 < DM G2 < ANFIG2 0
k

where the constant A=A(b;) depends only on the accretive function b,.
Similarly,
Arg= Y Ag= Y chlg)be, k<n,

ReD’ ReD’
I(R)=2F I(R)=2F"1
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Fig. 7. The set §;; (the shaded one}.

(T

and

9=>_9"=>_ D chlg)ba.

k<n k<n ReD’
I(R)=2*

To estimate the sum (10.4) it is enough to estimate the sum

oD lealf)er(9)(Txgbr, xb2)]

kcZ Q.R

over all Q€D and ReD’ such that [(Q),l[(R)<2", 27" (Q)<I(R)<2"(Q), dist(Q, R)<
10max(l(Q), (R)).

Since for each cube Q there are finitely many (at most C(N,r)) cubes R€D’ satis-
fying the above condition, and since for separated cubes @, R (i.e. for cubes such that
dist(Q, R)>¢ min(l(Q),(R)) we have the estimate |(Tbe1,XRb2)|<Cu(Q)1/2u(R)1/2,
it is enough to consider the pairs Q, R satisfying dist(Q, R) <e min(l(Q), [(R)).

10.1.2. “Cutting out” the “bad” part ff. For a cube Q let dg:=(142¢)Q\ (1-2¢)Q,
see Figure 7. For a fixed point z€R™ and fixed k, let p. be the probability that z€dp
for some cube ReD'(w'), 28~ "< I(R)<2%*", where D'(w') is the random dyadic lattice
constructed above in §9. Note that p. does not depend on k, and that p.—0 as e—0.
Of course, if we consider the random dyadic lattice D(w), we get the same probability p,.
Note that one can compute the probability p., but we only need the fact that it can be

arbitrarily small.
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For a cube Q€D let Qy, be its “bad” part,

=01 U & )
ReD’!
27RI(Q)KUR)IS2PUQ)

For a function fe L?(p) define the “bad” parts f& of f* as

k._ .
fo = Z cQ(f)Xbeh
QeD
UQ)=2*

here we use the subscript “b” instead of “bad” to avoid confusion with fiaq.
Let us estimate the mathematical expectation E. (3, | /512 (#)) over all random
lattices D' (w') (the lattice D=D(w) is fixed). First of all notice that for a fixed z€R",

Ew’|fll)c(z)|2 < Pe|fk(x)|2,

where p, is the probability that a point z belongs to d for some cube ReD’(w') of fixed
size 2%, see above. Therefore, changing the order of integration we get

B (S 170 =X [ BUb@F @ <p Y [ 114 duto
k<n

k<n k<n

= De Z ”fk”i?(“) < peA(bl)”f”iZ(l,)’

kgn

where A(b,) is the equivalence constant from Lemma 4.1.
Since the above inequality holds for any dyadic grid D=D(w), we get for the mathe-
matical expectation E=E,, .,

B( X N1 ) € e ANy = o A1),

k<n

Similarly, for the “bad” parts gf of the functions g,

9= 2 h(9) D Xsynrbe

ReD' QED
I(R)=2* yQ)=2*
5QOR#Z

we get
B( X bl ) < peAGD 9l = pe A

k<n
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Fig. 8. Cutting out the bad part. The sets Q; and Ry are the shaded parts of the squares @
and R respectively.

So, for A=max(A(b1), A(bz)) we can estimate the probability
. 1
P“f'vw’ {; “fl,:“iz(”) > SAPE} < g,
c<n

and similarly for g. So, with probability at least 1—1—1—1 %=1 we get

4 8 8
londl22 0 S27272N, lguaaliZa,, <2022 (10.5)
and
D NG <84pe, D NghlZz,) < 8AP.. (10.6)
k<n k€n

10.1.3. Estimates of I(TXle, Xpb2)|. Take two dyadic lattices D and D' such that
all the above inequalities hold (with probability at least 3 random lattices would fit).
Consider two squares

QeD, ReD, 27M(Q)<UR)<2(Q), dist(Q, R) <emin((Q),I(R)),

see Figure 8. We would like to estimate

KTXQbI 3 XRb2>I
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Consider first the case when the cubes @ and R are in general position, as in Figure 8:
the estimate for cases when QN R =@ or one of the cubes contains the other can be done
similarly.

Let A:=QNR, Qup=Q\A\bx (the square @ without A and without the shaded
part in Figure 8), “sep” means separated (from R and from A). Let also Qo=Q\ A\Qsep
(the shaded part of @ in Figure 8). The symbol 0 here means boundary, i.e., this set
touches R and A. Note that Qs CQNdp.

Similarly, let us split R as R=Rgsp UR5UA, where all sets are disjoint. Then

<TXlev XRb2> = <TXlea XRsepb2> + <TXlea XRab2> + <TXQb17 XAb2>’
The first two terms are easy to estimate: since @@ and R, are separated,
T X Qb1 X gy b2 < CH(@) 2 Raep) /2 < Cu(@) 2 u(R)/?
the constant C here of course depends on £). The second term can be estimated as
( p
{Tx b1 x g b2) | SUT I lxgo1ll L2y X g, b2l L2 (s

because RyC Ry,.
To estimate the last term, let us write it as

(Tx b1, x zb2) = (Tx pb1, X pb2) + (T, b1, X pb2) + <TXQS“pb1 1 X pb2)-

The first term is bounded by Cu(Q)'/?u(R)'/? by the assumption of the theorem. The
other two can be estimated as above (the measure of Qy is small, and Qg and A are

separated), so summarizing all we get

{Txgb1s X gb2)| < Cu(@)/*u(R)/?
+ ”T“ (HXle ”L2(,L) ”XRbb2”L2(lt)+ ”Xbel “Lz(“) ” XRb2||L2(u))'

10.1.4. Final estimates. We know that

IC | ”X bl”L2 3 ”fb“L2 P <8Ap5,
Q Qy O (1)

ZlcR I ”XRbbanz(u):Z ”gb”L?( )\8Ap€,

and that
ZlcQ(fW )<CIfIs(,y=C,

Y ler(@Pu(R) < Clgl3a,, =C-
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Since for a cube Q€D there are at most M(N,r) cubes ReD’, 27" [(Q)<I(R)<
271(Q) satisfying dist(Q, R)<emin(l(Q),l(R)), we get, using the Canchy-Schwarz in-
equality,

Y leqUN) (@I {Txg b1, x ba)]

. - 1/2\/_ S - 1/2
<CIfI-Ngh+MN T D A5 Allgll+VAIFI-{ Y llgs)

k<n k<n
<Ol fll-lgll+M(N,m) A-4\/2p | T(|- [ fII- llgll = C+ M (N, ) A-4+/ 2pc || T,

where the sum is taken over all Q€D, ReD’ such that [(Q),I[(R)<2™, 27" {Q)<SI(R) <
2"1{Q), dist(Q, R)<emin(l(Q), (R)).

As we said above, this is enough to get the estimate
KT feood) Ggood)| < C+4AV2e M(N,r)||IT| (10.7)

(of course, C here depends on ¢). Taking ¢ sufficiently small so that 44v/2e M(N,r)< 1,
we get
(T fgood> Ggood)| < C+ % 17,

and we are done. O

10.2. The Tb-theorem under the a priori assumption that 7' is bounded

Now we are going to prove the full version of the Th-theorem (Theorem 0.4), assuming
that the operator T is bounded. The case when the operator is only well defined for
compactly supported functions is treated later in §10.3.

We are going to prove the theorem under the definition that weak boundedness means
that for some A>1 the inequality |(Tbe1, Xng)lsCu(AQ) holds for all cubes Q.

To do this we need to modify a little the estimate of |{Tx le, X pb2)|, where Q and R
are intersecting cubes of comparable size.

The construction goes as above. Let us recall that we have picked f,g in L?(u),
I fll 2y =llgll 2, =1, such that (T, g2 2IT|l, and we now want to estimate |(Tf, g)|.

First we pick r in the definition of essentially singular pairs such that with large
probability the norms || foaall 12(,.)» [|gbaall 2 () are small, which implies the estimate

|<ngood’ gbad>|+|<bead’ g>| < %”T”

for any dyadic lattice where the norms are small, cf. (10.2). Also, with large probability
(at least %), not only the norms of “bad parts” of f and g are small, but also the sums

Xk ||ft’fHL2(H) and ), |lg’g||L2(”) are small, see (10.5), (10.6).
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Rsep

Fig. 9. Cutting out the bad part. Qy is the shaded part.

Take a sufficiently small € such that 44v/2e M(N,7)< %. Here, as above, M(N,r) is
the upper bound on the number of cubes R€D’, of comparable size with a given cube @
(27" HQ)KI(R)L27(Q)), and such that dist(Q, R)<e min{l{(Q), (R)).

So, now we have ¢ fixed, as well as two dyadic lattices D and D’ such that inequalities
(10.5), (10.6) hold.

10.2.1. Cutting out more of the bad stuff. Fix now two intersecting cubes R and Q
of comparable size ((277I(Q)<I(R)<2"l(Q))). Fix the size

s=(10A)"'e min({(Q), [(R)),

and “drop” on the set A:=QNR a random grid G of cubes of size s. We want this
random grid to be uniformly distributed over R", for example we can take a fixed grid
and consider all its shifts by £(w), where £ is a random vector uniformly distributed over
the cube [0, s)".

For />0 let G,/ be an £’s-neighborhood of the boundaries of the cubes in the grid G.
Then for a fixed point z€RY the probability that z€G. is p(e’), where p(e’)—0 as
¢’—0. (Again, here one can write a formula for ¢(¢’), but we only need the fact that
p(e’)—0.)
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ApgNAg

Ap

Fig. 10. The intersection A:=QNR and the grid G, (grid of small squares). Ag and Ag
are rectangles bounded by thick lines, A is the rectangle bounded by a thinner line. Notice
that the boundary of the intersection AgNAR goes along the grid G,..

Clearly, the expectation E(u(GeNA)=¢(e)u(A), so with positive probability
w(GeNAYKp(e")u(A). So, for a given &' (and A) one can always find at least one
grid G such that the above inequality holds.

10.2.2. Estimates of |(TXQb1,xRb2)|. To estimate |(Tbe1,xRb2)| let us split the
cubes @ and R into three parts. As above, define Quep by Qsep:=Q\A\dg, where we
recall that §o:=(1+2¢)Q\(1—2¢)Q, see Figure 7.

The main difference with the previous case is in the definition of Q5. We want it now
to be almost 65NQ, see Figure 9. By “almost” we mean the following. We want that the
boundary hyperplanes of @5 that lie inside A do not cut the cubes of the grid G, but go
along the boundaries of the grid, see Figure 10. One can always pick hyperplanes such
that the distance to the corresponding (parallel) side of R is between 3el(R) and el(R).
It is possible because we assumed that the size s of the cubes of the grid G is at most
(10A)~tel(R).

So, that is how we define Qg, and let us call the rest Ag, Ag:=Q\Qsep\Qo, see
Figure 9. Note also that Q»CQy.

Let us now estimate

(TXle, XRb2> = (T)(th7 XRsepb2>+ (TXle s XRab2> + <TXQb1, XARb2>'
The first two terms are easy to estimate: since @ and Rqe, are separated,

(T xgb1, X g 02)] < CR(Q)? (Racp) /? < Cu(Q)2u(R)/?
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(the constant C here of course depends on £). The second term can be estimated as

I<TXQb17 XRab2>‘ < ”T“ ' ”Xle ”Lz(p,) ”XRbbzlle(p,)’

because RyC Ry,.
To estimate the last term, let us write it as

<TXQb17 XARb2> = <TXAQb1a XARb2> + <TXQ6b15 XARb2> + <TXQsepb1 3 XARb2> .
Clearly we have the estimates

|<TXQ8b17 XARb2>| < ”T” ’ IIXbel ”Lz(u) “Xsz”Lz(/.L)

and
(T X gy, b1 Xa 20| S CH(@)Y2u(R)Y/?

since Qsep and Ap are separated.
Now we only need to estimate the first term. Let us denote Ags:=AgNGe, Ag:=
Ag\Ge, and similarly for Az. Then

<TXAQb1 ) XARb2> = (TXA'le y XARb2> + <TXAQb1y XA/Rb2> + <TXAlea XARb2> (108)
The first two terms are easy to estimate:

(Tx a1 Xa o)) SITH- s bl e X b2l 2
I 1b1 oo lIb2lloo- 1(AG) /2 (A R)?
<ITI- 1B lloo [1B2lo0 - Voo (") - (A Q) (A R) Y/
ST 101 lloo 1B2lloo- v/ (") - (Q) 2 u(R)' 2,

and similarly
(T x5 g1 X 2] < T 1ol Moz llow /) (@) /2 R) 2
The last term (T'x Ale’ X ARb2> is bounded by
Cu(8) <Cp(@)*u(R)Y?,

where the constant C depends on the parameters in the theorem, as well as on ¢,7,¢’.
Indeed, the set AQUAQ consists of finitely many disjoint parallelepipeds Sy (most of
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which are cubes). Moreover, the set AQ is just a union of some of these parallelepipeds,
and similarly for Ag.

Since any two disjoint parallelepipeds S; and S, are separated, and by, b€ L™, we
have

(Txg,b1 xg,b2)| < Cr(81)"?1(S2) /2 < Cu(@Q)/*u(R)2.

If a parallelepiped S belongs to both AQ and Ag, then it must be a cube, see
Figure 10. Then by the assumption of weak boundedness,

[(Tx g1, X gb2)| S C(AS) < Cp(A) < Ou(Q)/*u(R)Y/2.

Since the number of the parallelepipeds Si is bounded above by a constant depending
only on r,e, A, &', then taking the sum over all the parallelepipeds we get the desired
estimate.

Summarizing all, we get

(T x b1, X gb2)l < Crp(@) 2 u(R) /2
+ITN (Ixgbrll L2 llx g, b2ll L2y + X b1l 22y X RD2 1 L2 )
+C2|IT|-vVle) - (@) 2 u(R) 2.

Here only the last term is new in comparison with the estimate (10.7) from §10.1.

10.2.3. Final estimates. Acting as in the previous section (i.e., taking the sum over
all Q, R, see above), we can get the estimate

|<ng00d7 ggood)l < C+4A\/2_€M(N7 T) “T“+C, “Tu "V (P(E/) 5

here again, only the last term is new.

Let us remind the reader that ¢ was chosen to be small enough such that the second
term is bounded by 1||T.

Let us also remind the reader that

3T < UTS, 9] < FIT N+ KT feoods Ggood) -
So, if we pick &’ to be sufficiently small such that C’'\/p(e’) <3, we get
AT <C+ZITN+ZITH+3IT
Y S 1 1 gl

and therefore || T||<8C.
We are done! d
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10.3. The full Tb-theorem

Now let us discuss the proof of the full version of the Th-theorem. We need to relax
the assumption that T is bounded, i.e., to replace it by the weaker assumption that for
compactly supported functions f, g,

where

A =max{diam(supp f), diam(supp g) }.

The definition of weak boundedness remains the same as in §10.2.

To prove the theorem under the above assumptions, we combine ideas from §§9.5
and 10.2.

Namely, let us introduce a set X consisting of all functions feL?(u), ||f||<1, sup-
ported by a cube of size 2" (each function can be supported by its own cube, so X is not
a linear space). Define

M(n) =sup{|(Tf,g)|: f,g€ X}

(f, g can be supported by different cubes).

Clearly, if we show that M{n)<C (C independent of n), then we are done.

Pick functions f,g€X such that |[(Tf, g)l}%M(n). Acting as in §9.5, split the
functions f and ¢ into “good” and “bad” parts, then get the estimates

(T foad, g)} < 2V27°272NM(n) < M(n)

and

l(ngoodagbad>| S (2N)22_32_2NM(n) = éM(n)

Then, acting as in §10.2, we get the estimate
KT feoods ggood)| S C+4AV2e M(N,T)M(n)+C'M(n)-/p(e') .

Note that the crucial part of the above estimate is the estimate of |(T'x le, X b2} |-
Since by the construction both Xg and x, are supported by cubes of size 2", one does
not need to change anything in the reasoning, except replacing || T|| by M(n).

We leave the rest and all details to the reader as an easy exercise. One does not
need even to change constants.
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10.4. Remarks about other weak boundedness conditions

All the results of the above §§10.2 and 10.3 remain true if we consider a different weak
boundedness condition,

for some A2 A>1. This kind of weak boundedness appears when we regularize (consider
truncations of) Calderén—Zygmund operators, defined initially on Lipschitz or smooth
functions, see §11 below.

Clearly, if the above condition holds for some A>1, it holds for all A€(1,A), so we
can assume that A is as close to 1 as we want.

The only modification one has to do to the proof concerns §10.2.2. One just has to
cut off different neighborhoods of the grid G (see §10.2.1) from the cubes Q and R. For
example, cut G off R, but cut only G,/ off Q.

More precisely, in doing estimate (10.8) one has to define A, Ag exactly as they
were defined, but put A:=AgNG.,; and AQ:=AQ\GE«/2.

The rest of the proof remains the same.

11. Reduction to the case of a priori bounds

In this section we are going to consider the case when the bilinear form is defined for
smooth functions or for Lipschitz functions, as in §§0.3.2 and 0.3.1 respectively.

We are going to reduce these cases to the case when we have a priori bounds on T.
Namely, first we are going to show that if Th;€BMOY(u) for some p, 1<p<oo (in
particular, if Th;€BMO} (1)), and the operator T is weakly bounded, then Th; € RBMO,
and therefore Thy€ BMO? ().

Then we show that under the same assumptions the condition 76, BMO? (1) im-
plies stleBMOf\(u) (for some A>\) for all truncated operators T, with uniform esti-
mates on BMO-norms, and that the truncated operators M;,T. M;, are weakly bounded
(with uniform estimates on constants).

11.1. The bilinear form is defined on smooth functions

We assume that the bilinear form (T'b, f,bag) of the operator My, TM;, is well defined
for all smooth (say, C*°) compactly supported f and g.

We consider the following version of the weak boundedness assumption. Fix a C'°-
function ¢ on [0, 00) such that 0<o<1, =1 on [0,a] (0<a<1) and 0=0 on [1, 00), see
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Figure 2. The parameter a is not essential here, but we will already have too many
parameters in what follows, so let us fix some a, say a=0.9.

For a ball B=B(xo,7), let og(x):=0c(|z—xo|/r). Clearly, o5 is supported by the
ball B and is identically 1 on the ball 0.9B. We will require that for any ball B,

[(Togbi,0,5b2)| KCuBB), |[(Toygb1,05b2)|<Cu(3B). (11.1)

The parameters 3 and 2 are not essential here, and can be replaced by any numbers 3>
a>1/a>1. In the classical theory an even stronger version of this condition is assumed,
see [1, p. 49]. We should also mention that for antisymmetric kernels (when the operator
is treated as the canonical value) and by =b>=Db, this condition holds, see Corollary 11.4
below.

Let us recall that a function b is called sectorial if b€ L*° and there exists a constant
£eC, |£|=1, such that Re&b>4>0.

THEOREM 11.1. Let the bilinear form (Tb, f,bag) be defined for smooth (C°) com-
pactly supported functions, and let T, be truncated operators. Suppose also that for a
function by L and a sectorial function ba, the estimate (11.1) holds for any ball B.

Then the condition Tb;eBMOA (u) (for some p, 1<p<oo) implies that Thy€
RBMO(p) (and therefore, Thy€ BMOA (1)).

THEOREM 11.2. Let T be a Calderén-Zygmund operator (with bilinear form
(Th, f,b2g) defined for smooth (C*) compactly supported functions), and let T, be trun-
cated operators. Suppose also that for a function by€ L™ and a sectorial function by, the
estimate (11.1) holds for any ball B. Then the condition Tbye BMO?(u) implies that

T,b;€ BMO? (1),

uniformly in r, where A=14\.

Moreover,
(Tbixpg b)) < CHAQ)

for all cubes Q.

As we said above, the estimate (11.1) holds for antisymmetric Calderén-Zygmund
operators. Namely, let K be an antisymmetric Calderén-Zygmund kernel (K(z,y)=
—K(y,z)). Let T be the corresponding operator defined in the sense of canonical value,

ie.,

(v,bg) =3 [ [ K0 0)9(@)- F@)9(w)] (e)b(y) du(z) duty)

for Lipschitz compactly supported f and g.
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LEMMA 11.3. Let 1,92 be Lipschitz functions, |¢12(x)—¢12(y)|<L-|x—y|, sup-
ported by bounded sets Dy, Dy, respectively, and such that |¢12]|cc<1. Then for be L™,

[(Tbe1, bga)| < CL-||b]|3, - diam(D1)-p(D2).
Proof. Notice that

lp1 () w2() =1 () p2()| = lo1(¥) p2(2) — p1(¥) p2(y) +01(y) w2(y) —p1(z) p2(y)|
<1 (y) (w2(z) —w2(¥)) |+ |p2(y) (01 (x) — o1 (¥)]
<2L|z—y|.
By property (i) of Calder6n—Zygmund kernels we have for the function
F(z,y) = K(z,9)- [p1(y) w2(z) —p1(x) p2(y)]- b(z) b(y)

the estimate |F(z,y)|<CL-||b||% |z —y|~¢*1. One can estimate

(Tbpr, bea)] < / /D 1F(@.)|du(e) du(y) + / /D 1P (@) du(z) du(y)

The Comparison Lemma (Lemma 2.1) implies

|F(z,y)| du(x) < C'L-||b]|3, diam(D:).
D,

Integrating once more over Dy with respect to du(y) we get

J[ 1F@w)ldute) duty) < C'L diom(Dy) (Do),

DlxDz

The second integral can be estimated similarly, one only has to change the order of
integration. O

COROLLARY 11.4. For the antisymmetric operator T defined above as canonical
value the inequality
|(Tb031,b032>|<0,u(B2) (beL™)

holds for concentric balls ByC By of comparable diameter, diam(Bz) <2 diam(B;).
Proof. Let r be the radius of the ball B;. The functions g , are Lipschitz functions
with norms at most C/r, i.e.,
C C
o1 (z) =1 (I < ~lz—yl,  loa(z)-o2(y)l < —le—yl,
and the result follows trivially from Lemma 11.3. O

The next lemma holds for an arbitrary integral operator (whose bilinear form
(Tf, g) is defined on smooth functions with compact supports) with kernel K satisfy-
ing |K(z,y)|<C|z—y|~¢. We are going to apply it later to the operator (M, TM,,)*
where T' is a Calder6n—-Zygmund operator.
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LEMMA 11.5. Suppose that the operator T satisfies
[(Tog,0,5)| < Cu(3B)

for any B.
Then for any two concentric balls ByC By of radii v and R respectively, R/r>2,

(Tirs, 75, < C- (3B +u(Br) 0 2 ). (11.2)

Remark 11.6. Clearly, in the conclusion of the lemma one can replace og, by x B,
the result will be the same.

Remark 11.7. In what follows, the exact expression C-(1+log(R/r)) for the multi-
plier at p(3Bj) in the estimate is not essential. What is essential is that this expression
depends only on the ratio R/r (which will be large but fixed in what follows), but does
not depend on the ratio u(B3)/u(B1), which can be arbitrary large, because the measure
1 is not doubling.

Proof of Lemma 11.5. First, we can assume that R>1.2r, because otherwise the
conclusion is trivial.

Let zg be the center of the balls B;, Bo. Denote O1,2:=0pg, , and let pi=0yp,
¥:=1—¢p. Then

(Toy,02) = (To1,0)+{Toy,Po2)
because po,=¢.

By the assumption, we have
KTav, )| < Cu(3By).

The second term is also easy to estimate. Due to the estimate on the kernel K,
Cu(B1) _ _ Cu(Bi)
dist(z, B1)¢  (|z—zo|—7)4’

where ¢ is the center of the balls By, Bz. Since (z)=0 for |z —x¢|<1.87, we can write

[To1](x) <

Cu(B
(To1,402)| S/ —“(i—g
1.8r<|r—xo|<R (|$~1‘0| _T)
d
1.87|w~xo|<R |l‘-CL‘0| r
Adding the estimates, we get the desired conclusion. a

Let us remind the reader that in the following lemma BMO means the “ball” BMO,
i.e., all averages are taken over balls, not over the cubes.

Let us also remind the reader that a function f is called sectorial if f€ L™ and there
exists £€C, |€]=1, such that Re£f>6>0.
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LEMMA 11.8. Let T be a Calderdn—Zygmund operator, let by L°°, and let bz be a
sectorial function. Suppose also that

[(Tb10y5,b205)| < Cu(3B)

for any concentric balls BCB'. Suppose also that Th1€BMOL (n), A>2, for some p,
1< p<oo.
Then for a ball B,

/ |Tb105|” du < Cu(B),
B
where B=2)B,

Proof. The idea of the proof is quite simple. First of all notice that the assumption
A>2 is not a restriction. The condition Tb;€BMO¥ (1) implies that Tb; restricted to
the ball B belongs “up to an additive constant” to L*(x|B), and the weak boundedness
(11.1) will imply that the constant is not too big.

Let g be a smooth function supported by the ball B, |l¢|l e, =1, 1/p+1/g=1. We
want to estimate {(Th1X 4, b2g)|-

Pick a constant ¢ such that

c/ aszgdu=/b2gdu,
2B B

i.e., such that [(bog—cbao,y)du=0.
Since by is sectorial, |f23 Oop b2 du| >0u(B), and we have

lel < 5—1M(B)"1/Blbzgl dp <57 (B) ™ Iballoo gl oy #(B) P = 57 1Bl oo p(B) /1.
Since |o,5|<1 and b, is sectorial,
/|023|qd#</|023|d#<5—1‘/023b2dll‘-
On the other hand, we know that

lef-

/2 oty du] _ } /B bag du{ < balloellgll 2y (B) 2 = oo s(B) 7.

Combining this with the above estimate for |c| we get

e / loapl du< el |e]- 671

/023b2 d“, <CYu(B)~l=D/ay(B)HP = CV1,
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ie., ||C‘723b2”Lq(p)<C-
Therefore for p=g—co,p we have [|¢|| 14(,)<C+1 and Jpba du=0.
Then

<Tb15 (Pb2> = <T(1 _UB)bla <Pb2> + <Tb1037 b2(,0>

Since the supports of ¢ and 1—o0y are separated, using Lemma 2.2 (for balls instead
of cubes) and the Comparison Lemma (Lemma 2.1) we can estimate the first term as

(T(1-05)b1,b2)| < Cligll 1 () < Cu(B)PNloll pa(y = C( BY 7.
We know that Tb;€BMO?, (), and therefore
[{Tb1,b2)] < CN(2/\B)1/p||90||Lq(,L)
(p is supported by 2B). It follows that
[{Tb10g, b2)| < C(2AB) P il o -
Lemma 11.5 implies that [(Thi0, baog)|<Cu(3B)<Cu(B), so
[(Tb105, cbao)| < C'u(B)u(B) ™/ < C'u(B)'/P.

Thus
|(Tbiog,b2g)| < Cu(B)'/?.
We are done. O

Proof of Theorem 11.1. This proof follows the lines of the proof of Theorem 2.4 with
the only modification that one has to use Lemma 11.8 instead of Lemma 2.5. We leave
the details to the reader. a

Proof of Theorem 11.2. Fix some ball B. First of all notice that we need to prove
the conclusion of the theorem only for small r, say for r<0.1diam(B).
Indeed, let r>0.1diam(B). Then

C
|Trb1x,p(2)| < Gu(2B) <L,

and so
[ Tbixal du< Cu(B).

On the other hand, for ¢ supported by the ball B and satisfying [ du=0 we have (cf.
Lemmas 2.2 and 2.1)

(T (1=X,5), @) S Cligll 11y SCRBY2 (11l 2, (11.3)
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(this inequality holds for all 7), so for 7 >0.1diam(B) we even have inclusion in BMO3(y).
So, let us suppose that r<0.1diam(B). Define By:=7B, and let B:=2\By=AB.
We want to show that
[ Tbiosl du< ). (11.4)
B

This would imply T’ bleBMO (i), because as we already know, for any ¢ supported by
the ball B and satisfying [ du=0, we have (cf. (11.3))

(T (1=x), )] < Cllpll 11y S CH(B)2llpll 2 -

The condition (11.4) also implies the weak boundedness condition

|<T%1XABab2XB>|<(jM(A13L

so if we prove (11.4), we are done.

To prove the inequality (11.4) we are going to apply a modification of what we called
“the Guy David trick” in [22, §4].

Let z€B and r<0.1diam(B) be fixed. Consider a sequence of balls B?=B(z,r;),
r;=2'r. Let p;:=p(B’). Let n be the smallest number such that either p, <2-3%u,_;
or BCB".

Let R=r,_1=3""!r. Let us estimate the difference

Tbog)e) - Tabiog@I< [ 1K p)h(w)osw)]da)

<CZ/

Let us recall now that |[K(z,y)|<A|z—y|¢, and therefore

n
K(z,y)ldu(y) =) I,
Bk\ Bk~ 1 ng I

<ALl —ati i1 n

Ti-1 Ti1

By construction, p; <[2-3¢)7+1="y,,_,; for j=0,...,n—1, and therefore
y Hj u

n—1 n—1 n—1 ]
LAY F<a23ty v tcany
Jj=1 j=1 Ti-1 j=1

The last term can be estimated as Z, < Ap, /r%_; <C, and therefore

[Trb10g)(x) = [T3rbrog] ()] < C.
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Now we want to estimate |[T3zb10,](x)|. If we stopped because BC B™, then 3R>
1diam(B), and in this case we know that |[T3rb104](z)]<C. Therefore we now can
assume that p, <2-3%u,_,, i.e., we are now in the doubling situation!

Let 0:=0p(, 1 25), S0 0=1 on B"~'=B(z, R).

Denote A:= [ bzo dp, and let us compare [T;zb105](z) to the average

V(z):=Vg(x) :=A_1/b10[Tb103] du. (11.5)

Since b, is sectorial, A>du(B(z, R)), and therefore

1
Vr(z <————/ bio|Thioy)|d
' R( )I JM(B(va)) B(z,1.2R)| ' [ ' B]I s
p(B(z,3R)) v
S 5 (B, 1) 12 M Xy T

<8712:3%bslloo- M| x - 1],
where M is the maximal operator,

Mf(z) = sup p(B(z, 2.57)) " /B L0

r>0

(in the last inequality we replaced XB(e.12R) by Xg, because B(z,1.2R)C By).
We know that the operator M is bounded on L?(p), see Lemma 3.1 in [22).
We have

(Tarhiopl(@)~Vale)= [ bioy[T"6.]du(w)

B\B(x,3R)
_A—l/abg-[Tbl-(l—xB(zng))aB]du
_A_1/0b2'[Tbl.XB(zYSR)UB] d,U,

=/ biog-[T*(6:— A~ obs)| du

B\B(z,3R)

—A—I/abT[TleB(LSR)]du.
We know that &, —A~'gbydp=0, and therefore the first term is bounded by

ClAI Hloballpr < C.
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The second term also can be estimated using Lemma 11.5 (see Remark 11.6) by

A™1C-u(B(z,1.2°R)) < A™'C-u(B(z,3R))
<A™'C-2-3%u(B(z,R)) <67 C-2-34,

Summarizing everything we get for x€ B the estimate
[T-b10g)(2) < Cr+ CoM |x 5 - Thiog|.
By Lemma 11.8 for p=2,
“XBO'Tbla'B||i2(M) < Cu(B).

Since the operator M is bounded on L2(p),

/B [T brog) ()12 dp(z) < Cia(B),

and we are done! O

LEMMA 11.9. The modified mazimal function operator M is bounded on LP (u) for
each p€(1,+o0] and acts from L'(p) to L1 (y).

Proof. The boundedness on L () is obvious. To prove the weak type (1,1) esti-
mate, we will use the celebrated

VITALI COVERING THEOREM. Let X be a separable measure space with measure.
Fiz some R>0. Let ECX be any set and let {B(x,7:)}zce be a family of balls of
radii 0<r.<R. Then there erists a countable subfamily {B(z;,7;)}3, (where z;€E
and rj:=ry;) of disjoint balls such that EC|J, B(z;, 2.57;) (2.5 can be replaced by 2+,
>0, here).

For the proof of the Vitali covering theorem, we refer the reader to his favorite
textbook in geometric measure theory.

Now, to prove the lemma, fix some t>0. Pick R>0 and consider the set E of the
points z€supp g for which

~ 1
M®Pf(z):= su -—-—/ dp>t.
i) 0<TER u(B(z,3r)) B(ac,r)lfI g

For every such x, there exists some radius r,€(0, R) such that

/ \fldu > tu(B(z,3r2)).
B(z,r)
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Choose the corresponding collection of pairwise disjoint balls B(z;,r;). We have

B)< Y u(Bla;,3n,)) < Z/B(z ldin<
J Ty

”f“L

It remains only to note that M(B) f AMf as R— +oo.
The boundedness on LP(u) for 1<p<+oo follows now from the Marcinkiewicz inter-
polation theorem. O

11.2. The bilinear form is defined on Lipschitz functions

In this section we assume that the bilinear form (boTb, f, g) is well defined for compactly
supported Lipschitz functions f,g.

Let |- | denote the “I°°-norm” on RY, |z|:=max{|zx|: 1<k< N}, so the “balls” in
this norm are just cubes. We fixed the “/*-norm” on R" because we have to use cubes
in the definition of weak accretivity. The results of this section hold for an arbitrary
norm |- |, if weak accretivity means that the averages over the balls in this norm are
large.

By weak boundedness in this case we mean the following two conditions:

(i) For all pairs of Lipschitz functions 1, @, satisfying |¢; 2(2)—¢12(y)| < L |z -y,
supported by bounded sets D1, Dy, respectively, and such that || 2||co <1, the inequal-
ities

[{Tb1p1, b2p2)|, [{Tbrp2, ba1)| S CL-||b1loo* [|b2]l o - diam (D1 }- (Do)
should hold for weakly accretive functions by, bs (this is for the Tb-theorem, for the
T1-theorem b;=by=1).
As Lemma 11.3 above shows, this is true for antisymmetric kernels.

(ii) Let o be the function as in Figure 1. For a ball (cube) Q=Q(z¢,7)={zcR"N:
|z—z0| <1} let

a5 =0 (|lz—xzg|/r).

(Clearly o is a Lipschitz function with Lipschitz norm at most C/re.)
We will require that for all cubes @,

(10§, b205)| < Cu(N'Q)

for some A’ 21, uniformly in £ and Q.
Definitely, the last condition holds for antisymmetric kernels, since (Tboé, bog)=0.
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THEOREM 11.10. Let T be a Calderén-Zygmund operator such that the bilinear
form (Tby f,bag) is defined for Lipschitz compactly supported f and g. Suppose that T
is weakly bounded as above.

If Tb1eBMOX (1) for some pell,00), A>1, then TbieRBMO(u) (and therefore
TheBMO3 ().

THEOREM 11.11. Let T be a Calderdn-Zygmund operator as in the previous the-
orem, b€ L°°, and let by be a weakly accretive function. If TbleBMO‘;(u), then for
truncated operators T, we have T,beBMOA (p), A=14), with uniform estimates on
the norms. Moreover, the weak boundedness condition

[(Teb1Xyq, bax o) < Cu(3Q)
holds for all cubes Q.

Let us recall that weakly accretive means p(Q)~? | I 0 bd,u[ >4 for all cubes Q. Let us
also recall that |- | means the “[*°-distance” |z—y|:=||z—y|lco:=max{|zr—yi|: 1< N}
on RV, and the theorem implies that for “cubic” truncated operators T,

T fz) = / K (z,y) f(y) du(y),
flz—yll oo >7

we have TS €BMO?2 (1) (with uniform estimates on norms). However, since the differences
T,—T¢ (T, is the usual truncation, where one integrates over the set {jx—yl|l2>7) are
uniformly bounded, the same holds for T,..

The proof of the theorem is very similar to the proof of Theorem 11.2. Let us
introduce functions ¢¢ as in Figure 1. We denote g:=0"!

For a cube (ball in the norm |- |) B=B(zo,7) let 0f:=0°(|z—xz¢|/7). Clearly of is
a Lipschitz function with Lipschitz norm 1/re.

LEMMA 11.12. Let My, TM,, be weakly bounded, as it was defined in the beginning
of this section, and let N be the blow-up constant in the definition of weak boundedness,
i.e.,

[(Tb10g, b205)1 < C(N'Q)

for all cubes Q (uniformly in € and Q).
Given R>0 let Ry, R<Ry<1.2R, be as above in Lemma 2.8. Then for all £>0,

(Tb10g(4, 3R) Y208 (20, R) | S Ci(B(x0, AR)),

where A=max(1.2),3), and C does not depend on ¢.
Proof. Since My, TM,, is weakly bounded,

{T6105 10, Ro)> D20B (20, Ro)) | < CH(B(z0, NRy)) < Cu(B(zo, AR)),
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{\
W::UE(xO,RO) '/"=UB(zo,3R)“’fa(zo,Ro)
1 .I-.'I..--.--IIIIIIIII
A\
) # ] ]
T VR
e ' >
0 N
A b
@ oo (2}
1 : :--I--I---II-II-II
0 : i}
A |
©p
1
0

Fig. 11. Splitting of the function .
$0 it remains to estimate
(Tb1(0p(z0,3R) ~OB(z0,Ro)) ¥20B(z0, Ro)) = (TWb1, b2),

where 'p::UB(IO,BR)_UE(zU,RO)’ ¢:=UE(IO,RO)‘
Split ¥ =1+ as in Figure 11. Then

(Th19,bap) = (Thiap1, bap)+{(Tb1v, b2¢).

Since ||¢]loo <1, ||¥1]loo <1, and the functions ¢ and v, are supported by B(xo, Ro) and
B(zo,3R)\ B(zg, Ro) respectively, the first term can be estimated by Lemma 2.9:

(T, bap)| < Cu(B(zo,3R)).
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By condition (i) in the definition of weak boundedness the second term can be
estimated as

1 .
|<Tb1'([}2, bg(ﬁ)' < C- E]‘%_O Rou({w : dlSt(.’L‘, SRO) < €R0}),

where Sr,:={x:|r—zg|=Ro}; here diam(supp ¢)<2Rg, and t, is supported by the
“annulus” {z:dist(z, Sr,)<€Ro}. Lemma 2.8 implies that

p({x: dist(z, Sr,) <eRo}) < Ce-u(B(zo,3R)),

and therefore |(T'h113, ba)| <Cu(B(zo,3R)). O
To prove Theorem 11.11 we need the following analogues of Lemmas 2.5, 2.7 and 11.8.

LEMMA 11.13. Under the assumptions of Theorem 11.11, for any cube @,
/Q |Tb1X,q|” du < Cu(AQ),
where A=max (2}, 2)', 3).
Proof. Pick a ball (cube) B(zg, R). Lemma 11.12 implies that
|<TleB(zo,2R)’ bQUE(:pO,RO)H < CIU'(B(xO? AR))
uniformly in . Taking the limit as e >0 we get
](Tble(onm),ngB(zoyRo))l < Cu(B(zo,AR)). (11.6)

Now we just repeat the proof of Lemma 2.5.
Let g be a smooth (Lipschitz) function supported by the ball B(zg, R) and such that
llgllg=1, 1/p+1/q=1. Pick a constant ¢ such that

c/ by du=/bggd,u,
B(zo,Ro)

so that f(bgg——cbsz(zoyRo)) du=0.
Weak accretivity of by implies(®) | [, ro) b2 d1|>p(B(z0, Ro)), therefore

le| < 5 u(B(0, Ro)) ™" / Ibag| du

< Cu(B(zo, Ro)) ™" llgllq 1(B(zo, R))"? < Cp(B(o, Ro)) ™"/,

(3) There is a little detail here: In the definition of weak accretivity we deal with cubes that are
obtained from the cube [0,1)" by shifts and dilations, but our cube (ball) B(xo, Ro) is an open one.
However, Lemma 2.8 implies that the measure p of the boundary of the ball B(zo, Ro) is 0, so this does
not present a problem.
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80 leX gy, mylla <C- Then [[b2-(9 =X, gy)|SC+1, and the condition 7b;€ BMO3, (1)
implies

|<Tb1XB(z0,2R)’ be- (g_CXB(a:o,RQ)»I < C/,L(B(l‘o, 2)‘R)) < CIJ’((B("E(M AR))

This inequality together with estimate (11.6) implies

|<Tb1XB(zO,2R)’ b2.g>| < C,LL(B(.’I:(), AR))7

and that is exactly what we need. O

Proof of Theorems 11.10 and 11.11. The proof of Theorem 11.10 follows the proof
of Theorem 2.4 without any modifications. One only has to use the above Lemma 11.13
instead of Lemma 2.5.

The proof of Theorem 11.11 follows the proof of Theorem 11.2, only instead of
Lemma 11.5 one has to use Lemma 11.13. We leave all the details to the reader. a
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