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1. Introduction

We characterize the class of measurable functions (or, more generally, real- or complex-
valued distributions) V' such that the Schrédinger operator H=~A+V maps the energy
space zé(R") to its dual L;'(R™). Similar results are obtained for the inhomogeneous
Sobolev space W1(R™). In other words, we give a complete solution to the problem
of the relative form-boundedness of the potential energy operator V with respect to
the Laplacian —A, which is fundamental to quantum mechanics. Relative compactness
criteria for the corresponding quadratic forms are established as well. We also give
analogous boundedness and compactness criteria for Sobolev spaces on domains QCR"™
under mild restrictions on J€Q.

One of the main goals of the present paper is to give necessary and sufficient condi-
tions for the classical inequality

’ [ @) via) de

gconst/ |Vu(z)|*dz, ueC{(R"), (1.1)
R”

to hold. Here the “indefinite weight” V may change sign, or even be a complex-valued
distribution on R", n>3. (In the latter case, the left-hand side of (1.1) is understood as
[{Vu,u)|, where (V-,-) is the quadratic form associated with the corresponding multipli-
cation operator V.) We also characterize an analogous inequality for the inhomogeneous
Sobolev space W3 (R"), n>1:

[ @ Vieas

<const/Rn[|Vu(x)|2+|u(a:)|2]dx, u€CP(R™). (1.2)
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Such inequalities are used extensively in spectral and scattering theory of the Schro-
dinger operator H=Hy+V, where Hy=—A is the Laplacian on R™, and its higher-order
analogues, especially in questions of self-adjointness, resolvent convergence, estimates
for the number of bound states, Schrodinger semigroups, etc. (See [Bi], [BiS1], [BiS2],
[CZ], [D1], [Fa], [Fe], [RS2], [S1], [Si], and the literature cited there.) In particular, (1.2)
is equivalent to the fundamental concept of the relative boundedness of V (potential
energy operator) with respect to Hy=—A in the sense of quadratic forms. Its abstract
version appears in the so-called KLMN theorem, which is discussed in detail, together
with applications to quantum-mechanical Hamiltonian operators, in [RS2, Section X.2].

It follows from the polarization identity that (1.1) can be restated equivalently in
terms of the corresponding sesquilinear form:

|(Vu, v)| < const- | Vul|, [ Vol L,

for all u,v€C§°(R"™). In other words, it is equivalent to the boundedness of the operator
H=Hy+V,
H:LYR™)— L;Y(R™), n>3. (1.3)

Here the energy space 25 (R") is defined as the completion of C§°(R™) with respect to
the Dirichlet norm ||Vu||1,, and Ly *(R") is the dual of zé(R") Similarly, (1.2) means
that H is a bounded operator which maps W3 (R") to W5 }(R"™), n>1.

The idea of considering H as a bounded operator acting from the energy space
to its dual goes back at least to E. Nelson’s way to prove that densely defined closed
quadratic forms bounded from below on a Hilbert space A are uniquely associated with
a self-adjoint operator on H [Ne, pp. 98-101] (see also [RS1, pp. 278-279 and Notes to
Section VIIL6]). Moreover, Nelson also used this technique to prove the existence of
the Friedrichs extension for densely defined, symmetric operators bounded from below
([Ne, pp. 101-102], [RS2, pp. 177-179 and Notes to Section X.2]). A proof of the KLMN
theorem using this approach (i.e., scales of Hilbert spaces) can be found, for instance, in
[RS2, pp. 167-168].

Thus, from the point of view of perturbation theory, we distinguish a natural class
of admissible potentials V' such that the mapping properties of Hy=—A are preserved
for H=Hy+V. It is well-known that, in the opposite situation where Hy is dominated
by V, the properties of the perturbed operator may change in a spectacular way. For
instance, under the growth conditions on V >0 at infinity prescribed by the classical
A. Molchanov’s criterion [Mo], H has a purely discrete spectrum. (Another proof of the
discreteness-of-spectrum criterion was found in [Ma2]; see also [EE], [Ma3]. General-
izations to Schrédinger operators on manifolds and magnetic Schrédinger operators are
given in [KoS], [KMS].)
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Previously, the case of nonnegative V in (1.1) and (1.2) has been studied in a compre-
hensive way. We refer to [CWW], [Fe], [KeS], [Ma3], [MaV], [RS2], [S3], where different
analytic conditions for the so-called trace inequalities of this type can be found. (A re-
cent survey of the vast literature on this subject is given in [Ve].) For general V, only
sufficient conditions have been known.

It is worthwhile to observe that the usual “naive” approach is to decompose V into
its positive and negative parts, V=V, —V_, and to apply the just mentioned results to
both V, and V_. However, this procedure drastically diminishes the class of admissible
weights V' by ignoring a possible cancellation between V, and V.. This cancellation
phenomenon is evident for strongly oscillating weights considered below. Examples of
this type are known, mostly in relation to quantum mechanics problems [AiS], [CG],
[NaS], [Stu].

In §2, we establish a general principle which enables us to solve the problems stated
above for arbitrary V. Before stating our main results, we reiterate that we do not impose
any a priori assumptions on V', and hence throughout the introduction the left-hand sides
of (1.1} and other similar inequalities are defined in terms of the corresponding quadratic
forms. Also, we use some expressions involving pseudodifferential operators, e.g. VA~V
or (—A)~Y2V, which will be carefully defined in the main body of the paper.

THEOREM L. Let V be a complez-valued distribution on R™, n=3. Then (1.1) holds
if and only if V is the divergence of a vector field I': R*—C" such that

/ |u(x)|2|f‘(x)|2dx<const/ |Vu(z)|? dr, (1.4)
R~ R

where the constant is independent of ue Cg°(R™). The vector field T'€ Ly 1o.(R™) can be
chosen as T=VA~1V.

Equivalently, the Schridinger operator H=Hy+V acting from zé(R”) to Ly (R™)
is bounded if and only if (1.4) holds. Furthermore, the corresponding multiplication
operator V: zé(R”)—>L2‘ LR™) is compact if and only if the embedding

LY(R™) C Ly(R™, [T da)

18 compact.

We remark that once V is written as V =div T, the implication (1.4) = (1.1) becomes
trivial: It follows using integration by parts and the Schwarz inequality. This idea has
been known for a long time in mathematical physics (see, e.g., [CG]) and in the theory
of Sobolev spaces [MaS].
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On the other hand, the converse statement (1.1) = (1.4), where I'=VA~1V, is quite
striking, and its proof is rather delicate. It is based on a special factorization of func-
tions in Eé(R") involving powers P}s( of the equilibrium potential Pg associated with an
arbitrary compact set KCR™ of positive capacity. New sharp estimates for Pl‘i, where
ultimately 4 is picked so that 1<2d<n/(n—2), are established in a series of lemmas
and propositions in §2. We also make use of the fact that standard Calderon-Zygmund
operators are bounded on Ly(R") with a weight P{, and the corresponding operator
norm bounds do not depend on K [MaV].

Thus, Theorem I makes it possible to reduce the problems of boundedness and
compactness for general “indefinite” V to the case of nonnegative weights ]flz, which is
by now well understood. In particular, combining Theorem I and the known criteria in
the case V0 (see Theorems 2.1 and 4.1 below) we arrive at the following theorem.

THEOREM 1I1. Under the assumptions of Theorem 1, let ]_:?‘ZVA_IVELQJOC(R").
Then the following statements are equivalent:

(a) Inequality (1.1) holds.

(b) For every compact set eCR™,

/ IT(z)|? dz < const-cap(e),

where cap(e) is the Wiener capacity of e, and the constant does not depend on e.
(c) The function g(x)=(—A)"12|[(x)|? is finite a.e., and

(=A)"Y2g*(z) < const-g(z) a.e.

(d) For every dyadic cube Py in R™,

Jp T (@) dz)? . B2 g
Z [——————} |P|<c nstLJF(x)l dz,

1-1

where the sum is taken over all dyadic cubes P contained in Py, and the constant does
not depend on Pp.

As a corollary, we obtain a necessary condition for (1.1) in terms of Morrey spaces

of negative order.

COROLLARY 1. If (1.1) holds, then for every ball B, {xo) of radius r,
/ |IVA~IV (2)|?dz < const- 7" 2,
Br(zo)

where the constant does not depend on rg€R™ and r>0.
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COROLLARY 2. In the statements of Theorem 1, Theorem 11 and Corollary 1, one
can put the scalar function (=A)~/2V in place of T=VA~'V. In particular, (1.4) is
equivalent to the inequality

/|u(:r)l2I(—A)_l/QV(x)|2da:<const/ |Vu(z)|? dz (1.5)
R" R

for all ueCg°(R™).

The proof of Corollary 2 uses the boundedness of standard singular integral operators
in the space of functions f&€ L 1oc(R™) such that

/|u(a:)|2|f(:v)|2dm<const/ |Vu(z)]? dz
R" R™

for all ue C§°(R™); this fact was established earlier in [MaV].

Corollary 2 indicates that an appropriate decomposition into a positive and negative
part for (1.1) should involve expressions like (—A)~/2V rather than V itself. Another
important consequence is that the class of weights V satisfying (1.1) is invariant under

standard singular integral and maximal operators.

Remark 1. Similar results are valid for inequality (1.2); one only has to replace the
operator (—A)~'/2 by (1—A)~'/2, and the Wiener capacity cap(e) with the correspond-
ing Bessel capacity. In statement (d) of Theorem IT and Corollary 1, it suffices to restrict
oneself to cubes or balls whose volumes are less than 1 (see details in §4).

Before proceeding to further results and corollaries of Theorem I and Theorem II, it is
instructive to demonstrate the cancellation phenomenon mentioned above by considering

an example of a strongly oscillating weight.

Ezxample 1. Let us set
V(z)= |2V 2sin(|2|Y), (1.6)

where N >3 is an integer, which may be arbitrarily large. Obviously, both V, and V_
fail to satisfy (1.1) due to the growth of the amplitude at infinity. However,

—

V(@) =divI(2)+0(la| ), where T(z) = = # cos(|z|"). (1.7)
By Hardy’s inequality in R™, n>>3 (see, e.g., [D2]),

/Ju(x)lQIi%<ﬁ/}{n|Vu(a:)|2dx, ueC§°(R"™), (1.8)
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and hence the term O(|z|™2) in (1.7) is harmless, whereas T' clearly satisfies (1.4) since
|f(x)|2<|x|_2. This shows that V is admissible for (1.1), while |V| is obviously not.
Similar examples of weights with strong local singularities can easily be constructed.

We now discuss some related results in terms of more conventional classes of admissi-
ble weights V. The following corollary, which is an immediate consequence of Theorem I
and Corollary 2, gives a simpler sufficient condition for (1.1) in terms of Lorentz-Sobolev

spaces of negative order.

COROLLARY 3. Suppose that n>3 and that V is a distribution on R™ such that
(=A)YV2VeL, «(R"™), where L, o denotes the usual Lorentz (weak L,) space. Then
(1.1) holds.

For the definition and basic properties of Lorentz spaces L, ,(R™) we refer to [StW].
In particular, it follows that (—A)~1/2V€ L,  is equivalent to the estimate

/l(—A)_l/zV(;r)Fdz<const'|e|1_2/", (1.9

where |e| is the Lebesgue measure of a measurable set e CR™.

Remark 2. Using duality and the Sobolev embedding theorem for L, ; (R")-spaces
one can show that the class of potentials V such that (—A)~"Y/2VeL, .(R") is wider
than the well-known class V€ L, /5 (R").

Remark 3. Corollary 3 demonstrates that (—A)~/2Ve L, . (R™), n>3, is sufficient
for V to be relatively form-bounded with respect to —A. For n>5, this condition is
enough for V to be even (—A)-bounded, according to the terminology of Reed and
Simon; see [RS2, pp. 162-172].

A sharper version of Corollary 3 can be stated in terms of Morrey spaces of nega-
tive order. We recall that a measurable function W lies in the Fefferman—Phong class,
introduced in [Fe], if for every ball B, (xz¢) of radius r in R", the inequality

/ |W (z)|P dz < const-r™ 2P (1.10)
Br(l"O)

holds for some p>1, where the constant does not depend on zy and 7.

It is easy to see that (1.10) holds for every 1<p<in if W€ L,/ 0(R™). As was
shown in [Fe|, (1.10) with p>1 is sufficient for W to be relatively form-bounded with
respect to —A.

The following corollary of Theorem I is applicable to distributions V, and encom-
passes a class of weights which is broader than the Fefferman—Phong class even in the

case where V is a nonnegative measurable function.
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COROLLARY 4. Let V be a distribution on R™ which satisfies, for some p>1, the
inequality

/ |(=A)~Y2V(2)|? dx < const - 7"~ 2P (1.11)
Br(mo)

for every ball B.(xzq) in R™. Then (1.1) holds.

Note that by Corollary 1 the preceding inequality with p=1 is necessary in order
that (1.1) hold.

Remark 4. A refinement of (1.11) in terms of the Dini-type conditions established
by Chang, Wilson and Wolff [CWW] is readily available by combining them with our
Theorem 1.

To clarify the multi-dimensional characterizations for “indefinite weights” V pre-
sented above, we state an elementary analogue of Theorem I for the Sturm-Liouville
operator H=—d?*/dz?+V on the half-line.

THEOREM III. The inequality

(/ fu(z)|*V(z) dz <const/ [u'(x)[? dz (1.12)
holds for all we CP(R,) if and only if
oo oo 2
sup a/ / V(t)dt| dz < oo, (1.13)
a>0 a x

where T'(z)= [ V(t) dt is understood in terms of distributions.
Equivalently, H: L}(R.)— Ly ' (R,) is bounded if and only if (1.13) holds. More-
over, the corresponding multiplication operator V is compact if and only if

a/ T(z)|?dz=0(1), where a—0" and a— +oo. (1.14)

For nonnegative V, condition (1.13) is easily seen to be equivalent to the standard
Hille condition [Hi]:

sup a/ [V(x)|dx < co. (1.15)
a>0 a

A similar statement is true for the compactness criterion (1.14).
The gap between (1.13) and (1.15) is evident from the following example which is
of interest to spectral and scattering theory.

Example 2. Let V(z)=sin{z)/zP, p>0, where z>1, and V(z)=0 for 0<z<1. Then

the operator H=—d?/dz?+V: z%(R+)—>LQ_ '(R,) is bounded if and only if p>1. More-
over, by (1.14), V is compact for p>1. However, (1.15) is applicable only when p>2.
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We observe that Theorem III, in spite of its simplicity, seems to be new for experts
in spectral theory. Its proof will be given elsewhere in a more general framework.

We now briefly outline the contents of the paper. In §2, we define the Schrodinger
operator on the energy space 2; (R™), and characterize the basic inequality (1.1). The
compactness problem is treated in §3. Analogous results for the Sobolev space W, (R™)
are obtained in §4, while §5 is devoted to similar problems on a domain QCR™ for a
broad class of Q, including those with Lipschitz boundaries.

In this paper, we restrict ourselves to the Hilbert case p=2, and the second-order
operator Hy=—A. However, our boundedness and compactness criteria can be carried
over to Sobolev spaces IOJ;"(R") and W*(R"), where 1<p<oo and m>0, and higher-
order operators like H=(~A)"+V. The proofs of the necessity statements for p#2
and m#1 are technically more complicated, and will be presented separately. The cor-
responding L,-inequalities have applications to certain nonlinear problems (see, e.g.,
[HMV], [KaV]).

The main results of this paper were established at the Mittag-Leffler Institute in
October, 1999. It is a pleasure to thank Fritz Gesztesy, Ari Laptev, Yehuda Pinchover,
Michael Solomyak and Timo Weidl for the discussions of our work from the viewpoint of

mathematical physics, and references to the literature.

2. The Schrédinger operator on L3(R™)

We start with some prerequisites for our main results. Let D(R™)=C§°(R"™) be the
class of all infinitely differentiable, compactly supported complex-valued functions, and
let D'(R™) denote the corresponding space of (complex-valued) distributions. In this
section, we assume that n>3, since for the homogeneous space Z; (R™) our results become
vacuous if n=1 and n=2: they hold only for Schrédinger operators with zero potential.
(Analogous results for inhomogeneous Sobolev spaces W4 (R™) are valid for all n>1; see
§4 and §5 below.)
For VeD’'(R™), consider the multiplication operator on D(R"™) defined by

(Vu,v):=(V,av), u,veDR"), (2.1)

where (-, ) represents the usual pairing between D(R") and D/(R").

The space IOL%(R") is defined as the completion of D{R™) in the Dirichlet norm
IVullL,m=). Elements of zé(R"), for n>3, are weakly differentiable functions ue
Ly j(n-2)(R™) whose first-order weak derivatives lie in Ly(R"). By Hardy’s inequality,
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an equivalent norm on L}(R™) is given by

1/2

413, 0, = [ | (el @)+ 1Vu(a)?) do

If the sesquilinear form (V-,-) is bounded on Eg (R™) x 25(11")
(Vi o)l <l Vel aquy [ V0l aeys 1w 0E DR, (22

where the constant ¢ is independent of u, v, then Vue Ly (R™), and the multiplication
operator can be extended by continuity to all of the energy space zé(R") As usual, this
extension is also denoted by V.

We denote the class of multipliers V' such that the corresponding operator from
2% (R") to Ly '(R™) is bounded by

M(LyR"™) = Ly ' (R™)).
Note that the least constant ¢ in (2.2) is equal to the multiplier norm:

VI <1, ueD(R™)}.

siiamer-y ey =PIVl el )

For VeM (E%(R”)%Lz_ L(R™)), we will extend the form (V, @) defined by the right-
hand side of (2.1) to the case where both u and v are in L3(R™). This can be done by
letting

{(Vu,v):= lim (Vupy,vn),
N—-oo

where u=limy_,ocuny and v=limp_,oc vxN in Z%(R"), with uyx,vny €D(R™). It is known
that this extension is independent of the choice of uy and vy.

We now define the Schrédinger operator H=Hy+V, where Hy=—A, on the energy
space zé(R") Since Hop: 2%(R")—>LQ_ L(R™) is bounded, it follows that H is a bounded
operator acting from zé(R") to Ly '(R™) if and only if Ve M (IOJ% (R™)— Ly (R™)). By
the polarization identity, (2.2} is equivalent to the boundedness of the corresponding
quadratic form:

(Ve u)| = (V. [ul?)] < el Vul2, gny, uEDR™, (2.2)

where the constant c is independent of . If V is a (complex-valued) Borel measure
on R", then (2.2") can be recast in the form (see the Introduction)

I/Rn|u(x)|2dV(zc) <c||Vu||%2(Rn), ueD(R"™). (2.3)
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For positive distributions (measures) V| this inequality is well studied. We collect several
equivalent characterizations of (2.3) for this case in Theorem 2.1 below.
For a compact set eCR"™, define the Wiener capacity by

cap(e) = inf{||Vu||%2(Rn) :u€D(R™), u(z) 21 on e}. (2.4)

Let V be a positive Borel measure on R"”. By I,V =(—A)"'/2V, we denote the Riesz
potential of order 1:

LV(z)=c(n) / dv()

re [z—t"71

where ¢(n)=T'(3(n—1))/2n("*1)/2_ More generally, the Riesz potential of order o€ (0,7n)
is defined by

I,V(z)=c(n,a) / dvi(t)

re [z—t|P7e

where ¢(n,a)=T'(3(n—a))/2%7™/?T(a). In particular, for =2 we get the Newtonian
potential I,=(-A)"!,

THEOREM 2.1. Let V be a locally finite positive measure on R™. Then the following
statements are equivalent:

(i) The trace inequality

W@ V() < ealVelld ey, vEDR™) (25)
R»

holds, where ¢y does not depend on u.

(ii) For every compact set eCR™,
V{e) < cacaple), (2.6)

where ¢ does not depend on e.
(iii) For every ball B in R",

/ (I;Vg)?dx < c3V(B), (2.7)
B

where dVg=xp dV, and c3 does not depend on B.
(iv) The pointwise inequality

L(LV)?(z)<eahV(z) <o aee. (2.8)

holds, where ¢4 does not depend on x€R™.
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(v) For every compact set eCR",

/ (I,V)?dx < cEcap(e), (2.9)

e

where c5 does not depend on e.
(vi) For every dyadic cube Py in R™,

> [—VLP)—J [P| < eV (Fo), (2.10)

1-1
Pp, LIPPT

where the sum is taken over all dyadic cubes P contained in Py, and cg does not depend
on Po.

The equivalence (i) < (ii) is due to Maz’ya [Mall, and (i) < (iii) to Kerman and
Sawyer [KeS]; (i)« (iv) < (v) was obtained in [MaV]; (i)« (vi} is discussed in [Ve],
where a survey of trace inequalities of this type in L,-spaces is given.

Remark 1. The least constants in the inequalities (2.5)-(2.10) are equivalent in the
sense that the quotients ¢; /c; (¢,j=1, ..., 6) are bounded from above and below by positive
constants which may depend only on n. Moreover,

ce < e1 < e,

where both the lower and the upper estimates are sharp (see [Mal], [Ma3]}).

We now state our main result for arbitrary (complex-valued) distributions V. By
L2 10c(R™)=L2 1o.(R™)®C"™ we denote the space of vector functions f:(Fl, ..., ') such
that FiELgyloc(Rn), i=1,..,n.

THEOREM 2.2. Let VeD'(R™). Then VGM(E%(R”)—)L?(R”)), i.e., the inequal-
ity
[V, v)[ < cflu

B gy (@11

holds for all u,veD(R"™), if and only if there is a vector field f‘ELg,IOC(R") such that
V=divl and
/ () [F (@) 2dz < C / V()2 d (2.12)
k3 Rn
for all ueD(R™). The vector field I' can be chosen in the form F=vA-lvV.
Remark 2. For =VA~'V, the least constant C in the inequality (2.12) is equivalent

to VI . o
M(LYR) =L (R"))
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Proof of Theorem 2.2. Suppose that V=div [, where [ satisfies (2.12). Then using
integration by parts and the Schwarz inequality we obtain:
(Ve 0)| = |(V, 50)| = (T, v0@) + (T, 2 Vo)
< T 0Ny rm) 1V Ly rm) + 1T Ul @) [Vl Lo (ry
<2V |Vl ey V0]l Ly R,
where C' is the constant in (2.12). This completes the proof of the “if” part of Theorem
2.2.

The proof of the “only if” part of Theorem 2.2 is based on several lemmas and
propositions.

In the next lemma, we show that F=vA-lve L2 1oc(R™), and give a crude prelim-
inary estimate of the rate of its decay at co. Denote by Br=DBg(xz¢) a Euclidean ball of
radius R centered at zg€R™.

LEmMMA 2.3. Suppose that
Ve M(LYR™) - Ly (R™)). (2.13)

Then f‘:VA“lVGLQ)IOC(R") and V=divl in D'. Moreover, for any ball Br(xo)
(R>0) and >0,

[(z)|2dz < C(n,e)R* 2 ||V|? . , 2.14
[, F@rd<Coar = WE G (214)

where R>max{1, |zo|}.

Proof of Lemma 2.3. Suppose that Ve M (loLé(R")—>L2_ '(R")). Define the vector
field FeD’ by
(T, 8)=—(v,A™ div ) (215)

for every q?e’D@C". In particular,
(f‘va>:_<‘/a¢>7 d)ED, (215,)

ie., V=divl in D"

We first have to check that the right-hand side of (2.15) is well-defined, which a priori
is not obvious. For $GD®C", let w=A"1div qg, where —A~'f=I,f is the Newtonian
potential of feD. Clearly,

w(z)=0(z|'™™) and |Vw(z)|=0(z|™") as |z|— oo,



THE SCHRODINGER OPERATOR ON THE ENERGY SPACE 275

and hence
w=A"ldiv§e LLR")NC(R™).

We will show below that w=wwv, where u is real-valued, and both u and v are
in LY(R™)NC®(R™). Then, since Ve M(LL(R™)—>L; (R™), it follows that (V,w)=
(Vu,v) is defined through the extension of the multiplication operator V' as explained
above.

For our purposes, it is important to note that this extension of (V,w) to the case
where w=1av, and u,v€ E%(R”)OC"’O (R"™), is independent of the choice of factors « and v.
To demonstrate this, we define a real-valued cut-off function ny(z)=n(N~'|z|), where
neC*(R,), so that n(t)=1 for 0<t<1 and n(t)=0 for t22. Note that Vny is supported
in the annulus N <|z|<2N, and |Vyn(z)|<clz|™'. It follows easily (for instance, from
Hardy’s inequality) that

s _ — o1 n
Jm yu—ully, =0, ue LR

Then letting uy =nyu and vy =7nnv, so that iyvy=niw, we define (V,w) explicitly
by setting
(Vyw):= lim (Vupn,vn)= lim (V,naw).
N—00 N-oxo
This definition is independent of the choice of 7, and the factors u,v. Moreover,

s . O O1 n o0 n
|<V,w)|<Clnf{||u||E%(Rn)||v||i%(Rn).w—uv, u,v€ Ly;(R")NC(R )},

where C=||V|| . . .
M(Ly(R™)—L;(R™))
Now we fix >0 and factorize: w(z)=A"'div ¢(x)=u(z)v(z), where
w(z)=(1+]z|?) """/ and  o(z)= (14]22) 2+ A M divg(z).  (2.16)
Obviously, uei%(R”)mC“’(R") and

”uHE;(R"): e(n, ) < oo.

It is easy to see that ve L} (R™)NC>(R") as well. Furthermore, the following statement
holds.

PROPOSITION 2.4. Suppose that &ECW(R”) and supp $C Br(zo). Let v be defined
by (2.16) where 0<e<2. Then
n—2 214
05 gy < ) B2 2 G 1 0 (217)
for Rzmax{1,|zo|}.
Proof of Proposition 2.4. Since q; is compactly supported, it follows that

|A™ div ¢(x)| < e(n) L1 |d|(x), zeR™
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Hence -
c(n,e)loll;, o < N1+ P2 VAT div ¢(@)| 1, re)

LyRm)
(142?44 L) (2) )|y (mmy-

Note that VA~ldiv is a Calderon-Zygmund operator, and that the weight w(z)=
(14 |z|?)(»~2+2)/2 belongs to the Muckenhoupt class A2(R") if 0<e<2 (see [CF]).
Applying the corresponding weighted norm inequality, we have

[(1+]z2) =24 VA div ¢()]| £, (r)

. (2.18)
<celn, o) |(1+eP) 72 G @) | Lo mr)-

The other term is estimated by the weighted Hardy inequality (see, e.g., [Ma3]):

/(11I$|($))2(1+lez)‘"““e)”dw<C(n,6)/ |6(@)? (1 +]2*) =2+ 2z (2.19)
R™ R”

Clearly,
(142 "=/ 48(2)]| L, mmy < €(n,€) RO D] 1, (mn)-

Hence, combining (2.18), (2.19) and the preceding estimate, we obtain the desired in-
equality (2.17). The proof of Proposition 2.4 is complete.

Now let us prove (2.14). Suppose that $cC=(R*)®C™ and supp #C Bpr(xo). Then
by (2.15) and Proposition 2.4,

(E, ) =1V, uo)| < IV lusll

N P

M(LL(R™)—L5 (R™)) Lir™)

(2.20)
<C(n,e) Ry |

MR L (R)) D1l L, (Rn)-

Taking the supremum over all ¢ supported in Bgr(zo) with unit Lp-norm, we arrive at
(2.14). The proof of Lemma 2.3 is complete.

It remains to prove the main estimate (2.12) of Theorem 2.2. By Theorem 2.1, it
suffices to establish the inequality

/ (@) 2de < c(n) [V ap(e) (2.21)

MES R L7 (R

for every compact set eCR™. Notice that in the special case e=Bg(zg), the preceding
estimate gives a sharper version of (2.14):

/ IT(@) de < C(n) R™2 ||V |]? ro€R™, R>0.
Br(xo)

MR Ly (R™)
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Without loss of generality we assume that cap(e)>0; otherwise |e|=0, and (2.21)
holds. Denote by P(z)=P.(z) the equilibrium potential on e (see [AdH], [Ma3]). It is
well known that P is the Newtonian potential of a positive measure which gives a solution
to several variational problems. This measure v, is called the equilibrium measure for e.

We list some standard properties of v, and its potential P,(x)=1I>v.(x) which will
be used below (essentially due to O. Frostman):

(a) suppr. Ce;

(b) P.(x)=1 dr.-ae,;

(c) ve(e) =cap(e) > 0; (2.22)
(@) VP2, gy = cap(e);

(e) sup Pe(z)<L.
z€R™

The rest of the proof of Theorem 2.2 is based on some inequalities involving the
powers P, (z)° which are established below.

PROPOSITION 2.5, Let 5>% and let P=P, be the equilibrium potential of a compact
set e of positive capacity. Then

IVP |l Ly(mmy =

\/—2_% Veap(e). (2.23)

Remark 3. For §<1, it is easy to see that VP?¢ Lo(R").

Proof of Proposition 2.5. Clearly,
/ \VP(2)°)? de = 62 / [VP(z)[2P(x)* 2 dz. (2.24)
R" R»

Using integration by parts, together with the properties —AP=v, (understood in the
distributional sense) and P{z)=1 dv.-a.e., we have

|VP(z)|?P(x)*~2dz= [ VP(z)-VP(z)P(z)? 2dx
Rn RTL
= / P(x)? 1 dy, —(26—2) / |VP(z)2P(x)* % dx
k0 R'n
= cap(e) —(26—2) Rn|VP(a:)|2P(ac)25’2dx.

The integration by parts above is easily justified for 6>% by examining the behavior of
the potential and its gradient at infinity:

alz "< P(z) < ez, |VP(@)|=0(z]'™™) as |z] — co. (2.25)
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From these calculations it follows that
(26—1) / IVP(2)2P(2)?~2 dz = cap(e).

Combining this with (2.24) yields (2.23). The proof of Proposition 2.5 is complete.

In the next lemma we demonstrate that ||Vvl|L,r») is equivalent to the weighted
norm ||P=°V(vP?)| 1, ®n)-

LEMMA 2.6. Let 6>0 and let ve LY(R"). Then

dr
V0l ey < | [V0P)@)F 5oz < GO+ DIV ey (220

In what follows only the lower estimate will be used, together with the fact that
||P_5V(UP5)||L2(Rn)<oo for every ve L3(R").
Proof of Lemma 2.6. Without loss of generality we may assume that v is real-valued.

We first prove (2.26) for ve D(R™). The general case will follow using an approximation

argument. Clearly,

dx —1)2
/R IVOP@) s = / [Vo(z) +5u(z) VP(2) Pla) P de

T 2

n

v(x)
+20 Ran-VP(a:) Pl drx.

Integration by parts and the equation —A P=v, (understood in the distributional sense)

give

v(z) , dv.(x) |VP(z)?
9 anv.vp(x) P) dgv—/nv(z)2 Plx) dx—i—/n’u(x)?m?__dx.

Using this identity, we rewrite the preceding equation in the form

E] 2 _dr olz)|2 Ux2lvp($)|2
| WP s = [ 1Va@Pda+a) [ v DSk de .
dve(z)
+5/nv(:1c)2 Pl) -

The lower estimate in (2.26) is now obvious provided the last two terms on the right-hand
side of the preceding equation are finite. They are estimated in the following proposition,
which holds for Newtonian potentials of arbitrary (not necessarily equilibrium) positive

measures.
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PROPOSITION 2.7. Let w be a positive Borel measure on R™ such that P(z)=
Lw(x)#£o0o. Then the following inequalities hold:

o |VP(2)]? 2 n
/an(m) deQZlHVUHLQ(Rn), UED(R ), (228)
and
dw(x)
2 2 n
/}mm oy <IVelmey, vEDR). (2.29)

Remark 4. The constants 4 and 1 respectively in (2.28) and (2.29) are sharp.

Indeed, if w is a point mass at =0, it follows that P(z)=c(n)|z|>~". Hence, (2.28)
boils down to the classical Hardy inequality (1.8) with the best constant 4/(n—2)2. To
show that the constant in (2.29) is sharp, it suffices to let w=v, for a compact set e of
positive capacity, so that P(z)=1 dw-a.e. and v,(e)=cap(e), and minimize the right-hand
side over all ¥>1 on e, where ve D(R™).

Remark 5. An inequality more general than (2.29), for Riesz potentials and L,-
norms (with nonlinear Wolff potential in place of P(z)), but with a different constant, is
proved in [Ve].

Proof of Proposition 2.7. Suppose v€D(R™). Then A=suppv is a compact set,
and obviously infyeca P(2)>0. Without loss of generality we may assume that VPe€
L2 16c(R™), and hence the left-hand side of (2.28) is finite. {Otherwise we replace w by
its convolution with a compactly supported mollifier w; =wx*e;, and complete the proof
by applying the estimates given below to P(x)=I,w;(x), and then passing to the limit
as t—00.)

Using integration by parts together with the equation —AP=w as above, and ap-
plying the Schwarz inequality, we get

2 WL
/f@fg%ng+/fuﬁd()

:2/ an(x)~VP(:E) ]v)((:;)) dx

for all ve D(R™). The preceding inequality obviously yields both (2.28) and (2.29). This
completes the proof of Proposition 2.7.
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We now complete the proof of Lemma 2.6. Combining (2.27) with (2.28) and (2.29)

(with v, in place of w), we arrive at the estimate

5 dz
2 < 4 2 < 2 N
V0l ey < | IV@P)@P fsgs <+ D)1+ DIV

for all ve D(R™).

To verify this inequality for arbitrary v in Eé(R”), let v=limy _ 00 vx both in Z; (R™)
and dz-a.e. for vy €D(R™). Now put vy in place of v in (2.28) and let N—oo. Using
Fatou’s lemma we see that (2.28) holds for all vezé(R"). Hence

| PO
ngnoo RnlUN(I) v(z)| P(x)? dz =0,
and consequently
| e . VP(z)|?
& 2_ "
1\}E>noo Rn|V(vNP )(z)| F5(7) Nll_r)nOC - Vun(z)+0vn(z) P(o) dx
VP(z)|?
= Vou(z)+ov(z dx
Jou[Fetar 00 55
dx
B 8\()2 2
— [ VOP)@P F

Thus, the proof of the general case is completed by putting vy in place of v in (2.26),
and letting N—o0. The proof of Lemma 2.6 is complete.

In the next proposition, we extend the equation (V,w)=—(T", Vw) to the case where
w=uwv, where both u and v lie in L}(R"), are locally bounded, and have a certain decay

at infinity.

PROPOSITION 2.8. Suppose that VeM(Eé(R”)—;L;l(Rn)), and that T=VA~1Ve
Lo 10c(R") is defined as in Lemma 2.3. Suppose that w=uv, where u,ve€ L3(R™), and

u(@)| SC(L+?) /2, fu(@)| <C+[2lP)™2, zeR™, (2.30)

for some ﬂ>%(n—2). Then TV is summable, and
(V,w)z—/ [-Vw(z)dz. (2.31)

Proof of Proposition 2.8. Clearly,

n|f-V1E(x)|dx< n|f(x)|2|u(a:)|2dm o n|V'v(:c)|2d:v /
R R R

+(/R"lf(x)'?[U(I)Pdx)l/2</Rﬂ|VU(w)l2dx>l/2_

2
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To show that the right-hand side is finite, note that, for every e>0 and R2>1,
/ IT(x)|? de < CR™2te, (2.32)
lz|<R
by Lemma 2.3. It is easy to see that the preceding estimate yields
/ IT(2)]?(1+]z|*) P dz < 0o (2.33)
Rn
for ,8>%(n—2). Indeed, pick €€(0,28—n+2), and estimate

(@) 2 (1+[22) " do < / IE(x) 2da+ / (@) 22 2 de
R» |zi<1

jz|>1

<c1+cz/ (/ |f(x)|2dx>r-2ﬁ-1dx
1 |z|<r

< cl+02/ 3728 dz < c0.
1
From this and (2.30) it follows that
| F@P P <co, | F@Pe)de <.
R R»

Thus I'- V& is summable.

To prove (2.31), we first assume that both u and v lie in zé(R")l"tC"’O(R"), and
satisfy (2.30). Let nn(z) be a smooth cut-off function as in the proof of Lemma 2.3. Let
uny=nnu and vy=7nnv. Then by (2.15"),

(V, unow) :-/ .V (ay ox)(z) do

:—/nf‘-VﬁN(x)@N(z) dm—/nf-VﬁN(m)ﬂN(x) dz.
Note that 0<nn{z)<1 and |Vyn{z)|<Clz|~!, which gives
IT-Van () on(z)|+ T Vay (z) on (z)]
<CIT@)|(ju(@)] [v(@)] |27+ V()| [v(x)] + [Vo ()] [u(z)))-

Since veL}(R"), it follows from Hardy’s inequality (or directly from (2.30)) that
jo(z)||z| '€ L2(R™). Applying (2.33) and the Schwarz inequality, we conclude that
the right-hand side of the preceding inequality is summable. Thus (2.31) follows from

the dominated convergence theorem in this case.
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It remains to show that the C>-restriction on « and v can be dropped. We set u,=
Uk Py, Vp=vx¢@,, where ¢, (2)=r""¢(z/r). Here $cC5*(R") is a C*°-mollifier supported
in B(0, 1) such that 0< ¢(z)<1. It is not difficult to verify that u, and v, satisfy estimates
{2.30). We use the Hardy-Littlewood maximal operator

1
Mf(z)= sup ——— {f(y)|dy, zeR™
( ) 0<r£:>c |Br(x) B.(x) ( )|

Obviously, |u,(z)|=|ux¢,(x)|<Mu(z). We can suppose without loss of generality that
%(n—2)<ﬁ<n in (2.30). Notice that, for 0<g<n,

M(1+z[H) P2 <o(+z)*) P2, zeR™
Hence,

ju(2)) < Mu({z) <C(i+2?) %72, 2€R", (2.34)

where C' does not depend on r, and a similar estimate holds for v.
We will also need the estimate

|Vu, (z)| = |Vuxé, (z)| < M|Vu|(z). (2.35)
As was shown above,
(V, up) = —/ f-Vﬂr(z)ﬁr(x)da:—/ [.V5, () () da.
Moreover, by (2.34) and (2.35) we have
[TV (@) 5, (2)] + [T V5, () 8 (2)| < CIE (@) (1+]2) =22 (M| Tul () + M |V0]()).

Since u,in%(R”), and M is a bounded operator on La(R™), it follows that M|Vu|
and M|Vv| lie in Ly(R™). Applying (2.33) again, we see that the right-hand side of
the preceding inequality is summable. Thus, letting r—0, and using the dominated
convergence theorem, we obtain

(V,w):lir%(V,urvT>:—/ I'-Va(z) dr,

T—
which completes the proof of Proposition 2.8.

We now continue the proof of (2.21). Suppose that Ve M(LL{(R™)— Ly (R?)), i.e.,
the inequality

< ° ° °
L R 2 PSRN 1 SN A
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holds, where u, vezé(R”).
Let (52 (¢1, ..., or) be an arbitrary vector field in P®C™, and let
w=A"1divg = —I,div ¢, (2.36)
so that
¢=Vw+3, divs=0.
Note that wezé(R")ﬂCo"(R”), since
w(z)=0(|z|"™") and |Vw(z)|=0(z|™™) as |z|— oco. (2.37)
Now set,
w(z)
Plz)®
where P(z) is the equilibrium potential of a compact set eCR", and 1<25<n/(n—2).
By (2.22) and (2.25) we have 0<P(z)<1 for all zeR"”, and P(z)<c|z|?>™ for |z|
large. Hence |P(x)|°<C(1+]z|?)=%"=2/2_ Since B=6(n—2)>1(n—2), it follows that u
satisfies (2.30).
To verify that (2.30) holds for v=wP~?, note that infx P(x)>0 for every compact
set K, and hence by (2.25), P(z)"°<C(1+]z|?)*"~2/2 Combining this estimate with
(2.37) we conclude that

uw(z)=P(z)° and wv(z)= (2.38)

o(@)| < C(1+]a)?) =72,
where f=—48(n—2)+n—1>3(n-2).
By Proposition 2.5 and Lemma 2.6 both u and v lie in L{(R"). Now applying
Proposition 2.8 we obtain

(Vu,vy={(V,w)= —/ I'-Vu(z) de.

n

Hence,

/ ['Vu(z)ds
By Lemma 2.6,

IVl < [ VPP s = [ ) s <oo

Applying this together with Proposition 2.5, we estimate

/ nf.Vw(x) dz

< ”V||M(zé(m)_w2_1(m))||VU||L2(RH)||VU||L2(Rn)~

<C(%) cap(e)'/?

VN o gy o ot o
M(Ly(RM) = L3 (R™))

(2.39)

x( RnWw(z)R%j/z'

To complete the proof of Theorem 2.1, we need one more estimate which involves

powers of equilibrium potentials.
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PROPOSITION 2.9. Let w be defined by (2.36) with $EDRC™. Suppose that 1<26<
n/(n—2). Then

[ 10 s <€) [ 16 5 (2.40)

Proof of Proposition 2.9. Note that Vw is related to ng through the Riesz trans-
forms R;, j=1,...,n ([St1]):

Vw= {Z Rijk}, j=1,..,n.

k=1

Since R; are bounded operators on Ly(R", ¢) with a weight ¢ in the Muckenhoupt class
Az(R™) (|CF), [St2]), we have

IVwllL, o) SCl¢Lo(Rm 0>

where the constant C depends only on the Muckenhoupt constant of the weight.

Let o(z)=P(z)~2%. It is easily seen that inf,cx P(z)>0 for every compact set K,
and hence P(z)~2€ L 1,.(R™). In our earlier work, it was proved that P(z)® is an As-
weight, provided 1<2d<n/(n—2). Moreover, its Muckenhoupt constant depends only
on n and §, but not on the compact set e. (See [MaV, p. 95, the proof of Lemma 2.1 in
the case p=2].) Clearly, the same is true for o(x)=P(x)~?°. This completes the proof of
Proposition 2.9.

We are now in a position to complete the proof of Theorem 2.2. Recall that from
(2.15") and Proposition 2.8 it follows that

<V,w>:—/nf‘-V1ﬁ(z)d:c:~/ fg(m)dx

n

Using (2.39) and Proposition 2.9 we obtain
I 2 1/2
Sef )

= = ) . 1/2
}/nr é(z) dx <C(n,é)||VIIM(Lé(RHHL;(Rn))CaF’(e) (/np(x)%

for all QEED(R")@)C", and hence for all q;e L3 10 (R™).
Now pick R>0 so that eCB(0, R). Letting $=XB(O’R) P2T in the preceding in-
equality, we conclude that

1/2
()2 26 12
( /B (Oﬁ)lr(z)l P(z) (:v)d:v> SOV, 35 o s oy ©2PE)
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Since P{xz)>1 dz-a.e. on e (actually P(z)=1 on e\F, where E is a polar set, i.e.,
cap(E)=0) it follows that

[IF@)Pde<coPIviE, ap(c).

Lyme) oL ®)

Thus, (2.21) holds for every compact set eCR", and by Theorem 2.1 this yields (2.12).
The proof of Theorem 2.2 is complete.

We now prove an analogue of Theorem 2.2 formulated in terms of (—A)~1/2V, which
is stated as Corollary 2 in the Introduction.

THEOREM 2.10. Under the assumptions of Theorem 2.2, it follows that
veM(L}(R")— ;' (R™))

if and only if (—A)~Y2VeM(LLR™)— Lao(R™)).

Proof. By Theorem 2.2, VA7!VELj 1.(R™) is well defined in terms of distributions.
We now have to show that {(—~A)~1/2V is well defined as well.
Let M be the function space which consists of f&€ L joc(R™) such that

/ lu(2) 2] ()2 dz < const / Vu(z)|? de
Rn R~

for every ueD(R™). By Theorem 2.2, VA~V lies in M®C". It follows from Corol-
lary 3.2 in [MaV] that the Riesz transforms R; (j=1,...,n) are bounded operators
on M. Hence (—A)~"/2V={R;}1<;j<n is 2 bounded operator from M to M®C". Then
(—A)~Y/2V can be defined by

(A Vv =(-A)"V2v.vATlY
as an element of M. By Theorem 2.1, (—A)~1/2 VGM(E%(R")—%LQ(R")). The proof of
Theorem 2.10 is complete.
The following corollary is immediate from Theorem 2.10.

COROLLARY 2.11. Let V be a complez-valued dz’stm’butibn on R™ n>3. Then the
Schridinger operator H=—A+V, originally defined on D(R"), can be extended to a
bounded operator from Li(R™) to Ly*(R™) if and only if

(—A)~Y2ve M(LLY(R™) — Ly(R™)).

Equivalently, any one of the conditions (ii)—(vi) of Theorem 2.1 holds with |(—A)~1/2V|?
in place of V.
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3. A compactness criterion

In this section we give a compactness criterion for Ve M (L3(R"*)— L; '(R™)). Denote by
M(LA(R™)— Ly (R™)) the class of compact multiplication operators acting from L3 (R™)
to Ly '(R™). Obviously,

M(LY(R™) — L3 (R™) € M(LLR") = L3 (R™)),

where the latter class was characterized in the preceding section.

THEOREM 3.1. Let VED'(R™), n>3. Then VEM(LLY(R™)— Ly (R™)) if and only
if
V=divT, (3.1)

where T=(I'y,...,Ty) is a vector field such that F,ie]CI(z%(R")—)Lg(R")) (i=1,...,n).
Moreover, T' can be represented in the form VA~V as in Theorem 2.2.

Remark 1. The compactness of the multipliers T';: L3(R™)— Ly(R"™), where i=

1,...,n, is obviously equivalent to the compactness of the embedding
LYR™) C Lo(R™, T2 dz). (3.2)

Different characterizations of the compactness of such embeddings are known (see [AdH],
[Ma3], [MaS]).

Proof. Let V be given by (3.1), and let u belong to the unit ball B in L3(R™). Then
Vu=div(ul)-T-Vu. (3.3)

The set {div(ul'):ueB} is compact in L;*(R") because the set {ul :ueB} is compact
in Ly (R™). The set {I'-Vu:ue B} is also compact in Ly * (R") since the set {|Vu|: uc B}
is bounded in L,(R™), and the multiplier operators [';, being adjoint to T; (i=1, ...,n),
are compact from Lo(R"™) to Ly '(R™). This completes the proof of the sufficiency of
(3.2).

We now prove the necessity. Pick F€C*(R,), where F(t)=1 for t<1 and F(t)=0
for t22. For zo€R", §>0 and R>0, define the cut-off functions

%5’10(:17):F(5_1|:1:—1:0|) and £p(z)= 1-F(R™!|z|).
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LemMaA 3.2. If fe L3 (R"), then

li sup [0, 1) =0 (3.4
and
Rh_rgo “fRf“L;I(Rn) =0. (3.5)

Proof of Lemma 3.2. Let us prove (3.4). The distribution f has the form f=div (E,
where ¢=(¢1, ..., #n) € La(R™). Hence,

35,00 = div(%gﬁmqg) —Q_S’V%(;,mo.
Clearly,
13,20 f | 51 () < 155,20 1@ | | Lo (R7) + €6 (| Vits,20° @ || Lamm) S D] L2 (Bas (20))-

This proves (3.4). Since (3.5) is derived in a similar way, the proof of Lemma 3.3 is

complete.

LEMMA 3.3. If VeM(LL(R")—L;1(R™)), then

11_1)1%) xosggn||%5’x0V”]\}(i%(Rn)“‘)Lz_l(R")): (36)

and
| N —0 3.7
A 1ERV g i3 ryos 51 ) =0 o

Proof of Lemma 3.3. Fix >0, and pick a finite number of f,€ Ly*(R™) such that
||Vu—fk||L;1(Rn) <e

for k=1,..., N(e), and for all u€B, where B is the unit ball in ié(R") Note that by
Hardy’s inequality

su , ° L<ce<oo.
zOeRnI?(bo” 6’z°||M(Lé(R”)—>L51(R"))\
Next,
”x&zoquL;l(R") < “%5710(VU—fk)||L2—1(Rn)+ “%(S,zokaL;l(Rn)
< cs+||z5710fk||L;1(Rn).
Hence,

H%&,xo“ <CE+||%6,zokaL2—1(Rn)-

M(LY(R™)—L3 ' (R™))
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By Lemma 3.2, this gives (3.6), and the proof of (3.7) is quite similar. The proof of
Lemma 3.3 is complete.

We can now complete the proof of the necessity part of Theorem 3.1. Suppose that
VeM(L3y(R™)— Ly (R™)). By Theorem 2.2,

VA= (&rV)I <clgrV]

M(LE(R™) = La(R™)) M(LY(R™)>La(R™))’
By the preceding estimate and (3.7),
- -1 \ =0.
A IVATHERY i aermy s o)

Hence we can assume without loss of generality that V is compactly supported, e.g.,
supp VC B;(0). To show that

F'=VA~'VeM(LLR™) — Ly(R™),

consider a covering of the closed unit ball B;(0) by open balls By (k=1,...,n) of radius
/18 centered at the nodes z; of the lattice with mesh size 4. We introduce a partition
of unity ¢, subordinate to this covering and satisfying the estimate |V¢i|<cd™?, so
that supp ¢, C By, where Bj is a ball of radius 24/nd concentric to By. Also, pick
P eC§°(BY), where ¢ =¢y and |V |<ed ™

We have
N(8) N{(8) N(8) N(8)
VAV =" VA($V)= > VA(@etV) =D b VAGV)+ D [VA, ]V,
k=1 k=1 k=1 k=1

where [A, B|=AB— BA is the commutator of the operators A and B. We estimate

N(6)
> U VA(SV) <c(n) sup  [[VA(eV)]
k=1

”M(E;(RnHLzmnn 1<k (8)

M(L}(R™)—L2(R™))

since the multiplicity of the covering U,]cvz(‘:)Bk depends only on n. The last supremum is
bounded by ¢ ||¢kV||A2(E;(R")—>L;1(Rn))7 which is made smaller than any >0 by choosing
d=4(¢) small enough.

It remains to check that each function ®:=[VA,¢g]¢rV is a compact multiplier
from LL(R") to Lo(R"), k=1, ...,n. Indeed, the kernel of the operator V —[VA, ¢ ]V

is smooth, and hence,
[@e(2)| = |([VA, 1] 6V )(@)] < (1) ™ 10k VIl 3 ey

< 1-n o o o < 1-n
<O ™ IVl ) ey ey 1960 3 gy SO0 D'

where the constant Cj, does not depend on z. Since n>>2, this means that the multiplier
operator ®;: LI(R"™)— Lo(R™) is compact. The proof of Theorem 3.1 is complete.
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4. The space M(W2)(R"™)—W; *(R"))

In this section, we characterize the class of multipliers V: W} (R™)—W; }(R") for n>1.
Here Wy ' (R")=W3(R™)*, where W) (R")=H" is the classical Sobolev space of weakly
differentiable functions u€ Lo(R™) such that Vue Lo(R™) with norm

1/2

lulbwsoy = | [ Q@+t ds] (4.1)

Let Jo=(I—A)"*/? (0<a<+oo) denote the Bessel potential of order . (Here I stands
for the identity operator.) Every u€Wi(R") can be represented in the form u=J;g
where

callgllza @ lullwg moy < c2llgll @)
(See [St1].)
Let S'(R™) denote the space of tempered distributions on R™. We say that Ve
S'(R™) is a multiplier from W3(R™) to W, '(R™) if the sesquilinear form defined by
(Vu,v):=(V,tv) is bounded on W3 (R™)x Wl(R"):

[(Vu, o) <cllullwimm Ilwp ey, wveSR?), (4.2)

where the constant c is independent of 4 and v in Schwartz space S(R™). As in the case
of homogeneous spaces, the preceding inequality is equivalent to the boundedness of the
corresponding quadratic form; i.e., it suffices to verify (4.2) for u=v.

If (4.2) holds, then V defines a bounded multiplier operator from W} (R") to
Wy '(R™). (Originally, it is defined on S(R™), but by continuity is extended to W (R™).)
The corresponding class of multipliers is denoted by M(W4(R")—W; '(R™)).

We observe that I—A: W} (R")—»W,; 1(R") is a bounded operator (see [Stl]).
Hence, Ve M (W3 (R")—»W; }(R™)) if and only if the operator (I—A)+V:Wi(R")—
Wy 1(R™) is bounded.

If V is a locally finite complex-valued measure on R"™, then (4.2) can be rewritten
in the form

./ u(z)v(z) dV(z)| < cllullwp@m lollws @y (4.3)

where u, veS(R").

For positive measures V/, this inequality is characterized as above (cf. Theorem 2.1),
with Bessel potentials J; in place of Riesz potentials 1, and with the Riesz capacity cap
replaced by the Bessel capacity

cap(e, W) =inf{||u||%,[,21(Rn) cueS(RM), u(z)>1 on e}. (4.4)

For convenience, we state several equivalent characterizations below (see [KeS], [Ma3],
[MaS], [MaV]).
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THEOREM 4.1. Let V be a locally finite positive measure on R™. Then the following
statements are equivalent:

(1) The trace inequality

[ @R ave) <l (45)

holds, where c¢1 does not depend on ueS(R™).
(ii) For every compact set eCR™,

V(e) <e2 Cap(ev W21)~ (46)

where ¢ does not depend on e.
(iii) For every open ball B in R",

/13(J1VB)2dz<03V(B), (4.7)

where dVg=xp dV, and c3 does not depend on B.
(iv) The pointwise inequality

JUNI V) (z) <eg hV(z)<oo  aee. (4.8)
holds, where c4 does not depend on x€R™.
(v) For every compact set eCR™,
/(JlV)2 dz < c2cap(e, W3), (4.9)

€

where cs does not depend on e.
(vi) For every dyadic cube Py in R™ of sidelength I(FPp)<1,

2
S | ] Pt <ave, (410)

1-1/n
PCP,y |P| /

where the sum is taken over all dyadic cubes P contained in Py, and cs does not depend
on Fy.
The least constants cy,...,cq in the inequalities (4.5)~(4.10) are equivalent.

Remark 1. It suffices to verify (4.6) and (4.9) for compact sets eCR"™ such that
diame<1. In this case, the capacity cap(e, W3) is equivalent to the Riesz capacity
cap(e) provided n>3.

Remark 2. For n=1, the Bessel capacity of a single point set is positive, and hence
cap(e, Wi), for sets e such that diame<1, can be replaced by a constant independent
of e. Thus, in this case (4.5) holds if and only if

sup V(B1(z)) < oo. (4.10)
z€ER

We now characterize (4.3) in the general case of distributions V.
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THEOREM 4.2. Let VES'(R™). Then VEM(W}(R™) =W, '(R™)) if and only if
there exist a vector field f:{Fl, s Tn}€Lg 10c(R™) and To€ Lo 10c(R™) such that

V=div[+T, (4.11)

and
| @PI @) de<Clullyqay, i=0.1,n (112)

where C does not depend on ueS(R™).
In (4.11), one can set

F=—V({I-AYW and To={I-A)"'V. (4.13)

Remark 3. It is easy to see that in the sufficiency part of Theorem 4.2 the restriction
on the “lower-order” term I'g in (4.12) can be relaxed. It is enough to assume that
To€ L1 10c(R™) is such that

[ @) o(@)] de < €l ey (414

Proof of Theorem 4.2. Suppose that V is represented in the form (4.11), and (4.12)
holds. Then using integration by parts and the Schwarz inequality, we have

V, av)| = (T, vVa) +(T', aVo)+ (T, tv)]
STy [Vl 2o ey + 10l Ly ey [ V0]l Loy + P08l Loy 0]l o rmy
<3\/5||U||W21(Rn) vllwz®ny,
where C is the constant in (4.11). This proves the “if” part of Theorem 4.2.

To prove the “only if” part, define f:{Fl, .., T} and Ty by (4.13). Then, for every
7=0,1,...,n, it follows that I'; € Ly 1o.(R™), and the following crude estimates hold:

/BR(xo)|Fj(x)|2 dz < C(n,e)R™2t¢ ||V||fw(W§(Rn)_)W;1(Rn))’ (4.15)

where R>max{1,|zo|}. The proof uses the same argument as in the proof of Lemma 2.3
in the homogeneous case.

Now fix a compact set eCR™ such that diam(e)<1 and cap(e, W3)>0. Denote
by P(z)=P.(z) the equilibrium potential of e which corresponds to the Bessel capacity
(4.4). Letting

u(z)=P(z)® and wv(z)=
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where 1<26<n/(n—2) and weS(R™), we have
[(V,w)| < ||V”M(W21(Rn)—>w2—I(Rn)) ”P6“W21(Rn) IVollwg mn)-
Calculations analogous to those of Propositions 2.5-2.9 yield
IIP5||W21(R") < C(n~ 5)0&})(6, W21)1/2

and

V0|l (mn) < C(n, 6) [/Rn(lw(z)IQHVw(m)F) )%

Combining the preceding inequalities, we obtain

KV, w)| éC’(n,(S)HVHM wWl(R") =W, YR C&P(e’Wzl)l/Q
(W3 (R™)—>W,; (R"))

X[/"(|W($)|2+va(z)|2)%Jm.

Set w=(1—A)"'div ¢, where ¢ is an arbitrary vector field with components in S(R").
Then the preceding estimate can be restated in the form

L dr 12
(E.6)] < Clrnd)caple W) [ (wlo)P+1Vu(P) 5| (4.10)
—26

Unlike in the homogeneous case, for Bessel potentials, P(z)~“° is not a Muckenhoupt

weight. To proceed, we will need a localized version of the estimates used in §3.

LeEMMA 4.3. Let P(x)=PF.(x) be the equilibrium potential of a compact set e of
positive Bessel capacity, and such that eC B, where B=DBj(zo) is a ball of radius 1
centered at To€R™. Let w=(I—-A)"V, where € C*(R") and supp ¢ C B. Suppose
that 1<28<n/(n—2). Then

| (@l 9@ P g <o) [ @l s @)

Proof. Let v=v, be the equilibrium measure of the compact set e in the sense of
Bessel capacities, so that P(z)=J.v(z) (see [AdH], [Ma3]). Suppose first that n>3.
Since both supp v and supp ¢ are contained in B, it follows that

dv(y)

P(z) = Jov(z) < Lv(z)=e(n) el

T€2B, (4.18)

where 2B is a concentric ball of radius 2.
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We set o(x)=Trv(x)”?. Then o(x)=<P(z)~?® on 2B, and p(z) is an Az-weight (see

the proof of Proposition 2.8). Note that Vw=V?2(I~A)~!4, where
V2I-A)"T'={-R;Re A(I-A)"1}, 4 k=1,.,n

Here R;, j=1,...,n, are the Riesz transforms which are bounded operators on Lo (R", p)
(see [St2]).

Since A(I—A)"1'=I—(I-A)~*!, we have to show that Jo=(I—A)~! is a bounded
operator on L2(R™, g), and its norm is bounded by a constant which depends only on
the Muckenhoupt constant of p. It is not difficult to see that the same is true for more

general operators J,=(I—A)~%/2 where a>0.
Indeed, denote by G.(z) the kernel of the Bessel potential J,. Then clearly,

o0

[Jaf(2)|=1Gaxf(2)| <c(n,@)Mf(z) Y 25" max = Galt),

LT eh<en

where Mf(z) is the Hardy-Littlewood maximal function defined by

Mf(z)=c(n) sup = /B iy

0<r<oo

Standard estimates of Bessel kernels G,(z) (see, e.g., [AdH, Sections 1.2.4 and 1.2.5])
show that

o0
kn
Z 2 2k<1|§1|«1>§k+1Ga(t)<oo

for every a>0. Since M is bounded on Ly(R™, g} {see [St2]), it follows that

1ol om0y S Clflza®e ) (4.19)

where C depends only on n, « and the Muckenhoupt constant of g.
Applying (4.19) with a=2, we get

/va @) )25\ C(n, ) / [(2)|?e(z) dw < C(n, ) Lnlw<x>l2—péﬁzs~

Similarly,
w(z)l= VI -A)" ()| < Chll(z),
and by (4.19) with a=1,

| @ 5z < | (hivl@) et ds

dx

Omo) [ Wle@ de<0o) || W g
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Now suppose z€(2B)¢. Then, by standard estimates of the Bessel kernel as |z|— o0
([AdH, Sections 1.2.4 and 1.2.5]),

IVw(w)|=IVszw(x)l<C(n)lfvl“‘")/2e"“"/Bliﬂ(y)ldy

and
(2)] < C(n) [V Jab(2)] < Cla] ™2l / o)) dy-
B
Also, for z€(2B)°,

P(z)=Jov(z) < |.’L‘|(1_")/26_|1]I/(6), |z] = oo,

where v(e)=cap(e, W1)>0.
Now pick § so that 1<25<min[2,n/(n—2)]. Using the above estimates of w(zx),
Vw(z) and P(z), and the inequality 26 <2, we get

dx 2

2 _2§
/(QB)C““’(@' +Vu(@)) sz < Cn.8)v(e) ( /B |¢(y)|dy)

By the Schwarz inequality,

(/B W(y)ldy>2</31¢(y)12p—(dyy)—2—5/BP(x)”da:.

Applying Minkowski’s integral inequality and the fact that 26 <n/(n—2), we obtain

/ P(x)¥dz < / (Iv)? dz < C(n, §)v(e)®.
B B

Thus,
dx dx
2 2 2
w(z)|*+|Vw(z)|]?) =5 < C(n,d V(x)|* =——=-
| (@YU fs <000) [ W@ B
This completes the proof of (4.17) for n>3. The cases n=1,2 are treated in a similar
way with obvious modifications. The proof of Lemma 4.3 is complete.
Let w=(I—A)"!div$, where ¢={¢x}€S(R™). Applying Lemma, 4.3 with yy=qy,
k=1, ...,n, we obtain
dx
P(z)2

dz N2
| (@ P+ Ve@)P) g <Cuo) | 160)

This and (4.16) yield

B e 12
(E. ) < Cludyean(e, w2 | [ (P oz |
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By duality, the preceding inequality is equivalent to

| IF@)PP@) do < O ) IV I g oy ey €80 (E W),

Since P(z)1 a.e. on e, we obtain the desired estimate
J @ o< Cn 8 IV, 3y 20l W),

The corresponding inequality with T’y in place of T' is verified in a similar way. By
Theorem 4.1 these inequalities are equivalent to (4.12). The proof of Theorem 4.2 is
complete.

Finally, we state a compactness criterion in the case of the space W3 (R") analogous
to that of Theorem 3.1.

THEOREM 4.4. Let VES'(R™), n>1. Then VeM(WL(R™)—W; L (R™) if and
only if
V=divI+T,

where T'=(Ty,...,T,,), and DEJ\}(WQ(R")%LQ(R”)) (:=0,...,n). Moreover, one can
set T=—V(I—A)"'V and To=(—A)"'V, as in Theorem 4.2.

The proof of Theorem 4.4 requires only minor modifications outlined in the proof of
Theorem 4.2, and is omitted here.

5. The space M(i;(ﬂ)—)Lgl(Q))

Using dilation and the description of the space M(W3(R™)—=W; '(R")) given in the
preceding section, we arrive at the following auxiliary statement.

COROLLARY 5.1. Let Ve M(W3(R™)—W;(R")). Suppose that there ewists a
number d>0 such that

(V) < eI VullZe gy + 472 [ullfz ), (5.1)
where ¢ does not depend on ue€C§°(R™). Then V can be represented as

V=divl+d Ty, (5.2)
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where Ty and T'=(T1,...,T') are in M(W(R™)— Ly(R")), and

/R ITiu(z)|*de < C(”VUH%Z(Rn) +d—? ||U||2L2(Rn)) (5.3)

for all i=0,1,...,n

Now let 2 be an open set in R™ such that, for all u€D(2), Hardy’s inequality holds:

/] daQ( Toa(@)? gconst/ |Vu(z)|? de. (5.4)

Here dpq(x)=dist(z, Q). It is well-known that (5.4) holds for a wide class of domains
including those with Lipschitz and NTA boundaries. (See [An|, [D2], [Le], [MMP] for
a discussion of Hardy’s inequality and related questions, including best constants, on
domains © in R™.)

Let Q; be the cubes with sidelength d; forming Whitney’s covering of Q (see [St1,
Section 5.1]). Denote by @ the open cube obtained from @ by dilation with coeffi-
cient %dj. The cubes Q7 form an open covering of ) of finite multiplicity which depends
only on n. By {n;} (n;€C5°(Q7)) we denote a smooth partition of unity subordinate to
the covering {Q;} and such that |Vn;(z)|<cd; !. In the proof of the following theorem
we also will need the functions (;€ C§°(Q7) such that

Gi(z)ns(@) =n;(x) and  |V¢(x)|<cd (5.5)

Now we give a characterization of the space M (lolé(Q)—>L2_ L(Q)).

THEOREM 5.2. (i) Let dopq{x)=dist(z,dN), and let
V=divT+dyaTy,

where T={T'y,..,T,,} and FiEM(E%(Q)%Lg(Q)) for i=0,1,....,n. Suppose that (5.4)
holds. Then Ve M(L3(Q)—L;1(Q)) and

IVl (5.6)

M(LY(@)-L3 () 0; I ’”M(Ll ()= La(2))

(ii) Conversely, if VEM(E%(Q)%L;(Q)), then there exist T=(T1,...,T',) and g
such that T'; EM(Ll(Q)—>L2( )) for i=0,1,...,n, and V:divf—i-dgﬂll“g. Moreover,

< ° : :
0; Il s zaan S MV harae oot (5.7)
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Proof. The proof of statement (i) is straightforward (see, e.g., the proof of The-
orem 4.2 above). To prove (ii), note that, for all u,veC§°(Q), and the functions (;
satisfying the properties (5.5), we have

(Vg o)l =V, Guo)l <Vl 4 g , (IVullL2 ey + 457l 2 )

)= L3N Q
><(||VU||L2(Rn)+dfl||U“L2(Rn))-
Hence by Corollary 5.1,
Vi =divI@ a1, (5.8)
where ') and T'§/) satisfy the inequality
TOu(z)Pde < C|[ V|2 .
| rou@passev o
for all i=0,1,...,n. Multiplying (5.8) by (; we obtain
Vi = div(G I+ 4T - T v,

(IVulZegny +d5 2 ulZe@mny)  (5.9)

We set

F=Y"¢TD and To=Y (4T -TDve).
g 7
If ueC§(£2), then

/Q [(IT|+Tohulfdz < (/Q ;f<j><ju|2dx+dj—% |(djrgj>gj—fU)vgj)xqudx),
7
where 3,;€C3°(Q%) and »;=1 on supp ;. By (5.9), the last sum does not exceed
1S Lo W J g BY

12 s . 2 d~_2 ]2 .
ORIV 5y 2 09GP+ a2 ) o

By Hardy’s inequality (5.4), this is bounded by

clVI? . /|Vu|2dx.
ML) —L; () Jo

The proof of Theorem 5.2 is complete.

Remark. In Theorem 5.2, one can replace
Yo Ind,,
0Sien M(L3(0)—L2(Q))
with the equivalent norm

T+l
sup sup (T 1+1To)H o ce) ' (5.10)

e, (caple, LY(Q}))2
In the case n>2, one can use Wiener’s capacity in place of cap(-,L3(Q3})) (see [MaS,
Section 5.7.2]).

We now characterize the class of compact multipliers, M{(L}(Q)~— L; (). We use
the same notation as in the previous section.
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THEOREM 5.3. Under the assumptions of Theorem 5.2, a distribution V is in
M(LYQ)=L;1(Q)) if and only if

V=divT+dydTo, (5.11)

where I‘iej\jl(zé(ﬁ)ah(m) for i=0,1,...,n.

Proof. Suppose that V is given by (5.11). Let u be an arbitrary function in the unit
ball B of Li(€2). Then
Vu=div(ul)-T+ dyoulo.

The set {div(ul'): u€B} is compact in L; () since the set {ul':u€B} is compact in
L2(Q). The sets {Vu-T':u€B} and {d;aTou: u€ B} are also compact in L ' () since the
sets {|Vu|:u€ B} and {d;u:u€ B} are bounded in L3(92), and the multiplier operators
Li: Lay(Q)—L;1(Q), i=1,...,n, are compact, being adjoint to I';. This completes the
proof of the “if” part of Theorem 5.3.

To prove the “only if” part let us assume that the origin O€ R®\ . Then, for any
z€Q, it follows that |z|>dsq(x), and the inequality

u(z)[”

o [z[?

da:éc/ |Vu(z)|? dz (5.12)
Q

follows from (5.4).

As in the previous section, we introduce the cut-off functions
%5(1‘) = F(dag/é)
and
r(r) =1-F(|z|/R),
where FEC™(R,) so that F(t)=1 for t<1 and F(t)=0 for t>2.

The proofs of the following two lemmas are similar to those of Lemma 3.2 and
Lemma 3.3.

LeEMMA 5.4. If feL; (), then
;i_% ””féf”L;l(Q) =0 (5.13)

and
Jim[lég Sl 10y =0 (5.14)
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LEMMA 5.5. If VEM(LY(Q)—L;1(R)), then

lim ||225 V|| =0 (5.15)
§—0

M(LY(Q)—L5 1 (Q))

and

' .. —0. 16
L A T (5.16)

We now complete the proof of the “only if” part of Theorem 5.3. Write V in the
form
V= %5V+€RV+(1—J{5—§R)V.

By Theorem 5.2 (ii), there exist I's and T© such that

25V =divs+dgiT,

where
S SOV oy ooy
. M(L3()—L2(2)) M(L3(2)—L3 ()
0ign
Analogously,
I — 4]
fRV=d1VF(R)+[1'| 11_‘((1{)),
where

(i)
2 TG 30 gy € OWrVilys 02520

o<isn
Hence, by Lemma 5.5,
: (%) _
Jim D I st sy zatay =

0ign

and

. (2) _
leéo Z T () ”M(i;(n)%z(m) =0

0<i<n

Now we estimate the multiplier
Vs,ri=(1—-35—Er)V.

Note that V5 g eM (E%(Q) —L3;1(Q)). Since its support is separated from oo and from 982,
it follows that
Vir € M(W3(R™) — s (R)).

By Theorem 4.4,
Vs,r = divTs r+¥s g, (5.17)

where each component of T's g, together with ¥s g, are in ]\31’(W21 (R™)— L2(R™)).
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Multiplying, if necessary, both sides of (5.17) by a cut-off function as before, we may
assume that the supports of |f‘5~ r| and ¥ g are in , and are both separated from oo, and
from 9. Hence, the components of I's g, as well as daq Vs, g, are in M(L3(2)— L2 ().
Finally,

V=divl+dyar®,

where

I_%Zf‘(s-i-f‘(R)-i-f(s.R

and

70 — 1"((50)-}- |x|_1dagr((0R)) + dBQPES(,)I)Q'

It remains to note that fg, r (R)» F((SO) and 'Il_ldagl—‘((%)) are small in the corresponding

operator norms, while f‘(;, r and I’((;(_);% are compact. This completes the proof of Theo-

rem 5.3.
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