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1. I n t r o d u c t i o n  

In  th is  p a p e r  we consider  p e r t u r b a t i o n s  

iqt+qxx-2lql2q-s[q]lq = 0, 
(1.1) 

q(x,t=O)=qo(x)---~O as Ixl--~oc 

of the  defocusing nonl inear  SchrSdinger  (NLS) equa t ion  

iqt +qxx-2lql2q = 0, (1.2) 

q(x,t=O)=qo(x)--+O as Ixl--~oc.  

Here s > 0  a n d / > 2 .  The  pa r t i cu l a r  form of the  p e r t u r b a t i o n  slqltq in (1.1) is not  special ,  

and  it will be clear  to  the  reader  t h a t  the  analys is  goes t h rough  for any  p e r t u r b a t i o n  

of the  form sA'(lql2)q, as long as A: R + ~ R +  is sufficiently smooth ,  A'(s)~>0 and  A(s)  

A more  detai led,  ex t ended  version of th is  paper  is pos ted  on h t t p : / / ~ r w . m l  .kva .  s e / p u b l i c a t i o n s /  
a c t a / w e b a r t i c l e s / d e i f t .  T h r o u g h o u t  th i s  paper  we refer to t he  web version as [DZW]. 
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vanishes sufficiently fast as s$0. (For further discussion, see w and Remark 3.29 below. 

See also [DZW, w 

As is well known, the NLS equation is completely integrable, and we view the prob- 

lem at hand as an example of the perturbation theory of infinite-dimensional integrable 

systems on the line. For systems of type (1.1), (1.2) in the spatially periodic case, reso- 

nances, or equivalently, small divisors, play a decisive role. Using KAM-type methods, 

various authors (see, in particular, [CrW], [Kul], [Ku2], and also [Cr]) have shown that,  

under perturbation, the behavior of the unperturbed system persists on certain invariant 

tori which have a Cantor-like structure: on the remainder of the phase space, the KAM 

methods give no information. For systems such as (1.1), (1.2) on the line, however, the 

situation is very different. As time goes on, solutions of these systems disperse in space 

and the effect of resonances/small divisors is strongly muted, and indeed, one of the 

main results of our analysis is that,  under perturbation, the behavior of the NLS equa- 

tion (1.2) persists on open sets in phase space (see Theorems 1.29, 1.30, 1.32, 1.34, and 

the corollary to Theorem 1.29, below): no excisions on the complement of a Cantor-like 

set are necessary. 

In order to understand the long-time behavior of solutions to (1.1) or (1.2), it is 

useful to consider the scattering theory of solutions of the equation 

iqt+qxz--2e[q[tq = 0, 

q(x,t=O) = q0(x) -+0 

e > 0 ,  l > 2 ,  
(1.3) 

with respect to the free SchrSdinger equation 

iqt + q~x = O, 
(1.4) 

q(x , t=O)=qo(x) .+O as I x l . + ~ .  

Many people have worked on the scattering theory of such equations, beginning with 

the seminal papers of Ginibre and Velo [GV1], [GV2] and Strauss [St] (see [O] for a 

(relatively) recent survey). Suppose that  in a region Ix/tl ~<M, a solution q(x, t) of (1.3) 

behaves as t .+oc  like a solution of the free equation. Then 

q(x,t) ~ t -U2/3(x / t )e  iz2/4t, Ix/tl <. M, (1.5) 

for some function /3(-). In particular, I q ( x , t ) l ~ l / t  ~/2 and substituting this relation 

into (1.3) we obtain an equation of the form iqt + q z x -  (const/t ~/2) q ~ O. If l>  2, then the 

interaction is short range, the assumption (1.5) is consistent, and solutions of (1.3) indeed 

look asymptotically like solutions of the free equation (1.4). More precisely, in [MKS], the 

definitive paper of the genre, the authors have proved the following result. Let Ut (0 (q0) 
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and utF(qo) denote the solutions of (1.3) and (1.4) with initial data q0 respectively, and 

let 1 be any fixed number greater than 2. Then for all initial data in the unit ball of a 

weighted Sobolev space, and for 0 < e ~ s ( l )  sufficiently small, the wave operator 

W~(qo) = lim UF_toU(O(qo) (1.6) 
t-+oG 

exists and is one-to-one onto an open ball. Fhrthermore Wl + conjugates the flows, 

u ow?:w +oV(t (1.7) 

The case /=2,  corresponding to the NLS equation (set s = l  by scaling), is, however, 

critical. The potential term M2~l/t is now long range, leading to a logt phase shift 

in the asymptotic form of the solution (1.5). And indeed one can show (see [ZaM], 

[DIZ], [DZ2]) that  solutions of the NLS equation, with initial data  that  decay sufficiently 

rapidly and are sufficiently smooth, have asymptotics as t--+cc of the form 

q(x,t)=t-1/2a(x/2t)eix2/nt-iu(x/2t)l~176 t) ,  (1.8) 

where the functions a and u can be computed explicitly in terms of the initial data q0 

(see (1.26) et seq. below). In particular, the wave operator W1 + 2 cannot exist. The above 

asymptotic form for NLS was first obtained in [ZaM], but without the error estimate. 

In the language of field theory, the phase shift u(x/2t)log 2t in (1.8) plays the role 

of a counterterm needed to renormalize solutions of the NLS equation to solutions of the 

free equation (1.4). A precise and explicit form of renormalization theory for solutions 

of the NLS equation can be obtained by using the familiar scattering theory/inverse 

scattering theory for the ZS AKNS system [ZaS], [AKNS] associated to NLS, 

( ( 0 ) )  0) 
q ~, or= . (1.9) Ox~ = U(x, z)~b = izc~+ 0 - 1 / 2  

As is well known, the NLS equation is equivalent to an isospectral deformation of the 

operator 

0 

As described in w below, for each z c C \ R ,  one constructs solutions ~(x,  z) of (1.9) of 

the type considered in [BC] with the properties: re(x, z)=~(x, z)e -ixz'~ is bounded in x 

and tends to I,  the identity matrix, as x - + - o c .  For each fixed x, the (2x2)-matr ix  

function rn(x, z) solves the following Riemann-Hilbert  problem (RHP) in z: 
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(1.10) m(x,z) is analytic in C \ R ,  and m+(x,z)=m_(x,z)vx(z), zER, where 

rn• z)=lim~,0 re(x, z-t-ie) and 

( 1-lr(z)12 r(z)e izx) 
v ~ ( z ) = \ - ~ S e - i * ~  1 

for some function r=r(z) called the reflection coefficient of q, and limz-+~ re(x, z)=I. 

The sense in which the limits in RHP's  of type (1.10) are achieved will be made pre- 

cise in w The reflection coefficient satisfies the important  a priori bound [Ir I I L~(az)< 1. 

If we expand out the limit for re(x, z) as z--+oc, 

m(x 'z )=I+ml(X)  + o ( ~ )  (1.11) 

then we obtain an expression for q, 

q(x) = -i(ml (x))12. (1.12) 

The direct scattering map g is obtained by mapping q~--~r as follows: q~-+rn(x,z)= 
rn(x,z;q)F-+Vx(Z)+-+r=g(q). Given r, the inverse scattering map g - 1  is obtained by 

solving the RHP (1.10) and mapping to q via (1.12) as follows: r~-+RHP+-+rn(x,z)= 
re(x, z; r)~-+rnl(x)~-+q=T~-l(r). As discussed in w the basic fact is that  the scattering 

map q~-+r=7~(q) is bijective for q and r in suitable spaces. Also, and this is the truly 

remarkable discovery in the subject [ZaS], the map 7~ linearizes the NLS equation. More 

precisely, if q(t) solves the NLS equation (1.2), then r ( . ;  q(t))=g(q(t)) evolves according 

to a simple multiplier, 

r(z; q(t) ) = e-iZ2tr(z, t = 0). (1.13) 

Alternatively, if we take the inverse Fourier transform r = ( 1 / v / ~ )  fR eiXZr( z; q(t)) dz, 
then r solves the free Schr6dinger equation 

ir =0 .  (1.14) 

Said differently, the map 

q ~-+ T(q) = .~--1 on(q)  (1.15) 

renormalizes solutions of NLS to solutions of the free SchrSdinger equation. Furthermore, 

we clearly have the intertwining relation 

ToUt NLs = UtFoT, (1.16) 
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where uNLS(q0) denotes the solution of NLS and UF(qo) denotes the solution of the free 

equation as before. Thus we see that  also in the case /=2,  it is possible to conjugate 

solutions of the nonlinear equation (1.3) to solutions of the free Schr6dinger equation, 

but now the conjugating map is not given by an (unmodified) wave operator W1 + as in 

the case />2 .  In the language of field theory, the map T renormalizes solutions of NLS 

to solutions of the free Schr6dinger equation. 

In a similar way, we do not expect that  solutions of the perturbed NLS equation (1.1) 

should behave asymptotically like solutions of the free equation. Rather we expect that  

(1.1) is a "short-range" perturbation of (1.2) and that  solutions of (1.1) should behave 

as t--+oc like solutions of the NLS equation, or more precisely, we expect that  the wave 

operator 
W+(q)- lim NLS U_ t oU~ (q) (1.17) 

t - - + ~  

exists, where U~ (q) denotes the solution of (1.1) with initial data  q. Then W + intertwines 

U~ and U NLs, and Te=ToW + renormalizes solutions of (1.1) to solutions of the free 

equation 

T~oU[ =UtFoTe. (1.18) 

The key idea in this paper, motivated by (1.13) and by the expectation that  (1.1) is 

a short-range perturbation of (1.2), is to use the map q~r=T~(q) as a change of variables 

for (1.1). Suppose q(t), t>~O, solves (1.1) with q(t=O)=qo. Then as we show in w under 

the change of variables q(t)~r(z; q(t))=T~(q(t))(z), equation (1.1) takes the form 

Otr=-iz2r+e e-iUZ(rn2-1Gm_)12dy, r[t=o=~(qo), (1.19) 
, l - - c x )  

where 

G=G(q)=-i lql t (  0-0 ~ ) '  (1.20) 

and r a  e ixzc7 corresponds to the boundary value of the Beals-Coifman-type solution 

defined above. Emphasizing the dependence on x, z and q(t), the equation becomes 

# Otr(z; q(t)) = -iz2r(z; q(t)) + e e -iyz (m_ -1 (y, z; q(t))G(q(y, t))m_ (y, z; q(t)))12 dy, 
C2~ 

(1.21) 
where r(.;q(t))[t=0=T~(q0). This equation was first obtained, essentially in the same 

form, by Kaup and Newell [K1], [KN]. Observe that  for e=0,  (1.21) reduces, after in- 

tegration, to (1.13), as it should. In the perturbative situation, e>0, the really critical 

aspect of (1.21) is that  the nonlinear part of the equation scales like [q[Z+l as Iql ~ 0 .  This 

means that  the inverse Fourier transform r t )=  ( 1 / v / ~ )  f_~ eiXZr(z; q(t)) dz solves an 

equation of the form 

iCt+{xx -c7-/(r = 0, (1.22) 
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where the (nonlocal) perturbation c7/(~) scales like I~1 z+l as I~1-+0. In other words, slow 

decaying terms like [~12~ are removed under the map q~-+r-4~, and as in (1.3), we may 

expect that  solutions of (1.22) will converge to solutions of the free equation irt-~-rxx =0 
as t-+cx~. In other words for solutions r(z; q(t)) of (1.21), we expect that  as t--+cx~ 

r(z; q(t)) e- z2tr  (z) (1.23) 

for some function r~ (z ) .  But then 

T~zuNLS~ - t  t ( q ) ) " = e - ~ z ~ ( - t ) T ~ ( U ~ ( q ) )  = eiZ2tr(z;q(t))-+r~ as t--+~, 

i.e., W+(q)=limt_~ uN_tLSoU~(q) exists (and equals TC-l(r~)) .  

The body of this paper is concerned with analyzing (1.21) and ensuring that  the 

above program indeed goes through. Although the natural condition for the theory is 

l > 2 as in [MKS], for technical reasons we will need 1 > ~. From the preceding calculations 

it is clear that  we should remove the oscillation from r(z; q(t)) and consider 

r(t) = r(z, t) ~ ei2tr(z; q(t)) (1.24) 

directly instead of r(z; q(t)). At the technical level (see in particular Theorem 4.16 and 

the discussion in w leading up to this result) this reduces to controlling the solutions rn 

of RHP's  of type (1.10) with jump matrices of the form 

( 1 - [ r ( z ) ' 2 r ( z ) e i ( x z - t z 2 )  ) (1.25) 

vx,t(z) = _r(z)e_i(xz_tz2 ) 1 ' 

uniformly as Ixl, t - + ~ .  Such oscillatory RHP's  can be analyzed by the nonlinear steep- 

est descent method introduced by the authors in [DZ1] (see also [DIZ] and [DZ2]). This 

method has now been extended by many authors to a wide variety of problems in math- 

ematics and mathematical physics (see, for example, the recent summary in [DKMVZ]). 

In [DZ1] (and also [DIZ], [DZ2]), the potential q, and hence the reflection coefficient r, 

lies in Schwartz space. A considerable complication in the present paper comes from the 

fact that  now we can only assume that  r has a finite amount of smoothness and decay. 

Also, as is well known, the theory for the RHP (1.10) is simplest in L 2. However, it is 

clear from (1.21), that  if we want to consider solutions r(z; q(t)) in an L2(dz)-space, we 

need to control m_(y,z;q(t)), or more precisely m_(y,z;q(t))-I ,  in an L4(dz)-space. 
In [DZ5], and also in [DZW, w we develop the LP-theory of the RHP (1.10), and a 

summary of the results relevant to this paper is given in w below. These LP-results 

are of independent interest and require the introduction of several new techniques in 

Riemann-Hilbert  theory. 
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Consider the weighted Sobolev space H k'i = ( f :  f, cO, f, xifcL2(R)}, k, j >>.0, with 

norm IlfllHk,~----(llfll2= +llOkxfll2= +llxJfll2=)l/2. Let H~'J=Hk'JN{NfIIL~ <I}, k>~ l, 
j~>0. As noted in w a basic result of Zhou [Z1] is that  T~ is bi-Lipschitz from H k'i 
onto H j'a for k~>0, j~>l. This result illustrates, in particular, the well-known Fourier- 

like character of the scattering map in a precise sense. We will consider solutions of (1.1), 

(1.2) only in H 1,1, but it will be clear to the reader that  our method goes through in 

H k'k, for any k~> 1 commensurate with the smoothness of the perturbation r in (1.1). 

Throughout  the paper we assume that e > 0  to ensure that  (1.1) has global solutions for 

all initial data (see Theorem 2.31). For definiteness, we note by the above that  ~ maps 
1,1 H 1'1 onto H 1 . 

The asymptotic form of solutions q(x, t) of NLS given in (1.8) above remains true 

in H 1'1, but with a weaker error estimate. More precisely (see [DZ4] or [DZW, Appen- 

dix III]), suppose that  q(x, t) solves (1.2) with initial data  q(x, t=O)=qo(x) in H 1'1, then 

r=T~(qo)CH~ '1, and for some 0 < x <  �88 as t--+c~, 

q(x, t) = q~s(X, t)+O(t-(1/2+x)), (1.26) 

where 

qas (X, t )  = t-1/2OL(Zo) e ix2/4t-iu(z~ log 2t ,  

1 
U(Zo) = -~-~ log(l-Ir(zo)12),  

I (z0)l 2 = � 8 9  

1 
fff~ - z )  d(log(1 -Jr(z)]2))  + �88 + arg r( iu(z0))  + arg r(zo). arg c~(z0) = 

Here F is the gamma-function, zo=x/2t is the stationary phase point, Oz ]zo (xz-tz2) =0, 

and the error term O(t -O/2+x)) is uniform for all x E R .  The proof of (1.26) in H 1,1 

requires finer control of oscillatory factors than is needed in [DIZ], [DZ2], where the data  

has higher orders of smoothness and decay. 

Our results are the following. Set 

B + -- { q E H I ' I  : W+(q)= lira uNLSoU:(q) exists in H1'1}. (1.27) 
t -+oo 

Observe that  ifqEB +, then U[(q)EI3 + and W+~ UZ/"~-limt k t / ] - -  s--+cx~ uNLS~ u N L S t  -(t+s) ~ U~+s(q)-- ~ -- 
uNLSoW+(q), i.e., W+oU[:UNLSoW +. 

For any ~>0,  O < p < l  set 

Bv,Q = T / - l { r  e H ~ ' l  : IIrNHI,X < ~/, IlrllL~ < ~}. (1.28) 

7 Fix l>  7. 
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THEOREM 1.29. (i) For each ~>0, B~ + is a nonempty, open, connected set in H 1'1 
E + + and W + is Lipschitzfrom 13+~--+H 1A. Moreover U~ (B~)CB~ for all t E R .  

(ii) Given any ~/>0, 0 < 0 < 1 ,  there exists ~0=x0(Tl, Q) such that B,I,QCB+~ for all 

0 ~ c < c 0 .  In particular, [Jr = H H " 

(iii) For qEl3 +, for some x > 0 ,  as t--+oc, 

1 ( 1 )  
IIuNLS(W+(q))IIL~(ax)~ t l /2,  IIU~(q)-U~ (W (q))ll/ (dx)=O ~ 

The following result (cf. (1.8) above) is an immediate consequence of (1.26) and 

Theorem 1.29 (iii). 

�9 0 + COROLLARY (to Theorem 1.29) For qE ~, as t--+oc, 

U~(q) =qa~(X,t)+O(t -1 /2-x)  for some x > 0 ,  

where 

qas(X, t) = t-1/2 a(zo) e ix2/4t-iu(z~ log 2t, 

1 log(l_lr+(zo)]2), . ( z o )  = 

I (z0)l 2 = � 8 9  

arg a(z0) = 17r f ~  ~176176 - z) d(log(1 -J r+  (z)]2)) + �88 + arg F(iv(zo)) + arg r+ (zo). 

Here F is the gamma-function, Zo=x/2t,  r+=T~(W+(q)), and the error term is uniform 

for all x E R .  

The above corollary shows that the long-time behavior of solutions of the NLS equa- 

tion iqt+q~x-2lq]2q-eA'(]ql2)q=O is universal for a very general class of perturbation 

cA'(lql2)q. 

Remarks�9 In a very interesting recent paper [HN], Hayashi and Naumkin have proved 

a version of (iii) above using powerful, new PDE/Fourier  techniques. In [HN] the initial 

data q is required to have small norm. Of course, for systems of type (1.1) where the non- 

linear terms have different orders of homogeneity, the problem with finite norm [[q]lul,1 

and c small, which we treat in this paper, cannot be reduced in general to a problem 

with small norm and c=1.  

The proof in w below that W +(q) exists requires that the size of the perturbation 

in (1.1) (as measured in Hi ' l -norm) has to be small relative to the initial data. This 
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can be achieved either by making the initial data  itself small, or for large data, making 

c >0  small. This means that  for a given e>0,  B + contains a (small) Hl 'Lbal l ,  and 

this is the main content of Theorem 1.29 (i). On the other hand, for any given initial 

data q=qoEH 1,1, qEB + for some sufficiently small e>0,  and this is the main content of 

Theorem 1.29 (ii). 

A +  1 1 + THEOREM 1.30. For any e>0,  there exists a Lipschitz map W :H ' --~B~ such 
that: 

(i) W+oW+=I, W+oW+=I~+;  

(ii) (Conjugation of the flow.) For qEB + and for all t e R ,  

A +  NLS + =TZloUtFo (1.31) U;(q)=W oU~ oW (q) T~(q), 

where T~=hC- lo~oW + as in (1.18) above. 

Set B 2 ={qCH 1'1 :W-(q)=l imt~_~ uN_LSoU[(q) exists in Hi,l}. Clearly B 2 has 

similar properties to 13 +. The following result shows how to relate the asymptotic be- 

havior of solutions U2(q) of (1.1) in the distant past to the asymptotic behavior of the 

solution in the distant future, in certain cases. 

THEOREM 1.32. Suppose qCB+~AB2 and set q•177 Define the scattering op- 
erator 

S(q ) -  w +ow (q ) = q+. 

Then as t--+• e NLS • IIU~ (q)-U~ (q )llL~(dx)=O(1/Itl 1/2+x) for some x > 0 .  

Using the fact that  if q(x, t) is a solution of (1.1), then q(x , - t )  is also a solution, 

the asymptotic behavior of U~(q) in the above theorem can be made explicit as t--+-oc, 
as in the case t--++cx~ in the corollary to Theorem 1.29. 

Our final result, which is perhaps unexpected, shows that  (1.1) is completely inte- 

grable on the nonempty, open, connected, invariant set B~ +. As noted in w in addition 

to the reflection coefficient r(z)=r(z; q), scattering theory for the ZS-AKNS operator 

Ox 

also involves a transmission coefficient t(z)=t(z; q). In ZS AKNS scattering theory, r(z) 

and t(z) are given in terms of natural parameters a(z) and b(z) where t(z)=l/a(z) and 

r(z)=-b(z)/a(z)  (see w As is well known (see w equations (1.1) and (1.2) are 

Hamilton• with respect to the following (nondegenerate) Poisson structure on suitably 

smooth functions H, K, ... : 

{H,K}(q)= f R ( * H  , K  ~H (~K) ~9 59 5~ dx, (1.33) 

where q = a + i / ~ = R e  q+i Im q. 
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THEOREM 1.34. Fix s>0 .  Then on B + the functions -(1/2~)logla(z;W+(q))l ,  
z CR, provide a complete set of commuting integrals for the perturbed NLS equation (1.1). 

Together with the function arg b( z' ; W + (q) ), zt E R ,  these integrals constitute action angle 

variables for the flow: for z, z~cR, 

{ - l  log [a(z; W+ (q),, arg b(z'; W+ (q) } = 5 ( z -  z'), 

{ 1 1 logla(z , ;W+(q)l}=O ' (1.35) 
- l o g  la(z; W+(q)l, - ~  

{arg b(z; W + (q), arg b(z'; W + (q) ) } = O. 

Remark. The theorem of course remains true if we replace B + with B[.  Also note 

that  when s=0,  the above result reduces to the standard action-angle theory for NLS 

(see, for example, [FAT]). 

As shown in w the proof of Theorem 1134 follows directly from the fact tha t  W + 

is symplectic. The fact that  any Hamiltonian system whose solutions are asymptoticMly 

"free" (or "integrable') ,  is itself automatically completely integrable, was first pointed 

out, many years ago, to one of the authors by Jfirgen Moser. For example, if (x(t), y(t)) 

solves a Hamiltonian system 

= Hy, 0 = - H z ,  (x(t = 0), y(t = 0)) = (x0, Yo) (1.36) 

in R 2n, and if for suitable constants (x~ ,  y ~ ) E R  2n 

x ( t ) = y ~ t + x ~ + o ( 1 ) ,  y ( t ) = y ~ + o ( 1 )  (1.37) 

as t--+c~, then the wave operator W+(xo, y0)= l imt - -~  U~ Yo)=(xo~, y~)  exists, 

Ut (xo, Yo) denotes the solution of the where Ut(xo, Yo) denotes the solution of (1.36) and 0 , , 

free particle motion 

= H ~ y = - H  ~ (x(t = 0), y(t = 0)) = (X~o, Y~o), (1.38) 

where H ~ (x, y ) =  1 2 IlYll �9 Necessarily W +, as a limit of a composition of symplectic maps, 

is also symplectic. Clearly the momenta y provide n commuting integrals for the free 

flow, and so, using the intertwining property for W +, U~ + =W+o Ut, we see that  y~ ,  

the asymptotic momenta for solutions of (1.36), provide a complete set of commuting 

integrals for the system. We note in passing that,  because of the above comments, 

it follows from the results of McKean and Shatah [MKS] that  equation (1.3) is also 

completely integrable on an open (invariant) set in phase space. 

It is an instructive exercise to apply these ideas to the Toda lattice, which is gen- 
H 1 V "~n ~ 2 . K  " ~ n - 1  e x k - x k + l  R 2 n .  erated by the Hamiltonian T=5  A~k=lYk ~-A.,k=l on Solutions of this 
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system are free in the sense of (1.37), and it is easy to relate the asymptotic momenta y ~  

to the well-known integrals for the Toda lattice given by the eigenvalues of the associated 

Lax operator. We refer the reader to [Mol] for details. 

The outline of the paper is as follows. In w we give some basic information on 

RHP's  and introduce, in particular, the rigorous definition of the RHP (1.10). In w 

we discuss the solution of (l.1) in H 1,] and show how to derive equation (1.21). Finally, 

in w we present uniform LP-bounds, p~>2, for solutions of RHP's  of type (1.10) with 

jump matrices v~,t of form (1.25). In w we prove the main Theorems 1.29, 1.30, 1.32 and 

1.34 using fairly standard methods together with estimates from the key Lemma 6.4 of w 

In w we prove various smoothing estimates for solutions of the NLS equation and also 

for the solutions of the associated RHP's. The main results of the section are presented 

in Theorem 4.16. The time decay in (4.17)-(4.21) is obtained by using and extending 

steepest descent ideas from [DZ1], [DIZ] and [DZ2]. We note that  related, but weaker, 

smoothing estimates for NLS were obtained in [Z2]. Also, certain smoothing estimates for 

KdV were obtained by Kappeler [Ka], using the Gelfand-Levitan-Marchenko equation. 

In w we supplement the estimates in w and place them in a form directly applicable to 

the analysis of the evolution equation (1.21). The principal technical tool in this section 

is a Sobolev-type theory using the modified derivative operator L=Oz- i ( x -2 z t )ad  cr in 

place of the bare derivative Oz. The operator L is closely related (see e.g. Lemma 5.14) to 

the operator [,=ix ad or-2tO~, which is very close in turn to the operator LMSh = X--2itO~ 
considered by McKean and Shatah in [MKS]. Finally, in w we use results from the 

previous sections to prove basic a priori estimates for solutions of (1.21) (or more precisely, 

for solutions of the equivalent equation (6.3)). The main results of the section are given 

in Lemma 6.4. 

The theory of perturbations of integrable systems has generated a vast literature, 

and we conclude with a brief survey of results which are closest to ours and which have 

not yet been mentioned in the text. We will focus, in particular, on problems in 1+1 

dimensions. 

Equations of the form (1.21) for a variety of systems of type 

qt+Ko(q, qz, q~x, ...) = c K 1  (q, qx, ...), (1.39) 

where qt+Ko(q, qx, qxx, . . . )=0 is integrable, were first derived in [K1], [KN] and [KM]. 

In these papers the authors used equations of form (1.21), expanded formally in powers 

of e, to obtain information on solutions (in particular, soliton-type solutions) of (1.39) for 

times of order e -~  for some c~>0. Recently, Kivshar et al. [KGSV], and also Kaup [K2], 

have extended the method in [K1], [KN], [KM] to obtain information for times of order 

e -~  for large values of c~. 
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Results similar to [K1], [KN] and [KM] have been obtained by many authors, dating 

back to [A], [MLS], [W], using the multi-scale/averaging method directly on the per- 

turbed equation (1.39) (for further information see [AS]). We also refer the reader to 

the interesting paper [Br] in which the author obtains similar results to those of Kivshar 

et al., using standard perturbation methods. 

The result (1.7) of McKean and Shatah provides a very interesting infinite-dimen- 

sional example illustrating the case when a given nonlinear equation 2 = f ( x ) ,  with equi- 

librium point x=0 ,  say, can be conjugated to its linearization ~)=f~(0)y at the point. 

Equation (1.31) above now provides another such example. The subject of conjugation 

has a large literature; see, for example, [P], [Si], [HI, [N], among many others. The 

literature is devoted almost exclusively to the finite-dimensional case. 

As we have noted above, the map q~--~T~(q) can also be viewed as a renormalization 

transformation taking solutions of (1.2) to solutions of the normal form equation (1.4). 

Kodama was the first to apply normal form ideas to nearly integrable (1 + 1)-dimensional 

systems, and in [Ko], in the case of KdV. he obtained a normal form transformation 

up to order s 2. Kodama's transformation has been generalized recently by Fokas and 

Liu [FL]. 

In a different direction, Ozawa [O] considered solutions of generalized NLS equations 

i q t + q x x - ) ~ l q l S q - p l q l p - l q  = O, - o c  < x < oo, (1.40) 

where AcR\{0} ,  # c R  and p>3.  Under certain additional technical restrictions (e.g. 

#~>0 if p~>5), Ozawa used PDE methods to prove that  modified Dollard-type wave op- 

erators W • (see, for example, [RS]) for (1.40) exist on a dense subset of a neighborhood 

of zero in L2(R) or HI ,~ This means that  solutions of (1.40) with initial data in 

Ran W • behave, as t--++oc respectively, like solutions of the NLS equation 

iqt + q x x  - )~lql2 q = 0. (1.41) 

In the case A>0, these results are clearly related to Theorem 1.30 above. 

Finally we mention the fundamental work of Zakharov on normal form theory for 

nonlinear wave systems [Za]. A particularly illuminating exposition of the consequences 

of Zakharov's theory in the context of a class of (1+1)-dimensional dispersive wave 

equations can be found in the recent paper of Majda et al. [MMT]. 

Some of the results of this paper were announced in [DZ3]. In future publications 

we plan to extend the methods of this paper to analyze perturbations of a variety of 

integrable systems, including systems with soliton solutions. Of course, when solitons 

are present, smoothing estimates of the form (4.20) can no longer be valid. However, 
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after subtracting out the contribution of the solitons, we still expect an est imate of the 

form (4.20) to be true, but perhaps with a smaller power of t-decay. 

Notational remarks. Throughout  the text  constants c>  0 are used generically. State- 

meats  such as Ilfll <~2c(l+eC)<<- c, for example, should not cause any confusion. Through- 

out the text, c always denotes a constant independent of x, t, r / and  6. 

Throughout  the paper  we use (} to denote a dummy variable. For example, e~ 

denotes the function f defined as f(z)=e~g(z). 

2 .  P r e l i m i n a r i e s  

This section is in three parts: 

Part (a). Give some basic information on RHP's ,  with particular reference to special 

features of RHP ' s  occurring in this paper. A general reference text  for RHP ' s  is, for 

example, [CG]. 

Part (b). Discuss the solution of (1.1) in H 1'1 and show how to derive the basic 

dynamical equation (1.21). 

Part (c). Present LP-bounds, p~>2, for solutions of RHP ' s  of type (1.10) with jump 

matrices vx,t of form (1.25). The key property of these bounds is that  they are uniform 

in x and t. 

Considerably more detail on parts  (a), (b), (c) can be found in [DZW, w167 2, 3, 4]. 

Part (a). Consider an oriented contour E c C .  By convention we assume that  as 

we traverse an arc of the contour in the direction of the orientation, the (+)-side (resp. 

( - ) -s ide)  lies to the left (resp. right), as indicated in Figure 2.1. Let v: E-+GL(k, C) 

be a k x k jump matr ix  on E: as a standing assumption throughout the text,  we always 
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assume that  v,v-IEL~(E-+GL(k, C)).  For l < p < ~ ,  let 

Ch(z)=C~h(z)=/E s-zh(S) 2~i'ds hELP(E) ,  

define the Cauchy operator C on E. We say that  a pair of LP(E)-functions f~ E 0 Ran C if 

there exists a (unique) function h E L p (E) such that  f~ = C~h, the nontangential boundary 

values of Ch from the (+)-sides of E. In turn we call f(z)=Ch(z), zEC \E ,  the extension 
of f•177 off E. We refer the reader to [DZW, Appendix I] for the relevant 

analytic properties of the operators  C and C% Note in particular that  C ~ are bounded 

from LP(E)-~LP(E) for l < p < o o .  A standard text  on the subject is, for example, [Du]. 

Formally, a (k x k)-matrix-valued function analytic in C \ E  solves the (normalized) 

RHP (E, v) if m+ (z)=m_ (z)v(z) for z E E, where m• denote the nontangential boundary 

values of rn from the ( i ) -s ide ,  and m(z)-+I in some sense, as z - + ~ .  More precisely, we 

make the following definition. 

Definition 2.2. Fix l < p < c o .  We say that  m• solves the (normalized) RHP (E,V)p 

if m• and m+(z)=m_(z)v(z), a.e. z e E .  

In the above definition, we also say that  the extension m of m• off E solves the 

RHP. Clearly m solves the RHP in the above formal sense with m=L-IEL 2. 

Mostly, we are interested in p=2, in which case we will drop the subscript and 

simply write (E,v) .  Let v = ( v - ) - l v + = ( I - w - ) - l ( I + w  +) be a factorization of v with 

v • (v• ~, and let Cw, w=(w-,w+), denote the associated singular integral oper- 

ator 

Cwh = C+(hw-)+C - (hw +) (2.3) 

acting on LP-matrix-valued functions h. As w~E L ~~ Cw is clearly bounded from L p----} L p 
for all l < p < o o .  The operator C[w plays a basic role in the solution of the RHP (E,v)p.  

Indeed, suppose that  in addition w• • :~-I) E L p, and let #C I+LP(E) solve the equa- 

tion 

( 1 - C ~ ) #  = I ,  (2.4) 

or more precisely, suppose that  h = # - I  solves the equation 

(1 -Cw)h=C~I=C+w-+C-w + 

in L p. Then a simple calculation shows that  

m+ = I+C ~ (p(w + + w - ) )  = #v • (2.5) 

and hence solves the RHP (E,V)p for any factorization v=(1-w-)- l ( I+w+),  as long 

as w~=+(v•  ~. Such factorizations of v play the role of parametrices for 
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the RHP in the sense of the theory of pseudo-differential operators, and different factor- 

izations are used freely throughout the text in order to achieve various analytical goals. 

Moreover, using simple identities, it is easy to see ([DZW, w that  bounds obtained 

using one factorization v = ( v - ) - l v  + imply similar bounds for any other factorization 

v=@-)-l~+. 
If k=2, p=2  and det v ( z )= l  a.e. on E, then the solution m (or equivalently m• of 

the normalized RHP (E, v) = (E, v)2 is unique. Also get re(z)  =- 1 (see [DZW, w These 

results apply in particular to the RHP (1.10), and will be used without further comment 

throughout the paper. 

The principal objects of study for the RHP (1.10) are eigensolntions g)=r z) of 

the ZS-AKNS operator 0x -U(x ,  z) (see (1.9)), 

(0~-v(x,z))r  0 x - i z ~ +  q ) 0 

Setting 

m = Ce -ixza,  (2.7) 

equation (2.6) takes the form 

O x m = i z a d ~ ( m ) + Q m ,  Q =  0 ' 

where ad A(B)=  [A, B ] = A B - B A .  Under exponentiation we have 

eadA B = ~ 
(adA)n(B) 

n! - -  e A B e - A "  

n = 0  

The theory of ZS AKNS ([ZS], [AKNS]) is based on the following two Volterra integral 

equations for real z, 

m (• (x, z) = I +  e i(x-y)z ad aQ(y)rn(• z) dy - I T K q , z , •  (• . (2.9) 

By iteration, one sees that  these equations have bounded solutions continuous for both 

x and real z when qcLl(a). The matrices m(•  are the unique solutions of (2.8) 

normalized to the identity as x - + i c e .  The following are some relevant results of ZS- 

AKNS theory: 

(2.10a) There is a continuous matrix function A(z )  for real z, det A(z )= l ,  defined 

by r162 where r 1 7 7  ~xz~ and A has the form 
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(2.10b) a is the boundary value of an analytic function, also denoted by a, in the 

upper half-plane C+: a is continuous and nonvanishing in C+, and limz-~or a ( z )= l .  

(2.10c) 

a(z)=det(m~+),m~-)) = l - j R  q(y)m(+l)(Y,z)dY = l+/Rq-(~m~-2)(y,z)dy, 

6(~) = e~xz de t (m;- ) ,  m;  + ) ) :  - q( ;)  1, ,~, 

where 

m(• = (m{ • m~ ~:)) = ( m ~ )  m~;) "~ 
ml; ) ) )  

(2.10d) The reflection coefficient r is defined by -8 /~ .  As det A = I ,  [a[2-Ib[2=l, so 

that  ]a I ~> 1 and [r[ 2 = 1-[a[ -2 < 1. Together with (2.10b), this implies that  [[r[[L~ (R) < 1. 

The transmission coefficient t(z) is defined by 1/a(z). Thus 

[It[iLO+(tl)~<l and [r(z)[2+[t(z)12=l. 

The basic scattering/inverse scattering result of ZS AKNS is that the reflection map 

7~: q~-+7~(q)=-r is one-to-one and onto for q(x) and r(z) in suitable spaces. In this paper 

we will study the map Tr by means of the associated RHP for the first-order system (2.6) 

introduced by Beals and Coifman. In [BC] the authors consider solutions m=m(x, z) of 

(2.8) for z E c x R  with the following properties: 

m(x,z)--~I as x--+-(x~, (2.11) 

m(x,z) is bounded as x-+ +co. (2.12) 

Such solutions exist and are unique, and for fixed x, they are analytic for z in CXR with 

boundary values m• (x, z)=lim~+0 re(x, z:t:ia) on the real axis. Moreover, rn~ are related 

to the ZS-AKNS solution m( ) through 

m~_ (x, z) = . ~ ( - ) ( x ,  z) e ~xz ad . v  i ( z ) ,  z ~ R ,  (2.13) 

where v+ (1 o) (1 ; )  = , v - =  (2.14) 
1 0 

(see e.g. [Z1]). Note that the asymptotic relation (2.11) fails for me:(x,z), zER, but 

(2.12) remains true both as x--++oo, x--+-c)o. 
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Using the notation B~-ei~z~d~'B, we have from (2.13), (2.14) the jump relation 

m+(x,z)=m_(x,z)v~(z), zCR,  (2.15) 

where 

Thus 

1-lr(z)[ r(z)) 
v =v(z)  = (v-(z))-lv+(z) = -r(z) 1 " (2.16) 

( V  ~--lv+ (2.17) V X = \  X /  X '  

where we always take v ~ = fv+~ In addition, if q has sufficient decay, for example if q x - - \  I x "  

lies in the space {q : fR(l+x2)Iq(x)[ 2 dx<oc}CLI(R)nL2(R), then for each x e R ,  m ~ =  

m• ) e I + L 2 ( R )  solves the normalized RHP (E, vx)=(E,  vx)2 in the precise sense of 

Definition 2.2, 
m+(x,z)=m_(x,Z)Vx(Z), z e R ,  

(2.18) 
m• ( x , . ) - I  C c0Ran C, 

with contour E = R  oriented from left to right (see e.g. [Z1]; see also [DZW, Appendix II]). 

This is the Beals Coifman RHP associated with (2.6) and the NLS equation. 

• and let C~ x be the associated singular Define wx=(Wx,W+x) through v~ 

integral operator as in (2.3). Then (see w below), 1 - C ~  is invertible in L2(R). Let 

# be the (unique) solution of ( 1 - C w , ) # = I ,  p e I + L 2 ( R ) .  Then as noted above, the 

boundary values m• of 

m ( z ) = m ( x , z ) = I +  f #(x's)(w+(s)+Wx(S)) ds z e C \ R ,  (2.19) 
aR S-- Z 27ri ' 

lie in I + L 2 ( R )  and satisfy the RHP (2.18). Set 

q = q(x) = s  s)(w~+ (s) +w;  (s)) ds. 

Then a simple computation shows that  

is the potential 

(2.20) 

1 ad ~(Q) (2.21) 

in the ZS AKNS equation (2.8). 

As indicated above, the map T~ is a bijection for q and r in suitable spaces. 

particular, 

In  

the methods in [ZS], [AKNS] and [BC] imply that  T~:8(R)-+81(R)= 
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S(R)n{r:  IlrllL~(m<l}, taking q~-~r=n(q), is a smooth bijection with a smooth in- 

verse ~ - 1 .  However, for perturbation theory, it is important  to consider ~ as a mapping 

between Banach spaces. The following result plays a central role. 

First we need some definitions. Throughout  this paper we denote by IAI the Hilbert-  

Schmidt norm of a matrix A=(Aij), IAI = (~ ,~  IA~j 12) 1/2. A simple computation shows 

that  l" [ is a Banach norm, IABI<~IAI IBI. For a matrix-valued function f(x)  on R, define 

the weighted Sobolev space 

Hk 'J={ f : f ,O~ f ,  xJfEL2(R)}, k,j>~O, (2.22) 

with norm 

II/llHk,, ( l l f l l ~2+  k 2 = IlO~fllL=+llxJfll~) ~/2, (2.23) 

where the L2-norm of a matrix function f is defined as the L2-norm of [fl. Also define 

Hkl 'J={fcHk'Y: l l f l lL~<l} ,  k ~ l ,  j ~ 0 .  (2.24) 

Observe that  by standard computations, if f c H  k'j, then xiOZx-ifGL2(R ) and 

IIx~O~-ifllL2 < c[IfllH',' (2.25) 

for O<~ i <~ l -min(  k, j). 
Recall that  a map F from a subset D of a Banach space B into B is (locally) Lipschitz 

if D is covered by a collection of (relatively) open sets {N} with the following property: 

for each N there exists a positive number L(N) such that  

[Ie(q~)-F(q2)llz~ ~ L(N)IIq~ -q2H (2.26) 

for all ql, q2 C NC D. 

PROPOSITION 2.27 [Zl]. The map 7~ is bi-Lipschitz from H k'j onto H j'k for k>~O, 
j>~l. 

A proof of this proposition in the case k = j = l ,  which is of central interest in this 

paper, is given in [DZW, Appendix II]). 

Part (b). The spaces H k'j are particularly well-suited to the NLS equation. Indeed, 

as is well known (see below), if q(t), t>~O, solves the NLS equation with initial data q(0), 

then 7~(q(t)) evolves in the simple fashion 

n(q(t) ) = n(q(O) ) e -itz2 = re -itz2. (2.28) 
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On the other hand, a straightforward computation shows that  for k>~j, multiplication 

by e -itz2 is a bijection from H{ 'k onto itself (the key fact is that  if f E H  j'k for j<<.k, 

then zlOJ-lfEL 2 for O<<.l<.j, by (2.25)). Hence the NLS equation is soluble in H k'j for 

l <<.j <<. k, 

q(t=O) ,~> r ~-+ re-itz2, n-l> q(t) 

Moreover, as ~ - 1  is Lipschitz, it is easy to verify that  the map t~-+q(t)=7~-t(re -it(?) is 

continuous from R to H k'j. 

The perturbed equation (1.1) is a particular example of the general form 

iqt+qxx = V'(lql2)q, (2.29) 

q(t = O) = qo, 

where V is a smooth function from R+ to R+ with V(O)=V'(O)=O. We say that  q(t), 
t~>0, is a (weak, global) solution of (2.29) if qEC([0, oo), H k'e) for some k>~l and 

q(t) = e-iH~ e-iH~ ds, (2.30) 

where H0 = - 0 ~  is negative Laplacian regarded as a self-adjoint operator on L 2 (R). Oh- 

serve that  if k~>2, then q solves (2.29) in the L2-sense, and if k~>3, then q=q(x,t) is a 

classical solution. 

The following result, which is far from optimal, is sufficient for our purposes. For 

more information on solutions of (2.29) see, for example, [O] and the references therein. 

THEOREM 2.31. Let e>0 and suppose that A is a C2-map from R+ to R+. Sup- 

pose in addition that A(0)=A'(0)=0 and A(s),A'(s)~>0 for sER+.  Then for V(s)= 

s2+eA(s), equation (2.30) has a unique (weak, global) solution q in H 1'1. Moreover, for 
each t>0 ,  the map qo~-+qo(t)=q(t; qo) is a bi-Lipschitz map from H 1'1 to H 1'1. 

The proof of Theorem 2.31 is standard and uses the conserved quantities 

f lq(x,t)ladx = 

f IGq(x,t)l 2 dx + f V(Iq(x,t)l 2) dx= 

f lqo(x)l ~ dx, (2.32) 

f IOxqo(x)12dx+fV(Iqo(x)12)dx (2.33) 

to obtain a global solution in the familiar way. If V has additional smoothness, then 

(2.30) has a solution in H k,k for values of k > l .  Equation (1.1) corresponds to the choice 

V(s) = s 2 + ~ 2  s(t+2)/2' 
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and throughout this paper by the solution of (1.1) we mean the unique (weak, global) 

solution of (2.30) in H:':. 
1,1 As 7~ is a bijection from H ~,1 onto H: , solutions q(t) of (1.1) induce a flow on 

reflection coefficients r=7~(q(0)) in HI ' :  via t ~ r ( . ;  q(t))=~(q(t)), t~>0. The equation 

for this flow can be derived as follows (cf. [KN]). Simple algebraic manipulations show 

that  (2.29) with V(s)=s2+:A(s) is equivalent to the commutator relation 

[0~ - U,  c3t - W ]  = : G ( q ) ,  (2.34) 

where q) U =iz(7+ 0 ' 

+ (2.35) 
0 t,-iOx~ ilql 2 ) '  

Applying (2.34) to ~( - )=rn(- )e  ~z~ using variation of parameters, and evaluating the 

constant of integration at x = - o c ,  one obtains the equation 

(0,-w)~(-) =iz2r (-) (~(-))-lae(-) dy. (2.36) 

Using the relation @+)=r  to substitute for r in terms of r and letting 

x--++oe, one obtains an equation for A -1, and hence for a and b: 

(SJ ~ )2 0ta = ca ( r  G%O (-) dy (~b(-))- 1G~(-) dy 
OO (Do 1 ~ 

(2.37) 

Substituting m for m(-) via relation (2.13), we obtain finally an equation for r=-b/~t: 

iJ Otr = --iz2r+e e-~Y~(rn_-lGrn_)12 dy, (2.38) 

or emphasizing the dependence on x, z and q(t), 

/? Otr(z;q(t)) = - iz2r(z;q(t))+: e-iYZ(m~:(y,z;q(t))G(q(y,t))m_(y,z;q(t))):2dy, 

(2.39) 



P E R T U R B A T I O N  T H E O R Y - - A  C A S E  S T U D Y  183 

where r(z; q(t))=(7~(q(t)))(z). Defining r(t) via 

r(t) (z) = eitZ2r(z; q(t) ) (2.40) 

as in (1.24), and integrating, we obtain 

/o f r(t)(z)=ro(z)+e dse iz2* dye-iYZ(m71(y,z;q(s))G(q(y,s))m_(y,z;q(s))h2, 
d - - @ O  

(2.41) 
where 

ro(z) = T~(qo)(Z), qo = q(t = 0). (2.42) 

Note tha t  if q(t)=uNLS(qo) solves NLS (i.e. the case e=0) ,  then 

r ( t ) ( z )  = e Z%(z; u LS(qo)) = q0) 

and the Hl,~ of r(t) is constant and hence bounded in t. As we will see, for 

the general evolution q(t)=U[(qo), at least when e > 0  is small, the heart  of the analysis 

lies in the fact that  the Hl,~ of r(t)(z)=eUZ2r(z; q(t)) also remains bounded as 

t--+ec. 

Note that  if e=0 ,  so that  G=0 ,  then r(z; q(t))=e-iZ2tT~(qo), which is the well-known 

evolution for the reflection coefficient under the NLS flow as described above. Replacing 

r=T~(q0) with e-iZ~tr in (2.16) we obtain the RHP 

(z)vo(z), z R, 
(2.43) 

rn~ - I  E 0Ran  C, 

for the solution q(x, t)=(Tr -1 (e-i<>2tr))(z) of NLS, q(0)=q0, where 

O=xz- tz  2 and vo eiOad~v=( 1-[r[2 eiOr) = . (2.44) 
\ - e - ~ ~  1 

Observe that  x and t play the role of external parameters  for the RHP. For future 

reference, we note from (2.20), (2.21) that  if #=#(x, t, z) solves (1-C~o)#=I, then 

( 0 q(x,t)) a d ~ ( f ~  ) 
Q =  q(x, t) 0 = --~--~ #(x ' t ' z ) (w~176 (2.45) 

In order to write (2.41) as an equation for r(t)=eiZ:t~(q(t)) we must substi tute 

~-~(e-i~2tr) for q on the right-hand side of the equations. Recall that  m_(y,z;q), 
which is the boundary value from C of the Bea l~Coi fman  eigensolution for q, can also 

be viewed as the boundary value from C_ of the solution of the RHP (2.18) with r = ~ ( q ) .  
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Rei0<0  

ReiO>O 

Re i0>0  

Z0 

ReiO<O 

Fig. 2.51. Signature table for ReiO. 

With this understanding it is natural to write m_(y,  z; q )=m_(y ,  z;r)  where r=T~(q). 

With this notation (2.41) becomes 

f t  2 f ~  
( _ ( u , z ;  r( t )(z)  = r o ( z ) + r  I dse  *z ~1 dye  -iy~ m -1 

J O J --oc (2.46) 

• a ( n  -1 (y, z; e-i+ Sr(s)))12, 

where r( t=O)=ro and rEC([0, oc), Hl1'1). Uniqueness for solutions of (2.46) follows from 

the Lipschitz estimate (6.6) in w The basic result on (1.1), (2.41), (2.46) is the following. 

PROPOSITION 2.47. I f  qEC([0, oc), H H )  solves (1.1) with e>0,  l>2,  then r ( t ) ( z )=  

eit*2~(q(t))(z) solves (2.41). Conversely, suppose that rEC([0, oc), 1,1 H 1 ) solves (2.46). 

Then q( t ) -7~-1(e - i~  solves (1.1)in C([0, cc), H1'1). 

For later reference we note the following useful property of functions in H 1'1. 

LEMMA 2.48. I f  t E N  1'1 then z r 2 E L 1 A L  ~ and ]](}r2((>)l[Lp~Cp[]r][2Hl.1, l <p~oc .  

Part (c). The operator 1-Cwo associated with the RHP (2.43) with factorization 

( ; - - r e i O ) - l ( l ~ )  
vo = 1 --"?e -i~ 

is invertible in L 2 with a bound independent of x and t (see [DZW, (4.2)]), 

[[ (1-C~o) -IIIL~(R)_+L2(R) ~< c ( 1 - g ) - a  (2.49) 

for some absolute constant c and for all r E L  ~ satisfying [ [ r e i ~  

Furthermore if m• solves the RHP (2.43), then (see [DZW, (4.7)]) 

IIm• IIrlIL r (2.50) 

for all x, tER.  In the analysis of (2.46), we will need similar uniform bounds in L p for 

p>2.  Standard RHP arguments (see e.g. [CG]) imply that  1 - C ~  e is invertible for all 

l<p<oc ,  but a priori the bounds on H(1--C~,)--I][Lp(R)~LP(R) and [Im~:--I[IL,(R) may 

grow as x, t-+oc. It is one of the basic technical results of [DZ5] (see also [DZW]) that  

for p>2, there exists bounds, uniform in x, tER ,  on these two norms. 
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Following the steepest descent method introduced in [DZ1], and applied to the NLS 

equation in [DIZ], [DZ2], we expect the RHP to "localize" near the stationary phase point 

Zo=x/2t for O = x z - t z  2, 0'(z0)=0. Furthermore, the signature table of ReiO should 

play a crucial role. The basic idea of the method is to deform the contour F = R  so 

that the exponential factors e i~ and e -i~ are exponentially decreasing, as dictated by 

Figure 2.51. In order to make these deformations we must separate the factors e i~ and 

e -~~ algebraically, and this is done using the upper/lower and lower/upper factorizations 

v=(10 ~ 
1 1 

: ( _ e / ( l _ ] r ] 2 )  : ) (  - , r ,  2 0 1 )- 

of v, 

(2.52) 

The upper/lower factorization isappropriate for z > z0, and the lower/upper factorization 

is appropriate for Z<Zo. The diagonal terms in the lower/upper factorization can be 

removed by conjugating v, 

(10 0 ) = 2 ~ ,  (2.53) = 513v52 ~a, 63 = Pauli matrix = - 1  

by the solution 5• of the scalar, normalized RHP (R_+z0,  1-Ir12), 

5+ = 5_(1-1rl2), z e R _ + z o ,  
(2.54) 

5• - 1 C 0Ran  C, 

where the contour R _ + z 0  is oriented from - c ~  to z0. The properties of 5 can be read 

off from the following elementary proposition, which will be used repeatedly throughout 

the text that follows, and whose proof is left to the reader. 

PROPOSITION 2.55. Suppose r E L ~ ( R ) N L 2 ( R )  and IlrllL~ ~ < 1 .  Then the so- 

lution 6• of the scalar, normalized RHP (2.54) exists, is unique and is given by the 

formula 
5• e C~- +z~176 = e 2-~z fz-Oc~ l~ d8 = s-~• , z E R .  (2.56) 

The extension 5 of 5• off R _ + z o  is given by 

5(Z)~-C CR-+z~176 =e ~fz-~176 z E C \ ( a _ •  , (2 .57)  

and satisfies for z C C \ (R_ + z0), 

5(z) 5(2) = 1, 

( 1 -  ~o) 1/2 ~< (1-02)  1/2 ~< 15• ~< (1-02)  -1/2 ~< ( 1 -  co) -1/2, (2.58) 

]5+1(z)1-~<1 for •  
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F o r  real z~ 

I~+(z)5 (z)l = ] (2.59) 

and, in particular, 15(z)1=1 for z>zo, 16+(z)l=lSc1(z)l=(1-1r(z)12) 1/=, z<zo, and 

! p . v . f  ~~ t~  
A - - & &  = e  . . . . . . . .  , 

cllrllL~ (2.60) 
I/Xl--I~+~-I--l' 115• 1-Q 

We obtain the following factorizations for 5: 

5 = 5 2 1 5 + = ( 1 0  r612)(  1 01) _ f6 -2  , z>z0 ,  (2.61) 

( 1 01 ) (1  r62+/(l-lr[2)) 
= z<z0 ,  (2.62) 5 = 5_-15+ - f~22/(1  - [ r [  2) 0 1 ' 

which imply in turn the factorizations for G0 =e  i~ ~d ~ 

5O:5o15O+:(~ re i[52)(  1 01) _fe_iO(~_2 , Z > Zo, (2.63) 

( 1 0 1 ) ( :  rei~ z<zo. (2.64) 
Go = 5~_1~o+ = --~e-i~ 2) 1 ' 

Using Figure 2.51 we observe the crucial fact that the analytic continuations to C+ of the 

exponentials in the factors on the right in (2.63) and (2.64) are exponentially decreasing, 

whereas the same is true for the exponentials on the left, when continued to C_. 

For later reference, observe that  (2.62) and (2.64) can also be written in the form 

and 

respectively. 

( 1 0)(1 ~ 
5= _f5~152i 1 1 , z<zo, (2.65) 

50 = _fe_iO(~+l (~21 1 1 , z < Zo, (2.66) 

The basic result is the following. For any jump matrix v let Cv denote the asso- 

ciated operator C,. with the trivial factorization v=I- lv ,  i.e. v+=v, v -=I .  As noted 

earlier, LP-bounds for (1-Cwo) -1 imply similar LP-bounds for any other factorization 

vo=(Vo)-Xv~. Hence by (2.49), 

[[ (1-C.vo) -111L2--+L2 <. c2(1--0) -1 = K2 

for the trivial factorization vo=I-lvo above. 
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PROPOSITION 2.67. Suppose r~H~ '~ IlrllHi,0~, IIrlIL~Q<I. Then for any 

x, tER,  and for any 2<p<oc ,  (1-Cvo) - t  and (1-C~0) -1 exist as bounded operators 

in LP(R) and satisfy the bounds 

II(1--Cvo)-~IIL~_,L~, II(1--C~o)-tlIL,~_,Lp ~< K~, (2.68) 

where Kp=cp(l  + A)s(1-g)  -37. The constants Cp may be chosen so that Kp is increasing 

with p and Kp >>. K2. 

As above, the bounds in (2.68) imply similar LP-bounds for (1-C~0) -1 for any other 

factorization vo=(Vo)-lv~. We will use this fact throughout the paper without further 

comment. Bounds on Ilm• of type (2.50) for p>2  are immediate consequences 

of (2.68). 

The proof of Proposition 2.67 is given in [DZ5] and also in [DZW, w 

3. P roo f s  of  t h e  m a i n  t h e o r e m s  

Notation. We refer the reader to (4.1) below for the definition of the symbol 

and to the beginning of w for the definition of A. 

In this section we use the estimates for F and A F  in Lemma 6.4 in w below to 

prove Theorems 1.29, 1.30, 1.32 and 1.34 in the Introduction. 

Suppose l>  ~ and choose n sufficiently large and p sufficiently close to 2, 2<p~<4, so 

that 
1 1 3 1 1 1 
2 2n 4 >2-~ 2p 2n 1>1 .  (3.1) 

Let ~>0 and 0<6<1 .  Then it follows from (6.5) and (6.6) that  for t~>0 and r, rl ,r2E 

{ f :  ]]fllH~,l ~<r], [[f[[n~ ~<P}, 

f ]d l ( l~-v)  d2 
I l Y ( t , r ) l l H l , ,  <<. e ( l + t ) l + d a ( l _ p ) d 4  , (3.2) 

IlF(t, r2 ) -F ( t ,  rl)llHl.1 <<. c (l+t)l+~z (l_g)e4 Ilr2-rallH~.l, (3.3) 

where c is a positive constant and 

l 1 7 
d l = / + l ,  d2=l+29,  d 3 -  >0,  d4=5/+111,  (3.4) 

2 2n 4 

1 1 1 452 
e l=l ,  e2= /+38 ,  e3=~-~ 2 > 0 ,  e4=5 /+ - -x -  (3.5) 

2p 2n z 
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If I~>4, these constants can be reduced considerably. Indeed for l~>4, we may take 

l 23 
d z = / + l ,  d 2 = / + 1 7 + r  d 3 = ~ - i - ~ > 0 ,  d 4 = 5 / + 5 7 + x ,  (3.6) 

1 1 13 236 
el=l ,  e 2 = / + 2 2 + c ,  e 3 = ~ + 2 p  6 >0,  e 4 = 5 / + - - ~ + ~ ,  (3.7) 

for p>2,  p sufficiently close to 2, and for any E>0. 

Remark. These large constants should perhaps be compared with the large constants 

that appeared in the early papers in KAM theory (see, for example, [Mo2]). Just  as the 

sizes of the KAM constants have been reduced by various researchers over the years, we 

anticipate that  the constants in (3.4), (3.5), (3.6) and (3.7) will also be reduced when 

finer estimates on the inverse spectral map, r ~ - ~ - l ( r ) ,  become available. 

Observe from (6.3) that the basic dynamical equation (2.46) takes the form 

r(t) = r0 + ~ f [F(~ ,  ~(~)) d~, (3.8) 

where F is given by (6.1), (6.2). The proofs of Theorems 1.29, 1.30 and 1.32 follow by 

applying (6.5) and (6.6) to (3.8) in the standard way. 

7 Suppose that r/>0 and 0<CO<1 We begin with the proof of Theorem 1.29. Fix l>  ~. 

are given, and suppose that I Ir0lIH 1,1 < ?~ and I Ir0]lL c~ < cO" By the results of w equation 

(3.8) has a (unique) global solution reC([0 ,  oc), H1,1), r(t=O)=ro. Let 

T = sup{r :  flr(t)llHl.1 ~ 2~, IIr(t)llL~ ~ 1(1+0)  for all 0 ~ t < r}.  (3.9) 

Clearly T>0 ;  suppose T<oc .  Then by (3.2), for all t<~T, 

fo 
t (2rl)al(1-t- 2rl) a22d4 

IIr(t)llHl,~ ~ Ilrollm,l +~c (1+8)l+ds(l_cO)d 4 ds 

<<. ~-~ eC(2~)dl(l+2~)a22 a~ 3 

d3(1-cO)d4 

(3.10) 

provided that e ~Cl (f], cO) ----d3 (1-  cO)d4/c~dl --1 (1 +2r/) d2 2 d4+dl +1. Similarly, using the fact 

that IlrllL~--<[lrllHl:l, 
IIr(t)llc~ << 1(1+20)  < I ( I+Q)  (3.11) 

provided that e~<e2(~, cO)=da(1--cO)d4+l/3crld~(l+2rl)d22 dl+d4. But then by continuity 

Ilr(t)llH~,~ <~2r7, IIr(t)llL~ ~< 1(1+cO) for all 0~<t,.<r for some r > T ,  which is a contradiction. 
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Hence T = ~  and IIr(t)llHl.1 <<.2~h IIr(t)llLO~ <<. �89 for all t~>0. It follows then that  for 

t 2 > t l > 0  

r 1 1 )  
Ilr(t2)-r(tx)llHl,~ <<. (l_c9)d4d3 (1+~1)d3 (l_f_t2)dz , 

1,1 and so {r(t)} is Cauchy and ~2+(ro)=limt_~r(t) exists in HI . But then as T~ is 

bi-Lipschitz and T~(u_NtLSo U[(qo))=r(t), r(t=O)=ro =T~(q0), the wave operator 

W + (q0) lira NLS r = U2t oU~ (qo)=~-l~176 (3.12) 
t--~oc 

exists in H 1J provided that  z~<z0(rJ, ~)=min(zl(rh ~), r •)). Thus in the notation of 

the Introduction, B~,eCB + for r162 0). This proves (ii) in Theorem 1.29. 

As noted in the Introduction, from the relation U_N~So U~o U s -  uNLSo U NLS o U s t --  t - ( t + s )  t+s ,  

s,tER, it follows that  s + + U~ B s CB s and the intertwining relation W+oU~=UNLSoW + is 

satisfied on B~ +. 
A s  s _ NLS U~ (qo)-U~ (q0)=0 for q0=0, it follows that  B+#O for all c>0.  We now 

show that  /3 + is open. Suppose that  r~=-s exists for some to. Set ~l=Hr~llH~.X, 
Q=Hr~HL~. Then if r(t) is the solution of (3.8) with r(0)=ro,  there exists T > 0  such 

_3~], 1(1+2fl) for t~T. We can assume in addition that  T is that  Hr(t)HHl,l< 2 Hr(t)HL~< 
sufficiently large so that  

cc2dl+d4~ldl-l(l~-2~)d2 1 cc2d l+d4~Id l ( l -4 -2~)d2  1 - - Q  

(l_Q)d4d3(l+T)dz < ~ and (I_Q)d4d3(I+T)d3 < ~ -  

Now choose 7>0  sufficiently small so that  if Hro--rOllHX,~ <% and ~(t) is the solution of 

(3.8) with ~(t=0)=~o, then H~(T)IIH~,~< 3 <�89 a 5~, II~(T)IIL~ Such 7 > 0  clearly 

exists as qo~U~(qo) is continuous in H 1'1. Arguing as in (3.9) above, we conclude that  

1(1+0) for all t>~T, and hence, as before, {~(t)} is Catchy. Ilfft)llz ,l<2 , Ilfft)llL <  
Thus exists in HX, 1 for all I1 o- o11 1,1< . This proves that B + is open. 

Now suppose that  r0, roC?E(B +) so that  a+(r0)=limt__~or r(t), a+(K0)=l imt_~  ~(t) 

exist. Let 

~/=max(sup [[r(t)IiHX,X , sup  [[r(t)[[H~,~), 0 = m a x ( s u p  [[r(t)[[L~, sup [[~(t)i[LO~). 
t/>0 t~>0 t~>0 t~>0 

Clearly V < ~  and p < l ,  and it follows from (3.3) that  for all t~>0, 

s e2 ~0 t II~(~)-r(~)ll~,,~ 
I l f f t)-r(t) l lHl,, <. II~o-~ollH~,l ~ ( l _ f l ) ~  4 (1+s)1+~ 3 ds 

and hence by integration H~(t) -r(t)HHI,~ <<. ( l + x e  ~) ]1~o - r o  H H~,~, where 

X - -  
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Thus 

IIW( o)- I1 o 

Now it is easy to see from the previous calculations that  the map 

(3.13) 

ro ~ (sup lit(t; ~o)llH',~, sup lit(t; ~o)llL~) 
t~>o t~>o 

is a continuous map from TC(B +) to R 2, and hence for each ~/>0, 0 < ~ < 1 ,  the set Nv,~= 

{qeB+: supt,>0 [[r(t; 7r <7/, suPt>~ 0 []r(t; 7~(q0))[[L~ <Q} is open. Clearly 

13+= U Nv, o. 
71>0 

O<p<1 

We conclude from (3.13) that W + is (locally) Lipschitz. More precisely (see (2.26)), if 

qo,(toEN,1, Q for some ~>0, 0 < 0 < 1 ,  then [[W+(qo)-W+(qo)[[H~,~ <L(Nn,~)[[qo-qo[[H~,~ 
for some constant L(N~,e). 

This completes the proof of (i) in Theorem 1.29, apart  from the fact that  B~ + is 

connected, which we will prove a little further on. 

The fact that  [[uNLS(W+(q))HL ~ ~ t  -1/2 as t--+oc follows directly from (1.26). Al- 

ternatively, by (4.20) for qeB+~ we have [[uNLS(W+(q))[[L~=O((I+t)-I/2) aS t--+oc. 

Then an argument using the conservation of the L2-norm of q(t) (see [DZW, w shows 

that  in fact [[utNLS(W+(q))[[n~t -1/2 as t-+oc. 
Finally suppose that  qC B + and let r(t) solve (3.8) with ro=Ti(q). Set r ~  = ~2 + (ro)= 

l i m t ~  r(t). Then by (4.21), for any p>2, as t--+cx~, 

C 
II(~(e-i~tr(t))--Q(e-~O~tr~)llL~(dx) <~ (1+t)l/2p+l/4 llr(t)--r~llHl" 

for some constant c. Unravelling the definitions, this implies that  

C 

IIU~(q)--u~LS(W+(q))IIL~(dx) ~ (l+t)l/2p+l/4 IIr(t)--r~llHl,1. 

But inserting (3.2) into (3.8), we easily see that  as t--+cc, [[r(t)--r~[[H~,~=O(1/td3). 
Choosing p > 2 appropriately, it follows that  [[ U[ (q) - U NLs (W + (q))[[ L~ (dx) = O(t-1/2--x) 
for some x > 0 .  (Clearly we choose p so that  x is arbitrarily close to d~.) This completes 

the proof of the second part of (iii) in Theorem 1.29. 

We now consider Theorem 1.30. Fix l>~  and c>0.  Let ~>0  and 0 < p < l  be 

given and suppose that  rooEH~ '1 with f[ro~llH~,~<7/, [Iro~l]L~<P. It then follows from 

(3.2) and (3.3) that  for T > 0  sufficiently large the map Z ( r ) ( t ) = r ~ - c f t F ( s , r ( s ) ) d s ,  
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t>~T, is a strict contraction, IIZ(~)-Z(r)l lx~LIF-rllx,  L < I ,  on the Banach space 

X=C([T, oc), HZ'l)A{suPt>T IIr(t)llHl,1 ~<2~, supt.> T IIr(t)llL~ ~< �89 Hence Z has 

a (unique) fixed point rEX, 

f o z  
r (t) = Z(r)(t) = r~ - ~ / F  (s, r(s)) ds. (3.14) 

d t  

1,1 It follows directly from (3.2) and (3.14) that  l i m t _ ~  r(t)=r~ exists in H 1 . Set q(T)= 
T~ -1 (r(T)) and let q(t), t<<.T, be the (unique) solution of (1.1) in H 1'1 with q(t=T)=q(T). 
Such a solution exists for all t by the methods of w which also imply that  ~(t)=-T~(q(t)) 

solves (3.8), 

// r(t) = 5 0 + e  F(s,?(s))ds (3.15) 

for all t~0 ,  where ?o=T~(q(t=0)). In particular for t~T,  as ~(T)=T~(q(T))=r(T), 
we have ~(t)=r(T)+cftF(s,?(s))ds.  But from (3.14), also for t>~T, r(t)=r(T)+ 
of ;  F(s, r(s))ds, and hence by uniqueness (again use (3.3)) we must have 

r(t)=?(t), t>>.T. (3.16) 

Set ~ + ( r ~ ) - ~ 0 ,  which is clearly well defined (independently of T). As before, it 

is easy to check that  ~+ is Lipschitz on HI 1'1. Now 7~(~0)EB +. Indeed if ~(t) solves 

(3.15), then ~(t)=r(t) for t ~ T  by (3.16), and so l i m t _ ~  ~(t) exists in H~ '1. Moreover 
A 

limt-~o~ ~(t)=roc, and so f t+(~0)=r~.  It follows that  if we set W+=~.-lo~+o'~, then 

W + maps H 1'1 into B~ + and 

W+oW + = 1. (3.17) 

Conversely if qoE13 +, and r(t) solves (3.8) with r0=T~(qo), then it follows that  r ( t )=  

r ~ - r  r(s)) ds, t~O, where r~=f~+(r0) .  But then the preceding arguments show 

that  ~+(ro~)=r0. Thus 

W+oW + = 1~+. (3.18) 

This proves (i) and (ii) of Theorem 1.30. The proof of (iii), conjugation of the flows, is 

immediate from the above intertwining relation and (3.17). This completes the proof of 

Theorem 1.30. 

From (3.18) we see that  13+=W+(Hl,l~ and as H 1'1 is connected, it follows, in 
. C \ ] '  

particular, that  B + is connected. This completes the proof of Theorem 1.29. 

The set 13;={qEHI'I:W (q)=limt_~_~uN_LSoU[(q)exists in H 1'1} clearly has 

similar properties to B +. The proof of Theorem 1.32 follows immediately by unravel- 

ling the definitions and using the proof of (iii) in Theorem 1.29. 
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Finally we consider Theorem 1.34. As is well known (see, for example, [FAT]), 
equation (1.1) and the NLS equation are Hamiltonian with respect to the symplectic 
structure on suitably smooth functions H, K, ..., 

S.( ") (~H 5K 5H {H,K}(q)= ~ ~9 ~ ~ dx, 

where q=a+i /~=Re q+i Im q. Indeed 

1/rt( 2. ) K~(q) = 7 IO~ql2+lql4+~-~lql t+2 dx 

generates (1.1), Oq/Ot={q, K~}=i(q~-21ql2q-slqltq), and 

KNLS(q) ---- ~ (lOxqf2+ Iql 4) dx 

generates NLS, Oq/Ot={q, KNLS}=i(qxx --21ql~q). 
The action-angle variables for NLS are given in terms of the matrix 

A = ( ~  ~ )  

1 
-~-~ log la(z)h arg b(z')} = 5(z-z ' ) ,  

of w (see [FAT]). One has 

1 {-~-~log]a(z),,-~----~log[a(z')[}=O, 

{arg b(z), arg b(z')} = 0. 

Using the relations ]al 2 -  [b[2=l, r=-b/~,  and the identity 

1/ KNLS(q) = --~-~ z 2 log(l- Ir(z)[ 2) dz 

(cf. the proof of Lemma 5.24), we compute for solutions q(t) of NLS, 

d-td (\_ 2--~1 log ,a( z'; q( t ) ) 0 = { -- ~---~ Iog Ia( z' ) ], KNLS ( q( t ) ) } 

{ 1 1 /  } 
= -~ -~ l og l a ( z ' ) l , ~  z21~ dz 

_ 1 /z2{logla(z,)l ,  logla(z)l}(q(t))dz=O, (2 )2 

1__ z2{argb(z'), log la(z)l}(q(t)) dz = (z') 2. arg b( z'; q( t ) ) = 27r 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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Thus {-(1/2~r)log ]a(z)]}zcR give the actions and {arg b(z)}zcR give the angles for N LS  

Of course, (3.21) and (3.22) are nothing more than the familiar fact that  (d/dt)r(z'; q(t ) )= 

-i(z')2r(z';q(t)). 
Now as (1.1) and the NLS equation are Hamiltonian, it follows immediately that  the 

qv-+U2t oU~ (q) maps q~U~(q), q~-+uNLS(q) are symplectic for any tER .  In particular, NLS 

is symplectic for any t. The nontrivial fact, which can be proved by the methods of 

this paper, and whose details are left to the (energetic) reader, is that  this map remains 

symplectic in the limit as t-+oc. More precisely, W + - - l i m t _ ~  u_NLSoUt ~ is symplectic 

on/3  + . Thus 

{HoW +, KoW+}(q) = {H, K}(W+(q)) for qE/~;.  (3.23) 

It follows immediately that  

{-~-~--~log]a(z;W+(q)l, z E R }  and {argb(z';W+(q)),z'~R} 

provide action-angle variables for (1.1) on B~ +. Indeed, the commutation relations (3.20) 

are preserved by (3.23), and for all z, z~cR, 

1 1 log ]a(z; W+(U[(q))] = -~-~ log ]a(z; uNLS(W+(q)))l 
27c 

(3.24) 
1 

- log la(z;  w + ( q ) ) l ,  
27r 

arg b(z'; W + (U[ (q))) = arg b(z'; U NLs (W + (q))) 
(3.25) 

= arg b(z'; W + (q)) + (z')2t. 

In particular, {-(1/27r)log [a(z; W + (q)], z ~ R }  provide a complete set of integrals for the 

perturbed NLS equation. This completes the proof of Theorem 1.34. 

Observe that  if taUt is a Hamiltonian flow on H 1'1, then the same is true for the 

flow t~Vt=W+oUtoW + on Bc +. Indeed if K is the Hamiltonian for taUt, then for 

qEB +, (d/dt)H(UtoW+(q))={H,K}(UtoW+(q)), which can be rewritten using (3.23) 

in the form (d/dt)HoW+(Vt(q))={HoW+,KoW+}(Vt(q)), and so t--~Vt is generated 

by the Hamiltonian KoW +. In particular, t--+U~=W+oUtNLSoW + is generated by the 

Hamiltonian ,s KNLSoW+(q) = -~ (]OxW+(q)12-1-lW+(q)14) dx. 

But we know that  t~U[ is generated by the Hamiltonian 

IOxql2+lql4+y lql z§ dx 
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so that  for qEB + we must have the interesting identity 

2 4 2c /I~ ('Oxq' +,q, +~_~,q,l+2) dx= /R(,OxW+(q),2+,W+(q),4)dx. (3.26) 

A similar argument shows that  

/R Iql2dx:  .lw+(q)l 2dx. (3.27) 

For any zER,  let U(Z)(qo) denote the flow generated by the Hamiltonian 

1 
---log la(z; q)I 

27r 

(suitably mollified with respect to z). These flows form a commuting family of 

flows for the NLS equation. But then by the above comments, the flows U(e'Z)(qo)=- 
W+oU(tZ)oW+(qo), zER,  form a commuting family of Hamiltonian flows for the per- 

turbed NLS equation (1.1), with Hamiltonians -(1/27r) logia(z;W+(q))I, zER.  Said 

differently, we see in particular that  ~+ is invariant under the flows generated by all the 

commuting integrals -(1/27r)log la(z; W+(q))I, zER,  for the perturbed equation (1.1). 

Observe that  if we replace q by W+(q) in the Lax pair U, W for NLS (see (2.35)), 

(U(q), W(q))-+U(W+(q)), W(W+(q)), then the zero curvature condition 

[9 -UoW+,O -WoW +] = 0  (3.28) 

is equivalent to the fact that  ~(t)=W+(q(t)) solves NLS, i.e., W+(q(t))=uNLSoW+(q), 
q(t=O)=qo. But then by the intertwining relation, q(t)=U[(qo). Thus Ox-UoW +, 
Or-WoW + constitute a Lax pair for the perturbed NLS equation on B +. Of course, 

UoW + and WoW + are highly nonlocal. 

Remark 3.29. Keeping careful track of all the orders of decay, the reader may check 

that  the proofs of Theorems 1.29, 1.30, 1.32, 1.34, as well as the proof of the corollary 

to Theorem 1.29, go through for A satisfying the following conditions: (i) AEC2(R+), 

0A"ELip,  (ii) A,A'>~0, A(0)=A'(0)=A"(0)=0,  (iii) (xA"(x))'=O(x s) as x$0, for some 
8 ~  3 . 

4. S m o o t h i n g  es t imates  

In this section we will prove various smoothing estimates for the solution m of the nor- 

malized RHP (R, ve), where 

VO=eiOad~v=eiOad~ ( 1-1rl2-r- ~ ) ' O=xz--tz2" 
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< ] :* ,: 
z 0 z0 

Fig. 4.4. Rzo and Pzo. 

Our main results are given in Theorem 4.16 below. 

Henceforth we will always assume that  r E H I  '1, which corresponds to potentials 

q = ~ - l ( r )  in H 1,1 by Proposition 2.27. We will use p, A and ~ to denote L ~-,  H 1'~ and 

Hi , l -bounds for r, respectively. Thus [[r[[L~(R)~<Q, I[~'[[HI,O<A, [[r[[Hl,l~<r/. Of course 

we only consider ~)<1. By virtue of the Sobolev inequality, we can, and will, always 

assume that  p~<A~<r/. For t~>0, 0 < p < l ,  we will also use the notation 

;1 / 1t ( l + t ) i ( 1 -  L))J 

for some constant c and nonnegative integers k, l, i and j .  Note that  

ix j l  i2 j2 i1+i2 jx +j2 J ' 

[~: jz]+[k211 rmin(kl ,k2) max(kl+ll ,k2+12)-min(kl ,k2)  

Let ~ be given as in (2.57). Reverse the orientation of R_ +Zo to obtain Rzo, 

Rzo = e~(R++z0)U(R++z0), 

and extend Rz0 to a complete(t) contour Fzo as shown in Figure 4.4. As Fzo is complete, 

Cl~z0Crzo=0 by Cauchy's theorem. 

(4.5) Denote the boundary values of 5(z) on Rzo by ~• Thus ~• for 

z>zo, and ~• for Z<Zo. 

(1) A contour is complete (see e.g. [Z1]) if ~J\F is a disjoint union of two possibly disconnected 
open regions ~+ and f~-, and F may be viewed as the positively oriented boundary of ~+ and also as 
the negatively oriented boundary of f~_. 
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For z E C \ R + z o ,  set 

<(z)  = m(z)a(z) - ~ .  

It is easy to see that ffz solves the normalized RH problem (Rzo, ~0) where 

(4.6) 

(5 aa v ~  - a a  , Z > zo~ 
~ ) o = e i O a d a ~ ) '  V =  ~a3 -- 1,~-aa 

~_ V . +  ~ Z ~ Z  O. 
(4.7) 

Note that in the notation of w 

~o(z)=5o(z) for z>zo a n d  ? ) o ( z ) = ? 2 o l ( z )  fo r  Z<Z O. (4.8) 

We h a v e  V=(/--W-)--I(Iqt-W+)=(?)-)--lv + where 

r~2)  ( 0 0 ) )  for z>zo ,  
' _~5-2 0 ' 

-r5+5_) ( 0 0 ) )  f o r z < z o ,  
0 ' ~6~a521 0 ' 

(4.9) 

which can also be written as 

=((0 r  j,lr2,)( o o)) ,410, 
0 0 ' f6~-2/(1-lr[ 2) 0 

for z < zo As usual w0 =e  i~ ad r  (eiO ad a ~ - ,  eiO ad a ~ + ) .  We consider the singular inte- 

gral equation associated with the normalized RH problem (Rzo,7?0), as described in w 
(see (2.4)), 

fit= I +C~of~. (4.11) 

We have ffzi =/25o• and 

(; r / ( 1  0) 
m_ =/26 ~3 z < zo. , z>zo ;  m -  =/56_ ~3 (4.12) 

1 o ~/(1 Irl 2) 1 o' 

Introduce ((0 
w=(w-'w+)= 0 

corresponding to the factorization 

; ) (O ~)) /413, 

- 1  v=/v/~+ (~ r/~ (1~ ~/ ~or~llz~R 



P E R T U R B A T I O N  T H E O R Y - - A  C A S E  S T U D Y  197 

Again wo = e i~ ad a W. By the result s of w 2, both t he operators (1 - Cwe) - 1 and (1 - C~ e) - 1 

are bounded from L 2 to L 2, and 

I[(1--C~,o)-IIIL~L~, I[(I_C~e)_IIIL~L~ <~ c (4.14) 
1 - 0  

for all x, tER.  Similarly for p>2,  we obtain from (2.68) 

I I ( 1 - - C ~ o ) - I I I L ~ L  ~, I I(1--C~o)-~IIL~-~L ~ < G (4.15) 

for all x, tER.  In particular, 

/~ = (1 -C~0) -1 I  = I+ ~ (C~oI) 

exists in I + L P ( R )  for all p>~2. 

Notational remark. Observe that  if m is obtained from (4.12) for given x, t and r, 

then in the notation of w m_ =m_ (x, z; re-it<>~). In particular ff r=r(z) is independent 

of x and t, then m_ is the boundary value m_(x, z; q(t)) of the Beals-Coifman solution 

of (2.8) with potential q(t)=TE-1(e-it<>~r) solving NLS. In the calculations that  follow, 

r in (4.12) should be regarded simply as a function in H 1'~ or  H1 L1 which may or may 

not depend on external parameters such as x and t. 

The goal of this section is to prove the following smoothing estimates. Recall that  

Kp ~> 1 and increases with p. 

THEOREM 4.16. Let r, r jEH 1,~ 

Let /5=/5(r(t)), [tj=fit(rj(t)), j = 1 , 2 ,  

f fitj(~]o +~]o), j = l , 2 .  Then 

and set r(t)=e-itZ2r, rj(t)=e-itZ~rj, j = l , 2 .  

and as in (2.20) set Q = f / 5 ( ~ + ~ ) ,  Q j =  

II/~--IIILP~< (1+t)1/2 p (1_0)2-~ 1/2p Kp f o r a n y p ~ 2 ,  (4.17) 

~< 

c (I+A) G,G 
(1+t)1/2 p, (1_Q)4 ll 2-  llHl,O 

[0 
1/2p' Kp2, IIr2-r~llHl,O for any p'>p>~2, 

(4.18) 

c A(I+A)K2 I 1 151 IIQIIL~<~; 1/2 (l--~O) 4 ~< 1/2 f o r a n y t > l .  (4.19) 
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Moreover, i f  r e H  1,1, IlrllH~.,<<.??, then 

c ?/(I+?/)K2 [ 1 ~] 
IIQIIL~ ~< ( l + t ) l / ~  (l_co) 4 ~ 1/2 for  any t > 0 ,  (4.20) 

c (I+A)3Kp 
( 1 + t ) l / 2 p + 1 / 4  ( 1 - - 0 )  7 IIr2--rl l lH~'l  

[ o 3] 
1 / 2 p + 1 / 4  7 Kpllr2-r~llH~,~ 

for  any 2 < p < c ~  and for  any t>O. 

(4.21) 

Proof. For x=0 ,  (4.17) (4.21) follow from Corollary 4.58 and Lemmas 4.70, 4.74 

and 4.75 below. When x r  a simple translation argument (see [DZW, (4.132)1) shows 

that 

~t = fit(x, z; e-it(}2r( ~ ) ) ~- e i~176 ad afit(O ' Z-- Zo; e-it(}2r( (}-~- Zo ) ), (4.22) 

where again z o = x / 2 t .  Also, 

~ o ( Z  ) = eiO(zo)ad a ( e - i t ( z - z o )  2 ad a ~ ( Z )  ) (4.23) 

and hence 
Q(x,  r( t ) ) = e iO(z~ ad aQ(0; e - i t ~ 2 r (  (}-~ Zo ) ), (4.24) 

with similar formulae for (~y, j = l ,  2. As the L ~ -  and Hl,~ of r are independent 

of translation, the inequalities (4.17) (4.19) in the case x r  now follow from the case 

x = 0  with r replaced by r ( .  +z0). However, examining the proof of (4.20) in Lemma 4.74 

below, we see that the Hi , l -norm of r is only needed to control the Ll-norm of r(-  +z0). 

As the Ll-norm is translation invariant, (4.20) remains true for x r  Similar considera- 

tions apply to (4.21). [] 

As IIrll~ < 1, we have the estimate, 

Ir(z)12 (4.25) I log(l-It(z)12)l ~< 1-It(z)12" 

In particular, 
IlrllL~ IlrllL2 IlrllL~ IlrllL~ (4.26) 

IIl~ l_llr l l~ ~ ~< I_Hrl lL~ 

From (2.60), we have 

/k = 6+6_ = e - H (x ( . . . .  o) 1~ (4.27) 
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where X(-~,zo) is the characteristic function of (-oc,  zo) and 

Hf(z) =P.V..--1 i ?  f(s) ds 
~7r a c  Z - -  8 

is the Hilbert transform (see e.g. [DZW, Appendix I]). Observe again as in (2.60) 
that IAl=l. For the remainder of this section we will assume that x=0. Thus zo=0, 
R-Rzo=O, F--Pzo=O and O=-tz 2. As noted in w the signature table for ReiO (see 
Figure 2.51) plays a crucial role. 

LEMMA 4.29. Let rl,r2EHT'~ IIr~ll~<e<l, Nrill/~l,o(m<a. Then IA2-All, 
IA2-1-A~-ll ~< I+II  where 

cA 
[lIiiHl,O ~ ~ [[r2--rliiHl,O~ (4.30) 

II(z)~< cQ 1 f~ l+S ds 1 - ~  P.V. s - z  IIr2--rlllul,o 

_ ct) _1 l + ( z + l ) l o g  l@z IIr2--rlllHl,o. 
l - o f t  

(4.31) 

Proof of Lemma 4.29. First we consider A2-AI ;  the proof of the estimate for 
A21-A11  is the same. Define X(S)=(l+s)x(_l,o)(S), where X(-1,0) denotes the char- 
acteristic function of the set (-1,  0). We have 

Note that 

1 - 1 r : l  2 

+ ,  (1-1r2(0)12"~1 
,og[ ~ )  I IH(x)I = I+II. 

1 -  ( log(  Ir212~ " //1--1r2 (0)12 "~ ~ 
1-1r, l : ) - ' ~  x) 

A simple calculation shows that 

XR cHI '~  

and hence 

log ( - -  

2p 
log( 1-]r2(z)I2)l_lrl(z)[2 <" ~_0 Ir2(z)-rl(z)l 

1-1r22~ lo fl-lr~(~ N 
- 

20 ~ co 
~[[ r2 - - r l [ [L2q-  _ [r2(0)--rl(0)l [L~I~IiL2(R) ~ ~ l l r 2 - - r l l l H l ' ~  
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Also, 

r22  log(x r2(~ 
~- I r ,  I ~ ) II. 

1 

4~ 2 2Q 

~< 211r~ll~:l_~llr2-rxllL~ ~ ~ IIr~-r~llL: 

402 20 
IIr2-"lllL~ IIr~llL: + ~ IIr~-r~llL~ 

~llr2-r, llH,,o ~< 
(l-Q) 2 

As H is bounded from L2-+ L 2 and commutes with differentiation, this proves the bound 
for I. On the other hand, 

cQ 1p.v" f o  (l+s)ds_~___z_ 
II(z) ~< ~ [[re--rl[IHl.O J-1 

_ l_0[[r e c 0  ( X + ( z + l ) ) l o g  z [] 

LEMMA 4.32. Let rl,r2 be as in Lemma 4.29. Then 

+2 x+2 ( A + ~  l+(z+l ) log  1Tz )[[r2--rliiHl,O, (4.33) 2+---1+ 4c  (1_0)2 1-0  

( A + ~  l+(z+l ) log  ~ )[[r2-rlllH~,O. (4.34) I~;~-~1T21 ~< c (1_o)3 (1_0)2 

Proof. For • z~>0, direct calculation shows that 

[52 i2-51i2[ ~ max [e -I-2CR- (l~176 2CR_ log 1-]r2 [2 
0 ~ Y ~ l  1-[rl  [2 

~< 2 CR_ log l_[rl[ 2 1 -  Ir2] 2 . 

Again for • 

[5~2_5F2[ ~ max e T2CR- (l~176 [2)T) 2CR_ log 1--[r2[ e 
0 ~ T ~ I  l ' [ r l [  2 

2 CR log 1-[r212 
~ l-Jr1 [2 " 
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The lemma now follows from the proof of Lemma 4.29 above, together with the identities 

C ~ = � 8 9  [] 

A consequence of the proofs of Lemmas 4.29 and 4.32 is 

cA 
15~2-~1~21< (~_-7-2~(l+llogzl)llr2-rlllHl,O, +Imz~>0, 

cA (4.35) 
15~2-~21~< ~2-~(l+llogzl)llr2-rillm,o, •  

where log(-) denotes the principal branch. These inequalities are useful for Izl small, 

but when more precise bounds are needed for [z t large, we will use the full inequalities 
(4.33), (4.34) in Lemma 4.32. 

LEMMA 4.36. Let rEH~ '~ IlrllL~,.<4<l , Ilrllm,o~<~. For z E R \ 0 ,  

IZX'(z)l ~< I+n,  (4.37) 
coA 
- - ,  (4.38) 

IlIIIL~ ~< 1 - 4  
c42 1 

II~< - -  - - .  (4.39) 
1 - 4  Izl 

Pro@ We have 

A'(z) = - A ( z )  d H ( ( l o g ( 1  -Ir[2)) ~R_ ) 

( ~ )  iA l~  2) 
= A(z )H Xn_ 7r z 

The result now follows as before. [] 

LEMMA 4.40. Let r iEH]  '~ I l r~ l lL~<4<l  , Ilr~llm,o(a)~<A, i=1 ,2 .  
0 < a < 1 ,  

A+I, .4-1,,, cA(I+A) l+ [ l oga  I 
2 - ~ 1  IIL2(z >a) ~< (1_4)--------- ~- x/~ Ilr2--rlllH 1,~ 

Then for any 

(4.41) 

Proof. As in Lemma 4.36, 

lo ,1 
A j = - i A j  iH  I_[rj[2 XR_ -~ z - " 

Hence 

( i l l (  It2' 2' ) 1~ /X~-/XI=-i(A2-A~)\ \ l_lr:12~R- + 

\ \ \ l _ l r l l  2 l_lr2l  2 xR_ z log 1_1r2(0)12 ] 
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so that 

[A~(z)--A~(z)[~< [[A2-AI, H (  1r212' X R _ ) +  H/'/" 1r112' 17"212' l 
+ [[A2_All II~ t_ 1 l~ 1 

z z lo---~5-=lr~(O)l 2) 
From previous estimates we have 

iiA;_AillL~(izl>a/~< cA -rxllHl,O+ ocllr2--rlllHl,Ol_o (l+Jl~ 0 1- -~  

cAllr2-rdlHl,O ( cA 
( l -o )  2 + ~ IIr2-rlllm,o 

02 20 1 eollr2-rlllm,o (l+llog al) IIr2-rellL~-- 
1-0  (1- O)v/-a + ~ x/a 

cA(I+A) l+lloga I 
< (1_~)~ IIr2-rlLIHlo v~ 

The proof for (A-I) ' is similar. [] 

LEMMA 4.42. Suppose rEH 1'~ HrHL~<.o<I, IlrHHI,O..<A, and suppose f E H  1'~ 
Then for all t> l ,  

R c I+A fA+leT=itZ~dz <~ t-h ~--O Ilfllm,o, (4.43) 

1 where h -~  in the general case and h=~ if f(0)=0. 

Proof. We only consider the case A=A +1 above. The other case is similar. Decom- 
pose the integral as 

/ _ ~ f A e - i t Z ~ d z = f  fAe-i t~2dz+[ fAe-itZ2dz=I+II" 
oc J l z l < l / x / 7  Jlzl>l/v~ 

Changing variables, 

I L ( z )  ( @ t )  1 c I I 1 = ~  f -~  A e-~Z2dz <~ ~llfllL~ <~ ~llfllm,o. 

We consider z < - t  -1/2. The case z>t 1/2 is similar. Integration by parts leads to 

_ e - i  1 A 1 ~Z~__~__1/2 f/~e-{tZ2dz 2-~f(--~) (----"~) 
~ - t  1/2 / z l ~  "~ 
! - i t z~ [  Jza fA '  f A  

e 

= I/+II/+III/+IV/. 
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Clearly 
C II'1 ~< ellfllHi,Otl/~' III'l ~< t-577 Ilfllul,o and IIV'I ~< cllfll""~ 

Finally using Lemma 4.36, 

I III'  I ~< - -  
Ilflls~/-~-'/~ A' 

- -  d z < ~ - -  
2 t  ~o z 

I l f l lH',~ ( oh tl/4q_ CO 2 tl/2 ~ 

which now leads directly to (4.43) for h= 1. If f(0)=0, then the same arguments together 
with the bound If(z)l<<.lzll/2llfllHl,O for Izl~<l, say, in I, I', III' and IV', yield (4.43) for 

h=4 a-. [] 

The following result is a Lipschitz version of the lemma above. 

LEMMA 4.44. Suppose fEH 1'~ Then for all t>~O, 

fR clog(2+t) A(I+A) f(Afl-A~l)cq:~t~2dz <~ (1+t)1/2 (1_0)3 IIflIH~,ollr2-rllIHl,O. (4.45) 

Proof. Again we only consider the case A2-A1; the other case is similar. As in the 
proof of Lemma 4.42 we decompose the integral 

i j  f(A2-A1)e-itZ2dz= f f(A2-A1)e-itZ2dz+ f f(A2-A1)e-itz2dz 
oo glzl<t-~/2 Jlzl>t-1/~ 

-- I+II.  

Using Lemma 4.29, 

1 Z Z . 

~[]fllH1,0 A2 -A1 7 Ll((--1,l),dz) 

c ( cA co ~< 711fllHl,O ~llr~-rllIH~,O+~--_~llr2-r~lIH~,O 
1 z/v/t dz) 

• l + ( T t t + l )  l~ ~ 

~< c(logt)A [[fliu,,onr2_rlliH1, ~ for t~>2. 
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In estimating II, we again only consider z~-t-U2; the case z ) t  -1/2 is similar. 

grating by parts, we obtain as before 

e 1 
I I=  2 ~ -  f -- ( A 2 - A 1 ) ( - 1 / v / t )  

--t-i~2 ) 
1 f e_itz2(f(A2_-A1 ) § f ( A 2 - A 1 ) '  f ( A 2 - A 1 )  dz 

+ ~ j _ ~  \ z z z 2 

-- Y+II t+IIY+IV ~. 

Inte- 

Again by Lemma 4 . 2 9 ,  

cHfllHl.O ( cA collra-rlllHl'~ 1 ( - ~ ) l o g  - -  
JI'l~< ~ ~-L-~llr2-rlllm,o-~ 1-o + 1 1 

c log t A 
~--~---I]fllH~,O~--~l[r2--rlllH~,O for t~>2. 

Also, 

and 

1/v~ 
1-1/v~ ) 

~___ ( [-~-~ ~/~ 
III'l ~< t3/4 \ j _ ~  If'12lA2-All2dz) 

C 
t -~l l f l lm,o sup I/X2(z)-/xl(z)l z<--t-1/2 

c ( c A  c~ ) t~ll/llm'~ ~ IIr2-rllIHl,O+~_ a 11~2-~llIH~,o(l+logt) 

log t A <~ct3/4 (1-QFllYlIH"~176 for t~>2, 

c log t A 
iiV, I ~< [IfllHl,__.__~o sup IA2(z)-Al(z)l  ~< tl/~ (1_0)2 Ilfllm,ollr2-rlllHl,O, 2t 1/2 z<-t-i/2 

again for t~>2. Finally, using Lemma 4.40, we obtain for t~>2, 

IIII'l ~ cllfllHlm~ t 1/4 IIA~--A~ IIL2(_~,_t_l/2) ~ - -  
t 

cA(I+A) logt 
- -  (1_~)3 tl/2 IIf[lul,~176 

Assembling these estimates, we have proved 

f2f(A2_A1)c_~tZ2dz logt A(I§ 
< c tl/~ (I_Q)~ Ilfl lm,ollr2-rll lm,o 

cllfllm,o A(I+A) logt 
t3/4 (1_0)3 t_l/4 IIr2-rxllH~,O 

(4.46) 
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for t>~2. On the other hand, by the proof of Lemma 4.29, for all t, 

2 f(A2-A1)e-~tZ2dz <~ Itfl]L~(R)IIA1--A211L: 

co ) ~< Ilfll.,,o ~ IIr2-r~llBl,o + ~ IIr2-r~llm,o IIHxIIL~ 

cA 
~< ~ IlfllHi,O IIr~--rlllm,o. 

Together with (4.46), this proves (4.45). [] 

COROLLARY 4.47 (to Lemmas 4.42 and 4.44). Suppose riEH~ '~ I l r~ l lL~p<l ,  
Ilr~ IlH~.O ~A, i=1, 2, and suppose f j  c H  1'~ j = l ,  2. Then for all t> 1, 

R(faA2 dz c I+A • --flAx• )eTitz2 <~ tl/2 el--~llf2--flllHl'~ 
(4.48) 

clog(2+t) A(I+A) 
+ (1+t)1/2 (1_0)3 Ilflll.~,ollr2-rlllH,,o- 

Let Dj, j = l ,  ...,4, be the j th  quadrant in C\F ,  

D2 D1 (4.49) 
D3 D4 F 

In the lemma below, Hq denotes Hardy space. A general reference for Hardy spaces 
is, for example, [Du]. 

LEMMA 4 . 5 0 .  Suppose f E H  1,~ 

- --2 • 2 C 
IIC~+_~r(~ f e  IILP <~ (l+t)U2p I I (~ -211L~(D1) I I f l IHI '~  ~ 

- - - -2  • 2 C 
[ IC+.m_+ra + fe I I L , < ~  115-=llL~(~)llfllHx,o~< 

(l+t)l/2P (4.51) 

C +  .~2r _it(}2 c 
R+~P'  J~ [[LP ~ (1+t)1/2 p [[~2[[L~176 H f I I H L o  

C+ ~2 r ~ - i t ~  ~ c 
( l + t ) l / 2 p  

Suppose in addition that f(O)=O and 

for some 2<<.q<. oc. Then for all t>~O, 

IICfi+-~rg+ f e~w~ Ilc~ ] 
C-e~R+__+Fg+f- e i t02 2 C H IIL [ 
IlC~+ +rg_ -ito 2 (1+t) l/2-1/q II:.= f ~< llgllz~(c\r~) llfllm,o, (4.52) 

II / 

+ - _• 2 IIC+~R++rg-fe IIL~ ) 
where g• are the boundary values of g on R and ~• =g~: on ei~R+. 

Then for 2~<p<c~ and for all t~O, 

c Ilfll.l,o 
( l+t )  1/2p 1 - 0  ' 

e 
(l+t)l/2p IIf[IHl'~ 

Ilfll.l,O 
(1+t)l/2p 1-Q ' 

c 
lla211L~(D~)llfllm, o ~< ( l + t ) ] / 2  p llfllm,o. 

that g is a function in the Hardy space Hq(C\R)  
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Proof. Consider the first inequality in (4.51). The other cases in (4.51) are similar. 
By Fourier theory, 

1 / e _ i y Z / ( y  ) dy. f ( z ) = - ~  

We have for any c>O, 

where 

CR+_~rS_2e_~(>feitO~ - 1 f f(y)e_iy2/4tF ldy+ ~ /f(y)e-iy2/4tF2 dy, 
j v~Tr 

F1 (Y) : CR+ -+F ( 5-2 e-z0 X(0,a) eit(O-y/2t)2 ), 

F2 (y) = CR+_~r ( 5- 2 e-~<> X(a,a~)eit( O-y/2t)2 ) 
(4.53) 
(4.54) 

and a=max(0, yl2t). (The factor e -Ez is included just to ensure that F2(y) exists in LP.) 
Clearly Fl(y) is supported on R+. Assume first that p>2. Then for y>0, 

lYll/P IIF~ IIL,(r) ~< clI~-211L~(R+)IIx(0,a)IlL" ~< clI~-211L~(R+) tl/P 

and hence 

~ /dy f(y)e-iy2/ntF1 
LP(F) 

For p=2, rewrite the integral as 

~0 ~ 

clIS-211L~(R+) i](y)lyl/P dy 
tUP 

clla-211L~(D~) Ilfll--~,~ 
t l /p 

1 . CR +-+r (~t~5-2e-eOf(Y)e-iY<~eit<>2dY) �9 

Using Hardy's inequality [HLP], 

j~2t~ I](y)'dy L~(R+) ~ V ~  II(}flIL2(R+) 

and hence 

v/~ j J  [p-vO~-iy2/4t~ t ' l  dy L2(r) 
r 

tl/2 IlfllH~,O. 

(4.55) 

(4.56) 
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For F2, first consider the case when y<0, and hence a=0. Then for p~>2 and by 

Cauchy's theorem, 

IICs = IIC~,:/oR+_+r(<~-%-~%~'(O-'I2~)~)IIL, 
~< ~ II 8 - 2  II L~ (D1)II e "(~-"12~)~ )11L. (~,-/~R+) 

--2 itO 2 ~el15 IIL~(v,)lle IIL.(<,:/~a+) 
(elP i2~) II a-~ IIL~(D,), 

by scaling. The fact that y<0 is used to obtain the third inequality. If y>0 then a=y/2t ,  
and for p~>2, again by Cauchy's theorem, 

IICR+--~rg- 2 e-SO X(a,oo) e~t( O-y/2t)2 IILP(F) 

= lIC(-y/2t,oo)-+F (~-2e-eOei t (O-y /2 t )2  llLP(F) 

= HC(y/2t+e~14R+)--+F (~-2e-e<>eit(<)-y/2t)2 liLP(F) 

cllS-~llL~(D~) ~it( <>-y/2t) 2 
<<. cll<~-211L~(D,) <. LP(yl2 t+e~/4R+)  <~ 

again by scaling. Thus for p~>2, 

As 

t l l 2p  

Letting mS0 in (4.55)-(4.57), we obtain for p~>2 and t~>l, 

C IlCh+~r(5-2fdtO2)llL,(r) < t~i2pllS-211L~(Dl)llfllHx,o. 

t l / 2p  

(4.57) 

- --2 it? 2 
IIC~+_~r(6 f e  )IILP(F) ~Cll(~--211L~176 1,~ for all t > 0 ,  

we obtain (4.51). 

Now we prove the first inequality in (4.52). Again, the remaining inequalities are 

similar. As before, we have the representation 

_ 1 f f (y )e_iy214tFldy+ 1~ if(Y)e-iy~14tF2 dy, Crt+~rg+e-~Ofe~t02 ~ J Vz:r 

but now as f f ( y ) d y = v / ~ f ( O ) = O ,  

F1 (y) = C•+_+r (g+ e-~O X(o,a)eU(~ ( 1 - eiY~) ), 

F2 (y) = C~+ -~r (g+ e-~O X(a, oo) e it(O- yl2t) 2 (1 - eiyO )). 
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As before, for y>0,  the integral involving F1 can be rewritten as 

1 
x/~C{t+__,i.( f2t(>g+e-~~ f (Y)(e-iy(>- l)e~t(>2dY). 

For q1>~2, using the inequality 

\q'-2 / f ~  2 

together with the above Hardy inequality, we obtain for t > 0, 

f2 ~ dy c t~ I](y)I Lq'(m) <" t -~  IIflIHI,O. 

Hence for 1/q~ + 1/q = 1/2, 

/ dy cllg+llLq(n+) II/llHl,O ~< cllgllHq(c\n)IlfllHl,O. 1 fe_See_iy2/4tF 1 <. tl/q' t 1/2-1/q 
L2(F)  

Now for y<0,  

HF2(y) HL2 <~ cllgeit( ~ (1-eiy~)UL~(ei~/4n+) = ellgeitO2 (e-iY~-- l )llL2(e~/4R+ ). 

Hence for a > 0  and t>0,  

---~[~ 
J - c ~  I ILe(F)  

<~c/_Ldylf(y)l (~o~dT]g(e~/47)]2e-2tn2'e-~/4"yU-l12) ~/2 

;o (/j 
<~ c dY lYf(Y)I d7 3 'e ]g(e~"/47)] 2e-2t'r~ 

J - - t  

(/o ) + ~dYl/(Y)I d~lg(e~/4~)j2e -2~'~/2 

<<. c(t-a/4+~/2 +t-~/2-1/4)Ilfllm,o IIg(O / )llHq(C\m" 

Taking c~= �89 we obtain 

1 fa dy <~ c J - J  e-~%-~/n~F~ ~(r) tl/~-~/~q II ftlm,o 11911/-/~(c\rt). 
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Finally for y>O, 

IIF2(y) IlL2 ~< c Ilge"(0-~/2~)2(1--eiy0)IIL2(,/2t§ 
and hence for a > 0  and t>0 ,  

L (F) 

(/o <- C fo dyIf(Y)[ d'ylg(y/2t+ei~/4@12e-2t~2ll eiy(y/2t+e"/4DI2 ) 

~e fotdy ,f(y)[ (rondel ]g(y/2tq-eiTr/4~/)[2e -2t~/~ ([e-iy2/2t-l[2q-[ 
, ,1/2 

l_eie,~/%yl2)) 

-~-e dt ~f dy'?(y)'(~c~d'j[g(y/2t-~-ei~/4"~)'2e-2t'~2\) '2 

<~ c( t -  5/4+a'/2 + t -  a/4+~ + t -~  IIf]]H~,O [[g( (} / ~/t )[I H~(C\m" 

Again, setting a =  1, we find for t>O, 

~ f o ~  dy L2(r) c 1 e_~(>e_~y2/4tF 2 ~ tl/2_1/2q ]]f]]H',O@[[U~(C\m. 

On the other hand, as before, 

[[C{~+~r(g+fe it<>2) IIL2(F) ~< cl[g+ IIL.(R+)]l flirt1, o ~< cllgllH.(C\R)IlfllH~,O for all t > O, 

and (4.52) follows. [] 

Applying Lemma 4.50 to appropriate choices of f (see ~ in (4.9)), we obtain the 

first part of the following corollary. The second part follows from the formula / 2 - I =  

(1-C~o)-I(C~oI)ELP(R), p~2. Of course, in order to prove (4.60) below, all we need 

are the mapping properties of C~_~ft, etc. The full estimates in (4.59) for • C~_~r will be 

needed later. 

COROLLARY 4.58 (to Lemma 4.50). For any 2<<.p<c~, and for all t>~O, 
c A 

• ~ (4.59) IIcR.r~0 II~, < (1+t)~/2~ (1-e)~'  

II~-IIIL~ <~ c AKp (4.60) (l+t)U2p ( l - Q )  2" 

Remark 4.61. The proof of (4.60) clearly also shows that  

c AKp II(1 - 1  
(1+t)1/2P ( 1 - 0 )  2 

as long as rl,r2EH l'~ [[rjllL~<0, [[rjllH~.O<A , j = 1 , 2 .  

We now prove a Lipschitz version of Lemma 4.50. 
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LEMMA 4.62. Suppose fEH 1'~ Then for 2~<p<oc, 

C:t: [cq-2 c• i. ~:itO 2 C A 
R+~rto2 -01 )je Lp < (1+t)1/2 p (1_0)3 IIfllHl,ollr2-rllIHl,O, (4.63) 

• - •  ~• c :~itO211 C A NC~R+~(6T-~ j~L.-< (1+t)~/2~ (1-~)~ Ilfll.l,ollr~--~lllH~,o. (4.64) 

- -2 - 2  it(} 2 Proof. We only prove the bound for C~+_~r((52 -51 )fe ). Again the other 

cases are similar. 

As in the proof of Lemma 4.50, we write for any c>0, 

f d ~ ~,.,e-iy2/4tg . 1_!.__/dyf(y)e-iy2/4tF2, CR+_+p((522--512)fe-e~e 'to2)= ~ J gJty) 1" 

where now 

FI(y) = CR+oF((5s 

F2 (y) = Cfi+_~r ((5s 2 - 5~ 2) e-CO X(a,~)e it(O-y/2t)2 ) 

and again a=max(0, y/2t). 
Assume first that p>2. For F1, again we only need to consider y>0. By (4.35), 

IIFIlIL,(r) ~ e ll ( 5s 2 -5 ;  2) x(o,a) ll L. <~ e-(-~Z- ~ Ilr2-r,  llH~,O 

(I 1 <~ c (1 _-i-2-~ lit2 -rlllHl,O al/~ (l+[logsl+llogalFds/1/p 

A 
~< c ~ - - 2 ~  11r2-rlllm,o s  al). 

Hence for t/> 2, 

~ /](y)e-~y~/4tFI LP(F) 

c A  L ~  y l / p  
~< ~ - - 2 ~  IIr2--rlllHl,O If(Y)I (l+llogyl+llogtl)dy (4.65) 

cA log t 
~< (I_Lo) ~ tl/p Ilfllm,o. 

For p=2, we can rewrite the integral as 

1 _ - - 2  - - 2  - - s O  1 ~ . F1 = ~ C R + o r ( 5  2 -51 )e L dyf(y)e-'"O+i'O2X(~ 
1 s 

+ ~ vs (5;~ _ 5;~) e-~ @/(y) ~-,~+~m _= I+H. 
ax(1,2tz)  
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For t~>2, by (4.35) and some elementary calculus, 

/0 
cA 1+log t t  1 / ~  L z <<. ~ l l r 2 - - r l l l u ~ , o  dy(l+llogyl)f(Y) 

l+ log t  cA 
t l /2  (l_Q)2 [[f l lul ,ol lr2--rf l lHl,O. 

Also, 

IIIl~< ~ C f i + _ ~ r ( 5 2  -5U2)e-~OX(o,1/2t) 

+ Cfi+_~r(5~2-6f2)e-~~ ) dyf(y)e -~y~ - II~+IIb. 
J2tz I 

Again for t~>2, 

c( l+logt)  
IIILIIL~ ~clI(5;2--5~2)X(O>W2~)IIL~IIfIIH',~ <. V~ (1_~)2 IlfllH~,ollr2--rlllm,o. 

Set g(()=f~dy If(Y)l. By Hardy's ineqnality, IlgllL2 ~<211fllHl,O- For t~>2, 

La(1/2t,~) 

c(l+logt)  cA 
~< x/t (I_Q)2 IlfllF.,o I Ir2-r l l lm,o, 

by Lemma 4.32. For F2, again we first consider the case where y<0, and hence a=0. 

Then for p~>2 we deform the contour as in the proof of Lemma 4.50, to obtain for t~>2, 

as y<0, 

II cR+_~r (5~ ~ - 5i -~) e - ~ %  "(~-~/~)~ II L. ~< e II (5~ ~ - di -2) e ~~ II L~(~':/~R+) 

c(l+logt)  
t l /2p (1-0)  3' 

by scaling and Lemma 4.32. For y>0, we obtain similarly for t~>2, 

II CR+ -+F (522 -- (~12) e - s 0  X (a,oc)eit(~)-y/2t)2 II LP (P) 

l+ log t  <~ c l l ( ~  2 x-2~it(O-yl2t)211 <~ c - -  --Ul )~ IILP(y/2t+ei~/4R+) ~l/2p (1-~) 3' 
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by scaling and Lemma 4.32. Thus for all p~>2, and for t~>2, 

f c ( l + l o g t )  A 
1 dyf(y)e_iy2/4tF 2 LP(F) ~ tl/2 p (1_0)3 llfL[H',~ 

On the other hand, for all t, and for all p ) 2 ,  we have 

IICR+_.r(a; 2 - a 1 2 ) f e " : l l L .  ~< ell(6~ 2-612)IIIL~(R+) 

ea ( f_~ l+s ds <~ (1----~ I]fl{Lv'+-llf{lHl'~ -1S--O LP(R+)] IIr2-rl{lHL~ 

cA 
~< ~ {{fllH,,O {{r2--rlllm,o. 

We conclude that for all t~>0, and for all p~>2, 

C- [(~-2 (~-2~ :eitO2t~ c)~ 
R+--+rt 2 -- 1 ]g IILP~< (1_0)3(1+t)1/2 pIlfllH',~ 1,~ [] 

Using the fact that 
r ' elr'l 

we obtain the following Lipschitz estimate: 

COROLLARY 4.66 (to Lemmas 4.50 and 4.62). 

• _~ e (1-t-A) 2 
IlC~+_~r(W~o-~o)llL~ <. (1+t)l/2p ( 1 - 0 )  4 11 r2-rlllHl'~ 

LEMMA 4.67. Let f EH 1,~ Then the multipliers 0 ~ ) f ( A 1 - - A 2 )  are bounded from 

Lq---k L p, q>p>~2: 

0 A-t-1 C)~ II f( 2 --A~I)HLq-~L" <<- --[[r2--rII]HI'~ 
(1-0)5  (4.68) 

c)~ 
<<. ~ IIr2-rlllm,ollfllHl,O. 

Also, the multipliers 0 - - ~ 0 ( ~ - ~ )  are bounded and 

~(1+~) 
II(~(w~ --W~)HLq--~LP <~ (1 --c0) --------~ IIr2-r l  HH~,O. (4.69) 

Proof. For g C L q (R), 

ngf(A~ 1 --Al:kl) HLP < HflIL ~ ]lgHLq H(A2 :t:1 --A~ll)IIL pq/(q-p) 

cA 
~< ~ IlfliL~ 11911L~ Ilr2-r~llH,,O, 

by Lemma 4.29, and this proves (4.68). Setting f = r j  or fj  in (4.68), and using IA~ :11=1, 

we obtain (4.69). [] 
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LEMMA 4.70. For q>p>~2, 

c KqKp(I+A) 2 [ 0 241 2 
II/~2-]~lllLp(f:t) ~ (1+t)1/2 q (1__0)4 I l r2- - r l l [Ha '~  ~ 1/2q Kq [[r2-rlHHl,O. 

Proof. /~2- /~1=ml+m2,  where m1=(1-C~2o)-1C~2o_~1o(1-C~1o)-1C~2o I and 

m 2 = ( 1 - C ~ 1 0 ) - 1 C ~ 0 _ ~ 0  I. By Remark 4.61 and inequality (4.69), we obtain 

cKqKpA(I+A) 
IlmlllL~ ~< (l+t)l/2q(l_o)4 [Ir2-rlllHl'~ 

From Corollary 4.66 to Lemmas 4.50 and 4.62, we have 

cKp(I+A) 2 
llm211c~ <~ (1+t)l/2p(1_Q)4 tlr2-rlll H~'~ 

This proves the lemma. [] 

Recall from w that if #=#(x ,  t, z) solves (1 -Cw0)#=I ,  then 

m=.~(x,t,z)=Z+c(~(~+wo))(z), zCR, 

and m~I+Q/(-27riz)+.., as z--+oc, where Q=fRP(w~+Wo) as in (2.20). Similarly 

~n=I+Q/(-27riz)+... as z-~cc,  where I~=f f~ t~(~3+~o)  (ef. Theorem 4.16). But 5= 

e CR-l~ = 1 + (fR log(1 - I  r 12))/(-27riz)+ ..., and hence from (4.6), 

o :  (4.71) 

Now if q(x, t) solves NLS with q(x, O): (7r -1 (r))(x), then by (2.45), 

0 q(t)) adaQ 
O = q( ; , t )  O' = 2~ 

But then by (4.71), 

Q = ad cr ~ (4.72) 
271 " 

For later reference, we note that expanding to order 1/z 2, we obtain 

ad a ( /Rps(w~ + wo ) ds) = ad a ( fRftS( ~ + ~o ) ds) + iQa3 /_~ ,rl2) ds. (4.73) 
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LEMMA 4.74 (smoothing estimate). 
all t>~l, 

IQI ~< 

I f  in addition r E g ~  '1, IIrHHI,1 ~<~, then 

cr/(l+~/) [ i i] 
IQI~< ( l + t ) l l 2 ( l _ o ) s  <~ 1/2 5 

/ f  r E H  1'0, IlrllL~<<.o<l, Ilrllw,o~<~X, then for  

cA(I+A) 
tl/2(1-Q)s" 

for all t >>. O. 

Pro@ 

: f (.~; +~;)+ f (~0,)(~; +~;)+ 1 I~o. (~-,)> (o; +o;) 
__ Q(0)+ Q(1) + Q(2). 

From Lemma 4.42 and (4.9), for t>  1, IQ (~ ] <.c(l+A)A/tl /2(1 - 0). If r C H  1'1, then clearly 

]Q(~ <cv. 

Now, by triangularity, 

f (~-- ~-+)(-+ -):f  (~--)-+ s <~-+)-- Q(1) = WO .~_ WO WO ._~W 0 WO WO q_ WO WO 
JR  JR  R 

= ~(c~+r~o)(C~ ~;-  ca~;)+ f(ca~;)(c~o-C~;), 
where we have used the fact that C~ + @~-C= w2=w2 on R, and equals 0 on F \ R .  

R - + F  R - + F  

Thus, by Cauchy's theorem, 

c A 2 
~< ( l+t) l /~ (1--0) 4' 

by (4.59). Similarly, using (4.59) and (4.60), 

IQ(2)[~ < Sr(c~_+r([s-l)wo)Cfi_~cw; + Sr(c~_~r(s 
cpAK2 A cpA 2 

~< (1+t)1/4(1_~0)2 (1+t)1/4(1-0) 2 ~< (1+t)1/2(1_0)5" 

The above inequalities prove the lemma. [] 
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LEMMA 4.75 (Lipschitz smoothing estimate). Suppose ra, r 2 E H  1'1 with IIr~llm,~ ~<~, 
IIr~]lL~<~o<l, i=1,2.  Let 2<q<oo. For all t>-O, 

e(l+~)~K~ [ 0 a7] 
[Q2-Ql l  <<. ( l+t) l /2q+l /4( l_o)  7 [[r2-rl[[H,,1 ~< 1/2q+1/4 Kq][r2-rllli-i~,~. 

Pro@ In the notation of the previous lemma, set Q~k)= Q(k)(rj), k=0, 1, 2, j =  1, 2. 

Then IQ2- Q~ 14 IQ~ ~ Q~O)[ + IQ(2~)_ Q~I)[+ IQ~2)_ Q~2) [. By Corollary 4.47, and the fact 

that [fR f2x• ~<cI[fllH~,l, 

We find 

Q(O)_r)(o clog(2+t) (1-F/~) 3 
2 "~a ~< (1+01/2 (l_t))a IIr2--rlttH ~'~" 

=Ji+1. 
Again by triangularity, extension to F and Cauchy's theorem, 

fll ~ fF(CR-+F(~)20--Wlo)Cf:IT-+F ~)2+0 @ fFCR__+F(~)~o--WI+o)CR__+FW20 
c ~(1+~) 2 

(l+t)~/2 ( l _ e ) ~  11~2-~111Hl.o, 

where we have used Corollaries 4.58 and 4.66. The estimate for f2 is similar. Thus 

Q(1)_r)(1 ) cA(I+A) 2 1 
2 "~1 ~< (I_Lo) 6 (l+t)l/211r2-nliHl,O. 

Expanding, we obtain 

+/~(C~,lO(f,l-z))(~,;o+~o-~;o-~fo) 
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As before 

+ ~ (C~_er (~2 - I )  (tV2+o - tvl+O)) ~_~r  tv20 �9 

Now by (4.69) for q>p=2 ,  

c( l+A) 

(1 -0 )  2 

c 

(l +t)l/2q 

I I ( ~ - I ) ( ~ H O - ~ l o ) l l L =  ~ - -  

by Corollary 4.58. Then, again by the corollary, 

I1~ -rll[m,o 11~2 --IIIL~ 

~(l+~)/Cq 
(1_4)4 l} r2-rliiHl'~ 

cA2(I+A)Kq lit2 - rl[[H,,o 
l' ~ ( l+t)1/4+1/2q(1--O) 6 

Now for q>p=2 ,  

+ fr(C~_~r(~ -I)t~+o)C-~_~r (~2o -t~lO) 
co AK2 1 (1+I )  2 coA(I+A)2K2 

(1+t )1 /4  (1_4)2  (1_1_t)1/4 (1_4)4  [[r2-rl[lH,,O = (1+t)1/2(1_0)6 [ [ r2 - r l [ [m,o ,  

again by Corollaries 4.58 and 4.66. Finally, by Lemma 4.70 and Corollary 4.58, 

f2' ~ fF (CR--~N (~2 - ~1) ~1-0) C~F~2+0 

+ j~ ( c ~  ( ~  - ~,) ~1+o) c - ~ o  

coK2Kq(I + A) 2 A 
( l+t ) l /2q(1- -O)  4 []r2--rl[[Hl'~ ( -~ t 1~(  2 

_ coA(l+A)2K2Kqllr2-r l l im ,~ 
(1+t)l/a+1/2q(1--4) 6 

Thus for any q>2, 
cA(I+A)2Kq [[r2 - rx [[H~,O Q(2)_~(2) 

2 "~r ( l +t)l/4+l/2q(1-O) 7 

Assembling the above estimates, the lemma is proved. [] 
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5. Supplementary est imates  

This section plays an intermediary role. Our goal here is to supplement the estimates 

in w and place them in a form that  is directly applicable to the analysis of the evolution 

equation (2.46). We continue to use the notat ion of w without further comment.  Thus 

m solves the normalized RHP (R, vo), etc. Throughout  this section we consider reflection 
1,1 coefficients r, rl,r2 in H 1 , and as before, we assume tha t  their L ~- ,  H 1'~ and H l ' l -  

norms are bounded by Q< 1, A and ~ respectively. If  h, say, is a quanti ty which depends 

on the reflection coefficient, h=h(r), and hj=h(rj), we write Ah=h2-hx .  In order to 

simplify the writing of Lipschitz estimates we will replace quantities hj simply by h. With  

this notation A, in particular, operates formally like a derivation: Ahg=(Ah)g+h(Ag).  

As rl ,  r2 have the same L ~-, H 1,~ and Hi , l -bounds ,  the Lipschitz estimates one obtains 

are not affected by this lack of precision. In addition, to further simplify notation, we 

occasionally use wo, which is defined in w as (Wo,W~) , also to denote w~+w o (see e.g. 

Lemma 5.1 below). These abuses of notation should not lead to confusion. Note finally, 

once again, tha t  if 

X3 X4 

is a (2x2) -mat r ix  with det X = I ,  then 

x - l = (  X 4 - -X 2 "~ 

/ - -X  3 X 1 

and so estimates for X immediately imply the same estimates for X -1, for example, 

estimates on IIm• imply the same estimates on lira21-IllL€ = ]lm• etc. 

LEMMA 5.1. Let 2~<p<oc. Then we have 

l[l~--IIIL~(dz), Ilm• <~ [ 

ll~-- IIILp(dz), lira• ZllLp(dz) <. [ 10 

Moreover, the same estimates are true if we replace 

1 , 

#,m• by # -] ,m~ 1. 

Proof. Use the equation p- I=(1-Cwo)- lCwo I, the relation m•177  • 

and the second resolvent identity A(1-C~o)- l=(1-C~o)- l (Awo)(1-C~o)  -1, as ex- 

pressed in the above simplified notation. [] 
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LEMMA 5.2. Z( / J - - i r )= /~ l+~2,  z(m,-I)=(m~)~+(ra,~)~, where 

I'#I"L~(e~), "m:~l"L2(d~) <~ [; :] and '}P2I,~.~ta~), Hm=k2]'L~(d~) <~ [~ 1 

Proof. Using #-I=Cwo#, we have 

(z}(~-t): {z}c~o(~-~)+(z>c~ot=c~o<z)(u-s)+c~o<z> 2~i " 

Using the fact that OwoQ=QC~oI~ we obtain 

( z ) ( # - / )  = ( 1 - C ~ 0 ) - '  [C~o(z}-2~ ~ Q] [(l-C~o)-'C~o{z)- ~---~, Q(I-C~J-I(C~oI)] 

-- #1 +#2. 

Now 
c;~ 2 

Hence 

The proof for m~ now follows from the relations m~ :pv~. 
LEMMA 5.3. In the notation of Lemma 5.2, 

L,~, 

i t 
[ ]  

3] II"rib,,,, (~.4) 

22] },/',rll,,,,. (5.5) 

Pro@ Let w be the data corresponding to ru_. Again write 

zTrz 1 27r i  =#~+#~" 

Now 

'l(I-Cwo)-lCwollL~(dz) <~ [ : 01] 

and 

}la(1-C~)-aC~(z>h~(d~) <~ }}(a(1-C~,)-1)C~ -i . 

-<[: 



Similarly 

Also, 
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]lA(1--Cwe)-lCwel[IL2(dz)~ [0 0 ~] ]IArlIH~'I" 

IAQI~< f (A,)w + f (,-Z)Aw + f Aw 
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[ O0 ;1 H/~'I'HHI'I [ 10 001-~ [~ 01] H/~rHHI~I-~- H/~rHHI~I 

The above inequalities, together with the inequality 

~.~ [1011] 
from the proof of Lemma 5.2, prove (5.4), (5.5) for p. Again the proof for m=~ now follows 
from the relations m• =#v~. [] 

LEMMA 5.6. 

11(1+~2)1/4(~-• 11(1+~2)1/4(~-/)11.(dz).< [~ 

1[(1+o2)l/4(A#)llL4(dz), 11(1+O2)1/4(Am• <<. [ 

Thus 

1] /(4, 

21] K~"Ar"Hl,1. 

Proof. 

= Cwo(lq-{}2)l/4#-{ - ~ / (1+z2)1/4-(1+~2)1/4 #(~)wo(~) d~ (lq-z2)l/4(#-I) 

: Cwo(1q-~2)l/4q-Cwo(l@~2)l/4(~-I) 

1 [ (r162162 de 
2rri J ((l-{-z2)l/nq-(l-{-r162 " 

(lq-z2)1/4(~--/)  : (1-Cwe)-lCwe(1-~}2) 1/4 

1 f (#+(})p(#)we(#) d# -(1-Cwe)-l~/J ( ( l q - ~ } 2 ) l / 4 q - ( l q - ~ 2 ) l / 4 ) ( ( l q - ( } 2 ) 1 / 2 q - ( l q - ~ 2 ) l / 2 )  " 

(5.7) 
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The L4-norm of the first term on the right-hand side of (5.7) is bounded by 

1/2 1/2 cK4"(}rl'L2 "r"L~CK4 [10 00J- 

The integral in the second term on the right-hand side of (5.7) is bounded by 

(l+z2) 1 /4c  27r(1-t-z2) 1 / 4 c  (c)~ 2 ) (1+z2) 1/41 [10 11] II~w011L~ ~< \~2-~_0+w ~< 

Thus 
11(1-1-02)1/4([3,--2)11L 4 ~ K4 [~ 1 1] 

Now using (5.7), we have 

(l+z2)l/4A# = A(1-C'wo)-lc~vo(l-~-()2) 1/4 

where 

((1+ 02) 1/4-t- (1-1- ~2) 1/4) ((1+ 02) 1/2 -t- (1-1- ~2)1/2 ) 

(~+0)~(~(~)~o(~)) d~ 
-(1-Cwo)-12-~ / ((1-t-()2)1/4-1-(1-t-~2)1/4)((1-~-{)2)1/2+(1~-~2) 1/2) 

- I+II+III, 

Finally, 

(5.s) 

IiIIIL4(dz) ~< II(A(1--C~o)-l)Cwo(1+�9 

+11(1- -1 two) c~,~o (1 +(~2)~/'~11L~(,~;) 

<~ cK~,,ArI, H~,~ ~I+ K4,,ArI,H~,~ E [00 101 K~IIArlIH~,~, 

1) 
IlIIllL~<d~> <K42IIATlIHl,1 1 ' 

[lIIIllL~<dz) ~ cK4 HA#WOIILI(dz) 
< cK4(llzx, LI L2(dz)lit IIL2(dz)+ II,-IllL~(~z)[I Ar llL:(d~)+ II Ar IlL1 (d~)) 

11(I +02)U4ApHL4(dz) <<. IIIHL4(dz) +IlIIlIL~(az) +IlIIIIIL~(dz) 

1 1 1 0 
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a s / (4  ~> K2 = c/(1 - 6). The estimates for Am• are similar. [] 

Let 

L = Oz- i (x -2z t )  ad ~. (5.9) 

Clearly Lfo=f~, where again fo=eiOad~f. Also (Lf)-o=Oz(f-o).  
The operator L arises naturally as follows (see the discussion on LP-bounds, p>2,  

for m ~ - I  in [DZW, w following Corollary 4.5]). Differentiation of the jump relation 

m+ =m_ vo leads to 

Ozm+ = ( Oz m_ ) vo + m_ ( i ( x -  2tz) ad vo + ( OzV)o ), (5.10) 

which implies bounds for [[Ojn_[[L2 that  grow quadratically in x and t. The point, 

however, is that  one can rewrite (5.10) in the form 

( L + 2tQ) m+ = ( (L + 2tQ) m_ ) vo + rn_ (OzV)o. (5.11) 

The term 2tQ is added in to ensure that  (L+2tQ)m• EL 2. Then (5.11) is an inhomoge- 

neous RHP (see IRHP2, [DZW, w with an inhomogeneous term that  does not involve 

x, t explicitly apart from 0. Using the associated singular integral operator 1-Cwo, one 

can estimate (L+2tQ)m• in terms of []mi[[n~ (and [[r][Hl,O), as  in (5.22) et seq. be- 

low. But then one can hope to estimate [[m_[[LO~ in turn in terms of (L+2tQ)m• by a 

Sobolev-type estimate, and hence obtain a priori bounds which grow at moderate rates. 

The lemmas that  follow show how this scheme can be carried through. 

LEMMA 5.12. Suppose that fcLP(dz)  for all 2<~p~oo, and that (L+2tQ)(f  +I)E 

L2(dz). Then for any n>~3, 
2 1/n (n--1) /n  [IfllLO~(dz) < 2n 1~nIl(L+ tQ)(f  +I)llL2 ][f[[L2(n-1)(dz) 

f (n--1) /n  + 2 n  1 / n l 2 t Q f x / n ( l l f l l L ~ +  ~ ~ 1 ( ~ ) .  

[[Af[[i~(dz) <2nl/n]]A(L+2tQ)(f+I)  1/n [Af]](n-1)/n 
L2(dz) ~ J  L2(n-1)(dz) 

f 1/n A~e (n--1) /n  +2nl/~[2tAQ] 1/~ j Ln(dz) J Ln(dz) 

+2nl/n]2tAQ[1/n A r (n-1)/n _.L,)~l/n J /n-~(d~) . . . .  12tQ[1/n[[Afllin(dz) " 

Proof. Let el--(~) and e2=(~ denote the standard basis vectors in C 2. Then for 

1~<i,j~2, 

(e~f_o(z)eA ~ = -~  e~OJ_oej)(e~f_oeS-l d~ 

= -nfz~e~((L+2tQ)(f+Z))_oej(e~f_oejF -~ d~ 

+n f e~  (2tQ(f +I))-o ej (e~f_oej)n-1 d~. 
Yz 
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It follows that  

n - 1  n ~ n - 1  [e~f(z)ejl n <<. nl l (L+2tQ)(f  +l)llL2(dz)llf[lL=(~-,(d~) +nl2tQl(llfllL~(dz) [IfllLn-l(d~)) 

and 

I 1/n ~ (n-1)/n Ilflli~(dz) <<- 2n~/nll(L+2tQ)(f + )lli=(dz) J L2(n-1)(dz) 

+2n Un [2tQli/n(llf]lL,~(dz)+ [1 f 11 (Ln~l~/;))- 

Here we have used the fact that  for a (2 x 2)-matrix A, 

[AI= IA~jI 2 ~<2 max 
l<~ i . j~2  

i, --1 

Similarly, 

I A~y I. 

fz 3C( t t n - - 1  
(e~Af_o(z)ej)  n = - n  eiO~Af_oey)(eiAf_oej)  d~ 

~ ( e :  (A (L + 2 t Q ) ( f  + I ) )_oe j ) (e~Af_oe j )  ~-1 d~ ~ n 

+n f ~ e ~ ( 2 t A Q ( f  + I))_oej(e~Af_oey) ~-1 d6 
J Z  

It follows from the equality A Q ( f + I ) = ( A Q ) f + A Q + Q A f  that  

n - - 1  ]e~A f (z)e j[  n < nllA( i +  2 t Q ) ( f  + I)[[n2(dz)llA f][L:(._l) +n[2tAQ[ I[fllLn(dz)IlA fi[L.(dz)n--1 

+n2tlAQI II~ fll[:~-~(d~) + n2tlQI II,~fll~,~(d~) 

and 

2n Un 2 1/n /~ (n--1)/n IIAfllL~(dz) <<. II~(L+ tQ)(f+l)llL=(dz)ll fllL=(n-~)(d~) 

+ 2nl/nl2t~Qll/n[lfll~L/~(dz) llAfll(~-(~n 
+2nl/'~[2tAQ[~/~ A r (n-1)/n .2n~/nl2tQll/n L~-~(d~) " II~fllL~(d~)" [] 

Introduce the operator 

L = ix ad a - 2 t O , .  (5.13) 

Note that  L is very close to the operator LMSh=X--2itO~, considered by McKean and 

Shatah [MKS]. This operator commutes with iOt-O2x and plays a central role in their 

analysis of nonlinear Schr6dinger flows. We may think of/~ as a matrix version of LMSh- 

As we now see, ]- is also closely related to the operator L introduced above. 
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( L + 2 t Q ) #  = ( O z - L ) # ,  

(L+2tQ)m• = (Oz -L)m• 

Proof. 
solutions of the equation Oxm=iz ad cr m+Qm. 
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(5.15) 

(5.16) 

that 

Equations (5.15) and (5.16) follow directly from the fact that # and me are 
[] 

LEMMA 5.17. 

1 
II(L+2tQ)#• II(L§177 II(L+2tQ)m21IIL~ <~ - 1 / 2 n  

1 
II#i~--IIIL~(dz), II'~• IIm~--IIIL~(d~) ~ -1/2n 

• ]  K2(n-1) '  

(5.18) 

5/nJ / (2 (n- I ) ,  (5.19) 

[ 0 1+2 /n ]  
II~• IIm~llL~(d=), f[m2111L~(dz) <~ - 1 / 2 n  5/n J K2(n-1)" (5.20) 

Proof. It follows from the equation #=I+Cw# and the commutation relation 

1 / (5.21) 
(}C•177 - 27ri 

( L+ 2tQ)# = 2tQ-2tQ+C+ ( L+ 2tQ)pw~ +C-( L+ 2tQ)pw~ 

=Cwo(L+2tQ)#+C~;#. 

Thus (L+2tQ)p=(1-Cwe)-IC~,ep, and by Lemma 5.12, 

c 
II(i+2tQ)#l[L: ~ ~_~ IIr'llL~ll~rl/~ 

r ( n - - 1 ) / n  c~ ( l+2~ i /~ l l (L+2tQ)~ l l [ /?  ~ - ~  L=(~-I) 

+ 2,r 12tQl*/n(l l#- IIl~,~ + I1~- 51~5')/n)). 

(5.22) 

Since for a,b,y>>-O, y<~ayl/n+b implies y<~an/(n-1)+nb/(n-1), it follows then from 
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Lemma 5.1, (4.20) and the relation Q=(1/27r) ad a Q that 

II(L§ <. 
c?Tn/(n -1) 

(l__uo)n/(n_l) II~--IIIL~(n- ' )  

+ ~ (l +12tQll/n(ll#- IIIc- + I1#- / II ~s 

~< [n/(o-1)  n/(n0_l)l[10 00]K2(n-1) 

+[10 011(1+[ 1/n 1/n Kn+[(nO1)/n 0 -1/2n 5/n]([10 00 1 o]K(n-ll)/n)) 

.~([/~l/j/o,/ 0 1 1 1  
n/(n-1) + -1/2n 

~< [_11/2n 231 K2(n-1), 

l+2 /n]  
l+5 /n  J ) K2(n-1) 

as n~>3. The estimate regarding p--1 follows from the facts that 

p - i = (  #22 - # i 2 )  
-#21 # n  

and that 0z-L is an entrywise operation, i.e. the entries of (0z-L)p -1  a re  the same as 
the entries of (Oz -L)# apart from some signs and a rearrangement. Now by Lemmas 5.12, 
5.1 and 4.74, 

L 1/n (n -1 ) /n  [I#--IIIL~ ~<2nt/'+l[ ( +2tQ)PlIL~ H#-IllL2(._,) 
r (n-- 1)/n +2nl/n]2tQI1/~(ll#-Illn.+ #-1 L~-~ ) 

~_1~. +~+~[/~ :1+ ~+-,~n~.~_l~ 
[ 1/n 1/n] (n-1)/n 

+~ 1~o +~.j([; ~ 0 
[ 1 2/n] [ 1 

<~ -1/2n 2 3/nJ K2(n-1)+ -1/2n 

~ ~nl~'~ ) 
2/n] [ 1 2/n] 
5/nJ Kn <. -1/2n 5/nJ K2(n-1)" 

The estimate regarding #--1 is the same. We have proved the first part of (5.18) and 
the first part of (5.19). The second part of (5.19) follows from the first part using the 
relation rn• and then the third part of (5.19) follows as before using det m• 
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Since c~z-L is a derivation, by Lemma 5.14 and the fact that  (Oz-L)fe=f~, we 

obtain (L+2tQ)m~ = (Oz -].)#v~ = ((0~ -].)#)v~ +#(v• Thus 

I[ (L+2tQ)m~ II L=(d~) ~< cll (0~ - L)~IIL=(d~)Ilrll~(d~) + II~IIL~ (dz)Ilr'llL=(d~) 

-1/2n / ( 2 ( n - - l )  + -1/2n 

1) 

1+2/n 1 00] 
5/n ] K:(~-~) [0 

As 0z- /~  is an entrywise operation, the estimate regarding m~ 1 is again the same. This 

proves the second and third parts of (5.18). Finally, (5.20) follows trivially from (5.19). [] 

LEMMA 5.23. For n>~3 and 2(n-1)~p>2, we have 

0 2+3/n] 2 II,~rll.~,~ 
IIA(L+2tQ)#IIL2(d~) <~ 1/2pn-3/4n l + 7 / n J  K2(n-1) 

~< -1/4 10/3 ~(n-~)ll~'~Ll"~'~ 
and 

[ 0 1+3/n 
]]AplILc~(d~) <<" [1/2pn--3/4n 7/n ] K~(n_,)IIArlIH~,~ 

~ - 1 / 4  7/3 K~(n_l)llar[l~/1,1. 

Remark. The condition 2(n-1)~>p is only for convenience in order to write the final 

estimates in the lemma in a compact form. 

Pro@ Using (L+2tO)#=(1-C~o)-lC,~o,o#, we compute 

A(L+2tQ)p = A ( 1 - C w o ) - l c w • .  

= (A(1-C~o)-I)C,w,o#+(1-C~o)-ICA~,ep+(1-C~,o)-ICw,eA#. 

Thus by Lemmas 5.17 and 5.12, 

2 o ] II~rllRl,, IIA(L+2tQ)#HL,<~ [0 0 0] ,lArll~,~ [: 0 ] II."L~+ [0 o 01 

+[: 01][~ O0][[/'~IIL~ 
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0 1+2/n} ~<[~ ~]llA~iis-"~[-U2n 5/~ Ig2(n-1)+[; 01]liA#llL=(~z) 
[ o 2+2/,~] <~ -112n 2+5/nJ K2(n-a)llArllH,,, 

1 0 + [o ,] (ilA(D+2tQ)ulI~i'IIA~ii~72~-I;'I 
I 1/n +12tQl~lnllv- IlL. IIA#II <"-1)/" 

+ 12tAQI ~/n I lu-S I1[/" II/',ull ~#~)/n + I2tAQI 1In I laul l r-) .  

Therefore, as in the proof of (5.18), 

,iA(L+2tQ)#,,L2 <~ [~ O1]nl(n-a)llA#llL~(~-~)+llAriiHz,~ [ 

+[; 
+['o 

~< [~/(o -1) 
[o 

+ - 1 / 2 n  

0 
-l/2n 

01] 12,AQI'I~IIv-III~i"IIAvlI~j1)In 

0 1] 12tAQIII~(IIAvII~I~)In + IIAvlIL~) 

0 

2+2/n] 
2+5/nJ  K2(n-1) NArliHl'~ 

2+7/n] 
2+5/nJ K2(n-1) 

[1 011 [ 0 3/Tb][.fl/n[1/o'n ~11~1/n 
+ 0 1 /2pn -3 /4n  7/nJ --p -'~ 

~[o ~ ,~-:~]~<:n-~n,~,,.~..[; oil 
[ o ~o~1,~[o ~ %,,~]~,~_~,,~,,~,~ 

x 1 /2pn -3 /4n  7/nJ --p ~n-1  

+[: :]r  1,~ 1,ol , ,_,,~ ~o,[~ o},<:,,~.,,... 
[ 0 2+3/n]  2 

<~ 1 /2pn-3 /4n  I+7/njK2("-a)HArHH~'a' 

as n >/3, 2(n-1)~>p > 2. The second inequality follows by Theorem 4.16 and Lemma 5.1. 
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Hence 

II/X,ullLoo ~< c(llA(L+2tQ)ttll~/n II/',,~11 ~'~722(? + 12tQ[ '/'~ IIA~IIL~ 

+ 12tAOI 1/~ II,~r, II ~,~2~,)/n + 12t~XOl'/~ I1,~-Z II ~/,? IIA,~II~/-~)/'~) 

[ o l n[~ ~ 
< ~ - 1 / 4 n  lO/3nJ -2(n-1)IIArlIHI'~ 

(Tt__j_)/Tt/-3 ..2(n--1)/ . . . . . .  (n--1)/n 
o J t~2(n_l) II~rllHl,1 

+ -1/2 5 K~[I~rlIH~,~ 

[o  3]"n [Oo] 1/r~ Un 1 
+ 1 /2p-3 /4  7 K;~ IIArlIH~,, 0 

[ 0 3711/n 1/n 1/n 
1/2/o-3/4 K~ IIArllnl,1 + 

(n--1)/n 
i~(2n--2)/n ii ATII~Z~)/., 

n - - 1  

[ 00] [00 lO](n--l)/n ~rt 1 1/n]g(1/n [((2n--2)/n IIATII ~,l)/n 
• 0 --n --n 

[ o 1+3/~] 
1 /2pn-3 /4n  7/n J K2(n-1)IIArIIHI'~ 

0 2 ] 2 
~< -1/4 7/3 K~(~-I)IIAr[IHI'I" 

[] 

LEMMA 5.24. For qCH 1'1, and hence for rGH 1'1, 

1 J flog(l_lr[2)~< 1 Ilrll~ Ilqll2= =-2-~ 2~ 1-4 
1 IIrllL2 <[1 0 ] 

v ~ ( 1 - a )  1/2 0 1/2 ' 

1 }}Or,}L2 [1 0 ] 
V/~ (1--kO) 1/2 ~< 0 1/2 " [[O~qHL2 < - -  

Proof. The inequalities follow from the identities 

([0xq[2 + [q]4) dx =- - ' ~  z 2 log(1 -]r[ 2) dz, 

(5.25) 

(5.26) 
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for the basic NLS-conserved quantities, probability and energy, respectively (see (2.32), 
(2.33) with V(y)=y2). These identities are proved by expanding loga(z) in powers of 
1/z and using (2.10c), as in [FAT], for example. [] 

For the perturbed NLS equation (1.1), we must set A(s)=2(l+2)-ls (z+2)/2 in (2.35), 
and we obtain 

G(q)=-ilqlt( 0---(7 qo) " 

LEMMA 5.27. 
l+1 I -1  ] 

[IGNLI' [IOxGllLI<~ ( / -1) /2  5 / -4  ' 

Pro@ By Lemma 5.24 and (4.20), 

I -1  l - 1  
5 / -5  (1-1)/2 51-4] 

LIO~aIIL1 <. cllqllc~ II0xqllL~ Ilqll~ 

:;141 L(Z-1)/2 
[] 

We compute, using Lemma 5.14, 

L Q =  J((Llt)wo+#Lwo) -= /((Lp)wo+p(OzeiOada)w) = /(((-Oz+L)#)wo-#wro) 

= - / ( ( ( L+ 2tQ)#)wo-(p- I)w'o ) + / W'o 

- LQ+L~Q. 

By Lemmas 5.17 and 5.1, 

IILQl[LOO(dx) <~ II(L+2tQ)p)llL2(dz)IIr[[L2(dz) + II#--IIIL2(d,)[Ir'llL2(dz) 
2 2 

-1/2n 3] K2(n-1)" 

Together with the fact that w, and hence w', is off-diagonal, this proves the following 
result. 

LEMMA 5.28. 

,,LQ,,L~(dx) <~ [ 2 1 00]. --1/2n 23] K 2 ( " - 1 ) a n d  I,L~QHL~(dx) ~ C ~  [O 
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LEMMA 5 .29 .  

l+1 
IILGIIL2(d~) <~ L(~--1)/2--1/2~ 

/+1 
IILGIIL~(dx) <<" (l-2)/2-1/2n 

/+1 
IILGllL~(dx) ~ [I /2-1/p-1/2n 

229 

we obtain 

Proof. Estimates (5.30) and (5.31) are just special cases of (5.32), while (5.32) follows 
from (5.30), (5.31) and the interpolation inequality 

2-2/p 2/p-1 [[filL; ~< [[f[[L 2 [[filL ~ - (5.33) 

Using the identity -2tOx [q[Z = �89 l[q[l-'2 ((ixq- 2tO.q) (1+ (ixq- 2tO~q)q), we obtain 

( 0  ; ) : _ i ( ;  /3) (5.34) ;G = -i(  ix ad a -  2tO~ ) lq[ ~ -q  0 ' 

where 3= [q[ z (ixq- 2tO, q) +l@Z-~q Re(q(ixq- 2tO, q)). Thus by Lemmas 5.28, 5.24, and 
(4.20), together with the fact that the off-diagonal part of LQ has the form 

( 0  (ix-2tOx)q) 

-(ixZStOx)q 0 ' 

IILGIIL2(dx) ~<Cll MZ(ix--2tOx)q+llq]l-2qRe(q(ix--2tOx)q)llL2(d~) 

~<cllqllL= l--1 L' 2 HqllL~llLQIl~+~JJqff[~(dx) ll QII~ (dx) 

[1 0 ] [  l -1  l -1  ] [  2 ~] [ 1 
~< 0 1/2 (l-1)/2 5/-5 -1/2n K2(~-1)+ l/2 

[ l+2 1 [Z+l 
= [(I-1)/2-1/2n 5l-3/2]K~('~-1)+[1/2 51 

[ /+1 /+2 ]  
<~ (I-1)/2-1/2n 5l-1 Ku(n-1). 

1+2] 
5l -1  K2(n-1), (5.3O) 

l+1 ] 
5/-  11/2 K2(n-1), (5.31) 

I+3-2/p ] 
51+7/2-9/pj K2(n-1), l~<p~< 2. (5.32) 
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Similarly, 

NLGIILI(dx) <. cl[ ]q[t(ix--2tO~)q+l[q[l-ZqRe(q(ix--2tO~)q)[[LZ(d~) 

<~cllqll~= I - 2  z-1 , [Iq[lL= [[LQIIL ~ +cllqllL2(dx) IlqNL~(dx) IILQIIL2(dx) 

l--2 I--2 2 

+ 0 1/2 ( / -1) /2  5 / - 5 ,  

[ ] l l ]  
/+2 l K2(n- 1) + 

= ( l -2 ) /2 -1 /2n  5 / -6  ( / -1) /2  51-q/2 

[ /+1 l+1 ] 
<<" (1-2)/2-1/2n 51-11/2] K2(n-~) 

Here we have used twice the fact that (1-0) -1 ~CK2n(n-1 ). [] 

LEMMA 5.35. Let n~3 and 2<p~<2(n-1). Then for LQ and L~Q as in Lemma 5.28, 

][ALtQIIL~(dx) <cIIArNHI,1 and 

[ 1 2+3/n ] 
IALQI ~ 1/2pn-3/4n max(l+7/n,  2) K~(n-1) IIArlIHI'I 

[ 1 3 ] ~ ,,~r,,.1... 
<~ -1 /4  10/3 K2(~-1) 

Proof. The first part is trivial. For the second part, we compute 

< [[A(L+2tQ)#NL2(dz)HrHL~(dz) + H(L+2tQ)#HL2(dz)[[ArHL2(dz) 

0 
[1/2pn-3/4n 2+3 /n l  1 0 l~-7/rtJ/~22(n-1) llArl[HiA [0 0] 
+[1 
~-[; ;]K22HAr[[Hl'l [: ;]~[; ;]K2HArHHI'I 

(by Lemmas 5.23, 5.17 and 5.1) 

1 
<" ( [1 /2pn -3 /4n  2+3/n ]  l + 7 / n J  + [-11/2n 
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(as K2(n-1)>K2 =c/(1-6)) 

1 2+3/n ] 2 
<~ 1/2pn-3/4n max(l+7/n, 2) K2(~-I) IIArlIH~'I 

~< -1/4 10/3 K~(n_I)IlZXrlI.I,1. [] 

LEMMA 5.36. 

IIALallL~(~) < l /2+l/2p-1/2n--3/4 

IJzXLall~l(dx) ~< [1/2+ 1/2p I 1/2n- 5/4 

and  

l 

II/xLcllL~'(d~) ~< [ l /2+1/2p-1/2n-1/4-1/p '  

For LQ and L~Q as in Lemma 5.28, 2<p<oc, n~3, 2>~p'>~l, 

/+4 ] 2 
5/+1  J K2(n-1)IIArlIHI,~, 

l+3 ] 
5/-7/2 K2(n-1)IIAr]]H"I 

l+5-2/pt ] 2 
51+ l l /2-9/p'  J K2(n-1) I[ArHHI'I" 

Proof. Let 2<p~<2(n-1). Using Lemmas 5.28, 5.35, 5.24, Theorem 4.16, the form 
(5.34) of LG, and the form of the off-diagonal part of LQ, we compute 

I[ /x LGIIL~(d~) ~ c(llA(IqlZ) LQIIL~(dx) + rlm(IqlZ-2 q2) LOllL=(d~) + fl IqlZ /x LOIIL~(d~) ) 
l--2 <~ cllqll L~(~) [IqllL~(,~x) IIAqlIL~(dx) IILQ IIr~(d~) 

l--1 t +cllqllz~(a~) IlAqllz~(ax) IlZQ llz~(a~) 
1 t +cllqll~(a~) [IqllL~(dx) II A LQIIL~(d~) + clIqlIL~(a~) II ALQ IIL~(a~) 

<~ [1/2115]z-2[; i/2]0 [1/2p+1/4037]KpllArll HI~[, [-1/2n2 vj:]K2(n-1) 

1 - 0 0 
+ [1/2 :]/11101/2][1/2pn-3/4n max(l+7/n,2+3/n 2)] 

• K~(n_~> liar IIHI,~ 

+ [11/2 15]Zll~XrllH~'~ 
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~r l+1 , + 3 1 [  , ,+2] <~\[1/2+l/2p-1/2n-3/4 5l+1/2 + I/2+1/2p-1/4 5/+1 
[ l I+1+3/~ ] 

+ 1/2+l/2pn-3/4n-1/2 max(51+7/n-7/2,5/-5/2) 

[, ,1)~ + I/2 51 K2(n-1)[[Ar[[Hl'l (asp~<2(n--1)) 

[ l /+4] 2 IIArllH~,I" <" 1/2+1/2p-1/2n-3/4 5/+1 K2(n-1) 

Similarly, 

[[ALGllLI(dx) <~ c(llA(Iq]Z)LQIIil(d~)+llA(Iqll-2q2)LQllL~(dx)+ll ]q[1ALQi[il(ax) 
C 1--3 2 < IlqllL~(d~)HqiiL=(d~)IIAqllL~(~)IlLQllL~(d~:) 

+cllqll~(dx) Ilq[[L~(dx) IlAqliL~(dx) [[L~ llL:(d~) 
1--2 2 +cllq]lL~(d~) N q[lL2(d~)[]ALQ II 5~ (dx) 
l - 1  # +cl]qll i~(dx) liql]L2(dx) [[/k LQllL:(dx) 

~<[1/2 1511 l-3 1[0 10/212[1/2p0+1/4 37] 

• [_12/2 n :] K2(n-1) 

1 1-2 0 0 
+[1/2 15] [10 1/2][1/2p+1/4 37]KpIlArIlHI'~[lo 00] 

1 +[1,~ ~1 ~ ~[; 1;]~[ o ~+~,~ 1 1/2pn-3/4n max(l+7/n, 2) j 
• K22(n_1)[I Ar [[H~,I 
1 0 

~<[[ /+1 I+2] l 
+ [[1/2+1/2p-3/4 51/+1- 7/2 J ] \[ I/2+l/2p-1/2n-5/4 5/-4J 

[ , ,~,o ] 
+ I/2+1/2pn-3/4n-1 max(51+7/n-8,5l-7) 

1 I-1 2 
+[l/2-1/2 51-9/2]) K2(n-1)l[ArlIH~' 
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[ l ,+3 1 2 
<~ t/2+l/2p-1/2n-5/4 5l--7/2jK2(~-~)llArllm'~' 

Finally the Lp,-results follows as before from (5.33). [] 

LEMMA 5.37. For any 2<p<ec, A0~Q=I+II, where 

[ 1 48] c,,Ar[[H~,~" HIHz~(dx) ~< 1/2p K;]]Ar[[HI,1, IIIIIIL~(dx) <~ 

Proof. For simplicity, we write w=we, f'=O~f, and therefore w'=iz ada w. Notic- 
ing that [a, #]w is diagonal, we compute 

ar ia/(# 'w+#w')  = ~ f((Ap')w+#'Aw+A(#w')) A Ox Q =/"V~-~ 

ada f - 2,~ ((zx(iz[~"#]+O#))w+(iz[~"#]+O#)Aw+(#w'))  

_ ad o- f ad~r/A(#W') ~ I1 +I2. a((zxO)#w+O(A#)w + O#Aw) + 27r 

For any p>2, 

IIi] ~< ellAQllL~(dx)(ll#-IllL~(dz)[IrllL~(dz)+llrllz'(d~)) 

+ II@tZ~<d~)II~#11Z~(d~)llrllZ~(d~) 

+ IIQIIL~(.x) (II#-- 51L=(d~) II/XrlIL'(d~) + llArllL,(dz) ) 

0 1 0 1 
<~[1/2p+1/4 37] Kp"Ar"HI" ([O 1];k+~/)+[1/2 t][00 12]"Ar"H~'~A 

+[11/2 : ] ( I t  :] ]]Ar[[HI'I + [[Ar[[HI'I ) 

(by Theorem 4.16 and Lemma 5.1) 

<~([ 1 1 2 

N L  

[ 1 :]  
<" 1/2p+1/4 KpllZXrlIH~,~. 

A simple computation shows that ad afR #z ad a(wo) dz = 2or ad afpzwo dz, and 
hence by the analog of (4.73) for general z0, 

A__ (Q fzo log(1- [r(z)l 2) dz) I~= i -~ada f  zA(fit~o)dz+2zr\ J-oo 
7F JRzo  
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Set W = fRzozf_t~ o dz. Then 

A W= /"zoz( Afit)w~ dz + fdf%oz(fit- l )A~~ dz + fJ"~ozA~~ dz = Wl + W2+ Wa" 

By Theorem 4.16, for any p>2,  

[Wll ~< 1/2p KplIArIIHI,O~ and IW21 ~< 1/4 ]]ArIIHI'I" 

Reversing the orientation on R_ +z0, we see from (4.9), (4.10) that  

,( o ) 
~a --~J--2e-~~ dz, 

where r#(z)=r(z) for z>zo, r#(z)=r(z)/(1-1r(z)l 2) for Z<Zo. Of course, if 5~ were 

independent of x, then we would obtain immediately a bound for ][W311L~(d~) in terms of 

the H~ of Ar. But 6~=5~(z, z0) depend on x through Zo, and this complicates 

the estimation of W3. 

We proceed as follows. Consider first 

s176 f z<,,'#)e'~ f z(~r#)('~+-l)e'~ f z~(A~'+>e'~ 
Y+II~+IIY. 

Clearly 

c c 
III'llL~(d~) ~< ellCe-"O~/X~#llL~(d~) ~ cllar#llHo,, -< ~ Ilarll.o,, ~< ~ IIA~llm,1. 

U s i n g  t h e  i d e n t i t y  x z -  t z  2 = - t ( ( z  - Zo) 2 - z02), w e  h a v e  

I I ' = e  uz~ ( /  zAr(52--1)e -~t(~-z~ dz+ zAr#(J~-l)e-a(~-~~ 
\ o  Z o 

=_ e uz~ (II" +II I" ) ,  

Now 52 solve the normalized RHP (R_ +z0, (1-[rl2)2), and hence by the methods of w 

F o ~(~)((1-1~(~)?)~-1) d~ 
~ 2 ( z )  - -  1 +  

- or s - z 27ri 

for z C C \ ( - c c ,  z0]. Thus 

f_~:5~(s)((1- ds z /~~  2(s) S((1-lr(s)[2)2-1 ) ds z(52(z)-!) = -  I r ( s ) 1 2 ) 2  - 1) ~ + , 
s -  z 27ri 
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and inserting this relation into II" we obtain 

I I ' = - ( L ~ r ( u + z ~  ) ( E  a2-((1-lrl2)2-1) 2@/) 

i/ [/5 ] + a2_(.,/+zo)[(7+zo)((l_lr(7+zo)12)21)] e_~t~ Ar(u+zo) du - -  
oc 7 - u 

d7 
27ri" 

By Proposition 2.55, 

Set 

i "~ ((1 - dz cA 2 (5.38) 
I" l=)~- l )  g-h7 ~< 1-Lo 

L 
u 

a(~ )  = e-"~=d~, ~ > 0, (5.39) 
--iw/4~ 

where the integration takes place along the contour a=u+e-i'~/4~, /3>~0. Note that 
(i) G'(u)=e -its2 and (ii) G(u)=-e-i ' /ae-i t~foe-~t-2~*' /%~td/3,  so that IG(u)l~ 
e foe-~2te -v'~u~t d~. Integrating by parts, 

IAr(zo) G(O) l + rjo~(O~Ar(u+ ZO)) G(u) du 

~< ellr2--rllInl,o ~-ellr2--rlllm,o IIGIIL=(O,~). 
Vq 

But by Minkowski's inequality, 

e 2 L ~ e -~32t c 
IIGIIL~(0,~) <<. e e-~ t [[e-V~OSt IlL2 d/3 = c (/3t)1/2 d/3 = t3/4, 

and hence 

A r ( u + z o ) e - i t u 2 d u  ~cllT2--rl l lHI,O -t- , t > 0 .  (5 .40)  

On the other hand, for all t e R ,  [foAr(u+zo)e-it '?du[ <.cNArHHo.,, and it follows that 

L oc C[ [ r2_r l [ [Hl ,1  
Ar(u+zo)e-U~*2du <~ (1+t)1/2 , t~>0. (5.41) 

Now consider the second term in II". Noting that the integration variable 7 is 
negative, this term takes the form 

- S L  a2 (7+ zo) (7 + zo)((1- ]r (7 + zo) [2) 2-1)  (C~+_+FAr(0+ zo)e-u02)(7)dT. 
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By the proof of (4.51) (here the 52-term is absent), 

c ]lArllHl,O, t/>0, IICs247 -~rAr(O+ z~176 < (1+t)1/~4 

and hence the term is bounded by 

e I1~((1- Ir(0) I~)~- 1) IlL= 
1-~  (1+t)1/4 Ill'lira,o, 

which is bounded in turn by c~ I IA~II t oo / (1 -~ ) (1  +t)1/4. 
Combining the above results, we conclude that 

eA211ArI[H,,~ erlllAr[[H,,o [ 1 1] IIArlIH,, (5.42) III'l ~< (l_o)(l+t)l/2 + (l_co)(l_Ft)l/4 <~ 1/4 1 

Similarly we rewrite II'" in the form 

I I " = - ( / - ~ 1 7 6  (/~~ -oc 52 ( (1- ' r '2 )2-1) -  2@i) 

0 

+/~2_ (~+zo)(~+zo)[(1-Ir('~+zo)le)e-1](Cfi~m~r/Xr#(<>+zo)e-"~ 

which leads to a similar bound as in (5.42). Here the contour of integration in (5.39) 
for G(u), u~<0, must be replaced by c~=u-l-e3~i/4/~,/~)0, and we must again use (4.51). 
We obtain 

2 III'"l<~ [11/4 11] ILAr#IIHI.I,.< [1/4 141 IIArlIHI,1, 
2 

III'l~< [1/4 14] IIAr[[HI,1. 

(5.43) 

(5.44) 

Finally we consider III', which we again write in the form 

iii,=eitZ~ (~:zr(A52)e- z~ dz + / : z r  # (A6+)e- - 2  ~t(z zo)2dz ) 

itz~ / ;  lit -=e (III +III ). 

As before, 

III"= - r(u+zo) e -au2 du A(62 ((1 -Ir12) 2-1)) ~-~ 
\ J 0  / \ J - - o c  

0 

- /~ A{&2 (~+ zo)[(~/+ zo)( (1-lr('~+zo)12)2-1)]}(C~+~rr( O+ zo)e-'t<>=)(~) d"/. 
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By (2.56), for z c C \ ( - e ~ , z 0 ] ,  62(z)=e 2f-~~176 I~(~)'~) d_~ s ~ 2~ , , andso  

fO d 2 f z0 l~ A~ 2 = - -  e . . . . . .  ~ dy 
dy 

/o1[ ] = - 4  e2Fo  ,og(~ i~+~,.~_-~)l ~) 

x [ fzo Re[(r_22_-rl)(r1+y(r2-r1))] ds r_ ] 
L J - ~  1-1r~+y(r2-r l ) l  2 2=i(s , -z )  J dy, 

(5.45) 

which implies the estimate 

C 
IIAs ~ ~ IIArlIL=" (5.46) 

Hence 

/_~~ dz CA ~ Cr] IIArIIH~,~ ' ((1-1rl2)2-1) ~< ~ I[/XrlIL= + II/XrlIL= ~< 

and using Lemma 2.48, 

IIA{~ 2 ((}) 0((1 -Ir(<>)12) 2 - 1 ) }  II L~ ~ Ila~ 2 IIL~ 110((1--Ir(<>)12) 2 - 1 )  IlL ~ 

+ II 5~- IIL~ II A0((1 -It(0)I~) 2 - 1)IIL~ 

~< ~ IIArlIL= + 

c (1+")2 IlarllHl,1. 

The estimates for II" now imply 

c ,  ' IIArllm,, q c(1+r/)2 IIArllm,, �9 ' IIII'[~< (1+t)1/2 (1_Q)2 (1_Q)2 (1+t)1/4 

~< 1/4 IIArlIHI,1, 

(5.47) 

and similarly 

I i i i " l  ~< 
cllr#llH~,'<-~,zo) , ( l+w) 2 

(1+t)1/2 (1_&)2 [[Ar]]HI,1 + C~--~-~ I]Ar][HI,1 IIr # ]]Hl,l(_~,zo) 

[1 2] 
~< 1/4 4 llArllul'~" (5.48) 
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Thus 

[III'l~ [11/4 24] IIAr]IH~,~, 
and combining (5.44) and (5.49), 

(5.49) 

III'+III'}~< [11/4 24] HAr[IH~,~. (5.50) 

As the (2, 1)-entry of W3 is the negative conjugate of the (1, 2)-entry, it follows that 
AW= W4 + W,~ where 

C 
IIW4ttL2(d~) < ~ II~r}fm,1 

and for any p > 2, 

1 
[Ws[ ~< 1/2p 

<~ 1/2p 

1 1 [lJ  

and 

Finally, 
�9 72 

~I l~ Ir(z)12) ~< i -0 dz 

IA f_~ilog(1-1r(z)12) dzl = lfol [/_~ I ~y log(I-lrl +y(r2-rl)l 2) dz] dy I 
c~l 

Hence by Theorem 4.16, for any p>2, 

[0 
1/2p+1/4 KpI[ArIIn ~~ ~2 1-p 

I 1 q 
+ [ 1 / 2  5] "1~~ ''Ar''L2 

<.[1/2p2+1/4 38]KpllArllHl'l" 

We conclude that 12 =Ira +I22 where 

C 1112111L~(d~) ~< ~ l l A r J l m , ~  
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and for any p>2, 

[ 1 
llI:21[L~(dx) <" 1/2p 

<<" 1/2p 

Together with the estimate on I1, this proves the lemma. [] 

Remark. Using the fact that zlr(z)[2E L p for all p~> 1, more careful estimates show 
that W5 in fact falls off like (1+t)-0/2-c)  for any e>0 as t--+oc, but this extra decay is 

clearly only of academic interest as the leading order of decay in I is governed by other 
terms. 

L E M M A  5 . 5 1 .  For 2<p<oc ,  

[ , 
IIAGIIL~ <~ I/2+1/2p-1/4 

1 
[[AGllL~ ~< [I/2+1/2p-3/4 

i+2 ] 
51+5/2J KP[[ArlIHI'~' 

l+1 ] 
51_2j K~llArL[-~,I; 

(5.52) 

/+1 
[IAGQIIL2 <~ L l/2+ l/2p+ l/4 

l + l  
IIAGQIIL~ <<. L1/2+ l/2p_1/4 

, + 3 ]  
51+15/2 KP[[/~r[[HI'I' 

1+2 ] 
51+3J Kp ll ArlIH~'I ; 

1 
TTAO~GtIL2 <~ [I/2+1/2p-1/2 l+4  ] 

[ ' ,+~] 
IIAOxGllL~ <" 1/2+1/2p--1 51--1]KPlI~llHI'~" 

Proof. For p>2, by Theorem 4.16 and Lemma 5.24, 

IIAGIIL2 ~ cllqll~L~ ]lqllL2 I[/Xqll/~ 

<<[ I-1 l -1 1 10/2][1/2p0+1/4 111[0 
[ I ,+2 ] 

<<" Ll/2+l/2p-1/4 51+5/2] KpllArll~l,1 

(5.53) 

(5.54) 
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and 

l--2 2 fI/XallL, ~< ]]qllL~ Hq]]L~ ]]Aq[[L~ 
I-2 ]2 

~< [ (/-2)/2 I-2 0 5(l-2)] [~ 1/2 [1/2p0+1/4 
1 l§ ] KplIArlIHI,~. <~ I/2+1/2p-3/4 5/-21 

The proof for (5.53) is similar, replacing 1 by l+l. 
For (5.54), let A0xQ=I+II as in Lemma 5.37 and let p>2. Then 

flAO~GIIL ~ <~ Ilqll~ [[O~qllL~ IIAqlIL ~ -4-[[qll~ Ilql[L= [[IrlL~ + frqll~ IIIIIIL= 

[ / 1  /_11[; oj[ o 
~< (l-1)/2 5(l-1) 1/2 1/2p+1/4 

+[ I-1 1-1 

l l 0 

l 
<~ [1/2+1/2p-1/2 l+4 ] 5/+7/2J KPlIArlrH~'~ 

7] K~ II~rlIHa,~ 

:]Kp[[ArHH~,I 

and 

1- -2  2 II/XO~GrrL 1 <~ [[qllL~ IIq]]L IIq'ffL~ [[AqIIL~ § Ilqll~ Ilqll~= II~IIL~ + Ilqll~ HqlIL 2 [[IIIIL~ 

~< [ ~2 ~2 ][1 o]2[ o 3 ] ~ ~ 1 1  
(/-2)/2 5(l-2) 0 1/2 1/2p+1/4 7 
+[ l--2 I--2 1 

(/--2)/2 5(/--2))[10 10/212[1/2p 48]Kp['Ar"Hl'l 
+[ l-1 l-1 

(/-1)/2 5(/-1)][~ 1~2][2 ~] HArI'HI'I 
1 

<~ [I/2+1/2p-1 
t+3 ] Kp ffA,.ll.~,~. 

51-~j  
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6. A priori  e s t i m a t e s  

Set 

F = P12 ] e -~~  dy, (6.1) 

where/~ denotes the projection of (2 x 2)-matrices onto their (i, 2)-entries. More pre- 

cisely, 

F=F(z , t ; r )  (6.2) 

/5 =P12 e-~(~z-~z2)'~Z~(Y,z;e-~%)a(~-~(e-~O%))(y).~-(Y,z;e-~%)eY. 

Note that  in terms of F,  (2.46) takes the form 

/o r(t)(z) =- to(z) + c F(z, s, r(s)) ds. (6.3) 

Also note that  the term e -i~ in (6.1) and (6.2) can be replaced by e -i~ The goal of 

this section is to obtain the estimates in the following theorem, which is a combination 

of Lemmas 6.27 and 6.51 below. 

LEMMA 6.4. For n~3, 

[ l+1 l + 5 ]  3 
IIF[[H~'~ <" L l /2 -1 /2n -3 /4  51 J K2(n-1)" (6.5) 

For n>~3, 2<p~<4 and p">4, 

] max(K4(n_l), 1424,,)IIAr]IH~.~. (6.6) 
l l+6  

IIAFIIHI,I~< 1 / 2 - 1 / 2 p - 1 / 2 n - 1  5l+8 /3J  

Note that  for p close to 2, and n sufficiently large, 

IIFIIHI,1, II/XFIIm,1 ~ - -  

for some a > l ,  as long as l > }  (cf. (3.1)). 

const 

(1+t)~ 
(6.7) 

Remark 6.8. As noted in w uniqueness for solutions of (2.46) follows from the 

Lipschitz estimate (6.6). Much of the analysis of this paper is concerned with ensuring 

that  this estimate has explicit time decay in order to control the long-time behavior of 

solutions of (2.46). However, to prove uniqueness, this time decay is clearly not necessary, 

and it is possible to give a rather short proof of a version of (6.6) without explicit time 

decay that  is sufficient for the purposes. We leave the details to the interested reader. 
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We decompose F into four terms: 

F= P12 / e -~~  P12 / e - i~  

dy+P12 e-i~ -1 +P12fe-i~ j _ - I ) G ( m _ - I ) d y  

f (1) +F  (2) +F(a) +F(4). 

Notation. In the following, for functions h=h(x, z), we use the norm 

l[hllL~(d~)| -- II llhtIL~(dz)llL~(d~), 1 ~ p, q ~ co. 

(6.9) 

Similarly, 
/+2 1-1 J 

[[F(2)l[/~(az) ~< (Z-l)/2 5l-3 " 
Finally, 

]IF (4) IIL2(dz) ~ c[[ ]q[Z qllL~(dx) lira- -- III2L4(dz)| 

[ 1--1 1--1 0 2 
(/-1)/2 5(/-1)][10 1/2] K2Az<~[ l+3 <~ [ q-1)/2 

where the L4-estimate on rn_-I  is given by Lemma 5.24. Thus 

11 IlF[rL2(dz) << 
[I/2 51+1/2 L~l-lz2 5l-a [(/-1)/2 

[ /+1 l+l  ] K 2  
~< (l-1)/2 5l-3/2J 

where we have again used the fact that (l-Q) -1 <~eK2<~eK4. 

l-l] 
5l-4 K~ 

[] 

LEMMA 6.10. 
[ l+1 Z+l 1 

IIFIIL2 <~ [(Z--1)/2 5/--3/2 K4~" 

Proof. By the L2-unitarity of the Fourier transform, Theorem 4.16 and Lemma 5.24, 

"F(')'[L2(dz)=e"'q]'q"L~(dx)~Cl[q[[IL~ [I;2 ~l] I t  1~2] ~ [/+1 l/2 5/:1/2] " 

By Minkowski's inequality, Theorem 4.16, Lemmas 5.24 and 5.1, 

II F(3) [[L2(dz) <~ c[[ Iq[lq[[nl(d~)[[m_--I[[L~(dz)| 

l -1  l -1  ]~<[ /+2 /-1 
~<[(/-1)/2 5(Z-1)][10 10/212110 0 1 (/-1)/2 5/-3] 
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Thus 

and 

[[II[[L~(dz) ~ CI[GQ[[LI(dx) [[m_-- I[[L2(dz)| 

~< [/;2 ~l] [i0 i0/2]~[i0 01]~< [/+3 1/2 5l/+2 ] " 

/+2 /+1 1 
IIOF(3)llL2(~z)~< [(z-1)/2 5l+2J 

Using (d/dy)m-_ 1 =iz[(L m -1] -m71Q, we obtain similarly 

[ /+2 /+1 1 
Ilog(2)llL2(d~)<~ ( / -1) /2 5l+2J " 

I+1 l+a] K4  
]lOFllz:(dz) <~ (/--1)/2 51 

Proof. Again by the unitarity of the Fourier transform, 

[[OF(1)IIL:(dz) ~ CiI([qIZ q)~IIi:(d~) <~ cIIqI{ZL~ [[qxHL2 
1 0 [ l + l  

Integration by parts, and using (2.8), we obtain 

= - iP12 e-i~ zF(~) - iP12/e- i~  / dy 

=--igl2 /e-i~ f e-i~ z(?n_-Y)l~-OIrt_)dy (6.12) 

= -iP12.I e-iOG~(m--I)dy-iPlu f e-iOGQ(m- - I )  - I+II, 

as G[a,z(m_-I)] and GQ are diagonal. Again by Theorem 4.16, Lemma 5.24 and 
Lemma 5.1, 

III[IL2(dz) <~ IIGyIILl(dx)[Im---I[[L2(dz)| 

= c[ I [q[l-1 i[L~ Hq[[L2 [[qxllL2 lira_ _i[[L2(dz)| 

(/--1)/2 5(l--1) 0 1/2 ~ [ , I - - I H 2  5/--3 
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By Lemmas 5.27 and 5.6, 

[[(~ F(4) IIL2(dz) ~ CIIGIIL~ [[ [~[1/2(rrt_ -1 --I)[[L4(dz)| 1011/2(m---I)[[L4(dz)| 

[ l+1 l-1 2 [ /+3 /+1 
~[(/-1)/2 5 / -4 ] ( [ ;  :]K4)~L(1-1)/2 5/-2] K42" 

Hence 

[[~FIIL:(~z)< 1/2 51+1/2 +L(1-1)/2 51+2 +[(t-1)/2 51-2 /~ 

[ /+1 1+31K24 ' 
<~ ( l -1) /2  5l J 

again as ( 1 - ~ 0 ) - l ~ e K 4  . [] 

LEMMA 6 .13 .  

/+1 /+5] 3 
IlOzFIIL:(dz) <~ 1/2--1/2n--3/4 51 K2(n-1)" 

Proof. Set A=0z-/~,  where L=ixada-2tO: (see (5.13)). 
property of ad a, and integration once by parts, we obtain 

OzF = P120z / e-Wad~ dx 

= P12 / e -wad ~ (Am-l )  Gin_ dx 

~- P12 f e-iOader Trt_-' G(A/D~_ )dx- 1012 f e-iOada m--  1 ( L G )  m -  dx 

F (5) + F  (6) +F(7). 

Recall from w that m_ =/~513v0 # where 

and 

v # ( z ) = ( ~  I r )  for z>zo 

1 0 / for z<zo. 
v#(z)=  ~/(1-[rl  2) 1 

Using the derivation 

(6.14) 
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Substituting in F (7) we obtain 

/?(7). = _ P12 . / e - i ~  ad a [(V~) -15_- a3/~-1 (LG)]~5_ aa vff] dx 

f --iOada #--15--cr3 - a3 # - P ~ j e  [(~o) (LG)5 ~o ] 

-P12 f e -~~ ~d~ [(V0#)-15-a~ (/5-1 _i)(LG)5~V#o ] dx 
J (6.15) 

-P12  f e -iO add[(Y0~)-15_-a3 (LG)(f~- I)5~gv# o ] dx 

-- P12 f e-i~ )-15'~3(f.t-l-- I)(LC)(f.L-- I)5~ffv# ] dx 

- F  (71) _ F(72) _ F(73) _ F(74). 

The factors 5_ and v0 # depend on x through z0, and hence they cannot simply be removed 

from the above integrals. As in the proof of Lemma 5.37, this complicates the estimation 

of F (71) in particular. 

After some elementary algebra we find 

F(71)= f (Lc)12 - ~ (ta)2lr   ~ (6.16) 
Jx<2tz 

Consider functions H(z) =- f h(x) e-~ZXS_ -2 (z; Zo) dx, where h e L 1 a L 2 (R). Clearly 

f h(x)~ -~x d~ <. ~llhllL~(~x). (6.17) 
L2(dz) 

On the other hand, 

/ e  iyz ( /h(x)e-~(s  z 0 ) - 1 ) d x ) d z =  f h(x)(f zo)-l)dz) dx. 

By the analyticity properties of 5 -2 (z; z0), f e i~  (6_-2 (z, Zo) - 1) dz = 0 for s < 0. For s > 0, 

use the fact that  5• solve the normalized RHP (2.54) to write 

f ei~(552-1) dz= f ei~z(5:2(1-X~<zoM2)2-1)dz, 

where X~<~o denote the characteristic function of the set {z<z0}. Again by the analyt- 

icity of 5-2(z, z0), we have f e i ~ Z ( 5 ; 2 - 1 ) d z = O  for s>O, and so 
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Introduce the following auxiliary function (cf. (5.39)) 

fz G(s,z, zo)= ei'id-2(r s>O,  z<zo, (6.18) 
J +ic~c 

with integration along a contour from +iec  to z in the upper half-plane. Clearly 

(i) OzG(s, z, Zo)=-ei~z6-2(z, Zo), Z<Zo, and by (2.58), (ii) [G(s, z, z0)] ~< e/s(1-g), s>0,  

z<zo. Here for s>0,  

f ei~z(622-1) <<. IG(s, Zo, dz Zo)(-21r(zo)12-t-lr(zo)[4)l 

f ~ G(~, z,zo)(-20~lrlZ +Ozl~p) dz + 

erl 2 < - -  
s ( 1 - g ) '  

On the other hand, for all sER,  

fff  e"=~;2(--21rl2+lrl4 ) d~ c2~-~ <<. 
t -g '  

and we conclude that 

- 1) (6.19) 
C/] 2 1 

eiS~(622 dz ~< 1 - ~  l + l s  I 

for all s C R. Thus 

c~] 2 
_ l+ly_z t dx, 

from which it follows that 

C~(d~) c~12 [h(x)[ dx L 2 / h(x)e-~~176 ~< 1--~-0 f I+10--x  I 

cq2 
~< ~ IlhlbL~ 

Lq 

1/q+1/p=3/2, l<p ,  q<2, by Young's inequality. Collecting terms, we find 

e l /2  
IIHflL2(d~) ~cIIhllL2+~_ol[hllLP, 1<p<2. (6.20) 

Now consider functions J(z)=r(z)2 f~<2zt h(x)eiZ~62(z, zo)dz, where hEL1NL2(R) 
as before. We have 

/ e-iYZJ (z) dz = / h(x) ( ~2ei~O:-Y)r( z)2 5(z, zo) dz) dx. 
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Here we need the auxiliary function for s>0,  

f 
z 

G(s, z, Zo) = ei~r Zo) d(, z > zo, (6.21) 
J + i ~  

with integration again along a contour from +Joe to z in the upper half-plane. Now 

(i) O~G(s,z, zo)=ei~z~2(z, zo), z>zo, and (ii) La(~,~,z0)l~<c/~, ~>0, z>zo. For s<0,  

define 

a(8, z, ~0) = P<5~(~, z0) a~, z > ~0, (6.22) 
icx) 

with integration now along a contour from - ioo  to z in the lower half-plane. Again 

(i) O~G(s, z, zo)=ei~z(~2(z, zo), Z>Zo, and (ii) Ia(~, z, Zo)<<.c/Isl(1-O), s<0,  Z>Zo. Thus 

for all s E R \ 0 ,  

i oo dz pz~(~)2~2(~, ~o) 
�9 z Z o  

L~G(s,z,  zo)rO~r dz cr#~2 ~< Ir(zo)l 2 IG(~, ~, zo)l + 2 ~< (1 -  ~)I~1 

But also for all s E R, 
~ cj__~_ 2 

o PZ%(z)2~2(z'z~ <<" 1-0 '  

and so 

f ~o dz PZ~r(z)252(z, zo) 
d Z 0 

cr/2 1 

x-o  l+lsl 
for all sER, and we obtain as before 

c~ 2 
[[J[[L2 = l--Y"-- [[h[[Lp for any l < p < 2 .  (6.23) 

Finally, applying these estimates to F (71), we conclude that for any 1<p<2 ,  

c~72 liLGIIL, +elILGiiL2 IIF<71) IIL2<dz> ~ 

C~2 [ ~+1 t+a--2/p ] 
<~-Q I /2 -1 /p -1 /2n  51+7/2-9/p K2(n-1) 

[ /+1  l + 2 ]  
+ [(1-1)/2-1/2n 51-1J  /~2(n--1) 

[ l+l  +5-2/p ] 
<" [1/2-1/p-1/2n max(51+9/2-9/p, 5/-1) J K2(~-2). 

(6.24) 

The estimates for the remaining terms in F (6) are straightforward. Using once again 

the fact that the entries of /2 - 1 - I  are simply a rearrangement of the entries of /2 - I ,  
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Lemma 5.29 and (4.17), we obtain 

II F(72)IlL= + IIF(73)IlL: + [I F<74) IlL= 
C ~ - 2 

<<" ~ - e  (IILGIILI(dx)II~-- lllL=(d~)| + IILGHLI(dx)II~--IIIL4(dz)| 

 +11 
[(1-2)/2-1/2n 51-11/2jK2(n-l)[li4 ~] 

[ [ 0 ] ~ )  1+1 l + 1 ]  1 u~ 
+ (I-2)/2-1/2n 51-11/2J K2(n-1) 1/8 2 

[ l+2 1 + 2 ]  2 
<~ [1/2-1/2n-3/4 5l-1/2_ K2("-l)K4" 

Combining this estimate with (6.24) and choosing 2>p> 4, we obtain for n~>3, 

l+1 
IIF (7) IIL2(dz) ~ [I/2--3/4--1/2n 

/+1 
<~ 1/2--3/4--1/2n 

By Lemmas 5.27, 5.17 and 5.14, 

l+5-2/P 1 K 2 
5l -1 /2  J K2(~-1) 4 

/+4 ] 3 
5 l -1 /2J  K2(~-1)" 

IIF (6) jjL2(dz) ~ cllGllv(dx) lira- -allL~(dz)oL~(dx) H Am- [[L2(dz)| 

~< 

(6.25) 

(6.26) 

/1][  0 1+2J 1 [ 2] 
( / -1) /2  5 l -4  -1/2n 5In J K2(n-1) -1/2n 3 K2(n-1) 

/+2  1+2+2/n] 2 
<~ (l-1)/2-1/n 5/+1 J K 2 ( n - 1 )  

for n~>3. 
same estimate as F (6). 

Combining this estimate with (6.26), we obtain finally for n~>3, 

[[OzF[[L2(dz) ~ ][F(5) [[L2(dz) + HF(6) ]]L:(dz) + l[F(7) [[L2(dz) 

l+2 1+2+2/n 1 2 
<~ (1-1)/2-1/n 5l+1 JK2(n-1) 

[ /+1 /+4 ] 2 
+ 1/2-1/2n-3/4 5l -1 /2J  K2(n-1)K4 

[ l + l  /+5] 3 
<~ [I/2-1/2n-3/4 51 ] K2(n-1)" 

This completes the proof of Lemma 6.13. 

As A=Oz-L is an entrywise operation (cf. Lemma 5.17), F (5) satisfies the 

[] 
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From Lemmas 6.10, 6.11 and 6.13, we obtain for n~>3, 

IIFIIHI'I~ L(/-1)/2 5 / -3 /2  K2+ ( / -1) /2  5 / J  

[ l+1 1+51 3 
+ I/2-1/2n-3/4 51 K2(n-1) 

[ /+1 /+5]  3 
< 1/2-1/2n-3/4 51 J K2(~-1)" 

We have proved the following basic result. 

LEMMA 6.27. For n~i3, 

IIFLI/~I,1 ~< I/2-1/2n-3/4 51 J K2(~-1)" 

We now begin the derivation of a priori estimates for AF. 

LEMMA 6.28. For 2<p~<4, 

l 
NAFIIL2(dz) ~ [I/2+1/2p--3/4 /+3 ] 5l+1/2J K~ NArNHI,I. 

Proof. In the notation of (6.2), by Lemma 5.51, for p>2, 

1 K, IIArlls-sl.,. IIAF(1)IIL~(dz) =cllAmllL:(d~) ~< [l/2+1/2p-1/4 5/+5/2j/+2 ] 

By Lemmas 5.51, 5.27 and 5.1, for p>2, 

IIAF (3) lln~(dz) <~ clIAGIIL~(d~) Ilm---Slln~(dz)| + cllmllL'(d:) IlAm-IIn2(dz)| 
l 

+ [  /+1 I -1  

<<" 1/2+1/2p-3/4 5/ - l JKPl IArN~""  

The estimate for AF (2) is the same. 

249 
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For 2<p~<4, by Lemmas 5.1, 5.27 and 5.51, 

H AF(4) IIL~(dz) ~< cllAm- -1 [[L~(d~)| 
+ lira- -a-IHr~(d~)oL~(dx) [[AGllt~*(dx)[[m_--II]r~(dz)| 

--1 + lira_ --IIli'(~)|174 

[; 10] K~ [[/~rl]Hl.1 [ /+1 1-1 ( / -1) /2  5 / - 4 ] [ ;  00]Ka 

0 l+1 

0 1 l - 1  

[ l+2 t+1 ] K~IIArN.I,1. 
<<" [l/2+1/2p-3/4 5 l -2 J  

;]K4 

Thus using (1 - 0)- 1 ~< cK4, we get 

([ l . 2  ] [ . 1  
II~FIIL2<dz)~ 1/2+1/2p-1/4 5/+1/2J + [ 1 / 2 + 1 / 2 p - 3 / 4  

/+1 
+[1/2+1/2p-3/4 ~122]) K3''ArllHI'I 

l 
<<" [I/2+1/2p-3/4 /+3 ] 5/+1/23 K3IIArlIH .... 

/+1 ] 
5 / - 3 j  

LEMMA 6.29. For p>2, 

l 
[[A<>F(1)IIL=(dz) <~ [l/2+1/2p-1/2 l+4 ] KptrArllH11" 

51+7/2] 

Proof. This lemma follows directly from Lemma 5.51 and the fact that 

IIA<>F (1) IIL~(dz) = ClIAOxGIIL2(dx) �9 

LEMMA 6.30. For 2 < p < ~ ,  

l + l  
[[A<)F(2)]IL~(a~)' HA<)F(3)IIL=(dz) <~ l/2+1/2p--1 I+3 ] KplI~rlIHI,1. 

5/+4 

[] 

[] 
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Proof. We will only prove the lemma for F (a). Again the estimate for F (2) is similar. 
Using the expression (6.12), we have 

~P e -i~ A G -" 12 f ( (  Q))(m--I)dy-iPl~/e-i~ 

Thus by Lemmas 5.51, 5.1 and 5.27, for any p>2, 

+ NOGIIL'(dx)IIAm-IIn~(a~)| 

+ IIAGQI]L~(d:~) lira- --IlIL~(gz)| 
+ IlaQll> (d~)IlZxm-IIL~(~)| 

4 l /2+l/2p-I 5/,-1 KVIIArlIH~a 

l+1 l--1 
+ [ ( l -1 ) /2  51-41[00 ;] K~I'Ar']*tl'~ 

[ /+1 l + 2 ]  
+[1/2+1/2p-1/4 5l+3J[~  O1] Kv"Ar}}H~a 

+ [ / + 2  / 
.l/2 51+1][~ ~,]K~,,Ar,,H1.1 

[ ,+1 ,+a] 
<" [ , / 2+~ /2p -~  5,+4 ~'~lla~ll,~,,. 

LEMMA 6.31. For 2<p<~4, 

/+2 
IIAO F(4) II L~(gz) <~ [ 1/2+ 1/2p- 3/4 , + a ] K2 II~rll,,., . 51 J 

Proof. 

AF (4) = -iP12 / e-{Y~ ( m 21 _ i) GAIn_ dy 

�9 p fe-iyz -~ ~2j (zx~:l)a(-~--x) 

- ~ 5 2  f e -r~z (m7 ~- I)/X C;(.~_ - I) dy 

I+II+III.  

[] 
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Using Lemmas 5.27 and 5.6, we have 

IIA+IIIL:(d:) ~< IlallLl(d:)II 1(}11/2(m-l-I)llL~(n:)| II 1011~2Am- IIL4(d~)| 

Similarly, 

/+1 I-1 1 
~<[(/-1)/2 5 l -4 ] [~  1JK4[~ 2 1] K24 ]IArIIH~'~ 

[ 1+2 /+2 ] K431IArNH,,1" 
~< [(/-1)/2 5l-2 

l+2] 
5/ -2  K311ArlIHI'I" 

l+2 
UA<>IIllL2(dz) <~ [(/--1)/2 

Using Lemma 5.51, we obtain for 2<p~<4, 

IIAOIIIIIL:(dz) ~< IIAGIIL~(~)II [<>ll/2(m-:l--I)llL4(dz)| 
• II 1011/2(rn--I)llL~(d:)| 

l 
<~ [l/2+1/2p-3/4 /+1 51_ 2 ] KpIIArIIH',I [ ~ 

= [ /+2 /§ KpK21IArlIHI,1" 
I/2+1/2p-3/4 51 J 

I+5 ] K2 flArll.1.1. 
5/+2J 

Finally, 

( [  /§ /+2]  F l+2 
[[A~F(4)ll/2(dz) 4 __(l--1)/2 5/--2J + [1/2§ 

I§ I~-3] K31IAr[[.I,1" 
I/2+1/2p-3/4 51 J 

LEMMA 6.32. For 2<p~4, 
[ l 

IIAOFIIL~(~z) ~< ~/2+1/2p-1 

Proof. 

HA~FIIL~(d~) ~< 1/2§ 

l+1 
§ L1/2§ 

~< 

l+3 ] \  
/ /K3  HAr"H 1'1 

5l J /  

l+4 ] KplIArlIHI,1 
5l+ 7/2 J 

/+3 ] Kp]]Ar]]HI,I 
5l+4 

[ i+2 1+3] K4~ff/,rl,.~ 1 
+ [ t / 2+1 /2p -3 /4  51 J 

t / 2 + 1 / 2 , - 1  5l+2J K4~llArff'~'l" 

[] 

[] 
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We now use (6.14) to estimate I[OzAFl[L2(dz), O~AF=AF(5)+AF(6)+AF (7). In 

turn 

A F  (7) = - A F  (71) - A F  (72) - A F  (73) - A F  (74) , (6.33) 

and from (6.16) 

~F  (~') =/(A(LC)12)e-~~ -~ dx + f (La)~e-~%a -~ ax 

-- fx<2tz(A(ta)21)r2ei~ 2 dx-~x<2tz(tG)21(AT"2(z))ei~ dx 

- f~<2~z (ta):~ ~2e~~ (zx~-_ ~) dx 

= A F  (711) + AF(712) + A F  (713) + A F  (714) +/kF(715). 

By (6.20), (6.22) and Lemma 5.36, for any l < p ' < 2 ,  p>2,  n>~3, 

c~/2 
[[AF (711) IlL2(dz)4-]IAF (713) IIL=<d~) = ~ IIALGIILp' + cII/XLGII5~ 

c~2 [ 1 1+5-2/p' ] 2 
<~ ~ l/2+1/2p-1/2n-1/4-1/p' 51+11/2--9/p'Jg2(n-1) llZXrllHl'~ 

[ 1 l+4]K2(~_z)]]Ar]]H~,X 
+ l/2+l/2p-1/2n-3/4 5l+1 

<~ 1/2+l/2p-1/2n-1/4-1/p' 

(6.34) 

1+7-2/p' ] 2 
max(51+13/2-9/p', 5l+1) J K2(n-1) IIArI[HI'I" 

Also from the proof of (6.23), for any l < p < 2 ,  n>~3, 

c~[l~rliHl'l IILClILp [[Af(714)llL~(ez) ~< 1 - 0  

<<" ~IIArlIH~'I [i l+1 1+3-2/p ] 
1-0 /2-1/p-1/2n 51+7/2-9/p] K2(n-1) 

[ l+2 1+3-2/p ] 
= l/2-1/p--1/2n 5l+9/2--9/pj K2(n-1)ilArIIHI,1, 

(6.35) 

where we have again used Lemma 5.29. 

Now let AH(z)=f h(x)e-iZXAS-2(z; zo) dx, where hELINL2(R), as before, and we 
have 

/ei~ZAH(z)dz= f h(x)(/ei(Y-~)zA(f22(z, zo)dz) dx. 
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By analyticity, fei~zA522dz=O for s<0. For s>0, fei~zAS+2dz=O, and so 

/ fo /zo ei~zA(~-2dz = eiSZA~;2(-21rl2+lrl 4) dz+ eiS~(~22(-2AM2+A[r14 ) dz. 

As in the proof of (6.19), we conclude that for all s~>0, 

;~ + AIrl4) dz <<. c~llArllH,,~ 1 
1-~, 1+1~1 

(6.36) 

On the other hand, from (6.18), we have 

AG(s,z, zo)= ei~AS-l(( ,zo)d(,  s>0 ,  z<zo. (6.37) 

Hence 

(i) OzAG(s, z, Zo)=ei~ZAS-2(z, Zo), z<z0; 

(ii) For any l < a , ~ < o c ,  1 /c~+l /~=l ,  s>0, z<zo, 

lAG(s, z, z0)l ~ II~-~OllL~(0 ~/flAS-2(z+i<>, z0)llL~<0,~) 
C 2 ~< ~ lIAr- ( z + i O ,  z0)llL~(O,~). 

But from (5.45) (or alternatively, from (the proof of) Lemma 4.32), for l<~<oc ,  

C 
IIAS-2(z+i<>, z0)lln~(0,~)~ ~ IIArlIL~ < ( l - g )  2 (6.38) 

Hence 
C 

lAG(s, z, Zo)l <~ sl/~(l_o)2 IIArllHi.~. 

Previous calculations now show that for all s~>0, 

(6.39) 

~ d z  ~ - -  
( l -Q)  2 (1+1sl)1/~' 

which implies in turn for all s E R  and any l < a < o c ,  

f e~SZAS-2 dz <~ - (1-0)  2 (1+1sl)1/~" (6.40) 

Hence for 1/q+1/p=3/2, 1<p<2, l < a < q < 2 ,  

IIAHIIL2(dz) <~ - -  

< ~ - -  

crt(l+r]) IlhllLp 1 Lq]IAr]IHI,1 
( 1 - - 0 )  2 (1+1<>1) ~ 

cv(l+~) 
(1_0)2 Ilhl[Lp IIArlIHI,,. 

(6.41) 
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Applying this estimate to (LG)12, and choosing a and q appropriately, we obtain for any 
l<p<2,  n~>3, 

~(1+~) t l + l  I + 3 - 2 / p  ] 
[[AF(712)IIL~(a~) ~< (l- t))  ~ L I /2 -1 /p -1 /2n  51+7/2-9/pj K2(n-1)IIArIIHI'I 

(6.42) 
[ /+2 1+4-3/p ] 

<~ 1/2-1/p-1/2n 5l+ll/2-9/qjK2(n-X) llArllH~'~" 

Similarly, replacing 52 in J(z) by A52, and using AG as defined in (6.37) in place of G, 
we find for any 1<p<2, n~>3, 

cv~ 
IIAF(715) llL:(dz)<~ (1--~)2 IILGllL~ ll~IIH~,~ 

(6.43) 
[ /+3 I+3-2/p ] 

<" l/p-1/p-1/2n 51+7/2-9/pj K2(n-1)[[Ar[[H~,~. 

Adding up the contributions: we obtain finally for any 1 <p'<2, p>2: n>~3, 

]IAF(7~)]]L~ <~ l/2+l/2p-1/2n-1/4-1/p' max(51+13/2-9/p',51+1) K2(~-~) 

/+2 
+ I/p- 1/p- 1/2n 

/+2 
+ I/2-1/p-  1/2n 

/+3 
+ 1/2-1/p-1/2n 

[ <~ l/2+l/2p-1/2n-1/4-1/p' 

2 II~rlLHI,1, x K2(n_l) 

where again we have used (1-  t))-14 cK2(n_ 1). 
Now consider AF (73). As 

V : / P ( Z ) e 2 : ( 1  T) :  el(v#(z))-l:(1,r) 

and 

1+3-2/p ] 
51+9/2-9/p] K2(n-1) 

1+4-2/p ] 
51+11/2-9/pj K2(n-1) (6.44) 

1+3-2 / ;  ] K~(n_~))II~,~ll.,,~ 
51+7/2-9/pj 

m~(Z + 7-  2/;', l + 6 -  2/;) ] 
max(5/+ 13/2-9/p' ,  51+9/2-9/p: 5l+ 1) J 

1:/1,o  

for z > zo 

for z < zo: 
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we see that the factor f/(1-1rl 2) in v#(z) never appears in AF (7). 
n>~3, using (6.38) and its analog for A~+2 we obtain 

C 11Af(73) llL2(dz) <~ ~--0 IIaLallL~(d~)Ilf~-- ZllL=(dz)| 
C 

+ 1---~ IILGIIL~(dx)IlzX~IIL~(dz)| 
C 

+1--~ IILarlLl(ax)II~--IIIL=(dz)| (6.45) 

+ cllLallL~(dx)I1(I A~ ~ I+ I/X~:21)(f~--I)lfL~(dz)| 
1 l 

<<" ~-o [l/2+1/2p-1/2n-5/4 /+3 1 51_7/2]K~(~-I)IIArlIHI'111/4 03] 

1 [ /+1 
+1~-0 (I-2)/2-1/2n 

1 [ l+1 
+~-0 (I-2)/2-1/2n 

[ l+l l+1 ] ,,/Xrllm,~ [ 1 
+ (I-2)/2-1/2n 51-11/2jK2('~-1) (1_0)2 1/2p 

[ /+1 /+3 ] 3 
<<" [l/2+l/2p-1/2n-1 5l-1/2 K2(~-~)II/X~IIH~'~ 

The same estimate is clearly true for [[AF (72) [[L=(dz). 
Again for p">4, n>~3, 2<p~<4, 

C 
[[AN (74) [[L2(dz)<~ ~_Q II/xLalIL~(d~)11[~--III2L~(dz)| 

+ i @  o IlLallLl(d~)II~--IllL~(dz)|174 
C - 2 + ~ IILGIIL,(d~)I1.--I IIL'(d~)| lira., (6.46) 

+cllLGllLl(a~)llf~-Illr~(az)| 11(1A621 + [A6_-2l)(#--I)lln~(dz)| 

1 [  
<~ ~--0 1/2+l/2p--1/2n--5/4 5l--7/2J K2(~-1) 1/8 K~ 

1 [ l+l l+1 ] [ 1  
+~-~ [(l--2)/2-1/2n 5/-11/2 K2(n-t) 1/8 

l r  .1 /+1] [1 
+~--0 [(I--2)/2-1/2n 51-11/2 K2("-1) 1/8 

Thus for 2<p~<4, 

02]K411/ p. H1,1 

1+1 1 
51-11/2J K2(~-1) [ 0 1/2p 24 1K211ArlIH~'I 

/+1 1 [ 1  01 [[/kr,,Hl,i 
5/-11/2J K2(,,_1) 1/4 3 
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[ [ I  r 11[ 1 1 /+1 / + 1  1 1 0 K 4  
+~-~ (I-2)/2-1/2n 51-11/2J K2(n-') 1/8 2 (1-~o) 2 1/2p" 

[ /+2 l + 3  ] max(i4f4(n_l),[4f4,)llz2xrHHl,1" 
<<" [1/2+l/2p-1/2n-1 5l+3/2] 

Assembling the above estimates, we have shown that for 2<p~<4, p '>4,  n~>3, 
l<p~<2, 

l 
[]AF(7)IIL~ ~< l/2+l/2p-1/2n-1/4-1/p' 

max(l+7-2/p', t+6-2/p) ] 
max(5/+ 13/2 - 9/p', 51 + 9/2- 9/p, 51 + 1) 

K2(n-1) 

/+1 /+3 ] 3 
+ [1/2+1/2p-1/2n-1 5/-1/2]  K2(n-1)[IArHHI'~ (6.47) 

[ g+2 t+3 ] max(Kt(~_l),K4 )llArllg~, ~ 
+ Ll/2+l/2p-1/2n-1 5l+3/2J 

( 1 1 1 1 l 1 1 1) 5l+ 3 
min ~+2p 2n 4 i f ' 2  -+ 2p 2n 

x 4 4 max(K2(n_l) , K~,,)II A~-llm,~. 

In other words, we have proved the following lemma. 

LEMMA 6.48. For 2<p<<.4, p'>4, n>.3 and 1<ff<2, 

[[AF(7) llL~(dx) 

~< 
1 

min(~+ 2p 

l 

1 1 
2n 4 

1 1 1 1 1"~ 
p"2-r 2p 2n ) 

m a x ( l + 7 -  ~ ,  l + 6 -  ~)  

3 5l+~ 

X ' 4 4 max(K2(n_l) , K;,,)IIArlIH~,~. 

LEMMA 6.49. For n>~3, 

/ + 1  
]]AF(5)I]L2(dz)' IIAF(6)iLL2(dz)<~ 1/2-1/2n-3/4 

I+2/n+4] 3 
5z+8/3 K2(n_l) [[ArL[~. 
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Proof. For n~>3 and 2<p~<4, we compute using Lemmas 5.17, 5.23, 5.27 and 5.51, 

f f rl~F(6) llL~(dz) = e-W ad ~m-IGAAm P12je-Wad~(Am:l)GAm_+P12j _ _ 

+P12 f e-iOad~m-t(AG)A m- 
J - I I L 2 ( d z )  

~< [[Am- -1 [[L~(dz)QL~(dx)IIGl[L~(dx)IIAm-IIL~(dz)| 
+ lira- -~ IIL~(d~)| L~(d~)II AAm-[[L=(dz)| 

+ lira- -1 IIL~ (d~)|174 

-1/4 7/3]K2(n-1) IIAr[IHI'I[ /+1 -1/2n 1/2-1/2 

[ 0 l+2/n 1 [ /+1 l - l ]  
+ -1/2n 5/n J K2(n-1) [l/2-1/2 5/-4 

• -1/4 10/3 K22(n-1) IIArlIHI'l 

+ [_10/2n l+2/n]  l 5/n J K2(n-1) [1/2+1/2p-3/4 5/-2j/+1 ] 

• --1/2n 3 KN(n-1) 

<~ [1/2-1/2n-3/4 5l+4/3J + 1/2-1/2n-3/4 51+5/n-2/3J 

[ /+1 l-t-2/n+4])K3(~_l)]]Arllm,~ 
+ l/2+1/2p-1/n-3/4 5l+5/n+1 

[ /+1 l+2/n+4 ] 
<~ 1/2-1/2n-3/4 max(51+4/3,51+5/n+1) K@(n-1) IIA~IIHII" 

The estimate for AF (5) is the same. 

LEMMA 6.50. _For n>~3, 2<p~<4, p">4, n>~3 and 1<p'<2, 

H~O~FllL~(dz) 

~< 
(~ 1 1 1 1 l 1 1 1/ 

min 4 2p 2n 4 p~'2-t 2p 2n 

~] K2(n- 1) 

[] 

max(l+7- ~,, 1+6-~, I+}+5) ] 5l+ s 

• max(K24(n_1),/(4-) liar IIHl,~. 
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Proof. Combining Lemmas 6.48 and 6.49, we obtain 

IIAO~FllL2(dz) 
~< II/x F(5) IlL~(d~)+ II/xF(6) IlL~(dz) + II/XF (7) ILL~(dz) 

[ /+1 I+2/n+4] 4 
<<" [ l/2-1/2n-3/4 5/+8/3 J K2(n-1)]IAr[[H"' 

+ 
l 

( 1 1 1 1 / 1 1 1 ) / +  min 
z 2p 2n 4 p~'2 -~ 2p 2n 

m a x ( l + 7 -  ~ ,  l + 6 - ~ )  

3 
5 / + -  

2 

4 4 X max(K2(n_l) , Np,,)liar IIHI,~ 

~< 
l 1 1 1 1 l 1 1 1 \ 

min ~+2p  2n 4 i f ' 2  ~ 2p 2n ) 

max(l+7-2,1+6-2-,l+2-+5) ] 
p' p n ] 

4 4 x max(K2(n_l) , Kp,,)II~rllHl.1 �9 [] 

LEMMA 6.51. For n>~3, 2<p~<4 and p'>4 ,  

l / + 6  ] mgx(g4(n_l),Kr 
[[AFHm'I <<" l/2+l/2p-1/2n-1 5l+8/3J 

Proof. Combining Lemmas 6.28, 6.32 and 6.50, we obtain for l< f f<2 ,  

II/XFIIHI,1 ~ II/XF IIL~<dz) + II0fllc~(dz) + II/XOzfllL2<d~) 

l 
<<'([I/2+1/2p-3/4 5/+1/2jl+3 1+[[ l /+5 ] \  4 1/2+1/2p-1 51+2J) K2(~-I)[[ArlIHI'I 

+ 
1 1 1 1 l 1 1 1) 

inin ~+2p  2n 4 p~'2 ~-2p 2n 

p" p n / /  

4 4 • max(K2(n_l) , K~,,)]] ArlInl,1 

~< 1 1 1 l 1 1 1 5/+8 max(K24(._1),Kpa.)HArllu1,1, 
2 2p 4 p~'2 2p 2n 

Taking 4 <p~< 1, the desired estimate follows. [] 



260 P. DEIFT AND X. ZHOU 

Acknowledgments. The authors are especially grateful to Jalal Shatah for bringing 

the normal form problem for equation (1.1) to our attention and for many extremely help- 

ful discussions. The authors would also like to thank Henry McKean, David McLaughlin, 

Randall Pyke and John Harnad for providing us with additional useful information. The 

first author was supported in part  by NSF Grants DMS-9500867, 0003268, and the sec- 

ond author was supported in part by NSF Grants DMS-9401403, 9706644, 0071398. The 

work was also supported in part by the Institute for Advanced Study and the Guggenheim 

Foundation (both authors), and by the Courant Institute (second author). 

R e f e r e n c e s  

[A] ABLOWITZ, M. J., Applications of slowly varying nonlinear dispersive wave theories. 
Stud. Appl. Math., 50 (1971), 329-344. 

[AKNS] ABLOWITZ, M. J., KAUP, D. J., NEWELL, A. C. & SEGUR, H., The inverse scattering 
transform--Fourier analysis for nonlinear problems. Stud. Appl. Math., 53 (1974), 
249-315. 

[AS]  ABLOWITZ, M.J.  &: SEGUR, H., Solitons and the Inverse Scattering Transform. 
SIAM Stud. Appl. Math., 4. SIAM, Philadelphia, PA, 1981. 

[BC] BEALS, R. ~% COIFMAN, R. R., Scattering and inverse scattering for first order sys- 
tems. Comm. Pure Appl. Math., 37 (1984), 39 90. 

[ B r ]  BRONSKI, J. C., Nonlinear scattering and analyticity properties of solitons. J. Non- 
linear Sci., 8 (1998), 161-182. 

[ C G ]  CLANCEY, K. &: GOHBERG, I., Factorization of Matrix Functions and Singular In- 
tegral Operators. Oper. Theory: Adv. Appl., 3. Birkhs Basel-Boston, MA, 
1981. 

[Cr] CRAIG, W., KAM theory in infinite dimensions, in Dynamical Systems and Proba- 
bilistic Methods in Partial Differential Equations (Berkeley, CA, 1994), pp. 3146. 
Lectures in Appl. Math., 31. Amer. Math. Soc., Providence, RI, 1996. 

[CrW] CRAIG, W. & WAYNE, C.E., Newton's method and periodic solutions of nonlinear 
wave equations. Comm. Pure Appl. Math., 46 (1993), 1409-1498. 

[DIZ] DEIFT, P., ITS, A. ~= ZHOU, X., Long-time asymptotics for integrable nonlinear wave 
equations, in Important Developments in Soliton Theory 1980-1990, pp. 181 204. 
Springer-Verlag, Berlin, 1993. 

[DKMVZ] DEIFT, P., KRIECHERRAUER, T., McLAUGHLIN, K.T.-R. ,  VENAKIDES, S. ~s 
ZHou, X., Strong asymptotics of orthogonal polynomials with respect to ex- 
ponential weights. Comm. Pure Appl. Math., 52 (1999), 1491-1552. 

[ D u ]  DUREN, P.L.,  Theory of H ~ Spaces. Pure Appl. Math., 38. Academic Press, 
New York-London, 1970. 

[DZ1] DEIFT, P. & ZHOU, X., A steepest descent method for oscillatory Riemann Hilbert 
problems. Asymptotics for the MKdV equation. Ann. of Math. (2), 137 (1993), 
295-368. 

[DZ2] - -  Long-Time Behaviour of the Non-Focusing Nonlinear Schr6dinger Equation. 
A Case Study. New Series: Lectures in Math. Sciences, 5. University of Tokyo, 
Tokyo, 1994. 



PERTURBATION THEORY A CASE STUDY 261 

[DZ3] 

[DZ4] 

[DZ5] 

[DZW] 

[FAT] 

[FL] 

[CVl] 

[GV2] 

[HI 
[HLP] 

[HN] 

[K1] 

[K2] 

[Ka] 

[KGSV] 

[KM] 

[KN] 

[Zo] 

[Kul] 

[Ku2] 

[MKS] 

[MLS] 

[MMT] 

Near integrable systems on the line. A case study--perturbation theory of the 
defocusing nonlinear SchrSdinger equation. Math. Res. Lett., 4 (1997), 761-772. 

- -  Long-time asymptotics for solutions of the NLS equation with initial data in a 
weighted Sobolev space. Preprint, 2002. arXiv:math.AP/0206222. 
A priori L p estimates for solutions of Riemann-Hilbert problems. Preprint, 2002. 
arXiv:math. CA/0206224. 
An extended web version of this paper, posted on h t t p : / / ~ w . m l . k v a . s e /  
publications/act a/webart icles/deif t. 

FADDEEV~ L. ~ TAKHTAJAN, L., Hamiltonian Methods in the Theory of Solitons. 
Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1987. 

FOKAS, A.S. ~ LIU, Q.M., Asymptotic integrability of water waves. Phys. Rev. 
Lett., 77 (1996), 2347 2351. 

GINIBRE, J. ~: VELO~ G., On a class of nonlinear SchrSdinger equations, III. Special 
theories in dimensions 1, 2 and 3. Ann. Inst. H. Poincard Phys. Thdor., 28 (1978), 
28~316. 
Scattering theory in the energy space for a class of nonlinear SchrSdinger equa- 
tions. J. Math. Pures Appl. (9), 64 (1985), 363401. 

HARTMAN, P., Ordinary Differential Equations. Wiley &= Sons, NewYork, 1964. 
HARDY, G.H., LITTLEWOOD, J.E. ~= POLYA, C., Inequalities, 2nd edition. Cam- 

bridge Univ. Press, Cambridge, 1952. 
HAYASHI, N. ~: NAUMKIN, P. I., Asymptotics for large time of solutions to the non- 

linear Schr5dinger and Hartree equations. Amer. J. Math., 120 (1998), 369 389. 
KAUP, D. J., A perturbation expansion for the Zakharov-Shabat inverse scattering 

transform. SIAM J. Appl. Math., 31 (1976), 121 133. 
Second-order perturbations for solitons in optical fibers. Phys. Rev. A, 44 (1991), 
4582. 

KAPPELER, W., Solutions to the Korteweg-deVries equation with irregular initial 
profile. Comm. Partial Differential Equations, 11 (1986), 927-945. 

KIVSHAR, Y.S., GREDESKUL, S.A., SANCHEZ, A. ~ VAZQUES, L., Localization 
decay induced by strong nonlinearity in disordered system. Phys. Rev. Lett. L, 
64 (1990), 1693. 

KARPMAN, V.I. ~ MASLOV, E.M., Structure of tails produced under the action 
perturbations on solitons. Soviet Phys. JETP, 48 (1978), 252-259. 

KAUP, D. J. ~ NEWELL, A. C., Solitons as particles, oscillators, and in slowly chang- 
ing media: a singular perturbation theory. Proc. Roy. Soe. London Ser. A, 361 
(1978), 413446. 

KODAMA, Y., On integrable systems with higher order corrections. Phys. Lett. A, 
107 (1985), 245-249. 

KUKSIN, S., Hamiltonian perturbations of infinite-dimensional linear systems with 
an imaginary spectrum. Funct. Anal. Appl., 21 (1987), 192 205. 

- -  Nearly Integrable Infinite-Dimensional Hamiltonian Systems. Lecture Notes in 
Math., 1556. Springer-Verlag, Berlin, 1993. 

MCKEAN, H. P. ~ SHATAH, J., The nonlinear SchrSdinger equation and the nonlin- 
ear heat equation reduction to linear form. Comm. Pure Appl. Math., 44 (1991), 
1067-1080. 

McLAUGHLIN, D.W. ~ SCOTT, A.C., Perturbation analysis of fiuxon dynamics. 
Phys. Rev. A, 18 (1978), 1652-1680. 

MAJDA, A.J.,  MCLAUGHLIN, D.W. ~; TABAK, E. G., A one-dimensional model for 
dispersive wave turbulence. J. Nonlinear Sci., 7 (1997), 944.  



262 P. DEIFT AND X. ZHOU 

[Mol] 

[Mo2] 

[N] 

[O1 

IF] 

[RS] 

[Si] 

[St] 

[w] 

[Zl] 

[z2] 

[Za] 

[ZaM] 

[ZaS] 

MOSER, J., Finitely many mass points on the line under the influence of an exponen- 
tial po ten t i a l - - an  integrable system, in Dynamical Systems, Theory and Appli- 
cations (Seattle, WA, 1974), pp. 467-497. Lecture Notes in Phys., 38. Springer- 
Verlag, Berlin, 1975. 

- -  A rapidly convergent i teration method and non-linear differential equations, II. 
Ann. Scuola Norm. Sup. Pisa (3), 20 (1966), 499-535. 

NIKOLENKO, N. V., The method of Poincar~ normal forms in problems of integrabil- 
ity of equations of evolution type. Russian Math. Surveys, 41 (1986), 63-114. 

OZAWA, W., Long range scattering for nonlinear SchrSdinger equations in one space 
dimension. Comm. Math. Phys., 139 (1991), 479-493. 

POINCARI~, H., Sur les propri~t~s des fonctions d~finies par  les 6quations aux 
differences partielles (Theses pr6sent~es ~ la Faeult~ des Sciences de Paris, 1879), 
in (Euvres, tome I, pp. IL-CXXXII.  Gauthier-Villars,  Paris, 1928. 

REED, M. (~ SIMON, B., Methods of Modern Mathematical Physics, III. Scattering 
Theory. Academic Press, New York-London, 1979. 

SIEGEL, C.L., Uber die Normalform analytischer Differentialgleichungen in der 
N~he einer GleichgewichtslSsung. Nachr. Akad. Wiss. GSttingen Math.-Phys. Kl. 
Math.-Phys.-Chem. Abt. (1952), 21-30. 

STRAUSS, W.A., Dispersion of low-energy waves for two conservative equations. 
Arch. Rational Mech. Anal., 55 (1974), 86-92. 

WHITHAM, G.B., Linear and Nonlinear Waves. Wiley-Interscience, NewYork-  
London-Sidney, 1974. 

ZHOU, X., L~-Sobolev space bijectivity of the scattering and inverse scattering trans- 
forms. Comm. Pure Appl. Math., 51 (1998), 697 731. 
Strong regularizing effect of integrable systems. Comm. Partial Differential Equa- 
tions, 22 (1997), 503-526. 

ZAKHAROV, V.E. ,  Kolmogorov Spectra in Weak Turbulence Problems. Handbook 
Plasma Phys., Vol. 2, 1984. 

ZAKHAROV, V. E. (~ MANAKOV, S. V., Asymptotic  behavior of nonlinear wave sys- 
tems integrated by the inverse scattering method. Soviet Phys. JETP, 44 (1976), 
106-112. 

ZAKHAROV, V .E .  (% SHABAT, h .  B., Exact theory of two-dimensional self-focusing 
and one-dimensional self-modulation of waves in nonlinear media. Soviet Phys. 
JETP, 34 (1972), 62-69. 

PERCY DEIFT 
Courant Inst i tute of Mathematical  Sciences 
New York University 
251 Mercer Street 
New York, NY 10012-1185 
U.S.A. 
deift@cims.nyu.edu 

XIN ZHOU 
Department of Mathematics 
Duke University 
Durham, NC 27708 
U.S.A. 
zhou@math.duke.edu 

Received January 3, 2000 


