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Chapter IIT.

Converse Theorems.

1) The aim of this chapter is to prove converse theorems to the results of
Chapter II. We remind the reader of the fundamental problem, which is to in-
vestigate the rate of growth of the maximum modulus of a function f(2), mero-
morphic in |z|< 1, which takes none of a set E of complex values more than
p (o) times in |z| <p, 0<p< 1. In this chapter we shall construct examples to
show that all the vesults we have proved give the correct order of magnitude
for log M [o, /] when
(1.1) plo=(1—9)% o0=a<oo.

The functions f () which we construct will be regular, nonzero so that f(z) = f, {z).

We remind the reader of the four separate problems we considered in the
latter half of Chapter IT as stated in paragraph 19 of that chapter.

(i) What results hold if E contains the whole w plane?

(ii) What sets E have the same effect as the whole plane for a given func-
tion p (0)?

(i) What results hold if we merely assume that E contains some arbilrarily
large values?

(iv) What results hold if we assume merely that E contains oo and at least
two finite values or a bounded set?

The positive theorem in case (i) was proved in Theorem VII, Coroliary, of
Chapter II. In the case of (1.1) above this result yields
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194 W. K. Hayman.

(1.2) log M [p, f.(2)] = O{log T—I—*g}’ a=o

(1.3) log Mo, fu (2)] = O (1 — o)™, a>o.

Both these inequalities were shown to give the best possible order in para-
graph 21 of Chapter II. This disposes of problem (i).

Problem (iv) is also fairly easy to deal with. The positive results were proved
in Chapter II, Theorem V. In the case of (1.1) this theorem yields

(14) log M [e, /(] = 2 a<i.

I
(1.5) log Mo, fu(6)] = 02 log ) o=
(1.6) log Mo, . (2] = O(1 — o)™, a>1.

The inequality (1.6) is the same as (1.3). This shows that in the case a > 1
the set E {0, 1, 0o}, has much the same effect as the whole plane, on the order
of growth of log Mlp, f, (¢)). This also disposes of the problems (ii) and (iii) in
this case and leaves us with the case of (1.1) when 0<a=1.

Consider now problem (iv), when E is bounded, in this case. We need to

give converse examples to (1.4) and (1.5). The functions

1—z

(1.7 £l = M exp (2F)

provide convenient converses to {1.4). For given any bounded set E, we can

choose M so that for every value w in E we have
[w]<M.

Then the functions f(z} of {1.7) take no value of E in |z| <1 while at the same

time we have
log Mo, /1= ;—}5 — log M.

Thus (1.4) cannot be sharpened even when a =o0 and so a fortiori not when
o<a<l.

2) The converse example to (1.5) is a little more intricate. We shall be
able to use it later to construct the very much more recondite counterexamples
in problems (ii) and (iii) where E is unbounded. We need first
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Lemma 1. Let Z= X +1:Y and let
(2.1) (=Et+in=9¢(Z)=Zlog(1 + Z).

Then for X >o0, ¢(Z) is schlicht and further if £ <0 we have

X%+ Y*?
(2.2) |’7|<;'T'
Let
(2.3) Z, =X, +1Y,, Z,=X,+1iY,, X, >0, X,>0

and suppose Z,# Z,. We have to show that

(2.4) $(Z,) #~ ¢(Z,).
We have
(2.5) arg ¢(Z) = arg Z + arg log (1 + Z).

195

Both terms on the right hand side of (2.5) have the same sign as ¥, when
Z=X+1iY and X >o0. Thus ¢(Z) is real if and only if ¥ = o, and otherwise

o~

J{¢(Z)} has the same sign as Y. Thus (2.4) certainly holds unless Y,, Y, have

the same sign or are both zero. But if Y, , Y, are both zero (2.4) holds trivially

unless Z, = Z,, since for real Z, ¢(Z) is an increasing function of Z. Suppose

now that
(2.6) Y, >o0, Y,>o.
Write

o o zZ
(2.7) ¢(Z)—U+zV—log(I+Z)+——l+Z
Then

Zy

(2.8) $(Z)—¢(Z2) = [(UdX~VdaY)+i(VAX + UdY),

%

where the integral is taken along the straightline segment joining Z,, Z,. We

may suppose without loss in generality that
(2.9) X, < X,
It follows from (2.6) and (2.3) that

U>o0, V>0
in (2.7). Suppose first

Y, <Y,
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Then it follows that both dX and dY are non negative and one of them is
strictly positive in (2.8). Hence
pA
[(VdX+UdY)>o0
%
so that (2.4) holds. Similarly if
Y, <7,

we have d X =0, dY <o in (2.8) so that

Zy

[(UaX—VdY)>o.
A
This completes the proof of (2.4) if (2.6) holds. The result follows when Y, <o,
Y, <o by taking complex conjugates. Thus in all cases (2.3) implies (2.4) unless
Z, = Z,, so that ¢(Z) is schlicht in X >o.
To complete the proof of lemma 1, we prove (2.2). We have

(2.10) E=Xlog|1 + Z|—Y arg (1 + Z),
(2.11) n=Xarg (1 + Z)+Ylog |1 + Z|.
Hence if £ <0 (2.10) gives

Xlog |1+ Z|<Yarg (1 + 2)
so that (2.11) gives

1 =larg (1 + 2)] (x + ) < =T

X 2 X

This proves (2.2) and completes the proof of lemma 1.
3). We can now provide a counterexample to (1.5) and thus dispose of Prob-
lem (iv) of paragraph 1. We have

Theorem I. Suppose that 1 < M < oco. Then the function

1f1+2 2
(3[) f(Z) =M exp ; {T:; log T:;}
is regular momzero in |z| <1 and takes mo value w such that |w| << M more than
1/(1 — o) times in |2| <9, 0<p<<1. Further
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1 I
(3-2) log f(g) > 4—(;—:‘9*) 10g I—__—g- .

The inequality (3.2) is obvious. Suppose now that

fl2) = w.
Write
(3.3) Z-X+iy =122
Then we have
(14

1, _w
exp {:‘Z log (1 + Z)} =3
go that

(3.4) Zlog(1+ Z)= 4 log ]%l+8mni+4iargw.

Now it follows from (3.3) that for each z in |z]| <1, there exists a unique Z
with X >o0. Also from lemma 1 the function Z log (1 + Z) is schlicht in this
half plane so that the equation (3.4) has at most one solution in X > o for each
given w and m. Again if |w| << M it follows from (2.2) that the equation

(3.5) Z log (1 +Z)=4[1og 3]‘% +in]
only has a root for X > o, if
wX*+ Y2
(3.6) 4|77|<'2*‘“'X ’
Making use of (3.3) we have
Z—1F (X—1)+7Y*
e = |2 E o T
Z+1 (X +1) + 71
Hence if (3.5) holds with |w| <M we have
. 2 _ 4 X 4 X T
1|l = (X+I)2+Y2<X2+Y2<2?7,

by (3.6), i.e.,

D P ey e o e

It follows that (3.4) can have a solution in |z]|<g only if

1

argw +2mm| < —/——m—»
I g l 2(1__9)
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and this can hold for at most
1

2(1_9)+1

different integers m. Thus (3.4) has less than

I

2(1—4)

+1=2

different roots in |z]| <} for a given w with |w|< M. ie., at most one such

root in |2z| <}, and at most

I 1
P4 < —

2(t—¢ 1—p¢
different roots in |z|<p, when ¢=4%. Thus if |w|<M and 0<p<1 and 2, Z
are related as in (3.3), the equation (3.4) has at most 1/(1 —p) different roots in
|z] <o and the same is therefore true of the equation f (2} = w. This completes
the proof of Theorem I.

Having now disposed of the comparatively simple problems (i) and (iv) of
paragraph 1, we shall spend the rest of the chapter in comstructing counter-
examples to the problems (ii) and (iii). These are very much more difficult and
we shall have to employ rather a lot of general mapping Theory before we can
even start to prove any particular Theorems. The theory we shall introduce will
be stated in terms of lemmas only. Lemmas 2 to 8 are all vital to our con-
structions. General theory stops after lemmas ¢ and 10 which adapt the pre-
ceding general theory to our particular problems. In paragraph 17 we take these
problems up again. The counterexamples to problem (iii) occupy paragraphs 17
to 23. Paragraphs 24 to 31 deal with counterexamples in problem (ii).

The Principle of Harmonic Measure.

4). We start our constructions by introducing the conception of the har-
monic measure of a connected portion ¢ of the boundary of a domain D with
respect to an interior point w of D. We write this as w[ew, «; D] and recall the
following.

Definition. Let D be a simply connected domain in the finite w plane other
than the whole plane. Let a be an arc of the frontier of D or, in the case of mul-
tiple frontier points, a comnected set of prime ends on the frontier of D. Then
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wlw, a; D], where w 1s a variable point of D is a bounded harmonic function of w

such that
wlw,a; D] > 1

as w tends to an interior frontrer point of the arc o and
wlw, ¢; D] o

as w tends to an intertor frontier point of the complement of «.
It is clear from the definition that w [w, «; D] is an additive function of the
arc @, and that if e, 8 are complementary parts of the frontier of D, then

(4.1) wlw,e; D]+ wlw,8; D] = 1.

Also since harmonic functions are invariant under conformal mapping it follows
that if D,, D, can be mapped conformally onto each other so that the frontier

arcs a,, o, and the interior points w,, w, correspond, we have
(4.2) w [wy, ¢; D] = o [w,, ay; Dy].

Thus we can define wlw, a; D] by mapping D 1:1 conformally onto the circle
|z} <1, so that the point w corresponds to z =0 and the frontier arc e corre-
sponds to an arc ¢  of length L on the circle |z| = 1. In this case

L

(4.3) w[w,a;D]=w[o,a';|z|<1]=zﬂ-

The basis of the theory is the well known lemma 2, the Principle of Har-
monic measure, which is Nevanlinna's Generalization of a lemma due to Lowner.!

Lemma 2.2 Let D,, D, be two simplyconnected domains in the w plane and
suppose that f(w) 1s regular in D, and has its values lying in D,. Suppose further
that f (w)) = w, and that for w lying on a frontier arc e, of Dy, f(w) has boundary
values lying on a frontier arc ay of Dy. Then

(4-4) o [wy, ¢;; D] < w [w,, ay; D).

Equality holds only if o, consists of the whole frontier of Dy, or if f(w) maps
D, 1:1 and conformally onto D,.

! K. LOWNER (1).
? R. NEVANLINNA (2), p. 38.
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Corollary. If D, < D,, w is an interior point of D, and o is a common
Srontier arc of D,, Dy, we have

w [w, ¢; D) <wlw, «; D,].

Introduction of a General Class of Mapping Functions.

5). In the next three paragraphs we shall introduce a general class of funec-
tions from which we shall construct the counterexamples we require. Let &, be

an increasing sequence of real numbers, such that

(5-1) Ep=—1
(5.2) §,>o
(5.3) bn<bigr1 > 00, mn=1,2, ...

Let 5, be a sequence of positive numbers, defined for #» = 1, 2, ... and such that

(5.4) M =3Er1—8&) n=12,...
(5.5) m=4E—E-1), B=1,2,...
Let O, be a curve given by all points { of the form

(5.6) L=in+&ln), [n]|<&—E,

where &,(n) is a real continuous function of 7, satisfying the following conditions

(5.7) L) =8=—1, [n]=§&—&;

and if n=1,

(5.8) E{—=n) =&, [7]=<&+—5&,

(5.9) En(n) = &, || =7a aud || = E1—&,
and

(5-10) 25"_§n+1'<§n(77)£§n, 77n<,77,<§n+1"§n-

Let R, be the domain in the { plane bounded by C,. and the three straight lines
(S'II) §=§71+1, n= '_f:§n+1_§n-
We note that R, consists of all { =& 4 ¢7 for which both

(5.12) | 9| <Enp1—En, and &, () <E<Ent1.
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Let R be the Riemann surface over the { plane consisting of all the sheets Ry,

where » =0, 1, 2, ... and Ry, B,11 are supposed joined along their common fron-

tier segment

(513) §:§n+17 |77|<"}n+1, n=0,1,2,...

which lies on Cny1 by (5.6) and (5.9). Thus the points of R are the interior
points of R, and the segments (5.13), n =0, 1.2, ....

Let
(5.14) C=yl(s)=c 8+ es*+ -, ¢ >0

map the strip

lzl <1 —oo<o< + o0

(5.15)

in the s = ¢ + /v plane symmetrically onto the Riemann surface R so that the
positive real axes in the s and { plames correspond. The functions which will

eventually provide our counterexamples will take the form
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2 1+ 2
. = = log ——>»
(5.16) 7@ - expwfZ 10 12}
where 1 (s) is the function of (5.14). Thus log f(z) maps the unit cirele |z| <1
onto the Riemann surface R. Before considering these examples in detail, we
shall need to make a general study of the function (5.14).

6). We need the following lemma on harmonic measure

Lemma 3. Let y be a Jordan arc in the s = o + it plane, which lies entirely
in the region |t| =<1, is symmetrical about the real axis and has its endpoints on
t=1 and v =— 1, respectively. Suppose that y does not contain the real point s = o,
but has at least one point on the line Rs = o. Let A, be the component containing
s = g of the complement of y in |t| <1, and let y, be the part of y which lies on the
frontier of A,. Then we have

(6.1) w o, y5; 4] = 3.

We may suppose without loss in generality that ¢ = 0. Suppose first that y
contains the points s = F ¢ Let ¢, be the complement of y, in the frontier of
A,. Then «,, y, are clearly connected, so that a, is either contained entirely in

the region ¢ <0 or 6 =0. Hence we have
(6.2) wlo, &; AJ=wlo, ay; |7 =11=3,
using lemma 2, corollary, since by symmetry the harmonic measure of each of
the pairs of segments
(6.3) 7=F1, o=<o,
T= F+1, 0=0,

at the origin with respect to the strip (5.15) is just 4. Thus (6.2) shows that
(6.1) holds in this case.

Suppose next that y does not contain the points F ¢. It is clear that y,
contains exactly one point on the real axis s = o, say. Suppose e.g. that

(6.4) 0y > O.

Then 4, contains the origin and since o, is the only point of y, on the real
axis it follows that 4, containg the halfline

0<g,, T=0.
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Let o' ¥4 be the end points of y,. Then «a,, the part of the frontier of A, other
than y,, consists of the two halflines ‘

(6.5) o<<d, v= F1.

We now distinguish two cases. If

’

g <0

then ¢, is contained again in the pair of segments (6.3) so that (6.2) and hence
(6.1) follows. Suppose next that

’

g >0.

Then y, intersects the line s =0 by hypothesis. Let z, be the greatest real
number such that o<z, <1 and F ¢, lie on y,. Since we are assuming that
F ¢ do not lie on y,, 7, exists. Let y, be the subarc of y, whose endpoints are
+ ¢7,. Since y, contains no point on either of the two segments

(6.6) o=o0, |x|<lz|<T,

which each have an endpoint on «,, these two segments lie in A,. Let A, be
the subdomain of A4, containing s =0, obtained by cutting along the two seg-
ments (6.6) and let «; be the part of the frontier of A, consisting of the two
segments (6.6) and the two halflines (6.3). Then since A, is contained in 4, and
still has y, as part of its frontier, we have from lemma 2, corollary

(6~7) o [o, 715 4] > w [o, 7 A4

Again let 4, consist of the strip |z|< 1 cut along the segments (6.6). Then 4,
contains A,, and e,, consisting of the two halflines (6.3) and the two segments
(6.6) each described once, forms part of the frontier of both A, and A,. The
remainder of the frontier of A, consists of the reflection of e, in the imaginary

axig, so that we have clearly from symmetry,
w o, a5 A,] = %
and hence, since 4, contains A,
(6.8) w[o, a; 4,]1=%.
Since @, y; make up the frontier of A,, we deduce from (6.7) and (6.8)

w [o, yy; 4] >4,
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and since y, is a subarc of y,, lemma 3 follows, if (6.4) holds. The proof is
similar if o, <<0 so that lemma 3 is always true.
7). We need lemma 3 to prove the following result concerning our mappings.

Lemma 4. Suppose that
§n—1 = §, = §n—77ny

where &, nn are the quantities of paragraph 5. Let ¢ be the segment
(7.1) E=E, [p|=<&—F

on the frontier of Rn-1. Suppose that s = o corresponds to { =& by the function of.
(5.14) and that s = o+ it corresponds to any point on ¢ considered as a frontier-
point of Ru_1. Then we have

(7.2) c>0.

The inequality (7.2) holds a fortior: if ¢ + it corresponds to an interior or frontier
point of Rm, where m = n.

Let R’ be the subsurface of R consisting of the sheets By, B; ..., Rn—1 and
their common frontier segments. Let 4, be the subdomain of the strip (5.15)
which maps onto R’ by (5.14). Then it is sufficient to prove the lemma in the
case where ¢ + ¢z is a frontier point of 4, for otherwise there exists o’ + ¢z
where ¢’ < o, corresponding to a point on ¢ by (5.14).

The segment ¢ consists of frontier points of the domain R,-1, and its end-
points are also frontier points of R, by (5.13). Hence ¢ corresponds by (5.14) to
a Jordan curve yp, having its endpoints on 7= 1, 7= — I, respectively, and
forming part of the boundary of A4,. Also the real point s = ¢ on y, corresponds
to = §,>§& and so satisfies (7.2). Thus to complete the proof of the lemma it
is sufficient to show that y, does not meet the line s =o', and to do this it
is sufficient to show that

(7.3) w [0, yo; 4] <%

by lemma 3. We note that the function £ =1 (s) of (5.14) gives a mapping of
the domain A, into (and not onto) the half plane D,, RL <&, by which y,
corresponds to the segment ¢ on the boundary of D,. Hence lemma 2 yields

(7-4) w [‘7’7 Yos Ao] <w ['E,a ¢; D]]-

Now w [£, ¢; D,] is equal to 1/x times the angle subtended at & by the seg-
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ment ¢. It follows from (7.1) that this angle is /2 so that (7.4) yields (7.3) and
hence (7.2). This completes the proof of lemma 4.

~ We shall need also the following form of Ahlfors’ Theorem; (Ahlfors (1)),
involving the mappings of strip-like domains into strips, and other domains.

Lemma 5. Let Q be an open set in the w = u + tv plane, which meets any
line Rw = u at most in a fintte segment 0, of length 6 (u). We write

U

(7.5) I=]§%-
Uy
Suppose also that 2 s mapped 1:1 conformally onto an open set lying in a
simplyconnected domain D in such a way that the maps g, of the segments 8, all
separate two points sy, sy tn D for u, <<u<wu,. Then
(i) we have

(7.6) d s, sg; D] > gI—log 2.

(ii) Suppose further that I =1, that D s the strip

7] <1,—0o<o< + o0

tn the s = ¢ + 2t plane and that the gu join v =1, v = — 1. Then i¢f
ss=o;+tt, J=1,2

we have

(7.7) lo,—0y|>2(I—1).

This lemma was proved in (Hayman 4). With a slight difference in the notation
of the variables (7.6) follows from Theorem IV and Theorem V (3.8) and (7.7)
above from Theorem I and (3.5) of that paper. ‘

Here and subsequently we shall freely use the notion of hyperbolic distances
d [sy, s3; D] of two points s, s, with respect to a domain D. We shall need
their form in the following two cases.

(i} If D is the strip |{z|<a and s,, s, are real we have
4
d [sy, 855 D] = n,_a|31_‘32|-

(ii) If D is the circle |s—s;| < R, we have

B+ 82— 81

d[sy, 835 D] = ¢ log R—1{s,—s '
1
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These identities are easily verified by mapping D onto the circle |z <1 and
making use of Hayman (1), (3.1), (3.3) and (3.4).

8). We can now prove the following important independence principle, which
shows that the behavior of the mapping function of (5.14) is for points { lying
well inside the sheet R, largely independent of the nature of the sheets R, for
v > n.

Lemma 6. Suppose that the quantities §,, . and the curves C, have been fixed
for v =1 to n, that .41 s also fixed and that { =& is a point such that

(8.1) o0<E <kps1, n=o0.

Suppose that the remaining &,, n, and C, are left variable subject to the conditions
of paragraph 5 and also

(8.2) a1 = Ent1 — &

Then if s = o1, oy correspond to { =& by the mapping function (5.14) for two
diflferent Riemann surfaces R,, R, satisfying the above conditions, ive have

(8.3) |6y — a2 < 1.

Let R’ be the part of R, consisting of the sheets R, to R, and their common
frontier segments. From our hypotheses these coincide for R, and R,;. Then
lemma 4 (7.2) shows that by the mapping (5.14) of |7| <1 onto R, the seg-
ment 6, given by

Rs=90, |z|<1, 0<0o<oat,

corresponds in the { plane to a Jordan arc y, whose interior points lie inside
R’ and whose endpoints do not lie on the segment

(8.4) RE=Enrr, |JE] < Ens1—§.

Hence by the mapping (5.14) of |z]| <1 onto R;, 7, corresponds to an arc gs
lying in |7z| <1 and joining = —1 to v = + 1. For the interior points of y, lie
in R’ which is contained in R, by hypothesis. Also the endpoints of y, are
frontier points of R’ but do not lie on the segment (8.4) and so by (8.2) they
must be frontier points of R, and therefore correspond to points ¢ = — 1 and
7=+ 1.

Further since the segments 6, separate s =0, 0i in |z| <1, the curves g,
separate s =0, 03 in |7z|<1. By combining the two mappings of |7|<<1 onto
R, R;, we thus obtain a mapping of the rectangle
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o<a<oa, |r|<T,

into the strip |z| <1, in which the segments 6, for o < ¢ < ¢} correspond to
arcs g, separating s = 0, o3. This is the situation envisaged by lemma 5 (i) and

we deduce from (7.6)

. d
d[o,(iz;lz|<1]>;j f—logz
Y
i.e,
T , T ,
—0y > ~o01—log 2
or

o-}>o’1—ilog2>af—1.

Similarly we have , .

o1 >02— I
so that (8.3) holds. This proves lemma 5. The lemma will permit us to choose
Eu, mn, Rn inductively so that certain inequalities are satisfied by the mapping
function (5.14) inside each sheet R,. It will follow that we can do this for each
sheet R, more or less independently of the nature of the subsequent sheets.
This completes the first main stage of our argument.

Bounds for Hyperbolic Distances in R.

9). In this and the following paragraph we shall be engaged in obtaining
bounds for hyperbolic distances of two points {;, {, in R, or, what is the same
thing, bounds for the hyperbolic distances in the strip |z] <1 of the points
81, s which correspond to §;, {, by (5.14).

We prove first lemma 7 below, which will itself have a certain importance
in the sequel. The main result will be lemma 8, which we can prove from
lemmas 5 and 7, and which like lemma 6 is an independence principle, showing
that the mapping of the sheet R, depends in the main only on this sheet and
not on the other sheets. 1t is this result essentially, which allows us to invert
the arguments of repeated application by means of which we proved the results
of Chapter II. If a function exists growing at a certain rate and not taking
any of a set E of values more than p(p) times in |z| < p, then the function may
grow at any point nearly as rapidly as if it only took zero and another value
of E (depending on the point) p(g) times in |z| < g, without reference to the
other values of E.
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Lemma 7. Suppose that o, <o, and that A is a domain lying in the strip

[t| <1 7n the s = o + iv plane and containing the rectangle

o—1<o<o,+1, |7|<TI.
Let s, = o, and let ¢, = 0, + ¢ 1y, |7,| < 1. Then we have

7T

I
Z(Gg—cl) + ilog 1< dsy,s; 4] <=(0,—0) + glog

7T
1=z 4 1—|z]
To prove the first inequality of lemma 7 we may suppose without loss in
generality that A is the strip |z] < 1 since hyperbolic distances are decreased by
increasing the domain. Further we may suppose o, = 0., since this may be
achieved by a translation, which leaves the terms in the inequality of lemma 7
invariant.
The function
+

V)
-t
N

(9.1) s=¢lz) = ~log

7T I —

Y

maps |z| <1 onto 4, so that =0 corresponds to s = 0 and

ens-_,/‘z —1
R T

corresponds to s,. Thus we have

oI "% — 2 %2 cos wT,/2 + 1
2, |? = :
* €% + 2 "% cos wT,/2 + 1

7T T, T T,
4 cos —= 4 cos ——

— I z, |7 = < 2
I “3] T e/’!dg/?-
e 4 T 4 cos T,
N

and so
1+ ]2

I
d[O,SE;A]=(][O,22;]Z'<I] = ;10g’1~_|5 ‘
7

i 1
>=1lo > ~—g, + ~log sec 2 —log 2
, log 402 ~log s 7T Ty og

_r

1~z
7 1 7

= + Elogcosec;(l —|z,|)—log 2

I 2

— e —log 2.
(1 —|1,]) ®
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This proves the first inequality of lemma 7, since

1 2 1
~log=——log2=—=-log2n> —1.
2 gn g 2 og 2

To prove the second inequality note that A contains the circle |s — g,| <1

so that

s og tidml 1) 1 !
(9.2) d[a,,,a2+1,12,A]<210gl_lzg,<zlogl_lzgl+210g2.
Also

dls;, s3; Al < dlo,, 0,; 4] + d{o,, 0, + 7 1,; 4],

so that (9.2) gives

(0-3) Alsy, 555 A1 = [0, 005 4] +  log —— + ~log

l'”z‘ g2

To complete the proof it is sufficient to obtain a bound for d[s,, a,; 4].

this we may suppose without loss in generality that
0, = —0,=0,say.

The function s = ¢ (2) of (9.1) satisfies

2 1+7r 2 1+7r
—Z < <Zlog——, |z|=r
210g 2T < 9ig(0) = 21og 2T, 2] <
Hence if 7 is so chosen that
2 1+r ,
. —log—— =
(9.4) nool_r o + 1,
the function
s=¢(re)

maps |z| <1 into 4, since by hypothesis A contains the rectangle
—0 —1<Rs<o +1.

It follows that

1+

I—e

(9.5) dlo, o'; 4] < é-log
where ¢ is a point such that ¢(rp) = o’ so that

2 .
g 6 — —_— e =
(9.6) n log - =g

16— 642128 dcta mathematica. 86

To do
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From (9.4) and (9.6) we have

IL+r 1—er =@
logl—? 1+g7‘a2
ie. : |
(I—g)/ 7 I—-O] 7
log{1+I o 1 el = 2
whence ) /
rit—g e?—1 1
1—1?p e"/“+1>2’
so that
1—e>-—(1—7r"g)>-(1—7),
and hence
I+ I+7
(9‘7) [ 4( )

d o, G’; 4 < ”"' 0’ + *7': + log 2.
[ ] B

Similarly we have
’ T, T
dlo,—d"; 4] <=6 + = + log 2.
[ 1 2 2 g
Thus
’ ’ T , 7T
d[——a,,az;A]=d[——a,o;A]<;a +;+2log2

7T 7
=Z(ag—al) tot2 log 2.
Combining this with (9.3) we have

1
dlo,, 0y + 77y A]<f(02_°‘1) + 510g~——~

which yields lemma 7.

10). We can now combine lemmas 5 and 7 to prove.

Lemma 8. riet D be a domain in the { plane given by the totality of points
L for which

(10.1) =&l =7, r<r<n,
and
(10.2) arg | — | = 6(r), where 0 <8 (r) <.

The points which satisfy (10.1) and (10.2) for a fixed r we denote by 0.. Suppose
also that D is mapped symmetrically and 1:1 conformally onto a domain A in the
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s=oc+ 1t plane lying in the strip |t| <1, in such a way that the endpoints
rell) re=i0l) of the circular arcs 0, correspond to points om T=1, T= —1I, res-
pectively, and so that the real axes in the s and { planes correspond and o(r) in-
creases for r{ <<r <<r,. Let

(10.3) rner=r <r <rye?n

(10.4) ry =7, €7,

Let =0y + 1) and Ly =§, + ry €%, where |60,| < 0(r,)), and suppose that s, = a,,
8y = 0y, + ¢ty correspond to &, G, in the mapping. Then we have

(10.8) G, > o,

and

7T 1 I 14 I 1
10.6) —(6;—0y) + - log —— —1<d[{,,&;; D) <—(0y—ay) + - log ——— + 4.
( ) 4(2 N > g‘l'—l’le (G, & D] 4(2 1) > gl—l%l 4
The point of the lemma is to show that the precise form of the mapping has
little effect on the relative position of ¢, s, when 7,/r; is sufficient large and
Ly, Cs are well inside D.
We have firstly

(ro.7) alg,, &,; Dl =dlsy, sy; 4],

since D is mapped 1:1 and conformally onto 4. The result now follows from
lemma 7 provided that we can prove that s,, s,, 4 satisfy the conditions of
that lemma.

The domain 4 is bounded by the curves gy, g which are the maps of

the arcs 6,,, 6,,, and by two segments of v =1, v = —1!, respectively.
We write
(10.8) w=wu+1v=1log ({—,)

and consider the mapping of the w plane into the s plane. The segments. 0,
correspond to straight line segments

vl < @(e¥), log r, < u < log r,

in the w plane. Also since the mapping is symmetrical, the upper half of each
of these segments, given by

! This is a consequence of our hypotheses when 0 (r) is continuous. Otherwise we make it
an additional assumption.



212 W. K. Hayman.
(10.9) o<v<B(eY), log r, <u<logr,

corresponds to a curve g, joining 7= 0 to 7 = I and lying in the strip o<z < 1.
The length of each of these half segments is (¢*) <z. Thus we may apply
lemma 5 (ii) to the mapping of the segments (10.9) for u, <<u <u, into the strip
o<z<1 and we deduce that if u, + ¢v,, u, + ¢v,, where v, =0, v, = 0, corre.
spond to ou)+ éTy), o) + 279 in the s plane then we have

Uz
du Uy — Uy
(10.10) o) 0(1)>(f0(eu)—1)> " 1>1,
Uy
if
(ro.11) Uy — Uy > 277,

Also the conditions v, =0, v, = 0 may clearly be omitted since the mapping is
symmetrical.

Taking u, = log r, u, = log 71, v, = 0, we deduce from (10.3) that (10.11) is
satisfied. Hence (10.10) shows that if o + ¢z is any point on gy, the image of

6,, in the s plane, then we have
c=o0,—1.

Similarly taking u, =log 3, v, =log 7y, (10.11) again holds by (10.3) and we
deduce that in the notation of lemma 8

c=0y+ 1
for any point o + ¢z on g;. Thus A contains the rectangle
(10.12) o,—1<o0<o,+ 1.
Again taking u, = log 7{, 4, = log 73, (10.11) holds by (10.4). Thus
(10.13) 6,—0,>1>0.

by (10.10). This gives (10.5). Also 4 contains the rectangle (10.12) and so
A4, s,, s, satisfy the conditions of lemma 7. Thus (10.6) now follows from (10.7)
and lemma 7. This completes the proof of lemma 8.

Specialization of the Curves C,.

11). We shall be able to construct all the functions we require by giving to
the curves C, of paragraph 5 one of two forms. The simplest form, which
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would suffice for all applications where p(g) is given by (1.1) with a < 1, is that
in which C, is simply the segment

(II'I) §=§n+i77> |n|$§n+1_§n-

The conditions (5.6) to (5.10) are clearly satisfied in this case. The required re-
sults can be put together in

Lemma 9. Suppose that Cn s given by the segment (11.1) for some n>o0. Let
Sy = En— 7
Coy=Em, Ea=En=<3}[5+ Eunl

Coy=&o) +en@e),  5n = &g = &nt1,

and let

be a pownt of Rn.. Suppose also that

S0y = On," S = O(), S@) =09 + 173

correspond to Cuy, Loy, sy respectively by the mapping of (5.14). Then we have

(11.2) g (o — on) < log" (_E(_z)j_n) + 4
7 I | Gy — §n(
I, % (68— ) + log ———— > log" | 2B—5"| _ 4,
(11.3) 5 (o3 — o) Sy ey B2
We define

Sw= 89 =5—3nm.

Then it follows from (5.5), (5.11), (5.12), that R.,—; contains the circle C,?

[£— &l < n,
which is mapped into the strip |z| < 1. Hence if s = oy corresponds to § = &y,
we have
%(G(A)*Gn) =d[on, 04 |z| <11 <dlw, Lw; C) = ;—10g’1;:_i—in’zi =4,
so that
(11.4) ow—on < 4.

Similarly if &5 = & + 3 % corresponds to s = o5, we deduce by considering the

! This will be standard nofation in the sequel.
? Compare fig. 1 in section 5.
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mapping of the circle C;, |{— & | <#n, which lies in R by (5.4) (5.5) and (5.12)
(5.13), that

(11.5) o —ow < 4.

Thus (r1.2) follows from (11.4) and (11.5) if &9 = & + 3 9., so that o) =< o).

Suppose next that
E5) =& <3 (En + Enpa).

Then the circle C given by
[E—Ca| =& —n

lies in R, and is mapped into the strip || <1 so that {5, (@ become oy, o).

Thus
d [ow), ow; 2] < 1) <a[&s), §a); Cl,

2 (Em— &)

3 7n

o~ +&a—8s 1 o
o—&n—8+8m 2

7T I
" (o —op) < S log

which yields (11.2), on using (11.4), (11.5). Thus (11.2) is generally true.

12). To prove (11.3) suppose first
(12.1) fn < g 8= (§n+1 —_ gn)
Then we can apply lemma 8, taking for D the domain

(12.2) {E—&| =1, ﬂn<r<§n+1~§n,

(12.3) larg ({— &) < 6(r) =

NEE\

This domain is mapped into the strip |[z]| <1 in such a way that the semicircles

(12.2), (12.3) become curves joining = —1, = + 1. Hence if
(12.4) Loy =8n + 7 1n,

and

(12.5) A" =< Lo — & | < e 2 (§u1 — &),

we deduce from lemma 8, that if s = o5 corresponds to { = §s we have

T I I
(12.6) Z(O’(s) —oa) + 5 log T

+4>d L9, Le; DL
“l%l

Also D is contained in the half plane D’ given by
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|arg (t— )] <7

so that
i i DU= i 21 =Sl S Y
(r2.7) d [Ce, Se; D] = ; log* (Cg);?f”)

Combining this with (12.6) and noting that o > 0. we see that (11.3) holds
provided that (12.5) is true. Again if (12.1) holds and

[y —En] = €72 (Ent1— En)
it follows that (12.6), (12.7) hold so that in this case

7T I 1 + z:n-j-] —gn
12.8 — —oy) + log ———> -1 (?‘-—)—A
(12.8) 5 (0 —0a) + log — Tlem]” 2 %8 ™

This latter inequality still holds if
(12.9) | Sy —&n| = €727 (§n1 — &n),

since if sg corresponds to {3 and we consider the straight line joining sg) to
on, this corresponds to a curve joining (@ to Ly in the ¢ plane and if (12.9)
holds, somewhere on this curve we must have a point {7 with

[Gmy—En| = €727 (Ens1— En),

so that (12.8) holds with (), 77) instead of a3, 73 and so a fortiori with o), 7).
It follows that if (12.1) holds, (11.3) is true provided that

(12.10) 8""7n£|§(a)—§nlS(§n+1—§n)V5-
Again it follows from lemma 4 that we have always
(12.11) o(8)— On > O.

Thus (11.3) holds generally provided that

(12.12) [Co)—Eal < (Barr — B V2,

and (12.1) holds.
Again (12.12) is satisfied by condition (5.12) for every point (i = &)+ ¢ 7 in



216 W. K. Hayman.

R,. Thus (11.3) always holds if (12.1) is satisfied. Also if (12.1) is false it follows

from (12.12) that
[Cay—&n| < A7,

and hence from (12.11) that (11.3) holds. Thus (11.3) is generally true. This
completes the proof of lemma 9.

A Second Form for the Curves C,.

13). We shall now introduce the other form of the curves C, which we
shall need in the sequel. The investigation in this case needs the full strength
of our preceding theory.

Suppose that

(13'1) §Il+l—§n>3€6”7yn, n>>0.

We define C, as given parametrically by the equation

(13'2) C= é‘n(t)
where
(13.3) Calt) =8+ 2qut, 0o<t=<1,
_ 27]n . . 7:: < .
(13.4) Ealf) = En + log2[ztlog (1 +if) + 4], e

and ?, is the positive root of the equation

(13.5) 20 ity log (1 +z’tn)+§

log 2 = ¢7 2" (Ens1— &n) = 1, say.

The equation (13.5) evidently has a unique solution for f, in 1 < {, << oo, since
both |REa(t) — & | and [J&u(?)| and so |La(f) — &| are monotone increasing
functions of ¢ in the range defined by (13.4), and since (13.1) holds. For t=1t,
we define (,(f) as follows. Let

(136) Cn(tn) = §n + 7neton,

We write

(I3~7) Cn(t) =8+ 1a ei(O"H"‘t); b= t=tn+ 0 — %’
(13.8) Gat) = 5+ ilat +8), t=t+0,—Z,

. . 7
where at + b increases from 7, to §,+,—§, as ¢ increases from ¢, + 0,,—; by 1.
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Thus C, is completed after the range defined by (13.4) by an arc of a circle centre
En, and then the straight line segment joining { = & + 47 to § = & + ¢(Eng1 — &n)-
Also for negative t we define {,.(f) by the symmetry relation

(13.9) Lal— 1) = Cald), OStStn+0”——%+ 1,

so that C, is symmetrical about the real axis. The important part of C, isthe
arc given by (13.4). This will insure that the mapping of the region R, bounded
by .C,, and the lines

(13.10) RE=&ue1, JC=F i — &),

into the s plane, given by the function W(s) of (5.14) will behave locally like
the mapping obtained by combining

_g, g 2l i
(13.11) §—§n+10g2[Zlog(1+Z)+4]
with

2
s =—log Z + cons.
Vi

The mapping (13.11) has already been studied in lemma 1. It led to the solution
of our fundamental problem when E is bounded and

I
plo) = T___—Q'
The theory which we have been building up allows us to extend this to the
case when FE is unbounded.
It remains to show that the definitions (13.2) to (13.9) define C, in accord-
ance with the conditions we laid down in (5.6) to (5.10). The condition (5.6)

will be realized provided that C, cuts each line

IC=n |nl=&n—&,

in exactly one point. This it easily verified since JZx(f) is a continuous in-
creasing function of ¢ in the range of definition, as we can see from (13.3) to
(13.9). Also the endpoints of C, are the points given by

£= Cn(t) =& F i(§n+1 _§n)

Again (5.8) follows from (13.9), (5.9) follows from (13.3) and (13.8). Lastly
N Ca(¢) clearly satisfies the inequalities

(13.12) R Cnlte) S RE() < &n.
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Also
§n — mcn(tn) = , Cn(tn) - §n'

= e 17 (50— gﬂv) <En+1— 5

by (13.5). Using (13.12) we have (5.10). Thus C, defined by (13.2) to (13.9)
satisfies all the conditions required for the curves C,.
14). We now investigate the behavior of our mapping function = y(s) of

(5.14) when { lies in the sheet R, and C, is defined by (13.2) to (13.9). The

results we need are contained in

Lemma 10. Suppose that for some n>o0, (13.1) holds and that Cy is defined
by (13.2) to (13.9). Let R, be the domain bounded by C, and the lines (13.10), and
let the conditions of paragraph 5 be satisfied. Let

(14.1) Sy = & — 1,y

(14.2) S =&, En < &9 =<3+ s,
and let

(14.3) Gy = &) + i1, By =< &n,

be a pownt of R.. Suppose that s = o, 0g), 063 + <73 respectively correspond to
E="Cuw, G, ) by the mapping (5.14) of the strip |t| <1 in the s = o + 17 plane
onto the Riemann surface R. Then we have

—_— —
(14.4) E(0(2) — on) — log” (M) + log* log" (gu) < A4,
2 Nn Nn
4 + 1 1(3)
14. = —oy) + lo >log |—|— 4.
(145)  Tlow—on) +log ;. > log’ | 22|

Let D, be the subdomain of R, for which
(14.6) 3 <|L—&| <Ent1—E&n
It follows from the definitions (13.2) to (13.10) that each circle
(14.7) IC—=&l=7, 3m<r<Enri—E&s,

intersects R, and so D, in a segment of a circle

(14.8) larg C—&)[=<0(r), |L—&|=7
where

=00 <m.
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Hence we can apply lemma 8 with D, for D, {,=¢§, and

(14.9) re= 3N, T3=&t+1— &
Hence if

(14.10) Cwy = Ewy = En + 37n €7,
and

(14.11) |9 | > 3 7met™,

we apply lemma 8 with [y instead of [, and (3 instead of {; to the mapping
of D, into the strip |[z|<1. In fact the endpoints of the arcs of circle (14.8)
correspond to points on 7 = I, = — 1, respectively, since

N <7 <Ent1—&n
Also from (13.5), the point (s, where &3 =&, can only lie in R, if
7‘; = ‘ §(3) - §"I =e %7 (§n+l - §n)

’ -
75 < e 2717.2

so that we have

using (14.9), as required in (10.3).  Also
"= 'CM) —&u|=r "
by (14.9) and (14.10) so that (10.3) is satisfed. Again
= ey
by (14.10) and (14.11), so that (10.4) is also satisfied. Then if s = o) corresponds
to ¢ = G given by (14.10), lemma 8 gives

T I I
(14.12) (o) — ow) + - log

4 218 T ¢ [, L5 Dol — 4,

provided that (14.11) holds.
Again if
(14.13) " (§y— &) = (Lo — &) < €727 (1 — En),
we can apply the inequalities of (10.6) with {4 for {u) and {@ for {; and obtain
7
(14.14) 4 (o2 — ow) — d [Sw), Sy; Dal | < 4.
We shall deduce lemma 10 from (14.12) and (14.14).

15) In order to obtain bounds for the quantities d[{@, §;); Ds] which appear
in (14.12) and (14.14) we consider a different mapping of D, into the strip
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[r|<1. We put Z=X+:¢Y and

(15.1) =8+ 277” [/ log (1 + Z) + 4]

(15.2) s==log Z.

qlwn

Using lemma 1 we see that this gives a schlicht mapping of the strip |z| <1
in the s = ¢ + 77 plane onto the region bounded by the curve

(153) C gn 217” [zYlog(I+zY) —4“], — 00 < Y<+OO,

and lying to the right of the curve when it is described in the direction of in-
creasing Y.

The curve (15.3) coincides with C, for the arc given by (13.4) taking ¢ =Y.
Also C, lies to the right of the curve (15.3) for the points of C, given by
|t]=t. as we see from (13.7), (13.8) and (13.9). Lastly if { is a point on the
curve (15.3) which corresponds to | Y| <1, we have

+i1002
z »

< n.
4 37

— 20 |7
IC §n'<10g2

Hence no points lying in the region R, and satisfying

IC—_§"I>3”7"’7

can lie on the curve (15.3) and so in particular the whole of the region D,
defined by (14.6) lies to the right of the curve (15.3) and so is mapped into the
strip |z| <1 by the mapping given by (15.1), (15.2).

Again it follows from lemma 1, (2.2) that if

Z=X+1Y =exp 3(03—1-1'1:3)

corresponds to L = &) + ¢ by (15.1), (15.2), where &g < &,, then we have

gy log2| o XP+¥YP  gmelr
21 2 X zcos (wn/2)
Hence
z0'3 + 10 > 10 77 — A4,
2 "‘l 3|

Also if s =0, corresponds to ¢ =&, defined by (14.10), we have clearly o, = 4,
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so that

T
) Sy — log ——
(15.4) 2 (0, —ay) og . I’fs I

e
Nn

> log —A.

Now the mapping of (15.1), (15.2) maps the region D, into the strip |z]| <1, as
we showed above. Hence if ¢, s, correspond to (), {4y we have

d [Li), Sws Da] Z d sy, 545 7] < I]>§l°’3'—04l + ’ log — L

4 2 1— | 7]
making use of lemma 7 with the strip |¢|<1 for , and o, for o,, o5 + ¢ 7, for
6y + 27,. Combining this with (15.4) we have

(15.5)  [8s), Sw; Dn] > ; log lz;:)l—A-

We next note that in the mapping defined above by (15.1), (15.2) the curve
(15.3) corresponds to |7|= 1. Also this curve coincides with C, for the range
of values 1 <Y =¢{, where {, is defined as in (13.5). Thus it follows that in
the mapping of D, into the strip |v|< 1 defined by (15.1), (15.2) the endpoints
of the ares in which the circles

(15-6) |C“—§n|="

intersect D,, lie on the curve (15.3), and so correspond to points on z=—1,
7 = + I, respectively, provided that

(15.7) 37 <7 <irn=e 2 (Eus1— &)

We denote by D, the subdomain of D, consisting of all points satisfying (15.6),
(15.7). Then if we take D, for D, the mapping of D, into the strip |z|<<1
satisfies the conditions of lemma 8, provided that (10.3) and (10.4) are satisfied.

We take {, = &4 in lemma 8, where &y is defined in (14.10), and §;, = §),
where {5 is defined in (14.2). The conditions (10.3), (10.4) become

(15.8) e (& —E) < — &) S e = et (Eng1 — En).

If these are satisfied and o, ¢, correspond to ), {4 in the mapping as defined
by {15.1), (15.2), we obtain from (10.6)

(15.9) %(02 —a,) + 4> d L, Lw; Dnl > d [y, Lw; Dal,

since D, is contained in D,. Also we have from (13.1), (15.2),

» — 21n ] 7T 0y, ”] A
15. 7 n = 7 1 Lfl/2 s 4
(15.10) §ny—& o 2[9 og (1+e¢ ) + y =2, 4
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We put

£y —&n 7T
(IS.II) 7$]Og2~z=ui’
(15.12) en o2 =y

so that (15.10) gives
w; = v; log (1 + wi).

Since (15.8), (14.10) hold, we have

w>1, y>1, =2, 4,

go that
vi log 2 <u; <}
and hence
v; log (I + VQZ) < u; <vi log (1 + Jfl—)
log 2
Thus
log u; —log log (1 + B;%) < log v; < log u; —log log (1 + V),
and hence
(15.13) |log” v; —log" w; + log” log" w;| <4, i=2,a4.

Also from (14.10), u, = A so that v, = 4 by (15.13). Hence using (15.11), (15.12)
and (15.13) we have

§i — &n iy — é) <4

7 N +
(15.14) ;(02—04)——log (—77:—)-1— log+ log ( ;

Also since the mapping of (15.1), (15.2) maps D, into the strip |z| <1 so that
G = &4, @) correspond to s = o), 6i2) we have

d L), Sw; Dl > dloy, oy; lTl <1] = %(02 —ay).
Combining this with (15.9) we have]
n
lz(az —0,) —d [y, Su; Da] | < 4.

Combining this with (15.14) we have

AL G D Tog' (é‘(i Ti) + Llog" log® (§(L>n —_5)

M

(15.15) < A4,

provided that (15.8) holds.

16) We can now complete the proof of lemma 10. Having obtained the
inequalities (15.5) and (15.15), we go back to the original mapping of lemma r10.
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We have from (14.12), (15.5)
7](3)

Nn

7 I
(16.1) Z(O’(s)—ﬂ(g) + 5 log P — A

I

— |z |
provided that () = £4) is defined as in (14.10), s = oy is the image of { = &y in
the s plane and (14.11) holds. Also 6w > g, since on the real axis ¢ is an in-
creasing function of & Thus (16.1) gives a fortiori

I
-1
>20g,

: log"

N3
1‘“|T(3)| 2

7 1
16.2 —log —an) + - 1o
( ) 4( (8) ) 2 g n

_A’

provided that (14.11) holds. Also (16.2) is true if (14.11) is false since by lemma 4
we always have o(3 > on. Thus (16.2) is always true, which proves (14.5).

Next suppose that &;,7=5,6,... are real numbers to be defined and that
o) corresponds to &y in the mapping of (5.14). It follows from (14.1) and (5.6),
(5.11), that R,_; contains the circle C,

1E—2, | <1
which is mapped into the strip |z|<<1. Thus if
Eoy = En—37n

we have

7T 1 N +

Z(G(s) —on) = dlos, ow); || <11 <d[fw, §m; C] = log ;fi—%:

(163) 0'(5)"_0'n<A.

Similarly R contains the circle C,, |{— & | <#n as we see from (5.4), (5.5) so
that if

we have S0 S

(16.4) o) — 0w < 4.

Next if &y satisfies

(16.5) Gt im=Em=&L+ An <3} + &)
we deduce similarly

(16.6) om—op < 4

on considering the mapping of the circle C,

18— Eay | <& — &n,
which is contained in R,. We deduce from (16.6), that (14.4) holds if
(16.7) Enri—En < 3muet™
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In fact in this case we have from (14.2)
§(2) < §yz + A /e

so that we may take &y = &y in (16.5), and combining (16.3), (16.4), (16.6), we have
0<op—o, <A,

which yields (14.4).

Suppose next that (16.7) is false. Then if &4 is defined as in (14.10) and
ow corresponds to &y, we have from (16.5), (16.6), applied with &z = &4, and
from (16.3), (16.4)

(16.8) 0<aw—a.<A.
Fuarther if
5(4) = gn + 3 ??newz = 5{2) = gn + 3’0:;34”,

(16.3) to (16.6) shows that
O2) — O(4) < A,

so that again (14.4) follows. Suppose next that
(16.9) Ent3mmet” <&y =& + et (£ — ).

This implies (14.13) and (15.8) and so we can apply (15.15) and (14.14). This yields

2 (o — o) — “log® (F275) & Liog* log® (52 S
(16.10) 4(0(2) o) 2log( )+210g log( e < A4,

Yn

which combined with (16.8) yields (14.4). Suppose lastly that

(16.1 I) &, + 6'_4n(§n+1 — §n) =&y=1% (gn + §n+1)'

Then we write
o) = & + 6747 (Enr1 — &),

and see that (16.10) holds with o, &g instead ays), &2). Also if (16.11) holds,

&), 59 are contained in the circle Cj,
[E— & | < oy — &n

itself contained in R, so that C, is mapped into |7| <1 by the mapping of
(5.14) and hence we deduce again from (16.11)

S —&n + §(§) — &) <A
i) — &n

Tt I
2[6(2) —ap)] <d[&e), Ea; C] = 5 log

Thus (16.10) holds also if (16.11) holds. Thus (16.10) holds whenever (16.7) is
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false and (16.9) or (16.11) holds, and so (14.4) follows using (16.8). We have
already proved (14.4) in all other cases, when we have in fact

o< o —on<A.

This completes the proof of (14.4) and of lemma 10.

Converse Theorems when E is Unbounded.

17) We are now ready to prove the results involving problems (ii) and (iii
as stated in paragraph 1 of this chapter. We consider first problem (iii) which
is a little simpler. Let

(17.1) ple)=(1—0)% o0=<a<co.

What can we say about the rate of growth of f(z), if f(¢) is meromorphic in
|z]| <1 and takes some arbitrarily large values at most p(g) times in |z| <y,
0=<p<1. The positive results were obtained in Theorems V, VI and X of
Chapter 1I. We showed in Theorems VI and X that if a <1 in (17.1) we have

(17.2) E(I —o)log Mo, f,(2)] <o
1+4+a
(17.3) lim (1 — g)*~%log Mo, f.(2)] <o,
o1

while if @ = 1 it follows from Theorems V and X that

—— (1 — @) log Mo, £, (2)]
(17.4) e g ifa—g) 4

. (1 —g) log Mg, £, (2)]
(17:5) 19% log log (1/(1—g)

< 4.

All the results (17.2) to (17.5) are best possible as we shall be able to show by
examplés, constructed by means of the mapping functions (5.14), which we have
been studying. The inequality (17.4) represents no improvement on (1.5) the
result when E contains only two finite values. This will be seen to be in ac-
cordance with facts.

We may remark here that once the functions { = y(s) of (5.14) have been
introduced and studied by means of lemmas 1 to 8 it would be comparatively
simple to prove more gemeral converse theorems when p(p) is any sufficiently

smooth function e.g.
| ple)=(1—e[log 1/a—@)P ...,
17~ 642128 Acta mathematica. 86
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by taking other forms for the curves C, than those defined in (11.1) and (13 2)
to (13.9). The simple form of (1.1) or (17.1) for p(p) seems, however, to cover
all the essential points that arise. The whole work could have been simplified
considerably if we had been prepared to exclude the case @ = 1, which necessi-
tates the full strength of the preceding theory. This case is, however, in many
ways critical, so that its omission would be a serious gap.

The results which we shall prove are the following

Theorem II.! Suppose that p(o) is given by (17.1) where 0 <a <1 and that
(o) is a decreasing function of o for 0 <o <1 such that

ule)~>o, as ¢—1

Then there exists f(e), regular nonzero in |z| <1 and taking some arbitrarily large
values w at most p(o) times in |2] <p, 0<<o <1 and such that

i t—e) log Mo f1

17.6 li 0,

(17.6) pue #e)

: 14a

17.7) lim L@ log Mle. /]
) ﬂ(@)

Theorem III. Suppose that plo) is given by (17.1) with a = 1. Then there
exists a function f(2) regular nonzero in |z} <1 and taking some arbitrarily large
values at most p{p) times in | 2| <o, 0 <o <1, such that

= (1 —p) log Mo, f]

(17.8) 191-13 log (1/(1 — @) >0
(17.9) lim (1 —ellog Mo f[> o.

=i log log (1/(1 — @)

Introduction of the Converse Fanctions.

18) Before proving Theorems IT and III we introduce the general form of
the functions which we shall investigate. This has already been done tentatively
in section 5. We elaborate and recapitulate slightly. Let R be the Riemann
surface constructed by means of the curves C, and let

(18.1) F=vls)=cis+ ¢+, ¢>0

' This result was proved for a =0 in HAYMAN (2) Theorem VI.
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be the function of (5.14) which maps the strip || <1 in the s = 0 + ¢7 plane
1:1 and conformally onto JR. The curves (, will always be defined either in
accordance with (11.1) or as in (13.2) to (13.9). If C, is defined as in (11.1) for
all n, R reduces to a domain D, and ¥(s) maps the strip |z| <1, 1:1 and con-
formally onto” D. '

This case will suffice for all applications involving p(p) defined as in (17.1)
with a <1. In the case a =1, W(s) will no longer be schlicht. However, we
can only have

Pls;) = Plse)
for s, s,, if s, s, correspond to points in different sheets R, of R.
We shall put

(18.2) s=2 1*z

1
z BT

This gives a 1:1 mapping of the circle |2z] <1 onto the strip |z|<1, in the
s§= ¢ + 77 plane. We also put
(18.3) w = exp ().

Then the functions we require will be

w59 o= = e fo 210 ()]}

1—2z

Thus { =log f(¢) gives a 1:1 mapping of the circle 2| <1 onto the Riemann
surface R.

We shall also make use of the following notation. We write o, for the
unique real and positive number such that

(18.5) Plow =5n—ma, n=1.

We also write g, for the number corresponding to o, by (18.2), i.e.

(18.6) on = — log Ite.
l"_Q:L

Proof of Theorem II.

19) We now commence the proof of Theorem II. We shall define all the
curves (, in accordance with (11.1). We shall define the &,, 5, » = 1 by induction.}
We put

! We shall have to define the £, 7, so as to satisfy conditions (5 1) to (5.5). Of these (5.2}
(5.4), (5.3) are the only nontrivial ones. We shall see that they remain satisfied at each stage.



228 W. K. Hayman.

(19.1) =1,
(19.2) 7 = 1.
Thus (5.2) and (5.5) are satisfied for » = 1.
We shall also write k. for a positive number depending only on the §,, 7,

for v<n and on @, 0=<a <1, not necessarily the same, each time it occurs.
Using the above notation we have first

Lemma 11, Suppose that n=1 and that &,, v, v =1 to n have already been
defined. Then if Eny1> kn we can define fny1 such that

(19.3) %Q(O'nﬂ —3)<log fn+:1 < %Q(Gnﬂ — 1),

however, the &, n, for v>n + 1 are chosen. Moreover if (19.3) holds, f(2) takes the
value w1 = exp (— Ent1) at most (1 — g)~¢ times in |2z]| <, 0<p<1.

We proceed to prove lemma 11. Since &, 7, for ¥ =1 to % have been
defined, it follows from lemma 6 that, however the &,, 5, for » = n + 1 are chosen,
the variation of o, is at most 1. Thus we have

(194) On < ,Cn.

It now follows from lemma g, (11.2) that if s = o corresponds to § = & for £> &,
then we have

(0 —an) < log"

N1

E—&n
Nn

I
+ A, §n = § = 2‘(§n + §n+l)’
ie.

P + 1

27 <log" (§—&) + kn, En=<E= ;(gn + &nt1),
using (19.4). Since a <1 it follows that we can choose %, so large, that, however
7y or £y+1 for ¥ >n are chosen, we have

24

(19.5) o — 2) <log (& — &) = log (§n+1—&r)

when s = ¢ corresponds to [ = & = } (£, + &r+1) and
(19.6) Ent1>> kn.
We can also choose %, in (19.6) so large that

21 < §n+l - §m
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which is the condition (5.4). Suppose now that £, 7,, ¥ >n + 1 are chosen in
gsome fixed way and let 7.4, be varied from o to } (Enir—&r). If 9nir is very
small § = E,y; corresponds nearly to ¢ = co. Hence using (19.5) we see that if
7n+1 has a fixed small value 7n41, we can find & such that

(19.7) (& + Ener) <E <bntr1—1nnr

and ¢ corresponds to & where
Ta, , ’
(19.8) I’y (6" —2) = log (§nt1—§).

For in this case ¢ is a continuous function of & and since (19.5) holds when
E=3(8.+ Et1) and o is large when £ = £ty — 7n41, (10.8) must hold for some
¢ in the range (19.7). We now alter .41 to the value given by

’

(199) Yn+1 = a1 — &,

where & is the value of (19.7), and at the same time leave &, 7, for »>n + 1
arbitrary. According to the definition (18.5), s = 0,1 now corresponds to § =&
Also it follows from lemma 6, that

(19.10) |ons1—0o’ | < 1.

Making use of (19.8), (10.9), (19.10), we have
%Q(Gnﬂ - 3) < log a1 < EZE(O'HI - I),

which proves {19.3). Also from (19.7) and (19.9) it follows that
21 <Enp1—&n

so that 7,4; satisfies the condition (5.5) and the choice of 7.41 is legitimate.
Thus if (19.6) holds for each » the 7, can for » =1, 2, ... be defined so that
(5.4), (5,5) and (19.3) are satisfied.

It remains to prove the second statement of lemma 11. We note that if 2
is a point such that

(19.11) S(&) = wnyy = exp (—&ns1), n>o0,
then if s is given by (18.2) and { = y(s) is the function of (18.1) we have
(19.12) Y(s) = Ens1 + mas,

where m is a positive or negative odd integer. Since C, is defined by (11.1} for
all n the function (s} is schlicht in |z|<1 and so (19.12) can only bave one
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solution for each such odd integer. Also since R intersects the line R = &u4q
only in the segment {7|<7,+1 we must have

(19.13) |7mm| < fnss
if (19.12) holds. If F 1, T 3,... F M are the odd integers satisfying (19.13) we have
2 M <nM = nuiy,

so that the number of these integers and so the number of different solutions
of (19.11) in |z| <1 is at most #nt1.

On the .other hand, it follows from lemma 4, that if s = ¢ + ¢7 is any point
such that (19.12) holds, then we have

(19.14) 0 = Oni1

since s = gn+1 corresponds to { = &ui1— Nut1 by (18.5). Also if o + ¢z corresponds
to z =ge'® by (18.2) we have

so that from (19.3)
1+ 7
a (log l—__—g — ;) > log fn+1,

I
I—e

a log > log Nut1,

Pot1 < (1 — @)™

Thus if (19.11) has roots in |2z| <g, the total number of such roots is at most
fns1 from (19.13) and so is less than (1 —p)~% This completes the proof of
lemma 11.

20) We can now prove Theorem II. Suppose that the &, 7. are chosen in
accordance with the conditions and conclusions of lemma 11, so that (19.3) is
satisfied for all ». It remains to show that we can do this so that (17.7) and
(17.6) are satisfied. Let { =§ correspond to s = o by the mapping of (18.1) and
‘take first & =&y = }(5u + &Eny1). Then lemma g (11.2) shows that if o = o cor-
responds to § =.&, we hhave
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g
% (6h—an) <log" (5—"—&) + 4,
2 17"
so that
(20.1) ga; <log" & + kn
since
on < kn

by (19.4). We next take &= u41—%nt1 80 that ¢ = oyy1. Then the domain D
which is mapped by the inverse of (18.1) into the strip |z]<1 contains the
ecircle C,
Ig“_g;tl < &nia *§; =} (Ent1— En).
Since this' circle is mapped into |z|<1 s0 that s = 0%, on41 correspond to
&= &, Ens1— o1, We have
d[on, ons1, | 7] < 1] <d [Ent1 — Mnsr, &n; C]

i.e.
7 ’ 1 Enir—&n + Ent1— Mut1 —&n
—(op+1—0p) < = log T 7
4( n+1 n) 2 -4 §n+1 ___gn . (§n+1 — Ynt1— gn)
<: log Snt1 — b <1 log Snty
2 Mn+1 2 Nn+1
ie.

T (i — g ot
> (Un+1 O'n) <log Pt
Combining this with (20.1) we have
1
Nn+1

Using the first inequality of (19.3) this becomes

%O’n.{.l < 2 log &1 + log + ki

% ma
5 Ont1 < 2 log §n+1_7011+1 + kn,

(20.2) %(1 + a)ony1 < 2 log &ng1 + kn.
Suppose next that

(20.3) b1 = E< 3 (Easr + Enra).
Then (11.2) of lemma 9 gives

+§_—§ﬂ+l+A’

7
> (6 — ont1) <log —

(20.4) ~ (0~ owrs) <log § —log mass + 4,
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since from (5.4) we have
Nn+1 < i‘ (§n+1 - §n) < % §n+1 < % §.

Making use of the first inequality of (19.3), (20.4) gives
go<log§+g(1 —a)ops1 + 4
<log £+ 2-——2log kn1 + &
og T g 108 Sntr T

using (20.2), and hence we have, if (20.3) holds

7 2(1—a)
2¢r<[1+ p— ]log§+kn
B3 "% lo0

(20.5) 20<1+a10g’+k"'

Clearly (20.5) also holds if § (& + Ens1) <& <&n41, since ¢ is an increasing funec-
tion of £ and }(&. + &us1) > 4 Enrar. Thus (20.5) holds whenever

(20'6) %(gn + §n+l) S Y Enta).
Combining the formulae (18.2) to (18.4) we see that if
§=1vlo)
we have
log flo) = &
where
— o =log I——%

Substituting these results in (20.5) we see that

140
(20.7) log ) > (28)
whenever
(20.8) 36 + Ensr) < log (o) <3 (Ens1 + Ensa)-
Similarly (20.1) yields
(20.) log 1) >k 1
when
(20.10) log f(e') = 3 /& + En+1)-

We may assume that the constants %, in (20.7), (20.9) are the same. We can
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then choose g, so near 1 that
ule) <k

whenever g, <<p. We then choose §:11 so large that o’ > g, when (20.10) holds.
It then follows that whenever (20.8) holds we have u(g) < %y, and hence

I+ 9)u+a)/(a—a)

log f(e) > ple) (12

Since this inequality holds whenever (20.8) holds for some »> 1 it holds when-
ever log f(0) =4(& + &). Then (17.7) follows.
Again we deduce from (20.9) that

log f(¢') > n(e)~ e

7?7

and since this holds for some values of o' arbitrarily near 1, (17.6) follows.
This completes the proof of Theorem II.

Proof of Theorem III.

21) We proceed to prove Theorem III. The proof is similar to that of
Theorem II, but is complicated by the fact that we shall have to define the
curves Cp as in (13.2) to (13.9). Thus our Riemann surface will no longer be a
simple domain, and '{ = (s) will not be schlicht. This will make it a little
harder to obtain upper bounds for p(g) We continue to use the notation of
(18.1) to (18.6).

Let ¢>1, and let &, n = 1, 2, . . ., be any sequence of positive numbers such
that
(21.1) E =1
(21.2) Envi=2(8), n=1,2....

We shall show that the conclusions of (17.8), (17.9) hold for a function f(z)
taking none of the values

Wn=—exp&, n=1,2...
more than 1/(1 —p) times in |2]<p for o<g< 1. We need

Lemma 12. Suppose that the & satisfy (21.1), (21.2). Then given any real
constant k, we can choose numbers nn satisfying (5.4), (5.5) and (13.1) and the curves
Cn in accordance with (13.2) to (13.9) so that with the notation of (18.5) we hate
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7
(21.3) log n,,<;an—,——k+2n, n>0

(21.4) 1ogn,,>gan——k—-2n, n>n,
where n, is a positive inleger.
We choose 7, so that
(21.5) 7y = min [1, 7%, §7% (5, — §))].
Hence (5.4), (5.5), (13.1) are satisfied. Also we have
sE—m=§—1=0

using (21.1) so that since { = £, —#, corresponds to s = o,, we bave o, =0 from
(18.1). Then (21.3) follows for » = 1 from (21.5).

Next if we choose 7, very small { =&, corresponds nearly to o = 4 oo by
(18.1) and so does { =%, —7,. Hence we can find 7, such that

7y <3(5— &)
N <}et% (§3 — &),

so that (5.4), (5.5), (13.1) are satisfied, and in addition we have
log n2<%ag—k + 1.

Continuing in this way, we see that we can certainly choose the 7. so that the

conditions (5.4), (5.5), (13.1) and (21.3) are satisfied for » =1, 2, ..., n;. Next it
follows from lemma 10, (14.4), that if 5, has been so chosen and

(21.6) E =35 + &)

and s = o, corresponds to { =&, by (18.1) then we have

(21.7) %(a;—an)<log g";-—gn—~log+ log* 5;. §"

Also we have from (5.5), which we assume satisfied,

(2 I 8) Nn = % (gn_' §n—1-) = i‘ §n;
and so (21.7), (21.6) give

(21.9) g( n— on) < log

§n+l g, + + §n+1 gn
= ——-—log" lo
Tn g log £,
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Also it follows from (21.2) that
§n+1‘ En
2T P s

&n ’
so that if #, is sufficiently large (21.g) gives

(21.10) %(o;—an)<log§'~+l—j’—(l +@), n=mn

Nn

and also that (21.8) implies
(21.11) Nn=3}e " (Eur1—Ea), n=my,

if », is suffficiently large.

Suppose- that 7, . . ., s, have been chosen to satisfy (21.3). We proceed to
define 7, for n=n,. We do so by induction. Suppose that 5., » =n,, has al-
réédy been defined. Let
(21.12) b < E <&,

where &, is defined as in (21.6). Then if &' corresponds to £ we can make o
arbitrarily large for some § in this range and

Not1 < Eny1— §'.

Since also (21.10) holds it follows that if we give #u41 a fixed small value and

Yn+2, Nnts, - . . any fixed values, we can find ¢ corresponding to § in (21.12)
such that
(21.13) y—;—(o'—an)—=log§"—+ln;§+l,

where [ is any number such that I=—(1 + n). We now alter 7,4, so that if §’
is the number satisfying (21.13), we have

(21.14) Ent1—8 = pana

and we leave the numbers mni2, %ats arbitrary. It follows from lemma 6 that
o, on can be varied by at most 1 as a result of this. Also in the new nota-
tion ¢’ becomes on+1. Hence (21.13), (21.14) yield

(21.18) ganﬂ-—log Pnt1— (7—; an—log nn)_—l‘<n.

Now the 7, have been chosen so that (21.3) is satisfied forv=1,2,...n, n=n,.

If possible, i.e. if %a;—log <k + 1+ 7, we choose {=— (1 + a) so that (for
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some fixed choice of the #,, v > n)
7
(21.16) Eo‘"——log n+ 1=k
Then for any other choice of the #,, » >, we must have

7 7
;an—log m +1—k <;
by lemma 6.

Then (21.3), (21.4) for n + 1 follow from (21.15). If this is impossible we
choose ! =— (1 + ) and see from (21.15) that we have

21 3 4
S0 loggn—1 —2n<—£an+1——log nn+1<;an—log N — 1,

while (21.3) still holds for % + 1. Continuing in this way we shall have after a
finite number of steps for some m>n

E—(1 +n)<7~;am— log nm <k + =,

however the 7, are chosen for » > m. [Thus (21.3), (21.4) are satisfied for n = m].
We can then define ! in accordance with (21.16), and so (21.3), (21.4) will be
satisfied with » = m + 1. Similarly we can obtain (21.16) and hence (21.3), (21.4)
for n>m + 1, so that (21.3), (21.4) hold for n=n,=m. Also (21.3) holds for
all positive integers n.

Lastly it follows from (21.12), (21.14) that 5, defined in this way for n > n,,
satisfies (21.8) and hence (21.11), i.e. (5.5) and (13.1), which implies (5.4). Thus
the choice of #, is legitimate and so the conditions of lemma 12 have all been
satisfied. This completes the proof of lemma 12.

22) We show next that if the conditions of lemma 12 hold with any con-
stant £ and f(z) is defined as in (18.4) then (17.8) and (17.9) hold. Suppose that
n = n,, that

(22.1) En = 3 (8 + Ent)

and that s = o) corresponds to =&, by (18.1). Then lemma 10. (14.4) gives
— ' &

(22.2) %(";’ — ) <log L8 ogt 1op* 52_17_ +A.

Also by (s.5)
<} (Ea— En1) < 3 50 =} (Easr)'l0

from (21.2), so that using this and (22.2) we have
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[~ ___§ & —_ g
log" log" 22—23% = Jog" log* 2L __5"
g log Tn g log 21
> log" log” S > log” log” [(Guss) e — 1]
n

> log” log” &+1— A(c).

Hence (22.2) gives
a ., ’ + + T
o <log (§ — &) —log" log" & + S0 log 7. + A(c)
<log & —log log" & + &k + A(c)

using (21.4). We shall denote by &' any positive constant depending only on k
in (21.4) and on ¢. Thus we have

(22.3) %aﬁ; <log & —log log* & + k', n> n,.
Next if
Sy = Ent1 — fnta,
the domain R, contains the circle C, |{—&n]| <Eny1—&n = ¥ (Eay1—&x), so that
if § = opy1 corresponds to { = {1y we have

Z(

dloh, ont1; 7] < 1] = . Ont1 — an) < d [En, &; C]

1 3 (§n+1 — §'n) + (Ly — &) 1 Ent1
= =] < - log =—
2 o8 (1 — &) —Cm—&) 2 o8 n+1
I 28
< - log ——-
2 °g Nn+1

Combined with (22.3) this gives
%0’7,-'—1 <log & —log" log” &, + log & —log nas1 + &, 0> n,.
Using (21.4) to eliminate log 7,41, this yields

(22.4) ;—tanﬂ <log &n—4loglog & + &', n>n,
We now suppose
(22'5) §n+1 = g = % (§n+1 + §n+2)

£

S

and apply lemma 10, (14.5) with {y =& and » + 1 for ». This yields

£ —_
S”éw log* log" it 2 WY

44 +
—loc—o <lo
2 ( n+l) g Nn+1 Nn+1
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Using (21.4) with » + 1 for » we deduce

(22.6) o< log® (E—&n+1) —log” log” §_—-_§ni3 +k, n>n,
2 Nn+1

or

(22.7) o<ont1+ 4, n>n,

Now it follows from (21.3) and (22.4) that
log nni1 <log &n+1— § log log &ny1 + &/,

ie.
. _ k, §n+1
T (log Enia)”
Hence if
_ 5
(22.8) §—En41> {log 8"
we have

§— §n+1 > § . (10g §n+1

1/
1 >k (1 a
Nn+1 Ent1 log £ ) (log £) (log &)
so that (22.6) yields

(22.9) g—zta <log £ —log’ log® log" & + k-

Again if (22.8) is false we deduce from (22.6), neglecting the second term on
the right hand side,

7—:a<'log E—1log log" &+ X,

which also implies (22.9). Again (22.7) yields (22.9) using (22.4). Thus (22.9)
holds throughout the range (22.5), and since

% (gn + §n+1) > % §n+1=
it follows that (22.9) also holds for

(22.10) 3B+ Enr1) S E=< 3 (a1 + Enga), n>

Thus (22.9) holds for .
§2 %(5"0 + §7’o+1)'

We see from (18.1) to (18.4) that if ¢ is real and corresponds to ¢ and &

then we have
4 1+
=g =log ——»
2° ogl_e
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Thus (22.9) gives

1+ kg

T T loe” Tog” £ = n & .
I—p 1+ 10g+ Iog+ f’ § %(5 o T sno+1)

Hence if g = p, corresponds to & = 1 (&, + &n,+1), we have
;I 0 + + 1
12 10" logt —— .
§>k o 08 log P >0
’ I 1
log flo) >k P log log s 2> 0

This proves (17.9). Similarly if in (22.3) o = oy corresponds to o = g, we have

+

log i if; < log log f(gx) — log log log f(on) + ¥/,
so that
log floh) > ¥ —— log —

I— 0n I— Q’n’
for some values g = g, arbitrarily near 1. This proves (17.8).

23) To complete the proof of Theorem III it remains to show that we can
choose the constant % in lemma 12 so that the function f(z) takes no value

(23.1) wn = — exp. (&)

more than 1/(1—p) times in [2|<g. Consider a fixed value w,. The roots of
f(2) = wn occur when

(23.2) Y(s) = log wn = log & + maz,

where m is a positive or negative odd integer.
Let on, @» be defined as in (18.5), (18.6). Then if o <g, and z = g€ cor-
responds to s = o + 77z by (18.2), we have

1 4 get?

1—pe’

1+ 4
=<lo —&=—cn.
I'_'Qn 2

T
Zo=1
, 0 = log

Also it follows from lemma 4 that if ¢ < g,, the point o + ¢+ cannot correspond
to an interior or boundary point of the sheet R, by (18.1). 1t follows that the
equation (23.2) has no roots for s = ¢ + 27 with ¢ < ¢,. Hence also the equation

(23.3) Sfle) = wn

has no roots in |z|=<g, and so none of the equations (23.3) for any » have
roots in |z| <p,.
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Suppose next that
(23.4) om+1 = 0 = gui2, M=o,
and let p,.(g) denote the total number of roots of (23.3) for which
& =1og wy =& + mmi = log f(2)
lies in the sheet R, [as an interior or frontier point]. We must have
[mm| < Euy1—&u

by (5.12). Since m can take only odd integral values, we deduce from this and
the fact that { = log f(2) gives a schlicht map onto R, that

p#(Q) = I’M(I) = Z(E#‘*‘l - E/A) <Eur1— &,

Hence we have

H—1 Mt
,leu (@) <”§1 (Eurr — Bu) < By < (Emsa)ie.
by (21.2). Thus
M—
(235) log’gzp,u(g) <—; log §}_,{+1.

Now it follows from lemma 10, (14.4), that if

(23.6) §=8n =1 (Eu+ Eunr)

corresponds to s = ¢y we have

b

Ev—&n log* log" Sw—8u_ 4
nu

T,
; (OM GM) > log Tt

which gives

log §M_n;_§g < 3(03!—0.41) + log” (oh — ou) + 4.

Using (23.6) and (21.3) this gives, since Ey41> 2 &y by (21.2),

(23.7) log §u1 < ZztaM +log' o+ A—Fk.
Also since
3 By + Ex+1) =< Evt1— maria
we have
’ 2 1+op
Oy = oy+1 = - log
7 1—p
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by (23.4) and (18.6). Thus (23.5), (23.7) give

H1 1 1+e 1
loguzlp,, (0) < [log o + log log P +4 lc]
<«‘[ log — +A(c)—k]
e |78 1—e
since ¢> 1. Hence if
(23.8) k> A(e)
we shall have
(23.9) S pule) < -
23. < 0<p<1.
39 u=1p'u ¢ 3(1—o) ¢

Next consider p.(g) for u = M or M + 1, i.e., the roots of (23.3) in |2| < ¢ for
which
{ = log wa = & + mme

lies in the sheet Ry, Eyi1, respectively. If { lies in R, and corresponds to
s=g¢+ 47 in the strip |z| <1 by (18.1) we see from lemma 10, (14.5) that

mrEl_ A

J:—:(U—GM) + log—ﬁl—— > log

1’"!’”] Ny

This gives

(23.10) log|m|<ga+log}—_f~—+A—k

=l

making use of (21.3). Also if { gives rise to a root of (23.3) lying in |2| <o
then ¢ + 27 must correspond to 2’ = p' ¢!’ with o' < o. Hence

dlo, o+ 1; |5| < 1] =d[o, o' €?; | 2] < 1] = —; log iiZ'
Using lemma 7 we deduce

Toglteo 1y 1+e = 1 L

2log I__e>210g I__e,>40+ 2log P A.
Thus (23.10) gives
(23.11) loglm|_<_10gl_l_e+ A—EF

If m is the largest odd integer satisfying (23.11) we have p.(g) < 2m. Thus
we have
18- 642128 Acta mathematica. 86
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log pule) = log - i@ —log 3,

(23.12)

3(1—o)

Pule) <

if k> A. Taking u =M, M + 1 in (23.12) we have from this and (23.9)

(23.13) 2l <
Also since (23.4) holds, it follows from lemma 4, as we remarked earlier, that
the circle |2z]<p can contain no points which correspond to points { in the
sheets Ryts, Ryss, ... ete. Thus if p(p) denotes the total number of roots of
the equation (23.3) in }2| <o we have from (23.13)

M1 1

ple) = 3 pule) <1

3

provided that (23.8) holds with a sufficiently large constant A{c). Since we have
already shown that (17.9), (17.8) hold in this case, the proof of Theorem III is
complete.

Sets of Values E Having the Same Effect as the Whole Plane.

24) We now turn our attention to the last problem of this chapter, problem (ii)
of paragraph 1. It has been shown in Chapter II, Theorem VII, that if f(z)
takes none of a sequence of values w, which satisfy

(24.1) w, = 0,
(24.2) |nia| < klwn|, n=1,2..,
(24.3) |w,| = o0, as n - oo,

more than p(g) times in |z| < g for 0 <p <1, then we have

0% »
(244 tog M o, 7.1 = 0 [ 22 al
where '
1+2¢
2+

*
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No stronger result than this holds even if f(¢) takes no value more than p(o)
times, at least when

(24.5) pl@=(—@™ o=a<co

This was shown in Chapter 11, paragraph 21. Our problem is to what extent
the conditions (24.1) to (24.3) can be relaxed, without weakening (24.4). We
show first that we cannot greatly weaken (24.2), (24.3) when p(p)=1, ie.,a=0
in (24.5). Clearly (24.1) represents a mere normalization. In this case (24.4) gives

log Mo, fu(2)] = O(log ! )

I—pe
As a converse we have

Theorem IV. Suppose that rn is a sequence of real positive numbers such that
Tnt1
P
Then there exists flz) regular nonzero in |z| <1 and taking no value wy such that
|wn| = ra more than once and such that

log | fl@)|

log(i/(l-—g))—* + oo, as ¢ 1.

Although we cannot weaken (24.2), (24.3) much for all functions p(p) we
can do so if p(p) grows as rapidly as in (24.5) with ¢ >o0. In fact we showed
in Theorem IX of Chapter II that in this case we can replace (24.2) by the
weaker condition

(24.6) |wns1| <|wnlt, n=1,2, k=cons.>1.

This condition is best possible in an even sharper sense than that of Theorem IV.
We have in fact

Theorem V. Let E be any set of complex values which does not contain a
sequence of values wn satisfying (24.3), (24.6). Then given a, 0 <a =1 there exists
S(2) reqular monzero in |2z| <1 taking no value in E more than (1 — p)~¢ times in
|| <pg for o<o<1 and such that

lim (1 — )¢ log M [0, /] = oo.

o—+1
Thus the condition that £ shall contain a sequence satisfying (24.3), (24.6)

is mnecessary and sufficient in order that E shall have the effect of the whole
plane when p(p) is given by (24.5) with o<a < 1.
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Lastly when a> 1 in (24.5) it follows from Theorem V of Chapter II that
even the set E given by w =0, 1, oo is sufficient to result in (24.4). Thus the
proof of Theorems IV and V will dispose of problem (ii) of paragraph 1, com-
pletely when a>o0, and to a large extent when a = o.

Proof of Theorem IYV.

25) We prove first Theorem 1V which is much simpler than Theorem V.
Let #» be the numbers of Theorem IV supposedly arranged in order of increasing
magnitude. We may suppose without loss in generality that

(25.1) Yo = €
for some integer 7n,. Then we choose
(25.2) & =10g Tnyn—1, M =1,2,...

Since the », satisfy

Tatt
Tn

we shall have

(253) §n+1"'§n"’ o0,

Thus the numbers £+ — & have a positive minimum and so we can find 7,>0

such that
N < I

2ﬂ0<§n+1““§n, n=1,2,...
We then choose

(25.4) N="1y, B=1,2,...

and it follows that the numbers 7., §, satisfy the conditions (5.4), (5.5),

We shall define the curves C, in accordance with (11.1), so that & = 1(s),
defined as in (18.1) maps the strip 1:1 conformally onto a domain D), since the
sheets R, are non-overlapping. We define f(z) by (18.1) to (18.4).

Suppose that
(25-5) &)= 1

where |w,| = 7,. 1t follows that either n < #,, so that

(25-6) §=10glw"|<§1
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by (25.1) or n = n, so that
(25.7) § = log |wn] = Ennytr.
Also if (25.5) holds,

log wn =& + 72 arg wn + 2mme
must lie in D and in case (25.6) holds we deduce from (5.12)

|arg wn + 2ma| <§ —E =2
which can hold only for at most one value of m. Also if (25.7) holds we deduce
from (25.4) and (5.13) that ‘

|arg wn + 2ma| <gy <1

which can again hold for at most one value of m. Thus if (25.5) holds we

must have
log f(2) = log |wa| + 2 (arg wn + 2 wm)

which can hold for at most one value of m in all cases. Since log f(2) gives a
schlicht mapping of |z|<<1 onto the domain D, we deduce that (25.5) has at
most one solution in |z|< 1 for each wn.

26) It remains to show that

log | flo)]
I

I—e

—-> oo, as p > 1.

log
Since £, 0, 0 are related as in (18.1) to (18.4) this is equivalent to proving that
(26.1) §—++00, as §— + oo,

where { = £ correspond to s =0 in the wmapping of (18.1). Suppose

(26.2) =84+ Gtr)

and that s =0 corresponds to [ =£ Then it follows from (11.2), that if o, is
defined as in (18.5) we have

JE(o— o) <log' (E—&) + A+ log* L
2 o

(26.3)
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by (25.4). In particular if s = o, corresponds to

E=8 =45 + &)

we deduce

(26.4) ’23( — o) <log (£, —E)+ 4 + log -

Also the domain D contains the circle C,
[E—&] <&s1—En = 3 (Eari — &)
which contains the point § = Eus1— at1 = §av1— 1o by (25.4) and

d [§"+1~—170) g;l, C] - é 10 §n+1 §n No <§ lOg §’n+1 511.

Mo
Hence, since 6 = 0y, on+1 correspond to { = £n, &nt1 — fu+1, we have

75( I Ent1~— §n
%o

, I + I
—A\Ont1 — O'n)-< 5 ].Og 5 10g (§n+1 — §n) + lOg ;

(]

Combining this with (26.4) we have

7 1
£<O'n+l — O'n) < 2 log (§n+1— §n) + 2 log % + A.

Since (25.3) holds we deduce from this that

Op+1—0n

= 0, as n —~> 00,
a1 —

and so that

'—‘>O as n — o0,

En

Thus given ¢>0 we can find n, such that
gan <ekn, n>mn,.
Then (26.3) shows that if » > n, and (26.2) holds, then

7230< ek +log"(E—E&)+ 4+ log+—1—

/)

(26.5) ;—to<s§+log+£ + A4 + logt =

o
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Again if
(26.6) Pt &) =8=s&

we have £> 1§,. Since also ¢ is an increasing function of § we deduce in this
case from (26.5) that

7 1 o 1
2—a<2a§+log - + 4 + log .
Thus in any case we see that if either (26.2) or (26.6) holds for some % = n,

and £ is sufficiently large we have
4
50 < 3¢eé

so that this inequality holds for all sufficiently large £ This proves (26.1) and
completes the proof of Theorem IV. ‘

Proof of Theorem V.

27) We now commence the proof of Theorem V. The method is similar to
that already employed in the proofs of Theorems II and III. We use the defini-

tions and notation of (18.1) to (18.6). The preliminary result analogous to

lemmas 11 and 12 is as follows.

Lemma 13. Suppose that the conditions of Theorem V are satisfied. Then given
any positive constant K we can define the En, 1. and the curves Cy to satisfy the
conditions of paragraph 5 and in addition the following.

(@) (27.1) fi=1,
(27.2) Eom >3 (Em—1): m=1,2,...
(27.3) Eami1= A mbm, m=1,2,...

where A, is an absolute constant greater than 2. Further the set E of Theorem V

contains no value w such that
(27.4) Eam <log |w| < Eamt1, m=1.

(i) The quantities nn and o, satisfy

(27.3) (é~1) log §n+1—“(g(fn"'10g nn)+K|<A2, n=1,

where A, is another absolute constant,
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(iii) The curve Cn is defined as in (11.1) when n ds odd, and when n is even,
(13.1) holds, and C, ts defined in accordance with (13.2) to (13.9).
(iv) If the conditions (i) to (iii) are satisfied and f(2) is defined as in (18.4)
we have .
Lim (1—0)* log |f(e)| = + oo.

28) Suppose that &m—; has already been defined to satisfy the conditions
of lemma 13. We leave A4, undefined for the time being and define m, f2m+1
as follows. Suppose that E countains some value w such that

(28.1) E<log |lw|< A,mE
for any real § such that
(28.2) £> 3 (Eam-1)".
Then we can find w, in E such that
3 (A, m) (Eam—1)® <log |w,| < 3 (4, m)+! (E3m—1)
for every » = 1. The sequence w, clearly satisfies

log |wvt1] < (4, m)? log |w,|
and
Wy —> OO

contrary to the hypotheses of Theorem V. Thus we can find & satisfying (28.2),
such that E contains no value w for which (28.1) holds and we then define
Esm =&, Eam+1 = A, mE and we see that this inductive definition satisfies (27.1)
to (27.4).

Suppose next that #,, » =1 to » have been defined so that whatever the

values of 1, are for » > n, (27.5) is satisfied for 1, 2, ..., n. Suppose further, for
the present, that if
(28.3) =3 (En + Euta)

and s = o, corresponds to § = &, then

I T,
o) (1—1) 108 bura— [Zoi—t0g (oo — 5] + B> 2 4,
where A, is the constant of (27.5). Then it follows, by a now familiar method
that we can satisfy (27.5) with #» + I also. In fact we choose first all the 7,
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for » > n fixed and #n4: fixed and small, and since then ¢ increases with £ and
becomes very large if § = Ent1—7n41, We can find § so that

g;,_S E, = §n+1

and ¢’ corresponds to & where

1 T, ’
(285) (‘d — I) log &nys — [2*0 — log (§n+l -—E)] + K=2—A4,.
We then change 7,411 to the value given by

(28.6) Nnt1 = Ent1— &

so that ¢’ becomes or+1. It follows from lemma 6 that, however the N, V>0 + 1
are chosen this cannnot alter ¢’ by more than 1 so that

(28.7) |Ons1—d'|<1.

Using (28.5), (28.6) (28.7) we shall have

(i—l) log Enye — [zon.n——log "7"+X] + K+ Ag—-Z <§< 2,

from which (27.5) follows for » + 1 provided that 4; > 2 which we may assume.
Also we have clearly

(28.8) 1 < Ent1— En = 3 (Bt — &n)
so that (5.5) is satisfied. Further (27.1), (27.2) imply
a1 —En>bn—~E1, n=1,
since §, = — 1 by (5.1), so that it follows from (28.8) that nn+1 also satisfies (5.4).
Further if
(28.9) A, > 387+ 1
we shall have from (27.3)

Eamt1 — Eam > 36 Eam > 365 (Eam — Eam—1), m >0

so that (28.8) yields

Eam+1—Eam > 357 1mom.
Thus when # is even (13.1) is also satisfied provided that (28.9) holds so that
in this case we can define the curves C, in accordance with the conditions (iii}.
Thus the conditions (i) to (iii) of lemma 13 can all be satisfied provided that we
can satisfy (28.4) for all n>o.
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29) Now when n = 0, we have from (28.3), (5.1) and (27.1)
b=34(—1+1)=0

so that always ¢y = 0 and (28.4) becomes
(i-l) log & + K>2— A4,,

which is always true, since &, K are positive and we have assumed 4,> 2.

Thus we can define 5, to satisfy the conditions of lemma 13 with 4, = 3.
Suppose now that nm—: has already been defined to satisfy (27.5) with a

constant A, = 3. Then it follows from lemma 9, (11.2) that we have with the

notation of (28.3)

§;m—1 — §2m—1 + 4

2 (G — )< lo
2 am—1 " 02m—1 g Nam—t

S A
_ lOg S2m §2m l‘l'A,
Nam—1

ie.

7T, 7
log (Eam — Ezm—1) — > Oym—1 + 2 Gam—1— 10g am-1 + 4 > 0.

Using (27.5), which holds by hypothesis for » = 2m —1, 4, = 3 and (28.3) this

becomes

log (E2m — am—1) _;Ealam—l + (“IZ — I) log §om + K> — A,

which yields (28.4) for » = 2m — 1, with 4, = A on noting that &LHm <<&om+1.
Thus if (27.5) can be satisfied for n = 2m — 1 ‘with a constant 4, = 3, then
(28.4) holds for n=2m—1, with 4, = A and hence (27.5) can be satisfied for
n=2m, with 4, = A4, where 4 is an absolute constant.
Suppose now that (27.5) holds for n =2m with 4, = A. Then (14.4) of
lemma 10 gives with the notation of (28.3)

(29'1) q(ogm—o‘.’m) < ]ng—log+ 10g+ (gim—‘ghn) + A
2 Nam nzm

Now we have
Nom = %(gﬂm — Eam—1) < 3 &am

so that from (28.3), (27.3) we deduce
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g‘;m s §2m > §2m+1 e §2m
N2m §2m

>Am—1.

Thus (29.1) yields

(29.2) ;E(G,gm — Oam) < log Som — Som _ log* log* A,m + A

2m
Assuming that (27.5) holds with a certain constant A, = 4, when n =2m we
deduce
(le — 1) log Eymt1 — 723 la’m — log (§am — §2m)] + K+ A4—1log" log" A4,m>2—3.
Since fam+1 < Eam+o this yields (28.4) with » = 2m and A, = 3, provided that the
conatant 4, which has hitherto been left undetermined is so chosen that
log* log" 4, > A.

Thus if 4, is a suitably large absolute constant and (27.5) holds for n = 2m — 1
with A4, =3, we can ensure that (27.5) holds for » = 2m, with 4, = A and for
n=2m+1 with 4, =3 We have already shown that (27.5) can be made to
hold when » =1, with 4,=3. Thus we can ensure that (27.5) holds for all
values of » with a suitable constant A4,, if A, is a large absolute constant.
Hence we can satisfy conditions (i) to (iii) of lemma 13.

It remains to prove (iv). We use {29.2). This yields

gO"ZM < log (53m — &om) + Zﬂgm —log nem — log” log* m + A.
Using (27.5) this gives

) log E2ms1— log” log" m + A + K
< ‘I—zlog Eymi1—log  log"m + A + K,
using (28.3); and a further use of (28.3) gives
T, LY + +
S Oam < a log &m —log* log" m + O,

where C is a constant independent of m. Hence

(29.3) lim go'm — i log &am = — 0.

m—r R
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Also if f(z) is defined by (18.1) to (18.4) and

T, 1+ 0am
bt = log —="
20'2m ogI —~ 0am

we have
log f(e2m) = &im.

Thus (29.3) gives

1+ Q,Zm

I ,
log - e a log log f(gam)~> — oo,

ie.

I‘_‘Q;m a ’ ’
(1 T Qfm) log floam) > + o0, as gim —>I.

This proves lemma 13 (iv) and completes the proof of lemma 13.

30) To complete the proof of Theorem V it remains to show that if f(e)
is defined as in lemma 13 then we can choose the constant K of that lemma
so that for o <@ <1 f(¢) takes no value of E more than (1 —p)° times in
|z| <o. Let

(30.1) w =exp (£ + ¢n)
be a value of E. It follows from (27.4) that we must have either

§=&

or alternatively
(30.2) bom1 =E<bm, m=2,3,...
Consider the equation
(30.3) f@)=w.
It has solutions only where
logfle)=8+in+2vai
and exactly one solution corresponding to each point
S§+tin+2vm
lying in some sheet R,.

Suppose first that |2| < g,41 where the p, are defined as in (18.6). Then it
follows that z corresponds to a point ¢ + 77 in the s plane by (18.2) where
2 1 + 9n+1

=- 10 - =6n+1.
n gI_Qn-I-l
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Thus it follows from lemma 4, that in the mapping of (18.1) the point
¢ + 7t cannot correspond to a point { lying in the sheet R,4;. Thus the value
of log f(2) lies inside or on the frontier of one of the sheets R,, R,, R,, ..., Rn.

In particular if |z] < g,, log f(2) lies in R, so that we have from (5.12), (27.1)

larg f(2)| <& —& = 2.

Thus f(z) is schlicht in |z| <, and so takes no value more than once and a
fortiori not more than (1 —g)~® times in |2| <p if ¢ <p,.
Suppose next that

(30-4) 0n=0=Qnt1, BW=1.

Let w, given by (30.1), be a value of E, consider the roots of (30.3) which lie
in |2| < g and let p(g) be their total number. We divide these roots into n + 1
groups according as the corresponding value of

¢ =log w = log f(2)

lies in the sheet R,, u=o0 to n.! As we remarked above, { cannot lie in R,
with g > n, if (30.4) holds. We denote the corresponding total number of roots

of (30.3) in |z| < g by pule).
If { lies in R, we have
C=logw+2mmne

for some integer m. It follows from (5.12) that we have in R,
'3 gf < §u+1 "~§@t-

Hence there can be at most
1
i(§y+1 — g,u) +1

different values of m. Bach of these gives rise to exactly one root of the equa-

tion (30.3), so that we have

Eur1 — 5 + 1 <Epr1— &,

Q-

Pulo) =

making use of (27.1) to (27.4). Thus we have

n—2

(30.5) I <Z Een—h) b1, n22

! A point on the frontier segment of Rn—1, Ru we consider as lying in Ra.
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Now if n is odd so that C, is defined in accordance with (11.1), we have from
lemma 9, (11.3)

E . + §_ gn .
; (06— 62) > log e A,

if £ <& <} (&nt1 + &) and s = o corresponds to § = £&. Choosing { = &ni1 — nt1 =

= } (& + &ut1), so that ¢ = 0,41, we deduce a fortiori

— £
7 (Ont1— 60) > logm — 4.
2 Tn
Also since » is odd and so
&1 > 368

from (27.3), we deduce

log &n1 < 'Zon-l-l + log 7 — ;—ron + A.
Making use of (27.5) this gives

1 T
; IOg §n+1 + K< 50',;-{-1 + A,

10g §1L+l < ga [011+1 + A] —a K.
Hence if #» is odd we have
10g §n+1 < Za Op4+1 — log 20,

provided that
(30.6) K> Ala)

We deduce that whether » is even or odd, we have always

I

log £,1 < ? o, —log 20, n=2
if (30.6) holds. Using (18.6) we deduce
I {1+ @.\*
= — (== >
(307) §n—1 +1=2 §n—1 < o (I _‘Qn) , h 2

provided K is suitably chosen.
We deduce from this and (30.5) that

(30.8) Zow(e) <i(1—e) =11 —0)% n=z2,
=
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if (30.6) holds, using (30.4). We define the left hand side of (30.8) to be zero
if w <z

31) Consider now p,lp) for w =n, n—1. If (30.3) holds for w in K and if
(31.1) {=logw=EE+in+z2mme
lies in E,, then we must have either u =0, or g 0dd, or x even and x>0 and
(31.2) E=<§,,

making use of (27.4). If w=o0 (31.1) can hold for at most a single value of m
as we have already seen. Suppose next u odd. Then O, is defined by (11.1) and
hence if { = log w corresponds to ¢ + 77 in the s plane we have from lemma g, (11.3)

n+2mn

1 1 .
(31.3) 5(0_0")+10g1———Tx_|>10g 4.

Nu

Similarly if u is even and (31.2) holds, so that C, is defined by (13.2) to (13.9)
we have (31.3) from lemma 10, (14.5). In either case we deduce

I

(31.4) log|n+2mn|<go+log +logn,,—72£a,,+A.

1—|=

Making use of (27.5), (31.4) gives for any pu =1
7 1 I
(31.5)  log|n + 2mm| <o+ log =T + (1—(—1) log §u+1— K + 4.

Also we have from (5.12)
|9+ 2ma| <Eur1 — 8 <Euwr, n=1,

if (31.1) holds. Thus (31.5) gives

1 ¢4 I
(316) a10g|n+2’ﬂlﬂl<2—0+10gl——,7,+A_K.

Now if |z| = ¢’ and 2 is a point such that f(¢) = w, where log w lies in R, and
z corresponds to ¢+ ¢v in the mapping of (18.2), then we have
I 1+ ¢

4 1. T
(31.7) 2_10g1—g_'>20+:_210g—__1—|'r| A

making use of lemma 7. Also p,(g) does not exceed the total number of values
of m (positive, negative or zero) for which (31.1) holds with { corresponding by
(18.1), (18.2) to a point z in |z| < g. Thus (31.6), (31.7) give
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1te . 4 g
—e

I
_ log [pule)— 1] < log :

We can take A (a) in (30.6) so large that this gives

log [ple) — 1] < a [ tog 1= —1og 10
<alog ———1
alog r——log 5,
(31.8) pule) <i(1—o)*+ 1.

Now [ given by (31.1) can only be interior to R, if £ <&, and in this case {
cannot lie in R, since O, is given by (11.1). Hence (31.8) applied with u = 1, gives

Pole) + mle) <1 +3(1—0)
Since p,(e) + »,(p) is an integer, we deduce from this that
polo) + o) = 1=(1—0)°

if (1—g)~ <35 and
pole) + pile) =3 (1—@)*<(1—9)°

otherwise. Hence in any case we have
polo) + pyl@) = (1 —e)™*.

Since { =log f(¢) cannot lie in R, with u =2 if |z| <, this proves that p (o),
the total number of roots of f(z) =w in |z| < g, is at most (1 — )¢, for ¢ < g,
and any w. Suppose next that (30.4) holds with » = 2. Then we have

(1—g*=(1—g) =5

from (30.7). Hence we have from this and (30.8), (31.8)

éopy (0) <:§:m (@) + pn-1(o) + pnlo)

<${(1—@+2[1+}i(1—0I=G+ 8 —0

Thus again the equation f(z) = w has at most (1 — )~ roots in |z| < o when w
lies in F. Hence this is true in all cases and the proof of Theorem V is complete.
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