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Introduction,

1. Let f(x, y) be an indefinite binary quadratic form ax® + bzy + cy?, with
positive diseriminant d = * —4ac. A wellknown theorem of Minkowski states
that, for any real numbers x,, y,, there exist integers z, ¥ such that

I
,f(x—l— xo: Yy +!/o)|521/d,

the sign of equality being mnecessary if and only if f(x, y) is equivalent to a
multiple of xy.

Heinhold [1], Davenport 1], Varnavides[1] and Barnes [1] have found better
estimates for the minimum for non-critical f.

Recently Davenport [2, 3, 4] studied the special forms 2®+ xy—#® and
5a®— 112y — 54" and obtained interesting results about their minima. Varna-
vides (2, 3, 4] applied Davenport's method to the forms 2*—2y% 22— 74*, and
#*—11y%. In this note we give straight-forward geometrical proofs of Varna-
vides’ results about the forms 2® —7%® and z*— 11 4%

The results we prove can be stated as

Theorem 1: Let f(x, y) =2*—74% Then given any two real numbers xy, y,
we can find x,y such that

(r.1) x =z, (mod. 1), y =y, (mod. 1)
and
(1.2) |/ (@, ?/)Ié?%

! This note forms a part of author's thesis: Some Results in the Geometry of Numbers:
approved for the degree of Ph,D. at the University of Cambridge.
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The equality sign in (1.2) is necessary if and only if

(mod. 1), yo= + ?5; (mod. 1),

N |

(r.3) Ty =
If x,, y, do not satisfy (1.3) we can replace (1.2) by

(r.4) e ) <5

Theorem 2: Given x, ¥, any two real numbers, we can find (x, y) such that

(2.1) x =2z, (mod. 1), ¥ =1y, (mod. 1)
and
(2.2) ot — 11y < 2.

The sign of equalsty in (2.2) is necessary if and only if

(2.3) Zo ==~ (mod. 1), yo= *+ e (mod. 1).

For all zy, y,, not satisfying (2.3), we can replace (2.2) by

-3

(2.4)" |2t — 11yt < ——

Proof of Theorem 1.
2. We first prove

Lemma 1.1: Let (x,, y,) = (é, + YSZ) (mod.1). Then for all (z, y)=(x,, y,)(mod.1),

|x2—7y’|2%. For some of these (x,y), for example (E, +—%), the result

2’ T
holds with the equality sign.

Proof: All (z, y)=(zy, y,) (mod. 1) are givenbyx =a + =, y=b * —5~, where

14

N

a and b are integers.
For these x, v we have

=21

! These results are slightly stronger than those of Varnavides in that we do not have the
sign of equality in (1.4) and (2.4).

21=2,

2 _ 52l
(r.5) |2 —74% A

ad+a—70Fs5b—
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since a®*+a—7b* F5b is an even integer for all the a and b. The sign of
equality in (1.5) arises when, for example, 2 = b = 0. This completes the proof
of the lemma.

3. Suppose now z,, ¥, is a pair of real numbers such that

(16) For all (2, 3)= (e g0) (mod. 1), |2* —7y*| = -

After Lemma 1.1, ¢t will suffice for the proof of the theorem to show that x,, y,
must satisfy the relation (1.3).

The rest of the proof will, therefore, be concerned with the proof of the
above.

Let y, be the unique number for which

I
*5<?/1S y Y1 =19, (mod. 1).

N |

Consider the values of x satisfying the relation
g2 1 2 .2
x 7y1<l.56_(x+ 1)’ — 74
The above is equivalent to

s - U . 2_ 32 = 2
x<1.56+ 793 = b (say) <(z + 1)},

ie.
—b<<z<b,
and (a)
etther x + 120, or x+ 1< —}

Since it is impossible for x to be simultaneously less than —b—1 and
greater than — b, we must have x =5 —1.

Now b— 1> —b, since b>§ Therefore (*) is satisfied if and only if

b—1=<x<b,

i.e. the values of x form a half-open interval of length 1. This interval con-
tains a unique number z, =z, (mod. 1). Therefore there exists one and only one
pair x,, y,, such that
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{1, 91) = (2o, 9o) (mod. 1), —

1
wf*7yf<§5£(x1 + 1) — 74

Similarly there exist unique numbers x,, y, such that

&3, Yo = (%o, o) (mod. 1), — ; <y = é: and
(1.8)
1
ﬁ‘7ﬁ<;ﬁfﬂ%“ﬂy_7ﬁ-
Clearly ¥, = y,. We suppose
(1.9) Oé?h:?/zg;'
The procedure for negative y, is similar.
By (1.6), (1.7) and (1.8) we must have
1 I
(1.10) I?—7y55‘—;gg, $?~7y§§‘—;gg'

4. We now introduce a few definitions.

Definition 1: A point P(x,y) in the x—y plane will be said to be “con-
gruent’ to the point Q(«, y') if we have

(z, y)=(, ) (mod. 1).
We will then write P= Q.

Definition 2: We shall call two regions K and § in the x—y plane “con-
gruent” regions, if a translation through integer distances parallel to the axes
changes R into § and vice versa. We, then, write BR=S.

Obviously if R= 8, every point in R has a congruent point in S and vice
versa.

Definition 3: A translation &, » will mean the translation through a distance
m parallel to z-axis and #» parallel to the axis of y.

5. Now, let us represent a pair «x, y of real numbers by the point P in the
z, y plane with co-ordinates (z, y). Then we have only to prove:

“Let Py(xy, yo) be a point such that no point congruent to it lies in the region
C: defined by the imequality
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ORI B
|2* = 79" | <175

Then P, must be congruent to one of the two points (:—12, + i)

(4
A

B c c B A

Fig. 4 Fig. 5 Fig. ¢
Figs. 1—8.

I

6. Let A, B, Cand D be the arcs of the hyperbolas z* —7y? = + —.
1.56

Then € is the open region included between these arcs. (See fig. 1).
Let the line y = ; meet these arcs in the points A, B, B and 4 as shown

in the figure. Move the part of A, lying between 4 A and the z-axis, through
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a distance — 1 parallel to the x-axis. Let it take up the position CD ¥V, with
the points €, D and V on 4 A4, C and the z-axis respectively. Clearly the equa-
tion of CDV is (x+ 1)2—7¢% = ;%

Also move the part of I3, between 4.4 and the z-axis, through distance 1
parallel to the z-axis to take up the position CD ¥, as shown in figure 1. The
equation of CDV is (x—1)?—7y* = 156

Denote the closed curvilinear triangles BCD and BCD by R and R.

Then the relations (1.7), (1.9) and (1.10) mean that there exists a unique
point P,= P, in R, while relations (1.8), (1.9) and (1.10) mean that there is
just one point P, congruent to P, and lying in R.

Clearly it will suffice for our theorem to show that ‘P, must coincide with

(1 i)n
2’ 14)

For convenience of reference, we tabulate below the co-ordinates of the ver-
tices of R and R. R is obviously the image of R in the y-axis.

Table 1.
Point Curves on which it lies Co-ordinates
e e T @ Iy _
B |y S &Y 156 (‘/156" 2) (1.053 ..., o.5).
_1 8,2 L ii_ o
C |y > @+ 1)—7y 156 (|/156 I, 2) (0.546 ..., 0.5).
2__ 2=_# 2 ___ e _ _14 2 ’ ’ .
D |x*—7y 156’ (+1)—7y 156 (78’ y)(the value of " unimportant)
Image in y-axis of
B B (—1.053..., 0.5).
C o} 4 (—o0.546 ..., o0.5).
D 1 ,)
D ( 28 Y
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7. Let the translation &, change &R into R’. Then we assert that R’
consists of three parts (see fig. 2)
i) 7z, which lies in T,
ii) the closed curvilinear quadrilateral &,, which lies in R, and
iii) the region &, which lies outside € as well as . The above assertion
will clearly follow if we can show that
1. the upper vertices of R’ lie to the left of C,
2. the lower vertex of R’ lies inside €, and
3. the hyperbolic arcs in the boundaries of R and R’ meet each other
in single points.

We first observe

Lemma A: Let ( be an infinite arc of a hyperbola. Let A B be a finite
arc of a hyperbole 2, whose asymptotes are parallel to those of C Then, if
4 and B lie on opposite sides of (, 4 B intersects € in a single point; but, if
A and B lie on the same side of ¢, 4 B meets  in two points or none.

Proof: Obvious, since ¢ and % cannot intersect in more than two finite
points.

After Lemma A, 3 is a direct consequence of 1 and 2.

The condition 2 is obviously satisfied since the lower vertex of R’, i.e. the
new position of D, lies on the line DD: y =y’, at a distance less than 1 to the
right of D, and since the arc D C is at distance 1 from A.

The condition 1, too, is easily verified, since the co-ordinates of the upper
vertices of R, obtained by adding (1, o) to those of B and C, are (—.053 ..., .5)
and (.453 ..., .5) while those of C are (.546..., .5).

Consequently our assertion about R’ is true and fig. 2 is correct.

Now R is congruent to FR. Therefore R’ contains a point Q= P,= P,,.
As @ cannot lie in <, it must lie either in R, or in §; we include the common
boundary in <R, only.

Now, let the ‘translation i o change & into &'. We assert that & will
consist of two parts i) =, lying in % and ii) the closed curvilinear triangle R,
lying in R. The assertion will clearly be justified if we can show

1. The upper vertices of § are situated relative to B and C as shown in
fig. 2, and

2. The points of intersection between the boundaries of R and &’ are as
shown in fig. 2.
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After Lemma A, 2 is a direct consequence of 1, which in its turn follows

from the fact that the co-ordinates of the upper vertices are (.946 ..., .5) and
(1.453 ..., .5) while those of C and B are (.546...,.5) and (1.083 ..., .5) re-
spectively.

Therefore the figure is verified.

Now if the point @ lies in & a point @ = @ =P, will lie in §'. As ¢
cannot lie in €, it will lie in JR,. So that we conclude that a point = P, lies
in R, or R,.

As both R, and R, lie in R and R contains just one point P,= P,, P,
must obviously lie in R, or R,.

Similarly, we can prove that P,, the point in R congruent to P,, must lie
in (‘721, 532, respective images in y-axis of R, and R,.

By considering the equations of boundary ares of R,, R,, R, and R, or
by simple symmetry considerations, it is easily seen that R, = R, and R, = R,

Let the vertices of R, be E, F, G, and H, those of R, be E, F, G, and
H, of R, be K, L and B while those of R, be K, L and B, as shown in fig. 3.

Join £G and EG. Draw the lines KM, KM parallel to y-axis to meet
BB in M and M. These lines divide FR,, Ry, Ry, R, in two parts each. These
parts bave various congruence and symmetry relations e.g.

1. EFG is congruent to EHG and symmetric with respect to y-axis to
EFG.

2. KBM is congruent to KLM and symmetric with respect to y-axis to
KBM.

In view of these relations it will suffice for the proof of Theorem 1 to prove

statement A viz. “FEvery point, except ( ), of KLM and FE G H has a con-

I 5
2’ 14
gruent point inside C'. For, if so, because of congruence, every point, except
(—— ;, i), in KBM and EF G will have a congruent point in €, and, then by
symmetry, every point, except (é, i), of KBM and EF G will have a con-
gruent point in C. Combined with the statement A this will mean that every
point except (é, 1—54-) in R, or R, has a congruent point inside C, so that Py,
which lies in R; or R, and has no congruent point in €, will have to coin-

cide with the point ( i) and the Theorem will follow.

I
2’ 14
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We now prove statement A in the Lemmas 1.2—1.4 below. For convenience
for reference we tabulate the co-ordinates of some points.

8. Lemma 1.2: Every point in KL M has a congruent point in €.

Proof: Let the translation & . change KL M into K'L'M'. (See fig. 4).

Then
K =K+(3 1)=(4, 1.484 ...) lies in €,

since
?__ 211 o .
[4°—7(1.484 ...)%] <'58"'<1.56 641 ...
also,
L' =L +(3,1)=(3.946 ..., 1.5) lies in €,
since

1(3:046 .. )* — 7 (1.5) | < 7(1.5)* — (3.9)° = .54 < ?I?é'

As the triangle K'L’'M’ lies entirely within the rectangle formed by the lines
through K’ and L’ parallel to the axes, the above implies that K' L' M’ lies in-
gide € and the lemma follows.

Lemma 1.3: Every point in EH G excluding a closed curvilinear triangle
EN @ has a congruent point in .

Proof: Let the translation & _; change EH G into E'H' G'. (See fig. 5).
Then,

H =~H+(1, —1) = (1679 ..., —.603 ...) lies inside T,
since
1.
[(1.679 ... —7(.603...)}| <2.89—2.52= .37 < 156
G'= G+ (1, —1)= (1.5, —.5205 ...) lies inside T,
since

[{(1.5)2 —7 (5205 ... <2.25—1.75 = .5 <1

1.56
v
E=E+((1, —1)= (1.5, l/ 710—39%—— I) lies below the boundary 2 i.e. in
that part of 2* — 7y* < ——1—15—6, where y is negative, since
139 : 1
2——- ———— — — —_————— = ——
(1.5) 7( 7002 1) < —.646... < 156 641 ...

This proves that the position of the points E’, G’ and H’ is as shown in fig. 5.

64
‘l.8...=1+‘/——-
464 273
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We also observe that £ H” and H’' G’ are arcs of hyperbolas with asymp-
totes parallel to x + V7y=o.

By Lemma A, E'H meets D in a single point, N (say). As E' G’ is a line
parallel to the y-axis, it intersects 2 in one point, @' (say). The arc G’ H' arises
from B by a translation Fs -1 =T, 0+ J1,0 + 1, -1. Therefore its equation is

) S
(r.r1) ==l + =
The equation of D is

2 __ 2 .
oc 7Y 1.56
Therefore, eliminating y between (1.11) and the above, we find that the
points of intersection, if any, of G' H' and 2 satisfy the equation

2 _
o= — X5y (3 I4) _ gt B4, 175X39— 196

r — 2
39 39 39 39

This has a negative root. Therefore, as all the points on G’ H' have a posi-
tive abscissa, there is at most one point of intersection of G' H and 2. But
by lemma A, the points of intersection of G’ H' and 9 are two or none. There-
fore G’ H' does not intersect 2.

The equation of A is

1
2 _ 2 .
“ 7Y 1.56

Eliminating y between (1.11) and above, we see that the points of inter-
section, if any, of G' H' and A satisfy the equation

oy 2__ o8 L .2 7).
0= (1—3x) 7x+r.56 2x 6x+(1+1‘5)

As this equation has no real root, @' H' does not intersect cZ. Hence the
position of E' G’ H' is as shown in fig. 5. The translation J_, 1, i.e. the trans-
lation inverse to i, -1, changes E' N’ @ into EN Q of the lemma.

9. Now we give an easy lemma which we shall apply later.

Lemma B: Let a> o0, » > 1, ;< 4, be any three real numbers. Then, if N<a

be a positive number, we can find an integer n = 1, such that

a<Ny»=<ar.
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Proof: Obvious, since we can find » =1 such that

a< Nrt=<ar.

Lemma 1.4: Every point, except (—;, %), in the closed triangle £ N @, has
a congruent point in C.

Proof: The equations of the boundary arcs of N @ are

" A 2 __ 2 _ -
EN: =7y 156
1
. 2 _ . s\ T
N¢Q: (x+1)—7{y—1) »T
EQ: z = ; (by definition).

Therefore the co-ordinates of ¢ are

z=1 y=1~[5(9+2—5)]%=(i 35734 )
2’ 7\4 39 2’
As the co-ordinates of E are (%, .35677 .. .), R, the point with co-ordinates

(é, ;52) = (é, 35714 .. ) lies between I/ and @ on the line E¢.
Let RST, the line y = % through R, meet NQ and EN in S and 7 re-

spectively.

Then the co-ordinates of S are (Vﬂg~ 1, i) = (-5006 ey i), and
1092 14 14 ‘

those of I' are (]/3—75—, —5—) = (.5018 ey i) Therefore the position is as
: 1092° 14 14

shown in fig. 6.
Consequently every point of £ N @ has co-ordinates (é + a, ;5; + ﬂ) where

0=« <<.0019, — .0004<f < .00021.
Therefore the points of £ N ¢, excluding (é, 1—5;) form a subset of the set
X consisting of points (é + a, i + ﬂ), where

(r.12) 0=a<.0019, |B|<.0004, (e 8)(0,0).
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It will consequently suffice to show that every point of £ has a congruent
point in .

Suppose it is not so. Then let (z, y') = (é + ay, }52 + 16’,) be a point of 3

such that all points congruent to it lie outside €.
Then, we have '

(1.13) o<e, +|8,|V7 < 0019 + (.0004)(2.7) < .003,

and, for all rational integers z, v,

oo oo i)
rre T2 7\Y (5’1‘14

- I

(1.14) —Gg'

First suppose §, = 0.

The relation (1.14) implies that, for all rational integers z, ¥, we have

2 2
edenf oo

a9 =3+ 2v7) + @ rava)

1 .
= —— le

1.56°

2

T=(-2v7) + @-avnl|= =

for all integers £ = + yV7 and their conjugates & — x — yV7 in the field
(V7). )

Write ¢ for the fundamental unit 8 + 3V7 = 15.93 ... of (£kV7).

Take £ defined by the relation

{3 9 [ 3.9y ) o 1 3
£ (2 + I41f7) (2 + I4V7)fz , » an integer.

Obviously

§ = (§ * 2V;)(I —22%) = (g + 3 V) (@ —o') — -
2 14 2Vy
is an integer since ©" — 7" =0 (mod. 2 V7).

Dividing (1.15) by ,{g— (g + 2 V;)}{g'_(

14

il

3

2

(g L 21/;) (3_21/;)' _9,
2 14 2 14 14
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we have
@+ B V7 an e—@Vy; 1| 1 14_ 14
(1.16) L L el T e Y
3+35v; 9y, 3
2 14 14 2
for all ».
Writing @+ 4 Vy = ¢ and ﬁ—_——‘ﬁ = ¢, (1.16) becomes
3.2y, 3_2y;
2 I4 2 14
’ s 14
—_ 2n — 2 > T
(1:16) 1—ewtrl 1= ¥ = A
for all n.

Now, as 7> 1, from (1.12), we have, for all n =1,

(1.17)  |1—o' 72| <1+ Mﬁ~o%< P+ =223 L m (say).
(gw . 3) T 250(.17) 14,000
14 2
We show now that in Lemma B, we can take
r=fz’,a=£, Ay =1— 14 and N =og.
r 14.04m
For, r>1, and o <N < g follows from
O< Ny = M}/J 7® < (003} (256) <1 = ar.
342y,
2 14
Also a, < a, since
ar _ I _ 14.04 (14001) - 196,000 > 300> 7",
a, I 14.04 (14001) — 14(14000) 575

I——

14.04m

Therefore, all the conditions of the lemma are satisfied so that we can find
an # =1 such that

1— 4~<g'r“$1.

14.04m
Therefore
14

— 2n _—
(1.18) |1 —o7 ‘<14.04m
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Multiplying by (1.17), we have

14 14
14.04m 14.04

1 —ew®*| |1 —p'22% | <m

which contradicts (1.16').
Therefore, 8, <o.

Let 8, = —f1, so that §i>o0 and e, + 81 V7 >o0.
The relation (1.14) implies that, for all rational integers z, y,

bl o]
e+ (£17-2) + w—avp)

R o

>_1

(1.19) T

(1.19") ..

for all integers & of % (V7).

.. 7+5Vy +35V7 : -
Taking & —7—11—1/1 = ~7—13—KZ 7", we obtain a contradiction as before.
Thus there is no point (x’, ') in X which does not bave a congruent point in .
This proves the lemma.

Combining Lemmas 1.2, 1.3 and 1.4 we get statement A and hence the
theorem.

Proof of Theorem II.
10. As in the proof of Theorem I we first prove

Lemma 2.1. Let (x,, yp) = (é, + 2—2) (mod. 1). Then for all (x, y)==(x,, y,)

(mod. 1), [z*— 1142 = g For some of these x, y, for example (:—;, + 57;), this

result holds with the sign of equality.

Proof: All (z, y) = (x,, y,) (mod. 1) are given by 2 = a + é, y=>b+ é, where
a and b are integers.

For these x, y, we have

2 2
(m-l) —Il(bi]—)
2 22

gince a® +a—11%* F 75 is an even integer.

The sign of equality in (2.5) is necessary when, for example, a = b = o.

19|19
22 22

(2.5) |&®—119?| =

a*+a—1108F7b—
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11. Let € be the open region bounded by the arcs of the hyperbolas

I
1.16°
lies in €. Then, as in Theorem 1, we have only to show that P, must be con-

Z2—11yt =+ Let Py(xy, y,) be a point such that no point congruent to it

gruent to one of the two points (2, *+ ,27;)

Fig. 10 Fig. 11 Fig. 12
, Q
€ 4 R@T
§ 2
N E
Fig. 13 Fig. 14

Figs. 7—14.
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12. Let A and B be the arcs of the hyperbola z? — 1142 = I—Ilg and C

and 2 those of 2 —11y* = ——1—11—6, so that < is the open region enclosed by
A, B, Cand D. (See fig. 7).
Let the line y = % meet these arcs in the points A, B, B and A as shown

in the figure. Now move the part of A lying between A 4 and the z-axis through
a distance — 1 parallel to the z-axis. Let it take up the position CD ¥V, with
the points C, D and ¥ on A 4, C and the z-axis respectively. The equation of

1
1.16

Similarly move the part of 3 between A A and the z-axis through a dis-

CDVis (w+ 1P —11y" =

tance 1 parallel to the z-axis, to take up the position 0DV as shown in the
figure. The equation of CDV is (x— 12— 7y? = 1—116

Denote the closed curvilinear triangles BCD, BCD by R and R re-
spectively.

Now suppose that the unique y, =y, in the interval — ; <y, Sé is non-

negative.
Then, as in Theorem I, it is easily seen that both R and R contain unique
points P; and P, congruent to P,.

Then it will suffice to prove P, = (é, ;75) For, if y, were negative, similar
argument would give P, = (é, — —2—75), so that all P,(x,, y,), incongruent to points
of C, are congruent to (é, =+ ;7;) This is clearly equivalent to the theorem.

For convenience of reference, we tabulate now the co-ordinates of the vertices
of R and R. R is obviously the image of R in the y-axis.

13. Let the translation & o change R into R’. Then we assert that R’
consists of three parts (see fig. 8),
i) 7, which lies in <,
ii) the closed curvilinear quadrilateral <R,, which lies in R, and
iii) the region &, which lies outside € as well as R.

4642128 Acta mathematica. 86
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Table 111
Point Curves on which it lies Co-ordinates
1 s e 1 _'?1_5 .
B ly=- , ¥ — 11y T ( 16 2) (1374 ..., .5)
! T o 419 1) _
Cly , , l+1P—11y 176 ( e b 2) (9o..., .5)
2 __ e b S S S et ’ ani .
D x2*—11y —rl (x+1)f—11y — (58’ y) (th&;:.)lue of ¥ unimpor
Image in y-axis of
B B (—1.374 ..., .5)
0 c (—.00..., .5)
_ : 21 ,
P P (-5 )

To prove the assertion we have only to show

1. the upper vertices of R’ lie to the left of C,

2. the lower vertex of R’ lies in €, and

3. the hyperbolic arcs in the boundaries of R, and R’ meet each otherin
single points.

The condition 3 is, by Lemma A, an immediate consequence of 1 and 2.

The condition 2 is obviously satisfied since the lower vertex of R, i.e. the
new position of D, lies on the line D D: y =y, at a distance less than 1 to the
right of D and since arc D C is at distance 1 from A.

The condition 1, too, is easily verified, since the co-ordinates of the upper
vertices of R, obtained by adding (1, 0) to those of B and C, are (— .374..., .5)
and (.0g ..., .5) while those of C are {.go..., .5).

Consequently our assertion about R is true and the position is as shown
in fig. 8.

Now R’ is congruent to SR. Therefore R contains a point Q= P,=P,.
As @ cannot lie in T, it must lie either in R, or in &; we include the common
boundary of R, and & in R, only.
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Now, let Jio change & into §’. We assert that &’ is situated as shown
in fig. 8. Because of Lemma A, we have only to verify that the positions of
the vertices of & are as shown. Now the lower vertices of & lay on CD.
Therefore the lower vertices of & must lie on . Also the co-ordinates of the
upper vertices obtained by adding (1, 0) to those of upper vertices of &, are
(625 ..., .5) and (1.09..., .5), while those of C and D are (.9o..., .5) and
(1.374 ..., .5). Therefore the positions of the upper vertices, too, are easily seen
to be correctly shown.

Consequently §” consists of

i) #’ lying in C,
ii) the closed curvilinear pentagon &, and
iii) 7, lying neither in € nor in R; the boundary arecs of &, common with
7' or m, are included in &, alone.

Now if the point @ lies in & a point @' = Q= P, will lie in §'. As ¢’
cannot lie in €, it will lie either in &, or in .

The translation o changes the lower vertex and one of the upper vertices
of m, to points on A, while the other upper vertex becomes (1.625 ..., .5) as
shown. Thus the translation &0 changes =, into 7y lying entirely in €.

Now my=m,. Therefore if @' lay in m,, a point Q' = @ = P, would lie
in €, which is impossible. Therefore ¢’ cannot lie in =,.

Consequently a point congruent to P, is seen to lie in SR, or &;. As both
R, and &, lie in R, and R contains only one point, namely P,, = P,, we
conclude that P, must lie either in R, or in §,.

Let R, be the closed curvilinear triangle containing m,, &, and the region
7y, shown in fig. 8. Then we can say that P, lies in R, or Ry.

Let the vertices of R, and R, be E, I, G, H, K, B, and L as shown in
fig. 9. Join EG and draw KM parallel to y-axis to meet- 4 4 at M.

Then, as in Theorem I, it will suffice to show that

“Fvery point, except (é, l), of KLM and EGH has a congruent point

22
inside C "'

This we shall. prove in the rest of the paper.
For convenience of reference we tabulate the co-ordinates of some points
together with the equations of the curves on which they lie.



R. P. Bambah.

20

jurod 913 jo §}eAIPIO-0)

§9AIN)

. N < N [3
(8 ;HAM ~v p=f 1=a TH YW| W
» _ (7o e . U ,
(5 mSTAH a\_lﬂv (= =i —(e—7) g7 ‘TH| T
. 61¢ . I'1 911
(rary Jn?ﬂm\\— Hv - — =11 — X —=fll—(c—2) | g ‘TX| X
e cege ey L (941 4 1 . 9ra -
(- a5t mleHOHk\\—,MV = A1 — {1 + %) ]m!HN\:H\ImANI.&v A9 ‘HDH| D
(oges i) = (e A E) | Ry oL ‘
6% T ‘5t B At \I_bukzlw?lé HATd 'HDH| H
e 9lel z gr'1 or'1
(- L1t mlemmH\—,mv J\]Hmm:lm& Jlriua@:}m?l&v oa ‘dal o
soAInd 9y} Jo suorpenbyy ¥ y3noxgy jarog




Non-homogeneous Binary Quadratic Forms (I). 21

14. Lemma 2.2: Every point in KL M has a congruent point in €.

Proof: If not, suppose there is a point P in KL M, such that no point con-
gruent to it lies in €.
Then we shall obtain a contradiction in three stages (i), (ii) and (iii) below.
i) Let the translation &, -1 change KL M into K'L'M'. (See fig. 10)
Then,
K =K+(1, —1)=(2, —.588...) lies in €,

since
|22——n(.588...)2l<4—11(.58)2=.2996<1—II€}
L'=L+ (1, —1)=(1.625 ..., .5) lies in T,
since
|(1.625 ...)2—11(.5)2|<2.75~2.56<1—118;

M =M+ (1, —1)=(2, —.5) lies above H i.e. in that part of

1

2 2
r—11y*> —)
y 1.16

where x is positive, since

2 __ 2 _ [
22— 11(.5)% = 1.25 > 16

Therefore the position of the points K’, L' and M’ is as shown in fig. 10.
The lines K' M’ and M'L’, being parallel to the axes, meet A in single
points 8’ and 7" say.

Now K'L’ arises from KL: (x—2f —11¢® = — I—II—6~: by translation &, 1.

Therefore, its equation is

I

(2.6) (e—3F—11(y + I)2=—m-

The equation of, 2 is

1
2 2
=11y = ——.
y 1.16

Therefore, on eliminating y between (2.6) and the above, we find that the
points of intersection, if any, of K'L’ and 2 satisfy the relation

275

. _ s L oae, 275 246_
(2.7) o=11x (3x%1)+29

=228 —6x+ ——
29
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This equation has no real roots. Therefore K’ L’ does not intersect 2.
1
T
Therefore, by (2.6) and the above, the points of intersection, if any, of K’ L’
and A satisfy '

2
(28) o= 11%2—‘ 3x_1,_i _ELS:ZxS__z_‘lx_ 1_64__2_7.5. .
2
29 29 29 29 29

The equation of A is 2> —114® =

Obviously (2.8) has a negative root. As the z-co-ordinates of all points of
K'L’ are positive, K' L’ and A cannot intersect in two points. Therefore, by
Lemma A, K'L’ has no point common with A.

Consequently we see that the situation is as shown in fig. 10, i.e. K'L' M’
consist of two parts, i) the curvilinear region K'L’' S T' lying in %, and ii) the
closed curvilinear triangle S’ T° M’ lying outside T.

Since K'L' M’ = K L M, it contains a point P'= P. As P’ cannot lie in T, P’
lies in the curvilinear triangle S' I" M'. The co-ordinates of S’ and 7" are

' = 419 1) _ —
T (]/4”9’ 2) (rgo..., .5),
S'——(,~ ——91)—— 2, —.534...).
2 '/ 310 ( 53 )

ii) Let now the translation s — change 8" M’ 1" into " M" T”. (See fig. 11).

Then
M'=M + (3, —1)={(5, — 1.5) lies in C,

sinee
2 __ - 2| I ;
o) —rr (=15 = 25 <=
T'=1T +(3, —1)=(4.90..., —1.5) lies in T,
since
s g .
lla90.. ) =11 (1s)| <74 < —;
8" =8+(3, —1)=(3, —1.534...) lies below D,
since

1

2 (o 2 —1
(5 —r11(—1.534...)P<—.88< %

This shows that the points S, M and T” are situated as shown. As 8" M”
and M" T” are parallel to the axes, M" T" intersects neither A nor D, S”" M"
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intersects 2 at a single point, U”, say. The hyperbolic arc §” T"' does not
intersect A because of the situation of these arcs relative to the lines 8" M”,
M"T’. Again, by Lemma A, S” 7" intersects 2 at one point V”. In short,
the position of §” M" T” is as shown in the figure.

Now §"M”T” is congruent to S M'7T’ and, therefore, contains a point
P’'=P =P. As P’ cannot lie in C, it lies in the curvilinear triangle 8" U" V".
750
319
note that the abscissa of V' is greater than that of 7"/, which is greater than 4.
Therefore, the abscissa of any point on 8” V" or U” V"' lies between 4 and 5.

iii) Now let Fho, —¢ change S U” V" into S” U V'”’. (See fig. 12).

The point U” has co-ordinates (5, —1 ) ={(5, —1.533...). Also we

Then
8" = 8"+ (20, —6) = (25, —7 *l/-—g—l—) lies in C,
319
since
o1\’
2 2—11( + ]/——)l
(25) 7 210
- — L 91 X 154 X 14
= [625 — 539 29 l/ 2
1.
=625 —539—3.13...—82.2... < '67<R'
U" =0" + (20, —6) = (25, —6—]/7—59) lies in €,
319
since
750\’ X
2-—— - —— —_— — — —_—
(25)° — 11 (6+] 319) |625 — 396 —25.86 ... —202.39...|< .75 < T

The translation J,—1 does not change the relative position of §” V" and
U’ V" ie. 87 V" lies below U V'’. Therefore, in order to show that
S U V" lies inside €, it will suffice to show that (a) U’ V' does not inter-
sect A, and (b) 8" V""" does not intersect 2.

(a) The arc U™ V" arises from U” V": 2®—11 y = —1_11_6 by o, —s.

Therefore

1, e

1. the z-co-ordinate of any point on U V' lies between 24 and 25.
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2. the equation of U”' V"' is

— 2 __ 2 - - .
(2.9) (x — 20— 11(y + 6) _—
The equation of A is x*—114y°% = 1__11—6 Therefore, on eliminating y between

(2.9) and the equation of Z, we find that the points of intersection, if any, of
U” V" and A satisfy the equation

396 el [ §§)2
o) 116 396 +( 20x+29
3320 1(83)2 9900}
2.10 =42 —22"x + >} + 22—} = f(x) (say).
(2.10 4wt = 33200 1 |(33) + 92200 — i) (say)

Now f(o)>o0, fl4) <o, f(25) <o, and f(co)>o0. Therefore, there is no root of
(2.10) in the interval (24, 25). Consequently, U’ V' does not intersect A, i.e
(a) is verified.

(b) The arc 8" V' arises from S”"V": (x—3)°—11{y + 1)* = I—II~6 by
&, —s. Therefore, ’

1. The z-co-ordinate of any point on S V' lies between 24 and 23.

2. The equation of 8" V" is

1
J— 2 __ - 2 = ———
(2.11) (@—23P2—11(y +7) —
The equation of Disz® — 1192 =~ Py II 2 Therefore, eliminating ¥, we find

that the common points, if any, of 8§ V' and 2 satisfy

— c3020— 170\* , (539)25
(2.12) 0=13530% (23x+29)+ 2

= onz—~%x + 3%325 = f(x) (say).
Now f(o)>o, f(2)<o, f(25) <o and f(oo)>o0. Therefore, (2.12) has no root
between 24 and 25, And so U” V’” and D have no common points, i.e. (b)
is true. _

Consequently U 8" V'” lies entirely in €. Now U’ 8" V' is congruent
to U’ S'V”. Therefore a point P”'=P"=P lies in U 8" V" and hence
in €. This gives the required contradiction and the lemma is established, i.e.
every point in K L M has a congruent point in .



Non-homogeneous Binary Quadratic Forms (I). 25

Lemma 2.3: Every point in FH G, excluding a closed curvilinear triangle
EN @, defined in the proof, has a congruent point in €.

Proof: Let the translation J5 —o change EH G into E' H' G'. (See fig. 13).
The point H = H+ (5, —2)=(5.57 ..., —1.671...) lies in C, since

I .

(5.57 .. )2 —11(1.671... )% <(5.58)2—11(1.67)2<.5< 5

G =G+ (5 —2)=(5.5 —1.644...) lies in T

since
|(5.5)2~11(1.644...)2|<3o.25—11(1.64)2<.67<ﬁ8;
r g R 129 )
E =E+ (5, —2) (5.5, 1/1276 2) lies below 2
since
/129 )2
g —n — — —
(5.5) 11(‘/ 1276 2 30.25 — 44 — 1.112 . ..

I

+ 13.990...<——.87<—;6-

This shows that the position of the points E’, G’ and H' is as shown in
the figure.

As E'G' is a line parallel to the y-axis, it intersects 2 in one point, ¢’
say. Again, by Lemma A, E' H meets 9 in one point, N’ say.

The are G’ H' arises from B by a translation Fs,o + T, -2 = Ti, —2. There-
fore, its equation is

[ -

(2.13) (=7 —11(y +2)* =

@)

I.1

The equation of D is 2 — 1192 = — —I-ITé-

Therefore, eliminating y between (2.13) and the above, we find that points
of intersection, if any, of G' H' and 2 satisfy the equation

2
0= —176x>+ (1400—95) _176(25)
29 29
(190) 14 1 { }
= 2z 7 —_— b 2.
20 20 * gar 176(725) — 95

This has a negative root. Therefore, as all the points on G’ H' have a positive
abscissa, there is at most one point of intersection of G’ H' and 2. But by
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Lemma A, the points common to G’ H' and 9 are two or none. Therefore G' H’
does not intersect 2.

The equation of A is 2 — 1192 = —
T

Eliminating y between (2.13) and the above, we see that the points of inter-
section, if any, of G’ H' and A satisfy the equation

z+i7_6_95—)= 202" — 1402 + 176.72 . ..

0=176z"+ (142 —5) 29

As f(o)>o0, f(2)<o and f(5.5) >0, the roots of this equation lie in the
open intervals (0, 2) and (2, 5.5). But the x-co-ordinate of every point on H' G’
is greater than 3.5, the z-co-ordinate of G'. Therefore H G’ does not intersect
A either. Consequently the position of E' G’ H' is as shown in the figure.

The translation J_;2, i.e. the translation inverse to 7 —., changes E' N’ ¢/
into EN @ of the lemma.

1

15. Lemma 2.4: Every point, except (2

575), in the closed triangle EN @

has a congruent point in €.
Proof: The equations of the boundary arcs of ENQ are

I

' 2 __ 2 -~
EN: z—11y -
. 2 __ e b
NQ: (x+ 5 —11(y—2)% - -
I
EQ .’E=5'

Therefore, the co-ordinates of ¢ are

X, ]/ 3699 _
m=_ry=2 l/1276 (.5, .31822...).

; 1 129 ) _ (¢
Also the co-ordinates of E are (2, 1/1276) (.5, .31795...).

Therefore, R, the point with co-ordinates (
tween £ and @ on the line E¢.

I 7y_ . ]
2’ 22) (.5, .31818...) lies be

Let RST, the line y = % through R meet NQ and EN in § and T re-

spectively.
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e
Then the co-ordinates of S are (1/ 38oor 5, l) = (.5001 ey —7-) and
1276 22 22

those of the T are (l/ﬂ, l) = (.5015 ce L)
1276 22 22

Thus the position is as shown in fig. 14.

Consequently every point of E'N @ has co-ordinates (é + e, —27—2 + ﬂ), where
0 =< a<.0016, — .00024 < § < .00005.
Therefore the points of £ N @, excluding (é, ;7;) form a subset of the set

2: consisting of points (é + a, 2~72 + 13), where

(2.14) 0= e <.0016, || < .00024, (e, 8)+ (0, 0).

It will consequently suffice to show that every point of ¥ has a congruent
point in €.

Suppose it is not so. Then let (2, y') = (é + ay, ;7; + ﬂ,) be a point of X

such that all points congruent to it lie outside C.
Then, we have

(2.15) o<a, +|8|V11<.0016 + (.00024) V11 < .0024,
and, for all rational integers z, v,

I

1 2 7 2
(z16) (preire) —uloe Lea)|= 5

Let 8, = 0.
The relation (2.16) implies that

(2.17) Hg—(‘—; + 3—7—;‘:‘) (o, + mfﬁ)}

2 22

for all integers £=2x + V11 and their conjugates & = #—y V11 in the field
kE(V11).

Write ¢ for the fundamental unit 10+ 3V11 of %(V11) and 7 for the
conjugite of <.
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Then, as in Theorem 1, Lemma 1.4, we get a contradiction by taking & de-
fined by the relation:

§__.(I_I.+§7_KI_1): ‘(1_14_3_7___]/;),,'%'

2 22 2 22

If 8, = —@;, By >0, we first deduce from (2.16) that

i [ (1700 ¢ sy

2 22

o= (2 7Y v+ i)

2 22

=1
1.16

for all integers £ of k(V11).
Then we get a contradiction by taking & defined by

§_(_I + @) — _.(1 + 7VH)T’211_

2 22 2 22

This shows that there is no point (x’, ') in £ which does not have a congruent
point in €. This establishes the lemma.

Combining Lemmas 2.1, 2.2, 2.3 and 2.4 we obtain theorem II.

In the end I would like to express my deep sense of gratitude to Prof.
L. J. Mordell, F.R.S,, for help in preparing this note. I am also grateful to the
Royal Commission of 1851 Exhibition for the award of an Overseas Science
Research Scholarship which enabled me to carry out this work at the University
of Cambridge.
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