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Introduction.

In 1920, Siegel' proved the following generalisation of the Thue-Siegel

Theorem:

Let & be an algebraic number of degree d = 2.

1. Let & be a fixed algebraic number field, and let § satisfy an irreductble equation
of degree m = 2 with coefficients from K. Let s be a natural number less than m.
Then for every positive @ the inequality
1
[A—§l=——
A1 +s+6

has only a finite nwmber of solutions in primitive numbers A of &, A being the maximum
of the absolute values of the coefficients of the primitive erreducible polynomial with

rational integral coefficients having A as a root.

2. Let b and s be two natural numbers, of which s is less than d. Then for

every positive @ the inequality
1
!A‘—‘gl = Ah(:gf%ﬁ—s)-l—@

has only a finite number of solutions in algelraic numbers A of degree h.

! (. SIEGEL, ‘Approximation algebraischer Zahlen’, Mathematische Zeitschrift, Vol. 10 (1921),
pp. 173—213.
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In 1932, Mahler' extended the Thue-Siegel Theorem, for the case when the

approximating number 4 is a rational number lzlq), p and g being relatively

prime rational integers, to non-Archimedean as well as Archimedean valuations.
He also obtained an approximation to the actual number of solutions of his
inequality. His result was as follows:

Let P, P,, ..., P,be o(=0) different natural prime numbers, and let &, &, &, ..., &
be reépectively real, Pi-adic, Pyadic, . .., Pradic roots of an wrreducible polynomial
f(x) of degree m =3 with rational integral coefficients. Let a be the number

min ( m + s), and B a number such that e <8 =<m. Let ¢ be a positive
s=1,2,..,m—1 \$+ 1 .

constant. Then the number of solutions in pairs of relatively prime rational integers

p and q of the inequality

g
)H min (1,]p— & ¢ lr,) < ¢ max (|p], |¢))-?
k=1

min(l,

p__
q §o

18 not greater than
B8

E‘_—a(l-l-&))"
Co 2 N

where &, is a posttive number and ¢, ts a constant depending only on &, 8 and f(x)
and not on the number and choice of the prime numbers P, P,, . . ., P;.

(|p — & qlp, denotes the Pi-adic value of (p—E&q).

The primary object of the present paper is to combine these two results
and extend them to the case when approximation is made, by algebraic numbers
A of a fixed degree h=1 (or of a degree dividing h) over a field & of degree
n 21 over the rational number field B, to a number of real or complex roots
and r-adic roots (r being a finite prime ideal of &) of a polynomial f(x) of degree
m =2 with integral coefficients from &. The polynomial f(x) need not now be
wrreducible, the only condition imposed upon it being that it shall have a non-zero
discriminant. In stating the result obtained, use is made of the term ‘infinite
prime ideal’. The meaning of this term, and the definitions and notation adopted
for absolute and r-adic valuations, are given in § 1. By the symbol g (p) is meant,
if p is a finite prime ideal of &, the degree of the perfect p-adic extension of
R over the perfect p-adic extension of @}, where p is the natural prime number
divisible by p, and if p is an infinite prime ideal of &, the degree of the perfect

! K. MAHLER, ‘Zur Approximation algebraischer Zahlen’, Mathematische Annalen, Vol. 107
pp. 691—730 and Vol. 108, pp. 37—55 (1933).
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p-adic extension of £ over the field of real numbers. G(p) denotes a natural
number not greater than g(p). A denotes the maximum of the absolute values
of the coefficients of that polynomial of degree hn which is a power of the
primitive irreduecible polynomial with rational integral coefficients having 1 as
a root.

The result, as stated in Theorem 1, is as follows:

Let f(x) be a polynomial of degree m = 2 with integral coefficients from & and
a non-zero discriminant. Let qy, gy, ..., Gy, twhere 0 <9 <1y +r, be ¢ of the r +r,
infintte prime ideals corresponding to the vy real and ry pairs of conjugate imaginary
fields conjugate to &, and let v, vy, ..., ts where ¢ =0, be o different finite prime
ideals of R. Let hyg (k=1,2,...,0; d=1,2,..., Gup) be a natural number not
greater than h*. Let &.(j=1,2,...,0; y=1, G()) be a real or complex root of
fx) and qrs(k=1,2,...,0; d=1,2,..., Gap; 1=1, 2, ..., hxa) an vradic root
of f(x), and let t be the total mumber of these roots. Let ¢ and &, be two positive

. m
numbers and e and 8 two numbers such that ¢ =  min ( e +s) and 8> a.
§=12..., m—1 \§

Then the number of different algebraic numbers A of degree h (or any divisor of h)

over 8, lying in the perfect v-adic, t,-adic, .. ., vradic extensions of & and satisfying
the inequality

o G(%) g G0 hig
I 1T min (5,12 — 8,1 TLTT L min (5, 12— 5. ),) = ¢ 452
j=1 y=1 k=1 d=1 z=1

vs not greater than
B
ko 262

(1+2)t

where ky is a constant depending only on &, 8, ¢, &, f(x) and h, and not on the
number and choice of the roots to which approximation 1is made or on the corresponding
tdeals.

In the particular case of this result when h =1, 1 is an element w of &,
and A is denoted by £. ®w may be represented as the quotient wzg of two

integers u and v of ® such that N (,v) <|Vd(R)|, where d(R) is the discriminant
of & From this fact and from Theorem 1 there follow a number of results,
contained in Theorem 2 and its corollaries, on binary forms with integral coeffi-
cients from . These results are simply generalisations of Mahler’s results for
binary forms with rational integral coefficients.
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Theorem 2 states that:

If Flx,y) be a binary form of degree m = 2 with integral coefficients from -8
and a nown-zero discriminant and such that the coefficient of x™ s not zero, and if
v.(k=1,2,...,0) be the number of viadic voots of Fl(a,1), then the number of
solutions of the inequality

| N(F (u,v)| HIFu v) |G(l")<$2’"‘
k=1
in non-associated® pairvs of integers w and v of R such that N (u,v) <|Vd(®)],
where N (F (u,v)) is the norm in & over B of F{u,v), ¢s not greater than

—ﬂ~1 EO(EGI‘)
ky2P¢ o Hmax (1,),

where ky is a constant depending only on e, 8, & and F (x,y), and not on the number
and choree of the finite prime ideals 1, 1qy . . ., Xo.

From Theorem 2, Corollary 1, involving less stringent conditions for F (x, y),
is easily proved. It states that:

If Fix,y) be a binary form of degree not less than 3 with integral coefficients
from R and a non-zero discriminant, then the number of solutions of the equality

| N (Fu,v) LH | F(u, v) ]g<rk)——1
r=1
in nom-associated pairs of integers w and v of ® such that N (w,v)=|Vd(®)| is

not greater than
( > g(rk)) +1
K \k=1 :

where K is a constant depending only on & and I (z,y), and not on the nwmber and
chotce of the finite prime ideals 1y, vy, . . ., Vo

With these conditions for F(x,y), it is proved that:

The number of non-associated pairs of integers u and v of &, with N ((u,v)) =
< |VA(R)|, such that N(Fu,v) is divisible by no rational prime numbers other than

the ©(= o) given different rational prime numbers ry, 1y, . . ., I, s not greater than

' Two sets of % -1 integers g, u,, ..., U, and v, v,, ... v, are said to be associated if

/vy = 1, /v, =+ - = w,lv, = 7 is a unit in R; otherwise they are non-associated.
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where K, is a constant depending only on & and F(x,y), and not on the number
and choice of 1y, Ta, . . . V4.

From this result follow a number of corollaries on the representation of
integers of ® in the form #(w,v), culminating in the result:

Let U and V be any pair of integers of & with N(U, V) <|Vd(R)|, or a
multiple of such a pair by an integer of K. Then the number of different represen-
tations of any integer I of & in the form F(U, V) 25 of order

| V() ],

where N(I) is the norm in & over B of I and & is an arbitrarily small positive
constant.

Of particular interest is the result, involving even less stringent conditions
for F(x,y), analogous to Mahler's result on the greatest rational prime divisor
of a binary form with rational integral coefficients and rational integral values
for the variables. The present result is as follows:

If Flx,y) be a binary form with integral coefficients from R, and such that
F(x,1) has at least three different roots, of which one may be infinite, and if u and
v be any pair of integers of 8& such that N(u,v) <|Vd(K)|, then as

max (| Nw)]|, | N@)]) - oo,

the greatest of the morms of the finite prime ideals of ] dividing F(u,v) tends to
infinety.

The proof of this result is greatly simplified by the fact that the polynomial
Sf(@) in Theorem 1, and consequently the binary form F(x,y) in Theorem 2, need
not be irreducible in &.

By using the more general form of Theorem 1, with A=1, these results on

binary forms may clearly be generalised to forms of the type:

m
@+ 26+ ze + -+ i),
y=1

where £, &, .. ., §n are the real or complex roots of f(x) and =z, z,, . . ., Zn are
integers of §. For such forms are merely products of & binary forms in which

the variables take values from conjugate fields of degree h over &.
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The writer wishes to express his gratitude to Dr. K. Mahler for his help
and guidance throughout the preparation of this paper, and particularly in
connection with §§ 2 and 3, which are translations of Dr. Mahler's own un-
published notes, and § 1, the first part of which is largely a translation of a
part of one of Dr. Mahler’'s published papers'. The writer also wishes to thank
Professor L. J. Mordell for his advice and supervision.

§ 1. Preliminary: Definition and Properties of Finite and Infinite
p-adic Valuations.

(a) Let & be any finite algebraic field of degree n = 1 over the field P of
rational numbers. '

By Ostrowski’'s Theorem, there exist only the non-equivalent valuations of
the rational number field ‘B stated below. First there exists the absolute valua-
tion |z|. We write this as
o K P
and refer to this valuation as ‘the waluation with respect to the infinite prime
number pe’. The absolute valuation is thus made analogous to the second possible
set of valuations, the p-adic wvaluations, p being a natural prime number. The
p-adic valuations, of which there are an infinity, are defined for each p as

o for x=o0;

p'* for x ¥ 0, where u is a rational integer and
r ) / g
the reduced fraction p“x contains the factor p
in neither numerator nor denominator.

|xlp:.

The remaining possible valuation, the trivial valuation, is

jo for x = o;

leozlx for x 5 o.

Thus the product of the valuations of = with respect to all natural and infinite

prime numbers p satisfies the relation

(1) Hl‘xlp:]x]o-

b

! K. MAHLER, ‘Uber die Anhiherung algebraiseher Zahlen durch periodische Algorithmen’,
Acta mathematica (1937), p. II1—114.
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(b) There are in general several possible continuations of | x|y, and |z |, into
the field R.

We consider first the continuations of [z |,,. Of the n fields &, &*, ... &™)
of real or complex numbers conjugate to &, let the first ; be the real fields

RO, R, R,

and the remaining 27, (r; + 27, =n) be the r, conjugate imaginary pairs

KD QA+ (h=r,+1, 17 +2,... 1+
We make correspond to each of the real fields 8" (h=1, 2, .. ., 7;), and to each
pair of conjugate imaginary fields &M, RU+nl(h=1»r + 1, 7, + 2,. .., 7 + 1), an

infinite prime ideal p». Further, we denote by w™ the element of &) conjugate

to an element w of & Then the 7, + r, absolute values

lep(m= | ™} (h=1,2,..., 7 + 19
oc

define all the possible non-equivalent continuations of |x|,, into &, and for

elements = of the rational number field §§ are identical with |z|,,, i.e.,

Iw]p(h)=lw|l)m (’L:I,Z, EERIES) 7'1—'_7'2)
oo
if w lies in PB. We now write
1 for h=r1,2,... r;
g( E:’)) — A b 1>
2 for h=vr,+1,r, +2,...,0,+ 7.
Then
7+ re
2 gp) =
h=1

and if N{(w) be the norm in & over B of w,

),—rr h)
o)
(2) ®) |y = lel W

h=1

Incidentally, g (p®) is the degree of the perfect p®-adic extension of & over the
field of real numbers, i. e., over the perfect p-adic extension of .
Similarly, we can continue the valuation |x{, into &. Let

- H p® elpldh)
i=1

be the factorisation of the natural prime number p into prime ideals of &, so
that e(p?) is the order of the prime ideal p”. We define the p'¥-adic valuation
for e =1,2,... 7 by
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o ()
[olwm= }pe("(')) for w > o, where u(p!”?) is a rational integer and

[o for w = o;

. . o (plih) . .
l the fractional ideal p®“™" (w) contains the factor P
in neither numerator nor denominator.

The sz valuations thus defined are the only possible non-equivalent continuations
of |x|, into &, and for elements z of the rational field P are identical with

lzlyp, i e, '
lolo=1lwly t=1,2,...,n)

if w lies in P. We now write
g0?) = e{p') £ ('),

where f{p) is the degree of p), i. e., the natural number such that N (p@) = /&),
Then

S o) =

i=1

Also, since (w) contains p'¥ to the power u(p®), and since

Lyt
it follows that i=1
(3) V(D )K" D ) == pf(p\l pi u\p ) — l ((/ p\l) :

and so

(4) | V()] = H|N “Hl Iq

It may be noted that g(p'?) is the degree of the perfect p“-adic extension of
§ over the field of p-adic numbers, i.e., over the perfect p-adic extension of P.
Finally, R has the #rivial valuation

Iw'o“

__|o for w=o0;
1 for w # o.

This is the only possible continuation of |z}, into K. Clearly,
(5) [ N(w)ly={wl,

By Ostrowski's Theorem, every other valuation of & is equivalent to one of those
already defined.



The p-adic Generalisation of the Thue-Siegel Theorem. 9

From (1), (2), (4) and (5) follows the fundamental relation for & corresponding
to (1), viz.,

(6) ol <o,

the product being taken over all finite and infinite prime ideals of f.

In particular, if @ be an integer wy{54 0) of &,
6a , w0V =
o el™=

where the product H is taken over any number of different finite prime ideals
T

of &, and G(x) is a natural number not greater than g¢(x).
We shall use the relation (6) and the inequality (6 a) in proving Theorem 2

and its corollaries.

(¢) From the relations (2) and (3) may be obtained an inequality which is
of fundamental importance in the proof of Theorem 1. Let the »;+ 7, infinite
prime ideals p®(h =1, 2,..., 1, +r,) be represented, in any desired order, by
0t 925 + -« Gr4m, and let v, 1., ... Ty, where 6 =0, be o different finite prime
ideals of . Then by (2) and (3),

Ty Ty o o \00@
ol I ol =5 @] TT ¥ @,
J=1 7= F P}

where 0 (1) (k=1, 2,...,0) is a positive number not greater than g(t;). Now

since w is an element of ®, there exists a polynomial Y (x; @, B, 2) of degree u
which is a power of the primitive polynomial with rational integral coefficients
and irreducible in P having w as a root. If W, be the coefficient of the
highest power of the variable # and W, be the constant term of the polynomial
Y (z; w, B, 7), then |W,| and |W,| are not less than unity, provided w o0, and

| Wal

| W,

But (w) ———g, where a and b are relatively prime ideals of & and N (a)=|W,]|,

N({®)=|W,|. Thus

|V (w) | =

[ ) Y
I (et = 22,
k=1 ¥,

n

where Y, and Y, are relatively prime natural numbers such that Y,|W, and
Yo|W.. It follows that the product
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o 8 (vp)

IT & @™ Ry

k=1

may be written as the quotient ;i—(—’ of two positive numbers Z, and Z, such

that 1< Z,< Y, and 1< Z,<Y,, and so

P+

U(qj B(r;‘)_l Wnl A 1 l Wnl - 1 .

Suppose now that o’ is a number of degree »” over &, where " is a divisor
of a natural number »’. Then o will be an element of a field & of degree »’
over & and nxn’ over . (w’ has the same meaning as w when 7'=1.) Let the
nn’ fields conjugate to & consist of » real and 7% pairs of conjugate imaginary
fields, and let q}, @3, . . ., r, 4+, be the corresponding infinite prime ideals in any
desired order. Let tf, 13, ..., Iy be any o (=o0) different finite prime ideals of &'.
Since w’ is an element of a field & of degree nn' over P, there exists a polyno-
mial Y (z; o', B, nn’) of degree n2’ which is a power of the primitive polynomial
with rational integral coefficients and irreducible in 98 having o’ as a.root. Let
Wi be the coefficient of the highest power of the variable x in Y (x; o', B, n 7).
Then, since the inequality (7) is true for the elements of any given field,

7 |-r1

® 11w 1o =

Here the p’-adic valuation, and e(p’), £(v"), g(v'), (") and u(p’) are defined for a
finite or infinite prime ideal p’ of &', in relation to P, in the same way as are
p-adic valuation, and e(p), f(p), g(p), 6(p) and w(p) for a finite or infinite prime
ideal p of 8.

Let now t be any finite prime ideal of & Then

v
r = [[rose®
=1

where vV v'® . t'@) are different finite prime ideals of &', and the E’s are

natural numbers. Thus, if r belongs to the rational prime number p, and
' wlr)

lies in the perfect r-adic extension of & and has the radic valuation pew), where

e(r) is the order of t,
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o'® yf(l @) 4 ((9)
H I‘" l (4
Z F@ EG) wix
= pi=t
e r BN S |y [P
,__‘p‘ (r} 7 f(l)_,__lwlL .
Thus, if #; be any natural number not greater than »'¢(x) for k=1, 2, ..., g, it
y g
follows that, for the appropriate ¢, the appropriate prime ideals 1 (k=1, 2, . . ., &)
pprop propriate p ,

in & and the appropriate 6(t7), the inequality (8) is identical with the inequality

47y

(9) j,_ljil |imJH| rk_lwl

This is the fundahzental inequality underlying the proof of Theorem 1.

(d) In dealing with the valuation of w’, we shall make use of the following
notation:

1) The field §;,.

Let q; be any infinite prime ideal among the 7, +7, infinite prime ideals
0;; Az - - - Qr+n corresponding to the »; real and r, pairs of conjugate imaginary
fields conjugate to R Then if q; corresponds to a real field conjugate to R, let
this field be called &;: (i. e., &;,, where y = g(q). If q; corresponds to a pair
of conjugate imaginary fields conjugate to ®, let these be called &;; and R,
(i. e, & ,, where 1 <y < g(q;).

2) The X polynomials.

By the polynomial Y (z; o', B, #n2') is meant the polynomial in z of degree
nn' which is a power of the primitive polynomial with rational integral coefficients
and irreducible in the rational number field B having o’ as a root, o’ being
as before any number of degree »” over ®, where »” is a divisor of a natural
number 7. i

By the polynomial Y (z; o', &, ') is meant the polynomial in z of degree #’
which is a power of the primitive polynomial with integral coefficients from R
and irreducible in ® having ' as a root.

By the polynomial X (x; o, &;;, #) is meant, for j=1,2,..., r,+ 7, and y=
g(qs), the polynomial conjugate to Y (z; w’, ®, #’) with respect to the field &;,.
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3) The valuation |w' |y, .

This means the absolute value of any root w’ of the polynomial Y (x; w’, &;,, %)
(J=1,2,...,r,+r; y=1,g(y), and reduces to the valuation (w[c,j (]‘:.1,2, -
ri+ 7,) when o’ is an element w of R.

It may also be noted that if r is a finite prime ideal of &, |w'|; denotes
the r-adic valuation of any root w” of Y (r; o, & »') lying in the perfect r-adic
extension of R The inequality (g) holds if different roots of Y {(x; w’, & #»') are
- evalnated with respect to the different 1 {k==1, 2, . . ., 6), since the tr-adic roots
of such a polynomial all have the same 1-adic value.

In the remainder of this work, by the number w’ will be meant any root v’
of the polynomial Y (z; ', & #'), and by ‘different’ «’ will be meant roots of

’

different polynomials Y (z; o, &, #’). By ‘a property satisfied by o” will be meant
a property satisfied by some root or roots of Y (z; ', &, %), e. g., to say that '
lies in the perfect rj-adiec, v,-adic, . . ., v,adic extensions of & means that in each
of these perfect extensions there lies some (not necessarily the same) root of

Y (x) w’) 'Q) 7?',).

Notation.

((a) [P(x,...)]=|P|] denotes the maximum of the absolute values of the
coefficients of the polynomial P in any number of
variables; in particular, this notation can also be used
to represent the absolute value of a constant.

(b) If P(z,...) and @(x,...) are two polynomials in the same variables
such that the coefficients of @ are non-negative and
not less than the absolute values of the corresponding

coefficients of P, Q(x,...) is called a majoriser of
Pz, ...), and we write
Plx,..)< @z, ...). )
(1) & is a finite algebraic field of degree #(= 1) over the

rational number field B. { is an algebraic integer
generating §, and

(p(g) ="+ % st I 222‘"—2 oy,
is the polynomial with rational integral coefficients and
irreducible in P having £ as a root. x is the natural
number | (2)].



(2) flw2)
(3) 00 0 - - -, O,
Qo+1, Gp+2, - -« (rtr
{4) 1:11 IZ, C ey Yo
() g(v)
G ()
6) h
his
(7) iy
Nrée
(8) ¢
(o) 2
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is a polynomial in z of degree m (= 2):
Slx2) = ag(e)a™ + a{e) 2™t + -+ anle),

where ao(2) (#0), a,(2), . . ., an(z) are polynomials in
z with rational integral coefficients and of degree not
greater than » —1; @ is the smallest natural number

such that
ar(2) < a(1 + 2)»1

for v=0,1,2,..., m; we suppose that the discriminant
of f(r, 2} with respect to z is not divisible by ¢(2).
(N. B. f(x, {) need not necessarily be irreducible in §.)

where o0=g¢=r,+7,, are ¢ of the »,+7, infinite prime
ideals corresponding to the #, real and 7, pairs of
conjugate imaginary fields conjugate to R.

are the remaining infinite prime ideals.

where ¢ =0, are ¢ different finite prime ideals of R.

where p is a finite or infinite prime ideal of &, is the
degree of the perfect p-adic extension of & over the
perfect p-adic extension of the rational number field 3,
p being the natural prime number divisible by p if p
is finite, or the infinite prime number p. if p is in-
finite.

is a natural number not greater than g(p).

is a natural number.
(k=1,2,...,0; 0=1, 2,..., G@y) is a natural number
not greater than hZ

(J=1,2,...,0; y=1, Gy is a real or complex root
of f(a,L).
(k=1,2,...,0, 6=1,2,...,G@; =1, 2, ..., ha)

is an rradic root of f(x, {), 1. e., a root of f(z, {) lying
in the perfect rradic extension of &.

is the total number of the above roots, i. e.,

0 g

G (1)
2 G(qj) + 2 Z his.
i=1 k=1 d=1

is an algebraic number of degree h (or some divisor A’
of h) over & (i. e., in our notation, w' =24, »”"=h", n'=h),
and lying in the perfect r,-adic, ryadic, .. ., r,adic
extensions of & A is the number | Y (z; 4, B, hn)|.
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§ 2. Lemmas on Polynomials.
1. Tet

Ylax) = bea™ + byax™ '+ -+ by, Flx)= Byx" + B,z '+ -+ By
be two polynomials in x with arbitrary coefficients, and let
d =max (0, M —m + 1).
Dividing ¢ % (z) by y(x), we have
VF () =" (x)9(2) + F** (@),

where ¥*(x) and #**(x) are uniquely determined polynomials in =z, by, by, . . .,
bm, By, By, . . ., By with rational integral coefficients and ¥**(z), which is of

degree not greater than m —1, in z, takes the form:

i{f** (x) == %ox"l_l -+ }lem—2 + B o %m—l.

We now show that each of the coefficients By, By, . . ., Bn_1 is of the form:
gll .

(IO) %v:“’szbwaubwoﬂ. . ‘b'vedlBh"‘“l (V:O, I,.. .,7"'—‘1),
[=1

where the »8 and »u are certain of the suffixes o, 1,...,mand o, 1,..., M

respectively, and each &,; takes one of the three values o, * 1; in particular,
for d = o, the factors b,y are absent.

The result is obvious for d=o, for then ¥*(x)=o0, F**(x)= F(x). We
suppose it to be true for d=o0,1,..., £— 1, where £ =1, and hence prove
that it is true for d =%. By induction, the result will then hold for all non-
negative d. '

For convenience, we take bpi1= bmy2=bn+s=---=o0. Then

VW (@) = b7 By () + b{~1F, (),
where
P(x) =cox ' + 22+ - + ear-,
and
szBy+1bo—B0b'y+l (V:O, I,. ..,M'—I).

Now, dividing b{~!%¥,(x) by w(x), we have as before the unique relation:

b () = P (%) y (o) + P (),
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and since ¥ (x) is only of degree M —1,and o<d—1<Fk— 1<k by our
assumption the coefficients B, of ¥#**(x) are of the form:
gtf—1

B, = 2 & ibuo) gl . bugy_y Gy W=0,1,....,m—1),
=1
which is equivalent to the form (10).
2. The foregoing is true if we take by b, ..., b and B, B,, ..., By as
polynomials in 2 with rational integral coefficients. They will satisfy the inequalities
bi(2) < b(1 + 2) (i=o0,1,...,m)
Bi(z) < B(1 + 2)¥ (k=o,1,... M),
where b, b, B, B’ are certain non-negative rational integers. The coefficients of
P*(x) and ¥**(x) will then be polynomials in z with rational integral coefficients,
and by (10) the coefficients of ¥**(z) will satisfy the inequalities
(11) B, (2) < 2¢ Bve(1 + )B'+av v=o0,1,...,m—1).
Hence:
Lemma 1. Let
Wiz, 2)=by(e)a™ + b (2)x™ 1+ - + bm(2), ¥(x,2)=B,(e)x¥+ B,(¢)x 1+ - - + Byl2)

be two polynomials in z, of which the coefficients by(2), b,(2), . . ., bm(2) and B,(z),
B,(e), . . ., Bulz) are polynomials in z with rational integral coefficients and satisfying
the inequalities

bi(2) < b(1 + &) (j=o0,1,... m),

Bi(z) < B(1 + 2)¥ (k=o,1,..., M),
where b, V', B, B’ are non-negative rational integers. Let

d =max (0, M —m + 1).

Then two polynomials in z and z, ¥*(x,2) and ¥**(x,2), are uniquely determined

by the relation

bo(2) ¥ (2, 2) = #* (w, 2) P (2, 2) + ¥F**(x, 2),
where
Pz, 2) =By {z2) 2™ 1 + B, ()™ + - + B (2)

15 of degree not greater than m—1 in x, and has coefficients which are polynomials
in & with rational integral coefficients and which satisfy the inequalities

(11) B, () < 2¢Bu (1 + £)B+4V v=o0,1,...,m—1).
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From this lemma and its proof arise the following corollaries:

Corollary 1. Lemma 1 remains true if d is any number not less than
max (o, M —m + 1).

Corollary 2. If ¥(x, 2)="",(x,2)— ®,(x,2), and if, for the same d, ¥*(x,2),
P, 2), Filx,2) and P (x, 2), ¥ (x, 2), FI* (2, 2) wre the polynomials corresponding
to ¥z, 2), ¥, (x, 2), Pyl 2), as in Lemma 1, then

Y (x, 2) = P (x, 2) — i (a, 2).

Corollary 3. If the coefficients by(2), by(2), . - ., bu(2) and By(z2), By(e), . . ., Bu(2)
are independent of z, then the same is true of the coefficients By(z), By (2), . . ., Bu-1(2),
and these 1well be rational integers satisfying the inequality

max [B,]< max [B]( 2 max [j])
v=0,1,..., m—1 k=0,1,.... M j=0,1,..., m

3. In addition to ¥(x, 2) and ¥(x,2) we define a polynomial in z,
(p(Z) ="+ % 21 XQZHEQ + -,

with rational integral coefficients and of degree n(=1). We write

[p ()] ==
If, as in Lemma 1, ¥ (x,2) is written as
Pz, 2)=F"(x,2) (2, 2) + Pz, 2),
where
qi** (xa Z) = %O(Z) $m~1 + %1(2) xm_2 t- 23”1_1(’8)3

then the B, satisfy the inequalities (11) and hence the inequalities

B, (z) < 2BHEHNI PRy 4 2 + -+ YY) (p=0,1,..., m—1),

4 ’ s ’
(1 4+ 2)F+1V = + (B %;(Zb)g+ (B idb)zg_i_mjrzn'wb"

since

and

’ ! B4 ’ ’
(B +db)§ 2 (B +db):(1+I)B'+db':2ff'+'”"

¥ = T

(r=o0,1,...,B +4ab).
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If 0 =max (0, B'+¥d—n+1), by Lemma 1 and since x{=1'=1, B,(z) may

be written uniquely in the form:
B, (2) =By (2) pl2) + Bi*(2) v=o0,1,...,m—1),

B (2) and B3*(z) being polynomials in # (the latter of degree not greater than n— 1),

with rational integral coefficients. Further, by Corollary 3,
B =dwo" P+ dn1 &+ +dyuor W=0,1,...,m—1),
where the d,, are rational integers satisfying the inequalities
[dyu] < 2B+ BE (20 (v=0,1,...,m—1; p=0,1,... n—1)
If we write
Wy, 2) =PF*(z,2),
PO (g z) =B () a™ 1 + Be) a2 + - + Bn1(2),
Y (x,2) =B Z) a1 + B ()™ 2+ - + Brtile),

N

then
bol) WP (x,2) =PV (x, 2) W(w,2) + P (x,2) p(e) + PP (x,2),

and we arrive at the following result:

Lemma 2. Let
Y, 2)=by(e) ™+ b, (e)a™ 1+ - +bu(z), ¥(x,2)=DB(2)x”+ B,(g)x¥ 1+ - + Bylz)

be two polynomials in x of which the coefficients by(2), b,(2), . . ., bu(2) and B,(2),

B,(2), . . ., Bx(z) are polynomials in z satisfying the inequalities
bi(2) < b(1 + &) (jJ=o,1,...,m),
By(2) <B(1 + 2)¥ (k=o,1,...,M),

where b, b, B, B' are non-negative rational integers. Let
pla) =2+ % 2" 1+ 2" -+ oxy

be a polynomial in 2z alone with rational iniegral coefficients, and let

d=max (o, M —m + 1), d=max (0, B +db —n+1), »=|pl)].

Then there exist three uniquely determined polynomials ¥V (x,2), #® (x,2), ¥® (x, 2)

in x and z with rational integral coefficients such that

bo () # (2, 2) = Wz, 2) Yw,2) + FP(w,2) () + ¥z, 2),

3~ 642136 Acta mathematica. 83
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where ¥P (x, 2) 1s of degree not greater than m—1 in xz, and ¥® (x,2) is of degree
not greater than m —1 in x and n—1 n z. Further,
[Pz, 2] < 25 +0+14 B (2}
From this lemma and its proof the following corollaries arise:
Corollary 1. Lemma 2 remains true if d and 0 take larger values than those

assigned.

Corollary 2. If ¥ (x,2) = W,(x,2) — ¥,(x,2), and if, for the same d and 9,
P (x, 2), PP (e, 2), PP (&, 2), B (@, 2), FPw, 2), PP, 2), ' (w, 2), ¥P (2, 2), FP (0, 2)
are the polynomials corresponding to ¥(x,2), ¥, (x,2), Fy(x, 2), as in Lemma 2, then

FO(x, 2) = PP (x,2) — FP(x, 2).

Corollary 3. If the coefficients of W(x,z) and ¥(x,2) satisfy the inequalities

bi(z) < b1 + 2! (j=o,1,...,m),

Bilz) < B(1 + 2)»! (k=o0,1,... M),
then
FO (g 2)]| < 2@ 01 B (2 %),

§ 3. Construction of the R-Polynomial.

4. Let ® be a finite algebraic field of degree n(=1) over the rational number

field P,  be an algebraic integer generating &, and
p)=2"+ 0,2" 1+ a2 2+ -+ Ay

be the irreducible polynomial with rational integral coefficients having the root §;

as in 3 we write
x=|@2)].
Further, let
flw,2) = ag(2)a™ + ay(e)a™t + - + an(2) (ag(2) == 0)
be a polynomial in z and z with rational integral coefficients and of degree
m(=2) in x and of degree not greater than » —1 in 2; a is taken to be the

smallest natural number such that
ay(z) < a(t + 2!

for »=0,1,...,m. Thus the polynomial f(z,{) in z has integral coefficients
from ® and is of degree exactly m in x. We impose the further condition that
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its discriminant does not vanish, i. e., that the discriminant of f(x,z) with respect
to x 4s not divisible by @(z). flx,§) may be reducible in K. We are concerned
with the question of how closely we can approximate to a root of f(x,) by
numbers of a fixed degree over & when we consider a finite number of valua-
tions of &.

5. Let & be a positive number, s a natural number less than m, r a natural
number to be determined later, and ¢ the rational integer determined uniquely

m +
q£(8+f—1)r<q+1

by the inequalities

To every natural number R correspond exactly

m (2R + ) (gq+7+1) (s+1)
polynomials

g+r s

R(x,, x5, 2 Z 2 2 Ry 1,1, b ale 2%,

L=0 =0 l;==0

of degree ¢+ in x, s in x,, and » — 1 in &, and with rational integral coeffi-

|R(x1yxzyz)l =

cients such that

We write
0%+% R (x,, 5, 2)
er N (xlv xZ’ Z) - Z‘l ! ?‘.2! ale, (,)xﬂzz
g+r s l
=3y ZRM la(')( )x’r—llxl—lz7lx
L=0 l,=0 ;=0 ' 2/
Putting o,=ux,=2z, it follows that the polynomials R (x, x, 2), fori=o0, 1,...,7—1,

are of degree not greater than ¢-+r+s in « and »—1 in 2. Arranged in powers

of z, these polynomials become
qtr+s
Rio(x, x, 2) Z Bji(z) xotr+s—i (¢=o0,1,...,7r—1),
j=0
where

g+r n-1
Bjile) < R D ( ) Dt
L,=0 13=0

q+r

n—1
<R3 b X
L,=0 =0

< 2q+r+lR(I + Z)"_l

o,1,..,q+7r+s t=0,1,...7—1I)

A
S,
l
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For¢=o0,1,..., r—1, we apply Lemma 2 to the polynomials ¥ (x, 2) = Rio(x,x, 2),
Wz, 2)=f(z,2), and p(e). Since s<m—1 and M <q +r + s,
max (o, M —m + 1)< max (0, g+ 7r-+s—m+1)=q +r,
so that we may take d=g¢q + r+1. We also take b,(z) =a,(¢) v=0, 1, ..., m),
b=a, B=20""T1R V=B =n—1, so that
max (0, B+ Vd—n+1)=m~—1)+m—1)g+r+1)—(—1)=m—1)(¢ +r+1).

Hence we may put
d=(g+7r+1)(n—1).

Thus, by a representation corresponding to that in Lemma 2, E;, can be re-
presented uniquely thus:

bo(2)! Rio(z, z,2) = RV (x,2) f (2, 2) + RP (2, 2)p(2) + RV (x,2) (i=o0,1,...,7—1),

where, in particular,
m—1 n—1

RV¥ (x,2) = Z Z Pyt
u=0 =0
is of degree not greater than m—1 in « and »—1 in 2 and has rational integral

coefficients F;,, which satisfy the inequality

l Ri}i) (x’ Z) l < 2n—1+n(q+r+1) 20+r+1 B aa+r+1 (2 Z)(n—l) (q+r+1)’

or
IR?) (.’E, Z)l << pn—t (22'n axn—l)q-ﬂ'-‘rl R

< (23n—1 a%n—l)qﬁ»r-i-l R (2 =0,I,... 71— I).

For given R, there are for the system of polynomials R®(x, 2) (i=0, 1,...,7—1),

not more than
9’32 = {2(23n—1 axn-—l)q+r—+ 1R+ I}mnr < (2311—1 axal—l)(q+r+l)mnr(2 R+ l)mnr

different possibilities. Now

nlg+r+1)(s+1)> n:n_:lar(s + 1)=mnr + enr,

so that
931 > (ZR + I)mnr+snr.
Hence
921 > 9}21
when
(q+1‘+l)1:

2R+ 1=(28""1ax"?) >2R—1.
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Thus, when these inequalities hold, there must exist at least two different
polynomials of the type Rz, 2y, 2}, say

gt+tr s mn—1 q+r 8
* — & Iy pls ol Uy ple o,
R (Z‘17x2v~ - Z Z Z R{;fﬂsxl‘ XLy &, R** xlvxm Z 2 Z Rl’213x1‘ xg &,
1 =0 15=0 l;=0 =0 [,=0 l3=0
with

[E*]< R, |[R*™|<R,

and such that if R} (x, x,2) and R} (x, x,2) are represented, as in Lemma 2, in
the forms:

ay(2) Rfo(w, ,2) = R}V (x,2) flx,2) + RF® (x,2) @ (2) + R} (x, 2)
(i:o’ I, .., }.—I)’
ay(2)’ Rig(x,x, 2) = R*V(x, 2) fx,2) + RI* P (2, 2) ple) + BI* Dz, 2),

the » identities
Ri®(x,2) = RI*® (x, 2) (t=o0,1,...,7v—1)
are satisfied. We write
q+r s n—1

R*(xlax% Z) — R* (x,,xg,z) xl:xb 2 2 Z Rlnlzls xl .’,Cf?‘
L=0 =0 [;=0
so that R(x, x, ) is a polynomial with rational integral coefficients which is not

identically zero and for which

(g+r+1) T (q+r+1)7§

|R(xy,25,2)| =< 2 R < (23" ax*1) 1 <(28"ax"t)

Farther, the polynomials
' R (xy, 25, 2) .
R, , b Loy o,
solx, 2, 2) = (~————i! i ):tl=:t2=a: (e=o0,1,...,7r—1)

can be written in the form:
(12) Riolx,x,2) = ay(2)"{ RNz, 2) f (, 2) +- RP(z,2) p(2)} (=0, 1,...,7—1)

for certain polynomials RY (z,2) and R (x,2) with rational integral coefficients.
By Taylor's Theorem, for any fixed z,

q+r

xl: Ly, £ 2 Z Rlx lv ( x)ll (xz - x)lzy
L=0 l,=0
and therefore

g+r 8

Rio(x,, 25, 2 Z ZR” (x, 2,2 (Z)(x —xph iy —ax)r (G=o0,1,...,1r—1j,

4,=0 1,=0
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or, by (12),
Rio(xl) Zg, Z) = (xl - x)r_iﬁ‘i(xn Xy, ,2) + (x2 — ) Gi(xlv X9, I, )

+f(x7 Z) Hg) (5[71,932’ x, Z) + 90(2) H?) (xlax:?)xv Z))

where
q+r $

Iy xl,xz,ac 2) Z, D\ By, (x,, 2) (l )(.17 — )" (2, — x),

=r l=0

r—1

Gilx,, xy, 2, 2) = 2 Z Ry, (z, x, z)(i)(xl — xfi (g — )Y,

L=0 l,=1

HY (), 25, z, 2) = a, "ZR“ x, 2 (l)(x — x)h—,

;=0

HE (), @y, %, 2) = ay( ZR” z, 2) ( ) —xhTt (f=o0,1,...7r—1).
L,=0

The first two of these functions are polynomials in z;, x,, x and ¢ with rational

integral coefficients, while the last two are polynomials in =z, z,, and x with

coefficients which are rational funetions in z with rational coefficients and which

are therefore numbers of & for z={, since a,(;) # 0. Clearly, when z={(, the

identity for R;o(x,, x,, 2) takes the form:

Rio(xlv Zg, é‘)_——_—_(xl—x)f—iFi(xl, Lo, Xy €)+(x2_x) Gi (xl’ Ly, Z, C) +f(x ) (.231,.%2, &£, g)

_ (t =o0, I,...,r——l),
and if we put z = x,,

(13) Rio(xy, @5, 8) = (x1 S i (xn L9, Lo, C) + [y, §) H£~1)(w1y X, X, L).

6. Since & is a field, every ideal in the ring of all polynomials in one
variable with coefficients from & is a principal ideal'. There is in particular a
polynomial e(x,) with coefficients from & and a first coefficient unity, and of
degree 0, say, which divides both R (xz,,x,,{) and f(xs, {), while no similar poly-
nomial of higher degree than 6 does so. Clearly,

o=0=s=m—1.
We put
S (@, 0) = elmy) y (), R (2, 25, §) = e(,) Sy, 2,),

! B. L. VAN DER WAERDEN, ‘Moderne Algebra’, 2nd edition, Vol. 1 (1937), Julius Springer,
Berlin, p. 59.
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so that y(x,) is of degree exactly m —8, while S(x,, x,) is of degree not greater
than ¢+ in z, and s — @ in x,, and has coefficients from & By our choice of
e(xy), S(x,, ;) and y(x,) have no non-constant common factor.

We can arrange S(z,, ;) in powers of x; thus:

8

S (@, x) = wi(xy) 2,
i

l
“

I
=

where the polynomials

(14) wo(2y), wy(xy), . . ., we—p(2;)

are not all identically zero and have coefficients from ®. Let yx+1 (y=0), and
no more, of these polynomials be linearly independent with respect to the field &,

say the polynomials w;,(x,), wi (x), . . ., wiy(x,), where [,<l;<---<l,. Then the
Wronski determinant
dtw ()
(z:) tldat |i5=01,... 4

cannot be identically zero'. Clearly, #(x,) is a polynomial in xz, of degree not
greater than (y + 1) (¢ + 7), where 3 <s—8. '

If we express the polynomials (14) linearly in terms of the chosen yx + 1
linearly independent polynomials, with coefficients from R, then S(x,, x,) takes
the form:

S

Sy, 5) = wij () 25(,),

J

i
<

and it is clear that the y + 2 polynomials in x,:

Qo (@), (), .. -, Ql(%): V(xz)

are none of them zero and can have no common factor. Now

Rlay a0 0) = 3 s ) elay) 2(e),

=0
and
X gi
Riolzy o 0= 3 9% o) @) =01, r—1).
= ldag
e s diwi;(x,) .
Thus, on multiplying Rielx,, 2, §) by the cofactor 4;;(x,) of Tdg B A(x,),
* 1
and adding the expressions obtained for ¢=o, 1,..., %, we find that

! See note 1 on p. 1, pp. 177—S8.
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X
A () e(,) Q(xy) = 3 Aij(2,) Rio(xy, 25, 8)
=0
for j=o0,1,... 2 Hence and by (13),
J(xl) e(x:?.) QJ(‘£2) = (xl - x?)r~12)j (xl’ x?) + f(x% g) Qj(xly x?) (j = O) 17 ] X),

where p;(x,, x;) and g¢;l(x,, x,) are certain polynomials with coefficients from &.
Differentiating these identities » — y — 1 times with respect to x;, and putting

x; == 23 =, we see that all the polynomials
d(i)(x)e(x)gj(x) (7::0’ L..,r—71—5 j:o’ L.y X)

must be divisible by f(x,{). Since f(x,{) = e(x)y(x) and since 2,(x), Q(x), . . .,
Q,(z), y(x) have no common factor, all the derivatives ./(z) must be multiples
of y(x). Thus, since f(x,{) and therefore y(z) have non-zero discriminants, ()
is divisible by y(z)~7, and so

(13) 4 () =y () ~* d(x),
where d(z) is a polynomial with coefficients from & which is not identically zero

and is of degree d, say. Since y(xz) is of degree exactly m — 0, and A (z) is of
degree not greater than (y + 1) (¢ + 7), it follows that

dS(x+1)(r]+r)——(r—y)(m~0)§.(z—.LI)(fif)r—(r—x)(m—ﬁ)
_fx R 2 o 2 _
w(s+1m m~rt9)71~.98+11+x(m 6).
If we write
y=8— 80—,

where » is a non-negative rational integer, then J satisfies the inequality

b —s—1)0 +n
3 g__(_L_S___) Uyt e (m— 1)m.

If we take

it is easily verified that » must be zero and that
d<er + (m—1)m,

for otherwise d would be negative, which is absurd. 1t therefore follows that all
the polynomials (14) are linearly independent, and so we may take

L (x;) = ]
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for j=o0,1,...,,8— 0. Then the case j =0 gives the identity
s—8
A (zy) el,) = Z Ao (2,) Rio (2, 24, 0).
i=0

Differentiating successively with respect to x,, we find that

§—6+j

(16) d(j) (‘7/1) 8(%‘2) = Z Pfj (xl) Rio(flfl, x21 g) (] = 07 Iv 27 .. ')7

where the P;; are certain polynomials in z,.
Now let 4, and A, be elements of an arbitrary field over & such that f(1,,0)
and f(4, ) are not zero. Then by (15) there exists a non-negative rational integer

7 such that
J<er+{m—1)m

and
AW(4) 5 o

since, firstly, y(4,) # o, aud secondly, if #(x) is divisible by (x -~ 4,)%, but by no
higher power of (x—A4,), j<4d. Thus, by (16) and since e(4,) # 0, at least one of
the numbers Rio(4,,4,,8) =0,1,...,5s —0 + 5) is not zero. We have therefore
proved that if A, and 4, are any two elements of an arbitrary field over & such that
S, 0) and f(ds, L) are not zero, there exists a non-negative rational integer i not
greater than er + m* — 1, where ¢ < % and r = 2m? (thus fulfilling the conditions
that o0 <17 < 7), such that
Rio(y, 45, 0) 5% 0.

7. We thus arrive at the following lemma:

Lemma 3. Let:
® be a finite algebraic field of degree n(= 1) over the rational number field B;
g be an algebraic integer generating R,
p(2) be the polynomial
w(z) =" + %lzn-—-l + 122"'—2 o+ ouy,

with rational integral coefficients and irreducible in B, having § as a root;
% be the number |@(z)|;
flz,2) be a polynomial in = of degree m(= 2):

f@,8) =ay(e)x™ + ay () 2™+ - + am(2),
where ay(2) (3 0), a,(2), ay(2), . . ., an(e) are polynomials in z with rational
integral coefficients and of degree not greater than n—1, and f(x,{) has a

non-zero discriminant (N. B. f(x, {) need not necessarily be irreducible in R);
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a be the smallest natural nwmber such that

a,(z) < a1 + 2)»!

Jor v=o0,1,... m;

[~

be a natural number less than m;
r be a natural number not less than 2m?;

be a posttrve number not greater than };

q be the rational inleger determined by the inequalities
m-+ e
= (= —1)r< .
q ( Py I) ¥ qg+1

Then there exists a polynomial R (x,, x,, 2), not identically zero, with rational
integral coefficienits and of degree not greater than q + v in x;, s tn x, and n— 1
m z, with

—— (g+r+1)
| Rz, 2y, 2)| < (23”ax"”’)q T+ ,

m
&

and such that the following properties are satisfied :

(a) If

qg+r & l
Filzy, 2y, x, 2) = Z D\ Rui(x, z, 2) (z’l) (2, — x)h~ " (2, — )",

L=r =0

r—1 8

l )

Gilxy, g5, x, 2) = > D Ruy(w, =, z)(;) (; — x)r— (g — ),

=0 Iy=1

r—1
l )

HP @1, 3y ,2) = ale) 10740 3 B (2,2 ()=

r—1
| . l _-
HP (1, @, 7,2) = 4 (2)~977+0 3 R (@,2) (;) (2, — @)+,

=0

where ¢ takes one of the values o, 1, . . ., r— 1, Ry, (x, x, 2) is the function

O+l R (e, 4, 2 . .

(_l'—lg'y(x%(;x’?) , and RN (x,2) and R® (x,2) (¢=o0, 1, ..., r—1) are certain
1 o2* 1 e /T,y =xy=2

polynomials in z and 2z with rational integral coefficients, then R (z, z) and R (x, 2)
can be chosen so that

Rio(xlv Zs, Z) = (xl - x)r—i F; (xla Xy, X, Z) + (xz _-x) Gi (371, Ly, X, Z)

+f(93, Z) Hi’l) (xb x2) €, Z) + ¢(Z) Hi'g).(xh xz, z, Z).
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(b) If A, and 2; are any two elements of an arbitrary field over R, other than
roots of f{x, (), then there exists a non-negative rational integer i such that

r<er+tmi—1<r—1

and
Rz’o(l“ }42, C) 7£ O.
§ 4 a. Inequalities Required in the Proof of Theorem 1.
8. We shall require the following slight variation of a lemma proved by
Siegel®:

Lemma 4. Let u,, us, . . ., i be any 1 numbers, where 1=1, and let L be the

maximum of the absolute values of the coefficients of the polynomial in z:

He—w).

p=]
Then
i
Il max (1, |w ) < 4 L.
=1
Proof. Suppose (0 <1, <) of the numbers u,, u, ..., w have absolute

values not greater than 2. Without loss of generality, these may be taken as

Ly, Hsy - - -, t,. Then
A

II max (1, |} = 2

v=1
A

Put f(e)=H(z~u,,). Then for at least one of the (I,+ 1)th roots of unity

r=1

& =1, &, &, ..., &, say for zy=1¢ (0 <j=<1,), | f(z)| is not less than 1, since

Thus

A A
I max (1, [ = 24| 1] (eo— ).

! 8ee note I on p. I, p. 175.
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Sinee py+1, #4492 . - - g all have absolute values greater than 2,
l ‘ I l 11
max (1, | u| } - Ly (1 N )
w;[l;[+l{ |2"‘Hv 4:[7,14—1"““"»—1 J_[ 'MVI“I

I =2

Thus
Hmax (1, [ ]) = zlﬂlz — | S 2Lzl + |20 14 -+ 1)
r=1
20+ nL=41L,

and the lemma is proved, since [ + 1 << 2! for [ = 1.

From Lemma 4 follows immediately:

Corollary. Let

® be a finite algebraic field of degree n(=1) over the rational number
field B
h be a natural number;
2 be an algebraic number of degree h (or some divisor of h) over &,
and so an element of a field S of degree h over & and hn over B;
Ly be the coefficient of the highest power of x <n the polynomial
Y (x; A, B, hn);
A be the number |Y (x; 4, B, hn)l;
A0 2202 e any w(o = w = hn) conjugates to A, with respect to the field §'.
Then
and
) IL0+ o) = s
e | Lo|

9. We shall also require bounds for the valuations of any root of f(x, {), or for
a product of valuations of such roots. (The symbols ¢@(2), %, {, & n, f(z, 2), a, m
have the same meaning as in Lemma 3.)

We write f(x, 2) as a polynomial in 2, thus:
Iz, 2) = aplz) et + ey ()" + o + an—1(),

where the eo,(x) (r=o0,1,... n—1) are polynomials in x with rational integral
coefficients and of degree not greater than m. They are not all identically zero.
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Let D(z) be the resultant of f(x,2) and ¢(z) with respect to z, so that
(17) - ¢le) Op(x,2) + flx,2) Fplz,2) = D),

where @p(x,z) and Fplx, z) are certain polynomials in 2z of degrees not greater
than #— 2 and n — 1 respectively, and with coefficients which are polynomials
in x with rational integral coefficients. The resultant D{(x) is a polynomial in x
with rational integral coefficients. Also,

D{x) = o.

For otherwise the equations ¢(z)=o0 and f(x,2)=0 would have a common
solution in z independent of the value of z. Thus ¢(z) and f(z,z) would have
as a common divisor a polynomial in z with coefficients not all zero, and not

involving z. By the irreducibility of ¢(z), this would be possible only if ¢(2)

were a divisor of the coefficients ay(2), a,(z), . . ., an(z) of f{x, 2), considered as a
polynomial in x. But this is impossible, since a,(2), a,(2), . . ., an(z) are of degree

not greater than » — 1, while @(2) is of degree n.

Thus we may write
D(x)= Dyax™ + Dyx¥ 1+ - + Dy,

where M is a non-negative rational integer, Dy, D, . . ., Dy are rational integers,
and D, # o.

By (17), any root of f(x, () is also a root of D(x), so that the problem is
reduced to that of finding bounds for the roots of D{x).

10. (a) Let & be a real or complex root of f(x,L). Then
D & =— (D& + D, 5% + --- + Du),
so that, provided & # o,
D0§=-(Dl+% +~~~+§£;ll),
and

I R
Suppose now that || >1. Then

(ol 1
=D =T
Hence
|§|<|TI+I
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This inequality is obviously true also for |§| < 1; hence, since D, is a non-zero
rational integer, so that | D,| = 1, it follows that

[E] <[D]+ 1

for all real or complex roots & of f(x,{).

(b) Let n be a root of f(x, L) in the perfect t-adic extension of R, 1. e., an r-adic
root of f(x,(), where t is a finite prime ideal of ® As before, provided 7 # o,

D Dy
Dyn=— (D1 + -‘)72 4+t 77—_—_—31_1).
Hence
| Dole |7l < max (1, [n[7% (9l . . o |gl-@Y),
since Dy, D,, . . ., Dy are rational integers. Thus, if |5 > 1,
I
=5
I n lr ID() |r

and this inequality also holds if || < 1, for D, is a rational integer, so that
| Dyl < 1.
Let now 71y, mar, . . ., gir): be any g(r) roots of f(x, L) in the perfect r-adic
extension of &. Then \
g {r)

It]: (vl_llmax (I: I"?WIY)) = I;I IDoIIf(”) !

the product being taken over any number of different finite prime ideals t of K.
But it was stated in § 1 that if p, p® .., p™ are the different prime ideal

factors in & of a natural prime number p, then
T
2909 =n.
i=1

Thus, since I, is a non-zero rational integer,

g{t) ’
I ( max (1, lm:lr)) =D,

T r=1

IA

g v}
(18) 11 (H max (1, mrm) (D)™

v \w=1_
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11. It now remains to find an upper bound for [ D] in terms of the coefficients
and degrees of @(z) and f(x, 2).
The resultant D(x) of ¢(2) and f(r,2) is the determinant of 22 — 1 rows

and columns:

I, Hys Koy o o v e e e , ¥n-1, %n,
o, I, 2 T y #n—2, ¥n—-1, %n,
#—1 rows
I, Ky iy o« o v 0 0 o0 y An—1, ¥Xn
Cgy gy Oy, « & . o o o o o o .., Op-1,
O, @, G, . . . . . . ... .. Op-3 Op-1,
1 TOWS
Qg gy o v v 0 v v 0o , Opn—2, Up—1

From this determinant, @p(x,2) is obtained by replacing the final column by

g% g% ..., 1,0, ..., 0, and Fp(x,z) by replacing the final column by
0, ... 0 &1 »2 I
Now
aue) <a(t +2rt<2lai+z+ 22+ + 2 (u=o0,1,...,m),
since
o n—1
(n 1) = Z ("—l)zznﬂ.
u =0 v
Hence
afx) <2 la(1+z+ a2+ -+ 2™ <2 1g(1+ )" (p=o0,1,..., 0—1)

Let = (x) be the polynomial obtained on taking any one complete product of

elements of the determinant D(z). Then since |xw| <« for w=o0,1,... n,
| (@) < w1 (271 ap (1 + Z)mn
< avlpm=Nngnome(r 4 g 4 gf 4. 4 gmn),
There are at most (2% — 1)! such products = (x). Hence

Dix)<(zn—1)l2-Dnyn—lgnamn(y 4 g 4 22 4+ - + z™"),
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Thus

[ D)+ 1=<(2n— 1)l 2= Vnimngnym-1 4

<z 22n-1 pon—1 2(n——l) nkmn gnom—1

= pn*tntmn—1 pia—l gnm-1

< grttnimatdnlogn ynm—1 (since e < 2%)
< " (2n+2m+41log n) atx 1

J— 4n (n+m+2log n) a® yn—l

(19) < grianiml gn gl (since 2 log n < for n=1),

By (17), (18) and (19) we arrive at:

Lemma 5. Let &, x, n, a, m, f(x, ()} be defined as in Lemma 3.
(a) If & be any real or complex root of flx, L), then
|§| < 4n(2n+m) a1

(b) If m1e, Mox, . .., Nowe be any g(x) roots of flx, &) in the perfect v-adic
extension of &, where v is any finite prime ideal of R, then

g (x)
I (H max (1, lmrlr)) < gt @ iy,

T p=1

the product being taken over any number of different finite prime ideals v of K.

§ 4..Proof of the Approximation Theorem.

12. Let 4, and 2, be any two algebraic numbers of degrees %, and h, (where
h, and h, are divisors of a fixed natural number h) over the field & which is of
degree » (=1) over the rational number field B (i. e., in our notation, w’'=4, or
A; and #” =h, or hy); let L,, and L,, be the coefficients of the highest powers
of z in the polynomials Y (x; 4, B, hn) and Y (z; 4,, B, hn), and let A, and 4,
be the numbers |Y (x; 2, B, hn)| and [Y (x; 2, B, hn)].

By Lemma 3, provided meither A, nor 4, is a root of f(x, ), for some non-

negative rational integer 7 not greater than sr + m® — 1,
ERZ' - -Rio(zly }'21 C) 7& 07,

Rio(x,, @, 2) being defined as in Lemma 3. Now Rio(x, x,, 2) is a polynomial

in z,x, and z with rational integral coefficients and is of degree not greater



The p-adic Generalisation of the Thue-Siegel Theorem. 33

than ¢+7»—¢ in z,,s in z, and »—1 in 2. Thus, since { is an integer of & and
A, and ], are of degrees h, and h, dividing & over &, 9, is a non-zero element
of a field & of degree h? over . Further, the coefficient of the highest power
of x in the polynomial Y (x; N;, B, h*n) is a divisor of (LS ~?Ls)" since A, and
A; lie in fields &, and R, of degree hn over B, which are subfields of &, which
is of degree k*n over P and therefore of degree h over R, and ®,. Thus, if

RO RO REW e the real or complex values conjugate to My, with respect
to &, and if 1, 1, ..., 1, be any o(= o) different finite prime ideals of &, and
if, for k=1, 2,..., 06, hy be any natural number not greater than g(rx)h? the

inequality (9), with w'=N,; and »" = h®, takes the form:

n

L = s 21,

=1
provided A, and 2, lie in the perfect r,-adie, 1yadic, . . ., 1,adic extensions of &

As before, let there be r, real and », pairs of conjugate imaginary fields

conjugate to &, and let qq, g5, . . ., q,,+r be the corresponding infinite prime ideals
in any desired order. Then [Riy, (=1, 2, ..., 747, 7y =1, g(¢)) represents
the absolute value of any of the N (v =1, 2, .. ., h*n) which are roots of the
polynomial Y (z; N:, K4, h%). Thus, if ¢ be any non-negative rational integer
not greater than 7, + 7, and if G(q) be a natural number not greater than
g(aj) (=12,.., 0),

G (a7)

(20) 1:11 I ik, 1Tt = {1z 0 )

, hin 0 G(qj) 1
1T 1= 1T o1 (£ 1L, )
v r=1

J=1 =1

Now, as defined in Lemma 3,

Y p— (qr+1) =
.l]c(xl’x27 , < (Zdn = 1) q+r I3

Hence
m g+r & mn—1

{g+r+1) —
Rix,, x,, 2) < (23" gu7) 2 Z Z bl 2h,
L=0 =0 [,=0
and

m

g+r s n-1
\(1 r+ 1
Rio(my, 5, 2) < (23" an"~ 1) Z Z Z ( ) h= b 2,

4 — 642136 Acta mathematica. 83
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But
l &1
)= = gl < 24+7
()=20) ,
and so
ar qtr— V
Z (1) x’;*"< 20tr Z xlll <= 2q+r(I + xl)q+r—1"
=0 \? =0
Also
U n—1
Dk <(t+ay, Des<(r+ep?
=0 ;=0
Hence
, {g+r+1) = ) .
Rio (-’L’l, T, Z) E=d (23n ax"_l) € 9qtr (I + xl)(H"“l (I + $2)5(I <+ Z)"— ,
and so

(g+r+1)

m
[Rilo;, = (22" an""?) ©20 (1 4 [ A Loy ([ A oy )t (14 [ L

(J=1,2,..,0r 7 y=1, 9(0)),

where |4, Iqjy and |4,y represent the absolute values of any roots 4i;, and 4,
of the polynomials Y (x; 4, 87, k) and Y (x; 4, Ry, k). and |Rl;, represents
the absolute value of that R corresponding to the pair of such roots chosen.

It follows that
rotry ﬂ(qj) h

T1 IR0 = (om a7 pan i T IL TL e+ 12 o=
v

y=1 »=1

ryFre

rtr, 909
Hj[[IIu+uwhmMIIu+mmwwmﬂw
=1 py=1 j=1

AV 29 AM and AP, AP, ..., A" being the roots of the polynomials Y (x; 4,, &, h)

and Y (x; 4,, & k). Thus, by Lemma 4, Corollary (b),

m +r—i)h
H Im\v 23nan,n 1) Kn(gtr+) 3 21121z(q+r) 8h211(q+r—i)( Al )(q ) Shfns.
1o/
h
. (‘4?_ ¢ Shzn(n—l) gh® (=1}
| Lo |

Hence and by (20),

e 99 '3
e I T, I (e
J=1 y=1 k=1

m
POt n(gn) gnigermen—2) a1} —n,

> (A(l]+r-i A:)—h {(2311 axn—-l)
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13. We write:

%fji' = l'i (2'17 }‘27 gj’;’v C)1 (ijj‘/ = Gi(zly 2'27 §j7a S.) (.} =1,2,..., 0, Y=1, G(q]>))
%”-' = E‘(An }*za ne, g)? (Ssl’» = (;i(ll» 22’ ne, g) (/‘:: I,2,..., U),

where Fi(xz,, x5, z, 2) and Gi(x,, 2, x, 2) are defined as in Lemma 3, and &, is a
real or complex root and m: an v-adie root of f(x, ).

We seek first for upper bounds for i, and &;;,, where j=1,2,..., ¢ and
y=1, G(q;. It should be noted that by |A(4,4,,&,,0) lqjy, where A (x,, x,, x, 2)
is any function of z,, x,, * and z, is meant the absolute value of A when
X = Ajy, Ty=Aojy, x=2E&;, and z=(;,, where Aij, and A,;, are any roots of the
polynomials Y (z; 4, 8,, ) and Y (x; A, &,, h), and I;, is the root in the field
K, of the polynomial ¢(2).

By the definitions of Fi(z,, x,, z, 2) and G:(x,, @, x, 2),

g+r 8
max (s, by, [Gs2ly) = B 3 (2) 1080, O,
L=0 1,=0
(7= I,2,..,0;, 7=1, G(Clj)),
provided
M1_§M|aj7 =1, }‘2'_-ng|qu1 =1
But

8

m q+r n—1
. ” (1'1'7‘71 - ]C k NETT S 7
[ i1, (8545 &40 )lqj-,, = (2" ax" Z 2 Z (l:) (l:) [ &5 [t het lzlgkf’”
=0 ky=0 ;=0

and by Lemma 5 (a),
l§j7'l < 4n(2?z+m) a® Z"_l,

and, further, it is easily verified, by a method identical with that of 10 (a}, but
with ¢ (2) in place of D (x), that

| /;'qj =%+ 1L
Hence

‘ (+r+1) =
max (| %sz'l«y P |85 |q;.,) = (2" ax) ¢

g+r n=—-1{ qg+r s ]C o ]
2 2 Z { 2 2 ( ) ( ) ( ) (4n (2n+m) a® xn—l)ll—Hg——lx—lz (Z + I)l"' J
Fy=0 kp=0 55=0 \=0 =0 ly

(zzna/n I lg+r+ 1)_ Z' i "21{( ) 11\2n+ml) a7l I) A R — (X +1 ) }

By=0 k=0 [;=0

J=1,2,...,0 7=1, G@y).
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3 .
(kl) S (]cl) - 2k1 S 2q+r
Z “=\» )

qtr k q+r
Z ( .1) (4n (2n+m) a® %"_1+ I)kx—i << 0T Z (4n(2n+m) an xn—l + 1)111—i

ko \? k=0

Now

<

Hence

& (g
< 29T n(2n+m) a® xn—-1+ 1 ky
Eo ( kl ) (4 )

= 29+7 (471 (2n+m) a® %"_1 + 2)q+r

< 3q+r (4n (2n+m) a® xn—l)q—i—r'

Also
8 8
Z (4 n(2n+m) gnoyn—1 4 ) Z (Z ) (4n(2n+m) a1 4 I)kz
Fy=0 =0 \2
— (4n (2n+m) a® xn—l_{_ 2)8
Al < (%)m—l (4n (2 n+m) a® xn—l)m—l.
80
n—1
N 13:0 l %
Thus

max (| %ijy |qj>,,,7 | @ij'/ lqjy)

@D gtrmet 1 n(2ntm) —1\g+r+m—1
L) -+ 3q+ ¥ (4 m) gn yn )q m

< (Zanaxn—l)
(j=1,2, .., 0 y=1, G@).
Hence, since

> ¢

o
<

& (4)
(22) H H max I%’]YIQJ«N |©l] ’Iq‘]/
j=1 y=1

- (23n axnwl)(qwfl) " an 1) 3" (gbr+m—1) ,m(@—1) (4n (2nt+m) gn Zn—l)n(f1+r+m-1)v
provided

(23) M1“§j~zlqjy£1’ Mz—gf‘f'qj*/gl

for j=1,2,..., 0 and y =1, G(g)

We seek next for upper bounds for the rr-adic valuations of i and ®p.
It should be noted that by |A (4, 4, nx, £}l where A (x,, zy, , 2) is any function
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of x,, x,, z and ¢, is meant the ri-adic valuation of 4 (z, z,, z, z) when x, = 4,,
2y =1~, x=m and z=1{, where },.and 1, are any roots of the polynomials
Y(z; 4, & k) and Y (x; 4, ®, h) lying in the perfect r-adic extension of §.
By the definitions of Fi(z,, xs, x, 2) and Gi(z,, x, z, 2),
max (| Firly, |Giely) =  max N | Brt (o, i, O, (B=1,2,.. ., 0),
r

L=i,i+1,..., ¢
5=0,1,2,...,8

provided
Hl“"'?lclrkgla “‘2“"7’6]%31'

But Ry,(z, x, 2) is a polynomial in x and z with rational integral coefficients and
of degree not greater than ¢-+»+sin x. Thus, since { is an integer of the field &,

(24) max (I %ik‘rk, I@U\‘L‘k) = max (Iy I"]klfk)q+r+s (k =1,2,... 0)7
provided
(25) Ml"’?klrkg L, [2— il < 1.

14. By Lemma 3,
Rio(Ay, 4, ) = (A=) =1 Fi(Ay, Agy 22, ) + (A — ) G5 (A, Agy 2, &) + Fl2, ©) HWY (A, Ay, 2, §).
Hence, putting z = §;,, it follows that
I loy = L= &3l ™7 Fegy + (A — 82) Ouglyy, (j=12..,0 7=1, G4,
and putting = = 7, it follows that

[ Rl = 1A — 0= Fire + Ay — 01) G, (k=1,2,...,0).
Thus, firstly,
|l = 2 max (Fsshy,, |Gy ) mae (14— &5, %, 12— 85l

(J=1.2,..,0 y=1, Gy,
so that by (22) and (23),

4 @ (qj) mn
(26) B 1;[1 I mi !qj"/ < on (23 n ax11~1)(0+r+1)7 on(n—m-+1) 3" (gFr+m—1) yn (n—1),
‘ &%)
. (4n (2n4m) al xn—l)n (q+r+-m-—1) H II max (l }'1 _ 5.7‘7' l‘;j—;’ l 12 —_ gj')’lﬂj 7)’
provided =t =t
(27) Ml—gj*/laj./ﬁla Mz—gjqu”SI

for j=1,2,..,0 and y=1, G(qg).
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Secondly,
|mi|rk = max (l %iklrw I@iklrk) max (le - ml{k_', Mz" Wklrk) (k=1,2,... 0),
so that by (24) and (25),
| Rl <= max (1, [ge | )+ max ({4, — |70 | — e le);
and if g, (k= ceu0,0=1,2,..., G); v=1,2,... ke be an rradic

root of f{x,2),

g

Hlml”ksﬂlj

{max Imd l"““’ max ll ”"ﬂd"tlr ) Mz”"’?krf"llrk)}»

nmw

where hig(k=1,2,...,0; d=1,2,..., G@) is a natural number not greater

than *? and such that
G(tk)

2 his = hr.
=1

Then by Lemma 5 (b),

(28) II I ER Ihk < 11‘1 {2nim) on? yn (n— 1))(q+,+a) 3

o G{g) brd
H H H max (ILl-nkcnl ’ “w"?”flfk)’
=1 z=1
provided
(29) l)‘l'—ﬂkd‘zlrks I, I}'Z_“"?k""’]flcS I

fork=1,2,...,0;,0=1,2,..., G); t=1,2,... Jus.
From (21), (26), (27), (28) and (29), it follows that

o F@) o G(r) Mg
H H max I}“—gf/!q b?v‘nj H H H max M -Wkdrlrk s Mz—’?kt’f‘rk)
=1 y=1 =1 d=1 =1

n{geril) =

> (A?%-r—i/l;)—h {(2311 ax™ l)

& 2n (g+r) gn (g+r+m+n—2) xn—l}whz,

nig+r+1) %

. {zn (23 gyt 1) 3 2n(n m+1) 3n (q-+r4+m—1) " (n—1) (4n (2n+m) a® xn—l)n ((p}-r+'rn—1)}—h2 .

. (4n 2 nt+m) gn xn—l)—n (g+r+m—1) r%
= (A Ay TP,
say, provided
(27) Mx_gjvlqjygla I}‘2_§j’}’}qj‘7£1
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for j=1,2,...,0 and y =1, G (g, and

(29) ‘11—7]k61|rk51, llg“'ﬂkd’thksl
fork=1,2,...,0,0=1,2,..., G@); t=1,2,... hs.
Now
Zmn (g+r+1)+2 22 (g+r+m—1) M‘”———Q (g+7r+1)4+(n—1) (n4+11+2n (n—1) (g+r+m—1)
T<ag?* ¥ F .

. pl6ntmfe) (gtr+1j+{g+r) nt{n-m+2)n+4 w2 (2ntm) g+ r+m—1)+8n(g+r+m+n—2)+2n{gFr+m—1)

- aIl sz 2137

say. Then, since m =2, n =1 and ¢ = §,
mn m
Il<2(q+7~+m)(——6—+n?) <2n’(q+r+m)(2n+;)»

L<2(@+r+m

(= 1)+ mln— 1))

m
<2n2(q+r+m)(2n+;),

2

13<(q+r+m)(6n %m0t 4ndzn+m)+ 30 +3n(n—2)+2n)

3n’m

:2(q+r+m)( £m+2n2(2n +m+1))

=2(g + r -+ m)nz(:’J:”Z +4n+2m+ 2)

<z2(qg+7r+ m)nz(ﬁ? + Sn)

=2n2(q+r+m)(2n+?)4.

Hence
2n%(g+rtm) (2 n+ '_r_n_)
T <(16ax) e/

and so, if
202 (q+r+m) (2 nt Zz—) h?

E(e,0) = (16 ax) (Agtr=* A3

¢ GO o G0 Mg
H max (“q“gjylgj—fy |~ §J’}"qj7) H H H max (| 4,— Ukt’tl;,:i: | As— praclyy),
j=1 y=1 k=1 d=1 z=1
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then

(30) Efe,0) > 1,

provided

(27) Mx’_gﬂlqj‘yé I, |l2-§jquj,{SI

for j=1,2,..., 0 and y=1, G(g), and
(29) I)Vl""’]kd'1lt‘k£11 Ilg‘—"]kd‘zlrksl

for k=1,2,...,0;d0=1,2,..., G{); v=1,2,..., hs.

15. Let ¢ and @ be positive numbers such that

s+t O<m+ 1,

. om
c=1, B=

s+1
and let I'j,(j=1,2,...,0; y=1, G(p)) and Is.lk=1,2,...,0;d=1,2,..., G{;
0 a G(rk)

T=1,2, ... s form a system of {= Z G (a) + Z D) hxs positive numbers
=1d=1

with sum unity. i=t

We now impose the following conditions on ¢, r, 4; and A,:

1) 0<e<{, €<ﬁ_;
3 3
2) ;'ZﬂZSJ'—I?—H—;
& 3 &
202 (ﬁ— +a) (2 n+ﬁ) h/(@—-‘? €) (1—»f +e>/(6—/3 &) h
3) A, =16ax) ‘t1 ¢ AN = (, say;
L L
4) (¢ " A)y=d,<(c " A)"
5) Mx_gj*/lqj-.,g(@/lfhﬂ)lhy ‘ I}"z_“gjvlqj-./é(‘?/l;hﬁy‘”

for j=1,2,...,0 and y =1, G(g);
6) l)” - 77"'6""'1»' = (cAl_hﬂ)rkh: [)“2 — Wkdrlrk ={c A;hﬂ)PMi
fork:I,Z,...,O';(5‘—*1,2,...,G(t,,);121’2,._.’]“66;

7) A; and A, are not roots of f(z, ().
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The conditions already imposed are:

A) 0<g=<}, r=2m?
B) !ll_gjqujlrgl’ llg*gj',']qj./sl
for j=1,2,...,0 and y =1, G(g);
C) l\l1_’}kt’erk~<—Iv Mz”"'ﬂ"’flfkg I
fork=1,2,..,0;d8=1,2,...,G); t=1,2,... s
D) A, and A, are not roots of f(z, {).

These conditions are contained in the new ones. A) follows immediately from
1) and 2), and D) is identical with 7). B) and C) follow from 1), 2), 3), 4), 3)
and 6). For by 1), @ — 8¢ >0, and so, by 3) and since ¢ =1,

: (-3)

A> 6(1--54-5)/(9—(35) by e

But
I—éb
B_Bls+1)—sls+1) _m+O+1) m 4
0] OB(s +1) OB (s +1) Of(s+1) 8B
and so
1 T 1 1
A,> ¢ (a6 * 3) > o8,
i. e.,
e AR < 1.
Also, by 4),
7 T, m 1 . m 1
A, = e ﬁ/pl- > c{_ B (e‘9<s+1) + E)} = ¢ (6(3(s+1)) %
2 m?
= 68k (by 2))
1
= ¢hB

since ® <<m, as §<<m + 1. Thus
e A7RE < g, e A< 1,

and by 5) and 6), B) and C) are satisfied.
It therefore follows, by the result obtained in 14, that the inequality

(30) Efe,0)>1

holds when the conditions 1) to 7) are satisfied.
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16. When these conditions hold, by 5) and 6) it is clear that
E(Q: G) = max (Eh E2)a

where
2 (g ;ﬁ 2
El _ (]6 ax)2 n2 (q+r4m) (2”- 5) h (A;H—r-—i—ﬁ (r—7) A;‘)h cr—i’
. m
Fam (16an™ T O (gt oo
since
o (%) "¢ GO Mg
H H max (| 4, ——§”| Enlqﬂ H H H max ( mazl;'k“i, “vz“'}kd’zlrk)
j=1 y=1 k=1 d=1 r=1
¢ G095 o &) Mo
= H H max (¢=F ATHBU=0 ¢ AT 8l H max (¢ ~F A7REU=1 o AT pylkde
j=1 y=1 k=1 0=1 z=1

= max (¢""t A7*E =1 ¢ A7RB),

the sum of the I's being 1.
Now

2 n? (q4r+m) (2 n+ ) 2 a%(g+r+m) (2 nt+ m)

E, <(16a%) Areigh, E, = (16ax%) Ahe gl
where, by 4),
e,=q+r—i—BUr—i+sr+1)=qF+r—i—@B—sr+if+s,

e=qg+r—i+{s—Br=q+r—i—(B—s)r<e,

f1=7‘~z’——§(r+ I)<(I—‘é)7 +1,

= (i

By the inequalities of Lemma 3,

m + . N
q+7<( 6)1", t=e¢r+tm*—1,
s§TI
and so
m-+ e
max (e, ez)S(S_}_I)r—-(ﬂ—s)r-i—(er+m2—1)(ﬁ—1)+s

But

g<m+1, s<m—r1, p=strm
50 that s ¢

ESTY
s+1

m—1)B—1)+s<m—1)m+(m—1)<m®=
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Also, by the definition of g,
(m s 8) r—{@—sr+er(—1)=— (6)~( ~——i~)e) 7.

s+1I s+1

Hence
max (e, &) <— (@ — ge)7.

Further, since ¢r = 2m® > 1,
s
max (f, fo) < (1 3 + e)r.
Thus
2 n2(g4-r+m) (‘2 n+ ’"—1) h2
&

max (E,, E,) < (16 ax) A;e=gearh c(l_ ﬁﬂ)f

m+ &
s+1

and by 3), and since (g + ») < ( )r and m < m?® <

max (E,, E,) < (I6ax)2"2 (?T—l"") T (Z"J‘”%)hz.

- G b D ) 3
i e, ’
Efo,0) <1,
which contradicts (30).

17. It therefore follows that the only algebraic numbers 1 of degree h (or some
divisor of h) over R, lying in the perfect t,-adic, tyadic, . . ., Yeadic extensions of &,
which can possibly satisfy all the inequalities

(31) Il_gjqujYS(C/l“"ﬁ)rj‘/

Jor j=1,2,..., 0 and y=1, G(q;), and

(32) A —pacly, < (c A7) H=

for k=1,2,..,0; d=1,2,.. LG T=1,2,... lg, A4 being the number

Y (252, B, hn)|, are such that:

cither (a) A< O =(16ax) " (Tt (e ) 1ftopo c(l~§+e)/w—‘h)h

or (b) if A, be the minimum value of A not less than C Jor which a corresponding

b

A is a solution of the inequalities, then any other values of A not less than C for
which a corresponding A is a solution satisfy the inequalities

1 2miY
A =A< (e WAI)[T] o
or (c) A 2s a root of flx, {).
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Clearly, the total number of solutions of the inequalities (31) and (32) is
finite. We seek now for an upper bound for the number of solutions in terms

of %, n, a, m, h, ¢ and B.

18. Let now A, and 1, be two different algebraic numbers of degrees h,
and h, dividing h over &, such that A,= A,, and let both be solutions of the
inequalities (31) and (32). Then, since the sum of the I's is 1,

!
33 X= H H max _'gj}’lq‘)'.,d ‘li—gj“flq‘j./)'
1 =1
~ o G Mg
: I ‘max (lll‘“ﬂkdz(rm |R‘2_7]kdflrk
< eAh6, E=1 =1 z=1
Also .
2 max (]ll - 5]’7'«1”: Mz - §f7’l0j7) = l(}‘l - 5]'7) — (A — gjv) lq”
={4—4 Iij
(j=1,2,..,0,7v=1, Gy,
and
max (|4 — meacly, [ — meocly) = 14— neaed) — (— quad) by,
:l 1—}‘2]%
(k=1,2,...,0;d0=1,2,...,G@,;, 1=1,2, ..., 4,
so that
0 G(‘{j\;
I
Xz=————[] 1 —2ly, Hlkl o
E (1'(1]]') J=1 =1
2/=t
(34)
= thL.OIH|2~i oy
S o )
27=1

by the fundamental inequality (9) (taking o' =24, — 4,, %’ = k%), since (Lo Lsy)"
is a multiple of the coefficient of the highest power of x in the polynomial
Y (x; Ay — 4y, B, h¥n) (H [ (A, — 2,)*| is the product

0 G(M.

2
- (HHM Al
=1 =1 y=1
where the (4,—1,)” (v=1, 2, ..., h®n) are the conjugate values of 1,— 4, in the

polynomial Y (x; 2, — 4,, B, h*n).)
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Now
I 1o, =2 =] (2 max (4], |49 ])
v P
n2n— i“ el (‘Tj) ke hn )
=2 = D max (1, |20 ) [T max (1, |29 ],
v =1 ry=1
where A" (v,=1, 2, ..., hn) and AP (»,=1, 2, . . ., hn) are the conjugate values of

Ly and A, in the polynomials Y (z; 4, R, kn) and Y (z; i,, B, hn), and A and A
denote the values of A, and 1, corresponding to (A, —1,)”). Thus, by Lemma 4 (a),

[

, ’Jg’ll—z G(qj) /1 A h
A — A (v) < 2 =1 6h2n ( 1 2 ) i

[y = 6 L [ Lo

Heunce and from (34),

X = (2¥r 167 Ar AN
and so by (33),

c AT = (320 AL AN,

1

(35) Ay = (32" M)A

1

19. We divide the solutions of (31) and (32) into three groups, J;, J, and J,,
as follows:

J: If A, be the minimum value of A not less than C for which a cor-
responding 1 is a solution, J, contains those solutions for which

_1 [241”3]-;1
C=A,<A<(e AL <1,

’

J,: contains those solutions for which

1

(64mm M2 < A <
J;: contains those solutions for which either

1

(a) A < (64"n c%)f”.*g,
or (b) fA,0) =0

(except that any roots of f(z, () included in J, J; and J, (a) are excluded
from J; (b)).
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In J,, since

-3+
1"

‘ C> (]62hncﬁ)@—ﬂe’
it follows that

8
1 1——+e

Al > (32hn C;) 60—« .

Put
(56) o—pe=i(1~5+e) (82
Then
1.2
(37) Ay > (3207 ch)B—2,
Let A, A4,, ..., A, be the values of /A not less than € giving the u different

solutions in oJ;, and let 4, <A, < ... <4,. Then

2 m8
E

2 ms

12 1
(szhngh)ﬁ——2<AISA2S SA#<(c hEA) s] IS/L[

But by (35),

1

AM > (32)111 Ch)—l Aﬁ:i

1

> (32hnch)—(l+(ﬂ-l)) A‘Lﬁ:zl)z

1
> ... = (32hnCIL)—(I+((}—1)+({3_1)2+...+((3_1)4L—2) A‘lﬁ‘l)‘u—l

1 1
> {(32hn ¢ty B-2 Al}(ﬁ—lw_l-
Thus

/11[ el B >(32hnci)“ B—2 A(ﬁ—l)ﬂ—l’

2 m3 . 1 (f-1p-1

and by (37),

2]
L N L [ I §

Hence
log (z [2 :”3] + z) > (u— 1) log (8 — 1),
and so
log sm
(38) Bt — .

log (83— 1)
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Let Auy1, Auso, - « ., Auss be the As corresponding to the different solutions
of (31) and (32) in J,, and let Au41 = Ayt2a = -+ = Au4,. Then

1

1
(64" )2 < Ayar < Ayga < -+ < Ay < C.

As before,
1 1
s > {(3287 ") B2 Ay},
and so
hn y—
PRy =1 ot
Hence
hn
log log O > log 52 log 2} + (¥ — 1) log (8 — 1),
so that
log C
log ——F——
(39) hn log 2
39 5=z o
TS T g (5 1)

20. From (38) and (39) we now obtain bounds for x and v involving only
%, n, a, m, h, ¢ and B.
Siegel! has shown that if

. ( m_ . )
Q= min Sy
£=1,2, ...,m—1\S +1

then

(40) 2Vm—1<e<Vgm-+1—1,

and the value s’ of s giving « is

) o et
2
We choose 3, @ and ¢ so that
(42) B=a+ O, °<@£ZIE’ O—Be=360>o0.
Then
3
_ 160 _x6m_,

! See note 1, p. 1, p. I9I.
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and since ¢ is not greater than m,
B<m+ 1,

which is consistent with the original definitions of & and @ Further, the
inequality (36) is satisfied for s =s". For, if m = 2,

%(1__[%+e)(ﬂ—z)>%(1——8’)(6—2)=(ﬂ—$2‘(§’2)2(‘8;(z)£:g)@).

Thus, if m = 2, so that « = 2, it follows that

¥ 6t +e)_0
§(I~‘E+8)(ﬁ—2)/ 2(2:@>Z—@—ﬂ£,

7

by (42); and if m > 2, so that by (40) and since, if m =3, a =21,

g—2>14,
it follows, by (40) and (41), that
Y ) = 3010 ! !l i g—0—
2(1 5—|—e(,6’ 2) 2(“+Q)>4V4_m:>16m_4@ O —Be.

Since (36) is therefore satisfied for s =s" when m = 2, the inequalities (38) and
(39) for u and » are true when the conditions (42) hold.
Now from (42),

(43) log(8—1)=1log (1 + @) > o.
Also
16 109 16 _ 6o _or

’

& = — = ——— ==
et @ Vam+1 3Vm 4Vm 2

so that

8 3
log 5;" < log (s m®- 2 @) < log {(497”:2 } =< log @{'/2 < 3 log ZI)—

Hence and from (43) and (38),

1
5108'5

(44) Bt e+ 6
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Further, by (43),

log C
log {—22 ~
“ 1 hn loe 2 loer I
p—2 ="/ _loglog C—log hn  log (8— 2 = log 2
g f—1) —  log(r+0 log (B—1)  log (1 + 6’
since log O > hn, i. e, log log C —log hn > 0, and 1—&{_—2 > 1, i.e., log l—l~ > 0.
Bat i
log (B—2) _
log (8—1) ~
Also

since log 2 > 0.693 > 2. Thus, by (39),

(45) vz oo

02(1601)2712(84‘1 )(2n+ )/@ Bel ﬁ_‘_

. 1 @
But, since m = ——, ¢ =
46 2

log £ log log ¢ —log hn
(1 + 0 log (1 + 6)

1———+5

and @ — Be= 10, it follows that

o (LM m _ : IRy
2n (s+1+8)(2n+s)h/(@ Be) < hn (m+1)(2n+2@§/2)/19

e 3 21 4 . o > e
< hn? 56 26" 0 (vince m = 2 and 2 O < })
=hn®d @~
Also,
s

I—(g,'f‘ & 3 6

hO—Be) 1hO 56
Thus

oy 6

O<(I6ax)3/2hn“@—/ che’

and so either
(a) C<(16axpr™e /, or (b) C<c®.

5 — 642136 Acta mathematica. 83
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In case (a),

log log C < log log (16 ax) + 3 log n + log h + § log

C. J. Parry.

+ log 3;

-

and in case (b),

I

log log €' < log log ¢ + log 5 + log 12 —log h.

Hence and from (43),

y < 2 + max

1
e
log (1 + @)

)

log {1 + ©)

{loglog(l6ax)+2logn + glog—é + log ¥ loglog ¢ + log— + log 18}

Hence and from (44), and since log § < 2 and log 18 < 3,

(46) w+r<3z+

1
fog (1 + 6) max {log log (16ax) +

+ 2 log n + Iologé+2,loglogc+6logi+3}'

The number of different solutions in J, is clearly finite and is bounded by

a number depending only on %, m, h, ¢ and 8, and not on @ and x, and it is of

interest to note that the total number of different solutions of the inequalities

(31) and (32) is therefore of order log log (16 ax).

21. We have now proved the following lemma:

Lemma 6. Let:

be a finite algebraic field of degree n (= 1) over the rational number
field B;
be an algebraic integer gemerating 8,

be the polynomial

a

Ple)=2" + 2" w2 oy,

with rational integral coefficients and irreducible in B having L as
a root;

be the number |@(2)|;

be a polynominal in x of degree m{= 2);

)
-

fla,g)=a,(2)a™ + ay(e) a1 + - + an(2),



qQy, Qg - - -

L VO
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where a,(2) (& 0), a;(2), . . ., an(2) are polynomials in 2 with rational
integral coefficients and of degree not greater than n — 1, and f(x,C)
has a non-zero discriminant (N. B. f(x, L) need not necessarily be drre-
ducible in &);
be the smallest natural number such that

a,(z) < a1 + 20!
Jor v=o0,1,... m;
where 0 < @ < r + 1y, be ¢ of the vy + ry, infintte prime ideals corre-
sponding to the r, real and r, pairs of conjugate imaginary fields
conjugate to §;
where 6 = 0, be o different fintte prime ideals of 8&;
(j=1,2,... 0 be a natural number not greater than g(q;);
(k=1,2,... 0 be a natural number not greater than g(vi);
be a natural number;
(k=1,2,...,0;, 0=1,2,... G{p) be a natural number not greater
than h?;
G=1,2,..,0 y=1, G@y) be a real or complex root of flx,{);
(k=1,2,...,0;,0=1,2,...,G); v=1,2,... lg be an vi-adic
root of flx, §);

be a number not less than 1;

) m
be the number min ( + s);
s=1,2,...,m—1 \§ T 1

be a posttive number not greater than 4—11%;
be the number o« + @,

(G=1,2,..,0, y=1,G{a); k=1,2,...,0; d=1,... G);
(%

D -

0 s )
v=1,2, ... ks form a system of t= D\ G(q)+ Z his posi-
i =1 d=1

tive numbers with sum 1.

Then if A be any algebraic number of degree h (or any divisor of h) over &;

lying in the perfect tvy-adic, vyadic, ..., teadic extensions of &, and if A be the

number | Y (x; A, B, hn)|, the number of different numbers 2, which are neither roots
of flx, §) nor such that

11
A< (64hn Ch)(f—‘z’

and which satisfy the inequalities

(31)

| — &k, = (o A7H1)1;
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Jor j=1,2,...,0 and y =1, G(q;), and

(32) |4 — mracly, = (¢ A7"F)kar

for k=1,2,...,0;8=1,2,... Gw); =1, 2, ... ks, is less than
1

(46) 3+ Tog (1 + 6) max (log log (16ax) +

+ 2logn + 1010 i4—2,10 lo c+6log-1—+3-

22, We now require to find a bound for the number of different algebraic
numbers A of degree & (or any divisor of %) over &, lying in the perfect r;-adic,
tyadic, . . ., rradic extensions of ®, which satisfy the inequality

G

—

=

) o Gk hid

min (1, lx—gjqu”)ﬂ IJ 1] min (1, 12— nescly) = e A7,

1 k=1 d=1 =1

Il

w1l

~
i

where 8* is any number greater than e.
Clearly, we can choose @ so that 8 << g*. Then

gr=pg(1+0),
where 6 is a positive number. Thus, since ¢ =1,

_B=p g
(48) cA M =c B (c ATMF)B < (c ATHENYE,

Let now A be any one of the solutions of (47). We exclude for the present
11

solutions which are roots of f(x, {) and those for which A < (64" ¢?)f—2 Thus,
for the 4 we consider,

1 1 1
A = (647 M)F—2 > chB,
and so
ceA" < e A M < 1.

Hence and from (47) and from (48), there exists a system of
a G (%)

tzi G(Qj)-i- Z thd‘

k=1 &
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non-negative numbers ¢;,(j =1,2,...,0; y=1, G and qs.{k=1, 2, ..., 0;
d=1,2,..., G); r=1,2,... ), with a sum not less than 1, such that
(49) min (1, |4 — &yl ,) = (¢ A7)ty = (c AHF)E+105

for j=1,2,...,0 and y =1, G(g;), and

(50) min (1, |2 — nuoe ) = (¢ A= #)ikar = (¢ A=HP)1+9

for k=1,2,...,0;0=1,2,... G); v=1, 2, ... hs.

But there exists a natural number 7 such that

0T =1t
so that if the system of ¢’s coincides with a system of numbers g, s, . . -, ¢t
then for (=1,2,.. .1,
H
(51) (1 +0)g,="0 + 1,
where

and the residue,

satisties the inequalities

7
so that
i“‘ t
<=0
" T
Since ,
i
9, = 1,

it follows that

t
2 H, :
=1

(52) E,HzZT.

Let the system of inequalities (49) and (50) be represented in the form:

min (1, |4 — wy) = (e A" u < (cA~M)+0a (I=1,2,..., 1)
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Then by (51), for I=1,2,.. .1
Hy

min (1, |2 — urly) < (e A=42)000 < (e A=H0]T,

since ¢A~*#f < 1. Thus, by (52), we can choose ¢ non-negative rational integers

Vi, ¥y ..., 7 such that », << H v, < H, ..., »n<H and with sum T, so that,
for {=1,2,...,1¢

. i

(53) min (1, [2—puly) = (e A-"H7.

It follows that to every solution 4 of {47) (except the excluded cases) there cor-
responds at least one system of non-negative rational integers »,, v, ..., » with
sum T such that all the ¢ inequalities (53) are satisfied. Consider any one such
system, S, of #'s. The »'s of S cannot all be zero if ¢ is positive, since their

sum is 7. Further, for any non-zero v,

v
(c AT < 1,

and so all of the ¢ inequalities
Y

(54) |4~y < (e A™28)T (l=1,2,...,9

for which the corresponding »'s are not zero will be satisfied. Let these be ¢’
in number. Now Lemma 6 holds if ¢ is replaced by ¢, and the I's by the cor-
responding non-zero »'s, and so, by this lemma, the above ¢ inequalities have
less than

I

+ max.(log log (16 a %)+ 2 log 2+ 10 log o + 2, log log ¢+ 6 log —é—)+ 3)

I
3 log (1 + @)
1
solutions for which 1 is neither a root of f(x, {) nor such that A < (64" c)F—2.

Clearly, the ¢ inequalities (53) cannot have more than this number of solutions
satisfying the conditions stated, for the system S of »’s, since every solution of
the ¢ inequalities (53) is a solution of the ¢ ineqnalities taken from (54).

(T+t——1)
t—1

systems of »'s, this being the number of different solutions of the equality

Further, there are at most

11
Z‘Vl == T
=1
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in non-negative rational integers », », ... v Also, every solution of the in-
11
equality (47) for which A is neither a root of f(x, {) nor such that 4 < (64" c*)p—2
is also a solution of the ¢ inequalities (53) for at least one of these systems.
It therefore follows that the number N of different solutions of the inequality

11

(47) for which . is neither a root of f(x, {) nor such that A < (647" c?)F~? is
less than

T+t_I [ 1
( t—1 )I“mmax(loglog(léww
+2logn+Iolog(;—kz,loglogc-{»6log(—;+3)}.

23. We can select 7, if ¢ > 0, so that

i tsI'< & t+ 1,

g*—p g*—8
since we have only imposed on 7 the condition that ngztﬁﬁi? Then

8 T *

t=T+t—1<- P ¢
g*—p g*r—8
and since
. T+i—1 . B+
(T+t I)< > (T+t I)=27+‘—1<2(3‘—(3t,
t—1 = ¥

it follows that

N < 286 {3 + log 1 ¥ 0) max (log log (16ax) +
I

+ 2log n + Iolog@

+ 2, log log ¢ + 610gé+3)}-

For any sufficiently small number &, we ean choose @(£ 2171) so that

% L
ﬂf_fﬁ—*%(: .Y

Then
+eo)t

¥‘KL (1
N =<k 20 ,
where %, is a constant depending only on ¢, 8% ¢, %, #, @ and m, and not on the
number and choice of roots of f(x, {) to which approximation is made, or on the

corresponding ideals.
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Further, the number of different solutions of the inequality (47) such that

1 1

A < (647 ¢*)B=2 clearly depends only on @ (i.e., &, m and §*), n and A, and the
number of different solutions which are roots of f{x, {} is at most m. Thus the
number of solutions of the inequality (47) is not greater than

(55) by
where %, is a constant depending only on ¢, 8% ¢, %, %, a, m and h, i.e., on ¢,
g*, ¢, &, flz, {) and h. Now the inequality (47) cannot have more solutions when
¢ << 1 than when ¢ = 1. Again, any increase in g, can only increase the exponent
in the bound (55). Thus, if %, remains constant for these changes in value of ¢
and ¢, the bound (55) holds for any positive ¢ and &, and k, still does not
depend on the number and choice of the roots to which approximation is made,
or on the corresponding ideals.

We have therefore proved the following theorem (in which we replace 8*
by 8 and f(z, {) by f(x), a (L), a, (&), . . ., am(l) being now any integers a,(# o),
Ay, . - o an of 8):

Theorem 1. Let:

f be a finite algebraic field of degree n (= 1) over the rational number
field PB;
flx) be a polynomial of degree m (= 2) with integral coefficients from &

and a non-zero discriminant,

Gy, O - - -, Gg, where 0 =9 =7r, + 1, be ¢ of the r, + ry infinite prime ideals cor-
responding to the r, real and ry pairs of comjugate imaginary fields
conjugate to &;

Ty, Ty . . . Lo, where o =0, be o different finite prime ideals of &;

G (q;) (j=1,2,... 0 be a natwral number not greater than g(q;);

G (ts) (k=1,2,... 0 be a natural number not greater than g(tx);

h be a natural number;

hro (k=1,2,...,0;d=1,2,... G@p) be a natural number not greater
than h%;

&y (J=1,2,...,0; y=1, Gy be a real or complex root of f(x);

Nede (k=1,2,..,0;,0=1,2,...,G@); v=1, 2, ..., hd) be an v-adic

root of f(x);
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s @ (),‘k)

: 0

t be the total number of roots comsidered, u.e., G (q;) + Z Z hig;
i=1 k=1 §=1
¢, & be two positive numbers,
a, 8 be two numbers such that
. m
o= min (——+S), 8> a.
5=1,2,...,m—1 \§ + I

Then the nmumber of different algebraic numbers A of degree h (or any divisor
of h) over R, lying in the perfect t,-adic, ty-adic, . . ., tradic extensions of &, and
satisfying the inequality

G(q;) o G(tr) hgg

0
H H min (1, |4 — §jqujy) H H H min (1, A — Negehy) < ¢ 477,
j k=1 d=1

z=1

where A s the number |Y (x; A, B, hn)|, is not greater than

(o4
—— (1+&)t
ko 28—* ,

where k, is a constant depending only on &, B, ¢, 8, f(x) and h, and not on the
number and choice of the roots to which approximation is made, or on the corre-
sponding ideals.

24. Remarks.

(a) In the particular case when 1 is an element w of the field &, h =1 and

=1, and we may write 751 = mxs. Then Theorem 1 takes the form:

The number of different numbers w of R satisfying the tnequality

e 61 o G0 . v
I I min (1, (o —&;lg;,) TI T] min (4, o — maly) < c 277,
j=1 y=1 k=1 d=1

where Q is the number |Y (x, w, B, n)], is not greater than

B
—— (14
h, 25— A
where ky is a constant depending only on &, 8, ¢, & and f(x), and not on the number
and choice of roots to which approximation is made, nor on the corresponding ideals.
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(b) Let 6,0, ...,0, be a fixed basis of R, and let s, 2, ... &0 and
21, 23, . . ., 2o denole any 2n rational integers such that the maximum of their

absolute values is a natural number z. Then the inequalily
Qj'/)

0 € (q j)

v=1I I[ min (
=1 y=1

2101+3202 >+""'+Zn0n )
210, + 200, + - + 2,6, 7

G(ry
o W) . 2,0, + 2,0, + -+ 2,0, — 7 np
I T win {1,{% : — — s | = 27,
P 210, + 220, + - + 2,0, v

where ¢’ is a positive number, has not more than

B
ko Jialitalt
solutions in  selections of 2, 2y, . .., 2n, 21, 22y - - ., 20 Qiving different numbers
2,0, + 2,0, + -+ 2,0, . .
5 of the field R, ks being a constant depending only on the
A0, + 250, + -+ 2,0, f f ¢ g P g onty

given basis and on &, 8, ¢, & and f(x), and not on the number and choice of roots

to which approximation is made, or on the corresponding ideals.
This statement can be proved as follows:
2,0, + 2,0, + -+ 2,6,

; ; -——, which is a number of f.
210, + 220, +--- + 2,0,

Denote by w the number

Then w is a root of the polynomial

n
P)=Jl{ 6" + 2400 + - + ¢ 00N — (2,00) 4 2,00 4 - + 2,60V},
v=1 )

the product being taken over all the conjugate values of 6,,6,, ..., 6, P(z) is
of the form:
Plx)=bY(r; w, B, n),

where b is a rational integer. Let £, be the absolute value of the coefficient

of "¢ in Y(z; w, B, n), let 2 be the number | Y (x; w, B, #)], and let 6 be the
greatest of the »® numbers |00, ..., |6"] Then for d==0,1,2,... 7,

Q< (Z) (n02)",

and so
0 < n! (M 0)11377, — gozn,
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say, so that 6, is a positive constant depending only on the given basis and on
R, Thus, by (a), the inequality
Y=¢O;8z 8
has not more than
B
—— (1+eg) t
ko 26—¢
golutions in different numbers w of &, ie., in selections of 2z, 2, ..., 2
2;0, + 2,0, +- -+ 2,0, N
., 0 ., 7 B Th 5
0, + 240, -+ 26, & R. Thus, on

writing ¢0;f = ¢, the result follows, k, being replaced by a constant k, depending

71, 22, - . ., 2n giving different numbers

on the given basis as well as on ¢y, 8, ¢’, & and f(z).

§ 5. Properties of Binary Forms.

25. Let F(xz, y) denote the binary form of degree m (= 2):

x
yf (;) =ayax™ +a @ty 4+ any™

so that, firstly, the coefficients ay(# 0), ay, . . ., am are integers of the field &,
and, secondly, F'(x, y) has a non-zero discriminant.
Let now &Y, &%, .. £ be the roots of F(x, 1) in the complex field. Then

(56) P, ) = aolo — Ep) (o~ E2) - (5 — §0),

Also, let #i’, o, .. , ¥ (k=1,2,...,0; 0=w =m) be the rradic roots
of F(x, 1), 1,1, ..., s being, as before, ¢(= o) different finite prime ideals of
& Then, for k=1,2,... 0,

(57) Fla,y)=(x—ny) (e —0y) - (& — 9P y) Gilz, y),

where Gi(z,y) is not reducible to linear factors in the perfect r;-adic exten-
sion of &,

26. Differentiating (56) logarithmically with respect to «,

F’(x’y)—‘“ ! + ! + . .+__I,__
F(:L‘, ?/) X - §(1)_’t/ x— §(2)y xr — g(m)g/
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(where the dash denotes partial differentiation with respect to z). Thus, if
s &y §J€’;) (j=1,2,...,1 +71y; y=1,g(g)) be the real or complex roots

of the polynomial conjugate to F'(x, 1) with respect to the field &j,,
F' z, j . 2 /,
58 1Pl = 00 i (o g2yl 1o — g7l L2 — g

(| F'(x,9)lqjy denotes the absolute value, for any real or complex values of the
variables  and y, of the binary form, Fj,(x,y), conjugate to F'(z,y) with respect
to the field K;,.)

Now there exist binary forms H,(z, y) and K, (z,y) of degree m — 2, and
H,y(x,y) and K,(z,y) of degree m — 1, with coefficients from &, such that

(59) Iﬂ(x: ?/) Hl (.’L’, :[/) + F’ (.Z', ?/) H2 (x7 y) = x?m—Z’
(60) Fla,y) K (z,y) + F (x,9) K, (v,9) = y* ">
But for all # and y, and for j=1,2,..., 7 + 7, and y =1, g(q;), there exist

constants ¢! and ¢ such that:

VH, () oy = ¢f max (x|, [y )"
| H, (x, ) lojy = ¢ max (||, |y]m~2,
]Kl (@, v) ]‘U*/ = ¢! max ” x'v lyl)"hg,
| K (, y)lajy =< ¢ max (x|, |y "
It therefore follows, from considering that one of the identities (59) and (60) the

right-hand side of which has the greater absolute value (or either identity if
x| =]y]|), that for each pair of real or complex numbers z and y either

| P, 9)lajy = 3 max (=], [y
or
| F* (@, 9) sy = 5 max (|, |y,

for j=1,2,...,1 +ry and y=1, g(qy).
In the second case, it follows from (58) that

I .
[ F @9l = 5= max (2|, |y )" " min (|2 — Gyl |2 — &yl ... la =57y
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Let ™M= max |§“’] [&7), ..~ |§m]) Then, for w=1,2,...,m if
=1.2

I
o~ g0l = mas (5 101) = s max (b 1y

and if |z| = (™ + 1)|y],

T
o= gul =2~ 571912 ' g mos <|x|.|y|>];—§;; -
Hence
|2 )hyy = o e ] Lyl min (|2 — g0} |2 =g [ 2= g0 1),
where ¢V is a positive constant. Thus, in both cases,
Al ~. . xr = J’t -9 X
| B (o) oy = & max (. gl win (£ =53], 2 =57 gl 1),

where
. I
¢V = min | —, V).
2¢

If w :% be any element of &, it is well-known that it may be represented

as a quotient w=— of integers # and v of & the greatest common ideal divisor
v

(u, v) of which has a norm N(u, ¢)) in & over B not greater than lVd (K) |, where
d(R) is the discriminant of &' For such integers w and v of &,

| F (4, %) laj; = o¥ max (| ulajp, | 0laj)" min (|0 —&7 losy, |0 =57 lagy, - - |0 =57 i 1),

for j=1,2,...,7 + 7, and y=1, g(0;). (| F(w, v)|g;, denotes the absolute value
of the binary form Fj,(x,y) when z and y take the conjugate values in &, to
u and v.) Hence the norm N (F(u,) in & over P of F(u, v) satisfies the inequality

ri+re 9(07)

| N (@, v)| = (c¥)™ H Hmax {ulgjs |vlajy)-
J=1 y=1

rtry 9(05)

I min (o — & lon |0 — 8 gy - lo — EW sy, 1

Jj=1 =1

1 Follows from: E. HECKE, ‘Theorie der algebraischen Zahlen’, Akademische Verlagsgesell-
schaft, Leipzig (1923), p. 120.
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But the conjugates of # and v can be formed into products of » members in
not more than (2%)! ways (one conjugate, to either u or v, being taken from
each field &, conjugate to R). Thus, since each coefficient of the polynomial
Y(z; o, B, n) is a divisor of a sum of not more than (2#)! such products, it

follows that
ey 90079

o)t JT 11 wax (uley, [l = 2,

j=1 y=1

where 2 is the number [Y{z; o, B, #)|. Hence, taking c(q) = {¢"/(2n)!}™, so that
¢(q) is a positive constant depending only on & and the binary form F(x, y),

TyHTe QQ<]>
(61) | N (Fa,v)| = (@2 [ ] min(o— &yl lo— 8o o lo—E gy, 1).

i=1 p=1

27. We can obtain from (57} corresponding inequalities for the r,-adic,

tyadic, . . ., Yradic valuations, but we must first prove the following lemma:

Lemma 7. The t adic value of a polynomial v (x) with v-adic coefficients, where v is
a fintte prime vdeal of an algebraic number field &, and with a non-zero discriminant
and no t-adic roots, has a positive lower bound jfor all values of z which are v-adic
numbers. In particular, if all the coefficients of v(x) are v-adic integers, the first
coefficient unity, and the discriminant an v-adic unit, then for all v-adic numbers x,

7 (@) = 1.

Proof. We may suppose without loss of generality that the first coefficient

of r(x) is 1. Then »(z) may be written as

7 (il') = M 4 l)l =1 4 b2 poM=2 4 bM,
and we may write

b=max (1, |b, | | bofer - - o, [Barle):
If |z]: > b, it is clear that
() e = |2t | > b¥ = 1.
Thus we need only consider values of « for which

|x], < b.
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The discriminant of r(x) is:

I, by, boy o v ov , bar—a, bur,
0, I, blv ...... s b)[ﬁg, bM—-J, bM,
M—1 rows
. . . I, bl, bz, .......... y bM_l, b
M, (M—1)by, (M—2)b,, . .., by, .
o, M, (M—I)bl, cey 2 I}M_g, bM_], .
M rows
M, (M— I) bl, ..... , 2 b}[_g, by s

and is assumed non-zero in the enunciation of the lemma. Let p(x) be the

polynomial obtained from this determinant by replacing the final column by

22 M-8 1. 0,0, ...0, and ¢{x) the polynomial obtained be replacing the
final column by o,0,...,0, 21 22 . . 1. Then
(62) 7 (%) p(x) + 1’ (x) ¢ () = Dr.

Now p(x) is a polynomial of degree M — 2 and the r-adic value of each of its
coefficients is not greater than 2#-2 Thus

(63) |p (x) |r < prM-2pM-2 < B3 (M-1),

Also, ¢ (x) is-a polynomial of degree M — 1 and the r-adic value of each of its

coefficients is not greater than $?#-2 Thus

(64) 1(1(3;) |r < PEM-2 -1 — BB (M)
Then if
(63) |7 (@) ] < dp—21D),

where | D,|. = d, it follows from (63) that

|7 (@) pla)] < d.
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Hence and by (62),
max (d, | 7(z) p(2) ) __4a
lg(2)]e () |

[+ (@) | =
and so, by (64),

(66) [+ (x) |. = db=2=1,

We now show that |7(x)|; can be arbitrarily small for r-adic numbers z
only if »(x) has an r-adic root. We suppose that there exists an r-adic number
2 such that

. d? d
l% ] =< &, [ (x) | < min (ﬁ‘(ﬂ‘ b? (M—l))‘

and that 0 is the r-adic number —-%73 Then by (65) and (66),

33 -1

(67) 10} = Gl < 1.

Further, since |z} < b,
»0

”)l < pA-t < -t

for l=1,2,... M. Hence

| l pM- 1'0]2 bM—l

d2
} M—
<o =1
o)
Thus
(68) |r(x + 0)|: <|r(x)l
for
r” Ll (x
r{y + O =r(x) +»{x 6+2 27

Hence also,

[r(y + 6) | < db—30r-1,
and so, by (66),
(69) [ (x + 0)}, = d 30D,
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Now there exist sequences of numbers yx,, 8, such that

o= FH =y v,
==l wmneo,
0y =— :, E;z; Yo =13 + 04

and so on. By (67), (68) and (69),

o dr d b -1
/ |x1 |r = b, |T(x1) I,; < IT‘(Z)I;« <7 min (gmv 53—6{“—1))’ |01 If = ~T|r(xl)|r’

. d? d . BI-1
lx‘z Ir = b, Iy(f{z) Ir < Ir(ﬁh) Ir <C min (W:f)’ b_d(rl))’ |02 |r = ‘T‘T(h) Iry

- . d2 d p - bS(M—l)
|2sle = b, |7 (xa) | < |7 () |: < min -1 w1 > [ 3|r—‘d—_|T(X3)lr;

and so on. Thus

lim |7 {z) =0, lim |gs41— x| =1lim |6, ]. = 0.

y—r 00

Thus {x»} is a fundamental radic sequence having a limit x* which is a root of

d2
r(z). We have therefore proved that |7 (x)|: can be less than min (W:)»—bag—_l—))

for an t-adic number z such that |x|. < b only if the polynomial »(x) has an
r-adic root.
Thus, if r(x) has no r-adic root, for all r-adic numbers x,

| 7(x) | = min (b” @ d )7

» pTM=1)7 M1
and the first part of the lemma is proved. The conditions stated in the second

part of the lemma involve the conditions =1 and d = 1, so that immediately

|7 ()| = 1.
6 — 642136 Acta mathematica. 83
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28. Differentiating (57) logarithmically with respect to =z,

F‘,(/x’u)z I(n + I<2> oo I( ) +Gk(x,y)
Flz,y) z—ny Z—ny x—nly Gz, y)
(k=1,2,...,0); 0<95<m).
Thus
10 1Pk = | F o) by min (12— g by |2 =0k

Gk(x’y)
— alvp)
=ik |G

) (k=1,2,... 0.
Tk

If the maximum of the ryadic valuations of the coefficients of Gi(x,y) is
bor, and if » and v be, as before, any integers of & such that N ((u,v) < ]Vd—(@l,

then
(71) | G (4, v) | < box k=1, 2, ..., 0)

Further, neither Gi(xz, 1) nor Gi(1,y) has an ri-adic root, and both have non-zero
discriminants, since F(z,y) has a non-zero discriminant. Thus, by Lemma 7,

for every rr-adic number x,
FGrl, 1) |, = b, | Gi(1,9) |, = b k=1,2,...,0),

where by, is a positive constant. Hence, since Gi(x, y) is homogeneous,

(72) | Grlw, v)ly =

G (—“—, I) v’"‘”"l = bulvlr, | Gelw,v) |, =
v v ‘

Gk(l,g) u"‘—”kl = b1k|u|;';c‘”k k=1,2,... 0).
u vy

Now by definition # and v have a greatest common ideal divisor (u,v) = ¢ such
that N(c) < lVd (ﬁ)l There are at most a finite number of ideals in & with
norms not greater than 'l/d(ﬁ)l, and so

| ¢y = B (k=1,2,...0),

where by is a positive constant not greater than 1. (Here |c}. means simply

&
r ¢, where r is the rational prime number to which the prime ideal r of & be-

longs, e is the order of r, and u is the power to which t divides ¢.) Hence and

by (72),
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| G (w, 0) |, = Bue b, (k=1,2,... 0),

() (v)

since b < b7~"k, and since at least one of the ideals and o is prime to 1.

Thus, by (71),
blk by
bor

(k=1,2,... 0.

(73) ‘ G lu

The discriminant # of F(x,y) is a non-zero integer of &, and so we may
choose binary forms H,(x,y) and H,(x,y) of degree m — 2, and K,(z,y) and
K, (x,y) of degree m — I, with integral coefficients from &, such that

Fle,y)H (zy) + F (2,9) K, (z,y) = 4 2*" 2,
Fla,y) Hy(x,y) + F' (x,y) Ky (z,y) = g y*m 2

Thus, taking x =u and y =1,

max (| F(u,v) |, | F (w,0)]s) = | |, max |u|“" -2 ]v]”‘ -
= |4}, b2 (k=1,2,...0).
Heunce, if for any % from k. =1,2,..., ¢ and any » and v,

I F(“’ l’) ll‘k < ] Jlrk 53;5”'2,
then , ,
| F" (w, ) b = | A e 0502,

and so, by (70) and (73),

2m—2 1) (2> (v}) b”‘ b;';c
|, ), = e = mim (= 2 vl = 100l - Ju— il —2).
blkb
Thus, for k=1,2,..., 0 and all ¥ and v, if cL—Idlrk b2™—2 min (I,—br), it

follows that
() 1PG6 1)l = s min (= 12 vl Ju— 1 0l - | — 0]y 1

For all those t; the norms of which exceed a certain value depending only on
® and F(x, y), the greatest common ideal divisor of % and v, and the discrim-
inant 4 and the first coefficient a, of F(z, 1) are prime to ti. It then follows

for these r; that
cr=1.
For, firstly,
lClrk=b2k= I.
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Secondly, »
A v = 1.

Thirdly, the coefficients of the polynomial

1 a
—Flx,1)=a"+ “gm 1l ...+ =
a, a, a,

are tradic integers, so that the r-adic roots n, ni’, .. ., n'® of F(x, 1) are

rp-adic integers. Thus, the form

1,
a—ol’ (@, y)

Ry (, y) =
a7 =iy e—ny) . (e—meR )

has rradic integral coefficients and a first coefficient unity, so that bor = 1.

Fourthly, the discriminant of aiG(x, y) is an rradic integer and divides ., and
0

is thus an 1padic unit. It therefore follows from Lemma 7 that we can take

bix as unity. Thus we have proved that

. . by U,
e = ldlrkbgg’l—? min (1, _7);) =1
for all those 1; with norms exceeding a certain value depending only on & and

Flx, y).

Now by (74),
(42
H | Fu,v) L{;’C(rk) =il c{;’ (ry) .
k=1
a
II min (fu — 73" v e 10— ni” v ‘rkv SR \“_'77(1:") v lrk, )i e,
=1
where, for k=1,2,...,0, G(ry) is a natural number not greater than g ().

But for all those ¥ with norms exceeding a certain value depending only on §&
and F(z,vy), et =1, and for other 1y, which can be only finite in number, ¢; can
assume only a finite number of values. Thus, the product ¢F) ¢f@ . G
however large the number and whatever the choice of prime ideals 1, can assume
only a finite number of values. The minimum of these values will be a positive
constant ¢, depending only on ® and F'(x,y), and not on the number or choice
of the prime ideals 1, 1,, ..., t,.. Also,
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o a
(75) H| Flu, v) K"k(rk) > (’OH min ((u—ni vl |u—n" v |y, o [u—niR vy, 1) E)

k=1 k=1

29. As before, let w be any element of & and » and v any pair of integers
of & such that w =% and (¥,v) = ¢ has a norm not greater than |Vd (ﬁ)‘ Then

it remains to prove that

2 [
(76) H | 7 (u, v) r‘z(r;;) = ¢(r) H min (|o—7i" by, |o—08 by, - - o Jo—n® [, 1),

k=1 k=1

where ¢(r) is a positive constant depending only on & and F(z, y).
(a) Suppose that for ¢,(0 =< o, = o) of the 1;, which without loss of generality
may be taken as 1, t,, ..., Lo,
bole, = [ el | a0l

Then for 8 =1, 2,.. ., v,

o], = ke e m vy
w — _— = s
nk o , v ,rl; ‘ € ‘rk ,aO ,rl;
and by (75), replacing o by o,
oy
T2 =
k=1
0y 0y .
= ¢, H(Icl'k [ @ [¢,) H min (o — 7k, o — 78|, - - [0 — f¥ [, 1)7 0,
F=1 F=1
since v}, =1, and so [cly]agly, =1, for £=1, 2, ..., 0,. But by the inequality

(6 a), which clearly still holds if w, is replaced by the ideal ¢,

Oy

, 1 I
’};[l(IClrkl g |s)% % = YO N = ViR T el
Hence
0, 0y
IV E G ) [E0 = e [ min (o — 0i g, T — 78y, o T — g2 |y, )F 6,
k=1 k=1

where ¢, is a positive constant depending only on & and F(x,y).
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(b) For the remaining tj, i.e., To+1, Lo42, - - - Lo,

[2 ke <[ ¢legl ol

and so
l“lrk: lclfk~
Hence
| F(u, )|, = max (|aou™ |, |a um ok, ..., lano™),)
=|ayu™ |, =|a, |rle|§',i

Thus

o

I 1 F,0)[ =
k=o0;+1
g o
> H (| ao |,k| clf‘k‘)G {xg) H min (| w—n§ e fo — 0. o o o — gl |y, )60
k=0,+1 k=0,+1 '

and by the inequality (6 a),

il 1
L= avamE ~
say. Hence
3 g
H I Z’W(M, U) lgc(tk) = CO? H min (I o — n;cl) Irky lw — 7];4:2) |l‘ka LS |C() - 775:") ,l‘ka I)G(rk))
k=0,+1 k=0,+1

where ¢, is a positive constant depending only on & and F(z,y).
Thus (76) follows, with ¢(tr) = ¢, coo-

30. Combining the inequalities (61) and (76) and writing ¢(g) ¢c(x) = C,, we
arrive at the following lemma:

Lemma 8. Let:

® be a finite algebraic field of degree n(= 1) over the rational number
Sield B;
Flx,y) be a binary form of degree m(= 2), with a non-zero discriminant

and integral coefficients from the field & of which the coefficient of
a™ 48 mot zero;

G Oy - - - Ari+my D€ the v, + 1y infinite prime ideals corresponding to the v, real and
ry pairs of conjugate imaginary fields conjugate to &;

Ty, Loy - - oy Lo where ¢ = o, be o different finite prime ideals of &;

G (tr) (k=1, 2, ..., 0) be a natural number not greater than g(x);
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S s EM =12, .t =1, g(qp)) be the real or complex roots of

the polynomial conjugate to F(x, 1) with respect to the field R;y;

(1) (2>

9, e, LR (k=1,2,..., o) be the v vi-adic roots of F(x, 1);

w be any mon-zero element of &;

u, v be any two integers of & such that w = % and N (u,v) < | Vd(®)],
where d(R) us the discriminant of &;

Q be the number [T (x; w, B, n)|;

N (F (u,v) be the norm in & over B of F(u,v).

Then there exists a positive constant C,, depending only on & and F(x,y), and
not on the number and choice of 1y, Ty . . ., Lo, sSuch that

| N (F @, )| [T F (w,0) |3 = G Qm-

k=1
rit7s g(QJ)
‘T I win (e — &lay, o — &7 lasy - - o lo — &7 gy, 1)-
j=1 y=1
o
. 1—[ min (| o — 77;61) Irk7 |w - T]ff) |1‘k’ o |w _ ’7(1:’“) ""k’ l)G(t/c)
k=1

Jor all o and all w and v.

(This lemma is, of course, also true for m=1.)

31. For a certain number u{o < u < ¢) of the finite prime ideals 1,, 1y, . . ., tq
Vg > O.
Without loss of generality, we can suppose these to be 1y, Tp, . . ., Iy, 50 that
vy=0 for k=p + 1,4 + 2,..., 0. Then the inequality of Lemma 8 becomes

(77) 1N (Fw,o)] T[1Flw o5 = C, 2n-
k=1
rotry 9(07)
II I min (o — &V T — & lasy, - - [ —EP gy, 1)-

J=1 y=1

u
. H min (|0 — 9 |, |0 — 98| .. ., |0 — % leo )€ ),
k=1
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Now each value of w satisfying the inequality

rtry 8 (QD

I I mwin(o =8y, lo =&l o lo — E7 i 1)

=t y=1

~Hmin(lw~n5«”|rk,lw*?ﬁf)rw-- lw—"]k L?kv ()<61'Q_ﬁ

also satisfies at least one of the inequalities

ritrs 904

. o I o
G T I min (o — &5y, 1 H min (|0 — g |y, 117 = - 070
j=1 y=1
where o;,(j=1,2,...,7 + 7y, y =1, glgy)) takes each of the values 1,2,... m
and ax(k=1,2,... u) each of the values 1,2, ..., v But from Theorem 1,

with h=1, Ai=w, 4=20, cz—é,a e =7 + 71y 0=p, G(q) =g () and &, = E

0

for j=1,2,...,r +r, and y=1,g(q), and . =9 for k=1,2,..., u,
d=1,2,..., Gty and 7= hs = 1, it follows that each of the inequalities (79)
is satisfied by not more than
P,
By aia
it ¢
different numbers w of &, where = Z g {a;) Z (t)=mn+ 2 G (xe), & is
=1 =1

any positive number, and %, is a constant depending only on &, 8, & and F(z, y),
and not on the number and choice of t,, 1y, ..., Iy. Also, there are not more
than m"v, v, ..., different inequalities of the form (79), so that the number

N, of different numbers w of & satisfying (78) is not greater than

i & 8 d
g1t n+k%16‘ frp) fatre) k%lG(fk) 4
02 = MY vy L V= k2 = ] max (1, #),

where £, is a constant depending only on ¢, 8, & and F(z,y).
Now to each w satisfying (78) correspond not more than k, pairs of integers

% and v of & such that o :% and N (u,v) =< l Vd@r), where k£, is a constant

depending only on & This follows from the wellknown fact that the number
of ideals with norms not greater than a number x is of order x', and because to

! See p. 61, note 1: HECKE, p. 160.
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each such ideal ¢ corresponds not more than one pair of integers u and v of &
(or two pairs if sign be taken into account) such that %zw and (u,v) =rc.
Thus the number of non-associated pairs of integers w and v of & (writing
w as %) with N (u, v)) =< IVEI(—@I and satisfying (78) is not greater than

a

(gf—u(uea( o G(rk)) o
k kg2 k=1 H max (1, vx),
k=1

and by (77) this expression is also an upper bound for the number of solutions

of the inequality

Gty < Om—p
{.N(F(u,v))lHlF(u,v)]rFkrk < Qn-p,

k=1

in non-associated pairs of integers 4 and v of & such that N((u,v) =< |Vd ®)].
Thus, writing &, %k, = k;, we have proved the following theorem:

Theorem 2. Let:

! be a finite algebraic field of degree n(= 1) over the rational number
field B

F(x,y) be a binary form of degree m (= 2) with integral coefficients from &
and a non-zero discriminant and such that the coefficient of x™ 4s
not zero;

ty, Ty, - . ., Loy where ¢ =0, be o different finite prime ideals of &;

G (tx) (k=1,2,..., 0) be a natural number not greater than g(tx);

Vi (k=1, 2, ..., 0) be the number of tr-adic roots of F(x, 1);

a, 8 be two numbers such that

. m
Q= . ‘f,ﬂ.l.l},m—l (:(_—I + .s’), a < B;
& be a positive number.

Then the number of solutions of the tnequality

| N (F e, 0) [ T] | F (1, 0) 650 < 2=,

k=1
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in mnon-assoctated pairs of integers w and v of & such that N ((u, v))£|Vd(ﬁ)l,
where N(F(u,v) is the norm in K over B of Flu,v), Q is the number

’T(x; g, B, n) and d(R) is the discriminant of R, is not greater than

e 1+50(2 Gtk) o
by 2 H max (1, vg),

k=1

where ks is a constant depending only on &, 3, & and F(x,y), and not on the
number and choice of the finite prime ideals vy, 1, . . ., Yo

32, If m =3, we can take B =m, and the ineqyua,lity of Theorem 2 then

becomes

| N (Fu,v)| HIF(u,vHrC;(rk) <1

k=1

which, by the inequality (6 a), is equivalent to the equality

| N (F o, o) | T F (o)l =

k=1

since F'(u,v) is an integer of K. Let & =1. Then, since o <w» <m for
k=1, 2,... 0, the number of solutions of this equality in non-associated pairs

of integers % und v of & such that N((u,v) |Vd I is not greater than

o
mrja ( > g(tk))
ks 4 k=1 mdv

and therefore not greater than

2
(k'21 g(rk))ﬂ
g

where K is a constant depending only on & and F(z,y), and not on the number
and choice of the finite prime ideals 1;, 1,, . . ., X

Further, we may replace the conditions that the coefficient of 2™ (m = 3) in
F(z,y) is not zero and that F(x,y) has a non-zero discriminant by the conditions
that F(x,y) is of degree not less than 3 and has a non-zero discriminant. For
if F,(x,y) is a binary form satisfying the latter but not the former conditions,

it may be transformed by a linear transformation of determinant 1 with rational
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integral coefficients into a binary form Fj(x,y) which satisfies the former con-
ditions. Thus the number of solutions of the equality

v U girg) ==
| N(F, (e, v) |kl;[1|F1 (u, v) |ng 1
will be exactly the same as the number of solutions of the equality

RELCATIN | REACIUEY
k=1

We have therefore proved the following corollary:

Corollary 1. Let:

f be a fintte algebraic field over the rational number field B;
F(x,y) be a binary form of degree not less than 3 with integral coefficrents
Srom & and a non-zero discriminant;

T, ¥y . .., Lo where ¢ =0, be o different finite prime ideals of K.

Then the number of solutions of the equality
N (F(u,v) Flu,v)|o) =1,
¥ Ea ) TIF
in non-associated pairs of integers w and v of & such that N(u,v) =< lVd (ﬁ)l,

where N (F'(u,v)) is the norm in & over B of Flw,v) and d(R) ¢s the diseriminant
of &, 4s not greater than
( E g(rk))+1
K =1

where K s a constant depending only on & and F(x,y), and not on the number

’

and choice of the finite prime ideals 1, s, . . ., Ty

33. From Corollary 1 follow a number of other corollaries. The first is as
follows:

Corollary 2. If & be a finite algebraic field over the rational number field B,
of Flx,y) be a binary form with integral coeffictents from & and such that F( x, 1)
has at least three different roots, of which one may be infinite, and if u and v be
any pawr of integers of & such that N((u,v) < |Vﬂ§)|, where d (R) #s the discrim-
inant of &, then as



76 C. J. Parry.
max (| N, | N]) ~ oo,

the greatest of the norms of the finite prime ideals dividing Fl(u,v) tends to
infintty.

Proof. Suppose first that F(z,y) satisfies the conditions imposed in Corol-
lary 1. Now if Corollary 2 were false for such F(z,y), F(u,v) could have only
a finite number of prime ideal divisors, say t,, I,, .. ., I, for all members of some

infinite sequence S of pairs of integers u and v of & such that N ((u,v)) =< IVE@SI
and max (| Nw)|, | N@]) > co. It would then follow from the relation (6) that
for all pairs 4 and v of the infinite sequence S,

Un
| N(F (u, v) |£1 | F (w, 0) [g 00 = 1,
which would contradict Corollary 1 (with ¢ =0,). We have thus proved the
corollary true if F(r,y) is of degree not less than 3 and has a non-zero
discriminant.

It is also true if F'(x, 1) has at least three different roots, whether or not
F(x,y) has a non-zero discriminant, for then F(x,y) decomposes into two binary
forms F,(x,y) and F,(x,y), with integral coefficients from &, such that F,(z, 1)
has at least three different roots but mo coincident roots. Thus F,(x,¥) is of
degree not less than 3 and has a non-zero discriminant. The corollary is there-
fore true for F,(x,y), and consequently for F(x,y).

34. Let I'(x,y) be defined as in Corollary 1. The norm of F(u,v) in &
over B, i.e.,, N(F(u, 1), will be a rational integer for any integers u and v of &.
Suppose that « and v are such that N(F(u,v) is divisible by no rational prime
numbers other than the z(= o) different prime numbers r, r,, . . ., 7.. Let the o
prime ideals 1, Ty, .. ., ¥y consist of all the different prime ideal divisors in & of
Y4, ¥ss - - 7. Then the valuations of F(u,v) with respect to all other finite
prime ideals of & are unity, for otherwise, by the relation (6), N(F(u,v) would
be divisible by other rational prime numbers besides 7, ry, ..., 7. From the

same relation,

| 3 (8 )] T s o) [ = .

But by Corollary 1, the number of solutions of this equality in non-associated

pairs of integers » and v of & such that N(w,v) =< |Vd(®)] is not greater than
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o
(Azlg(t‘k))+l
K\= ,

where K is a constant depending only on & and F'(z,y). Now

%g(rk) =%,

since the sum of the g¢'s corresponding to the prime ideals of & dividing a

rational prime number is 7. Hence

[
(2 g(rk))+1
K\e=1 = KTn+l < Ixf,“,

say, where K, is a constant depending only on & and F(z,y).
Thus the number of non-associated pairs of inlegers u and v of & with
N(u,v) < lVd (S?)l, such that N(F(u,v) is divisible by no rational prime numbers

other than v, ¥y, . . ., T, ts not greater than
1
K1,

where K, is a constant depending only on & and F(x,y), and not on the number
and choice of the prime numbers vy, 7y, . . ., 7o
This result may be given either of the interpretations contained in the

following corollary:

Corollary 3. Let & be a finite algebraic field over the rational number field B,
let Flx,y) be a binary form of degree not less than 3 with integral coefficients from
R and a non-zero discriminant, let ry, 7y, . . ., 1, be v (= 0) different rational prime
numbers, and let u and v be any integers of ® such that N (w,v) < |[VA(®)]|, where
d(R) s the diseriminant of K. Then:

(a) the number of different integers I of 8 with norms in & over P which are
divestble by no rational prime nwumbers other than ry, vy, .. ., +, and which are ex-
pressible in the form F(u,v), vs not greater than

1
K+,

where K, is a constant depending only on & and F(x,y), and not on the number
and choice of 1y, 7y, . . ., 72}



78 C. J. Parry.

(b) the number of different representations of a non-zero integer I of &, the
norm in & over P of which is divisible by no rational prime numbers other than
Pyy oy o o o ey 12 the form F(u,v) is not greater than

Ki+t,
where K, is a constant depending only on & and F(x,y);

(e) en particular, if the norm in & over B of I is a rational prime number,
the number of different representations of I in the form F(U, V), where U and V
are any pair of integers of & which are multiples of a pair w and v by an integer
of &, is bounded by a number depending only on & and F(z,y).

(¢) follows since, if a pair U and V are equal to a pair £« and kv, where
% is an integer of &,

I=F(U,V)=k"Flu0),
where m is the degree of F'(x,y), and so
N{I)=N(FWU, V)= (NE&)™ N (Fu,v),
which, by the definition of I, is impossible unless N (k)= 1. But then
N(U, V) =|Va®|,

so that U and V are identical with a pair « and v. (c) then follows from (b)
by taking 7= 1.

From this corollary may be obtained a number of interesting results con-
cerning the represéntations of systems of integers by homogeneous forms in

more than two variables.

Ezxample. Consider the cubic binary form in x and y
Flx,y) =ayx® + a, 2y + ey’ + a59°,

with integral coefficients from the quadratic field §=§B(VZ'), where C is
a non-zero rational integer not equal to 1 and square-free. Then by Corol-

lary 3(b), provided F(x,y) has a non-zero discriminant, the number of dif-

ferent representations of any integer I of the field PVC) by F(u,v), where

% and v are integers of P (/) such that N ((u, v) < |V(l (VC | is not greater

than
K:+1’
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where K, is a constant independent of I and 7 is the number of rational prime
divisors of the norm N(I) in BIC) over P of I

Now we may write

ag=aq+ VCby ¢y=a, + VCb, ay=a, + VCb, ag=a; + Vb,
I=gq+ Ve r,
U=y + VZ'ug, v=1u, + Vz’v,,
where aq, by, a;, b,, @, by, as, by, q, 7, U, Uy, v;, Uy are rational integers. It is easily
verified that if
Flu,v)=q +VCr,
then
agus — Cbyul + agvi — Cbyv3 + 3 Chyuiug + aguiv, + Cbus vy
—3aguiu, — a, uzv, — Cb uivy + agviu, + Chyviu, + 3 Chyviv,
—a, Vi, — Cbyvhus—3 agvav, +2 Cbuy uyv,—2 ag iy v, vy +2 Chy v, Uy %y —2 @, Va %y Uy
=4q,
bous — agus + by v} — agvi + 3aguiuy + byuiv, + a, uiv,
< 3bouste; — byus v, — a Uz vy + by viuy + ayviu, + 3azvivs
— by iUy — Ay V3 Uy — 3 by V3V, + 20, Uy Uy Uy — 2 by Uy Uy Vg + 2 Ay Uy Vg Uy — 2 by Vg Uy U
=,
Thus the number of different sets of rational integers u,, u,, v;, vy such that
N, + VCuy, v, +VCury) < lVd (B VZ’))' and satisfying the above pair of
equations is not greater than
K+,

In particular, if =—1, ie, =P, then N(I)=¢*+ 7 and

lVd (‘,B (VZ'))I = 2. An interesting case arises when
a4y=1, by=0, a, =0, by=0, a; =0, by =0, a;=0, by=1.

For these values of the coefficients,

Fla,y)=x® + iy’

so that F(x,y) has a non-zero discriminant. It therefore follows, by taking these
values for the coefficients, that the pair of equations
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ul — 3usuy, — 3vivy + vz =g,

2 2
3uiuy, —ui — 3v, v Fol=r

are satisfied by not more than
K§+1

different sets of rational integers u;, u,, v, v, such that N (u, + 7u,, v; + 1vy) < 2,
where K, is a constant independent of ¢ and », and 7 is the number of rational

prime divisors of ¢* + r%

35. A result similar to that of Corollary 3(c) can be obtained for any non-
zero integer I of the field & Let B(I) be the number of different representations
of such an integer I in the form F(U, V), where U and V are a pair of integers
of & with N(U, V) < 'Vﬂﬁ)l, or a multiple of such a pdir by an integer of &
and let 5(I) be the number of different representations of I by F'(u,v), where
w and v are a pair of integers of & with N(u, ) <|Vd(®)|. Then

1
= vl B
B %Sb(am)
o
where the sum is taken over all positive integers 6 of & such that ¢™ divides I
Now if the norm N(I) in & over B of I has 7 rational prime divisors, the
norm of z has the same or fewer rational prime divisors, and so, by the result

d‘m
preceding Corollary 3, for each set of d's having the same norm ., say,

I
— ) < K1+1
Z,)‘ b (d‘m) 2
N (=g

But there are at most 7'() ¢’s having different norms, where 7'(I) is the number
of rational integer divisors of N(I). Thus

B(I) < T(I) Kz+L.

Further, it is well-known that the logarithm of the number of rational integer
divisors of the rational integer N(I) is O(log | N(I)|/loglog] N(I)|), and that the
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number of rational prime divisors of N(I) is also O(log | N(I)|/loglog | N(I)]).X

Th
[ 1 1T W I E TR
° log log | N (I)] log log | N (I)]
and
N log | N ()] )

log B(I)=0 (W(I_)I

We have therefore proved the following corollary:

Corollary 4. Let & be a finite algebraic field over the rational number field R,
let F(x,y) be a binary form of degree not less than 3 with integral coefficients firom
R and a non-zero discriminant, and let U and V be any pair of integers of & with
N(U, V) = |Vd(R)|, where d(R) is the discriminant of ®, or @ multiple of such a pair
by an enteger of & Then the number B(I) of different representations of an integer
I of & (with a sufficiently large norm N(I) in & over B) in the form F(U, V) ¢s
not greater than

log | N (I)]
K e log [N ()]

where K, is a constant depending only on & and F(x,y). Also,
B(I)= 0| N(DJ,
where ¢ 1s an arbitrarily small positive constant.

36. From the argument preceding Corollary 3 follows a further result on
the greatest rational prime divisor of the norm of the product of a number of
integers of &, provided, firstly, that the number of integers is sufficiently great,
and, secondly, that all the integers may be represented by means of a binary
form F'(x,y) with integral coefficients from & and such that F(z, 1) has at least
three different roots. F(x, y) need not now have a non-zero discriminant. The

result is as follows:

Corollary 5. Let & be a fintte algebraic field over the rational number field B,
and let F(x,y) be a binary form with integral coefficients from & and be such that
F(z, 1) has at least three different roots, of which one may be infinite. Then if M
w5 a sufficiently large natural number and if

Uy, Vg5 U, Va5 - - .5 UM, VN

! E. Laxpav, ‘Handbuch der Lehre von der Verteilung der Primzahlen’, Vol. 1 (1909), B. G.
Teubner, Leipzig, pp. 220—222.

7~ 642136 Acta mathematica. 83
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where d(R) is the diseriminant of &, the greatest rational prime divisor of the norm
in R over P of
Fluy,v) Flug,v,) . .. Fluy,vy)
28 greater than
K; log M loglog M,

where K ts a positive constant depending only on K and F(x,y).

Proof. If F(x,y) has a zero discriminant, it may be decomposed, as in the
proof of Corollary 2, into binary forms F)(x,y) and F,(x,y), with integral
coefficients from &, such that F|(z,y) is of degree not less than 3 and has a
non-zero discriminant. But if the corollary is true for F)(x, y), it is clearly also
true for F(x,y). We may therefore assume, without loss of generality, that F(z, )
1s of degree not less than 3 and has a non-zero discriminant. Then by the argu-

ment preceding Corollary 3 (with the same z and K,;) we can choose 7 so that
Ki+1=M<KiH + 1,

provided that M is sufficiently large and that K, is chosen greater than unity.
By the result of the argument preceding Corollary 3 the numbers

N (F(uy, vy), N(Fus,vy), .. .., NI, va)

cannot all be divisible only by the same z — 1 rational prime numbers, and so
their product must be divisible by a rational prime number not less than the
tth rational prime nnmber. But it is well-known that zth rational prime number
is greater than } 7 log 7, provided that z is sufficiently large.® Further, we have

defined z so that
;= [log (M — I)]’
log K,

' See p. 81, note 1: LANDAU, p. 214.

whence follows the result.




A Further Application of the p-adic Generalisation of the Thue-Siegel
Theorem.

1. The object of this paper is to extend the results on binary forms
contained in my previous paper, ‘The p-adic generalisation of the Thue-Siegel
Theorem’, to forms of the type

m

H(% E(W)h + §(T)h_1 + o),

y=1

where k is a natural number and £V, £2  E™ are the m roots of a polynomial
flx) of degree m(=h) with coefficients from a field & of degree n(= 1) over
the rational number field ¥, and with a non-zero discriminant. The method of
proof will differ from that given for binary forms, and will be shorter, but the
results obtained will not be quite so refined.

The notation used will, as far as practicable, be the same as in my previous
paper. As there, g(p), where b is a finite or infinite prime ideal of &, will
represent the degree of the perfect p-adic extension of &, over the field of real
numbers if p is infinite, and over the field of p-adic numbers if p is finite, p
being the rational prime number divisible by p. As before also, Y(x; o’ ; B, nn’)
will represent that polynomial of degree nn’ which is a power of the primitive
polynomial with rational integral coefficients having as a root the number o,
which is an element of a field & of degree »’ over & The symbol g;, also
retains the same meaning. It will now be convenient to refer to the symbol qj,,
as well as the symbol g;, as an ‘infinite prime ideal’.

The main theorem will be as follows:

Theorem 2a. Let:

® be a finite algebraic field of degree n(= 1) over the rational number
Sield B;

h be a natural number;
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Fxy, x,, . .., 21) be the form
m

.y =1
{4t )
y=1

where EV, &2 E™ gre the roots of a polynomial f{x) of degree
m (= h) with coefficients from K and a non-zero discriminant;

T, Ty ey Lo where o = 0, be o different finite prime ideals of &;
G (ty) (k=1,2,... 0 be a natural number not greater than g(t:);
o, be two numbers such that
. m
o« = min + s, B> a;
§=1,2,...,m—1 \8 + 1
& be a positive number;

Ugy Uy, « - o, Up be any system of integers of & such that N ((ug, 1y, . . ., up) = IVOWS I,
where d(K) is the discriminant of R;
A be the maximum of the absolute values of the coefficients of the

polynomial in x
n

H (e 2 + P =1 4 4 ),
u=1
where wy’, ug’, .. ., wM (0 =o0,1, 2,..., h) are the conjugate values
to ug.
Then the number of solutions tn non-associated sefs of integers ug, ty, . . ., 4y 0f

the inequality
a
| N (F (g, 0y, . . ., 1(,1))|LII:1|17’(110, Ugy -+ . ., Up) Iri(rk) = Am-Rph

where N (Fug, tty, . . ., up) s the norm in K over R of Flug, uy, . .., u), s not

greater than

[
‘ B p Y (fk))
fg (275 1+ &) k_)(k:—]

) 4 )

where kg 7s a constant depending only on &, 8, h, & and F(x,, x,, . . ., xr), and not
on the number and choice of the finite prime ideals 1y, Ty, . . ., T, and k; 2s a con-

stant depending only on m and h.

2. To prove this theorem, it will first be necessary to extend Theorem 1
of my previous paper to include:

(a) approximation by numbers A of degree % over & which do not lie in the
perfect r,-adie, r,-adic, . . ., t,-adic extensions of &;
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b) approximation by the roots AV, A2 .. . iA®W of a polynomial
19Y poly
et ug T,

where wug, uy, . . ., uy are integers of &.

(a) To include the first set of numbers, we must extend owr definition of
valuation with respect to a finite prime ideal. 1f ' be a non-zero element of a
field & of degree %' over &, lying in the perfect r-adic extension of &, where
t is any finite prime ideal of &, the t-adic valuation of w’ was defined as

el

I o’ |r :pe(r)’
where p is the rational prime number divisible by t, e(r) is the order of tr, and
p(r) is a rational integer such that the fractional ideal 1*(w’) contains the

factor t in neither numerator nor denominator. The valuation of w’ with respect

to any of the =’ finite prime ideals ¢V, v'®) .. 1/ of { dividing t is, of course,
() ;
pr@' (G =1,2, ..., ), where u(t'") and e(c'¥) are defined in the same way as

p(t) and e(r). It is clear that each of these valuations will be equal to |w'};, for
-
it v=[[v0rED L@0) = pu@) EQD) and (@) =e@EXW) ((=1,2,..., )
i=1
If o' does not lie in the perfect r-adic extension of &, the valuation ||,
no longer exists according to the above definition, but we now define it to be
any one of the valuations | o |y), |0 v, . . ., |0 @), which may now be different.
Now it was stated in the inequality (8) of my previous paper, and proved,
that

Pty 'i’ .

H | oot 1[ | P00 = -,

=1 ] r=1 Tk I WO[
where @1, 43, . - ., G4, are the »1 + 7% infinite prime ideals corresponding to the
71 real and 7% pairs of conjugate imaginary fields conjugate to &' 1,15, . .., 1y
are o' (= o) different finite prime ideals of &, 6(t}) (k=1, 2, .. ., ¢') is a positive

number not greater than g¢(r;), and W; is the coefficient of the highest power
of z in the polynomial Y(x; «’, B, n#'). (g®'), where p’ is a finite or infinite
prime ideal of &', is defined in the same way in relation to & asis g() in rela-
tion to &) Now from the definition of g(b) given at the beginning of the present
paper g(t'@) =¢g(t) G=1,2,..., #). Tt therefore follows that inequality (9) of

my previous paper, i.e.,



86 C. J. Parry.

i+

Il le |”\‘“)H|“’ = )

remains true, provided 2 =< g¢(ty) (=1, 2,..., 0). The whole of the proof of
Theorem 1 is then valid without alteration, except that ps=1 (k=1,2,.. ., 0;
d=1,2,... G@p), it being understood that at each step valuations are taken

in fields of sufficiently high degree over § to give the argument meaning. It
may also be noted that no restriction need now be placed on the t-adic roots
of f(x), which can now be any roots of that polynomial.

Theorem 1 therefore states, in its revised form, that if f{x) be a polynomial
of degree m (= 2) with coefficients from $ and a non-zero discriminant, if
dy, ds» - .+ - Qp, Where 0 < ¢ <, + 7, be ¢ of the r, + 1, infinite prime ideals cor-
responding to the »; real and s, pairs of conjugate imaginary fields conjugate
to & if G(g;) (=1, 2, ..., 0) be a natural number not greater than g¢(q;) and
G(v) (k=1, 2, ..., 0) a natural number not greater than g (v), if &, (j=1,2,...,0;
y=1,G()) and mslk=1,2,...,0; d=1,2,... G be roots of flx), if ¢, ¢,
be two positive numbers, and if 1 be any algebraic number of degree h {or any

divisor of h) over & and A be the number |Y (x; 2; B: hn)|, then the inequality

G

k;.

. G
min (1, [2 = &la) [ [] min (1, |2 — nesle) = c a7
k=1 d=1

i

n':[

15 satisfied by not more than
13 () l)‘
E(H.so)( GlaN+ 3 (v(t‘]/)
%, 2! =1 r=1

different numbers ., where k, is a constant depending only on &, 8, &, f(x) and
h, and not on the number and choice of roots to which approximation is made,
nor on the corresponding ideals.

(b) .On replacing h by F’, the revised Theorem 1 is clearly true for numbers
A of degree I’ over &, where &’ is a natural number not greater than A, and 4
is the number |Y (z; A, B, h" ).

Now the roots of the polynomial u,a" + u; 2"~ + -+ + uy, for any system

of integers u,, u;, . . ., up of &, can be of degree 1, 2,...., h— 1 or h over & Let

the class of numbers A*) contain all possible roots of degree »(»=1, 2, ..., h)
over 8 Then we may select from these % classes those such that the roots of
some polynomial wu,z* + w, 2"~' + ... + w, are contained in the selected classes,
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2)

at least one in each class. Consider any one such selection §: A’/ '@ 2/iw)
(1 = hy < h), of degrees U, W¥, .. h" over R Consider also the inequality

o Ga) v ho

¢ 6w ) y
(0 T T min (12— &) TI 1T min (1, 12— ol = ¢ [] 207",
i pr k=1 d=1 y=1

P

where the 1 in each valuation is selected from any of the classes '), 2@ | AUl
and A'™ (v =1, 2, . . ., hy) denotes the number |Y (; A", B, A" 2)|. This inequality
can be split up into h, inequalities in each of which the left-hand side includes

only valuations involving A" (v =1, 2,.. ., k) and the right-hand side is

I

|V(‘

ity

Now if the inequality (1) is satisfied, so is at least one of the /i, subsidiary
inequalities. But by the revised Theorem 1, each such inequality has not more than

B ; o
1’3:(1“0’( Y el X G(”/:))
0 5 j=t =1

solutions in numbers from the class A"}, where %" is a constant depending
0 4
(.2 CCHEIDY G(fk))
only on ¢, 8, ¢, &, f(x), k' and h,. Also, there are not more than A ‘=1 k=1
ways of selecting the A, inequalities. Thus the number of solutions of the

inequality (1) in numbers from the classes A1) A’ .. 2/ is not greater than

=1 k=1

0 4
. o v (S S o)
(k (1) + k (2) +o+ k (/1(,)) (2‘3-—04 h) j ,

or

0 143
B (1 2) ( Ye@)+rYe ("k>)
E (28—« " p\i=t =

»

where %' is the number (X" + £'® + ...+ F'™) and therefore depends only on
&, B, ¢, &, f(x) and h, and not on the number and choice of roots to which
approximation is made, nor on the corresponding ideals. It therefore follows,
since the total number of selections of the type S from the classes A" (v=1, 2, .. ., h)
is not greater than A% that the number of solutions of the inequality (1) for all
possible selections S of classes from these classes is not greater than
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0 o
50 ( et h)(f%fkwk%x(;(rw)
= Y- =

3

where %'® depends only on ¢, 8, ¢, & f(x) and &.
Let now A be defined as in the Theorem 2a already enunciated. Then by

a result due to Siegel!, for every class A'""), and appropriate wu, 1y, . . ., us,

A

A= ar

Further, AV + A® + ... + B = h. Tt therefore follows that the inequality

T o G ,
1T T1 min (012 = Bla) T] ] min (5012 — ol ) = e ()7 40
=1 y=1 f=1 9=1

cannot have more solutions in numbers A which are roots of a polynomial

wpx" + u 2" 1 + -+ wp than hag the inequality (1) in numbers A chosen from

all possible selections § of classes '™ (y=1,2,..., hy; 1 =hy=h). Also, ¢ is
arbitrary, and the number of sets of integers w, %, ... up of & such that
Ny, %y, « - ., up) =< |Va (®) |, and such that the polynomials uya” 4+ w, @14 - +uy

have the same roots, is not greater than a constant depending only on & We
have therefore proved the following extension of Theorem 1:

Theorem 1a. Let:

! be a finite algebraic field of degree n(= 1) over the rational number
Sield B;

Six) be a polynomial of degree m(= 2) with coefficients from & and a
non-zero discriminant;

Qi Ggy - - - Go, Where 0 <9 <, + 1y, be o of the », + ry infinite prime ideals cor-

responding to the r, redl and ry pairs of conjugate tmaginary fields
conjugate to &;

t, Ly .. . Lo, where 6 =0, be ¢ different finite prime ideals of &;

G (q5) (j=1,2,..., 0 be a natural number not greater than ¢(q;);
G (1) (k=1,2,..., 0) be a natural number not greater than g(t);
h be a natural number;

1 ¢. SIEGEL: ‘Approximation algebraischer Zahlen’, Mathematische Zeitschrift, Vol. 10 (1921),
p. 176, Hilfsatz I1I.
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&y, Nkd (j=1,2,..,0; y=1, G(a); k=1,2,...,0; d=1,2,... G)
be roots of f(x);
¢, & be two positive numbers;
a, B be two numbers such that
S e R

Uy Uy, - - - Un be any system of integers of & such that N (g, uy, - - ., up) < lVd (ﬁ)l,
where d(R) is the diseriminant of &, and (ug, y, . - ., un) s the ideal

generated by g, y, . . ., Un;
A be any root of the polynomial ugx® + w, "t + - + up;
A be the maximum of the absolute values of the coefficients of the polyno-
n
mial in x, [[ (@ + w2t 4+ af?), where u),ul, ... Wl
u=1
(@=o0,1,2, ... h) are the conjugate values to wus.

Then the number of non-associated systems of integers ug, %y, . . ., up such that
roots A of the polynomial uyx® + w, 21 + - + wp satesfy the inequality

o G{q) o Gl .
1T 11 min (1, | A — &y lazy) I 1] min (1,]A—muole) <cA"B
Jj=1 y=1 k=1 d=1

ts not greater than

3

0 (2
Glgn+ ¥ G«m)
J0) (25T h)(j=1 =

where kO 4s a constant depending only on &, 8, ¢, K, f(x) and h, and not on the
number and choice of roots to which approximation is made, nor on the correspond-

g deals.
3. We shall require the following extension of a lemma due to Siegell:

Lemma. Let &, fl(x), h and o5, (J=1,2, ..., 7 +7y; y=1,9(y) be defined
as in Theorem 1 a. Let §V, 52 .. &™) be the roots of the polynomial f(x). Let

Yo = Uy g(m + o Emh—l oty v=r1,z2,...m),

where w,, %y, . . ., up are integers of K& such that N((uy, u,, . .., up) < lVd (K) I,
where d () is the discriminant of ®. Then:

! See p. 88, note 1: SIEGEL, p. 196.
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1) if
max (Ju, Iqj*r, I“xl%"h Ce '“h Iqj*.') = Ujy =12, ., +ry =1 g(qu))’

there exists a positive constant c,, depending only on f(x), such that of the m linear

Jorms y, not more than h are such that
Wk Jh—1
|95 lasy = | 29 §,(-Y) + Uy §§’} + o oy < o ugy,

for valuation with respect to each infinite prime ideal G;y (j=1,2,..., 7 + 1y;
y=1,9@) (& &y, . . ., & being the roots of the polynomial conjugate to f(x) with
respect to the field R,);

2) if v be any finite prime ideal of &, there exists a positive constant ¢, de-
pending only on f(x) and t, such that of the m linear forms y., not more than h are

such that
lyvlrz I“og(v)h +oee “hlr< Cr,

and cx =1 for all v with norms exceeding a certain value depending only on & and
g g@) o gm,

(N.B. The symbol |u, §j(‘;)h+ Uy §J‘.‘fl)h“1 + -+ ualqj, represents the absolute
value of the expression u{? 5]({/)" + yif? §J(.‘j/)h—l + -+ ulf?, where wln, w7, ... w7
are the conjugate values to wuy, u,, . . ., un with respect to the field &,.)

Proof. The lemma is trivial for h=m. We may therefore suppose that
h<m—1.

We select any & + 1 of the linear forms y,, which without loss of generality

may be written as

Yo = Z §(w)h—em w=1,2,...,h+1).

Since &W, £ . &™) are all different, u,, #,, ..., uy may be written as linear

functions of ¥, ¥s, - . ., ¥r+1, in which the coefficients I!”, IV, .. ., I{"), (v=0,1,...,h)

181
depend only on gW, & . gm)
1) By the above

max (l g l%’ya [Z(zv) I‘Uﬂ/v ce |l2~l1 I%’v) =¢

G=1,2,.. ., +7; y=1,90); v=0,1, ..., h),
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where ¢, is a constant depending only on &V, &2, . . &, Hence
1 P > y S

wiy = (b + 1) ¢, yj4 (G=1,2,..,7 Fry y=1.9@)),
where :

Yijy = max (l%lCIj'/: |.’/2|QJ7’, NP I!/h+l\Qj~/)~
Thus
?/juz Uiy - Uiy (j.: 1, 2, .. 0 F Py y=1, g(CIj))-
T h+ 1)e me

We can determine such a ¢; for every possible combination of h + 1 linear

. I . .
forms y,. Then if ¢, = . for each ¢, ¢, is the constant required.
 Cy

2) We have, further,

max ([ {0, 189 oo [0 ) = ¢ (v=0,1,... h),
where ¢y is a constant depending only on &V, £ Em and on t. Then if
max (I Uo Ifa t’ul ll') S lu"l Ir) = %, max (l?/l Il'v l?/z |l‘x s I:I/h+1 |1> =¥y

it follows as before that
e =< of Yy,
so that
Uy
=g
Y e

Now since N (g, uy, . . ., ) = | VA (®)],

U4
uy = €,

where ¢ is a constant depending only on & and t. Hence
44
T
e = 5
Ye o

We can determine a constant ¢ for every possible combination of h + 1 linear

4

) ¢ ] .
forms y,. Then if ¢ < c—f for each such ¢, ¢ is the constant required.
4

Further, for all v with norms greater than a certain value depending only
on & and &V &Y .. £ we may take e, =rcl=¢ = 1.

4. We can now prove the main theorem by a method analogous to that
used by Siegel! in dealing with the same problem. We write

! See p. 88, note I: SIEGEL, pp. 197—38.
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m

m
Flug, uy, . .y un) = H!/v = H(“o §mh + Uy §(v)h—1 + - ),
p=1

v=1

where u,, 4y, . . ., up are integers of & such that N (G, u;, . . ., un) = 'VZZTQ) I

We may assume #%, ¥ 0, as we may prove the theorem separately, by taking
appropriate values in place of A, for the cases u,=o0, u, #0; uy =0, uy =0’
Uy FE O, ..., Uy=10, U =0, ... Up—1 =0, up5> 0, and sum the numbers of
solutions.

Since u, # 0, we may write

h
Y=o E" + 0w E TN g =y || (B — 29 v=1,2,...m).
=1

We choose combinations of 4 different forms from the m linear forms y,. (We
assume h <m.) Let now yi?, y¥?, .. 40D (1 =j=<r +ry; 1 =<y =g be such

a combination. Then

R
- i . . h N N
[ g0 ygn .. ﬂ;fy)‘%'y = |u, lq]u, H ngj(,) — 1%qj.
v=1 61
Let 4%, i, ..., »¥® (1 =%k = o) be another, not necessarily different, such com-

bination. Then

h h
ly(lk)) y‘(.'l\) A ?/;Ll) Irk: I uo ,:‘lk H H l §£Vv) - }"(6) lt‘k~
=1 f=1

In each case the &'s are the roots of f(xz) or the appropriate conjugate polynomial
corresponding to the linear forms chosen and their valuations. Now there exist
positive constants b, (j=1,2,.. .7 +1ry; y=1,¢9()) and b (k=1,2, ..., 0),
depending only on &M &® .. ™ and the prime ideals q;, and 1, such that
the minima of the valuations of the differences of the numbers &3, &7, .. ., §](?j/”
with respect to ¢;, and &V, E® . . Em with respect to 1 are respectively not
less than &;, and ;. Thus in each double product there are not more than A
factors with valnations less than 1&;, or &, as the case may be. For if
|82 — Ao, <} bjy and | &) — A9 g, <3 by, where v/, then |5 — £2)qj, < by
Similarly, if |& — 4@ ], < b and £ — 49}, < b, then | &P — EP7 ], < br. Both

these results are impossible.
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It therefore follows, since, by the inequality (6a) of my previous paper,

e 9(0))

H H[“I‘UVH'“OIG ®) =1,

J=1 ¢=1t
that the number of solutions of the inequality

ks 900

) |1 | REER R |qquy Sl A O

j=1 y=1

A being defined as in Theorems 1a and 2a and C being any positive constant,
is not greater than the total number of solutions in roots 2 of polynomials

sy + u, 2"~ + -+ + up of all the possible inequalities

rit+red

J 1 P 3
5) H I gy =2 I 1 157 —alEw =
ry=1

j=1 k=1 »=1

-

rtre 9007

_UH H (1 b,)h ﬁ =116 {g) . g1,
j=1 =1 k=1

where the selection of roots § 5”2) e §'.(’l> passes through all possible com-
binations, with duplications, of §j1, §jy), .. §J”), and the selection &1, §®, ... £
passes similarly through all combinations of g, g2, el

When the inequality (3) is satisfied, so also is at least one of the inequalities

ritre 0 Q) ritrs 9(q5)
(4)HH| v—llqMH|QVL_/1|GrL<OH H hng (h=1)G lr) . g~
j=t r=1 j=1 y=1

(1 =9y <h; 1 =w<h)

Now bp=1 for all except a finite number of finite prime ideals i, since b

depends only on &V ¥ ... &m in addition to 1. Hence
rtry 9(05) o
(b T 0090 = b,
J=1 y=1 k=1
where b, is a positive constant depending only on &V, @ ... &m™. Thus the

number of solutions of (4) is not greater than the number of solutions of the
inequality
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ry+re <q1) [

(s) I T 10 — Aoy, 1] 1800 — 2800 = cugr A
G=1 »=1 k=1 '

=
1

(1=w, <h; 1=w.<h).

By Theorem 1 a, to this inequality there correspond not more than

a

I

20 (2(’_{1—0‘ (1+e) h)(n+k ‘IG(W)
non-associated systems of integers w,, u,, ..., wy of & with N (g, uy, ..., w) <
< Ile and such that roots 2 of the polynomial wa® + wuy "™t 4 - + uy
satisfy the inequality, where % depends only on &, 8, C, &, f(x) and h. (Such
systems of integers will be called ‘solutions’ of the corresponding inequality.)
Corresponding to each innequality (3) there are not more than A" in-
equalities (5). There are, further, not more than A"t possible inequalities (3).
It therefore follows that the number of solutions of (2) in non-associated systems

of integers g, %, . . ., u; is not greater than
g
N oo
o Ly AP &G
k(O) h(h+1) (n+a) (2(7’—11 h) k=1 .

Now the » + ¢ sets of h linear forms contained in the inequality (2) can be

| n+o
chosen from the m forms y, ¥y, ..., Ym In (h_'(:?:n———'h)') ways. Thus the total

number of solutions of all the possible inequalities (2) in non-associated systems

of integers g, 2, . ., up, with w, 7 0, is not greater than

[
o (27 “*"“’;)(“z»xlg ) (_petmt e
(0} (28— z =
hl(m — h)!

It follows that the number of solutions with u > 0 is not greater than

A ( Yo (”k))
ky (28 (H ,U) Feg) V=1 )
where k, is a constant depending only on ¢, 8, C, &, h and f(z), and %; a con-
stant depending only on m and h. Replacing A by h— 1, h-—2, ..., 1 succes-
sively, and summing the number of sulutions in each case, it follows that the

number of solutions of all possible inequalities (2) in non-associated systems of
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integers gy, u,, ..., u;, of & such that N((u,, u,, ..., wp) < IVd I is not greater
than

g
B G (v
k (2(3_ (1+&) ]c,)(kgl \TL,)’

where %, is a constant depending only on ¢, 8, C, &, & and f(x), and %, a con-
stant depending only on m and h.

But by the lemma, for each system of integers u,, u,, . . ., uz,
b0 ) _m R h-1 r—1 :
H I] H ot 8"+ 0 BT uhlan Hluo T ET |
j=1 y=12=1 =1 v=1
rtry 905 mrs 9(05)

> m nn H Hum thm ~h) (VILH Hljjy 77 [quJYHIJ ?h "'?/;Lk)'gc(rk)’
J= j=1

for some % + o systems of h linear forms g7, y¥n, .. gV (1 =j <7 + ry;
1<y =gy and y®, 4%, .. 4 (1 <k = o), and some constants ¢, (k=1,2,...,0)
depending only on &, f(r) and 1:, and equal to 1 for all 1; with norms greater
than a certain constant depending only on & and f(x). Thus, since

rtrgy 9(g5)

H H ujy = 4,
el

j=1
and
o

C(Um—h)n H c(km—h)(v‘(rk) > C',
k=1

where (' is a constant depending only on %, & and f(x), it follows, since h < m,
that

2
| N (F gy %y, - oy )| T 17 (g, 9, - . .y 0ta) [i(rﬂ =
o
ntr, 9(95)

g
=X | I T R 2 YR | 7R Sl 7 L
j=1 y=1 k=1

On taking 0:%, Theorem 2a follows.

b. Provided m > h®« + I, we can choose 8 so that h*8 + h=m. Then the

inequality of Theorem 2 a becomes

[
| N (F g, 1y, - . -, up)| H | I (ug, wy, - . ., un) |g‘(rk) <1.
k=1
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If ¢ ==1, the number of solutions of this inequality in non-associated systems

of integers u,, u,, . . ., un of & such that N (g, uy, . . ., un) = IVd (R) is not greater

than
( E ¢ (1'};))
m—h k=1
s(m—h e
ke (4h " ) k?)

and therefore not greater than

(ia@)ﬂ
K, \k=1 7
where K, is a constant depending only on & and F'(x,, 2, ..., 24), and not on
the number and choice of the finite prime ideals 1;, T,, . . ., Yo

Further, the result is still true if one of £V, &%, .., &™ is infinite, i.e., if
one factor of F(xy, x,, . .., 1) is x,, for any form F(z,, 2y, . . ., zn) of this type

such that the corresponding f(z) has a non-zero discriminant may be transformed
by a linear transformation of determinant 1 with rational integral coefficients
into a form of the type already dealt with.

We have therefore proved the following corollary:

Corollary 1. Let:

(%) be a finite algebraic field of degree n(= 1) over the rational number

field B;
Flxy, 4, . - ., zn) be the form

(azo §(v)h + EMT ),
=1

v

where EV, £ Em (of which one may be infinite) are the roots
of a polynomial f(x) with coefficients from & and a non-zero dis-

crimznant, and of degree m > h*e + h, where
2

. ( m_ s)
o = min —— N
$=1,2,..., m—-1\8 + I ’

T, Ty e oy Loy where ¢ = 0, be o different finite prime ideals of &;
G (tr) (k=1,2, ..., 0) be a natural number not greater than g (x).
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Then the number of solutions of the inequality
g
| N(F g, uy, ..oy | ;1=[1 [ (g 100, -y ) [0 <

in non-associated systems of integers ug, uy, . . ., up of & such that N (g, uy, . . ., up) =
= \VZ@)I, where N(F(uy, uy, . . ., w) s the norm in & over B of F(ug, uy, . . ., ta)
and A (8) 7s the descriminant of &, is not greater than

a
Y Gt

k=1
Ky

Y

where Kg 18 a constant depending only on & and Flz,, x4, . . ., xr), and not on the

number and choice of the finite prime ideals v, 1,, . . ., Us.

6. From this corollary arises, as before, the following corollary, the proof

of which follows exactly the same lines as in the case of binary forms:

Corollary 2. If & le a finite algebraic field over the rational number field B,
if Flxg, x,, .. ., x1) be the form

"

IT (o 8" 4 oy €770 o+ ),

v=1
where W 52 E™ (of which one may be infinite) are the conjugate roots of a
polynomial flx) with coefficients from K and at least three different roots, and of
degree m > h*a + h, where o« = min (JL + s), and tf uy, U, . . ., un be

§=1,2,..., m=1

any system of integers of & such that N{lug, u,, . . ., w) < lVd (.ﬁ\)l, where d(R) is
the discriminant of &, then as

max (| Nug|, | NG|, ..., | Napl]) - oo,

the greatest of the norms of the finite prime ideals of & dividing the numerator of
Flug, g, . . ., un) tn tts reduced form tends to infinity.

(We are justified in writing ‘numerator’ because F'(uy, uy, . . ., un) becomes
au integer of & on multiplying by al where a, is the coefficient of 2™ in the
polynomial f(r) (taken now to have integral coefficients), except when one of
0 g g ig infinite. Then g, =0, and we must multiply by «? where a
is the coefficient of z™ ! in the polynomial f(x).)

8 — 642136 Acta mathematica. 83
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We can obtain a lower bound for m in terms of h, such that m > h®e + h,

by using a method due to Siegel. Siegel proved' that e <Vgm + 1 — 1. It
therefore follows, if we write m = 4h*— 2h® + m*, where m* is a rational

integer = o, that

m—hlae=4ht—2h* + m* —R2(V16h* —8h% + 1 + 4m* — 1)

F3
> 4ht— 2k +m*—h2(4h2——1 o -—1)

4h%—1
_m*_zhzm* __m*zhi’—r
4h*—1 4ht—1
Now
2R —1
— >k
" Ak —1 h,

2 _
provided m® > h;’—;:z — ; =2h+ 2_h2hTI’ i. e., provided

——E——I+1=4ifh=1,

m*=2h + —
2ht—

or
m*=zh+ 1 if h>1.

Thus m > h*e + h, provided
m=61if h=1
m=ght—2h®+2h+ 1 if h>1.

Thus, for example,
m=61 for h= 2,

m =313 for h=3,

m = 1001 for h=4.

(N.B. It has already been shown in the previous paper that m can be any

integer greater than 3 if h=1.)

7. The remaining corollaries on binary forms, concerning the representation
of integers of & by binary forms and the greatest rational prime divisor of the
norm of a number of such representations, also have their exact counterparts in

! See p. 88, note I: SIEGEL, pp. 191—2,
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the present case, and these too depend on the basic corollary. It is necessary
however, in making this generalisation, that f(x) should have integral coefficients
and be of degree m > h*a + h, and to consider forms of the type al F'(uy, u,, . . ., uz),
where a, is the coefficient of ™ in f(z), instead of forms of the type F (u,, u,, ..., us),
since forms of the latter type are not necessarily integers. In cases where one
of the roots of f(x) is infinite (as is now possible), @, = 0, and we must consider
forms of the type a® F (uy, uy, . . ., un), where a, is the coefficient of ™! in f(x).
All these forms are denoted for convenience by F*(u,, uy, , .., ur). With these
modifications, and retaining otherwise the conditions of Theorems 1a and 2 a,
the following result is true:

The number of non-associated systems of integers wu,, u,, ..., un of & such
that N(F™(uy, %, . . ., wp) is divisible by no rational prime numbers other than the

7(= 0) given different rational prime numbers 7y, 7, . . ., 7 is not greater than
1
K7,

where K, is a number depending only on & and F*(x,, z,, . . ., z4), and not on
the number and choice of r, 7y, . . ., 7.
From this result follow various others on the representation of integers of

R in the form F* (u,, u,, . . ., ), corresponding to those obtained for binary forms.

The writer once again wishes to express his gratitude to Dr. K. Mahler
for his help and guidance in the preparation of this second paper.
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