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1. I n t roduc t i on  

1.1. Background  

A quasi-isometry between metric spaces is a map which only distorts distances by a 

bounded factor, above a certain fixed scale. (See w for a precise definition.) Each 

finitely generated group, equipped with a chosen finite generating set, has a natural word 

metric. In this metric, the group becomes a path metric space. Changing the generating 

set produces a new metric space, which is quasi-isometric to the original one. Thus, the 

quasi-isometric, or "laxge-scale geometric", structure of these metric spaces only depends 

on the group itself. 

There has been considerable interest recently in understanding how the algebraic 

structure of a group influences its large-scale geometric structure, and vice-versa. (See 

[Gr] for a detailed survey.) Sometimes it happens that one can recover some, or all, of 

the algebraic structure of a group from its quasi-isometric properties. Broadly speaking, 

we call this phenomenon quasi-isometric rigidity. 

Lattices in Lie groups provide a concrete and interesting family of finitely generated 

groups. A uniform--that is, co-compact--lattice in a Lie group is always quasi-isometric 

to the Lie group itself. In the co-compact case, then, the study of quasi-isometries of 

lattices reduces to the study of quasi-isometries of the ambient Lie group. 

At least in the semisimple case, this theory is quite well developed. Quasi-isometries 

of the real hyperbolic space (plane) are just extensions of quasi-conformal (-symmetric) 

mappings. A similar, though perhaps less developed, theory holds in complex hyperbolic 

space. The result of [P] says that all quasi-isometries of quaternionic hyperbolic space 

(and the Cayley plane) axe equivalent to isometries. (See w for the precise notion 
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of equivalence.) The recent results of [KL] say that  this is also true for higher-rank 

symmetric spaces with no rank-one factors. These last two results are examples of quasi- 

isometric rigidity. 

In the case of non-uniform lattices, sometimes a different kind of quasi-isometric 

rigidity holds. Let X be a symmetric space of non-positive sectional curvature, and let 

Is(X) denote the isometry group of X. Let FCIs(X)  be a non-uniform lattice. We 

let Q(F) denote the quasi-isometry group of F. (See w for a precise definition.) Let 

Comm(F, X ) c  Is(X) denote the commensurator of F. This group consists of those isome- 

tries which conjugate F to itself, up to finite index. 

There is a canonical injection i: Comm(F, X)--~Q(F). We say that  (F, X) is quasi- 

isometrically rigid if i is an isomorphism. This notion is closely related to the quasi- 

isometry classification of such lattices. If (F1, X) and (1"2, X) are both quasi-isometrically 

rigid, then 1"1 and 1"2 are quasi-isometric to each other if and only if they are commen- 

surable. 

The two versions of quasi-isometric rigidity, uniform and non-uniform, both imply 

and generalize Mostow Rigidity in the relevant cases. (See [M1] and [M2] for details 

about Mostow Rigidity.) 

In [Sch] I proved that  (F, X) is quasi-isometrically rigid provided that  1" is non- 

uniform and X ~ H  2 is a rank-one symmetric space. If we restrict our attention to pairs 

(1", H3), where 1" is arithmetic, we get the following concrete result: 

Let K1, K2 D Q be imaginary quadratic fields and let (.91 and 02 be the corresponding 

rings of algebraic integers. Then SL2(O1) and SL2(O2) are quasi-isometric if and only 

if K1 and K2 are isomorphic fields. 

In [FS], B. Farb and I emended the techniques of [Sch] to prove that  (1", H 2 • H 2) is 

quasi-isometrically rigid provided that  1" is non-uniform and irreducible. Such lattices are 

all arithmetic, and as a corollary, we obtain the same result as above for real quadratic 

fields. 

1.2. S t a t e m e n t  o f  resul t s  

A number field is a finite-degree field extension of Q. To save words, we will always 

take non-trivial extensions of Q. Given such a number field, K,  with corresponding ring 

(_0 of algebraic integers, the finitely generated group PSL2(O) is an irredicible lattice 

in Is(XK). Here XK is a product of two- and three-dimensional hyperbolic spaces. 

Comm(PSL2(O), XK) contains PGL2(K) as a normal subgroup of finite index. It is the 

purpose of this paper to prove 
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THEOREM 1 (Main Theorem). Let K be a number field, and let 0 be the corre- 

sponding ring of algebraic integers. Then (PSL2(O), XK ) is quasi-isometrically rigid. 

As an immediate corollary, we have the following "computation" of the quasi- 

isometry group: 

COROLLARY 1.2. Let K be a number field, and let 0 be the corresponding ring of 

algebraic integers. Then Q(SL2(O)) contains PGL2(K)  as a normal subgroup of finite 

index. 

This result allows us to state the common generalization of the two classification 

results mentioned above: 

COROLLARY 1.3. Let K1 and K2 be two number fields. Let 01 and 02 be the cor- 

responding rings of algebraic integers. Then SL2(O1) and SL2(O2) are quasi-isometric 

if and only if K1 and K2 are isomorphic fields. 

The proof of the Main Theorem comes in two parts. (See w for a detailed overview.) 

The first part  (w Boundary Detection Theorem) is a generalization of [FS, Boundary 

Detection Theorem]. The second part (w Action Rigidity Theorem) is a kind of 

rigidity result for the orbit structure of linear Abelian group actions on Z n. This part  

is entirely new, and comprises the heart of this paper. The proof of the Action Rigidity 

Theorem consists mainly in a kind of Diophantine analysis--hence the title of this paper. 

At this point the central conjecture(1) about the quasi-isometric rigidity of irre- 

ducible non-uniform lattices is 

CONJECTURE 1.4. Let X ~ H  2 be a symmetric space of non-positive curvature, and 

let FCIs(X)  be any non-uniform irreducible lattice. Then (F ,X)  is quasi-isometrically 

rigid. 

Acknowledgments. I would like to thank Benson Farb for originally getting me in- 

terested in quasi-isometries. I would also like to thank Alex Eskin, Jonathan Rosenberg, 

and Garret t  Stuck for helpful conversations relating to this paper. Finally, I would like to 

thank the University of Maryland for their hospitality during the writing of this paper. 

2. Background 

In this preliminary chapter, we introduce some background material which will be used 

throughout the text.  

(1) As of this printing (a year and a half after the writing of this paper) Alex Eskin has pretty much 
proved this conjecture in its entirety. He says that his methods could quite possibly give an independent 
proof of the Main Theorem in this paper. 
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2.1 .  Quas i - i some t r i e s  

Let (M,d) be a metric space, with metric d. A subset N c M  is said to be a K-net if 

every point of M is within K of some point of N. A K-quasi-isometric embedding of 

(M, d) into (M',  d') is a map q: N--,M' such that  

(1) N is a K-net  in M, 

(2) d'(q(x), q(y))�9 [d(x, y ) / g - g ,  gd(x,  y ) + g ] ,  for x, yeN.  
q is said to be a K-quasi-isometry if, in addition, Nt=q(N) is a K-net  in M I. In this 

case, the two metric spaces (M, d) and (M I, d ~) are said to be K-quasi-isometric. When 

the choice of K is not important, we will drop it. 

Two quasi-isometric embeddings (or quasi-isometries) ql, q2: M--*M' are said to be 

equivalent if there are constants C1 and C2 having the following properties: 

(1) Every point of N1 is within C1 of N2, and vice versa. 

(2) If xj � 9  are such that  d(Xl, x2) <C1, then d~(ql(Xl), q2(x2)) <C2. 

Modulo equivalence, the quasi-isometries of M form a group, which we call the quasi- 
isometry group of M. 

We say that  a net N c M  is sparse if no two points of N are within 1 unit of each 

other. We say that  a quasi-isometry between metric spaces is sparse if it is given by a 

bi-Lipschitz bijection between sparse nets. Clearly, every quasi-isometry is equivalent to 

a sparse quasi-isometry. 

2.2. D i a m e t e r  d i s t o r t i o n  

For j - - l , 2 ,  let Sj be a set. Let ESj be the collection of finite subsets of Sj. Let 6j: 

ESj-~[0, ~ )  be any function. We say that  a mapping r $1---,$2 is s-quasi-adapted to 

the pair (61,62) if there is some function ~: N--*N having the properties 

61(V)<k 
6:(r <k 61(V) 

Here V C S is any compact subset. We will call a the distortion function. 
As a special case, suppose that  Sj is a metric space, and 5j is the diameter function. 

In this case, we will say that  r is uniformly proper if it has the properties mentioned 

above. Any quasi-isometric embedding is a uniformly proper map, with a linear distortion 

function. 

Suppose that  $1=$2. We say that  51 and 52 are 7-quasi-identical if the identity 

map is q-quasi-adapted to (61, 62). Briefly, this means that  61(V) is "small" if and only 

if 62(V) is "small", for any finite subset V. 
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2.3. Word metric  

Let G be a finitely generated group, and let S be a finite, and symmetric, generating set 

for G. To say that S is symmetric is to say that sES if and only if s - IES .  The word 

metric ds on G, relative to S, is defined as follows: ds(gl, g2) is the minimum number 

of generators in S required to write the word glg~ 1. It is easy to see that different finite 

generating sets produce Lipschitz equivalent (and hence quasi-isometric) metric spaces. 

The criterion of Milnor-Svarc gives a way to understand the word metric in geometric 

terms: 

PROPOSITION 2.1 (Milnor-Svarc criterion). Suppose that G is a finitely generated 

group. Suppose that G acts freely, properly, and faithfully on a path metric space X.  

Suppose that X / G  is compact. Then G and X are canonically quasi-isometric. 

Proof. Let x E X  be any point. The map g--*g(x) is easily seen to be a quasi-isometry 

between G and X. The equivalence class of quasi-isometry is canonical; it doesn't depend 

on the choice of x. [] 

2.4. Linear groups  

Let A c R  n be a lattice. We let Aut(A) and SL(A) respectively denote the affine and linear 

automorphism group of A. Likewise we let Aut(QA) and SL(QA) denote the affine and 

linear automorphism groups of the Q-linear span QA. Note that SL(A)C SLy(R). 

Let GcSL(A) be Abelian. G is said to be semisimple if 

(1) G is isomorphic to Z d, for some d~>l, 

(2) the elements G are simultaneously diagonalizable over C. 

We say that G is virtually semisimple if G contains a finite index subgroup which is 

semisimple. We say, additionally, that G is minimal if no finite index subgroup of G 

stabilizes a non-trivial infinite index sublattice of A. This is equivalent to the condition 

that the induced action of G on the torus Rn/A is ergodic. 

Given any affine map T, we say that the linear part of T is the linear transformation 

To which agrees with T up to translations. The map T ~ T o  is clearly a homomorphism. 

This allows us to speak, as we frequently will, about the linear part GoCSL(A) of a 

subgroup GcAut(h) .  

2.5. A d a p t e d  inner products  

Let GcSLn(R)  be an Abelian semisimple subgroup. Let El, ..., Em be a maximal col- 

lection of simultaneous eigenspaces for elements of T. By maximal, we mean that the 
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eigeuspaces on this list do not further decompose into products of lower-dimensional 

eigeuspaces. In particular, dim(Ej)~<2 and d im (E j )=2  if and only if some T E G  has a 

non-real eigenvalue corresponding to Ej .  

LEMMA 2.2. Let E be one of the simultaneous eigenspaces of G. There is an inner 

product on E such that G[E acts by similarities. 

Proof. The one-dimensional case is obvious. The two-dimensional case is a standard 

exercise in linear algebra, so we remain a bit sketchy. Passing to a finite index subgroup, 

we may assume that  G is free Abelian. If the lemma was false, then some element gEG 

would act hyperbolically on E.  The two distinct eigenspaces of g, in E,  would also 

be eigeuspaces for the other elements in G, since G is free Abelian. This contradicts 

maximality. [] 

We say that  an inner product  G is adapted to G if 

(1) G[E, acts by similarities relative to ~[E~, 

(2) distinct eigenspaces are orthogonal with respect to G. 

Such an inner product  is easy to construct by piecing together the inner products guar- 

anteed by the preceding lemma. Whenever a G-action is present, we will make metric 

constructions relative to an adapted inner product. 

2.6. Horoballs  and symmetr ic  spaces 

Let X be a symmetric space of non-positive curvature. We say that  a horoball of X is the 

Hausdorff limit of unboundedly large metric balls, provided that  this limit exists, and is 

not all of X. We say that  two horoballs axe parallel if they arise as limits of concentric 

balls. 

We say that  a horosphere is the boundary of a horoball. Each horosphere in X has 

a Riemannian metric induced from X by restriction. We will always equip horospheres 

with this metric. Given this metric, a horosphere is a homogeneous space, though it need 

not have non-positive curvature. 

As a special case, let 

Xp,q : H 2 • • H 2 • H 3 • • H 3 

be the product  of p hyperbolic planes and q hyperbolic 3-spaces. Define 

OoXp,q = OH 2 x...  x OH 2 x OH 3 x...  x oqH 3. 

This space is sometimes called the Furstenberg boundary. 
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If we use the upper half-space models, then we have 

OoXp,q - -  R p+2q U c o  0 Sp,q, 

where co=(co,  ..., co), and Sp,q is a union of lower-dimensional Euclidean spaces. Is(Xp,q) 
acts transitively on OoXp,q. The stabilizer of co acts on R p+2q by linear transformations. 

We will use the coordinates (x~,t~) and (~j,Tj) respectively on H 2 and H 3. Here 

xi � 9  ~j � 9  2 and t~, Tj �9 (0, co). Let h~ CXp,q denote the subset given by 

p q 

i=1 j = l  

h ~  is a horoball in Xp,q. Indeed, it is not hard to check that  

where 

pr = ((0,  er) ,  ..., (0, (0, . . . ,  (0 ,  

We say that  a diagonal horoball of Xp,q is any image of ho~ under an element of 

Is(Xp,q). The diagonal horoball h=T(h~) uniquely determines the point 

Ooh = T(co) �9 O0(Xp,q). 

We will say that  h is based at Ooh. More generally, given any collection H of diagonal 

horoballs, we define 

OoH = {Ooh I h E H}. 

Note that  parallel diagonal horoballs are based at the same point of OoXp,q. We say 

that  two diagonal horoballs hi and h2 are totally distinct if Oohl and Ooh2 do not agree 

at any coordinate. The following facts are easy to check. 

(1) Let hi and h2 be totally distinct diagonal horoballs. Then Ohl-h2 is path 

connected, as long as (p, q)r  0). 

(2) Let hi and h2 be totally distinct diagonal horoballs. Then there are disjoint 

horoballs h i and h~ which are parallel respectively to hi and h2. 

(3) The set of points in Xp,q within n units from three pairwise disjoint, and totally 

distinct, diagonal horoballs has diameter at most n'. The function n-~n I can be taken 

independently of the choice of horoballs. 
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2.7. Modular  groups  

Let K C Q  be a number field. To avoid certain exceptional cases, we will assume that  

K is not an imaginary quadratic field. Let O be the subset of K whose elements are 

solutions of monic integer polynomials. O is called the ring of algebraic integers. 

In general, there are p distinct Galois embeddings ~1,---, Qp: K---*R, and 2q distinct 

Galois embeddings al,.. . ,a2q:K-~C. The image aj(K) is not contained in R. The 

complex embeddings come in pairs. Each has a conjugate embedding. We shall order 

these embeddings so that  no two complex embeddings in the first half of the sequence 

are conjugate to each other. We define the product embedding 

H=Ql x...xQpxal x...Xaq. 

We let A, Q A c R  n be the images respectively of O and K under H. The notation here 

reflects the fact that  QA is the Q-linear span of A. 

Given any element MEPSL2(O) ,  we define Qj(M) and aj(M) in the obvious, entry- 

by-entry, way. Thus, this extended version of H gives us a faithful representation of 

PSL2(O) onto a subgroup FcIs(Xv,q). When q=O, such a group is called a Hilbert 
modular group. 

It is easy to see that  F is discrete. It is well known that  r is an irreducible non- 

uniform lattice. (See [Se] in general, and [Ge, pp. 1-11] for a concise proof in the totally 

real case.) 

The cusps or fixed points of F in OoXp,q are clearly bijective with QAUc~. The 

stabilizer F ~  of cr consists exactly of images of upper triangular matrices of the form 

[0 o] T = 1/u 

where u is a unit in O and oEdO is arbitrary. To say that  u is a unit is to say that  the 

product of Galois conjugates of u is •  From this, an easy calculation shows that  Fo~ 

preserves the diagonal horoballs based at oc. 

Clearly, F ~  cA(A) .  The linear part  L of F ~  consists exactly of the diagonal matri- 

ces. L is clearly Abelian. The elements of L are obviously simultaneously diagonalizable 

over C. Dirichlet's unit theorem [O, p. 118] says that  L is virtually semisimple. 

LEMMA 2.3. L is minimal. 

Proof. If L is not minimal, then we can find a free Abelian finite index subgroup 

L t c L  which preserves some infinite index sublattice AIcA.  Since A t has infinite in- 

dex, it has lower rank. Furthermore, A t must be contained in a product of eigenspaces 
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of L'. Put t ing both statements together, we see that  A ' is contained in a proper sub- 

product of eigenspaces of L ~. Now, the eigenspaces of L ~ coincide with those of L. These 

eigenspaces are all coordinate hyperplanes, of various dimensions. Putt ing everything 

together, we see that  some Galois conjugate of any non-trivial element of A ~ is zero. This 

is a contradiction. [] 

It is easy to verify, that  the commensurator Comm(F, Xp,q) contains PGL2(K)  as 

a subgroup of finite index. In particular, the commensurator acts transitively on the 

cusps. Hence, the stabilizer subgroup FpCF of a point pEQAUc~ preserves the diagonal 

horospheres based at p, and acts on each of these with compact quotient. 

Let H be a maximal F-invariant family of diagonal horoballs. The maximality 

condition implies that  

OoH = QAUcc. 

(Recall that  this first set is the collection of basepoints of horoballs.) From the definition 

of QA, and from the fact that  F is a lattice, we have: 

(1) the horoballs in H are pairwise totally distinct, 

(2) H/F is a finite set, 

(3) F acts with compact quotient on Oh, for each hEH. 
These three properties imply that  we can replace the horoballs in H by parallel horoballs 

(in an equivariant way) so that  the horoballs in H are palrwise disjoint: 

3. Overview of the proof 

3.1. Detecting boundary components 

Let X be a symmetric space of non-positive curvature. Let H be a non-empty family 

of disjoint horoballs in X. Let Q ( H ) c X  denote the closure, in X,  of the complement 

of horoballs in H.  Note that  aQ(H)  consists of a collection of disjoint codimension-one 

boundary components, one per member of H.  We call ~ ( H )  a neutered space. We equip 

with the path metric induced from the ambient Riemannian metric on X. 

We say that  ~ ( H )  has unobtrusive boundaries if the following condition holds: For 

any element hEH and any positive real number r the closure of 12(H)-Tr(h) is path 

connected. Here Tr(h) is the r- tubular  neighborhood of hEH, defined relative to the 

Riemannian metric on X. 

Example. Let X=Xp,q be the space discussed in w Let 1 2 ( H ) c X  be a neutered 

space, where H consists of palrwise totally distinct diagonal horoballs. If (p, q) r (1, 0) 

then ~ ( H )  has unobtrusive boundaries. This follows almost immediately from prop- 

erty (1), listed in w 
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We say that a quasi-isometry q: f~(H1)--* f~(H2) pairs boundaries if there is a bijection 

r Hi-+H2 having the following property: If x6t2(Hj) is within m units of h6Hj ,  and 

if q is defined on x, then q(x)6~(H~+l) is within m' units of r Here, indices have 

been taken modulo 2, and r has deliberately been confused with its inverse. 

In w and w we will prove 

THEOREM 3.1 (Boundary Detection Theorem). Let X be a symmetric space of non- 

positive curvature. For j = 1, 2, let f~( Hj ) C X be a neutered space with unobtrusive bound- 

aries. Any quasi-isometry q: Q(H1)--*Q(H2) pairs boundaries. 

3.2. Act ion  r igidi ty  

Let A c R  n be a lattice, and let GcAut(A) be a subgroup. For any compact subset 

S C R n, we define 

6G(S) = inf diam(T(S)). 
T6G 

Here, diameter is defined relative to an adapted inner product. (For our coarse purposes, 

any inner product would do.) Note that Sa=6Go, where Go is the linear part of G. 

We say that a subset ScQA has bounded height if Sc (1 /d )A .  We say that a 

bijection r QA--+QA is quasi-integral if both r and r take sets of bounded height to 

sets of bounded height. We say that a bijection r QA-*QA is quasi-compatible with G 

if 

(1) r is quasi-integral, 

(2) for any S c Q A  having bounded height, r and r  are quasi-adapted to 6o 

(see w for a definition). 

Let QC(G, A) denote the set of such mappings. 

The following result, which we prove in w167 6-8, is at the heart of this paper. 

THEOREM 3.2 (Action Rigidity Theorem). Supose that ACR '~ is a lattice. Let 

GcAut(A) be a subgroup whose linear part is A belian, minimal and virtually semisimple. 

Then every element of QC(G, A) is the restriction of an affine map. 

Remark. Our notation QC is a bit of a pun. This set of mappings (formally) plays 

the same role here as the set of quasi-conformal mappings plays in [Sch]. 

3.3. Sufficient properties 

In this section, we list the properties of the groups PSL2 (CO) which we actually use in 

the proof of the Main Theorem. The facts here are distillations of the discussion in w 

and w 
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Let X be a (non-trivial) product of hyperbolic spaces, and let FC Is(X) be a non- 

uniform lattice. We normalize so that  co is a cusp of F. Let FooCF be the stabilizer of 

this cusp. 

PROPERTY 3.3. F preserves a neutered space ~ ( H ) c X ,  and f ) ( H ) / F  is compact. 

Moreover, ~(  H) has unobtrusive boundaries. 

PROPERTY 3.4. There is a lattice A C R  '~ such that 00H=QAUco .  Furthermore, 

For cAut (A)  has linear part which is Abelian, virtually semisimple, and minimal. 

PROPERTY 3.5. The commensurator Comm(F, X )  acts transitively on OoH. The 

stabilizer subgroup Common(F) of co contains Aut(QA).  

PROPERTY 3.6. Let m E N  be arbitrary. The set of points in X which are at most 

m units from three distinct horoballs of ~ (H)  has diameter at most m ~. The function 

m--+m t does not depend on the choice of horoballs. 

3.4. Compatibility 

Let ho~EH be the horoball corresponding to co. Let 0 d H c Q A  denote those points 

which correspond to horoballs which are metrically no more than d units from ho~. Also 

define Ad = (1/d)h.  

Given any finite subset S c Q A ,  define 5H(S) to be the diameter of the metric ball 

of minimal size which intersects all horoballs of H which are based at points of S. We 

would like to compare this function with the function 5ror associated to the group action 

For c SL(A). For ease of notation, we will abbreviate this latter function to f t .  

LEMMA 3.7. For every dEN,  

(1) O~oHCAd, , 

(2) AdCOd'H, 

(3) the restrictions of fir and ftt  to Ad are quasi-identical. 

Proof. Proper ty  3.3 says that  Foo acts on Ohoo with compact quotient. Hence, mod- 

ulo Foo, there are only finitely many horoballs of H within d units of h~ .  Similarly, 

the same compactness implies that  Ad/Foo is a finite set. Statements (1) and (2) follow 

immediately. We now prove statement (3). Suppose first that  fH(S) is small for some 

collection SChd.  This means that  there is a point x close say, within K - - t o  all of the 

horospheres whose basepoints belong to S. We may apply an isometry of the symmetric 

space to guanantee that  x is some prechosen origin in the symmetric space. By compact- 

ness/discreteness, there are only finitely many horoballs, within K of x. Hence, modulo 
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Aut(A), there are only finitely many choices for S. This bounds/it(S). Suppose con- 

versely, that 5r(S) is small. Then, by compactness/discreteness, there are only finitely 

many possible choices of ScA d modulo the affine group Aut(A). This immediately gives 

the bound on ~H(S). [] 

3.5. Putting everything together 

We will now prove the Main Theorem for any pair (F, X) which satisfies the properties 

listed in w Note that lattices in X- -H  3 do not satisfy Property 3.4. However, these 

lattices were treated in [Sch]. 

Let q: F--*F be a quasi-isometry of F. 

Step 1. Let f~(H) be the neutered space given in Property 3.3. Since 12(H)/F is 

compact, it follows from the criterion of Milnor-Svarc that F and s are canonically 

quasi-isometric. In this way, we replace q by the induced quasi-isometry of f~(H), which 

we give the same name. 

Step 2. Property 3.3 says that fl(H) has unobtrusive boundaries. The Boundary De- 

tection Theorem now says that q pairs boundaries. Consider the bijection Ooq: OoH--*OoH 
induced by q. Property 3.5 says that, after composing with elements of Comm(F), we 

can assume that 00q(oo)=co. 

Step 3. Since q is a quasi-isometry, it follows from Lemma 3.7 that Ooq6 QC(F~, A). 

From Property 3.4, and the Action Rigidity Theorem, Ooq is the restriction of some affine 

map Tq. Since Tq permutes the elements of QA, we have Tq6Aut(QA). 

Step 4. From Property 3.5 we can assume, after composing with an element of 

Comm~(F), that Tq=Id. This is to say that q preserves each and every boundary 

component of ~(H). It now follows from Property 3.6 that q is equivalent to the identity. 

This completes the proof of the Main Theorem. 

3.6. Corollaries 

The first corollary of the Main Theorem is immediate. We now prove the second corollary. 

Suppose that K1 and/<2 are number fields, and O1 and 02 are the corresponding 

rings of algebraic integers. Suppose that SL2(O1) and SL2(O2) are quasi-isometric. Then 

Q(SL2(O1)) and Q(SL2(O2)) are isomorphic groups. From the Main Theorem, and our 

explicit knowledge of the commensurators, we see that PGL2(K1) and PGL2(K2) are 

finite index normal subgroups of isomorphic groups. Since PGL2(K~) and PGL2(K2) 
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have no finite index normal subgroups, we see that  PGL2(K1) and PGL2(K2) are them- 

selves isomorphic groups. It is an easy exercise to show that  this implies that  K1 a n d / ( 2  

are isomorphic fields. 

4. Boundary Detect ion Theorem 

In this chapter, we prove Theorem 3.1 (Boundary Detection Theorem), modulo the cen- 

tral technical result, the Coarse Separation Theorem. We will prove the Coarse Separa- 

tion Theorem in w The core material of w and w also appears in [FS]. However, the 

presentation here is substantially more general in places. 

4.1. Coarse separation 

We say that  a subset SCY,  not necessarily connected, is deep if it contains arbitrarily 

large metric balls. We say that  two subsets $1, S 2 c Y  are disconnected from each other 

if it never happens that  S~ US~ is a connected set, for non-empty S~ C Sj. Finally, we say 

that  a subset Z c Y  coarsely separates in Y provided that ,  for sufficiently large r, the 

complement Y - T r ( Z )  contains at least two deep subsets which are disconnected from 

each other. In w we will prove 

THEOREM 4.1 (Coarse Separation Theorem). Suppose that X and Y are symmetric 

spaces of non-positive curvature. Suppose that J is a horosphere in X.  Suppose that 

q: J-+Y is a uniformly proper map. Then q( J) coarsely separates in Y. 

4.2. Coarsely derived maps 

Let X be a symmetric space, as above. Let f}=I2(H)cX be a neutered space. If hEH 

is a horoball, then the horosphere Oh is a boundary component of 12. 

Suppose that  ~j=f~(Hj) are two neutered spaces in X,  and q: 121--*~2 is a sparse 

K-quasi-isometry. This is to say that  q is a K-bi-Lipschitz bijection between sparse 

K-nets  N j C ~ j .  Let hcH~ be a horoball. 

We say that  a map r Oh--*X is K-coarsely derived from q if there is a constant K 

having the following property: For each point xEOh there is a point xtENj such that  

dz(x, x') <~C, and r  

LEMMA 4.2. Suppose that r Oh-+ X is coarsely derived from q. Then r  coarsely 
separates in X. 
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Proof. It follows from convexity that the inclusion Oh--*~i is an isometry. Hence, 

the map x ~ x '  is uniformly proper. Here x 'E~i  is the point for which q(x')=r 

It follows from compactness and symmetry that the inclusion ~i+i--*X is a uniformly 

proper map. Since r is the composition of uniformly proper maps, it is also uniformly 

proper. Thus r Oh-*X is a uniformly proper map. Now apply the Coarse Separation 

Theorem. [] 

4.3. Images of horospheres 

Assume now that f~j =f~(Hj) is a neutered space with unobtrusive boundaries. 

LEMMA 4.3 (Tubular Neighborhood Lemma). Let q: ~1--*[~2 be as above. Let hiES1 
be a horoball. Let r Ohl--* X be a map which is K-coarsely derived from q. Then there 

is a horoball h2EH2 such that r is contained in a tubular neighborhood of h2. The 

size of this tubular neighborhood is independent of the choice of hi. 

Proof. As a first step, we prove "one half" of the desired result. Namely, 

SUBLEMMA 4.4. There exists a constant C and a horobaU h2EH2 such that every 

point of h2 is within C units of some point of r 

Proof. If this lemma is false, then for each hEH2, and each constant R, there are 

points pEOh which remain at least R units from r We call this property (*). We 

will use property (.) to show the following. Let N be any constant. Then there is a 

constant U such that two points in X which avoid r by at least U units can be 

joined together by a path which avoids r by at least N units. This contradicts the 

fact that r coarsely separates in X. 

Let TN be the N-tubular neighborhood of r Provided that U>N,  the points 

a and b do not belong to TN. Suppose first that a~2.  Then a is contained in some 

horoball hEH2. From property (*) we may find a point a'cOh and a path joining a to 

a' which avoids TN, provided that U is taken large enough. Thus, we may assume that 

a and b both belong to ~2- Also, if we take U large enough, then we can assume that a 

and b actually belong to the net N2. 

Below, the constants Ui,U2,... tend to cc with U. The points q-l(a) and q-i(b) 

belong to N1. If U is taken sufficiently large, then these two points will be at least 

U1 from hi. Since ~l  has unobtrusive boundaries, there is a path ~ connecting these 

two points and remaining at least U2 from hi. Using approximation and geodesic in- 

terpolation, it makes sense to talk about the path q(~) which connects a to b. Since 

q is a quasi-isometry, q(~/) will remain U3 from r Once U3>N, we have a path 

connecting a to b but avoiding TN. [] 
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We define a map r as follows. Let r be any point such that 

r162 is metrically closest to x. From Lemma 4.4, it follows that r is coarsely derived 

from q-1. It follows that r coarsely separates in X. Since r this 

separation property implies that r is C'-dense in Oh1, for some constant C'. This 

is to say that every point of Oh1 is within C' of some point which maps, via r to a point 

within C of 0h2. If we modify the constants, we get the Tubular Neighborhood Lemma 

from this statement. 

Since we are working in a symmetric space, and all the horoballs are isometric, the 

constants in the proof above can be taken independent of the horoball in question. [] 

Applying the Tubular Neighborhood Lemma to both q and q-1, we get the Boundary 

Detection Theorem. 

5. Coarse separa t ion  

5.1. Uni form contract ib i l i ty  

A finite-dimensional Riemannian manifold M is said to be uniformly contractible if there 

is a function a: N--~N having the following property: If a continuous map of a finite 

simplicial complex A ~ M  is contained in an r-ball, then it is contractible in an a(r)- 
ball. 

The following lemma is obvious. 

LEMMA 5.1. Let X be a symmetric space o/ non-positive curvature. X is uniformly 
contractible. 

5.2. Unpinched spheres 

Let M be a smooth Riemannian (n+l)-manifold. Let S n denote the standard unit sphere 

of Euclidean space E n+l. Fix, once and for all, some small constant 60 = 1-~r. (The 

precise value of 60 is rather arbitrary.) We say that a smoothly embedded sphere ~ c M  

is d-unpinched if there is a diffeomorphism h: ~ S  n such that the spherical distance 

from h(x) to h(y) is less than 60 provided that distM(x, y)<d. Note that distM is not the 

path metric on ~, but rather the ambient metric in M. We say that M has unpinched 

spheres if M contains a d-unpinched sphere for every positive integer d. 

At the end of this chapter, we will prove 

LEMMA 5.2. Let X be a symmetric space of non-positive curvature. Horospheres in 
X have unpinched spheres. 
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Remark. Having unpinched spheres seems to be a mild condition. I suspect that  all 

uniformly contractible manifolds, diffeomorphic to R n, have unpinched spheres. How- 

ever, I have no idea how to prove this. 

5.3. General Coarse Separation Theorem 

In this chapter we will prove 

THEOREM 5.3 (General Coarse Separation Theorem). Suppose that J and Y are 

smooth Riemannian manifolds, diffeomorphic to R n and R n+l respectively. Suppose that 

(1) q: J--*Y is a uniformly proper map, 

(2) J is a path metric space, and has unpinched spheres, 

(3) Y is uniformly contractible. 

Then q( J) coarsely separates in Y.  

The Coarse Separation Theorem of w follows from this general result, together 

with Lemma 5.1 and Lemma 5.2. 

5.4. Continuous extension 

Let T be a locally finite triangulation of J.  Subdividing, we can guarantee that  there is 

an upper bound to the size of simplices in T. (Note, however, that  this triangulation need 

not have uniform geometry, in any sense.) Let T (k) be the k-skeleton of T. By altering 

q trivially, we can assume that  q=qo is defined on the zero skeleton T (~ Inductively, we 

extend qk from T (k) to T (k+l) . The fact that  the simplices of T have uniformly bounded 

diameter, and that  Y is uniformly contractible, implies that  the extension qk+l is still 

uniformly proper. By induction, then, the final map q,~ is continuous and defined on all 

of J,  and is still a uniformly proper map. Also, we have Tr(q(J))Dqn(J) for some r>0 .  

Thus, it is sufficient to prove the Separation Theorem for qn- Replacing q by qn, we 

henceforth assume that  q is defined on all of J,  and continuous. 

5.5. Images of  unpinched spheres 

For any space M, let Zq(M) denote singular q-cycles of M. Let Hq(M)=Hq(M; Z) 

be the singular homology classes of M. Suppose that  p + q = n - 1 .  Given two cycles 

zp 6 Zp( R n) and zq 6 Zq( R'~ ), they have an algebraic linking number, called link ( zp, zq). 

This is defined in the usual way: Pick a generic coboundary bp+l such that  Obp+l=zp, 

and count the algebraic intersection number bp+l NZq. 
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LEMMA 5.4 (Linking Lemma). For any constant k the following is true: There is a 

closed curve "ycY, and a smoothly embedded sphere E C J  such that 

(1) every point of 7 remains at least k from q(E), 

(2) link(q(E), 7 ) # 0 .  

Proof. Let E be any embedded sphere. By choosing a triangulation of E, we consider 

q(E) as a singular homology class in H~(T), where T c Y  is any subset containing q(E). 

SUBLEMMA 5.5. Let ~ be an unpinched sphere in J. Let Q be a fixed constant. Let 

T be a compact subset such that 

q(~) C T C Te(q(~)). 

Then there is a second constant r such that q(~) is an infinite element of Hn(T) provided 

that ~, is r-unpinched. 

Proof. Let c~ denote the distortion function of q. We choose some number r >  

max(l ,  c~(0), c~(2k+l)). If ~. is a torsion element of Hn(T), then there is some (n-t-1)- 

chain j~, with underlying simplicial complex b= I~1, having the following properties: 

(1) f i (b)cT.  

(2) Ob consists of d>0  copies of ~.. Call these copies Cl, ..., Cd. 

(3) Zl+=ql . 
Recall that  there is a diffeomorphism h: ~ S  n, which takes J-metric r-balls into 

sets having ~0--l~0~r spherical diameter. Below, we will construct a continuous map 

~1: b ~ S n  such that h-lolllOb has positive degree. This is a contradiction. 

By subdivision, we may assume that b has the following property: If two vertices 

vl,v2Eb belong to the same simplex, then the points ~(Vl) and fi(v2) are at most one 

unit apart in Y. We first construct the map ~/from the vertices of b into S'L Here is the 

formula: 

(1) Choose a vertex vEb. 

(2) Let v 'E~ be any point such that q(v') is as close to fl(v) as possible. 

(3) Let ~l(v)=h(v'). 

For two vertices Vl and v2 belonging to the same simplex, the points fl(Vl) and 

~(v2) are at most 1 apart. Since J3(b)cT, the points q(v;) and q(v~) are at most 2 k + l  

apart. Hence, the points v~ and v~ belong to the same a (2k+l ) -met r ic  ball in J .  Since 

r > a ( 2 k + l ) ,  we have that 7/(vl) and ~/(v2) have spherical distance at most 1-~o~r in S '~. 

This property allows one to extend ~/, skeleta by skeleta, using spherical totally geodesic 

interpolations. The resulting map is defined and contindous on all of b. 

We now show that h-loll]Ob has positive degree. To show this, it is sufficient to 

show that ~/cj has degree one. 
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By subdivision, we can assume that  cj is trangulated by simplices which have dia- 

meter at most 1. Recall that  cj is actually a copy of Z. Let xCc j=~ ,  be a vertex of b. 

By construction, q(x)=q(x~). Hence x and x' are at most c~(0) units away in J .  Since 

r>c~(0), we have that  ~?(x) lies at most 1-~0 ~ from h(x). Suppose that  yecj  is arbitrary. 

Let x be a vertex of a simplex containing y. Then, since r > l ,  the spherical distance 

between h(x) and h(y) is at most i ~ r .  By constuction, the spherical distance from y(x) 

to ~(y) is at most i ~ r .  Putt ing these bounds together, we see that  ~](y) and h(y) lie at 

most 1-~0~r from each other. This easily implies that  ~Icj has degree one. [] 

The following lemma is a standard result from algebraic topology. 

SUBLEMMA 5.6 (Alexander duality). Suppose that p §  1. Suppose that A c R  n 

is a smooth compact manifold-with-boundary. Suppose that ~pEHp(A ) is an infinite ele- 

ment. Then there is some ~qeHq(Rn-A)  such that link(~p,~q)~O. 

Let Z be an r-unpinched sphere. For any constant k, we can find a smooth compact 

manifold-with-boundary T such that  

Tk(q(~) ) C T C Tk+l (q(~) ). 

If we choose r sufficiently large, then Lemma 5.5 says that  q(~) is not torsion in H,~(T). 

It follows from Lemma 5.6 that  there is some element of H i ( Y - T )  which links q(~) 

algebraically, but avoids T. This element is represented by a cycle consisting of finitely 

many closed curves. One of these curves must also link q(E). [] 

5.6. Curve  modif icat ion  

Let % E and k be as in the Linking Lemma. We define I v c J  to be the set of points x E J  

such that  q(x)E~. In other words I v is the inverse image of the intersection ~Nq(J). Let 

B be the ball bounded by ~. Clearly, the set I v does not intersect ~. Say that  a point 

of I v is interior if it belongs to B, and exterior otherwise. 

If the constant k is sufficiently large, then for any pE~Mq(J), the set q-l(p) will 

either be entirely interior or entirely exterior. We make such a choice of k. Thus, we 

may unambiguously say that  a point pE~/Nq(J) is interior or exterior, depending on its 

inverse images under q. 

LEMMA 5.7 (Curve Modification Lemma). Suppose that q( J) does not coarsely sep- 

arate in Y .  Then we can find a curve ~ having the properties 

(1) link(q(E), $)r  

(2) I~ either has only interior points, or only exterior points. 
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Proof. Say that  a traversing arc is a subarc of 7 whose one endpoint is an interior 

point, and whose other endpoint is an exterior point. 

SUBLEMMA 5.8. Let ~ be any constant. Let ~tC~ be a traversing arc. If  k is 

sufficiently large, then there is a point xE7 ~ which is at least ~ from q( J). 

Proof. The constants ~I,~2,... have the desired dependence. Choose successive 

points on "~1, called a=xo, xl,  ..., xn=b, having the following properties: 

(1) The distance in Y from xi to xi+l is between �89 and 1. 

(2) Every point of "y~ is within 1 of some xj. 

Define r  to be any point of J whose image under q is as close as possible 

to x~. Assuming that  ~/' remains within ~ from q(J), the distance between q(r and 

xj is at most ~. Hence, the distance from r and r  is at  most ~1. Hence, for 

some j ,  we have that  two successive points r and r  are on either side of Z and 

within ~2 of each other. Since J is a path metric space, both of these points are within ~a 

of F.. Hence (in particular) q(r is within ~4 of q(E). This implies that  xj is within 

~5 of q(Z). Taking k>~5 does the trick. [] 

Assuming that  q(J) does not coarsely separate in Y, there is a constant N having 

the following property: If x, y E Y  are at  least N away from q(J), then there is a path 

a(x, y) C Y - q ( J )  joining them. 

Choose a maximal sequence of points Pl, ...,pzC~/such that  PjPj+I is a traversing 

arc. (Here, the indices are taken cyclically.) Choose the constant k above so large that,  

according to Sublemma 5.8, there is a point xj C PjPj+I which avoids q(J) by at least N. 

By assumption, then, there are paths c U C Y - q ( J )  which connect xj to Xj+l. Also, 

let ~j=~jX~+l C% The closed loops 5 j=a jU( -~ j )  are 1-cycles. If none of these cycles 

linked q(Z), then by homology addition, the cycle a l  U...Uan would link q(E) but would 

not intersect q(J). This contradicts the definition of linking number. So, some ~z links 

q(E) non-trivially. By the maximality assumption on the original arcs, the arc ~--~z has 

the desired intersection properties. [] 

5.7. Homological contradiction 

We will suppose that  q(J) does not coarsely separate in Y, and derive a contradiction. 

Let ~ and E be as in the Curve Modification Lemma. Let B be the ball bounding E. If 

I~ has no interior points, then q(B) does not intersect ~. This contradicts the fact that  

and q(E) are linked. Assume on the other hand that  I~ has no exterior points. Since J is 

diffeomorphic to R ~, the sphere E is cobordant to a sphere ZtDE,  whose distance from 

can be taken to be as large as we like. Since there are no exterior points of I.y, the big 
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sphere q(E') still links 5. However, this implies that  q(E I) must intersect each spanning 

surface of 5. In particular, points of q(E I) must remain fairly close to 5, no mat ter  how 

big E ~ is. This contradicts the fact that  q is uniformly proper. 

5.8. Existence of  unpinched spheres 

Let X be a symmetric space of non-positive curvature. As usual, we equip horospheres 

in X with their induced Riemannian metric. 

We say that  two horospheres are parallel if they arise as the limit of concentric 

spheres. Given two such horospheres 0"1 and a2, we write a l  <0"2 if 0-1 is contained in the 

interior of the horoball bounded by 0"2. 

Let T~<a be the horosphere parallel to a, and exactly r units away from 0-. By 

first considering the finite case of concentric spheres, it is easy to construct a geodesic (~ 

which intersects T~ at a right angle for every r ) 0 .  Let p~=~nT~. Let UT~ denote the 

unit tangent bundle to X at the point p~. Let C~ C UT~ denote those unit vectors which 

make an angle of �88 with the outward normal to Tr at p~. The metric on X allows us to 

canonically identify Cr with the standard Euclidean sphere. 

For each vECr, let 7(v, r) denote the oriented geodesic ray through v. We define 

r~= U -y(v,r)no. 
v6Cr 

LEMMA 5.9. Suppose that al and a2 are parallel horopsheres, and al <0"2. Suppose 

that ~/ is a geodesic which intersects 0"1 transversely. Then ~/ intersects 0"2 transversely 

as well. 

Proof. If this was false, then there would exist a horosphere T such that  

(1) T is parallel to aj ,  and 0-1<T, 

(2) ~/ is tangent to 7-. 

By perturbation, we produce a finite sphere T and a geodesic g such that  g is tangent 

to T, and also intersects the interior of the ball bounded by T. This is impossible in 

non-positive curvature. [] 

By the preceding lemma, all intersections are transverse (and unique). Hence we 

have a canonical diffeomorphism 

hr: Er ~ C~ 

defined by the formula 

h~(.y(v, r ) n ~ )  = v. 
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Let d be any fixed positive integer. We assert that  Er  is d-unpinched, for sufficiently 

large r. Let q E ~ r  be any point, and let B~(d,q)Ca be the ball of radius d about p, as 

measured in the path metric on a. 

We just have to show that  we can make the diameter of hr(Ba(d, q)) tend to zero as 

r ~ c c ,  independent of qEE~. Let Bx(d, q)CX be the ball of radius d about the point q, 

as measured in the metric on X. Then, clearly, 

Ba( d, q) C Bx(  d, q). 

Since X has non-positive curvature, the visual measure Bx(d, q) from the point p~ is at 

most d/(r-d) .  This follows from the usual comparison theorems. Choosing r sufficiently 

large, we can make the visual measure of Bx  (d, q) as small as we like. Hence we can 

make h~(B~(d, q)) have arbitrarily small size, independent of qEE~. 

This completes the proof of Lemma 5.2. 

6. Act ion rigidity 

We now begin the proof of Theorem 3.2 (Action Rigidity Theorem). We will use the 

notation developed there. We would like to show that  our map r  is (the 

restriction of) an affine map. Let Go be the linear part of GEAut(A).  Since 5c--5c0,  

we may assume that  G=Go. There is some linear map taking A to Z '~. Conjugating 

by this linear map, we may assume that  A--Z n. Hence SL(A)--SLn(Z) and QA--Q'L 

Passing to a finite index subgroup only makes a Lipschitz change on the function 5c. 

Hence, we may assume that the G is Abelian and semisimple. Thus, we are working with 

semisimple and minimal Zd-actions on Z ~. 

6.1. L o g a r i t h m i c  c o o r d i n a t e s  

Recall that  all our metric constructions on R n will be done relative to an adapted inner 

product G. (See w for the definition.) Let El ,  ..., E,~ be the simultaneous eigenspaces 

of G, and let r j :  Rn--+Ej denote projection. 

LEMMA 6.1. Let xEQ ~ be any non-zero element. Then, for all j= l ,  ..., m, we have 

Proof. Suppose, for some j ,  that  7rj(x)=O. By rescaling, we can assume that  x E Z  n. 

Let W j c R  n be the orthogonal complement to Ej .  Note that  xEWj. Therefore, A t =  

Wj N Z ~ is a non-trivial infinite index sublattice of Z ~, preserved by G. This contradicts 

the minimality of G. [] 
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Let x 6 Q n  be non-zero. If Ej  is one-dimensional, we define log3(x)=log(ir~(x)l). 
In case Ej  is two-dimensional, we choose, once and for all, some identification of Ej  

with C, and then define logj(x) to be the complex log of r j (x ) ,  taken so that  the 

imaginary part  lies in the circle R/27rZ. Finally, we define 

log a (x) = (log 1 (x), ..., log m (x)). 

log a gives us a mapping from Q n - 0 c R "  to L=E~xT q, obtained by separating out 

the real and imaginary parts of the coordinates. Here Tq is a q-dimensional torus. This 

compact piece is more or less irrelevant to our arguments. We equip L with a flat 

Riemannian metric in such a way that  the projection L--*E m is an isometry up to an 

additive constant. 

Given any T6G, define l o g a ( T ) 6 L  in the unique way such that  

lOgG(Id ) ---- 0, loga(T(x)) = loga(T  ) + lo g a (x  ). 

Since G is semisimple and free Abelian, log a is a homomorphism from G into the trans- 

lation group of L. Any element of G in the kernel of log G would be an isometry with 

respect to G and hence would have finite order. Since we are assuming G is free, log G is 

an injection on G. We write Gt=lOgG(G ). 

6.2. Images of parallelograms 

Let 
p = [ P n  P12] ,  p i j c Q n .  

LP21 P22 J 

We say that  P is a parallelogram if pl l  +P22----P12TP21. We define 

veca(P)  = loga(P21 - -Pn)- - logG (P12 --Pll)  E L, 

pe r a (P )  = 6G(puUp21)+6V(PllUpn). 

These two notions have the following invariance properties: For any x 6 Qn and any T 6  G, 

we have 

pera(T(P)Tx ) =perG(P), vecG(T(P) Tx) =VecG(P). 

per a is a kind of G-invariant perimeter, and vecG is a kind of G-invariant L-valued shape. 

Define, for any k 6 N ,  
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It follows from compactness that Sk/G is a finite set. Define 

Fk = {lOgG(a)=l=logG(b) l a, b �9 Sk }. 

Since Sk/G is a finite set, and G1 acts on L by translations, Fk is a finite union of orbits 

of Gl. By finiteness and equivariance, Fk is contained in a Ck-tubular neighborhood of 

the orbit Gl(0). The constant Ck tends to c~ with k. Since G is Abelian semisimple, and 

minimal, G~(0) is not contained in any of the coordinate hyperplanes through the origin 

in Em. Hence, there is a hyperbolic element hEG. This is to say that no eigenvalue of h 

has norm 1. We shall fix this element h once and for all, for the remainder of this paper. 

Let xEL be any point. We define Ej(x)CL to be the space of points which have 

the same j t h  coordinate as x. In case Ej is two-dimensional, we take this to mean that 

both real and imaginary parts coincide. Ej (x) either has codimension one or two. Recall 

that F k is a finite collection of Gl-orbits. Let Ok denote a complete collection of orbit 

representatives for Fk/Gl. We define 

Hk= 0 U Ej(x). 
j = l  x60~ 

For any k�9 c~), and any (non-compact) set S c E  m, define 

~k(S) = {x I exp(-kllxll) <~ d(x, S) <. exp(-Ilxll/k) }. 

~(S) is the region between two exponentially decaying tubular neighborhoods of S. 

Let 7-/(C, s) be the family of parallelograms P having the properties 
(1) PC(1/C)Z n, 

(2) perG(P ) ~<C, 

(3) vecG(P) lies within v ~ units of s logG(h), 

(4) r is not a parallelogram. 

In w we will prove the following estimate. 

LEMMA 6.2 (Diophantine Approximation Lemma). Suppose that P�9 s). If s 
is su]flciently large, then there is a point z(P) having the properties 

(1) z(P)erc~, 
(2) d(z(P), O) �9 Is~C2, C2s], 
(3) z(P)e~2c~(Hc~). 

C2 only depends on C1 and on the distortion function of r 

We remark that the only feature we use of the function S-*v~ is that it is sublinear 

and tends to infinity. 

On the other hand, as a special case of Theorem 8.1 (Subspace Approximation 

Theorem) we have 
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LEMMA 6.3. Let C E N  be arbitrary. Then, for infinitely many values sEN, there 

is no intersection point percn~2c(Hc) such that ]Ipll E [s/C, Cs]. 

Combining the two preceding results, we see that 7-/(C, sj)=O for an infinite increas- 

ing sequence sl, s2, ... EN. 

We say that W c L  is G-fat if, for every positive integer N, there is an element gEGt 
such that the ball of radius N about g(0) is contained in W. We define 

oo 

W(C, r = U Bd'~y(sJ l~ 
j = l  

(Here B8 is the ball of radius s.) Summarizing the discussion of this section, we have 

LEMMA 6.4 (Parallelogram Lemma). Let CE{:.~(G, Z n) and let CEN. Then there 

exists a G-fat subset W(r C) having the property: Suppose that P is a parallelogram 
such that 

(1) PC(1/C)Z'*, 

(2) perc(P)~<C , 

(3) vecG(P)EW(r C). 
Then r  is a parallelogram. 

The Parallelogram Lemma has a simple independent proof, in the special case of 

hyperbolic Z-actions on Z 2. We sketch this proof at the end of this chapter. 

6.3. P r o o f  of  the  Act ion  Rig id i ty  T h e o r e m  

Let qEN be fixed. Choose a finite generating set S for (1/q)Z n. For convenience, assume 

that S is symmetric: sES if and only if - sES .  Define 

C = max(q, 2 m a~ dc(0Us)). 

Let W = W ( r  C) denote the set guaranteed by the Parallelogram Lemma. 

Let G(S) denote the orbit of S under G. Given x, yE(1/q)Z n, we say that (x,y) is 

a distinguished pair if x-yEG(S) .  Given two distinguished pairs (xl,yl) and (x2,y2), 

we write (xl, Yl)--*w (x2, Y2) if quadrilateral 

x2 Y2 

is a parallelogram, and 
(1) PC(1/q)Z n, 

(2) perG(P ) ~<r, 

(3) vecG (P) E W. 
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By the Parallelogram Lemma, r is a parallelogram. In other words, 

(xl,Yl) ---+W (x2,y2) ==> r162 -----r162 

For two distinguished pairs, (x, y) and (2, 9), we write (x, y) ---~w (2, 9) if there is a finite 

sequence of distinguished pairs, 

( x , y )  -~- (Xl, yl) -"+W ... "-'+W ( X n , Y n )  = (2,9)" 

By induction, it follows that 

(x,y) ~vr ~ r162162162  (,) 

Here is where we use the fact that W is G-fat. 

LEMMA 6.5. Let aE(1/q)Z '~ be arbitrary. Let (u,v) be an arbitrary distinguished 
pair. Then (u,v) )w(u+a,v+a). 

Proof. For any yeG(S), consider the parallelogram 

[. v] 
PY= u+y v+y 

Note that perG(Py ) ~<r. Let Y : Y ( W ,  u, v)cG(S) denote those points yEG(S) such that 

vecc(Pu)eW. Finally, let EYc(1/q)Z '~ denote the sublattice generated by Y. 

We assert that (u,v) )w(u+x,v+x) for anyxEEY. By induction, wesetx=x'+y 
where (u, v) )w (u+x',  v+x') and yEY. Consider the parallelogram 

[ ,,+~' v+x, ]=[u+x' v+~'] 
P=Lu+x'+y v+x'+yJ [u+x v+x " 

Clearly, vecG(P)=vecc(Py) EW. Also, 

eG(u+x'uu+x) = ~c(ouy) < lr .  

Likewise, 

~G(u+x 'u~+~ ' )  = ~c(uu~) .< �89 

Hence perc(P)~<r. Therefore, (u+x',v+x')--*w(u+x,v+x). The assertion above fol- 

lows by concatenating the arrows. 

To complete the proof, we show that EY=(1/q)Z n. Note that 

veco(P~) = logG(y)--logG(~-- ~). 
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If we set w=lOgG(u--v), then Y consists of those points yEG(S) such that  lOgG(y)E 

W+w. Since W is G-fat, so is the translate W+w. 
Since lOgG(S ) is finite, and W+w is G-fat, there is some gEGI such that  g(logG(S))c 

W+w. This is to say that,  for some TEG, we have lOgG(T(S))cW+w. This is to say 

that  T(S)cY.  By equivariance, T(S) generates (1/q)Z '~, and hence so does Y. [] 

Let x, yE (1/q)Z n be arbitrary. Let sES be a generator. Consider the distinguished 

pairs (x, x§ and (y, y+s). From the preceding lemma, 

(x, x+s) 

Hence, from (*), we have 

r 1 6 2  = r  ~ ) -  r 

Since S generates (1/q)Z n, we have 

r 1 6 2  = r  - r 

,w (y, y+s) .  

for all x, y E 1 Z  n, and for all s E S .  
q 

1 
for all x,y, zE :-Z n. 

q 

This last equation tells us that  r is affme on (1/q)Z n. Thus r coincides, at least on 

(1/q)Z n, with some Tq eAut(Qn) .  

Let ql,q2EN. Clearly, Tqlq2 agrees with Tqj on (1/qj)Z n. Hence TqI=Tq2. Let T be 

this common element. Then, clearly, T and r agree on all of Q'~. 

6.4. P a r a l l e l o g r a m  Lemma: quadratic case  

In this section, we sketch a self-contained proof of the Paralellogram Lemma in the sim- 

plest case. In the case at hand, the group GcSL2(Z)  is generated by a single hyperbolic 

automorphism T. In this case, L = E  2. 

Suppose that  P1, P2, . . .C(1/C)Z 2 is a sequence of parallelograms such that  

(1) perG(Ps)<~C, 
(2) tl vecG(P,)ll ~>s. 

We will show that  r must be a parallelogram once s>~so. Our G-fat set is then just 

the complement of a large ball about the origin in E 2. 

We write 

c, ds 
For convenience, we drop explicit mention of s. For simplicity, we normalize so that  a--0 

and r  For any object X, we define X ' - - r  We define 

el=bl +c I. 
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We would like to show that  e~=d ~ once s is large. 

We may postcompose r by an element gEG so that  IIb~ll and Ildll agree up to a 

multiplicative constant which does not depend on s. If we take x=d  ~ or x=e t, we have 

5c(xUb') < C, 5G(xUc ~) < C, 

for some constant C independent of s. However, the set of points satisfying these proper- 

ties lies in the intersection of uniformly thin hyperbolas which are centered far from each 

other if s is large. The axes of these hyperbolas are the two eigenspaces of G. Hence the 

intersection of the hyperbolas consists of two disks whose diameters tend to 0 as s tends 

to co. One of the disks contains the point 0 and the other will eventually only contain 

one point of (1/C)Z 2. Thus, for large s, e'=d ~, as desired. 

7. Diophantine Approximation Lemma 

In this chapter, we prove Lemma 6.2 (Diophantine Approximation Lemma). We will 

prove it at the end, after making some estimates. The constants C1,C2, ... and the 

constants K1, K2,... will only depend on C and on the distortion function of a. We will 

reset these constants from time to time. We will use the notation of w 

7.1. Normalizations 

If we compose r by translations in Aut(Q n) having bounded height (independent of s), 

we can assume without loss of generality that  p11=0 and r Replacing r by gor 

for some geG, we can assume that  r is a uniformly short vector. Here e l=(1 ,  0, ..., 0). 

For the sake of reference, we collect together facts which we will use below. For 

convenience, we set al=Pl2, a2=P21 and b=P22. Also, for any object X, we define 
X ' = r  

(1)  G(0ua )<c1, 
(2) 5o(0Ua~)<C1, 

(3) ~G(bUai)<C1, 

(4) 5G(b'Ua~)<C1, 

(5) ai, b, a~ and b' all belong to (1/C1)Z n, 

(6) pi  is not a parallelogram, 

(7) the j t h  coordinate of loga(al ) - loga(a2)  has norm at least s/C1, for all j ,  

(8) Ileill<c . 
The only parameter that  varies here is s, which can be arbitrarily large. Items 

(2) and (4) follow from quasi-compatibility and (respectively) from items (1) and (3). 



102 R.E.  SCHWARTZ 

Item (5) follows from quasi-integrality. Item (7) follows from the fact that h is a hyper- 

bolic element, and that veca(P) lies within ~ of s logc(h ). 

7.2. G r o w t h  principle 

Before embarking on our estimates, we introduce a principle concerning growth of se- 

quences of small height. 

GROWTH LEMMA. Let x, yl, . . . ,ynC(1/K1)Z n be such that ~G(xUyiUyi+I)<K2, 

for all i. Then Ilyn-xlI <K~]lyl-xl[. The constant K3 only depends on K1 and K2. 

Proof. By induction, we just have to prove the statement for the points x, yl,y2. 

Without loss of generality, we translate so that x=O. There is an element TEG such 

that OUT(yl)UT(y2) has diameter at most K2. Since Yl and Y2 have small height, there 

are finitely many possible locations for T(yz) and T(y2). First of all, this places uniform 

bounds on IIT(y2)ll/llT(yl)[I. Also, this places positive upper and lower bounds on the 

length of the projection of T(yj) onto the eigenspaces of T -1. These two facts give us 

the desired control on yj =T-1T(yj).  [] 

7.3. The estimates 

Recall that R n is equipped with an adapted inner product. However, changing the inner 

product merely changes the constants in the estimate below. 

LEMMA 7.1 (Estimate 1). Let 7rj be the projection onto the j-th eigenspace Ej of G. 
Let s>/O be arbitrary. Suppose that Or n. Then, 

logllxll ~ a  ~ IlogllTr~(z)lll •K28. 

Here 1s is independent of s. 

Proof. The minimality condition on G implies that 7r~-1(0)--0, for all j .  Therefore, 

7rj(x)~0. By hypothesis, Ilxll<exp(s). Clearly 117rj(x) l[<exp(s). Since GcSLn(Z),  the 

eigenspaces of G are given by linear equations involving algebraic numbers. Hence, the 

size of 7rj(x) can decay at most polynomially in the size of x. This says that 117rj(x)ll > 

exp(-Kas).  Taking logs of our two bounds, we get our estimate. [] 

We define 

X=r 

Note that X=a2 if and only if r  is a parallelogram. 
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LEMMA 7.2 (Estimate 2). Let X be as above. Then, 
(1)  o(0ux)<c2, 
(2) 5v(bUX)~C2, 
(3) X(P)r  for s>C2. 

Proof. We compute 

5G(Xt UO) = 6G(b'--a~UO) = 5o(btkJa~) < g2,  

6o(X'Ub') = 6c(b'-a~Ub') = 5o(-a~lUO) = 6c(a~U0) ~< g3.  

The last two inequalities are just items (2) and (4) of w 

Since P~ is not a parallelogram, we see immediately that  X ~ a 2 .  Suppose that  

X=al .  This is to say that  ~ ~ al=b -a l ,  or, equivalently, b~=2a~. Hence, 

6o(0Ub') < 26o(0, at) </s 

By quasi-compatibility, we get a universal bound on 6c(0Ua] +a2), independent of s. By 

translation and symmetry, 

5C(alUa2) = 5c(--alUa2) = 5c(OUal +a2)  < K5. 

By definition of 6c, we can replace P by g(P) for some gEG so that  Hal -a2H </s From 

our normalization, the triangle inequality, item (7) of w and compactness, we see that  

min(]lallt, ]]a2]]) tends to infinity with s. In particular, for large s, we have 

Ilrv(ai)H > 100, for some v. 

Also, from our normalization, 

II rj(a )- 'j(a=)ll <Ks,  for all j .  

Since log o is contracting above scale 1, we have 

IIlogQrv(al ) )-log(~rv(a2) )ll < Ks, 

independent of s. This contradicts item (7) of w [] 

We introduce the quantity 

twistj (r P) = log o (X) - log o (a j). 

For any two elements g, g'E G, we have 

twistj (g'o r g, g -1 (P)) = twistj (Cog, g - l ( P ) )  

= logo (g -1 or -1  (r  -1 (b)) - r  -1 (al))) - l o g  o (9-1 (aj)) 

= (log o (X) - log o (g)) - (log o (a j) - log o (g)) 

= twistj (r P). 

We will speak of this below the G-invariance of twist. When the choices of P and r are 

implicit, we will omit them from our terminology. 
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LEMMA 7.3 (Estimate 3). For i=1 ,2 ,  

Iltwist~(P)ll ~< C3s. 

Proof. Since twist is G-invariant, we may replace P by g(P) and C b y  g'or -1 for 

any g,g' in G. Since ai6(1 /C)Z  n, there is a constant C1 such that  loga(a,,+av)EFc 1. 

Since Fcx/Gl is finite, there is some gEG so that  

II logc(al)  +lOgG(a~)ll ~< K0, (,) 

independent of s. We then choose g' so that  item (8) of w remains true. 

Consider points in Fc  which are closest to the straight line in L connecting loga(al  ) 

to loga(a2 ). From (.), this line will come close to the origin. Since Ilvecall<Kls, this 

line will have length at most K2s. Since al and a2 have small height, this line will 

lie in a small tubular neighborhood of F t .  Choosing such points appropriately, and 

then exponentiating, we see that  there are points a 2  = X 1, .-., X s  = a 16 (1/K3) Z n such that  

~fv(OUxiUx~+l)<K3, and xv=el for some index v. Applying item (8) and the Growth 

Lemma to the images of these points under r we see that  Ila~ II <exp(K4s). 

Next, since P is a parallelogram, we may by symmetry find points O=yl, ..., ys=b6 

(1 /K3) Z n such that  ~fG (a 1 U Yi O Yi+ 1 ) < K3. Again, we consider the images of these points 
a' ' a '  under r Since II 1-YllI=II l l l<exp(Kas),  we conclude from the Growth Lemma that  

II b ' - a t  II <exp(K5s). Note that  X ' = b ' - a  t. 

By Estimate 2 and quasi-compatibility, 6c((U-a~)UO)<Ks. Once again look- 

ing at the picture in L, we may find points ex=zx; ' ..., zs-b'- ' - a~6(1 /K6)Z  n such that  

~ic(0LJz~Uz~+l) <K6. Applying the Growth Lemma to the inverse images of these points, 

we get an exponential bound on IIXII. Also, from item (7) of w and from (*), we get an 

exponential bound on Iladl. Our Estimate now follows, after taking logs, from Estimate 1 

and the triangle inequality. [] 

For our last two estimates, it is useful to introduce 

iG(x)=iIIl j(x)ll, 
The product is taken over distinct eigenspaces of G, and e j is the dimension of the 

eigenspace Ej.  Since elements of G are volume preserving, A G is a G-invaxiant notion. 

LEMMA 7.4 (Estimate 4). If  s is sufficiently large, then 

lltwistj (P)II > sic4. 
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Proof. We will carry out the proof for twistl(P). The other case is quite similar. 

Since twist is G-invariant, we can replace P by g - l (p ) ,  and r by g%r as in the 

proof of Estimate 3. This time, however, we choose g such that 

(1) [[az [[ ~<gz, independent of s. 

Using the fact that a l �9 (l/C1)Z n, we get H logo (al)[] ~</(2. By the triangle inequality, 

(2) ][ twist I(P)]] �9 []] log o (X)[[-  K2, ][ logo (X)[[ +K2]. 
We will suppose that ntwistl(P)][<~s/O, and derive a contradiction for sufficiently 

large e .  Using equation (2) and exponentiating, we get 

(3) IlXll <e~p(g3s/O). 

Note that X has small height. Applying Estimate 1 to the point X-a1,  and plugging in 

equations (1) and (3), we get 

(4) Ao(al, X)>~exp(-K6s/O). 

SUBLEMMA 7.5. For sufficiently large O, there is some we{l, ...,m} such that 

< exp(-s/KT). 

Proof. Since logo(a1 ) is small, logo(a2)-veco(P ) is small independent of s. Recall 

that vecv(P) is within v q of s logo(h ). Since h is hyperbolic, we get a lower bound on 

each norm nlogi(a2)[[ which is linear in s. Exponentiating, we get 

(5) Uri(a2)H ~ [exp(-s/Ks), exp(s/Ks)], for all i=1, ..., m. 
Define 

= {i [ HTri(a2)[[ < 1} C (1, ..., m}. 

Since b=al+a2, Equations (1) and (5) say that 

(6a) [17ri(al)-Tri(b)H~exp(-s/Kg), for all iE~. 

(65) [[ri(b)[I>~exp(s/Klo), for all i~t~. 

Equation (3) implies 

(7) [[~r~(X)ll<~exp(Kus/O), for all i. 

Combining this with equation (6b) we have 

(8) 117rdX)- ri(b)ll> exp(s/g12), for all 
provided that 0 is chosen large enough. 

Since X and b have small height, and ~o(XUb) is small, compactness gives us 

Av(X, b) ~ Kla. 

Combining this with equation (8), we have 

H [[lri(b)-Iri(X)[[ ~' <<. exp(-s/g15). 
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From this, we clearly have 

(9) II~r~(b)-r~(X)ll<.exp(-s/K16), for some we~. 

Our sublemma follows, by the triangle inequality, from quations (6a) and (9). 

Combining equations (1) and (3), we see that 

(10) [[~ri(al)-Tr~(X)H <exp(glTs/O), for all i. 

Combining equation (10) with Sublemma 7.5, we see that 

[] 

AG(X, al) <<. exp(-s /Kls) ,  

provided that O is chosen large enough. This last equation contradicts equation (4) if O 

is too large. [] 

LEMMA 7.6 (Estimate 5). Assume that ][logG(al)+loga(a2)lI<C5. First, IlXll<<. 
exp(C6s). Second, for at least one iE{!,2 } and at least one jE{1, ...,m} it is true that 

(1) II- , (x)--j(a,) l l  1, 
(2) II~rj(X)ll >~exp(s/C6). 

Proof. The first statement follows from the proof of Estimate 3. Now for the second 

statement: By exponentiating, we have 

(1) min(H~ri(al)l[, Ilri(a2)ll)<<.gl, for all j. 
Item (7) of w and our hypothesis say that every coordinate loga(aj) has norm at least 

s / K2. Therefore 

(2) 117rj(al+a2)ll>~exp(s/K3), for all j.  
From Estimate 2, we have 6a(XUb)<.Ka. By quasi-integrality, X has small height. So 

does b. Hence, there are only finitely many choices for X - b ,  mod G. Therefore, 

AG(X, b) ~< Ks. 

Hence, for some jE{1, ..., m} we have 

(3) 117rj(X)-ri(al+a2)ll<~gs. 
For this value of j ,  choose ai such that 7ri(ai)>K1. From equation (1), we have 

r j  (a3-i)~<K1. The triangle inequality and equation (3) now imply statement (1). To get 

statement (2) observe that ~rj (ai) is exponentially large, by equation (2) and the triangle 

inequality. Statement (2) now follows from the triangle inequality. [] 

7.4. Put t ing  it together 

In this section, we prove the Diophantine Approximation Lemma. For convenience, we 

restate it here (with the names of the constants changed). 
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LEMMA 7.7 (Diophantine Approximation Lemma). Suppose that P � 9  s). If s 
is sufficiently large, then there is a point z(P) having the properties 

(1) z(P)erc,, 
(2) d(z(P), O) �9 [s/C', C' s], 

(3) z(P) e~c, (gc , ) .  
C' only depends on C and on the distortion function of r 

Proof. By replacing P by g(P) and r by g'or as we had done above several 

times, we can assume that the hypothesis of Estimate 5 is satisfied. Let i and j be as 

in Estimate 5. We define twist(P)=twisti(P) for this choice of i. We will also set ~r=rj  

and a=ai. Since X and a have small height, we have l o g c ( X ) � 9  ~ and l o g c ( a ) � 9  ~ . 

Let (~�9 be an orbit representative for logc(a ). This means that u(a)=logG(a ) for 

some u �9 Gz. We define 

z(P) -- (~+twist(P).  

Since u is a translation, we have 

u(z(P) ) -- u(a)+twist(P) -- logc(X ). 

Since logo(X)EFK 1 so is u-l(loga(X))=z(P). This is statement (1). From Estimates 3 

and 4, and the fact that  ]]ail<K2 , we have [Iz(P)llE[s/K3,K3s]. This is statement (2). 

Now for statement (3). We know from item (7) of w Estimate 5 and the triangle 

inequality that  

(1) IIXII, Ilall, II~r(X)ll, IIlr(a)lI �9 [exp(s/Ka), exp(K4s)], 

(2) II~r(a)-~r(X)ll<.Kh. 
Since the logarithm is exponentially contracting at exponential distances from the origin, 

equations (1) and (2) imply that 

(3) II log(Ir(a))-log(Ir(X))II <.exp(-s/KT). 
On the other hand, from Estimates 1, 2, 5 and equation (1), 

(4) II~r(a)-Ir(X)I I />exp(-Kss) .  

Equations (1) and (4), together with properties of the logarithm, say that  

(5) II log(r(a))- log(lr(X))II  ~>exp(-Kgs). 

Equations (3) and (5) say that  the j t h  coordinate of twist(P) has norm belonging to 

[exp(-s/Klo), exp(-K10s)].  This is to say that  

z(P) �9 

This is statement (3). [] 
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8. Points  near subspaces 

The goal of this chapter is to prove a general result about lattice points near subspaces. 

8.1. Subspace Approximat ion  Theorem 

Let L be a product of a flat torus and Euclidean space. By a fiat in L, we shall mean 

a lower-dimensional geodesically embedded flat manifold, which is the product of a Eu- 

clidean space and a flat torus. 

For any non-compact set S, define 

~k(S)  = {x I exp(-kllxll)  < d(x, S) <~ exp(-Ilxll/k)}. 

Let H c L  be a finite union of flats. Let L - -Z  r be any discrete isometric group action 

of L, and let A be a finite union of L-orbits. We define 

�9 (A, H, K) = (HxH[x �9 AN~K(H)} .  

The goal of this chapter is to prove 

THEOREM 8.1 (Subspace Approximation Theorem). There is an infinite sequence 

sl, s2, . . . � 9  such that 

V(A, H, g ) ~ [ s / Z ,  Ks] = 0.  

For ease of terminology, we will assume that  L = E  a. In this case, flats are just lower- 

dimensional Euclidean spaces. The case with a non-trivial torns factor can be obtained 

by passing to the universal cover (or by modifying the terminology of the proof a bit). 

Also, we will assume that  L does not have full rank. This is to say that  r<d. 

To reduce the full rank case to this case, we simply embed everything into a higher- 

dimensional Euclidean space L'.  (When we redefine ~k(H)  relative to the larger ambient 

space, we only add points.) 

8.2. Controlled sequences 

We say that  an infinite sequence X = {xj } of positive real numbers is loosely exponential 

if there are positive integers j0, N such that  

xj  E IN j+j~ NJ+J~ for all j .  

We say that  a sequence Yl, ---, yn C (0, co) is (S, ~)-controlled if 

ql >1 S; qj+l �9 [S, S~]qj, for all j .  
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LEMMA 8.2. Let X be a loosely exponential sequence. Let f:X--*{1, ...,t} be any 

function. Let D, S E N  be given. Then there is a finite subsequence X ~ c X  such that 

(1) X ~ has D elements, 

(2) f is constant on X' ,  

(3) X'  is (S,~)-controlled. 

The constant ~ does not depend on S. 

Proof. Let a be a fixed but unspecified positive integer. Let yj=x~(j+l) and let 

Y={yj}. By the Pidgeonhole Principle, every subsequence of Y ~ c Y  having length tD 

must have a smaller D-element subsequence Y" on which f is constant. If we take Y'  

to be a string of consecutive elements in Y,  then Y" will be (S~, ~)-controlled. Clearly, 

Sa grows unboundedly with a, and the constant ~ only depends on t, D and X, but not 

on a. [] 

Recall that d is the dimension of our Euclidean space. Let D=2 a. As an immediate 

application of the preceding lemma, we have 

COROLLARY 8.3. Suppose that the Subspace Approximation Lemma is false. Then 

there is a single Euclidean subspace H, a single orbit 0 of L, and a fixed constant ~o 

such that ~( 0,  II, K) has an ( S, ~o )-controlled sequence of length D, for arbitrarily large 

values of S. 

Since the constant ~0 is fixed, we will omit it from our notation. We say that a se- 

quence of points Pl, ..., Pv is S-controlled if their norms liP1 II,-.., Ilpv II form an S-controlled 

sequence. By translating, and adjusting constants if necessary, we can assume--for ease 

of notation mainly--that H contains the origin. To prove the Subspace Approximation 

Lemma, it is sufficient to prove 

LEMMA 8.4 (Exclusion Lemma). Let k E N  be given. For sufficiently large S, there 

does not exist an S-controlled sequence Pl , ..., PD C Ofq f~k (H). 

Since the rank of L is less than d, the convex hull of any collection of points in O 

has dimension at most d -1 .  To prove the Exclusion Lemma, we will prove 

LEMMA 8.5. Suppose that j<~d and J = 2  j. Suppose that Pl, . . . ,pjEONIIk form an 

S-controlled sequence. Then dim( h(pl tA... O p g ) ) = j , provided that S is sufficiently large. 

Proof. We must find j +  1 general position points of our sequence. The result is 

obviously true for j=0 ,  1. By induction, there are j points, al, ..., aj, in the first half of 

this sequence, which are in general position, provided that S is large enough. Likewise, 

there are j points, bl,...,bj in the second half of this sequence, which are in general 

position. Let A and B be the (j-1)-dimeusional subspaces respectively spanned by 
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these points. To prove the induction step it is sufficient to show that  A # B  provided that  

S is chosen sufficiently large. Let O~ and 8 5 respectively denote the angles which A and 

B make with H. We will estimate these angles in turn, and show that  sin(Sa)>Sin(Sb) 
provided that  S is chosen large enough. 

A helpful characterization. Let 7r denote projection onto H. Given xEE d, we will 

write 
x h = ~(x), ~ = x - ~ ( x ) .  

Provided that  JlxlJ is sufficiently large, 

x �9 f~k(H) :=~ JJxVJl �9 [exp(--KaJJxhJJ),exp(--JJxhll/K3)]. 

This constant K 3 is important, so we underline it in what follows. Another important 

constant will be 

m=llahll . 

Estimate from below. Let a be the "slope", relative to H, of the line joining aj to al ,  

Ila;-ayII  
O'~ h h " 

From trigonometry, 

sin(0a)/> �89 tan(Sa) t> 1 ~1~1. 

The first inequality holds for sufficiently small 8~. If we choose S sufficiently large, then 

we can guarantee that  

Ila~ll ~>211a~+111, for a l i i < j .  

Hence, 

Also, trivially, we have 

Ila~-au �89 >/�89 exp(-mK_gs/S). 

h h II~j -a~ II ~ 2m. 

Putting everything together, we have 

sin(0a) >i exp( -m) ,  

provided that  S is sufficiently large. 

Estimate from above. Let hb denote the convex hull of the points bl, ...,bj. We have 

the estimates 

diam(hb) <. m S  , >~ volj(hb)/> 1/g l ,  K4 re.in Hbh~ H mS. 
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The first estimate follows from the determinant formula for volumes of points in a lattice. 

This is where we use the structure of the group L=Z". The second and third estimates 

follow from the definition of S-controlled sequences. 

Using trigonometry, we see that that the distance, in B, from any point bj to IINB 

is at most 
exp(-mS/ K_~ ) 

sin(Sb) 

It follows from the basic geometry ("bast times height") that 

(mS)Ks exp(-mS/K---3). 
volj (hb ) <~ sin(Ob) 

Comparing the two estimates for volume, we get 

sin(0b) • ~--~6 (mS)Ks exp(-mS/ K._K_.3 ). 

For sufficiently large S, this expression is less than exp(-2m). [] 
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