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1. Introduction

The purpose of this paper is twofold. First we prove a delicate Carleman inequality, in-
volving nonconvex weights, for the operator i0; + A, acting on functions on R™ x [T, T].
Then we use this inequality to study uniqueness properties of solutions of nonlinear
Schrédinger equations of the form

(i0,+Ag Ju = Vu+ F(w), (1.1)

where V' is a potential and F' is a nonlinear term. We are concerned with the following
type of question:

Question Q. Assume that u; and u are solutions in R™ x [0, 1] to (1.1) (in a suitable
function space) with the property that for some domain D CR™ we have u; (z,0)=u2(z, 0)
and uy(x,1)=uz2(z,1) for a.e. z€D. Can we then conclude that u;=uy in D’ x[0, 1] for

some domain D'?

In our theorems the domain D will be a half-space.(!) Under suitable assumptions
on the potential V, the function F and the solutions u; and us, we answer Question Q
in the affirmative, with the domain D’ equal to the entire R™.

This type of uniqueness question seems to originate in control theory. Zhang [21]
used inverse scattering theory to answer Question Q in the affirmative in the special
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() We are not aware of any positive results for domains D that do not contain a half-space.
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case n=1, V=0, F=alu|?u, a€R, uy=0, D=(a,00), with D’=R. Bourgain [1] proved
uniqueness under analyticity assumptions on the nonlinear term F=F(u, i), with uz=0,
V=0 and the stronger assumption that u, is compactly supported for all €0, 1]. Kenig,
Ponce and Vega [9] answered Question Q in the affirmative for sufficiently smooth func-
tions u; and ug, when the domain D is the complement of a convex cone, V=0 and
F=F(u,u) satisfies bounds of the form

[VF(u, )] <C(luf* ' +[ulf*™), p1,p2>1.

We remark that the Carleman estimates of [9] could also have been used to include
potentials Ve L (R™x [0, 1))N LI L (R™ x [0, 1]), with
Am [Vl Lo ((a: 11z RY) = 0-
See also the remark following Theorem 2.1. Local unique continuation theorems were
proved by Isakov [6].
A question similar to Question Q was considered in the setting of the generalized
Korteweg—de Vries equation on RxR,

(Os+03)u+F(x,t,u, Ozu, 3u) =0.

Zhang [20] proved uniqueness if u2=0, in the cases F=u8,u and F'=—6u2d,u. This was
extended by Kenig, Ponce and Vega (8], [10] to include a large family of functions F, as
well as two nonzero solutions u; and up. Bourgain [1] proved uniqueness of solutions for

the more general nonlinear equation
(15710, 40 )u+ F(u, 0pu, ...,05 2u) =0, s>2,

under analyticity assumptions on F, with ug=0 and u; compactly supported at each
time t€[0,1]. This last equation was also considered by Kenig, Ponce and Vega {11],
who proved uniqueness under more general assumptions on F', as well as for two nonzero
solutions u; and wus. Local unique continuation theorems were proved by Saut and
Scheurer [18].

Our results in this paper (and the methods used) mostly resemble those of Kenig,
Ponce and Vega [9]. However, we prove theorems under weaker regularity assumptions
on the potential V' and the function F'; in particular, we allow locally unbounded po-
tentials V. We also improve the space of solutions u for which we have uniqueness, and
reduce the domain D on which we require the solutions to agree. To explain our theo-
rems, consider the simplest assumption on the potential V and the function F', namely
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VeL("t2/2(R"x[0,1]) and F=0. Let H denote the operator i9;+A,. The relevant
Carleman inequality to use in this case is

”ela‘pk(xl)u“L(2n+4)/n(RnX[0,1]) < C||eB(P)\(zl)Hu”L(2n+4)/(n+4) Rnx[0,1]) (1.2)

+C[[|e>EDu( -, 0)|[ L2 mmy + €7 E 0, Dl L2

In Theorem 2.1 we prove a stronger estimate for functions ueC([0,1]:L?(R™)) with
Hue LCnH+8/(n+49(R" % [0,1]), any 330 and any A>A(8). The function ¢, is defined
by o (r)=Ap(r/)), where ¢ is a fixed smooth function on R with the properties ¢(0)=0,
' nonincreasing, ¢'(r)=1 if r<1, and ¢'(r)=0if r >2. The main point of this Carleman
inequality is uniformity: the constant C should not depend on 3, A or the function w.
We would like to apply the inequality (1.2) to the function u=u; —u2, where u; and
uy are the two solutions in Question Q, and let 8, \-—~o00. For the Carleman argument
to go through (i.e. to be able to absorb the main term in the right-hand side) we need

to have

HC&P*(zl)uHL(an)/n(Rnx[0’1]) < 00. (1.3)

This condition explains why it is important to prove a Carleman inequality like (1.2) with
a bounded weight e?#2(#1) Such a Carleman inequality can be applied to all solutions u;
and uy in C([0,1]:L2(R™)) with Hu;, Hug€ L2?+9/("+49(R"™ x [0,1]). For contrast, by
(1.3), the easier Carleman inequality with the weight e5#>(*1) replaced by the exponential
weight %1 can only be applied to solutions u; and uy that have faster-than-exponential
decay at infinity. This was already noticed by Kenig, Ponce and Vega [9], who proved
L? Carleman inequalities with the bounded weight ef#*(#1)_ Tt is also similar to the
situation in the proof of Ionescu and Jerison [4] of the absence of positive eigenvalues of
Schrodinger operators —A+V on R™: to eliminate the possibility of all L? solutions one
needs a Carleman inequality with nonconvex weights.

Assume as before that VeL(m+2)/ 2(R"x[0,1]) and F=0. Assume that ui,us€
C([0,1]:L2(R™)) are solutions to (1.1), with Hu,, Huy€ L?n+49/(+49(R" x[0,1]). For
any wo€R™, |wo|=1, let D(wo)={x:z-wo>0} denote a half-space. The Carleman in-
equality (1.2) and an additional local argument can be used to prove that

if u3=wus in D(wg)x{0,1} then u;=uy in R" x[0,1].

In Theorems 2.4 and 2.5 we prove uniqueness statements of this type under more general
assumptions on the potential V and the function F. We also have an existence theorem:
If u(-,0)eL?(R"), Ve L{"*+2/2(R" x [0, 1]) and F=0, the equation (1.1) admits a unique
solution u€C([0,1]: L2(R™)), with Huc LZn+4/(n+4(R" x [0, 1]) (see Theorem 2.7).
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The rest of the paper is organized as follows: In §2 we set up the notation and state
the main theorems. The first of our main theorems is the Carleman inequality in Theo-
rem 2.1. We prove this inequality in §§3-8: First we construct suitable parametrices of
the conjugated operator ef#2(1) (38, + A, e #¥2{#1) (§3). To construct the parametrices
at a given frequency, we think of the equation as either an evolution in time, or a reverse
evolution in time, or an evolution in the variable z;. Then we prove that these paramet-
rices are represented by operators which are bounded between Strichartz spaces (§§4-7).
The key technical ingredient we need is a theorem of Keel and Tao [7] that gives a simple
criterion for checking this boundedness. In §8 we prove that the remainder terms in the
parametrices are small. In §9 we apply the Carleman inequality to prove the uniqueness
theorems described above.

We thank G. Ponce and L. Vega for many useful discussions on the subject matters
of this paper.

2. The main theorems
We define the set A of acceptable Strichartz exponents (p,q) by the conditions

§+g="—§—4, pell2, qe[L2), (pa)#(2). (2.1)

For any (p,q)€A let (p',q') denote the dual exponent, i.e. 1/p+1/p'=1/g+1/q'=1.
Clearly 2/p'+n/q¢'=n/2, p'c[2,0], ¢'€(2, 0] and (p/,q')#(2,00); let A’ denote the set
of such exponents (p',¢'). The basic Strichartz spaces we will work with are

LYL] = LYLL(R" xR) = {f € Lo (R" xR) : || fll L3 < 00},

where (p,q)€A or (p,q)e A’
We define two Banach spaces of functions X and X’ on R"xR.: if n=1 then X=
L2+ LYPLL and X'=LPL2NLALS, ie.

”f”X :fl_é_l}z,:f[”fIHL%Li(R"XR)+”f2”L‘:/3L;(RnXR)]

and

I £l x = max{]| fllLser2 mrxr)s 1 fll L4250 (R xR) }-
If n>3 we define X=L!L2+L2L2Y ™ and X'=LL2NL2L2" "™ In dimension
n=2 we have to exclude the endpoint spaces LZL] and L?L for which the Strichartz

estimates fail (cf. [16]). For this purpose we fix an acceptable pair (po, o), 1<po<2, and
define X=Xp,=L; L2+ LY°L% and X'=X, =LL2NL{°L{°. Spaces of this type were
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used in recent work by Koch and Tataru [14], [15]. They are often more suitable for
Carleman inequalities than the spaces LY L2, since they allow better control of the error
terms. We notice that

IPLICX and LFLYDX’

if (p,q)€.A (and p<pg if n=2), and

/ fgdudt <||flxllglx
R"XR

for any locally integrable functions f and g.
For any interval [a, b], we define the Banach space X([a,b]) as the space of locally
integrable functions f:R" x [a,b]—C with

1l xap) 2= I1Fllx < oo, (2.2)

where f(z,t)=f(z,t) if t[a,b] and f(z,t)=0 if t¢[a, b]. We define the space X'([a, b))
in a similar way. For a distribution f€S8’(R™), we set, by a slight abuse of notation,

I £l x ([a,)) = sup () £l x ([a,b))» (2.3)

where the supremum is taken over all smooth functions 7: R— [0, 1] supported in (a, b).
Clearly, ||f||x(ja,5)) can be finite only if f agrees with a locally integrable function in
R™x (a,b). Also, the definitions (2.2) and (2.3) clearly agree for functions f€ X([a,b]).

Let H denote the operator i0,+ A, acting (in the sense of distributions) on functions
in L*(R"xR). For any interval [a, b], we define the space Z([a, b]) as the space of locally
integrable functions u: R™ x [a,b] = C with the properties

uEC([a,b] ZLZ(Rn)) and “HUHX([a,b]) < 00. (2.4)

The meaning of the first condition is that u is a continuous mapping from the interval
[a,b] to L2(R™). The second condition is to be interpreted as in (2.3). Corollary 1.4
in [7] shows that

el x (fa,8)) < Cll Hull x ([a,6)) +C llu( - @)l L2 (mm)

if u€ Z([a,b]). In particular, Z([a,b])C X'([a, b]).

Let ¢ denote a fixed smooth function on R with the following properties: (0)=0,
¢’ nonincreasing, ¢'(r)=1if r<1, and ¢'(r)=0if r>2. For any A>1 let @5 (r)=Ap(r/A).
Clearly @y (r)=r if <, and the function r+ ), (r) is increasing and bounded.

In this section and in the rest of the paper, we will use the letters C and c to denote
constants that may depend only on the dimension n if n#2, and on the exponent pg if
n=2. For any set E, xg will denote its characteristic function. Our first main theorem
is a Carleman inequality.
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THEOREM 2.1. There is an increasing function A:[0,00)—[0,00) and a constant C
such that

lePerE0 | 117y < ClleP?>@) Hul x (—1.1))

(2.5)
+C[||e'6"’*(“)u( . -T)||L2(Rn) +”eﬂm(zl)u( . ,T)“LQ(RH)]

for any u€ Z([~T, T)), any BE[0,00) and any A=T'/2A(TY/?p).

The norm || Hu|| x((_7,1)) is defined as in (2.3). A weaker form of the Carle-
man inequality (2.5) was implicitly proved by Kenig, Ponce and Vega [9] by the use of
energy methods. This implicit result in [9] corresponds to the inequality (2.5) with the
spaces X and X' replaced by L}L2 and L{°L2, respectively. Most likely, however, the
energy methods of [9] cannot be used to prove the L? estimates in Theorem 2.1. Our
proof of Theorem 2.1 is based on constructing suitable parametrices.

The estimates in §8 show that we may take
A(B)=C(1+B)°

for some large constant C. In our applications it is important to have a Carleman
inequality like (2.5) with bounded weights e®#>(#1) (which is equivalent to A<00). Such
a Carleman inequality can be applied to a large class of functions u, not just to those
u that have faster-than-exponential decay. We remark that a Carleman inequality like
(2.5) with nonconvex weights can only hold for functions u with bounded support in ¢,
ie. if T<oo. Without this support restriction it is only possible to prove a Carleman

inequality with linear weights.

COROLLARY 2.2. For any ueC§°(R"xR) and any BER,
"= ull x+ < Clle” Hu| x.

Corollary 2.2 follows from Theorem 2.1 with T larger than the time support of u and
A—o0. Since Lif?ﬂ)/ ("¢ X and Lif?ﬁ)/ "D X', this improves the Carleman inequal-
ity of Kenig and Sogge [13]. Notice that the case 8=0 is equivalent to the Strichartz
estimates for the Schrédinger operator, including the endpoint estimate of Keel and
Tao [7]. Such estimates have a long history, starting with the fundamental paper of
Strichartz [19]; for more references on the development of Strichartz-type estimates for
the wave equation and the Schridinger equation, we refer the reader to the recent work
of Keel and Tao (7], where a nontrivial endpoint estimate is proved.

Our main applications concern quantitative and qualitative properties of solutions
of nonlinear Schrédinger equations of the form

Hu=Vu+F(u), (2.6)



LP CARLEMAN INEQUALITIES 199

where V is a potential and F: C—C is a continuous function. We define the Banach
space Y in such a way that

IVullx <V ily llullx. (2.7)

Thus, if n=1 then Y=L!L®+L2L.. If n>3 then Y=L!LX+LPLY% If n=2 then

Y=LlL® +Lf°/(2_p°)Lg°/(2_q°). Notice that L;’,‘:’zng in any dimension n, if py is

sufficiently close to 2. For any interval [a,b], we also define the space Y|[a,b] as the

Banach space of functions V:R" x [a,b] = C, with ||Vi|y[a,b]:“‘7”Y, V=V if tela,b],
and V=0 if t¢[a, b].

Let C denote the constant in Theorem 2.1 and é=1/2C. We have the following

quantitative estimate:

THEOREM 2.3. Assume that V:R"x[0,1]—C is a potential with the property that
IVily oy <é (2.8)
Assume that ueZ([0,1]) and
Hu=Vu in X([0,1]).
Then

20 77 u ) < Gl w0l e ul - Vil

uniformly in BeR.

We consider now uniqueness properties of solutions of the Schrodinger equation (2.6).
We are concerned with the following question: Assume that u;,u; €C([0, 1]:L?(R™)) are
(weak) solutions to (2.6) with the property that for some domain DCR™ we have u;=u,
in Dx{0,1}. Under what assumptions on F', V, u; and us can we then conclude that
ur=ug (or uy=uy in D' x [0, 1] for some domain D’)?

For the nonlinear term F', we make the assumption that there is a function G: C—
[0, 00) with the property that

|[F(21) = F(22)| < |21 — 22| (G(21) + G (22)) (2.9)

for any z1,2,€C. For any unit vector wo, let D(wo)={z:z-we>0} denote a half-space.

THEOREM 2.4. Assume that uy,u2€C([0,1]:L2(R™))NX"([0,1]) are (weak) solu-
tions of the nonlinear Schridinger equation

Hu=Vu+F(u) 1in S (R"x(0,1)).
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Let W=|V|+G(u1)+G(ug); assume that
wWeY([0,1]) and ||WXswo+D(wo)(@)ly (o)) S€ for some beR. (2.10)

If uy=ug in [bwg+D(wo)]x {0,1}, then ui=ug in [bwo+D(wp)] % [0, 1].
We notice that |F(u)|<|F(0)|+|u|(G(u)+G(0)). Since u;,uz€X'([0,1]), it follows
from (2.10) that Vu; +F(u;), Vug+ F(u2) € X([0,1])+ L (R"* x[0,1]) CS'(R" xR).
Using a local unique continuation argument we also prove a global vanishing theorem.
Our local unique continuation argument is sharper than the one used by Kenig, Ponce
and Vega [9], who assumed that the functions u; and u; agree in the complement of a

convex cone at times 0 and 1.

THEOREM 2.5. Assume that ui,us€C([0,1]:L2(R™))NX'([0,1]) are (weak) solu-
tions of the nonlinear Schrodinger equation

Hu=Vu+F(u) in S'(R"x(0,1)).
Let W=|V|+G(uy)+G(uz); assume that
We LP' L (R" x[0,1])+ L L2 (R™ x[0,1]) (2.11)

for some p1,q1,p2,q2€[1,00) with 2/p1+n/q1<2 and 2/p2+n/g2<2. If ui=uz in
[bwo+ D(wp)] x {0, 1} for some bER, then uy=uy in R™x[0,1].

We remark that (2.10) and (2.11) are, in fact, conditions on the potential V, the
function F, and the space of solutions u, and uy. For technical reasons, (2.11) is slightly
more restrictive than (2.10). In fact, Theorem 2.5 holds if the assumption (2.11) is
replaced by the less restrictive assumptions (2.10) and (9.3), see the proof in §9.

Ezample 2.6. Assume that VeLP'L? with p; and ¢, as in (2.11), that G(z)=
C(]z]% +|2|*), a;,a2€(0,00), and that u;,up€C([0,1]:L2NL>®). Then (2.11) holds
(with py and ¢ large) and Theorem 2.5 applies (compare with [9, Theorem 1.1]).

We conclude with a theorem concerning well-posedness in Z([0, T]).

THEOREM 2.7. Assume that V:R" x[0,T] is a potential with the property that there
is €>0 such that
IVIly(aate)y € for any a€ [0,T—e¢]. (2.12)

Then the initial value problem

{ (’Lat +Az)u = V’LL,

’u(',O):’U.(),
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up€ LZ(R™), admits a unique solution ue Z([0,T)) with

Nullx:o,71) < C(T) ||uol| z2-

The proof of this theorem is routine and probably known: it follows from the
Strichartz estimates, Duhamel’s formula and a fixed-point argument (for details, see [5]).
The counterexample in [5, §3] shows that the space of potentials Y (see (2.12)) is optimal
for local well-posedness.

3. Proof of Theorem 2.1: construction of parametrices
Notice first that it suffices to prove the following simplified version of Theorem 2.1:

LEMMA 3.1. With the same notation as in Theorem 2.1 we have
le?or @z, t)|| x» < C|lePo> @) (Hu)(z, t) | x (3.1)

for any function ue C§°(R™ x R) supported in R"x [-T,T], any B€[0,00) and any A>
T1/2A(T1/2ﬂ).

To deduce Theorem 2.1 from Lemma 3.1 we show first that for any €€ (0, %T ] the
bound (3.1) holds uniformly for any ve Z([-T, T]) supported in R™ x [-T'+¢,T—¢]. Let
¥: R xR—[0,00) denote a smooth function supported in the set {(z,t):|z|, [t|<1} with
Jrnxg ¥(@,t) drdt=1, and for 0<d<min{Le'/2 1} let ys(z,t)=0""+Dp(z/8,/6%).
Let ¢: R®—[0,1] denote a smooth function equal to 1 in the set {z:|z|<1} and equal
to 0 in the set {z:|z|>2}, and for R>1 let ¢Yr(z)=v(x/R). We apply (3.1) to the

smooth, compactly supported function

u(x,t) = (veps)(z, ) Pr(x).
Then
7220 (wxips) (, 1) ()| x- < C P> (Huxaps) (@, t) Pr () x

+C PV, (vxps) (@, )| Vadbr(2)]  (3:2)
+|(wxvs) (e, )| 1829 ()] | L 22
For the term in the second line of (3.2) notice that |V, (vxs)(z, t)|<CE~ (|v]*xs) (2, t),

where x is the characteristic function of the set {(z,t):|z|,]t|<1} and xs(z,t)=
5=+ (z/8,t/6%). Also, for the term in the third line, |(v¥s)(z,t)|<C(|jv|*xs)(z, t).
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Since veC([-T,T}:L?*(R™)) and the weight e®¥*(*1) is bounded, the term in the second
and third lines of (3.2) converges to 0 as R—00. Then we let §—0 to conclude that

Heﬁv’)\(zl)v”x, <C||eﬁ“’*(“)Hv||x, (3.3)

if veZ([-T,T]) is supported in R™*x[-T+¢,T —¢].
To deduce Theorem 2.1 apply the inequality (3.3) to the function

’U(J;, t) = u(mv t)ﬂe(t),

where < %OT, and the smooth cutoff functions 7. :[—T,T]-+[0, 1] have the properties

ne(t)=1 if t€[-T+2¢,T—2¢], n.(t)=0 if t¢[-T+¢,T—¢], and [y [n.(t)|=2. Clearly
Hv(z,t) = Hu(z, t)n:(t) +iu(z, t) One ().
By (3.3),
€75 u(a, e (0| x0 < CllePe @ Hula, tyne (Bl x +C e u(a, ) Ol 3 2.

Recall that the weight ¥*(*1) is bounded. By (2.4) we may let ¢ tend to 0; the Carleman
inequality (2.5) follows.

We turn now to the proof of Lemma 3.1. By rescaling (using the anisotropic dilations
(z,t)—(dz,8°t)) we can assume that T=1. Let

f=(0+Az)u. (3.4)

We have to prove that
|efr =)y < Clle®r ) fll x (3.5)

for A>A(B) and ueCP(R"”x(—1,1)). We will assume from now on that A>(8+1)2.
Let U=ef#x()y and F=e??2(#1)f, The estimate (3.5) is equivalent to

IUllx <C|IF| x- (3.6)
The equation (3.4) is equivalent to
(iat+Az—ag,)\(fbl)azl-}-bg,)\(l‘l))U=F, (37)

where ag »=283¢) and bg x=32[¢)]?~B¢%. We have ag, »(z1) €0, 26]; more importantly,
for any integer j >0 and z1€[\, 2)],

(B+1)71&%ag,A(21)|+(B+1)72]8%bg A (21)| < C; A7 (3.8)
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The term in the left-hand side of (3.8) vanishes if z1¢[),2)\] and j>1.

Let ¢: R—[0,1] denote a smooth, even cutoff function supported in the interval
(—2,2] and equal to 1 in the interval [—1,1]. Let x4, x_ and x; denote the characteristic
functions of the intervals [0, 00}, (—00,0] and [—1, 1], respectively. For numbers y>1 let
Yy (r)=1(r/7y). We fix y=C(8+1), where C is a large constant. We define the operators
A.,A_,Aand B (acting on Schwartz functions on R"xR) by Fourier multipliers:

A_ defined by the Fourier multiplier x_(&1)%,(£1),
A, defined by the Fourier multiplier x. (&) (&1),
A defined by the Fourier multiplier [1—1,(&1)][1—%(10(r+|£|?)/€2)],

€0)]w(10(r+I€[*)/€D).

+(81)]

B defined by the Fourier multiplier [1—1.,(&1)]

The variables 7, &3, etc., are the dual variables to ¢, z1, etc., and clearly
A_+A,+A+B=1d.

For >0, let P, denote the operator defined by the Fourier multiplier (£, T)»—>e_52|5 *, and
Q). the operator defined by the Fourier multiplier (¢, 7-)+—>e‘52(7+|5 ), We will prove the

estimates

X2 (B) PeA-(U)l|lxr S CIIF (| x +Cr(v, MU Lorz s (3.9)
Ix1 ()P A+ (Ul x SC|F||x +C1{v, MUl Loz, (3.10)
X1 Q:P-AU)||x < C||Fllx+Ci(n, MU\ gLz (3.11)
Ix1 () P:BU)|x <C|Flx- (3.12)

The constant Cs (7, A) is small if X is sufficiently large compared to 3. Thus the estimates
(3.9)-(3.12) would suffice to prove (3.6).

The parametrices for A_ and A, . In this case the variable £; is much smaller than ).
We construct the parametrices starting from the equation (3.7), as if the functions ag, »
and bg,» were constant. Consider the integral

1
~(F)(=,t)= / / F(y,s) /R eil@—y)-€ o —ilt—s)lEl

1y (1) x- (1) e 16 a0 Wn)E1(t=9) iban (1) (t=9) g s dy.

Recall that F(y,s)=(i0s+D,)U(y, s), where Dy=Ay,—ag (y1)0y, +bs,2(y1). We sub-
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stitute this into the formula of I_(F)(z, t) and integrate by parts in s and y. The result is

I(F)(z,t)= / iU(y,t) / Ho=vEg (6)x- (€1)e 1 de dy

// (y, 8)[~i0s + D]

y / (i) €emit=Ely, () y_(g)e <l
x 282 (Y1) E1(t=3) ibax (1) (E=9) g¢ dg dy
=cP.A_(U)(z,t)+cRy(U)(z, 1),

(3.13)

where
L B e e ]
n R n
x 1/)7(61))(_(51)6_52|§lzea5,X(yl)El(t_s)eibﬁ,/\(yl)(t_s)ql (y1,8&1,t, 8) de ds dy.

The function ¢;(y1,&;,¢, s) can be written explicitly by inspecting the identity above;
the important fact is that when we compute —i9,+ Dy, all the terms that are not small
cancel out. The remaining terms have either a derivative of ag x or a derivative of bg, .
By (3.8), if |t—s|<2 and 1+|¢;|<C, we have

3
lql (yla 517 ts S)H"Yla&% (y17§17 t? S)l+Al8’91ql (yl 3 613 t: S)l < C:yx (3.14)
for y1€[A,2)], and the left-hand side of (3.14) vanishes if y; ¢ [, 2)\]. From (3.13) we get
P.A_(U)=cI_(F)+cR,(U). (3.15)

To summarize, for (3.9), we have to prove first that the operator

Tl(g)(myt)zf /g(y,s)/ ei(z_y)'ge_i(t‘s)|§|26_52|5|2u1(yl,51,t,s) d¢ dsdy
n R n

is bounded from X to X', where

11 (y1, €1,1,8) = X1 () X1 (8) Xs (E— 8) 94 (€1) - (&1 e r WO E=s)iban(w2)(t=2) (3 16)

In addition we have to prove that the operator

Ri(g)(z, ) = / / o, ) / (e St e~<Iels, (3, £ ¢, 5) dE ds dy
R*JR R"
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is bounded from L°L2 to X’ with small norm, where

s1(y1,€1, 85 8) = xa () x1 (8) X+ (E—5) Py (€1) X~ (€1)

s a8 E)E (=5 giba @) E=5) g (41 €1 1. 5). (3.17)

(Note that the role of the various signs is clear: because of the exponential term we need
that ag 1 (y1)& (t—s)<0, and this is achieved because t—s>0, & <0 and ag x(y1)>0.)

The counstruction for A, is similar; the only changes are to replace the function u,
with

pa(yn, 61,8, 8) = x1 () xa (8) X (E—8) Py (€1) X4 (€1) 222 B8 =9 tbantu)t=9) 1 (3.18)
and the error function s; with

s2(y1, €1, 1, 8) = x1(t) x1(8) x- (t—8) 1y (1) X+ (61)

% eaﬁ,A(yl)il(t—s)eibﬁ,/\(m)(t—s)q1 (11, 61,1, 5). (3.19)

We then construct the operators T; and R3 in the same way as the operators 77 and R;.

The parametriz for A. We start from the integral

f(F)(I’t):/ /RF(%S)/ /Rei(“”*y)'gei(t_sﬁe_g|5|2e_€2('f+|5|2)2

y [1—=9, (&)1 =9 (10(7 +[£[*)/€3)]
=7—[§[?—i&1ag,x(y1) +bs,2(y1)

dr df dsdy. (3.20)

We substitute the formula (3.7) and integrate by parts. Let

1
—7—|€l2—i1ap A (v1)+bsA(y1)

Q3(y17§7 T) =

The result is

I(F)(z,t)=c / / Uly, s) / / o @=)€ yilt—s)T =& ¢
L R n R

x e~ THEN (1 _y (&)1 = (10(+|¢[2)/€2)) dr dE ds dy

i(z—y)-€ i(t—s)r —e2|g)? _—&? 2y2
+C/H/RU(y’S)/n/R€Z( V)€ gilt—s)7 g—e2lE? = (rHIE ) (3.21)

X [1=1, (E)] [ =9 (10(7 +[€]%) /€1)] [By,a8,7 (41) g3 (31, €, 7)
+(ap A(y1)—2i&1) By, q3(y1, €, 7)+05,43(v1, &, 7)] dr dE ds dy
=cQ.P.A(U)(z,t)+cR3(U)(x,1).
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Thus, for (3.11), we have to prove first that the operator

T5(g)(z, t) = / / 9y, ) / eV Emit=alel o= el () € 8, 5) d ds dy
R”JR Rn
is bounded from X to X', where

p3(y1, 1,5ty 8) = x1(t) x1(8)[1 =4 (&1)] (3.22)

X/ei(t—.‘x)re—c»:z'r2 1_1’/)(107-/6%)
. —7—if1ag (Y1) +bsA(11)

In addition, we have to prove that the operator
Rs(9)(x, 1) =/ / 9(y,9) / el eV € t=sel e~ el gy (yy €)1, 5) dE ds dy

is bounded from L§°L§ to X’ with small norm, where

s3(y1, 61,1, 8) = x1(8) x1(8)[1 =4 (&1)] /R (t=o)T =" (1 4 (107 /€2)] (3.23)
x [aj 5 (y1) @3(y1, &1, )+ (ag A (y1)—2i€1) G5 (v, &1, T)+45 (y1, &1, 7)) dT

The notation in (3.23) is §s(vy1,&1,7)=[—7—i€1a5 2(y1)+bs,A(y1)] ', and the primes de-
note differentiation with respect to y;.

The parametriz for B. This is the more delicate case. We think of the equation as
an evolution in z; rather than ¢, and start from (3.4) rather than (3.7). Let @(x1,&',7),

f(z1,¢,7), etc., denote the partial Fourier transforms of the functions u, f, etc., in the
variables x’ and ¢t. By taking this partial Fourier transform the equation (3.4) becomes

(62, — (T +I€' a1, €, 7) = F(21, €, 7).
By using this equation and integrating by parts we have

sin[(z1—n)v/—(T+[€]) ]

d 12—’& 21, ,,T 3.24
Y = v =—ii(z1,€,7) (3.24)

m-’
| Faem
23
whenever 7+]¢'|2<0. Let

L1, V) =0 —an) LD S

We multiply the equation (3.24) by e®#*(#1) to obtain

U(Zl’€I7 T) == / i(ylvé‘l’ T)eﬁ‘px(q)’&p)‘(yl)[’(zl -, —(T+|£I|2) ) dyl’
R
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and take the Fourier transform in z; to obtain

Dl &,m) == [ [ e8P, 6,00 L 1y s, o/~ T ) do i
rRJ/R
We multiply this by [1—1.,(&1)]9(10(r+|£]2)/€2)e=<"1€I” and notice that

P(10(r+1€[*)/€7) =0

unless 7+|¢'|?€ [-2¢2, —££2]. We use the fact that

ylv / / y17 y S ’L(y ¢ teT) ds dy
Rn—1

and take the inverse Fourier transform. The result is
B(U)(xl)xl$ t):C/ / /F(y1$ ?/, S)K(CCl’yl}xls ylv tv S) dyl dyldS, (326)
RJ/JR~-1JR
where

K(x1,yl,z',y',t,s)=//// ei@172)8 (7 Y ) Egilt=9)T
RJRJR JR"1

x eﬁvx(m)-[ﬁx(w)[1__1,[;7(61)]¢(10(T+|§|2)/£12)
xe—52|§|2L(zl —y1, /= (T +[E'2) ) d€’ dr dt; 1.

We make the change of variables z;=y; ~a and 7=—w—|¢|2. The integral for K becomes

. . ’ 2 2
K($1,y1,$',y’,t,s)=/ /R lel(z—y)-ﬁe-z(t—s)lﬁ |2[1_¢7(§1)]6—€ 1€l

// 1a§1e—zt s)w 5&0,\(1]1 a)—Bex(y1)

xp(10(£2 —w) /€2 L (—a,vw) dw dadg' d¢;.

The change of variable w=¢2r2 in the inner integral together with the fact that L(—a,7)=
—x+(a)sin(ar)/r shows that

K(ml,yl,m/’yl,t’s):—Z/ / 1ei(z—y)~ée—i(t—8)lﬁ’l"’[1_¢7(£1)]e—62|§|2
Rn—

/ / glab p—ilt— s)eir? Bm(yl—a)—ﬂw,\(yl)

xh(10(1—-72)) sin(&ar) &) dr da de’ d&; .
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For 720 let (r)=y(10(1—72)); clearly ¥ is smooth and supported in the interval

[(%)1/2, (2)1/2]. The formula for K becomes

K(z1,y1,7, y',t,s):c/ / ei(at—y)'ie—i(t—s)I§’I’[1_1/)7(51)]6—62|€I2
R JRo-1
o0
« / / giat1 g—ilt=s)Elr B (v1 =) B (1)
0o Jr

x P(r) sin(é1ar) & dr da dE’ dé;.

By (3.26) it is clear that (3.12) follows if we can prove that the operator

T4(g)(-'r,t)=/ /Rg(y,S)/R ez —V) €1t ="l (4, £1, 8, 5) dE ds dy
is bounded from X to X’, where
pa(y1, €1, ¢, 8) = x1(t) x1(8)[1 =4 (61)] (3.27)
y / °°/ it il )€ (7 =1) Bioa () ~Per () () sin(Eyar) €, dr dax.
o Jr

To summarize, it remains to prove that the operators T}, j=1,2, 3,4, are bounded
from X to X', and that the operators R;, j=1,2,3, are bounded from L§°L§ to X' with
small norm. The estimates for the operators T; are proved in §§5-7, and the estimates
for the operators R; are proved in §8. We first prove some preliminary symbol-type
estimates for the multiplier p4 and the associated kernel.

4. Preliminary estimates

We start by defining two spaces of symbols on R.. For functions meC*(R) we define the
bounded-variation norm

Imilmy = sup fm(m)| + / () din, (4.1)
ne€R R

and define the space BV(R)={meC'(R):|m||gy<oo}. Also, for b€R and functions
meC(R\{b}) we define the Hérmander-Mikhlin norm

Imllume = sup m(n)|+ sup |(n—b)m/(n)], (4.2)
n€R\{b} n€R\{b}

and define the space HM®(R)={mecC!(R\{b}):|/m|/gme <0o}. Notice that

lIn—m(an)llgv = Imlsv,

(4.3)
ln+=m(b+n)llgv = Imzy
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for any a€(0,00) and bR, and

[l = m(an) lamo = [|m|lamo,

(4.4)
lln = m(by+m)llamez = [|ml e +ez
for any a€(0,00) and b1,b2€R. Also we have
[mime|lgy <3|lmallsy Im2llsy, (4.5)
lmama|lame < 3lmallawme [Imellawve (4.6)

for any beR.

LEMMA 4.1. Assume that |m|lgy <1. Then we have the uniform bound
‘/ et m(g) dg| < Clo] /2
R

for any 6€R\{0}, a,beR and £€(0,0).

Proof. By a linear change of variable using (4.3) we can assume that 6=+1 and a=0.
Then we break up the integral into two parts, corresponding to |¢| small and |{| large,
and integrate by parts when |£|>1. The estimate follows easily. O

LEMMA 4.2. Assume that ay,...,ar are real numbers and that the functions m;€
CY(R\{a;}) have the property that |m;|lgmes <1 for j=1,2,...k. Then we have the
uniform bound

‘/eiéfzeiaﬁe—ez(i—b)zml(g)...mk(ﬁ) dg| < Cy[8]71/2 (4.7)
R

Jor any 6€R\{0}, a,b€R and e€(0,0).

Proof. By a linear change of variable using (4.4) we can assume that é=+1 and
a=0. Let Tﬁ(ﬁ):e'sz(f‘b)le(S) ... mg(&) and B denote the set of numbers b, a4, ..., a.
Clearly meL'(R) and

[m(&)|+dist (&, B) | (€)] < Ci

for any £€R\B. By breaking up the integral in (4.7) into at most 2k-2 integrals we see
that it suffices to prove that

i
[ emee ng <c
A

uniformly in A, A€eR, provided that §=+1 and

Im(O)]+1(§-A4)m/ ()] < 1.

This follows by a routine integration-by-parts argument. |

The first main lemma in this section concerns the multiplier p4:
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LEMMA 4.3. The multiplier pg in (3.27) satisfies the bound

”/J,4(',£1,t,8)”va1<C (48)

uniformly in &, t and s.

Proof. By taking limits we can assume that ¢t#s. We will assume that t—s>0 (the
case t—s<0 then follows since pua(y1,&1,t,8)=ps(y1, —&1, ~t,—5)). Let A=2(t—s)/2%
Thus A€(0,v/38 |- In the integral in (3.27) that defines the multiplier y4 we make the
change of variable a=2(t—s)'/20=Af. We then have

#4(1/1’ 61’ t7 5) = 2X1 (t) Xl(s)[l_w‘y(gl)]l(ylv (t_5)1/2§1)7 (49)

where
o0 . .2, 2 ~
I(ylﬂh)z/ /62"“96‘“’1(’ ~Deheryr=A9)=Ber(Wi)o)(r) sin(2m,0r) 1 drdf.  (4.10)
0 JR
It suffices to prove that the function I has bounded variation in 1, i.e.

||I('a771)||BV,,I<C

for any m €R, provided that A€(0,C]. Assume first that |7;:|<2. In this case we write
the integral for the function I in the form

Iy, m) = / x+(6) £2imO ging oBex (w1 —A0)=Bex(v) H (ny,6) db, (4.11)
R

where
H(m,0) =/ nle'"’f"zsin(2n10r)1/~)(r) dr. (4.12)
R

Notice that
|H(m1,6)| < Clmy|(1+|m8)) 2

if |71/<2. Thus
1C ) gy, <C /R X+ (0) [y = 50> =40 =Bt | | H (1, 0)] dB
<C / | (14 m6]) 26 < C,
R

as desired (we used the fact that the function y; +—e?#>(¥1-49)—B¢x(v1) takes values in the

interval [0, 1] for any A6>>0 and is nondecreasing in y;, and thus has bounded variation).



LP CARLEMAN INEQUALITIES 211

It remains to prove the same estimate in the case |n;|>2. We start from (4.11) and
(4.12). Recall that the function ) is smooth and supported in the interval [(2 )1/ 2 (g)l/ 2] .
Let ;: R—[0,1] be a smooth function supported in the set {n:|n|€[3, ]}, and equal
to 1 in the set {n:|n|€[(3 )3/4 (¢ )3/4]} We have

1

H(Th, 9) _ 52_'ez‘oz/R,,he—ieze—inf’"2 [e2imr9_e—2imr0]1/;(r) dr

1

=5 / e~ mT=6)" _ o=imr 0% 50 gy
¢t Jr (4.13)

= 21 G/R TB((r+-6)/m) —P((r—8)/m)] dr

=& (Ho(m, 8)+ Hy (m,9)),

where

Ho(ms,0) = (L=r O/ ;[ & B(r+0)/m) = =) mo) dr

and

Ha(m.0) =r(0/m) 5; [ € (r+6)/m)=b((r~8)/m)) e

By the support properties of the functions 1/; and 1, we can integrate by parts in the
integral defining Hq(n1,#) to obtain

|Ho(m1,0)| < C(1+18])~* (4.14)

if [m|>1. Also, the function Hi (1, 6) is supported in the set { (n1,6):|0/m|€[%, &]}. We
substitute the formula (4.13) into the definition (4.11) of the function I, and decompose
Iy, m)=Iy(y1,m)+I1(y1,m) corresponding to the terms ei02Ho and eiezHl. By (4.14)
and an argument similar to the one used in the case |1;|<2 we have

1o(-,m)llsv,, <C.

It remains to prove a similar estimate for the function I;. We have
Ly, m) :/ X+(9)62in10eiﬂfeﬂso>\(y1—A0)—ﬁ<ﬁ,\(y1)ei92Hl (m1,0) d8
R
:/ X+(a—nl)eio‘2eﬁ‘”(y1_A(°‘_"1))_5"’*(yl)Hl(nl, a—m)da.
R

We consider two cases depending on the sign of 7;. It is somewhat harder to prove

estimates if 7; is negative, so we will concentrate on this case. Since |71|>2 we can
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assume that 171 <—2. By the support property of the function H; and because of the
factor x,(a—mn1), the variable a in the integral representing I; runs over the interval
a€[~gml, glm|]. Thus

Il(ylﬂh):/eiQQGﬁW(yl_A(a_m))_ﬁ‘p*(yl)&1(a/|771|)H1(7h70—7]1)dav
R

where ), is a smooth function supported in the interval [-2, 2] and equal to 1 in the

interval [—%, %]. Let &, 6: R—[0, 1] denote two smooth functions with the property that

1=do(a)+)_ 5(27a)

for any a€R. We can also assume that & is supported in the interval [—2,2] and ¢ is
1 1

supported in the set [—2, —1|U[%,2]. We insert this partition of unity into the integral
2 2

formula defining I;; the result is

Liy,m) =Y Hy,m),
j20

where, with §;(a)=46(2"7a) for any j>1,
I{(yh m)= /Reiazeﬁw(yl—A(a—m))—ﬂw(yl)(;j(a)d]l(a/mlDHl(m’ a—n)da.
The main estimate we will prove is
1B (- )llpy, <C27 (4.15)

for any integer j>0. Notice that for =0 this follows by the same argument as in the
case |n;|<2. We only need to notice that by Lemma 4.1,

|Hy(m,a—m)|<C

uniformly in 7; and o.
We turn to the proof of (4.15) in the case j>1. By a change of variable, the integral

for I becomes

I{ (y1,m)= 21/ ei22j02+ﬁtpx(y1—A(Qja—m))—ﬂtp,\(yl)g(a, m)da, (4.16)
R
where &(c, m1)=08(c)P1 (2a/|m|) Hy(m1, 2a—m1). The function §(a, 1) is smooth and
supported in the set {a: |a|e [%, 2]} By integrating by parts in the formula of H; it is
easy to see that
|Hi1(n1,0)|+|mOp Hi(m,0)| <C
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if 71 <—1. Thus if 9-2772<|m| and |a|€[1,2], we have
16(ct, m)|+10ad(c, m)| < C. (4.17)

Clearly &(a, 7)) =0 if 9-2972> |ny|.
In (4.16) we integrate by parts in « to obtain

I{ (yla 771) =92 ‘/Rei22ja2+5“’>\(yl’A(2ja—TI1))‘ﬂ§0/\(y1)

o) (4.18)
a,7
O = . . da.
e 2B 0 BAYIG, (g1~ A(Pa—m))
Since A<C and |¢(r)|<C/A<LC/B for any reR, we have by (4.17),
5(0‘7 771) —25
On —5= - - <C274, 4.19
o= BAD Gy~ Aa-m) (19
Thus
[ (y1,m)l <C27 (4.20)
uniformly in y; and 7, as desired.
By taking the y;-derivative in (4.18) we have
LRI [ (8- Aa—m) - (w)]
lalef1/2,2]
x eBer(u1— A(Pa—m))-Ber(v1)
8(a,m)
, -~ - d
aai22a+1a—BA2J<p;(y1—A(2Ja—m)) “
+2j/ eBex(v1—A(27a—m))~Be(y1) (4.21)
lal€[1/2,2]
S(aa 771)
- . - d
|00 2710~ GADIo (1~ Aam)|
=J1(y1)+J2(v1)-
By (4.19)
1il: <0279, (4.22)
v1
as desired. For Ja(y1) we estimate the 9,0,,-derivative. By (4.17),
a a S(aﬂh)
T2t - BAY ¢l (y1 — A(27—m)) (4.23)

< C27YBA|K (51 — A2 a—m) |+ C27 2 BA% g} (y1 — A(2a—m))].
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Notice that the second term in the right-hand side of (4.23) is dominated by

C272IBA2x s 2xy (1 — A(2Pa—m1)).

Since B< A this suffices to control the second term. For the first term we recall that
9-2772|m| and m<—1. Thus Za—m>c2? if |a|€[1,2], and so, to prove that
|22l L <C277, it suffices to prove that

1

2—3’@4/ |S0£\’(yl)leﬁ‘PA(yl)‘,@‘PA(y1+CA2j) dy, <C. (4.24)
R

The function ¢ is nonincreasing and nonnegative. Thus

Boa(y1) — Boa(yr +cA27) < —cBAY )\ (y1 +cA27).

Therefore, the expression in the left-hand side of (4.24) can be dominated by

2_j5A/ ~o5(n +CA2j)e‘cﬂA2j‘P'A(y1 +cA29) dy

: (4.25)

‘*‘2‘]5‘4/ X (1) =5 (91 +cA27) | dys.-
R

The first term in (4.25) can be dominated by C2~%, and the second term can be domi-
nated by CBA?A~1<C. Thus (4.24) follows. The main estimate (4.15) follows by (4.20)
and (4.22). This completes the proof of the lemma. O

We will now prove an estimate for the kernel of the operator T;. Recall that the
operators T} are of the form

Ty(g)(z, ) = / / oy, s) / (V€= IR () £ 1, 5) dE ds dy,

where the multipliers x; are defined in (3.16), (3.18), (3.22) and (3.27). Let

Kj(z,y,t,8)= / eil@ Ve emilt= el e Il (yy £, 1, 5) de (4.26)
and
kj(l‘lvylat7 8) :/ ei(ml-yl)gle—i(t—S)gfe—szgflJ’j(ylagl»t)s) dé.l (427)
R

Note that the integral representing K splits as a product of n integrals, the first of
which is the integral representing k;. In this section we prove estimates for the kernel kj4.
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Assume t—5>0 and, as in Lemma 4.3, let A=2(t—s)/2. By (4.9), (4.27) and the change
of variable & =21, /A, we have

C , -
ka(z1, 91,8, 8) = xa (t)xa(s) 7 / ei2m (@ =)/ A g=ini o= €It [1 gy, (2 JA)| I (y1,m) dms
R
with e;=2¢/A. For the function I we use the integral formula (4.10). Then

C [f -
k4(;1;17 Y1, t, 3) =x1 (t) X1 (3) 1_4_ /O /Rw(r,-) eﬁ<ﬁ>\(y1 —A8)—LBox(y1) (428)

X / et gizm (@1 —v1)/A+o) sin(2n,0r) 7716_6?”f (1= (21 /A)) dny dr db.
R
To compute the 7;-integral notice that
f e~ MM g, = O /20740 (4.29)
R
for any a,b€R, a>0. By taking a derivative with respect to b we have
y Yy g
/ e~ i — Cq—3/2 b/t (4.30)
R

for any a,b€R, a>0. By analytic continuation, (4.30) holds for any a,b€C with Rea>0.
Let H4y=H4 .~ denote the inverse Fourier transform of the function

M =5 [1—1h, (201 /A)],
so that
e~ (1 (2m /A)] = C / Ha(a)e M da.
R

We also have ||H 4|z <C uniformly. By (4.30) the 7;-integral in (4.28) is equal to
C,r.—3/HA(a)(ei[(ml‘91)/A+9+97‘—a/2]2/r2 [($1—y1)/A+0+9r—%a]
R

_eil@—y1)/A+0-6r—a/2)%/r* [(1—11)/A+0—0r—}a]) da.

To rewrite the integral in (4.28) let

o0
FA,:I:(£1:Z]1)=/ /1,0(7’)T‘geﬁ‘p/\(Aﬂl—AG)—BcpA(Agl)
0 JR

x e E 1 +0L6r)Y/r* (5 5 4 04 6r) dr df.

Then, by (4.28)

ke, t9) =) 5 [ Hale) .

X [FA,+ (xl/A— il,-a, yl/A) —Fy4 (zl/A— %a, yl/A)] do.
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LEMMA 4.4. We have
Fa 1 (Z1,%)= @~ m s 4 (F1,51)+Ja,+(F1, ), (4.32)

where

lma,+(Z1, - )lgy,, +lma,+(,91)lv, <C (4.33)

uniformly in %, and i, and

(1+]21— 711 T4, (21, G1)| < C. (4.34)

Proof. By a change of variable we have

Fas(r,in)= [ Pn=a0-Be (3G, (3,5, 0)d, (4.35)
0
where
G (Z1—1,0) = / Yo(r)elE =~ TFOr£6* (5, _ 5 4 6)r+0]dr. (4.36)
R

In (4.36), wo(r)=v(1/r) is a smooth function supported in the interval [2,2]. Recall
that we fixed ¢: R—[0, 1], a smooth cutoff function supported in the interval {—2,2] and
equal to 1 in the interval [—1,1]. Let X¥-:R—[0,1] denote a smooth function supported
in the interval (—oo, —10] and equal to 1 in the interval (—oco, —20]. Let

ma,x(&,§1) =e 0L (3 -5)
o0
x/ 1/)(:1':1—1]1+0)eﬂm(‘4ﬂ1—Ae)_B‘P’\(Ay‘)Gi(il—371,9) do
0
and

JA,:{:(-i'l, ?]1) = [1_i_ (571 _'!71)] / eﬁv),\(Aﬂl—AG)—@PA(Aﬁl)Gi (5;1 — 1, 0) do
0

+X-(E1-51) / [1-9(@1—§1 +6)] A= AN =PRI Gy () — 5, 6) db.
¢

The identity (4.32) is clear; it remains to prove the bounds (4.33) and (4.34).
For the bound (4.33) we may assume that §; —#; 210 and make the change of variable
0=41—Z1+u/(§1—%1). The formula (4.36) shows that

Ga(F1— 1, 1 — %1 +u/(§1 —F1)) = @30 (G —71) Hy (u, §1 — 1), (4.37)

where
H (u,7) = / o (r) R EDHETEN T ) (e 1) /P dr.
R
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A routine integration-by-parts argument shows that
|Hei (w,m)|+]0, Ha (w, )| n|* < C(1+]ul) 7> (4.38)

if |n]>1 and |u|<2|n|. We substitute the formula (4.37) into the definition of the function
ma,+. Thus

ma,x(Z1,51) =X-(&1—§1) (4.39)
x/ w(u/(gl_jl))Hi(u’gl_‘%1)eﬂm(Aﬁ—Au/(ﬂl—il))—ﬁw(Aﬂl)du.
R

Recall that the function ¢, is nondecreasing and that |Hxi(u,n)|<C(1+]ul)~2. Thus
|ma,+(Z1,91)|<C. To estimate the derivatives of m 4 + notice that

10z, ma,1(F1,51)| < C(L+|1 —1]) 2+ Cx (1 —F1 — 10)

x / (1 [u]) =2 |85, €89 (A1 = Au/ (G =50)=Beox (A7) | gy
Ju|€2(g1—%1)
and

185, m 4, + (&1, 51)| < C(L+|§1 —&1|) "2+ Cxs (1 — 1 — 10)

X / (1+ |u|)—2 |6gle,34PA(Ail_Au/(gl—il))_ﬁWX(Agl) | du.
|u|<2(F1 —F1)

These estimates follow easily by inspecting the formula (4.39) and using (4.38). The
term (1+4|§1—%;|)~2 in these two estimates is integrable, thus harmless. For (4.33) it
remains to prove that for any u€R,

¢+ (G — %1 —10) x4 (2(F1 —F1) —|u]) 351[eﬁw(Ail—Au/(ﬂl—a‘n))-ﬂw(Azh)] ||L;1< C (4.40)

and

lx+ (81 = F1 = 10) X+ (2(51 — 1) — Jul) g, [P#2 (AT ~ A/ =) =Boa iy,

(4.41)
<C(1+u))'2.

For (4.40) we notice that the function %1+ ATy — Au/(g; — 1) is increasing in the interval

#1€(—oo, min{g; —10, §; — |u|}]. Since ¢, is a nondecreasing function it follows that

F1 s efer(AZ1—Au/(1-21)) =B (A51) s a nondecreasing function in the relevant interval,
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which proves (4.40). To prove (4.41) we notice that if §; —%; >max{10, 3 |u|} and A<C,
then

Iaﬂleﬂ‘ﬂx (AZ1—Au/(§1—%1))— By (A1) 1

- o _ A
< ePPr(AZ1—Au/(§1—E1))—Ber(Afh) [)6A4P£\(Aﬂl)+% (P:\(Aifh —— u >]

< 2ePPA(AZ14+24)—Bpx (AT)

X [ﬁAgo;(Agl)Jr—ﬁ’ﬂ [cpf\ (Aa"cl _ A ) —w&(Aﬂx)H

(Gr1—21)? G1—%
< Ceﬁm(AiﬁZA)—ﬁw(Af}x)}BA(p’)‘(Agl)+ é_% min{l, 3}_1;\}3_1 }
The estimate (4.41) follows easily by integrating the two terms in the last line of the
above estimate and recalling that 1+32< A (the first term is equal to the derivative of a
nonincreasing function). This completes the proof of (4.33).
To estimate the function J4 4 notice first that

|G+ (&1—31,0)| S C(1+|21 —§1 +6])

if £; —%1>—20 and 6>0. These estimates follow easily by integrating by parts in (4.36)
and using standard bounds for oscillatory integrals. The estimate (4.34) for the functions
J4,+ follows in the range Z;—g; >—20. In the range &; —§; <—20, only the integral in
the second line of the formula of J4 4+ does not vanish. If, in addition, |Z; —§1+6|>1 then
we integrate by parts in (4.36). Recall that the function 4 in (4.36) is supported in a
small interval around 1. By checking the cases 8< 35|Z1— 1|, 0€[5|%1—#1l, T2 -]
and 92%]5:1 —11|, it is not hard to see that
|G (31 —1,0)| <C(O+]E1 )2

if 3 —91<-20 and |Z;—9:1+6|>1. The estimate (4.34) in the range &; —7; <—20 fol-
lows. O

This completes our analysis in the case t—s>0. If t—s<0 then we let A=2(s—t)!/?
and argue as before. Notice also that the function (2/A)H4(2a/A)=H(a) does not
depend on A. By rewriting (4.31) and using Lemma 4.4 we have

k4(mlyy17t75)

1

= s Xl(t);g(s)/H(a)ei(zl—a—y1)2/4(t—s)m4(t’s’zl_a’ 1) da (4.42)
- R

+|t—_#X1(t)X1(3)LH(a)J4(taS» (z1—a)/(2]t—s*?), y1/(2]t—3|/?)) da

:kf]i(azl’yl’t? 3)+k3($17y17t,s)7
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where ||H|| 1 (g)<C,

||m4(t7 S, jl) ’ )llBVgl+||m4(ta S, 7@1)|IBV51< C (443)
uniformly in ¢, s, #; and §,, and

(1+|.’21—gl|)’.]4(t,s,i'1,:ljl)|<C. (444)

5. Boundedness of the operators T, I

In this section we start proving that the operators Ty, 15, T3 and T} are bounded from X
to X'. To cover all dimensions fix an acceptable pair (p,q), with p<3 if n=1, p<pp if
n=2, and p<2if n>3. Clearly an operator is bounded from X to X’ if it is bounded from
LLI2 to LL2, from LELY to L°L2, from LLL2 to LYLY, and from LPLY to LY'LY, with
bounds that depend only on the dimension n (or pg if n=2). Recall that the operators
T; are of the form

Ty(9) (. 1) = / / oy, 5) /R @) €= t=NEP =<1 () £t 5) dE ds dy,
™" R n

where the multipliers p; are defined in (3.16), (3.18), (3.22) and (3.27).
PROPOSITION 5.1. The operators Tj, j=1,2,3,4, are bounded from L1L2 to L3°L2.

Proof. A simple condition for L} Li—)L‘t"’Lﬁ boundedness of an operator of the form

T(g)(z,t) = / / 9y, s) / elo =) Eeilt=Nel e =<6 (g, €, ¢, 5) dE ds dy
R*"JR R~

is that the operator

Sts(h)(@)= | h(y) / a0 Eemit=9E =81 () £ ¢, 5) de dy
R'n n

is bounded on L?(R™) uniformly in ¢ and s. The fact that this condition is sufficient
follows easily by the Minkowski inequality for integrals. By Plancherel’s theorem it
suffices to prove that for any heS(R),

H/Rh(yl):u’(yla £1a t, 3) €_iy1€1 dyl

<C|hllz- (5.1)
7

uniformly in ¢ and s. A simple criterion for this to hold is that y has bounded variation
in y;:
(-, €1t 8)lpy,, <C (5.2)
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uniformly in &, t and s. The BV-norm was defined in (4.1). To see that (5.2) implies
(5.1) we can use Carleson’s theorem [2]: the operator

N .
/ h(y)e” V&1 dy,

—00

C(h)(§1) =sup
N

is bounded from Lf“ to Lgl. Thus, for any £; we have

o0

) r Y1 ) I
‘ / h(y1) w1, &1, t, )"V & dy | = ' / / h(z)e ¥ dZ] wlyt, &1, t,8) dyn
R RL/-

< |/J/(007 élat» 8)| |i7“(£1)|

+ / CR)(ED I (. €01, 5)| i
R

<C(R)ED (-, €151, 8)llBv,, -

By Carleson’s theorem this proves (5.1).

For the multiplier g1 in (3.16) notice first that the factor eibs.2(¥1)(t=s) is bounded
and depends only on y; (and not on &;), so it can be incorporated into h. In addition,
the function e~%28.2(¥1) js nondecreasing and bounded for any §>0. Thus the bounded-
variation condition (5.2) is clearly verified. The same argument applies for the multiplier
pz in (3.18).

For the multiplier p3 in (3.22) we make the change of variable T=¢%u and write

p3(y1, €1, t, 8) = x1(t) x1(s)[1 =, (61)]

« / (ilt= ) g —e7ETu? 1-(10u) . (5.3)
R —u—iag »(y1)/€1+ba 2 (11)/€2

Notice that the variable u in the integral has the property |u|> 15 and [&|>y>C(1+8).
Therefore the integral in (5.3) is the inverse Fourier transform of a Hérmander-Mikhlin

multiplier evaluated at (t—s)&Z, and is thus bounded. By differentiating with respect
to y1 we have

laj A (1)l |blg,,\(y1)|)
€11 €112

By (3.8) this suffices to prove the estimate (5.2) for the multiplier p3. Finally, for the

10y, 3 (Y1, €1, 8, 8)| S C[1—1 (&1)] <

multiplier t4 the condition (5.2) is proved in Lemma 4.3. O
Using the decomposition ky=k}+k7 in (4.42), we decompose the kernel K, into

K} + K2, where

Kln(l“,y,t,s)Zkf(ml,yl,t,s)/ ei(z’_y')‘ﬁ’e_i(t—s)|§’|2e_52l5’t2d£/’ m=1,2, (54)
Rn-1
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and then decompose the operator Ty as T} +T2. We can use (4.43) and the criterion
(5.2) to prove that the kernel k}(z1,v1,t, s) defines a bounded operator on L?(R): since
the function H in (4.42) is in L}(R), it suffices to prove that

<C|hllzs, -

1 i(x1—a—y1)%/4(t—s)
H|t—8!1/2 /Rh(yl)e m4(t,8,$1—a,y1)dy1 L2
E2

This follows from (5.2) and scaling. By Proposition 5.1 we know that the kernel
ka(x1,91,t,5) defines a bounded operator from L2 (R) to LZ (R). Thus the kernel
k3(x1,y1,t,5) defines a bounded operator from L2, (R) to L2 (R) as well. To summarize,
both kernels k}(z1,41,%,s) and k2(%1,¥1,t,s) define bounded operators on L?(R), both
kernels K§(z,y,t,s) and KZ(z,y,t,s) define bounded operators from L2(R™) to L2(R™),
and both operators T} and T} are bounded from L{L? to L{°L2.

6. Boundedness of the operators T, I1

In this section we prove that the operators 7} are bounded from LY L] to L2 and from
L1L2 to LY ILg,. For this, we use a theorem of Keel and Tao [7, Theorem 1.2]:

LEMMA 6.1. (Keel and Tao [7]) Assume that U(t): L2(R™)—L?*(R™) denotes a
family of operators indexed over teR with the properties

K@ fllzzwe) < ClifllL2mny
for any teR and fe L*(R™), and
IU(S)U )" fllzoo @y < C =572 fll o2 ey
for any t,s€R™ and fES(R™). Then

1T e < ClIFN 2

PROPOSITION 6.2. The operators Ty, Tp, T3 and T} are bounded from LELY to
L¥L2.

Proof. An operator of the form

1)@= [ [ a9k @ uts)dsdy

is bounded from LZLZ to L°L2 if the operators

St0,4(9)(x) = / / 9y, 8) e~ K (@, . to, 5) x4 (to—3) ds dy
"JR
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are bounded from LYL? to L? uniformly in to and €’ >0. This is equivalent to the fact
that the operators S; . are bounded from L2 to L’S’ILZ' uniformly in ¢ and &'>0. For
this we apply Lemma 6.1. The L?-condition was already verified in Proposition 5.1 (for
the operators Tj, T> and T3) and the remark at the end of §5 (for the operator T} ):
the kernels K (z,4,t,s), Ka(z,y,t,s), Ks(z,y,t,s) and K,(z,y,t,s) define bounded
operators from L2 to L2 uniformly in ¢ and s. It remains to check the L' —L> bound,

ie.

/ e~ VI K (2, 4,10, ) X2 (to—s) e V1 B (2, 7, to, ) X (to—t) dz| < Clt—s| /2

" (6.1)
uniformly in z, y, t and s, where K stands for K;, Ko, K3 or K;. For the kernels Kj,
j=1,2,3, we substitute the formula (4.26) and integrate first the variable z. Notice that
all the integrals converge absolutely because of the exponentially decaying factors. It
remains to prove that for any v=(vy, ..., v,) ER™ the absolute value of the integral

/ ei(w—y)fe—i(t—s)IEIZei(to-t)%-E6—62(|E|2+|£+v|2)uj(yl,§1’t0,s)ﬁj(zl,gl_,_vhto’t) d¢
" (6.2)
is dominated by C|t—s|~™/2, provided that (to—s)(to—t)>0 and j=1,2,3. For this we
use Lemma 4.2. Notice that the integral in (6.2) splits as a product of n integrals in
£1,€2, ..., &n. The integrals in &, ..., &, are each bounded by C|t—s|~'/2 by Lemma 4.2.
It remains to prove the same bound for the integral in &. Let wi=z1—y;+2v1 (to—1).
We need to prove that

‘/ evrbrgmit=El o= GO () £ b0, 5) 1 (21, £+ 1, to, £) dEr | < Clt—s| 72
" (6.3)
uniformly in all the variables, where j=1, 2, 3.

The estimate (6.3) for =1, 2,3 would follow from Lemma 4.2 with k=2, provided
that we could verify that the multipliers y;, j=1,2,3, belong to HMgl. This is clear if
j=1 or j=2, simply by inspecting the formulas (3.16) and (3.18) and noticing that the
functions x, (£&1)e % and x_(&;)e%" belong to HMg1 uniformly in 6>0. If =3, we ex-
amine the formula (5.3). We already noticed in the proof of Lemma 5.1 that the function
u3 is bounded; an elementary estimate using the fact that |£;|>y>C(1+8) shows that
it is actually in the symbol class HMg1 (see (6.22) below for a more precise estimate).

To prove (6.1) for the kernel K] we substitute the formula (5.4) into (6.1) and notice
that the integral splits as a product of n integrals. By the same argument as before, the
integrals in 2y, ..., 2, are each bounded by C|t—s|~/2. It remains to prove that

‘/ e 1,91, t0,8) X to—s) ™ R 1,1, to, ) xxto —t) dan | < Clt—s| /2
R
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uniformly in all the variables. For this we substitute the formula (4.42) and integrate the
variable z; first. The estimate follows from Lemma 4.1 with =(s—t)/4(to—s){to—¢). O

PROPOSITION 6.3. The operator T is bounded from LELI to L{°L2.

Proof. With the same notation as in Proposition 6.2, we have to prove that the
operators Sy, + are bounded from L?L{ to L2 uniformly in to. This is equivalent to the
fact that the operators Sf , Sy, + are bounded from L2LJ to L} ’Lg/. The kernels of the
operators Sy 4 St + are

Li,to,:}:(:c’ Y, i 3)
= / e~ VI K2 (5 y, b0, 8) xa(to—8) e E VI B2 (2, 2. t0, 1) xa.(to—1) dz.

Let ,
UZ,tg,i,t,s (h)(.’L') = A Li,to,:t(xv Y, t’ S)h(y) dy

‘We claim that

1UZ 49,416l L2Rm) > L2(R7) < C (6.4)
and
WUZ i £l L2 R Lo ()
<Clt—sl‘<“‘”/2(\t—tol+ts—tol)“’”log——[t,_tff’tlzml;—_tﬁlz' -

uniformly in ¢, s and ¢y. Assuming (6.4) and (6.5) we would have by interpolation

”U42,t0,:|:,t,s”LQ(Rn)_)Lq’(Rn)

[t—tol>+]|s—to® 2/at

<C [‘t_s!_(n—l)/z(lt_to|+\s—t0|)—1/2 log [t—tol-|s—to]

By the Minkowski inequality for integrals we would have

1157, 4 Sto,£(9) (-, ) Lo

<)
R

< C/Rﬂg( ~8)lg [|’f“5|_(n_1)/2(|t—750|-i-|s—1:0|)_1/2 log

/ g(y> S) Lézl,to,:t(xa Y, ta S) dy

ds

Ly

lt—t012+ls—to|2]2/q‘1d
|t—to|-|s—to|

We apply Lemma 6.4 below with d=1/n to conclude that the kernel

\t—tol2+|s—to\2]2/q‘l

t—s|~ " D/2(jg—t —to) "Y1
10721t} +s—to]) 2 10g L= Lo o
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defines a bounded operator from L? to LY . Thus

1155, + St0,£ (@l 50 SCllgll L2 g

as desired. It remains to prove (6.4) and (6.5). The L%-bound (6.4) was already proved
in the remark at the end of §5. For (6.5) we need to control the absolute value of the
kernels LZ,to,i' These kernels split as products of n integrals; as in Proposition 6.2 the
integrals in 2y, ..., 2, are each bounded by C|t—s|~/?. Thus it remains to prove that

[P et 9 xsto—s)e R e, o xata—) d
R (6.6)

[t—tol?+|s—to|?

< C(Jt—to|+|s—to]) "1/ log E—to]-|s—to]

uniformly in all the variables. We substitute the formula (4.42) and integrate the variable
2 first. As before let A=2|s—to|'/2 and B=2|t~t,|'/2. It suffices to prove that

1 1
/RZ|J4(t0a$,(Zl—al)/A,yl/A)IE|J4(t0,t7(21—02)/B’$1/B)|d21

A%+ B2
AB

< C(A2_+_BZ)—1/2 IOg

This follows easily from (4.44). O
In the proof of Proposition 6.3 we used the following lemma:

LEMMA 6.4. For any t,s>0, 6€(0,1} and p€[1,2] let
, , 24 g2749/%
Ls(t,s)= |t_s|(—2+26)/p (t+s)“25/” [log i] .

For any continuous compactly supported function f:(0,00)—C let

Ssf(t)= /Ooff(s) Ls(t, s) ds.

Then
”Stsf”LP’((O,oo)) <Ct§||f||LP((0,oo))' (6'7)

Proof. By analytic interpolation, using the family of kernels

£2 4 524"
ts

Li(t,5) = [t—5|-2+29= (1-4-5) 252 [log
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defined for Re z€[0, 1], we see that it suffices to prove the lemma for p=p'=2. In this
case, (6.7) is equivalent to a Hardy inequality. Let (Y, du)=((0,00),dt/t), and for any
t,5>0 let f(s)=s"2f(s) and F(t)=t/28;f(t). Then

- o 21248 . B
F(t):t1/2/0 [t—s|7 o (t45)70 [Iog tz:: } f(s)ds:/;/l}g(t, s)f(s)du(s), (6.8)

where Ls(t, s)=t1/2s1/2|t—s|~ (1= (t45) 8 [log(t2 +52)/ts]%°. The inequality (6.7) with
p=p'=2 is equivalent to
IF | L2y, dp) < Csll fll L2y, -
This follows from (6.8) and the observation that || Ls( -, s)|| LY(Y,du(t)) SCs uniformly in s,
and || Ls(t, - )|l 21 (v,au(sy) <Cs uniformly in ¢, provided that §€(0, 1]. a
This completes the proof of the LEL — Lg°L% boundedness of the operators T;. We
now turn to the question of LiLiﬂLfng/ boundedness.

PROPOSITION 6.5. The operators T1, T and T} are bounded from LéLg to LfILgl.

Proof. As in Proposition 6.2, by using Lemma 6.1 it suffices to prove the uniform
bound

/ e_(e,)2|z|2K(m, z,t, so)e_(€,)2|z|21?(y, z,8,80) dz| < Clt—s| /2 (6.9)

for the kernels K=K;, K=K, and K=K}, under the assumption that (£—s¢)(s—s0)>0.
The integrals in (6.9) split as products of n integrals. By the same argument as in
Proposition 6.2 the integrals in zy, ..., z, in (6.9) are bounded by C|t—s|~!/? as desired.
It remains to prove a similar bound for the integral in z;. To summarize, it suffices to

prove that

/ e_(sl)zsz(xl, 21, t, 80)6_(5')2zf k(y1, 21, 8, 80) dz1 | < Clt—s|~1/? (6.10)
R

for k=ki, k=ky and k=kj, where ¢,s,s0€[—1,1} and (t—50)(5—50)>0. Assume that
t—50>0 and s—so >0 (the case t—sq <0 and s—s¢ <0 is similar). Notice that the bound
(6.10) is trivial for j=2, since pa(-,-,t,80)=0 if t—59>0. Also, for the kernel k=k} the
estimate (6.10) can be obtained as in Proposition 6.2. It remains to consider the case
k=k;.

Recall that v>4+1. Fix h=h,, ,,: R—[0,1]}, a smooth function with the following
properties:

h(z1) =1 if min{|zy —x1}, |21 911} <107,
hlz)=0  if min{lzi—21), |z —1n]} > 209,
|6£1h(z1)| <Oyt forany z3€R and 1=0,1,2.
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We use this function to break up the integral in the left-hand side of (6.10) into two
parts. For the term that contains the function 1—*h, i.e. when 2z; is far from z; and y1,
we integrate by parts in (4.27) and use the fact that l(:cl—zl)—2(t—so)§1|>1—10|x1——z1|
if |£1|<2vy and t, so€[—1,1]. The result is

lk1(z1, 21,1, 80)| < Clzy —21|*

and

lk1(y1,21,8,%0)] <Clyr—21| ™"

if min{|z; — 21|, |21 —y1]|} >10v. Thus
k1 (21, 21, t, 50) k1 (y1, 21, 8, $0)| S C(|lz1 — 21| > +|y1 —21]72)
if min{|z; — 21|, |21 —y1|}>107. It follows that

I/Re_(el)zszl(ml,zl,t,so)e—(el)szlEl(yl,zl,s,so)(l—h(zl))dzl <Cy 1 COt—s|"/?

(6.11)
if [t—s|<2, as desired.
To estimate the term that contains the function h, assume first that |z, —y1|<1007.
Let

];:1 (-'L'Iy 21,1, 50) _ / ei(zl—z1)51e—i(t—so)ﬁfe~62§ful (171; &t 30) d&, (6_12)
R

and

kl (yla 21, S, 30) = / ei(yl"Zl)me-i(s_SO)nfe_E2nfﬂl (yla m,s, 30) dnl- (613)
R

Since |z1 —z1|+|y1 —21|<C", we can use (3.8) and the formula (3.16) to see that

3
Yy
l1(21, €158, 80) —pa (1, €1, s0) |+ w1 (21, M1, 8, 80) — 1 (Y1, M1, 8, 80)| < CT'

By integrating we have
. ~ 4
|k1(21, 21,8, 50) — k1 (21, 21, t, 80)|+]k1 (1, 21, 5, 50) — K1 (Y1, 21, 8, S0) | < CT (6.14)
if [x1—2z1|+|y1 — 21| < Cy. Also

k1 (21, 21, ¢, 80)|+ k1 (21, 21, t, 50)|+ k1 (w1, 21, 8, 50) | +|k1 (1, 21, 8, 80)| K Cy.  (6.15)
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By (6.14) and (6.15) and the fact that |t—s|<2,

‘/ h(z1)€“(€/)22%k1($1> 21, t, So)ff_(al)zzf k1(y1, 21, 8, 80) dz1
R

’ ~ 7 ~ 6
< l/ h(Zl)e—(E )22% k)l(l'l, Z1, t, 80)6_(6 )zzf k1(y1, 2148, 30) le +C’YT (616)
R
< \/ h(Z1)€_(5/)22f7~€1(931,21,t,So)e_(El)zzf/:ﬁ(yh21a3730) dz; +C|t‘8|_1/2,
R
provided that |z —y1| <1007 and
YA (6.17)

It remains to estimate the first integral in the right-hand side of (6.16). For this we
substitute the formulas (6.12) and (6.13), and integrate the variable z; first, as in Proposi-
tion 6.2. Let H :ﬁwl,m denote the Fourier transform of the function z3+—h(z1) e=2() 2
The properties of the cutoff function h guarantee that

| H]| L1 m) < C. (6.18)

We have
/h(zl)e_(al)%%l}l(l‘l,zlat,So)e_(El)zz%]:ﬁ(yl,21’3780)1121
R
:/ﬁ(e)eizw«i(t—so)ez’/ e—i(t—s)nfei[(zl—yl)—z(t—so)e]m (6.19)
R R

x e~ iy (4,70, 5, 50) €75 MF (@1, 7+, 5, 50) diy dB.

The multiplier ;1 belongs to the symbol class HM?,I. This was checked in Proposition 6.2.
By Lemma 4.2, the n;-integral in (6.19) is bounded by C|t—s|~1/2. By (6.16) and (6.18)
we have

‘/ h(zl)e“(sl)%% k‘l(.’L‘l, Zl,t, .S())e_(&,){zzf El(yl, Z1, 8, So) dZ1 S C|t—8|_1/2 (620)
R

if |21 —y1| <1007, as desired.

If |1 —y1|>100, we break up the integral in (6.20) into two parts, depending on
whether z; is close to z1, or 21 is close to y;. Assume that we are looking to estimate the
integral over |z; —z1]|<20vy. We argue as before: the only difference is that we replace
the kernels k;{x1, z1,¢, sg) and k1(y1, 21, 8, $¢) with the kernels

k1(z1,y1,21,t, S0) = / ei(xl_zl)gle_i(t‘s")g%e_szgful(m, &1,t,80) d&1
R
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and

. T 2 .22
kl (;Cl’ Y1, 21, S, 30) = / e’(yl 21)7716 i(s 50)’716 emy ﬂl(mly M1, S, 80) d771-
R

The only difference compared to (6.12) and (6.13) is that we replace the multipliers
p1(z1,-,-,+) with py(z1,-,-,-) in both integrals. Since |z; —21|<20, all the previous
estimates apply, so the integral in the left-hand side of (6.20) over the set |z; —x1| <207 is
bounded by |t—s|7'/2, as desired. The integral over the set |23 —y;| <207 is similar, the
only difference being that we replace the multipliers p1(z1,,-,-) with pi(y1,-,-,-) in
both integrals. Together with (6.11) this completes the proof of (6.10) for the kernel k;. O

PROPOSITION 6.6. The operators Ts and T are bounded from LiL? to L} LY.

Proof. By the same argument as in Proposition 6.3 it suffices to prove that

./e_(f')zsz(xhzht,so)e"(el)zzfl_c(yl»zlv3»30)dzl
R

(6.21)
|t—80|2+|8—80|2

<C(Jt— —sg]) V21
\C(' SO|+IS 80') og |t—30|‘|3—50|

for k=ks and k=k2, provided that (t—s¢)(s—50)>0. For the kernel k7 this follows as in
Proposition 6.3—see the proof of (6.6). For the kernel k3 we prove a bound similar to
(4.42) and (4.44): by examining (5.3) and integrating by parts we see easily that

€108, 13 (y1, €1, 8, 8)| S C(1+]t—s]€7) 7> (6.22)

for 1=0,1,2. We use this in (4.27) and integrate by parts (because of the decay in (6.22)
as |t —s]£2— 00, the factor e~*(t=9¢1 may be absorbed in u3(y1,£1,t, ). It follows easily
that

C
ks(x1,y1,t, 8)I < . 6.23
lks(@1, 31,2, 9)] [t—s]1/2+|z1 —y1 | (6:23)
This estimate can be used to prove (6.21) for the kernel k3, as in Proposition 6.3. O

7. Boundedness of the operators Tj, III
It remains to prove the following result:
PROPOSITION 7.1. The operators T, j=1,2,3,4, are bounded from LEL] to ? ’Lgl.

In dimensions n>3 we need an interpolation lemma of Keel and Tao [7] (see pp. 964
967 for the proof):
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LEMMA 7.2. (Keel and Tao [7]) Assume that n>3 and

U= [ [ 109Kyt dsdy

is an operator with a locally integrable kernel K. Let

= [ [ K

Let
n n{l 1
Ala.b)= 5—1*5(#&)
and assume that for any fES(R"XR) the estimate

||Ul(f)||L§Lg' <C2_w(a’b)||f||L§L; (7.1)

holds for the exponents
(i) a=b=1;
(i) 2n/(n+2)<a<2 and b=2;
(iii) 2n/(n+2)<b<2 and a=2.
Then
1T 2 p2nr-20 SC fll 2 p2nrcnsn

Proof of Proposition 7.1. We claim first that an operator of the form
T(g)(z,1) =/ / 9(y, s)/ i@=v)Eemit=E’ =" E (0 €1 ¢ 5) dE dsdy
rR"JR R~
is bounded from LYL? to Lf,Lg, if p€[1,2), and the operator

St,s(h)(m)‘—‘/ h(y)/ ei(m_y)'fe‘i(t_s)|§|2e_52|5|2u(y1,51,t,s)d{dy

satisfies the bounds
[1St,sllL2Rmy—L2R7) < C (7.2)
and

”St,S”Ll(R")—)L‘x’(R") <C|t_5|_n/2 (7.3)

uniformly in ¢ and s. Assuming (7.2) and (7.3) we would have by interpolation

||St,s||Lq(Rn)_)qu(Rn) < COlJt—s|m(1/a=1/2),
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By the Minkowski inequality for integrals we would have

ds
Ly

. . 2 2 2
IT(a)(, )l < /RH [ o) [ etk 6, 1,9 dedy

</ llg(-,s)llzg lt—s]_"(l/Q—lﬂ) ds.
R Y
Since 1/p—1/p'=1-n(1/g—1/2) and p<p’, by fractional integration it would follow that

IT@) 00 <Collgllzess

as desired.

It is easy to check the estimates (7.2) and (7.3) for our multipliers p;. Notice that
the L2-bounds (7.2) were proved in Proposition 5.1. For the L! — L™ bounds, it suffices
to prove that for j=1,2, 3,4,

] / e Egmit=eP =6l (4 €, ¢, 5) dE| < Cft—s| ™/ (7.4)

uniformly in £, s, z and y. For this we use Lemma 4.1 for j=1,2,3 (the Hérmander—
Mikhlin bounds for u; were verified in Proposition 6.2), and the formula (4.42) for j=4.

This completes the proof if (p,q)€.A and p<2. It remains to prove the endpoint
estimate (p,q)=(2,2n/(n+2)) in dimensions n>>3. For this we use Lemma 7.2; we have
to verify the estimate (7.1) for our operators T} ;, =1,2,3,4. Notice that we can assume
[<0; in addition we can assume that f is supported in a time interval of length 2+1,
say R"x[so—2% s9+2']. Then T} (f) is supported in R"x[sg—3-2,s9+3-2!]. For the
bound in the case a=b=1 we have

1Tz SC22NT0(HllLzere <C22 - sup  |Kj(z,y,t,9)| || fllciey
[t—sje[28,20+1)

<C2/227 1292 fll oy = C27HPD | f L,

as desired (we used the bound (7.4)). In the case a€[2n/(n+2), 2] and b=2, let p(a) €1, 2]
be the exponent with the property that (p(a),a)€.A. We use Propositions 6.2 and 6.3 to
get

NT5,0()llLzre <C2’/2S:1p NT5,0(F) (k0,2 <C2“2I|f||Lg<a>L;
0
<P | £l a0 = C27HD || f| s,

as desired. The estimate in the case a=2 and b€[2n/(n+2),2] is similar, by using
Propositions 6.5 and 6.6 instead of Propositions 6.2 and 6.3. This completes the proof
of the proposition. O
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8. Boundedness of the operators R;

In this section we prove that the operators R;, j=1,2,3, are bounded from L‘S’°L§ to X’
with small norm. Recall that the operators R; are of the form

Rj(g)(w,t)=/ /g(y,S)/ o) emi=9lePe—<"lels () £) 8, 5)dEdsdy.  (8.1)
R"JR R"

The multipliers s; are defined in (3.17), (3.19) and (3.23). The following proposition

gives the main estimate in this section:
PROPOSITION 8.1. If (p,q)€A is as in §5 then
5
|Rs9ll ype <C Nl oo
for 7=1,2,3.
Proof. Notice that it suffices to prove the stronger bound
5
1R59] e <O llgllpaza-
For j=1,2,3 let
m;(z1,y1,t,8) = /Rei(zl“yl)&e“i(t's)ﬁe—az&? si(y1,€1,t,8) déy.

As in Propositions 5.1 and 6.6 it suffices to prove that for j=1,2,3,

5
lss(- 61,8, 9)llsy,, <C - (8:2)

for the L}L2— L° L2 bound, and

—(&')222 ()22
‘/6 =) 1mj(xlazlyt730)e ( )zlmj(yl,zl,S,So)dh
R

(8.3)
|t—80|2+]$—80|2
|t—-80|'|8—80|

5\2
< C(%) (|t—so|+|s—s0]) /% log

for any t, s, sp€[-1,1].
Assume first that j=1 or j=2. The bound (8.2) follows easily from (3.14) and the

formulas (3.17) and (3.19). Also, by (3.14) we have

4
Ima,z(e1, 21, s0)| < C L,
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and, by integrating by parts, we have

5
17
|m12(x1, 21, t, S0)| < Clzy—21| 17.

Thus
5\2
Y
< L
<c(%).

Assume now that j=3. We examine the formula (3.23). Recall that in this formula

‘/6_(6,)223m1,2($1,zl,t, So)e_(sl)zzfmm(yl,zl,8,30)d21
R

which is better than (8.3}. The proposition follows for j=1,2.
[€]127 and |7|> {57, The symbol in the second line of (3.23) can be written in the form

—ab,/\(yl)T_lJrQ-’B(yl» Elv T)a

where
2

v &
Arjgg |2 |r|ts Iaiiaéiaist(yl,&, < Czl,zz,zax ;%

for any nonnegative integers I;, I and I3 (using (3.8)). In addition, Q3(y1,-,-) is sup-
ported in the set y1€[A,2)]. It follows easily that [[s3(-,&1,¢, s}y, SC7/A, which is
better than (8.2). Also, by integrating by parts as in (6.22) we have

1

L} ts)|<CY —— .
|£1 5133(.7/1761, ,S)I A (1+|t—8|£%)2
Thus, as in Proposition 6.6,

Cy/A
[t—s|/2+ley =)’

|m3(x1,y1ata S)I <

which suffices to prove (8.3) in the case j=3. This completes the proof of the proposi-
tion. a

We can now establish the precise condition on A and 3. The two relevant estimates
are (6.17) and Proposition 8.1. Thus we need to assume that

A= A(B)=C(1+8)° (8.4)

for some large constant C.
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9. Applications

In this section we prove Theorems 2.3, 2.4 and 2.5. To simplify the notation, we write
X for X([0,1]), X' for X'([0,1]), and Y for Y([0,1]). Recall that C is the constant in
Theorem 2.1. For Theorem 2.3 we simply apply Theorem 2.1:

le?>EDu(z, b))l x- < C[[|e”* @ Hulz, 8)|| x + (%> EDu( -, 0) | 2 (rmy
+PEu( - 1)) L2 )
<CIVly l[e”EDu(a, b)) x
+C[[le?#>Eu( -, 0)]| L2 mmy +11€%2Eu( -, ) 2 @m)-
If |V|ly<1/2C, the first term of the right-hand side of the inequality above can be
absorbed into the left-hand side (this term is finite since u€X’ by Theorem 2.1 and

eP?2(#1) is bounded). Theorem 2.3 follows by letting A=coc.
For Theorem 2.4 we use a variant of the Carleman argument. Let u=u;—uz; we

have
Hu=Wu, (9.1)
where
W (x) = V(z)+ F(u;f-g; :52(:;)(17)) if s () 0 (2),
V(x) if uy () = up(2).

Since WeY, we have WueX, and thus the identity (9.1) holds in X and ue Z([0,1]).
By (2.9) and (2.10),

W Xbwo+D(wo) (T)lly <€
By rotation we may assume without loss of generality that we=(1,0,...,0). Let E=

lu(-,0)|| L2+ ||u(-,1)||L2. By Theorem 2.1 with A>max{b+1,A(3)}, the identity (9.1)
and the support property of the functions u(-,0) and u(-,1), we have

||eﬁw(zl)x{wm>b}u“x, ”eﬁw(m)unx,

<

< CllePrE)Hy|| x +Ce®E

<O[€° ) (X (gi21 501 W) (Xm0 )| x (9.2)
+ClePor 0y o <oy Hul x +Ce™E

<3 le” V% gz > nyullxe +Ce | Hull x + CeE.

We can absorb the first term of the right-hand side (which is clearly finite) into the

left-hand side. The theorem follows by letting 8, \—ococ.

To prove Theorem 2.5 we define the functions u and W as before. We have to show
that if u€ Z([0,1]) vanishes in a half-space and Hu=Wu, then u=0. This is similar to
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the type of unique continuation theorems proved by Kenig, Ruiz and Sogge [12] for wave
equations. As in [12, p. 331], we should remark that the classical examples of smooth
solutions of the equation Hu=0 which vanish in a half-space (as in [3]) are not decaying,
and are thus not in C([0,1]:L?(R™)). Our argument is somewhat similar to the proofs
of Theorem 1.3 and Corollary 6.1 in the work of Isakov [6]. The difference is that we use
L? Carleman inequalities to cover rough potentials (in the space Y'), as opposed to only
bounded potentials as in [6].

The identity (9.1) holds and, by Theorem 2.4, u=0 in [bwo+D(wo)] % [0,1]. We will
prove now that u=0 in R"x [0, 1]. By (2.11), there is g0 € (0, 1] with the property that

W ez woctisrsanplly < g for any Ve (=00, b=z, (93)
1

where C) is the constant C' in Lemma 9.1 below. This is the only assumption we need
on W to carry out the proof. By rotation we may assume that wo=(1,0,...,0). Let
b;=b—jeo. By induction it suffices to prove that u=0 in {z:z1>b;4+1}x ][0, 1] assuming
that =0 in {z:2:>b;}x[0,1] and j>0. The Carleman inequality in Theorem 2.1 (or
Corollary 2.2) does not apply directly, mainly because we do not have good control over
the boundary terms u(-,0) and u(-,1). To avoid these boundary terms we make a change
of variables (as in [6]). For any d¢€ (0, 15] fix a smooth function w=ws,;: [0, 1] [bj+1, bs]
with the property that w(t)=b;41 if t€[26,1-28], w(t)=b; if t€[0,0]U[1-4,1], and
8w’ ()| +62|w" (t)| <C. We will show that

u=0 in {(z,t):z1>w(t), t€[0,1]}. (9.4)

Since 4 is arbitrary and u€C([0,1]:L?(R™)) this would suffice to complete the proof of
the induction step. Let

v(y1,ys8) =e N 2u(y; +u(s),y, ).
An elementary calculation using (9.1) shows that
Hvo(y1,y,8)=v(y1,¥, s) [W(yl +w(s),y, 8)+ 2w (s)y1 —1w'(s)?]. (9.5)

The role of the exponential e~*()¥1/2 is to cancel the 9,,u-term in the commutator. By
the support properties of the function v, we know that v=0 in the sets

{(y1,¥,8):y1>e0} and  {(y1,%,s):y1>0 and s€[0,8]U[1-4,1]}.

It remains to prove that v=0 in the set {(y1,¥/,s):y1>0}. The equation (9.5) may be
written in the form

Hy=(Wo+M)v, (9.6)
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where

Wo(y1,9,8) =W (y1+w(s), ¥/, s)
and

M(y1,y,8) = 2" (s)y1 — ' (s)*.

Theorem 2.1 cannot be applied in this case because the potential M does not belong to
the space Y. We use instead the following Carleman inequality:

LEMMA 9.1. Assume that ueC([0,1]:L*(R™)), u=0 in the set {(x1,2’,t):21>1},
and (14|x1])"VHue X(R™x (0,1)) for some N >0. Then, for some constant co>0,

e25@ X011 (1) ul@, )| 30,11y + 8% 1€ @ xp0,1) (1) w(z, 8) | L322 (R [0,1))

(9.7)
<C[|le?* @V Hu(z, )| x (0,1 +lle®* @l -, 0)|| 2 +lle?* Eu( -, 1) 2]

for any BE[2,00). The function ¢g: R—R is given by dp(z1)=0z1 if T1€[~1,00), and
dp(x1)=21—B+1 if x1€(—00, —1].
The same argument as in the proof of Theorem 2.4 (see (9.2)), using (9.3) and the

identity (9.6), shows that Lemma 9.1 suffices to prove that v=0 in the set {(y1,7,5):
y1>0}, which gives (9.4).

Proof. By the same argument as in §3 we may assume that ue C§°(R"xR) is sup-
ported in R"x [0,1]. The bound for the first term in the left-hand side of (9.7) follows
from the stronger inequality

1"l x+(jo,11) < Clle?* Hull xjo,1))

for any $>2 and any u€ C§°(R™x R), which is a consequence of Theorem 2.1 with A=o0.
To control the second term in the left-hand side of (9.7) it suffices to prove that for
some ¢y >0,

5o le? @D xp0 1y (21) w(@, Bl i rz (Rex (0,1 < Clle?* ™ Hu(x, )| x(po,11) (9-8)

for any 3>2 and any ueC° (R™x R) supported in R"x [0, 1]. Let f=Hu. Let P} denote
the operator defined by the Fourier multiplier (£, £, T)+—>e‘52|5'|ze_€2(T+|€/|2)2. It suffices
to prove that

X011 (£)e® @V x(0 1) (1) P2 ()| L3 12 (e o,1) < OB~ €22V f (2, ) | x o,y (9:9)

As in §3, let @(z1,&,7) and f(z1,&,7) denote the partial Fourier transforms of the
functions u and f in the variables ' and ¢. The equation (i0; +Az)u=f becomes

02— (T+]€' P a(z1, €, 7) = f(z1,€, 7).
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By integration by parts we have for any z,€[—1,0],

ﬁ(ﬂfl,f/ﬂ')=/Rf(y1»f/,T)G($1,y1’7’+|§'|2) dyla

where ) ) [( | ]
sin|(z1—ym)v—1] .
— - if <0,
X+(y1 1) H l‘l‘
sinh |(z1—y1)v/1 .
G(z1,y1,1) =8 —Xx+(y1—1721) I 1\/171 vE] if o< pu<p?, (9.10)
—lz1—-nlve
e if %< p.
Y

By taking the inverse Fourier transform,

Pju(zl,x',t)=0/ / f(y.9) / / (il =4 ilt—a)T =T €2
R*JR R»1JR
X6_52(T+|§’l2)2G(.’L'1,y1,7-+|§/|2) dr de' ds dy.

Thus, to prove (9.9), it suffices to prove that the operator

T@at)= [ [ o) Ri@yt.5)dsdy

has the property that
1T ()i <CB ligllx (9.11)

for any bounded compactly supported function g, where

K(‘T"7 Y, ta S) = X[O,l] (t) X[O,l] (8) X[O,l] (.Tl)x(—oo,l] (yl)e¢ﬁ(zl)_¢6(yl)

X / / ei(z'—y')-e'ei(t—s>re—e215'326—52<r+|e'|2)2g(w1,yl,T+|§’|2)d~rd§’
R-1J/R

= X0,11(t) X[0,1] (S)X[O,l](wl)X(—oo,l](yl)e¢ﬁ(zl)_¢ﬁ(yl)

x/ ei(-’r’—y')-f’e—i(t-S)|§'|26—62|E’l2/ei(t—S)u€—62uzg(x1’yl’u) dude’.
Rr-1 R

Let

];(:1717 Y1, t, ’S) = X[O,l](xl)X(—Oo,l](yl)e¢ﬁ(zl)_¢ﬂ(yl)/ ei(t—S)Me—ezuzG(xla Y, /L) d:u‘
R

For <0, let

I?l(.’l:, Y, t,8)= X[2112z+1](|t—s|)f('(.’1:, y,t,8),
]El(l'h y1,t,8) = X[2l,2l+1](|t—5|)’~€($1, Y1,t,8)
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and 7} be the operator defined by the kernel K;. By (9.10),
[l (w1, 91, , 8)|  C27H2 [ Plmul104 (14 62Y2) " x g g (|21 — 31 )] (9.12)

To see this, we substitute the formula (9.10) and break up the integral into three
parts. To control the integral over ;<0 we make the change of variable u=-n% and
use Lemma 4.2. To control the integral over u€(0,3%] we make the change of variable
p=n?, use Lemma 4.2 for the integral over €0, 3], use again Lemma 4.2 for the in-
tegral over n€[18, 8] if B2Y/2<1, and integrate by parts if 32//2>1. To control the
integral over u>3% we make the change of variable p=72, use Lemma 4.2 if 32'/2<1,
and integrate by parts if 52//2>1. The estimate (9.12) is the only estimate we need for
the kernel INCl.

As in §5 we fix an acceptable pair (p, q), with p<§ if n=1, p<pp if n=2, and p<2
if n23. For (9.11) it suffices to prove that

Z \Tillzerg—szie CB™*

1<0
for some ¢g>0. Since
1Tl rers—rizz <CITillzers—rre <C27P Tl pog—roorz,

it suffices to prove that

> 2P| Till ey rperz <CB™ (9.13)
1<0

To estimate ||T;]| 1213 Leor2 We argue as in Proposition 6.3. For any to€0,1] let Tl,to

denote the operator defined by the kernel e_(5/)2|z|2l?l(z, ¥, %o, 8). As in Proposition 6.3,

= ~ ~e 7 1/2
HTl“L’;’LZ—w?L% <tsglg 170t l2Lg 22 < tS(:.lB “TlftOTl’tO”Lng_,Lf’Lg" (9.14)

The kernel of the operator T'lftoﬁvto is

z/l,to (IE, Y, ta S) = / e_(€()2|Z!2I?l (Za Y, t07 8) e_(E,)2lZ|2I?l(z, z, tOy t) dz.

n

Let ﬁl,to’t’s denote the operator defined by the kernel L; s, (-,-,t,5). By (9.12), the
Ll-norm in both the variables z1 and y, of the kernel k(-,-,t,s) is bounded by
C27Y2(1442/2)~1, Thus

1T t0,t,5ll 22 Ry 2Ry < C27H1+6%24) 71
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The kernel Iil,to (z,y,t,5s) splits as a product of n integrals. As in Propositions 6.2 and 6.3,
the integrals over the variables 25, ..., z, are each bounded by |t—s|71/2. For the integral
over the variable z; we use (9.12). The result is

101 10,1, 11 (my > oo () < Clt =8|~ 7D 2 x(0 a2y (JE~s]) 27 (1+8°2) 7H(1+82").
By interpolation and the Minkowski inequality for integrals, as in Proposition 6.3,
IT7 s, Tt lpprs o prns < C2 14 4%2Y) " (1+p2H)¥/a~12l/2(3/a-1),

By (9.14) and the fact that 1/p+1/2g—3>1/2n if (p,q)€ A,

- N 1+[31/22l/2 B
1/ 1(1/p+1/2q~3/4) 1/2
z§<o 2P| Tl prg— gLz < z§<o: C2R/PT 1+ 32172 SCET

The main estimate (9.13) follows with ¢o=1/2n. ]
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