
Acta Math., 193 (2004), 141-174 
(~) 2004 by Institut Mittag-Leffier. All rights reserved 

A Hopf  differential for constant  
mean  curvature surfaces in S 2 • R and H 2 • R 

UWE ABRESCH 

Ruhr- Universit~it Bochum 
Bochum, Germany 

b y  

and HAROLD ROSENBERG 

Universitd de Paris VII 
Paris, France 

Dedicated to Hermann Karcher on the occasion of his 65th birthday 

In troduct ion  

In 1955 H. Hopf [13] discovered tha t  the complexification of the traceless par t  of the 

second fundamental  form hE of an immersed surface E 2 with constant mean curvature H 

in Euclidean 3-space is a holomorphic quadratic differential Q on E 2. This observation 

has been the key to his well-known theorem that  any immersed constant mean curvature 

(cmc) sphere S 2 ~ R  3 is in fact a s tandard distance sphere with radius 1 /H.  

Hopf 's  result has been extended to immersed cmc spheres S 2 in the sphere S 3 or 

in hyperbolic space n 3. In other words, the result has been extended to immersed cmc 

spheres S 2 ~ M  3 in space forms with arbi trary curvature x. Furthermore, W.-T.  and 

W.-Y. Hsiang have conjectured [14, Remark  (i) on p. 51] tha t  immersed cmc spheres in 

the product  space H 2 • R should be embedded, rotationally invariant vertical bigraphs. 

The holomorphic quadratic differential Q itself has other important  applications: it 

guarantees the existence of conformal curvature line coordinates on cmc tori in space 

forms, and thus it has played a significant role in the discovery of the Wente tori [25] and 

in the subsequent development of a general theory of cmc tori in R 3 (see [1], [21], [6], 

[12] and [7]). For cmc surfaces E2g of genus g > l  the holomorphic quadratic differential 

still provides a link between the genus of the surface and the number and index of its 

umbilics, a link tha t  has been very useful in investigating the geometric properties of 

such cme surfaces (see [8], [11] and [22]). 

The first named author would like to thank the Institut de Math~matiques de Jussieu and the 
CNRS for their hospitality and support during a visit to Paris in the fall of 2003. The basic ideas for 
the results in this paper have been developed during that visit. 
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1. M a i n  resu l t s  

Our main goal is to introduce a generalized quadratic differential Q for immersed surfaces 

E 2 in the product spaces S 2 x R and H 2 x R, and to extend Hopf's result to cmc spheres in 

these target spaces; we shall prove that  such immersed spheres are surfaces of revolution. 

In order to treat  the two cases simultaneously, we write the target space as M~ x R, 

where M~ stands for the complete simply-connected surface with constant curvature ~. 

A lot of information about the product structure of these target spaces is encoded 

in the properties of the height function {: M~ x R--+R, that  is induced by the standard 

coordinate function on the real axis. We note in particular that  { has a parallel gradient 

field of norm 1, and that  the fibers of { are the leaves M~ x {{0}. In addition to the 

function { we only need the second fundamental form h~(X, Y)=(X,  AY}, the mean 

curvature H =  } trA, and the induced (almost) complex structure J in order to define 

the quadratic differential Q for immersed surfaces ~2 in product spaces M~ • R. We set 

q(X, Y):= 2Hh~(X, Y ) - ~  d~(X) d~(Y) (1) 

and 

Q( X, Y):= l (q( X, Y ) -q (  JX, JY) ) -  l i(q( JX, Y) +q( X, JY)  ). (2) 

Clearly, Q(JX, Y)=Q(X, JY)=iQ(X ,Y) .  In dimension 2, traceless symmetric endo- 

morphisms anticommute with the almost complex structure J ,  whereas multiples of the 

identity commute with J.  Thus the quadratic differential Q defined in (2) depends only 

on the traceless part  q0 of the symmetric bilinear form q introduced in (1), and, con- 

versely, it is the traceless part q0 that  can be recovered as the real part of Q. 

THEOREM 1. Let E2q-*Mg2 •  be an immersed cmc surface in a product space. 
Then its quadratic differential Q as introduced in (2) is holomorphic with respect to the 
induced complex structure J on the surface ~2. 

The proof of this theorem is a straightforward computation based on the Codazzi 

equations for surfaces E2q-~M~ •  which differ from the more familiar Codazzi equa- 

tions for surfaces in space forms M 3 by an additional curvature term. The details will 

be given in w 

Following H. Hopf, we want to determine the geometry of immersed cmc spheres in 

product spaces M~ x R using Theorem 1. In these target spaces one has the embedded 

cmc spheres S~ studied by W.-Y. Hsiang [14] and R. Pedrosa and M. Ritor~ [20] that  

are invariant under an isometric SO(2)-action, rotation about a vertical geodesic. From 
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now on we shall refer to them as the embedded rotationally invariant cmc spheres S~ c 
M 2 •  

Their geometry will be described in Proposition 2.5 (i) in the next section. In con- 

trast  to cmc spheres in space forms, they are not totally umbilical unless x = 0  or x > 0  

and H = 0 .  The traceless part  q0 of the symmetric bilinear form introduced in (1), how- 

ever, vanishes on all of them. For us, this observation has been the major clue when 

guessing the proper expression for the quadratic differential Q for cmc surfaces in such 

product  spaces. 

THEOREM 2. Any immersed cmc sphere S2o~M 2 • R in a product space is actually 

one of the embedded rotationally invariant cmc spheres 2 2 S H c M ~  X R .  

This theorem in particular establishes Hsiang's conjecture from [14, remark (i) on 

p. 51] about immersed cmc spheres in H 2 x R. 

It is a well-known fact that  any holomorphic quadratic differential on the 2-sphere 

vanishes identically. Thus Theorem 1 implies that  the quadratic differential Q of an 

immersed cmc sphere S 2 ~ M ~  x R vanishes. Hence Theorem 2 follows directly from the 

following classification result: 

THEOREM 3. There are four distinct classes of complete, possibly immersed, cmc 

surfaces E 2 % M  2 x R with vanishing quadratic differential Q. 

Three of these classes are comprised of embedded rotationaUy invariant surfaces; they 

are the cmc spheres S2H C M~ x R of Hsiang and Pedrosa, their non-compact cousins D2~, 

and the surfaces C~ of catenoidal type. The fourth class is comprised of certain orbits 

p 2  of 2-dimensional solvable groups of isometries of M~ x R.  

The geometry of the rotationally invariant embedded cmc surfaces of type S~,  D ~  

and C 2 will be described in detail in Propositions 2.5 and 2.9. The fact that  they all 

have Q--0 will be verified in w too. The remaining family p 2 ,  where the parabolic 

symmetries are prevalent, will only be introduced in Proposition 4.9 in w Explicit 

formulas for the meridians of all these surfaces will be provided in the appendix; for 

some pictures thereof, see Figures 1-4. 

Remark 4. If x~>0, then only the spheres S2HcM~ x R  occur, whereas for x < 0  all 

four cases do actually occur. 

The fact that  there are no other cmc surfaces with Q-O  will be established in w 

A systematic approach to this classification problem is to study a suitable overdetermined 

system of ordinary differential equations for the unit normal field of the surfaces to be 

classified. In doing so, the surfaces p 2  in fact show up quite naturally. 
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In a sense the preceding theorems amount to saying that,  when studying surfaces 

E 2 in product spaces Mg 2 x R rather than in space forms, the role of umbilics is taken 

over by the points where E2 approximates one of the embedded cmc surfaces S~/, D 2,  

C~/and  P~ up to second order. 

Theorem 2 provides substantial information even when studying the geometry of em- 

bedded cmc spheres $2cS2  x R. Moving planes arguments along the lines of A. D. Alex- 

androv [3] only prove that  a closed embedded cmc surface E 2 c S 2 x  R is a vertical bi- 

graph. In contrast to target spaces with non-positive sectional curvature, moving planes 

arguments do not imply that  such a surface E 2 c S 2 x  R is rotationally invariant. The 

latter claim would only follow if we assumed that  E 2 were contained in the product of 

a hemisphere with the real axis. Such an assumption, however, is by far too strong. It 

does not even hold for the embedded rotationally invariant cmc spheres S2H C M 2 x R 

if 0 < 4 H 2 < x .  This particular aspect of their geometry is explained in more detail in 

Remark 2.8 in w 

Fhrthermore--unl ike in Euclidean space R 3 - t h e r e  even exists a family of embedded 

eme tori in S 2 x R, most of them not being rotationally invariant. They rather look 

approximately like "undoloids" around some great circle in a leaf S 2 x {~0 } C S 2 x R, and 

are thus not contained in the product of a hemisphere with the real axis either. They 

have been constructed by J. de Lira [17] by a bifurcation argument along the lines of the 

work done by R. Mazzeo and F. Pacard [18]. Presumably one could also obtain these 

surfaces using a singular perturbat ion argument similar to the one that  N. Kapouleas' 

work is based on [16]. 

Finally, we observe that  the holomorphic quadratic differential Q of Theorem 1 is 

likely to open the doors for investigating the geometry of cmc tori in product spaces 

M~ x R,  and- -as  in the case of space forms-- there  might be interesting connections to 

the theory of integrable systems. A somewhat more subtle question is whether all the 

above can be generalized to cmc surfaces E 2 in homogeneous 3-manifolds. 

2. The  rotat ional ly  invariant cmc spheres  S~ C M~ • R 

In this section we shall describe the embedded rotationally invariant cmc spheres S~ c 

M~ • R of Hsiang and Pedrosa. Our main goal is to compute the symmetric bilinear 

form q introduced in (1) for these cmc spheres, and thus verify that  their quadratic 

differential Q vanishes. This goal will be accomplished in Proposition 2.7. 

The work of both authors, Hsiang and Pedrosa, has been somewhat more general 

than what we need here. They have studied rotationally invariant cmc spheres S~ in 

product spaces including H'~x R [14] or in Sn•  R [20], respectively. For our purposes 
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we are only interested in properties of the surfaces S 2,  and, specializing our summary 

accordingly, we thus work on product manifolds M 3 : = M  2 • R that  are equipped with 

an isometric SO(2)-action. 

2.1. Isometric S0(2)-act ions on the product  spaces M ~  • R 

Such an action necessarily operates trivially on the second factor. In other words, the 

group S0(2)CIsom0(M~ 2 • R)  can be considered as the isotropy group consisting of those 

rotations that  preserve some fixed axis 10:--{~0} •  If x~<0, the fixed-point set of this 

SO(2)-action is precisely the axis l0 itself; however, if x > 0 ,  it encompasses the antipodal 

l i n e / o = { - ~ 0 }  •  as well. 

In order to understand this action better, it is useful to pick a normal geodesic 

7 : R - + M 2  with 7(0)=50.  The product map 7 • R 2 - + M  2 •  is a totally geodesic 

isometric immersion. Its image intersects all S0(2)-orbits orthogonally. The existence of 

such a slice means that  the group action under consideration is polar. 

The subset I ~ •  2, where Ix denotes the half-axis (0, co) if x<~0 and the in- 

terval (0, Tr/v/x ) if x > 0 ,  is a fundamental domain whose image under the immersion 

0/• id intersects each principal SO(2)-orbit in M~ 2 • R precisely once. Its closure i x  • R 

represents the entire orbit space S0 (2 ) \ (M~ x R). The canonical projection p onto this 

orbit space lifts to a map 

~: M~2 x R - +  fx  x R  

such that  the composition ~5o(Txid ) is the identity on / x x R .  This lift is given by 

~(x)=(r(x) ,  ~(x)), where r(x):=dist(x,  10) and where ~ is the height function introduced 

above. The restriction of ~5 to the union of all principal orbits is clearly a Riemannian 

submersion. 

A conceptually nice way of thinking about the slice im('y x id) is to extend the $0(2)-  

action to some larger subgroup of Isom(M~ x R). The natural candidate is the group 

0(2) consisting of all isometrics of M~ x R that  fix the axis 10. The cosets of 50(2) C0(2)  

are represented by the subgroup consisting of the identity and of the reflection 0 at the 

slice. The extended action has the same orbits as the SO(2)-action that  we began with. 

However, the principal isotropy group of the extended action is Z2 = (0) rather than the 

trivial group. 

The slice im(7 x id) can be recovered as the fixed-point set of the reflection O. More- 

over, 0 preserves the height function ~ and thus also its gradient. In particular, grad~ 

is tangential to the slice everywhere. 
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2.2. C o n n e c t e d  SO(2) - inva r i an t  su r f aces  ]E2q~M~ x R 

As explained above, the given action extends to an isometric O(2)-action on M 2 x R with 

precisely the same orbits. Hence any rotationally invariant cmc surface E2q-*M~ x R is 

also invariant under the full O(2)-action. The additional symmetry tells a lot about the 

geometry of the surfaces in question: 

PROPOSITION 2.1. Any rotationally invariant surface ~ 2 q - ~ M ~ x a  intersects the 

slice im('y x id) orthogonaUy in a set of regular curves c that are simultaneously geodesics 

and curvature lines on E 2. 

If the surface E 2 is connected, then so is its image under the projection p from 

M~ x R onto the orbit space. Therefore this image can be described by a single regular 

curve 5 in ix  x R that  may start  and/or  end at the boundary and that  can meet the 

boundary only orthogonally. The surface Z 2 ~ M  2 x R can be recovered from 5 by letting 

S0(2) act on its image c:=(-yxid)o5 in M ~ x R .  Moreover, any regular curve s~-+5(s)E 
i~ x R with the proper behavior at the boundary of i x  x R is the generating curve for 

some connected, smooth, rotationally invariant surface E ~ M  2 x R. 

The unit normal field ~ of the surface is best described in terms of its angle function 

s~-+0(s) along the generating curve s~-+5(s)-=(r(s),~(s)), a function that  is defined by 

the equation 

vl ((~t xid)oh)(s) ----- d('y • id)le(s)" (cos 0(s), sin 8(s)). 

We assume that  the generating curve 5 is parametrized by arc length and that  its tangent 

vector is 5'(s)=(-sinO(s),cos0(s)). Our convention is to work with "exterior" unit 

normal vectors and write the Weingarten equation with a "+"-sign, i.e. to write A=DL,. 
In particular, the principal curvature of E ~ in the direction of the meridian c--('y • id)o5 

is given by (O~/Os)(s). 
Using the formula of Meusnier to determine the other principal curvature, it is 

straightforward to compute the second fundamental form hE and the tensor field d~ 2 [~ 

along the meridian c on E 2 with respect to the orthonormal basis consisting of the vectors 

c'(s) and Je'(s): 

(00  Solo 0 ) and d ~ 2 1 z = (  ; 2 c ~  8 00) " (3) h ~ =  
cos(8) ct~ (r) 

Here ct~ stands for the generalized cotangent function;(1) the value ct~(r)  is the curva- 

ture of the circle of radius r > 0  in the surface M 2 of constant curvature x.  

(1) Recall that the generalized cotangent function ct~ is by definition the logarithmic derivative of 
the generalized sine function sn~, which in turn is defined to be the solution of the differential equation 
yH+xy=0 with initial data y(0)=0 and y'(0)=l. 
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2.3. Di f fe ren t i a l  e q u a t i o n s  for SO(2)- invar iant  cmc  sur faces  ~2 

The mean curvature H of a rotationally invariant surface ~ 2 % M 2  x R is given by the 

identity 2 H = t r  A=trg (h2). Thus the preceding considerations yield the following system 

of ordinary differential equations for the generating curve s~-~5(s)= (r(s), ~(s)): 

Or 
- sin 0, 

Os 

0~ = cos 0, (4) 
Os 

O0 
- -  = 2H-cos(0)  ctx(r).  
Os 

The key to solving this system of ordinary differential equations is the observation that  

its right-hand side depends neither explicitly on s nor on ~. The latter property is a 

direct consequence of the fact that  the Euclidean factor in the product spaces M~ x R 

is 1-dimensional. It follows that  the system (4) of ordinary differential equations has a 

first integral. In fact, W.-Y. Hsiang already found that  

L : = c o s ( O ) s n x ( r ) - 2 H  s n x ( t ) d t = c o s ( O ) s n x ( r ) - 4 H s n x ( l r )  2 (5) 

is constant along any solution of (4). 

Remark 2.2. The value of L can be used to characterize the special solutions of (4) 

that  correspond to particularly simple cmc surfaces in M 2 x R: 

(i) If H = 0 ,  there are the totally geodesic leaves M 2 x {(0}. These leaves correspond 

to solutions with ~=~0 and 0=-t-17r, and thus they can be characterized by the condi- 

tion L=0.  

_ 1 ct,~(r0) for some roEIx,  there is the cylinder of radius ro around the (ii) If H - ~  

axis lo. This surface corresponds to solutions with r=ro and 0=0, and thus it can be 

characterized by the condition L = c t x ( � 8 9  ( 2 H + ~ )  -1. 

If x is positive, the vertical cylinders with radius 7r/2v/X have mean curvature 

H - 0 ,  too. Moreover, there exist vertical undoloids with H - 0  that  oscillate around 

these cylinders. These undoloids are discussed from different points of view in [20] and 

in [23, w167 1 and 3]. Together, all these examples give a good indication of how rich the 

class of rotationally invariant minimal surfaces in M~ x R is. 

Furthermore, there is a 2-parameter family of minimal annuli whose level curves are 

geodesic circles which are not rotationally invariant. We expect the quadratic differential 

Q to play a key role in studying these examples. 
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PROPOSITION 2.3. A connected, rotationaUy invariant, immersed cmc surface 

E 2 ~  M~ x R is diffeomorphic to a torus or an annulus, unless the first integral L for its 

generating curve ~ vanishes, or, unless x > 0  and L - - - 4 H / ~ .  

Proof. The orbit structure described in w implies that  any connected, 50(2)-  

invariant surface E2q-~M~ x R is topologically the product of its generating curve 5 in 

i~ • R and a circle, provided that  the generating curve stays in the interior of I~ x R. If 

5 has an end point on the boundary of I~ x R, a disk must be glued to the corresponding 

boundary component of the remaining part  of E 2. 

Inspecting the expression in (5), it is evident that  L must vanish if 5 touches the 

component of the boundary of fx  x R where r - 0 .  If ~ 0 ,  this component is already the 

entire boundary of the fundamental domain I~ x R .  However, if x > 0 ,  the boundary of 

I,~ x R has one further component where r - ~ r / x / ~ .  Clearly, 5 can only reach the latter 

component if L = - 4 H / x .  [] 

Remark 2.4. The components of the boundary of i,~ x R correspond to the compo- 

nents of the fixed-point set of the SO(2)-action. In particular, interchanging the axes l0 

and [0 induces a symmetry of (4) that  interchanges the cases L = 0  and L = - 4 H / x  as 

well. 

2.4.  S 0 ( 2 ) - i n v a r i a n t  c m c  s u r f a c e s  :C29~M 2 x R w i t h  L = 0  

In this subsection we shall see that  a rotationally invariant cmc surface with L--0  does 

indeed intersect the axis Io. Thus, by the argument used in the proof of Proposition 2.3 

the surface E 2 must be either a sphere S 2 or a disk D~.  

Since snx(�89 >0 for any rEI,~, it is possible to rewrite the condition that  the first 

integral L introduced in (5) vanishes as follows: 

cos(0) ct~ (�89 = 2H. (6) 

This equation has a number of important  consequences. 

It shows in particular that  cos0 converges to 0 as r--+0. This property essentially 

reflects the regular singular nature of the system of ordinary differential equations in (4); 

it implies that  the generating curve 5 can only meet the boundary of i x  x R orthogonaIly. 

Hence the cmc surface E 2 is automatically smooth at all the points where it intersects 

the axis 10. 

PROPOSITION 2.5. Let E 2 ~ M ~ x R  be a connected, SO(2)-invariant cmc surface 

with mean curvature H ~O that intersects the axis lo. Then either 

(i) 4 H 2 + x > 0 ,  and E 2 is an embedded sphere S ~ c M 2 x R ,  or 
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H=11075 V/-x , ~ =0"033v/-~ 

1 

Fig. 1. The meridians of the spheres S~/ for x>0. 

(ii) 4 H 2 + x ~ 0 ,  and E 2 is a convex rotationally invariant graph D2H over the hor- 

izontal leaves M~• {~0}, which is asymptotically conical whenever the inequality for 

4H2 q-x is strict. There are two possibilities for the range of the normal angle O; the 

image of sin0 is one of the two half-open intervals [ - 1 , -  sin00) and (sin00, 1], where 

00 := arcsin V/1 +4H2/x .  

The surfaces described in this proposition are the embedded rotationally invariant 

cmc spheres 2 2 S H C M  ~ •  of Hsiang and Pedrosa and their non-compact cousins D2H . 

The meridians generating these cmc surfaces are shown in Figures 1 and 2 for positive 

and negative values of x,  respectively. As indicated in these figures, the surfaces converge 

on compact subsets of M~ • R towards the SO(2)-invariant minimal surfaces described 

in Remark 2.2 (i), provided their mean curvature H approaches 0. Thus it is sometimes 

convenient to denote the leaves M~ • {~o} as S~ and 0 2, respectively. 

Proof. The idea is to evaluate the condition L = 0  at all points of the generating curve 

s~-~(s)=(r(s) ,  ~(s)) that  lie in the interior of fx  • R. Using the monotonicity properties 

of the functions r~-~ctx (�89 defined on the open intervals Ix,  it is easy to determine their 

range, too. Thus one finds that  the pair of inequalities H cos 0>0  and 4H 2 + x  cos 2 0>0  

is a necessary and sufficient condition in order to solve equation (6) for r, and, moreover, 

that  this solution is always unique. 

In particular, identity (6) can be used to eliminate the factor c tx(r )  from the last 

equation in (4); one finds that  

Os -- ( 4 H 2 +x c~  0)" (7) 
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H =  0.87x/-:--~ 

\ 
H =  0.66 x/'L-~ 

/ 
H =  0.5x/-2-~ 

/ 

H =  1.15 ~L---~ 

o3 

H -  0.33v/-2-~ 
r 

. ~ H = 0 . 1 2 v  - / -x  

01 3 r 

Fig. 2. The meridians of the spheres S~/ and the disk-like surfaces D~/ for x < 0 .  

The right-hand side of this differential equation is uniformly bounded, and thus its solu- 

tions are defined on the entire real axis. As explained above, HcosO(s)>O for all points 

~(s) on the generating curve that  lie in the interior of Ix  x R. By equation (6), the curve 

5(s) approaches the boundary component of i x  x R corresponding to the axis l0 whenever 

cos O(s) converges to 0, and the points on ~ that  lie in the interior of I,, x R correspond 

to a maximal interval (s l, s 2 ) c R  such that  H cos O(s)>0 for all s E (s l, s2). 

The discussion gets much more intuitive when observing that  the angle function 0 

can be used as a regular parameter  on ~. In order to see this, we recall that  by our 

analysis of equation (6) we have 4H2+xcos20>O. Thus by equation (7) the principal 

curvature O0/Os has always the same sign as the mean curvature H.  In particular, 0 is 

a strictly monotonic function of s. The same holds for the function sin0. It remains 

to analyze whether the image of (sl, s2) under sin0 is the entire interval ( -1 ,  1) or just 

some subinterval thereof. 

If 4 H 2 + x > 0 ,  equation (7) implies that  O0/Os is bounded away from zero. Hence 

the range of sin 0 is the entire interval [-1,  1], and the generating curve ~ is an embedded 

arc that  begins and ends at the boundary component of i x  x R corresponding to the 

axis 10. Thus by the argument in the proof of Proposition 2.3, the surface must be a 

sphere. 
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If 4 H 2 + x E 0 ,  the condition 4 H 2 + x c o s 2 0 > 0  implies that  sin0 does not vanish 

anywhere along 5. In fact, sin 0 ~ [-  sin 00, sin 00], where 00:= arcsin v / l +  4H2/x,  and the 

function O(s) is asymptotic to one of the stationary solutions 00 and -00 of equation (7). 

This explains the claim about the range of the normal angle 0, and again, reasoning as 

in the proof of Proposition 2.3, the surface must be homeomorphic to a disk. 

Moreover, if 4 H 2 + ~ < 0 ,  the asymptotic normal angle 0o is different from 0. In 

other words, sin O(s) is bounded away from 0, and thus the radius function r is a regular 

parameter for the generating curve ~ as well; the range of this parameter is the entire 

half-axis I ~ =  [0, e~). Finally, equation (7) implies that  

~s (sin 00 - sin O(s))(sin 00 +sin O(s)). 
X 

( 0 ( s ) + 0 0 )  = 

Hence O(s) converges exponentially to 00 and -00, respectively. Thus the generating 

curve 5 has real asymptotes rather than merely some asymptotic slope, and the generated 

surface is asymptotically conical as claimed. 

On the other hand, if 4 H 2 + x = 0 ,  we find that  00=0, and O(s) decays only like 

O(1/s). In particular, the integral f~s in0(a)d~r  does not converge; hence in this case 

there do not exist any asymptotes. Yet, the radius function r is still a regular parameter 

along ~, and its range is still the entire half-axis Ix=J0,  co). [] 

Remark 2.6. W.-Y. Hsiang has already computed both the area and the enclosed 

volume of the embedded cmc spheres S~ C H 2 x R. In [20] Pedrosa has extended these 

computations to embedded cmc spheres S}  C S2x R,  and has then used this information 

to determine candidates for the isoperimetric profiles of the product spaces M~ x R.  

PROPOSITION 2.7. Let E2q-,M~ x R be a connected, rotationaUy invariant cmc sur- 

face that intersects the axis lo. Then the traceless part of the tensor field q introduced 

in (1) vanishes identically, and so does the quadratic differential Q of E 2. More pre- 

cisely, 

q=2Hhz-xd~21r .  = (2H 2 -~x l  cos20)g, (8) 

where g denotes the induced Riemannian metric on the surface E 2. 

As pointed out in the introduction, it is this simple proposition that  has been the 

key to finding the proper expression for the quadratic differential of cmc surfaces in the 

product spaces M~ x R. 

Proof. If H = 0 ,  we consider some point ~(s) on the generating curve where the 

surface intersects the axis lo. At such a point snx(r(s))=0,  and thus L=0.  It follows 

from (6) that  cos0(s)=0, and therefore E 2 must be one of the totally geodesic leaves 
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M~ x {~0} described in Remark 2.2 (i). For these surfaces equation (8) holds, as both its 

sides evidently vanish identically. 

If H ~ 0 ,  we may simplify the expression for the second fundamental form h~ from (3) 

using equations (4) and (7): 

{' H +  ( x / 4 H)  cos 2 t? 
h~. 

0 

o ) 
H - ( x / 4 H )  cos 20 " 

(9) 

Combining this formula with the expression for d~21r, from (3"), we again arrive at equa- 

tion (8). [] 

Remark 2.8. The rotationally invariant cmc spheres S2H c M  2 x R of Pedrosa are not 

convex if 0 < 4 H 2 < x .  In fact, the principal curvatures computed in (9) have opposite 

signs at all points on S2H c M 2 x R that  are closer to the antipodal axis [0 than to 10 

itself. 

2.5. SO(2)- invar iant  cmc  sur faces  E2q-~M~ 2 X R of  catenoidal type 

In this subsection we are going to describe another family of rotationally invariant cmc 

surfaces with vanishing quadratic differential Q. For this purpose we study the solutions 

of (4) with first integral L = - 4 H / x .  

In case x > 0 ,  the surfaces corresponding to solutions with L : - 4 H / x  are precisely 

the surfaces that  intersect the antipodal axis i0 rather than 10. As explained in Re- 

mark 2.4, they are congruent to the spheres that  correspond to the solutions with L = 0  

and that  have been studied by Pedrosa. 

In case x < 0 ,  however, the surfaces obtained from the solutions of the system (4) of 

ordinary differential equations with L = - 4 H / x  are obviously not congruent to the cmc 

spheres of Hsiang, anymore. Yet, it is conceivable that  they still have Q=0.  We shall 

establish this property in Proposition 2.10. Using the expression for the first integral 

from (5), the condition L = - 4 H / x  reads 

O= xcos(O)sn~(r)+4H[1-~sn~,(�89 

In particular, we find that  the radius r is bounded away from 0, and hence we may 

rewrite this equation in a form similar to (6): 

-xcos =2 ct.(�89 (6ca t )  

In fact, there is an extremely close relationship between the equations (6) and (6cat). 
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H=O 033 x/-Z-x 

H=0.275 

Fig. 3. The meridians of the surfaces C ~  of catenoidal type. 

For instance,(2) either one of them implies that  

1 x ctx( r )  = ~ (ctx(�89 r) - x ct~(�89 r ) -  1) = H cos - I  0 -  ~-~ cos 0. 

Inserting this expression into the third equation in (4), we obtain of course the same 

differential equation for 0 as in the proof of Proposition 2.5: 

00 
--  1 H- ( 4 H  2 +>c  cos  2 0).  (7cat)  

Thus it should not be surprising that  most arguments in the proof of Proposition 2.5 can 

be carried over to this situation. As explained above, we are only interested in studying 

the case x < 0 .  

PROPOSITION 2.9. Let x < 0 ,  and let E2c~-~M~• be a connected, SO(2)-invariant 

cmc surface whose generating curve can be described as a solution of (4) with first inte- 

gral L = - 4 H / x .  Then the surface is an embedded annulus C 2 with two asymptotically 

conical ends. It  is generated by rotating a strictly concave curve with asymptotic slopes 

dr/d~=7:tanOo, where Oo:=arccos(2H/v/-Zx ). Moreover, the range of 0 is the inter- 

val (-0o,  0o). 

(2) Another consequence of either one of equations (6) and (6cat) is tha t  the Pfaffian 

(4H 2 + x cos 20) dr + 4 H  sin(0) dO 

vanishes along the corresponding solutions of (4). This in effect explains how to recover  (6) and (6cat) 
and thus eventually the system (4) of ordinary differential equations from the differential equations (23) 
when doing the classification in w 
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The name C~ has been picked for this family of surfaces, since their shapes resemble 

the shape of a catenoid or rather the shapes of the analogous surfaces in hyperbolic 3- 

space. We shall refer to them as the rotationally invariant cmc surfaces of catenoidal type. 

When H approaches zero, they converge to the double covering of some leaf M 2 • {~0} 

with a singularity at the origin. This collapse is indicated in Figure 3; it is pret ty similar 

to the collapse of the minimal catenoids described in [23, w and [19]. 

Proof. Since r E I x  by construction and since ~ < 0  by hypothesis, equation (6cat) 

implies that H cos 0 > 0 and 4H 2 + x cos 2 0 < 0. Hence the maximal existence interval for 

the solutions of the differential equation (7c~t) is the entire real axis. The range of the 

function s~-+t~(s) is as claimed, and--because  of the first two equations in (4)--al l  the 

other assertions are straightforward consequences hereof. [] 

PROPOSITION 2.10. Let x < 0 ,  and let E2q-~M~ 2 •  be a connected, SO(2)-invariant 

cmc surface whose generating curve can be described as a solution of (4) with first inte- 

gral L = - 4 H / x .  Then the traeeless part of the tensor field q introduced in (1) vanishes 

identically, and so does the quadratic differential Q of E 2. More precisely, 

2 H h E -  xd~2iE = (2H 2 -  �89 2 0) g. 

Proof. The proof of Proposition 2.7 only uses equations (3), (4) and (7). The first 

two of these sets of formulas are clearly valid in the present context as well. Moreover, 

the differential equation for 0 obtained in (7cat) happens to coincide with (7), as has been 

observed beforehand. Thus the proof of Proposition 2.7 carries over verbatim. [] 

3. D-operators,  quadrat ic  differentials and Codazzi  equat ions  

The purpose of this section is to prove Theorem 1. In other words, we want to compute 

the cg-derivative of the quadratic differential Q defined in formula (2) in w and verify 

that  cgQ indeed vanishes identically. The key ingredients for this computation are, firstly, 

a formula that  expresses the 0-operator in terms of covariant derivatives and, secondly, 

the Codazzi equations for surfaces Z 2 in the product spaces M 2 • R. These are somewhat 

more complicated than the Codazzi equations for surfaces in space forms. Yet, all this 

is still essentially standard material, and so we shall summarize the necessary details in 

Lemmas 3.1 and 3.4 as we go along. 

3.1. G e o m e t r y  and complex  analysis  on R i e m a n n  surfaces 

In this subsection we recall the basic facts about the complex analytic structure on 

the surface (E 2, g). In particular, we explain how the 0-operator that  comes with this 
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complex structure is related to covariant differentiation. Passing to a 2-fold covering 

if necessary, we may assume that  E 2 is oriented. Thus there exists a unique almost 

complex structure J E C ~ ( E n d  TE 2) that  is compatible with the Riemannian metric g 

and the given orientation. 

A celebrated theorem first stated by C.F.  Gauss [10] guarantees the existence of 

isothermal coordinates. In such a coordinate chart ~: UCE 2 - + C = R  2 the almost complex 

structure J is given as multiplication by i, and the metric g is of the form e2~go for some 

C~-funct ion A: U-+R;  here we have used go to denote the standard Euclidean metric 

on R 2. The transition functions between such charts are clearly orientation-preserving 

conformal maps, and are thus holomorphic. In other words, the existence of isothermal 

coordinates turns the surface (E2 ,J )  into a complex 1-dimensional manifold E. Its 

complex tangent bundle TE, its cotangent bundle K : = T * E  and all its tensor powers 

K | a r e  thus holomorphic line bundles. In other words, these are complex vector bundles 

that come with a natural cS-operator. 

By construction, the quadratic differential Q of an immersed cmc surface E2%~ 

M~ • R is a section in a subbundle of the bundle of complex-valued symmetric bilinear 

2-forms on the real tangent bundle of E 2, a subbundle that  can be canonically identified 

with K | As mentioned above, we want to express the cg-operator in terms of the Levi- 

Civita connection V associated to the Riemannian metric g. The basic link between 

the real and the complex picture is the fact that  on Riemann surfaces V J  vanishes(3) 

identically. 

LEMMA 3.1. Let ~ c C ~ ( K |  m E Z ,  be a section in the m-th power of the canon- 

ical bundle on a Riemann surface (E2 ,g , J ) .  Then 0~? can be computed in terms of 

Riemannian covariant differentiation as follows: 

(0~)(X) = l ( V x ~ + i V g x ~ )  for all X e C ~ ( T E 2 ) .  (10) 

The lemma is an immediate consequence of a couple of basic facts. Firstly, whenever 

a holomorphic vector bundle E over some complex manifold is equipped with a Hermitian 

inner product g, there exists a unique metrical connection V such that ( c~ ) (X)=  �89 (Vx~ § 

iVjxU).  This connection is known as the Hermitian connection of (E, g). On the tangent 

bundle of a Kiihler manifold the Hermitian connection V coincides with the Levi-Civita 

connection (see [24]). The extension of this identity to arbitrary tensor powers is then 

done using the standard product rules for V and V. 

(3) In the higher-dimensional case this fact does not hold anymore for an arbitrary complex manifold 
with a Hermitian inner product on the tangent bundle. In fact, the condition V J=0 is one way of saying 
that ( M n, g, J) is KEhlerian. 
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By definition the cS-operator depends only on the almost complex structure J, i.e. on 

the conformal structure and the orientation, whereas V depends also on the choice of 

the metric g representing the conformal class. Clearly, this dependence must cancel 
when taking the particular linear combination of covariant derivatives appearing on the 

right-hand side of (10). This observation can be used to verify the lemma directly. 

Elementary proof. By the very definition of the c~-operator, formula (10) holds in 

isothermal coordinates provided that  covariant differentiation is replaced by Euclidean 

differentiation d with respect to that  particular isothermal chart. In such a coordinate 

system the metric is by definition conformal to the Euclidean metric go, i.e. g=e2~go, 

and the Christoffel formula specializes to 

Vx Y - d x  Y = dx )~. Y + dy )~" X - g o (  X, Y)  gradgo/k. 

Because of the product rules for c5 and V it is sufficient to handle the case m = 1. For this 

purpose we consider a C-valued 1-form ~ of type (1,0). This means that  ~(JY)=iT](Y), 
i.e. that  7/represents a section of the complex cotangent bundle K=T* E. Thus a straight- 

forward computation based on the Christoffel formula shows that  

2(0~) (X; Y ) -  (Vx~?.Y+iVjx~?.Y) = (dxrl-Vxrl)"Y +i(djxTl-VJXrl)"Y 

= r/(Vx Y -  dxY)  +iTl(~7jxY- d j x Y )  

= (dx)~+idjx)~)" ~(Y) +dy)~. (,](X)+i~(JX)) 

-(go(X,  Y)+igo(JX,  Y)) r/(gradgo A) 

= go (X, gradg ~ ~) r/(Y) +go (JX, gradgo A) 7I(JY) 

- go (X, Y) 7/(gradg ~ ,k ) - go (gx,  Y)  r I ( J gradgo & ). 

In order to explain the third equality sign, we simply observe that  the coefficient of the 

factor dyA vanishes, as ~ is of type (1, 0). Picking an orthonormal basis el, e2=Jel such 

that  Y is a multiple of el, we find that  

go(X, Y) ~(gradgoA ) = go(X, ea)go(e,, gradgoA) ~(Y) 

+ go (X, el) go (e2, gradg o )~) ~(JY),  

go( gX, Y)~](g gradgo A) = go( gX, el)go(el, gradgo A) ~(JY) 

- go (JX, el) go (e2, gradg 0/~) ~](Y). 

These identities reveal that  the last line in the preceding display does indeed vanish. [] 
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3.2. S u r f a c e  t h e o r y  in t h e  p r o d u c t  spaces  M ~  x R 

There are two aspects in which the surface theory in the product spaces M 2 • R differs 

significantly from the surface theory in space forms. Firstly, there is the global parallel 

vector field grad~, and secondly the Codazzi equations are more involved. Except for 

some inevitable changes caused by these differences, the computation of the c%derivative 

c~Q of the quadratic differential introduced in formulas (1) and (2) follows the same basic 

pat tern as the corresponding computation in the case of space forms. Clearly, 

Q(YI, Y2) = H ( (Y~, AY2} - ( JY1, AJY2} ) 

- i H  ( ( JY~ , AY2} + (Y1, AJY2) ) 

- �89 g(d~(Y1) d~ (Y2) -d~(JY~) d~(JY2)) 

+ l ix(d~(JY1) d~(Y2) +d~(Y1) d~(JY2)). 

(11) 

Remark 3.2. Since the quadratic differential is a field of type (2, 0), its 0-derivative 

cSQ is a field of type (2, 1), i.e. c~Q is a section of the bundle K|174 This means in 

particular that  

OQ(X; JY1, Y2) = OQ(X; Y1, JY2) = iOQ(X; Y~, ]I2), 

OQ( JX; Y1, Y2) = - iOQ(X; Y1, Y2). 

In other words, cSQ is invariant under some T3-action, and we are going to arrange the 

terms in the subsequent computations accordingly. 

The differential d~ of the height function is clearly a parallel 1-form with respect to 

the Levi-Civita connection D of the target manifold M2~ x R. However, its restriction is 

not parallel with respect to the induced Levi-Civita connection V on the surface; one 

rather has the following result: 

LEMMA 3.3. The covariant derivative of the restriction of d~ to any surface E2%~ 

M~ • R can be expressed in terms of the gradient of the height function ~, the unit normal 

field v of the surface, and its Weingarten map A=D~ as follows:(4) 

Vx (d~). Y = - (u, grad ~} (X, AY) ,  

For intuition, we think of the term d~(u) = (u, grad ~) as the sine of some angle 0. 

(4) The symmetric endomorphism A=Dv is sometimes also called the shape operator, and the 
associated bilinear form is the second fundamental form hE. 
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Proof. Extending Y to a tangential vector field, a straightforward computation shows 

that  

Vx (d~). Y = dx (d~. Y) - d~(Vx Y) 

= Dx(d~) 'Y+d~(DxY-VxY)  

= Dx (d~).Y+d~(u)(u, DxY) 

= Dx (d~). Y -  (u, grad ~)(X, AY). 

The lemma follows when taking into account that the vector field grad ~ is globally 

parallel, i.e. that  Dx(grad~) and Di(d~) vanish. [] 

Differentiating formula (11) using Lemmas 3.1 and 3.3, we find that  

OQ(X; Y1, ]I2) = HT1 (X; I/"1, ]I2)+x(u, grad ~)T2(X; 111, Y2), (12) 

where 

1 [(ii1, VxA.Y2)-(JY~, VxA.JY2) T~(X; Y~,Y2) := ~ 

+ (JY1, Vjx  A. Y2) + (Y1, VjxA.  JY2)] 

- �89 [(JY1, VxA.Y2)+ (]I1, VxA.  JY2) 

- (YI, VjxA.  Y2} + (JY1, VjxA.  JY2)], 

1 [(Y1, AX)d~(Y2)+d~(Y1)(AX, Y2} T2(X; Y1, ]I2) := 

- (JY~, AX} d~(gY2) -d~(JY~)(AX, JY2) 

+ (JY1, AJX) d~(Y2) + d~(gY1) (AJX, Y2} 

+ (Y~, AJX) d~(JY2) + d~(Y1)(AJX, JY2 }] 

- �88 [(JYI, AX} d~(Yz)+d~(JY~)(AX, Y2} 

+ (]I1, AX) d~(JY2) + d~(Y1)(AX, JY2) 

- (Y1, AJX) d~ (Y2) - d~(Y1)(AJX, Y2} 

+ (JY1, AJX} d~(gY2) + d~(JY~)(AJX, JY2}]. 

Clearly, T1 is just four times the (2, 1)-part of VA. It is the same expression that  appears 

when proving that  the standard Hopf differential for cmc surfaces in space forms M 3 is 

holomorphic. It will be evaluated in Lemma 3.5 using the Codazzi equations. 

The other term, however, is new. Since in dimension 2 the traceless part A0 of 

the Weingarten map anticommutes with the almost complex structure J,  it follows that  
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the tensor T2 depends only on the mean curvature H but not on the traceless part  

Ao:=A-H.id of the Weingarten map A. Thus 

r 2 ( x ;  Y1, g2) = Hr~ed(x; ]I1, Y2), (13) 

where 
1 [(II1, X)dE(Y2)+dE(YI)(X, 112) ~ (X; Y1, Y2) = 

-(JY1, X)d~(JY2) - dE(JY1)(X, JY2)] 
(14) 

- �89 [(JZl, X)  d~ (Y2) + d~(JY1)(X, Z2) 

+ (Ya, X) d~(JY2)+dE(Y~)(X, JY2)]. 

The expression on the right-hand side in this formula is actually the simplest tensor of 

type (2, 1) that  can be constructed from ( . , . )  d~ and that  is symmetric with respect to 

interchanging Y1 and Y2. 

LEMMA 3.4. The Codazzi equations for surfaces E2q-*M~xR are 

( V x A . Y - V y A . X ,  Z) = (RD(X, Z)u, Z) 

= x(u,  grad E)((Y, Z) dE(X) - (X, Z) dE(Y)). 

Here R D denotes the Riemannian curvature tensor of the product space M 2 • R, 

and, with our sign conventions, the Weingarten equation is A=Du, and the sectional 

curvature K of a 2-dimensional subspace in T(M~ • R)  is given by K(span{X, Y } ) =  

IIXAYII-2 (RD(x, y ) y ,  X). 

Proof. In principle the first half of the claimed formula is well known. However, in 

order to make sure that  the sign of the curvature term is correct, it is easiest to include 

the short computation. Working locally, we may assume that  E 2 is embedded, and thus 

we may extend X,  Y and u as smooth vector fields onto a neighborhood of the surface: 

( V x A . Y - V y A . X ,  Z) = ( V x ( A Y ) - V y ( A X ) - A [ X ,  Y], Z) 

= ( D x ( A Y ) - D y ( A X ) - A [ X ,  Y], Z) 

= (Dx(Dy~)-Dy(Dxu)-D[x,y]U, Z) 

= (RD(X, Y ) . ,  z ) .  

The second equality sign in the claimed formula is obtained upon computing the 

curvature tensor R D for the product manifolds M~ • R. Indeed, the bilinear form g-dE 2 
represents the metric on the leaves M~ x {E0}; hence 

R D = • 2) @(9-d~ 2 ) = ~(g@g-2g| 
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Like in the case of space forms, the tensor g@g vanishes on the relevant combinations of 

arguments, and therefore 

(R~(x, Y)., z> = -2~g| Y;., Z) 
= - x [ ( X ,  Z) d~(Y) d~(u)- (Y, Z) d~(X) d~(v) 

- (X, v) d~(Y) d~(Z) + (Y, u) d~(X) d~(Z)] 

= >r grad ~)((Y, Z)d~(X)- (X, Z) d~(Y)). [] 

LEMMA 3.5. For cme surfaces E 2 % * / 2 x R  the tensor field 7"1 introduced in the 

context of formula (12) can be evaluated as 

7'1 (X; Y1, II2) = - x ( u ,  grad ~) T~ ed (X; Y1, Y2), 

where T~ ed is the field introduced in (14). 

Proof. On cmc surfaces it is evident that  the tensor VwA is traceless and therefore 

anticommutes with the almost complex structure J for any vector w ET~ 2. We conclude 

that  the real part of T1 can be rewritten as 

Re T1 (X; YI, Y2) = (Y1, Vx  A.Ye)+(JY1, V j x  A.Y2), 

and that the sum (]I1, Vy2A'X)+(JY1,  Vy~A.JX)  vanishes for all vectors X, Y1 and Y2. 

Subtracting this sum from the expression for Re T1, we may use the Codazzi equa- 

tions from Lemma 3.4 in order to evaluate the differences (]I1, VxA.Y2-~Ty2A'X)  and 

(JY1, ~7 jxA 'Y2-VY2A 'JX) .  Hence we find that  

Re T1 (X; ]I1, Y2) = x (v, grad ~) [(Y1, ]I2/d~(X) + (JYI, ]I2) d~(JX) - 2 (X, ]I1) d~(Y2)]. 

By construction, T1 is a tensor field of type (2, 1). Firstly, this implies that  TI (X;Y1, Y2)= 

-T I  (X; JY1, JY2), and thus 

Re T1 (X; ]11, ]I2) -- 1 [Re T1 (X; Y1,112) - Re T1 (X; JY~, JY2)] 

= x (v, grad ()[(X, JY1) d~(JY2) - (X, Y~) d~(Y2)]. 

Moreover, the field T1 is clearly symmetrical with respect to the permutation of Y1 

and Y2, and thus we may symmetrize the right-hand side accordingly. We conclude that  

Re T 1 - - - x  (u, grad ~} Re T~ ed, as claimed. Referring to the invariance properties of type 

(2, 1)-tensors one more time, we can deduce that  the imaginary parts are equal, too. [] 
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Proof of Theorem 1. Combining equations (12) and (13), one obtains 

OQ = H[T1 + x(/2, grad ~)T~ed], 

and by Lemma 3.5 the expression on the right-hand side of this equation vanishes. [] 

Remark 3.6. The proof of Theorem 1 is much more robust than it might appear at 

first: The tensors T1, T2 and T~ ed are the (2, 1)-parts of basic geometric objects like VA or 

the tritinear form (-,-  } d~. When applying the Codazzi equations to T1, we evidently ob- 

tain a tensor of type (2, 1) that  is a sum of terms of the form ~ (u, grad ~ } ( . , . )  d~. The up- 

shot of such structural considerations is that  cSQ must be a multiple of ~H(u,  grad ~) T~ ed 

with some factor that  is a universal constant. 

There is also an independent argument that  this constant factor must indeed be zero. 

One simply considers the rotationally invariant cmc spheres S~ C M~ • R of Hsiang and 

Pedrosa, and observes that  their quadratic differential Q vanishes identically. Therefore 

(~Q-0, too. On the other hand, however, neither the function xH(v,  grad ~) nor the field 

T~ ea vanish on any set of positive measure in S2HCM 2 x R .  

4. C m c  sur faces  w i t h  van i sh ing  quadratic differential Q 

Our goat is to classify the cmc surfaces E2q-~M~ x R with vanishing quadratic differen- 

tial Q ,  unless H and ~ vanish simultaneously. By the very definition of the quadratic 

differential Q in equations (1) and (2) we shall in effect classify complete surfaces in 

M~ • R such that  

2Hh~-~d~| = (2H 2 1 2 -~ l l d~ lE[ I  )g. (15) 

At this point it gets very clear why we have to exclude the case when H and x vanish 

simultaneously; the preceding condition holds trivially despite the fact that  there is an 

ample supply of interesting minimal surfaces in Euclidean 3-space. 

The remainder of the minimal surface case on the other hand is easy: if H = 0  

and x r  it follows directly from equation (15) that d~Qd~]~ =0, and thus d~lz vanishes 

identically. Therefore E 2 must be a totally geodesic leaf M~ x {~0}. These considerations 

tie in nicely with the fact that  by general theory the height function ~ has to be harmonic, 

provided that  E 2 is compact. 

From now on we shall concentrate on the case H~O. In this case equation (15) can 

be solved for the second fundamental form hE. Clearly, for any surface E 2 ~ M ~ •  

the vector fields (grad ~) t an  :=grad ~ -  (u, grad ~) u and J .  (grad ~) t an  a r e  principal direc- 

tions. This implies that  (/2, grad ~) and tl (grad ~ ) t a n  II 2 = 1 - -  (/2, grad 4} 2 are constant along 

horizontal sections, and that,  moreover, these level curves have constant curvature. 
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The proper way to formalize the t rea tment  of equation (15) is to prolong the system 

once and interpret (15) as a problem about  integral surfaces of a suitable distribution EH 

in the unit tangent bundle of M~ x R. This prolongation will be defined in w In w 

we reap the easy consequences tha t  are implied by the still fairly large isometry groups 

of the product spaces M~ x R in the presence of the rotationally invariant examples 

described in w The properties of the distribution EH will then be analyzed in full detail 

in w based on the simple observations described in the preceding paragraph.  The 

argument  culminates in the proof of Theorem 3 at the end of this section. 

4.1.  T h e  G a u s s  s e c t i o n  o f  c m c  surfaces  w i t h  Q _ 0  

In order to handle equation (15) in the non-minimal case in a conceptually nice way, we 

find it bet ter  not to work with the immersion F:  E2q-~M 2 x R itself, but to think of the 

unit normal field v as the primary unknown. It  will be easiest to consider the Gauss 

section v simply as an immersion of E 2 into the total  space N 5 : = T I M  3 of the unit tan- 

gent bundle of the manifold M 3 := M~ • R.  Clearly, F=Trov,  where 7r N 5 =TIM 3--+M 3 

denotes the s tandard projection map. Thus the immersion F can be recovered, once its 

lift ~: E2q-~N 5 is known. 

It  is well known that  any affine connection on a manifold M can be understood 

as a vector bundle isomorphism TTM--+~r*(TMGTM) which identifies the bitangent 

bundle T T M  with a more familiar vector bundle over TM. In particular, the Levi-  

Civita connection D on M3=M~ x R induces an injective bundle map 

~2D: TN  5 > 7r*(TM30TM 3) (16) 

such that  

for any smooth curve s ~-~ ~(s)E N 5. The image of this map is the 5-dimensional subbundle 

given by 

OD(TvN 5) = {(wl, w2) ET~(v)M3@T~(v)M 3 [ <v, w2> = 0}. 

With  these preparat ions it is now possible to translate the classification problem 

for cmc surfaces in M 3 : = M ~ x R  with mean curvature H ~ 0  and vanishing quadratic 

differential Q into the classification problem for integral surfaces of some 2-dimensional 

distribution EH c T N  5. 

PROPOSITION 4.1. Let E 2 % * M 3 = M  2 •  be a cmc surface with Hr and vanish- 

ing quadratic differential Q. Then its Gauss section v: E2--+ N5:=TIM 3 is necessarily 
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an integral surface of the 2-dimensional distribution EH c T N  5 given by 

d2D( (EH)v) --~ { (W, Av'w) l w �9 v• 

where 

A v . w : _  - ~H (w, (grad~)tan)(grad~)tan+ [ H _  4-HX 1 ( - (v, grad ~)2)] ( w -  (v, w) v) 

for all w �9  3, and where (g rad~) tan :=grad{- (v ,  grad{)v.  

Conversely, for any number H r an integral surface of the distribution EH neces- 

sarily projects onto a surface E 2 ~  M 2 x R with constant mean curvature equal to H and 

with vanishing quadratic differential Q. 

In this proposition we do not claim yet that  any of the distributions EH with H e 0  

are integrable. 

Proof. Each unit vector v clearly lies in the kernel of the corresponding symmetric 

endomorphism A~ introduced in the proposition. Moreover, the restriction of Av to v • 

is precisely the tensor that  one obtains when solving equation (15) for the Weingarten 

map of the surface Z:  ~ M  2 x R, provided that  v is chosen to be the unit normal vector 

u at the point under consideration. 

Thus the proposition immediately follows when reading this expression with the 

Weingarten equation A = D u  and with the definition of the isomorphism (I) D in mind. [] 

4.2. Symmetr i e s  of  the  d is tr ibut ions  EH 

In many cases the integral surfaces of the distribution E H  c T N  5 can be determined quite 

easily using the invariance properties of EH, and the symmetry properties themselves 

can be established without much effort, too. 

In fact, there is an induced action G x Nb--+N 5 of the 4-dimensional Lie group G:= 

Isomo(M~ 2 x R )  on the unit tangent bundle Nb:=TI(M 2 x R ) .  Since the vector field 

grad ~ is even invariant under all isometrics of M~ x R that  preserve the orientation of 

the second factor, it is clear that  the function 
1 

O : N  5 - -+  [-~Tr, �89 (17) 

v, > arcsin(v, grad~) 

is invariant under the action of G on N 5. Since the isotropy group Gx at any point 

x �9 M 2 x R acts on Tx (M 2 x R) as the group of rotations preserving (grad ~)ix, it follows 

that  the function O separates the G-orbits in N 5. The fibers over -�89 and ~7rl correspond 

to 3-dimensional singular orbits with isotropy group isomorphic to S0(2), whereas all 

other fibers of (9 correspond to regular orbits; the principal isotropy group of the G- 

action on N 5 is trivial. 
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LEMMA 4.2. For any H ~O the distribution E H C T N  5 introduced in Proposition 4.1 

is invariant under the action of G = I s o m 0 ( M 2 •  

Proof. We may think of v as a G-invariant section of ~*TM 3, where 7I denotes 

the canonical projection N b = T 1 M 3 - + M 3 = M  2 •  From this point of view, the fields 

(grad~) tan and Av are G-invariant sections of 7r*TM a and ~*End(TM3),  respectively. [] 

PROPOSITION 4.3. Suppose that 4 H 2 + x > 0  and H~O. Then the distribution 

E H C T N  5 introduced in Proposition 4.1 is integrable, and all its integral surfaces are 

congruent to Gauss sections of the embedded rotationally invariant cmc spheres S2H C 
M2~ x R.  

This proposition actually proves the part of Theorem 3 about the classification in 

the case that  4 H 2 + x > 0 .  

Proof. Let voEN 5 be arbitrary. The monotonicity properties established in the 

proof of Proposition 2.5 (i) show that  there exists some point 5(So) on the generating 

curve of the sphere S~t CM~ • R such that  O(vo)=O(So)=O(v(So)). Thus there exists an 

isometry t b c G = I s o m 0 ( M ~ x R )  that  maps the point 5(So) to the foot point 7r(v0), and 

v(so) to vo itself. 

By Proposition 2.7 the quadratic differential Q of the sphere S 2 vanishes. Thus 

Proposition 4.1 implies that  the Gauss sections of S~ and of all its isometric images are 

integral surfaces of the distribution EH, and the Gauss section of r is an integral 

surface through the given point v0 C N 5. [] 

PROPOSITION 4.4. Suppose that 4 H 2 §  and H~O. Then the distribution 

E H C T N  5 introduced in Proposition 4.1 has complete non-compact integral surfaces 

through any point voEN 5 such that 4 H 2 + x c o s 2 0 ( v 0 ) ~ 0 .  These integral surfaces are 

congruent to the Gauss sections of 

(i) one of the non-compact cousins 2 2 D H C M ~ x R  of the rotationally invariant cmc 

spheres S~ c M 2 x R ,  or 

(ii) one of the embedded, rotationally invariant cmc surfaces C 2 c M 2 x R of cate- 

noidal type. 

The first case occurs if  and only if 4H2 + xcos20(vo)>O, whereas the second case 

occurs if  and only if  4H 2 + x cos 2 0  (vo) < 0. 

Proof. The argument is essentially the same as in the proof of the preceding propo- 

sition. Note that  by hypothesis, 4H 2 § x cos 2 0  (vo) is non-zero. 

Looking at the ranges of the angle function sF-~O(s) that  have been determined in 

Propositions 2.5 (ii) and 2.9, we see that  there exists a point 5(so) on either the generating 

curve of D~,  or the generating curve of C~ such that  O(vo)=O(so)=O(v(So)). Thus 
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there exists an isometry C E G = I s o m 0 ( M ~ •  that  maps the point 5(s0) to the foot 

point lr(v0), and ,(s0) to v0 itself. 

By Propositions 2.7 and 2.10 the quadratic differentials of both kinds of surfaces 

vanish identically, and so we have identified the integral surface through v0 as the Gauss 

section of D 2 and C~,  respectively. [] 

The preceding proposition, however, does not finish the proof of Theorem 3. This 

is so despite the fact that we have identified the integral surfaces of the distribution EH 

through an open dense set of points v E N 5. 

It remains to study the distribution EH on the hypersurface in N 5 given by the 

equation 4 H 2 + x c o s 2 0 = 0 .  As we shall see in the next subsection, the integral surfaces 

of EH that  are contained in this hypersurface are not congruent to the Gauss section of 

any rotationally invariant cmc surface in M 2 • R. 

4.3. I n t e g r a l  su r faces  o f  EH 

In this subsection we shall determine all integral surfaces of the 2-dimensional distri- 

bution EH in the unit tangent bundles N 5 of the product spaces M3--M2•  in a 

systematic way. 

The idea is to compute the integral curves of some distinguished vertical and hori- 

zontal vector fields el and @2. The properties of these integral curves will then be used in 

Proposition 4.8 to verify that  EH is integrable and that  each of its integral surfaces is in- 

variant under some 1-parameter group of isometrics. This will give us a unified approach 
to the classification result stated in Theorem 3. 

The union of the regular orbits under the action of G--Isomo(M~ •  is the open 

dense subset N5:=Tr-1((-�89 �89 The vector fields v and grad~ are linearly inde- 

pendent at all points in N 5. Applying the Gram-Schmidt  process, we thus obtain two 
adapted orthonormal bases of 7r*TM31N3 that  are compatible with the given orientation 

of M 3 = M ~ •  and that  depend smoothly on the foot point v. The first one is of the 

form grad 0 0 0 ~,el,e2=Joel, where Jo denotes the (almost) complex structure of the leaf 

M 2 C M2~ x R and where 

1 (v, grad ~> grad ~) (18) cO := co e (v -  

denotes the horizontal unit vector in the plane spanned by v and grad ~ that  has positive 

inner product with v. The other adapted frame is of the form v, el,  e2; it is given by 

1 1 
el := (grad ~)tan - (grad ~ -  (v, grad ~) v), 

cos 0 cos 0 (19) 

e 2 : - - ~ v x e  1 . 
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It follows directly from the definition of the distribution EH in Proposition 4.1 that  the 

vector fields el and e2 defined by 

= cos O)e ), 
(20) 

X 2 �9  cos 

are a smooth basis for EHIN~. 

Our plan is to compute the integral curves of these two vector fields and then use 

this information to recover the integral surfaces of EH. For these computations it will 

be useful to note that  
v = sin(O) grad ~+cos(O) e ~ 

el = cos(O) grad ~ - s in (O)  e ~ (21) 

e 2 = - - e  0 .  

LEMMA 4.5. (The meridians.) Let Hr  and let Vo be a point in the regular set N 5. 

Moreover, let r~-~'yo(r) denote the unit speed geodesic in the horizontal leaf M 2 such 

that Ir(vo)=('),o(0),~0) for some ~oER and such that ~/~(0)=e~ . Then the integral 

curve s~-+ul(s) of the field el through Vo and its projection 7fOUl onto M 3 = M 2 •  

satisfy 
~O.l(S) = (~0(r ( s ) ) ,  ~(s)), 

(22) 
Ul(S) = (cos(O(s))'7~(r(s)), sin O(s)), 

where the triple of functions (r(s), ~(s), O( s ) ) is obtained as the solution of the system of 

ordinary differential equations 

Or 
- -  = - sin 0, 
Os 

- -  = cos 0, (23) 
Os 

O0 x 
Os H +-~-~ cos20, 

with initial data (r(0), ~(0), 0(0))=(0,  ~0, O(vo)). 

Here the domain for the independent variable s is not the full existence interval 

for the differential equation. It is restricted by the condition that  cos O(s) must remain 

strictly positive, as the integral curve must not leave the regular set N05. In short, what 

matters are the solutions of the third equation in (23). 

Moreover, we observe that  the lemma is consistent with Propositions 4.3 and 4.4. 

The third equation in (23) is actually identical to the differential equations for 0 obtained 

in (7) and (7c~t), respectively. 
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Remark 4.6. If 4H2+ x~<0, the system of ordinary differential equations in (23) has 

one class of particularly simple solutions that do not correspond to any of the surfaces 

S~, D~ and C~ discussed in w They are given by 

r(s) :=ro-ss inOo,  ( ( s ) := (0+scos00  and 0(s):=8o, 

where 00:=•  arcsin V/I+4H2/x,  and where ro and (0 are arbitrary constants of inte- 

gration. In fact, all the other solutions of (23) can be determined explicitly, too. The 

corresponding formulas will be given in the appendix. 

Proof of Lemma 4.5. Using equations (21)-(23), it is easy to verify that 

~s (~rovl (s)) = ( -  sin(0(s))v~(r(s)), cos 0(s)) = ellvl(s), 

~----~b'1(8) : ~80(8)'(--sin(O(s))'~/o(r(8)),cosO(8))= (H-~-~HHCOS20(s))eX]~l(S) �9 

By the first line in (20) the preceding equations can be identified as the two components 

of (O/Os)~l(s)=~l]~l(~). Thus we have verified that equations (22) and (23) in the lemma 

indeed define an integral curve of ~1. [] 

The next step is to understand the horizontal curves on the immersed surface 

c :E2c~M3=M2•  Observe that their lifts to N 5 c T M  3 are precisely the integral 

curves of the vector field e2. We want to use this information in order to recognize the 

horizontal curves themselves as circles of latitude on some surface of revolution. 

LEMMA 4.7. (The horizontal curves.) Let Vo be a point in the regular set N 5. Then 

the integral curve t~-+~2(t) of the vector field e2 through vo projects to a curve of constant 

curvature 
1 x 

k(Vo) := Hcos-  O(vo)-  ~ cos O(vo) 

in the leaf M~ x {(0} through the foot point ~r(vo). 

Proof. Since by construction the gradient of the height function ( is always per- 

pendicular to the field e2, it is clear that the projection ro~'2 remains inside the totally 

geodesic leaf M2•  {(o}CM 3 through ~r(vo). A straightforward computation based on 

the second equation in (20) shows that 

o (o ) 
O(u2(t)) = -~ (u2(t), grad() = N u2(t), grad( 

c o s  2 = [ H - ~  O(v2(t))] (e21~2(,), grin:i()=0. 



168 U. A B R E S C H  A N D  H. R O S E N B E R G  

In other words, O is constant along any integral curve of @2. By construction e ~ is 

the (exterior) normal along the curve t~-+Trov2 (t)EM 2 • {~0}- With the help of the first 

equation in (21) and the second equation in (20), we thus find that  

D o _  1 D 1 ,' x 2 " e  
el cosO Ot (vu(t)-sin(O)grad~)= c-g----so [H--4-H C~ O) 2J,2(t). [] 

PROPOSITION 4.8. Let H #O be some constant. Then, for any regular point voEN 5, 
the 2-dimensional distribution EH is integrable in some neighborhood of vo. Moreover, all 
these local integral surfaces are invariant under the action of some 1-parameter subgroup 

tv-~r X id Elsomo(M~ x R).  

Proof. An abstract verification that  EH is integrable is not of much use when we 

want to determine the invariance properties of the local integral surfaces. Thus it seems 

bet ter  to construct some explicit candidates for these integral surfaces from the very 

beginning. We determine the integral curve s~-+Vl (s) of the vector field @1 through the 

given point voEN3 as explained in Lemma 4.5. Consider the orbit of this curve under 

the flow of 22. In other words, we consider the map (s, t)~+v(s, t)EN3 such that  

0 
-~v(s,t)=~2l~(s,O and v ( s , 0 ) = v l ( s ) .  

Firstly, we claim that  the maps t~-~rov(s, t) yield a family of parallel curves of 
constant curvature in the surface M~. In fact, by construction each of these maps 

describes a curve in the first factor of M 3 = M 2 • R that  emanates perpendicularly from 

the unit speed geodesic 7o at the point ")'0(r(s)), and by Lemma 4.5 this curve has 

constant geodesic curvature 

X 
kg (s) := S c o s  -10(s) - ~-~ cos 0(s). (24) 

It is well known that  the geodesic curvature/r of a family of parallel curves of constant 

curvature emanating perpendicularly from 70 satisfies the Riccati equation 

0ir ~ P + x = o .  (25) 
Or 

The converse is not hard to prove either: if the geodesic curvature ]r of a family of curves 

of constant curvature that  emanate perpendicularly from 70 satisfies this differential 

equation, then the family is in fact a family of parallel curves. 

Thus we only need to show that  the geodesic curvatures kg(s) of the curves t~+v(s, t) 

can be written as kg(s)=[c(r(s)) for some function ~: satisfying (25). Using equations (23) 

and (24), we find that  

2 X ~---~kg(s)=sin(O(s))(Hcos-O(s)+--~)~---~O(s)=sin(O(s))(kg(s)2+x). (26) 
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Since (O/Os)r(s )=-s in  0(s), the preceding differential equation indeed asserts that  the 

function s~-*kg (s) factors over some function r~-+k(r) solving (25), thereby establishing 

the claim from the beginning of the preceding paragraph. 

Parallel curves of constant curvature in the 2-dimensional space forms M~ are known 

to be the orbits of a suitable 1-parameter group t~-+r of isometries. This in turn means 

that  

~ro~(s, a(s)t) = (r x id)(;ro~l (s)), 

w h e r e  

a(s) :=  

By construction, the tangent vectors to the s- and t-parameter lines are linearly inde- 

pendent as long as ~,(s, t) is contained in the regular set N 5. Passing to the l-jet, we 

therefore obtain 

~(s, a(s)t) = (r x id). (~1 (s)). (27) 

Since the vector field @1 on N 5 is by construction invariant under isometries of M 3 =  

M 2 x R,  we conclude that  the image of ~1 under each of the maps (r x id). is again an 

integral curve of @1. Hence the map ~ is indeed an integral surface of EH. By construction 

it passes through the given point v0, and by formula (26) it is invariant under the induced 

action of the 1-parameter group t~--~r • idEIsom0(M 2 x R)  of isometries. [] 

PROPOSITION 4.9. Suppose that 4H2+x~<0,  and let E2q-* M 2 x R  be one of the cmc 

surfaces with Q=-O that corresponds to the special solutions of (23) from Remark 4.6. 

Then E 2 is embedded; it is an orbit under some 2-dimensional solvable subgroup A ~< N C 

Isomo (M 2 x R).  

If 4 H 2 +  x < 0, the solvable group A ~< IXl in the proposition is closely related to the Iwa- 

sawa decomposition Isom0(M2)=SO+(2,  1)=KAN. However, if 4 H 2 + ~ = 0 ,  the group N 

is still the nilpotent factor from the Iwasawa decomposition, whereas A degenerates into 

the group of vertical translations, and the semi-direct product turns into a direct product. 

We consider the parabolic nature of the elements in the subgroup 51 as the character- 

istic property, and so we call this family of embedded cmc surfaces P~.  The surfaces p 2  

can be viewed as pointed limits of sequences of disk-like cmc surfaces D~,  or of sequences 

of cmc surfaces C~/of catenoidal type. In either case, the axis of the rotational symmetry 

disappears to infinity in the limit as indicated in Figure 4. 

Proof. The formulas in Remark 4.6 directly imply that  the expression 

x 2 
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2 I 

Fig. 4. T h e  mer id ian  of a parabol ic  surface  P ~  comes  as a l imit  of the  mer id ians  of t he  

cor responding  disk-like surfaces  D ~ / a n d  surfaces  C ~ / o f  ca tenoida l  type,  as t he  axis  is moved  

fur ther  and  fur ther  out .  

vanishes identically. Thus the horizontal curves t~-+u(s, t) yield a family of parallel horo- 
cycles in M 2. This means that  the isometries r constructed in the proof of the preceding 

proposition must be parabolic elements in Isom0(M~). In other words, the image of the 

homomorphism R--+Isom0(M~), t~-+r constructed in the proof of the preceding propo- 

sition is a nilpotent subgroup N cIsom0(M2) .  

The meridians s~-+u(s, t) project to geodesics in M 2 x R. Each of them is the orbit 

under some 1-parameter subgroup At c I s o m 0 ( M  2 x R) consisting of transvections. The 

action of At clearly maps the horizontal horocycles that  intersect the given geodesic 

sF-+Trou(s, t) perpendicularly to horocycles of the same kind. Hence the group At maps the 

surface E2=im(zcou) into itself. The various groups At associated to distinct meridians 

are mutually conjugate, and thus the semi-direct product  At ~ hi does not depend on t. 

It acts isometrically and simply transitively on E2C M~ • R. [] 

Proof of Theorem 3. It is a property of the Riccati equation (26) for the geodesic 

curvatures kg(s ) of the horizontal curves t~-+Trou(s,t) that  the sign of the expression 

kg(s) 2 + x  is independent of s. In fact, it follows directly from formula (24) that  

[Hcos_~O(s)+ x ]2 kg(  s)2 -~- J,r :  -ff cos 0(s)j O. 

Hence there are just two possibilities: the expression kg(s)2+x may either be strictly 
positive for all s, or it may vanish identically. In the latter case the term in the square 

brackets itself must vanish, and so we are in the case analyzed in the preceding proposi- 

tion. 
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In the other case, kg 2 § ~t > 0 everywhere, and so the horizontal curves are geodesic cir- 

cles, and the image of the homomorphism R--+Isom0(M2~ • R),  t '+r • id, is isomorphic 

to 50(2).  Hence the integral surfaces must be congruent to the Gauss sections of the 

rotationally invariant cmc surfaces E2q-~M 2 •  described in w By Propositions 4.3 

and 4.4 we know that  we are only seeing the surfaces S~,  D2H and C 2 described in 

Propositions 2.5 and 2.9. [] 

Appendix.  Explicit formulas for the meridians 

It is not hard to see that  the system (23) of differential equations in Lemma 4.5 is actually 

integrable. Its flow vector field lies in the kernel of the following set of Pfaffian 1-forms: 

7/0 :-- cos(0) dr +sin(0) d~, 

~h := (4H 2 + x  cos 2 0) dr+4Hsin(O) dO, (28) 

~2 := (4H 2 + x cos 2 0) d ~ -  4H cos(0) dO. 

In order to compute explicit first integrals from 771 and ~/2, it is necessary to integrate 

Riccati equations for ul :--cos 0 and u2:=sin0,  respectively. Substituting u : = t a n 0  into 

the third equation in (23), we find that  the relation between the angle 0 and the arc 

length parameter s is given by a differential equation of Riccati type, too. 

PROPOSITION A.1. The meridian curves of the cmc surfaces E2q-~M~• with 

vanishing quadratic differential Q and non-zero mean curvature H can be described as 

zero sets of suitable elementary functions: 

(i) I f  4 H 2 + x > 0 ,  then E 2 is necessarily one of the rotationally invariant spheres 

S~  of Hsiang and Pedrosa, and up to vertical translations the meridian is the smooth 

variety 

{1  ~ 2 1 ) 
(ii) / f  4H2 + x=O, then Z 2 must be either one of the disk-like surfaces D2H, or E 2 

is a cylinder over a horocycle, which is a borderline case of a surface of type P~.  Up to 

vertical translations, their meridians are the smooth varieties 

H~ = ~= cosh Hr, (30D) 

r = r0, (30P) 

respectively. 
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(iii) I f  4 H 2 + x < 0 ,  then--depending on the slope of the meridian-- the surface E 2 

must be either a disk-like surface 0 2 ,  or a parabolic surface p 2 ,  or a surface C 2 of 

catenoidal type. Up to vertical translations, their meridians are the smooth varieties 

1 x = 1 x 1 sinh2~C/x(l+~-~/-~)  - (  +~-/~-~)cosh2~rx/-x,  (31D) 

V/-  (4H2+ x) ~ = =t=2Hr, (31P) 

1 x = 1 x 1 c o s h 2 ~ / / x ( l + ~ - H - 5 )  - (  +~---~)sinh2~r~/-L--~, (31C) 

respectively. The asymptotes to the meridians of D2H and C 2 intersect the axis at a 

point with ~ \ I x (  1 + x / 4H 2 ) = + log(-  1 - x / 4H 2 ). 

Some pictures of these meridians have been provided in Figures 1-3 in w and in 

Figure 4 in w In fact, the graphs shown there have been plotted using the explicit 

formulas from this proposition. 

Remark A.2. If x--0, equation (298) is just a somewhat involved way to write the 

standard equation 1=H2~2+H2r 2 for a circle with radius 1/H in Euclidean 3-space. If 

x is non-zero, (29S) turns out to be a shorthand for one of the following two formulas: 

l i  ( x )  1 x = 4 H 2 s i n h  2 ~ x I+~-H- 7 + (4H~+x) s i n  2 ~ r v ~ ,  

1 1 x 1 - x  = 4H2sin2 ~ / / - x (  + ~-H-~) + (4H2 +x )  sinh2 ~ r x/-Zx �9 

Remark A.3. In order to make it very clear that the surfaces C~ really resemble 

catenoids, it is best to consider the following scaling limits: We pick some constant 

~>0 and a sequence (xj)~= o of negative numbers that converges to 0. Moreover, we set 

Hj := xj/4/~. Thus 4H 2 + xj < 0 for j sufficiently large, and so we are indeed dealing with 

a sequence of surfaces of catenoidal type. Passing to the limit in equation (31C) we find 

that the meridians of these surfaces converge to the zero set of the equation 

Ar = + cosh A~, 

which is obviously the equation for the meridian of a standard catenoid in Euclidean 

3-space. 

Proof of Proposition A.1. As suggested above the proof starts out integrating the 

Riccati equations corresponding to the Pfaffians ~71 and ~72. It follows directly from 
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Remark 4.6 and Proposition 4.9 that neither cos 0 can be independent of r, nor can sin 0 

be independent of ~, unless E 2 is a horizontal leaf or a surface of the parabolic type P~/. 

An explicit equation describing the meridians of the latter surfaces has already been 

given in Proposition 4.9. 

It remains to compute the equations for the meridians of the surfaces S~, D~/ 

and C 2.  From the discussion of the qualitative properties of these surfaces we already 

know that cos0 must be an odd function of r. For the surfaces of type S~/ and D~,  

this function must vanish at r = 0 ,  whereas the radius function r must be bounded away 

from 0 for the surfaces of catenoidal type. In short, when integrating ~71, we recover 

equations (6) and (6cat). 

Clearly, when integrating the Pfaman U2 the solution only matters up to translation 

in the ~-variable. We can normalize the solutions so that sin 0 is an odd function of ~. 

For the surfaces S~/ and C~/, we thus want sin0 to vanish at ~=0, whereas we want 

sin 0 to be bounded away from 0 for the disk-like surfaces D 2.  Hence the first integrals 

obtained from U2 are 

1 4H 2 + x = 2H sin(0) ct_ x(1 +,~/4H2)(~ ~), (32) 

_ _  1 xsinO -- 2 H c t _ ~ o + ~ / a H D ( ~ ) .  (32disk) 

We merely need to insert these expressions for cos 0 and sin 0 into the standard identity 

cos20+sin20----1 in order to obtain the claimed equations for the meridians. [] 
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