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w 1. Introduction 

A set-valued map F from a topological space X to a topological space Y is said to be 

upper semi-continuous, if the set {x:F(x)NH=~f~} is closed in X, whenever H is a 

closed set in Y. A point-valued function f is said to be a selector for such a set-valued 

map F, iff(x)EF(x), for all x in X. The function f from X to Y is said to be a Borel 

measurable function of  thefirst Borel class i f f - l ( H )  is a %-set in X, whenever H is a 

closed set in Y. Similarly, f is said to be a Borel measureable function of the second 

Borel class i f f - l ( H )  is an ~o~-set in X, whenever H is a closed set in Y. In [18, 

Theorems 2 and 3] we prove that, if X and Y are metric spaces and F is an upper semi- 

continuous set-valued map from X to Y, taking only non-empty values, then F always 

has a Borel measureable selector of the second Borel class, further, if F only takes non- 

empty complete values in Y, then F always has a Borel measurable selector of the first 

Borel class. 

Some of the more interesting upper semi-continuous set-valued maps are defined 

on a subset of a Banach space X and take their values in a Banach space Y with its weak 

topology, or in a dual Banach space Y* with its weak-star topology. In [19, Theorem 2] 

we prove that if F is a weak upper semi-continuous set-valued map, defined on a metric 

space X, and taking only non-empty weakly compact values, contained in a fixed 

weakly o-compact set of a Banach space Y, then F has a weak Borel measurable 

selector of the first Borel class, which is also a norm Borel measurable selector of the 

second Borel class. Similarly, see the introduction to [19], if F is a weak-star upper 

semi-continuous set-valued map, defined on a metric space X, and taking only non- 

empty, weak-star closed values in the dual space II* of a weakly compactly generated 
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Banach space Y, then F has a weak-star Borel measurable selector of the first Borel 

class, which is also a norm Borel measurable selector of the second Borel class. 

It will be convenient to say that a function f from a metric space X to a metric 

space Y is of thefirst Baire class, if f is the point-wise limit of a sequence of continuous 

functions from X to Y. Note that such a function of the first Baire class is automatically 

a Borel measurable function of the first Borel class, see, for example, [23, p. 386]. 

Our main aim in this paper is to prove that, if F is a weak (or weak-star) upper 

semi-continuous set-valued map from a metric space X to a Banach space Y (or to a 

dual Banach space Y*) with the Radon-Nikod3)m property, and F takes only non-empty 

weakly compact (or weak-star compact) values, then F has a norm Borel measurable 

se lec tor fof  the first Baire class and the set of points of norm discontinuity of f form an 

~:o-set of the first category in X. The existence of these selectors adds a new facet to 

the theories of maximal monotone maps, of subdifferential maps, of attainment maps 

and of metric projections. 

Before we introduce our main selection methods we give a brief discussion of the 

results that can be obtained by use of the well-known nearest point selection, see, for 

example, [5, pp. 28-29] and [35, p. 209] for previous applications of this method. When 

the set-valued function F takes non-empty, convex and weakly compact (or weak-star 

closed) values in a Banach space (or a dual Banach space) with a strictly convex norm, 

i.e. a norm for which Ilxll=llyll=ll�89189 implies that x=y, one can make a selection by 

takingf(x) to be the unique point F(x) that is nearest to the origin, in norm. In w 2, using 

this method, we obtain results that have the following consequences. 

THEOREM 2. Let X be a metric space and let Y be a Banach space with an 

equivalent strictly convex norm. Let F be an upper semi-continuous set-valued map 

from X to Y with its weak topology. Suppose that F only takes values that are non- 

empty, convex and weakly compact. Then, using the weak topology on Y, the set- 

valued map F has a Borel measurable selector f o f  the first Borel class. Further, the set 

o f  points o f  X, where f is weakly discontinuous, is a set o f  the first category in X.  

THEOREM 3. Let X be a metric space and let Y be a Banach space with an 

equivalent norm whose dual norm on Y* is strictly convex. Let F be an upper semi- 

continuous set-valued map from X to II* with its weak-star topology. Suppose that F 

only takes values that are non-empty, convex and weak-star closed. Then, using the 

weak-star topology on Y, the set-valued map F has a Borel measurable selector f o f  the 

first Borel class. Further, the set o f  points o f  X, where f is weak-star discontinuous, is a 

set o f  the first category in X.  
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In subsequent theorems, where we impose rather different conditions on our 

spaces, we obtain selectors that are norm Borel measurable. However, the conditions 

in Theorems 2 and 3 are not strong enough to ensure the existence of norm Borel 

measurable selectors. Theorem 10 below shows that the general existence of norm 

Borel measurable selectors in a dual Banach space ensures that this dual space has the 

Radon-Nikod~m property. As l~ is an example of a dual Banach space, with an 

equivalent strictly convex dual norm [8], there will be weak-star Borel measurable 

selectors in ioo; however, as l~ does not enjoy the Radon-Nikod~,m property, there 

can, in general, be no norm Borel measurable selectors in this space. 

To study the cases, when the values of F are not assumed to be convex, or when 

there is no equivalent strictly convex norm, we need to use a more sophisticated 

selection technique. We develop this technique in w 3; it needs, as its starting point, a 

condition that the space should be "fragmentable" in a sense that we shall define. In 

the case of a Banach space it will be enough if the space has the point of continuity 

property. The Banach space Y is said to have the point o f  continuity property if, given 

any non-empty bounded weakly closed set F in u there is a point of F at which the 

restriction to F of the identity map from Y with its weak topology to Y with its norm 

topology is continuous. A Banach space with the Radon-Nikod~,m property always has 

the point of continuity property. The dual Banach space Y* has the weak-star point o f  

continuity property if, given any non-empty bounded weak-star closed set F in F*, 

there is a point of F at which the restriction of F of the identity map from F* with its 

weak-star topology to Y* with its norm topology is continuous. However, it follows 

from the work of Namioka and Phelps [25] and Stegall [33] (see also Dulst and Namioka 

[36]) that Y* has this weak-star point of continuity property, if, and only if, Y* has the 

Radon-Nikod3~m property. 

We prove two main theorems. 

THEOREM 7. Let  X be a metric space and let Y be a Banach space with the point 

o f  continuity property. Let f be an upper semi-continuous map from X to Y with its 

weak topology. Suppose that F takes only non-empty, weakly compact values. Then, 

using the norm topology on Y, the set-valued map F has a Borel measurable selector f 

o f  the first Baire class. Further, the set o f  points o f  X, where f is norm-discontinuous, is 

an 3;~-set o f  the first category in X. 

THEOREM 8. Let X be a metric space and let Y* be the dual space to a Banach 

space Y. Suppose that Y* has the Radon-Nikod~m property. Let F be an upper semi- 

continuous set-valued map from X to Y* with its weak-star topology. Suppose, further, 
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that F takes only values that are non-empty and weak-star closed. Then, using the 

norm topology on Y*, the set-valued map F has a Borel measurable selector f of  the 

first Baire class. Further, the set o f  points o f  X, where f is norm-discontinuous, is an 

ff;~-set of  the first category in X. 

We remark that the conclusion in Theorem 8 holds for all such F only when Y* has 

the Radon-Nikod~m property, see Theorem 10 below. 

A set-valued map F from a Banach space X to its dual space X* is said to be a 

monotone map, if 

(x2-xl, xT-x~) >- o, 

for all choices of x 1, x~, x2, X~ with 

x~{E F(x 0 and x~'E F(x2). 

A set-valued map F from X to X* is said to be a maximal monotone map, if it is a 

monotone map and it has a graph t J{{x}xF(x) :xEX}  that is a proper subset of the 

graph of no monotone map from X to X*. It follows immediately, by use of Zorn's 

lemma, that the graph of a monotone map from X to X* is always contained in the graph 

of some maximal monotone map from X to X*. Maximal monotone maps have been 

extensively studied, see, for example, [5], [6]. We summarize briefly some of the 

results. For each x in X, the set F(x) is convex and weak-star closed in X*. Let B* 

denote the unit ball in X* and let FR, for R>0,  be the set-valued map defined by 

FR(x)= F(x)n(RB*), xeX.  

Then, for each R>0,  FR is a weak-star upper semi-continuous map from X to X*. Let D 

be the domain of F, that is, the set of all x in X for which F(x) is non-empty; let Do be 

the interior of the convex hull of D. Now Rockafellar [31] shows that, if Do is non- 

empty, then DocD and Do is a convex open set whose closure includes the ~,,-set D. 

He also shows that F is locally bounded at each point of D0. Kenderov [20] and Robert 

[29] show that F is weak-star upper semi-continuous at each point of Do. Using 

Theorems 3 and 8, we obtain the following result for such maps. 

THEOREM 9. Let X be a Banach space with dual space X*. Let F be a maximal 

monotone map from X to X*. Let  D be the domain o f F  and suppose that the interior 

Do of  D is non-empty. 

(a) I f  X has an equivalent norm whose dual norm on X* is strictly convex, then F 
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has a weak-star Borel measurable selector f of the first Borel class on D. The set J of 

points of Do where f is weak-star continuous coincides with the set of points of Do 

where F is point-valued. Further J contains a dense ~6-subset of Do. 

(b) I f  X* has the Radon-Nikody~m property, then F has a norm Borel measurable 

selector f of the first Baire class on D. The set U of points of Do, at which f is norm 

continuous, coincides with the set of points of Do, at which F is point-valued and norm 

upper semi-continuous. Further U is a dense ~-subset of  Do. 

Note that the sets J and U will not depend on the choice of the selector f. 

Subdifferential maps are special maximal monotone maps, see Rockafellar [30, 32] 

for a characterization. Consider a lower semi-continuous convex function fdef ined  on 

a Banach space X and taking values in the extended real line R U { + ~ }, and taking a 

finite value for some x in X. The subdifferential D x f o f f a t  a point x of X is defined to 

be the set of all elements d* of X* satisfying the condition 

f(x)+ (d*, y) <-f(x+y), 

for all y in X. Let D be the set of all x for which f(x) is finite. Using the Hahn-Banach 

theorem it is easy to verify that D is also the set of points x of X for which Dxfis  non- 

empty. As the subdifferential map is necessarily a maximal monotone map, Theorem 9 

applies to such maps. In particular, if X has an equivalent norm, such that the 

corresponding dual norm on X* is strictly convex, the map Dxfhas  a weak-star Borel 

measurable selector d of the first Borel class, the set J of interior points of D where d is 

weak-star continuous coincides with the set of interior points of D where Dxfis  point- 

valued and further J contains a ~ - se t  dense in D. Now a Banach space X is called a 

weak Asplund space (see [27]) if every continuous convex function on an open convex 

subset  of X is G~teaux differentiable on a dense ~ - se t  of its domain. Here, the 

funct ionfis  Ghteaux differentiable at the point x, i fDxfreduces  to a single point. Thus 

we have a proof, essentially the proof of Kenderov [38], of Asplund's result that X is a 

weak Asplund space (he used a different terminology), if X has an equivalent norm, for 

which the dual norm is strictly convex. The new components of part (a) of Theorem 9 

are those concerning the existence, class and continuity properties of the selectors. The 

proof is quite similar to the work of Kenderov. Indeed, looking at [38] with hindsight, it 

is remarkable how close Kenderov came to using a selector without actually doing so. 

We remark that it follows from Theorem 10, below, that it is not, in general, 

possible to obtain norm Borel measurable selectors in part (a) of Theorem 9. 

In the case when X* has the Radon-Nikod~m property, the map D~fhas  a norm 
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Borel measurable selector of the first Baire class on D, and Dxf i s  point-valued and is 

norm upper semi-continuous, relative to the interior Do of D, at each point of a ~g,s-set 

dense in D. A Banach space X is called an Asplund space (see [25]) if every continuous 

convex function on an open convex subset of X is Fr6chet differentiable on a set 

containing a dense ~q~-set of its domain. Theorem 9 does provide an alternative proof of 

the result, first proved by Stegall [33], that X is an Asplund space when X* has the 

Radon-Nikod~m property; however a much simpler proof of Stegall's result has been 

obtained by Namioka [9, p. 213]. Again the new contributions of part (b) of Theorem 9 

are those concerning the existence, class and continuity properties of the selectors (see 

Asplund [1], Kenderov [21] and Robert [39]). 

The next theorem includes a strengthened converse to the result, mentioned in the 

last paragraph, concerning the existence of a norm Borel measurable selector for a 

subdifferential map when X* has the Radon-Nikod~,m property; it also provides a 

converse to Theorem 8. 

THEOREM 10. Let Y be a Banach space with dual space Y*. 

(a) I f  the subdifferential map D y f  corresponding to each continuous convex 

function f defined on Y has a norm Borel measurable selector on a dense ~ - se t  in Y, 

then Y* has the Radon-Nikod~m property. 

I f  Y* has the Radon-Nikod~m property, then 

(b) each upper semi-continuous map F, from a metric space X to Y*, with its 

weak-star topology, with each value non-empty and weak-star closed, has a norm 

Borel measurable selector o f  the first Baire class, and also, more particularly, 

(c) the subdifferential map D y f  corresponding to each lower semi-continuous 

convex function defined on Y has a norm Borel measurable selector of  the first Baire 

class on the domain of f .  

Before discussing the next type of upper semi-continuous map, it will be best to 

recall the relationship between the Radon-Nikod37m property and the concept of 

dentability. Rieffel [28] says that a set D in a Banach space Y is dentable, if, for each 

e>0, it is possible to find a point y~ in D that is not in the closed convex hull of 

D\{y: IIY-Y~II < e}. 

It will be convenient to say that D is everywhere dentable if each non-empty bounded 

subset of D is dentable. Rieffel [28] proves that, if Y is everywhere dentable, then Y has 

the'Radon-Nikod~m property. The converse was discovered by Huff [14] and also by 
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Davis and Phelps [7], using work of Maynard [24]. In our work the Radon-Nikod~m 

property enters via this concept of dentability. 

Let K be any non-empty, closed, bounded set in a Banach space X. For each x* in 

the dual space X*, let F(x*) denote the set of x in K, for which 

(x ,x*)  = sup {(k,x*): kEK} .  

Note that this definition ensures that F(0)=K, and, in general, F(x*) is the set of points 

of K at which (x, x*) attains its supremum over K. We call F the attainment map of K. 

It is easy to verify that F is a monotone map from X* to X**. However, F will not, in 

general, be a maximal monotone map, and in some cases F(x*) will be empty except for 

x* in a rather small subset of X*. Of course, if K is weakly compact, then F(x*) is non- 

empty for each x* in X*. Conversely, by a theorem of James [16], if K is weakly closed 

and F(x*) is non-empty for each x* in X*, then K is necessarily weakly compact. When 

X has the Radon-Nikod~m property, and K is convex, a result of Phelps [26] shows that 

F(x*) is non-empty, and consists of a single point, for all x* in a dense (a~-set in X*. A 

refinement of Phelps' result due to Bourgain [4] obtains the same conclusion on the 

assumption that K is convex and everywhere dentable. In the particular case when K is 

compact and convex, the attainment map of K coincides with the subdifferential map of 

the convex function f defined on X* by 

f(x*) = sup { (x*, k) : k E K}, 

and so is a maximal monotone map from X* to X** that happens to take all its values in 

X. 

THEOREM 11. Let F be the attainment map of  a bounded subset K of  a Banach 

space X. Let D* be the set of  points x* o f  X* with F(x*)4=(3. 

(a) I f  K is weakly compact, then D*=X*, and F has a norm Borel measurable 

selector of  the first Baire class. Further, the set U* of  norm continuity points o f f  is a 

~ - se t  that is dense in X*. 

(b) Suppose that K is everywhere dentable and that F is a weakly upper semi- 

continuous set-valued map that takes only non-empty weakly compact values on a 

(Y~-set D contained in and dense in an open set G in X*. Then F has a norm Borel 

measurable selector f o f  the first Baire class. Further, the set U* of  norm continuity 

points of f ,  relative to D, is a ~ - s e t  that is dense in D. 

In each case, U* is also the set of  points at which F is point-valued and norm 

upper semi-continuous, relative to D in case (b). 
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We remark that,  when  K is convex,  the linear functionals x*, that strongly expose  

points of  K, are just  the points of  X* at which F is point-valued, and norm upper  semi- 

continuous.  

Le t  K be a non-empty  set in a Banach space X. For  each x in X, write 

and 

~(x) = inf{llk-xl[: k ~ g} ,  

F(x) = {k: IIk-xll = Q(x) and kEK} .  

The set-valued map F is called the nearest  point map of  K or the metric project ion onto 

K. This map has been much studied. In particular,  if K is weakly compact  in X, then F 

is a weak upper  semi-continuous set-valued map with non-empty weakly compact  

values. Further ,  in various circumstances,  there will be a dense g0-set in X on which F 

is a point-valued and norm continuous (see Kenderov  [22]). Our methods enable us to 

give a simple p roof  for  the following ref inement  of  the known results. 

THEOREM 12. Let X be a Banach space, let K be a set in X that is everywhere 

dentable, and let F be the metric projection o f  X onto Ko Suppose that the restriction o f  

F, to a go-set Uo dense in X, is weakly upper semi-continuous and takes only non- 

empty weakly compact values. Then F has a norm Borel measurable selector f of  the 

first Baire class on Uo and f is norm continuous on Uo at each point o f  a go-set U1 that 

is contained in Uo and dense in X. If, in addition, X is strictly convex, then F is point- 

valued and norm upper semi-continuous with respect to Uo at each point of  U1. 

We have announced  some of  these results in [37]. 

w 2. Selection in Banach spaces with strictly convex norms 

Although our  main objective in this section is to prove the existence of  Borel  measur- 

able selectors for  set-valued functions with convex values in a Banach space with a 

strictly convex norm we first s tudy a more  general situation. 

Le t  V be a real vector  space. A set K in V is said to be linearly bounded, if each 

half-ray of  the form 

{,~x: ~ I> 0}, 

with x a point of  V, meets  K in a bounded set, regarded as a subset of  this real half-line. 

A set K in V is said to be absorbent, if for  each point x of  V, there is a 2(x)>0 with 2(x) x 
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in K. We shall say that a convex set K in V is linearly strictly convex, if, whenever h, k 

are distinct points of  K, the translated set K-�89 is absorbent in V. 

With each linearly bounded absorbent convex set B we associate a real-valued 

gauge function q0=q0B of  Minkowski type, by taking 

q0(x) = inf{2:2 > 0 and xE~B},  

for each x in X. It is an easy exercise in two-dimensional geometry to verify that the 

linearly bounded absorbent convex set B is linearly strictly convex, if, and only if, q0B 

is strictly convex on V. 

Note that all these concepts are real vector space concepts,  involving no topology. 

Note also that, if K is a convex set in a Banach space X, and K is strictly convex, in the 

usual way, then K is clearly linearly strictly convex. 

If  a real vector space V contains a linearly bounded, linearly strictly convex and 

absorbent set B, a natural way to choose a point from a given convex set, is to choose a 

point at the least possible q~B-distance from the origin, if there is a unique choice for 

such a point. The following general selection theorem is based on this idea. 

THEOREM 1. Let  X be a metric space and let Z be a locally convex topological 

vector space. Suppose that Z contains a closed, linearly bounded, linearly strictly 

convex and absorbent set B. Let  F be an upper semi-continuous set-valued map from X 

to Z with non-empty convex values. Suppose, further, that the set 

F(x) n ~B 

is compact for  each x in X and each 2>0.  Then, for each x in X, F(x) has a unique point 

f (x)  at the least possible qD-distance from O. Further, f is a Borel measurable selector 

for F and is o f  the first Borel class. The real-valued function cpof is lower semi- 

continuous on X. The set o f  points o f  X, where f is discontinuous in the locally convex 

topology, is o f  the first category in X. 

Proof. Write 

B(0) = 0 ,  B(•) = QB, for Q > 0. 

For  all pairs r, n of  positive integers, let 

X(n, r) = (x: F(x) N B(r2 -n) =I= 0 ) \  (x: F(x) n B( ( r -  l ) 2 -n) =1 = ~ }. 

As F is upper semi-continuous and B is closed convex and absorbent, for each n~> 1, the 

family 

4-858288 Acta Mathematica 155. Imprim~ le 28 aoQt 1985 
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{X(n, r): r ~  > 1} 

is a partition of  X into sets that are differences between closed sets. Define set-valued 

functions/-/~n) on X, for n>~l, by 

1-16'~ = F(x) A B(r2-"), 

and take 

for xEX(n,  r), 

oo 

H(x) = 13 I-[")(x). 

Note that, for each n~>l, and for each x in X, the set/-/~n)(x) is just  the first set of  

the sequence 

F(x) A B(r2-"), r = 1,2 . . . . .  

that is non-empty;  there is always a first such set as F(x) is non-empty and B is 

absorbent. I f  F(x)fiB(r2 -n) is the first non-empty set of this sequence, the first non- 

empty set of  the next sequence 

is either 

o r  

Thus 

F(x) A B(s2-"-  1), S = 1,2 . . . . .  

F(x) fl B((2r -  1) 2 -n -  1), 

F(x) A B(2r2-"-  1). 

It~")(x) = F(x) Ao, B , 

with QI, ~2 . . . .  a non-increasing sequence of real numbers, with limit O(x), say. As 

/-/~176 n=  1,2 . . . . .  is a decreasing sequence of  non-empty compact  sets, the set H(x) is 

non-empty and takes the form 

H(x) = F(x) Ao(x) B. 

As B is linearly bounded,  we have H(x)={0} when Q(x)=0. 

Suppose that, for some x in X, the set H(x) contains two distinct points h and k, 

say. Then ~(h+k)E F(x), and Q(x)>0. As Q(x)B is linearly strictly convex, the set 

O(x)B-�89 



B O R E L  SELECTORS F O R  U P P E R  S E M I - C O N T I N U O U S  SET-VALUED MAPS 51 

is absorbent. Hence,  for some e with 0 < e < l ,  the point 

(l+e)�89 

belongs to Q(x)B, and the point �89 belongs to 

F(x) fl (1 +e ) -  ]Q(x) B. 

This contradicts the formula 

Q(x) = inf {tr > 0; F(x) A B(tr) =4= ~} .  

We conclude that H(x) reduces t o a  single point, say h(x), for each x in X. 

Now let J be any closed set in Z. Then H(x)AJ=~, if, and only if, 

co 

J n  A /agn)(x) = ~ .  
n=l 

As/-/~ . . . .  is a decreasing sequence of  non-empty compact  sets, this holds, 

if, and only if, 

y n H~')(x) = ~ ,  

for some n~>l, i.e., if, and only if, for some n~>l, and some r~>l, 

xEX(n,r) and F(x)A[JAB(r2-n)]=f~. (I) 

As F is upper semi-continuous, and J and B(r2 -n) are closed, the set of  x satisfying (1) 

is a relatively open subset of  X(n, r) and so is the difference between two closed sets. 

Thus the set o f x  with H(x)AJ=f~ is an ~ : s e t  in X and the set o f x  with h(x) in J is a 

c$~-set in X. Thus h is the required Borel measurable selector of the first Borel class. 

For  each x in X, the q0-distance q~(h(x)) of h(x) from the origin is just  the function 

Q(x) = lim 0n = inf{Q: F(x) NoB �9 f~ and ~ > 0}, 

introduced above. As ~(x)>~0, for all x, q~(h(x)) is lower semi-continuous at each point x 

with vp(h(x))=Q(x)=O. Consider any Xo with ~(Xo)>0. Let  e be any real number with 

0<e<Q(Xo). Then 

F(xo) n [~(Xo)-e] B = ~. 

As [Q(Xo)-e] B is closed, and F is upper semi-continuous, there is a neighbourhood N 

of Xo with 

F(x) n [~(Xo)- e] B = 



52 J. E. JAYNE AND C. A. ROGERS 

for all x in N. Hence 

qJ(h(x)) = O(x) > q~(h(xo))- ~, 

for all x in N. Thus ~ o h is lower semi-continuous at Xo. Hence, by a well-known result 

(see, for example, [23, p. 394, Theorem 1]), the set of points of X, where q0of is 

discontinuous, is an ~o-set of the first category. 

We prove that f is continuous at each point where cp o f  is continous. Let x0 be a 

point of X where qn o f  is continuous and suppose that f fails to be continuous at Xo. 

Then we can choose an open set G containingf(xo) and a sequence xn, n ~ l ,  of points 

converging to Xo with 

f(Xn) ~ G, 

for n ~ l .  By the continuity of r Xo, we may make this choice so that 

cp(f(x,,)) <<. cp(f(xo)) + (1/n) 

for n ~ l .  Write 20 = l+q~(f(xo)), and consider the compact set 

K = (F(xo) n g o B ) \ G .  

If it were possible to find, for each point r of K, an open set U(r containing r but 

containingf(x~) for only finitely many n, then, using the compactness of K, it would be 

possible to find an open set U, containing K, but containingf(x~) for only finitely many 

n. Then F(xo) would be contained in the open set 

G 0 UU {Z\2oB}.  

The upper semi-continuity of F would then ensure that 

f(x~) E F(Xn) = G U U LI ( Z \ 2 o B ) ,  

for all sufficiently large n, so that f(x,,) would belong to U for all such n. This 

contradicts the choice of U. Hence there must be a point r in K with the property that 

all its neighbourhoods containf(x,,) for infinitely many n. Since ~ does not belong to the 

neighbourhood G off(xo) we have r Since r and f(xo) is the unique q0- 

nearest point of F(xo) to the origin, we must have 

cp(~) > qg(f(xo)). 

Writing 21=�89189 the set Z~21B is an open neighbourhood of the point r 



BOREL SELECTORS FOR UPPER SEMI-CONTINUOUS SET-VALUED MAPS 53 

Since all points z of this neighbourhood have 

q~(z) > ~1 > cp(f(xo)), 

it can contain f(x~) for only finitely many n. This contradicts the choice of r We 

conclude that f is continuous at x0. 

We remark that simple examples show t h a t f c a n  be continuous at x0, without q0 o f  

being continuous at Xo. 

We now use this theorem to prove two theorems, stated in the introduction. 

Proof o f  Theorem 2. Take Z to be the Banach space Y with its weak topology. 

Then Z is a locally convex topological vector space. Let B be the unit ball of Y 

corresponding to a strictly convex norm on Y equivalent to the original norm on Y. 

Then B is a closed, linearly bounded, linearly strictly convex and absorbent set in Z. 

Now Theorem 1 applies and provides the required selector. 

We remark that the method we are using cannot give any general result for the case 

when we are merely told that F takes only non-empty closed bounded convex values. 

Suppose that Y is a Banach space and that each non-empty, bounded, weakly closed, 

convex set in Y contains a point that is nearest to the origin. Let y~ be any continuous 

linear functional on Y, with IlY~ll--1. Consider the set C of y in Y with 

(y ,y~)>-I  and IlYlI~2. 

Then C is non-empty, bounded, weakly closed and convex. Let Yo be the nearest point 

of C to the origin (or indeed a nearest point). As Ily~ll = 1, we must have Ilyoll = 1, and so 

(yo, y~)= 1. Thus y~ attains its norm on the unit ball of Y. By a result of James [ 15], the 

space Y must be reflexive. Thus all the bounded weakly closed sets in Y are weakly 

compact, and we have not escaped from the condition that the values of F should be 

weakly compact. 

Proof of  Theorem 3. Take Z to be the Banach space Y* with its weak-star 

topology. Then Z is a locally convex topological vector space. Let B be the unit ball of 

F*. Then B is a compact, linearly bounded, linearly strictly convex and absorbent set in 

Z. Now Theorem 1 applies and provides the required selector f.  

We remark that h can be weak-star continuous at Xo, without q~ o h being continu- 

ous at Xo. To see this, it suffices to study the behaviour at 0 of the weak-star continuous 

point-valued map from/2 to/2 defined by takingf(x)=(fl(x),fz(x) . . . .  ) with 

fn(O) = O, for n I--- 1, 
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and, for x~0,  

fnfx)" = .~/{(1/llxll}}' if ~(n-1)~< 1/[Ixll �89 
J 1.0, otherwise 

{ �89 if �89 1) ~< 1/llxll �89 
L(x) 

(0, otherwise J 

where {{t}} denotes the distance from t to the nearest integer. 

n even, 

n odd, 

w 3. Selection in completely regular spaces that can be fragmented 

As we have explained, in the introduction, a Banach space Y has the Radon-Nikod~m 

property, if, and only if, each non-empty bounded set in Y is dentable. Consider any 

non-empty dentable set D in the Banach space Y. Then, for each e>0, it is possible to 

find a point y~ in D that is not in the closed convex hull of 

D \ { y :  I]Y-Y~I[ < e}. 

By the Hahn-Banach theorem, this is equivalent to the condition that, for each e>0, it 

is possible to choose y, in D, y* in Y*, and 8,>0, with ]]y*]l=l and 

diam {y: y ED and (y-y,,  y*) > -b,} <~ 2e. 

In particular, D has a non-empty relative weakly open subset of diameter at most 2t. 

Now consider a Banach space Y with the point of continuity property, and take D 

to be a non-empty bounded set in Y. Then the restriction to the weak closure w-clD of 

D of the identity map, from Ywith its weak topology to Ywith its norm topology, has a 

point of continuity, say d, in w-el D. Thus, for each e>0, the norm neighbourhood 

{y:yEw-clD and Ily-d[I <l~} 

of d in w-clD contains a relative weak neighbourhood of d in w-clD. Hence D contains 

a non-empty relative weakly open subset of diameter at most e. 

Finally consider a dual Banach space Y* having the Radon-Nikod~m property. 

Dulst and Namioka [36] give a direct proof that, i fD is a non-empty bounded weak-star 

closed subset of  Y*, then D contains non-empty relative weak-star open subsets of 

arbitrarily small diameter. This was previously known as a consequence of the deep 

results of Asplund and Stegall. 

In order to discuss these cases together, it is convenient to introduce a definition. 
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Definition 1. We say that a Hausdorff space Y can be fragmented using a metric Q 

on the set Y if each non-empty closed subset of Y has non-empty relatively open 

subsets of arbitrarily small Q-diamter. 

Although there need be no relation between the topology on Y and the metric Q, in 

the applications the open sets will be Q-open as well, and the topology will be 

completely regular. 

By the remarks made in the first three paragraphs of this section we obtain four 

examples of spaces that can be fragmented; in each case the metric to be used is that 

provided by a Banach space norm. 

(1) A bounded set in a Banach space with the Radon-Nikod~,m property, taken 

with its relative weak topology. 

(2) A bounded everywhere dentable subset of a Banach space, taken with its 

relative weak topology. 

(3) A bounded subset of a Banach space having the point of continuity property, 

taken with its relative weak topology. 

(4) A bounded subset of a dual Banach space having the Radon-Nikod~,m proper- 

ty, taken with its relative weak-star topology. Indeed, Stegall [33] (see Dulst and 

Namioka [36, Proposition 2]) has shown that a weak-star closed convex subset of a dual 

Banach space is everywhere dentable, if, taken with its relative weak-star topology, it 

is fragmentable by the norm metric. The converse was obtained earlier by Namioka and 

Phelps [25, Lemma 3]. 

We give a fifth example: 

(5) Let Y be a weakly compactly generated Banach space and let B* be the unit 

ball of the dual space Y*. Then Y* with its weak-star topology can be identified with a 

weakly compact set with its weak topology in a Banach space Z. In the case, B* with its 

weak-star topology can be fragmented using the norm on Z. 

We remark that the concept of fragmentability is closely related to the point o f  

continuity property. Consider the following definition. 

Definition 2. We say that a Hausdorff space Y has the point of continuity property 

for a metric Q on the set Y, if, for each closed subset F of Y, the restriction to F of the 

identity map from Y with its Hausdorff topology to Y with its Q-metric topology has a 

point of continuity in F. 

It is clear that if Y has the point of continuity property for the metric Q, then Y can 

be fragmented by using Q. It is easy to verify that, if Ybe fragmented using the metric Q, 

then Y has the point of continuity property. It follows, in particular, that a weakly 
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closed bounded subset of a Banach space, taken with its weak topology, has the point 

of continuity property for the norm, if, and only if, it can be fragmented using the norm. 

This point of continuity property for the norm was introduced by Bourgain and 

Rosenthal [34]. This concept is closely related to the concept of an "dpluchable" set 

introduced earlier by Godefroy [I 1]. See Edgar and Wheeler [10] for a comparison of 

these and other related concepts. 

Our main objective in this section is to prove a general selection theorem in 

completely regular spaces that can be fragmented by use of some metric. 

THEOREM 4. Let X be a metric space and let Y be a completely regular Hausdorff 

space that can be fragmented using a metric O. Let F be an upper semi-continuous set- 

valued map from X to Y, talcing only non-empty compact values. Then F has a selector 

f that is Borel measurable o f  the first Borel class both with the completely regular 

topology and also with the Q-topology. Further, the set o f  points o f  X where f is Q- 

discontinuous is an ~;o-set o f  the first category in X. 

We first prove two lemmas. The first justifies the use we make of the description 'a 

space that can be fragmented' for a space satisfying the conditions of Definition 1. 

These lemmas are the key results of this paper. 

LEMMA 1. Let Y be a completely regular Hausdorff space that can be fragmented. 

Suppose that e>0. Then it is possible to choose a disjoint transfinite sequence 

{Br: 0~<7<F} of  J;o-sets in Y, such that for 0~<3/<F, we have: 

(a) the union 
u s ,  

o <-~43 <~ ~, 

is open in Y; 

(b) B e is non-empty with diamclBe<e; and also 

(c) O B r = Y. 
0~<?<F 

Proof. Consider any non-empty closed subset F of Y and any e>0. Since Y can be 

fragmented, we can choose an open subset G of Y with GOF a non-empty set of 

diameter less than e. Choose a point Y0 in G A F. Since Y is completely regular we can 

choose a continuous function h on Y with 

and 

h(y0) = 0 

h(y) = 1 for all y in YN, G. 
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Now the set F,  of all points y of F with h(Y)<�89 is a non-empty subset of F, with closure 

of diameter at most e, with F',,.F, closed and with F,  an ~o-set. 

We define the sequence {B/0~<y<F}, together with a second sequence 

{Re: 0~<y<F} inductively to satisfy the conditions (a) and (b) and also 

(d) R r = Y \  19 B~. 
0~<#<r 

We start by taking Ro = Y. Using the condition that Y can be fragmented, with 

F=Y, we take B0 to be a non-empty ~o-set with diamclB0<e, with Ro\Bo closed. 

Then Bo = Y \ ( R o \ B o )  is open. 

Now suppose that for some ordinal y>0, the sets Ba, Ra have been defined, for 

0<~fl<y, satisfying the conditions (a), (b) and (d). Then 

U B#= U ~ U B,~I 
0<-~e<y 0<-~<y 1.0-<a<~ ) 

is open. ff  this union coincides with Y, we take F=y  and the construction terminates. 

Otherwise the set R r defined by 

Ry = Y \  19 B~ 
0-<~<r 

is closed and non-empty. As Y can be fragmented, we can take B e to be a non-empty 

:~a-set, contained in R e, with diam clBr<e, and with R r \ B  e closed. Now 

U B , = { 2 < y B ~ } U B r = Y \ { R y \ B y }  
o<~fl<~y 0 

is Open. Now the conditions (a), (b) and (d) are satisfied for this ordinal y. As the 

sequence of sets LIo_<z<~Bz, 0~<y, is strictly increasing, until the whole of Y is 

covered, this transfinite process terminates with a cover of Y. 

Our next lemma is clearly a step towards the proof of Theorem 4. Before we state 

it we need to explain some further concepts. A family {Xr: y E F} in a space X is said to 

be discrete if each point of X has a neighbourhood that meets X r for at most one y in F. 

A family {Xr: yE F} in X is said to be a-discrete if one can write F=LI,~ 1F(n) in a way 

that ensures that each family {Xe: y E F(n)}, n~  > 1, is discrete. The family is said to be 

discretely o-decomposable if it is possible to write 

0o X~=~l~"), for rEr ,  

�9 so that the family {X~n): yE F}, is discrete for each n~>l. 
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LEMMA 2. Let X be a metric space and let Y be a completely regular Hausdorff 

space that can be fragmented. Let F be an upper semi-continuous set-valued map from 

X to Y, taking only non-empty compact values. Then, if  e>0, there is a partition 

{X~,: 7 E F} of  X as a discretely cr-decomposable family o f  sets that are both ~ : s e t s  

and also ~-se t s  and a set-valued map H from X to Y, with: 

(a) for each x in X, the set H(x) is a non-empty compact subset ofF(x) o f  diameter 

at most e; 

(b) for each 3/ in F, the restriction o f  H to X~ is upper semi-continuous; and 

(c) for each 3/in F, the diameter of  the closure of  H(Xy) is at most e. 

Proof. By Lemma 1, we choose an ordinal F and a disjoint transfinite sequence 

{B(3/): 0-.<3/<F} of ~ : s e t s  in Y, such that, for 0--<3/<F, we have 

(a) the union 

is open; 

([3) B(3/) is non-empty with 

u B(~) 

diam cl B(3/) < e, 

n Rq~) = ~. 

I'l R(fl), 0---<0<3/, 
0<~8<0 

F(x) n 

ff 3/were a limit ordinal, the sequence 

F(x) N 

and also 

(y) U B(3/)=Y. 
0<-~<r 

We then define R(3/), for O~<y<F, by 

(~) R(3/) - -Y\  U B(~)-- U B(a). 
0~<fl<? ?'~<a<F 

Then R(y) is closed for 0~<?<F. 

Consider any point x of  X. By (y) and (6), 

F(x) N N R(y) - -~ .  
0~<),<F 

As F(x)=#~, there is a least ordinal y=3/(x), with l~<y~<F, and 
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would be a decreasing sequence of non-empty compact sets, with a non-empty inter- 

section 

F(x)N N g(fl). 
0<.%6< ~, 

Thus ~(x) is neither a limit ordinal, nor 0, and we can define an ordinal r/(x) by 

r/(x)+ l=7(x). This ensures that 0~<r/(x)<F, 

but 

Using (fi), this yields 

F(x) N R(~/(x)) ~= ~ ,  

F(x) fl R(7) = ~ ,  for t/(x) < 7 < r .  

F(x) N B(rl(x)) ~= (3, 

F(x)flB(7) = ~ ,  for r / ( x ) < 7 < r .  

Thus we have deferred the choice of r/(x) until the last possible chance that we have of 

obtaining a non-empty interesection of F(x) with B(rl(x)). 
For each 7 with 0~<7<F, we introduce the sets 

x(r) = ( x :  , 7 ( x )  = ~,}, 

z ( r )  = {x: ,l(x) > r}. 

Write 

T =  U { x } x F ( x ) ,  
x E X  

for the graph o f F .  Now ~/(x)>7, if, and only if, F(x)AR(7+I).~, so that 

z 0 0  = projx Tn (XxR( r+  1))} 

is a closed set in X, as F is upper semi-continuous. Similarly, t/(x)=7, if, and only if, 

F(x) NB(y)~=~ and F(x) NR(~,+I)=~. Hence, using the upper semi-continuity, 

xo ' )  = [projx {TN (X• {TN ( x x g ( 7 +  1))}1 

is an ~o-set in X. 

Let a be the metric on X, and use 

N(~; i) = {x: o(x, ~) < 1/i} 
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to denote the open ball with centre ~ and radius 1/i. Let X(y; i) denote the set of all ~ in 

X(y) for which 

N(~; i) 13 Z(7 ) = ~ ,  

for 0~<7<F and l~<i. Then X(7; i) is the intersection of X(7) with a closed set, and so is 

an ~o-set. 

We show that, for each i~> 1, the family 

{X(7; i): 0~<~'<F} 

is discrete in the completion X* of X. Let x* be any point of X* and suppose that 

N(x*;2i) meets both X(O;i) and X(~p;i) with 0~<q0<F. Then there are points ~,r of 

X(O; i), X(q0;/) with 

o(~, x*) < 1/(20, 

Thus o(~, ~)<l/i. As ~EX(O;i) we have 

~x(o),  

so that 

As ~EX(q~;/) we have 

so that 

Thus 

o(~, x*) < 1/(20. 

~ z(o), 

,7(~) = o,  rl(r -< o.  

6x(r ~ r z(q~), 

, 7 (0  = q~, ~(~)  ~< q~. 

o = q(~) ~ q~ = ,7 (0  ~< o ,  

and 0=q0. Hence, for each i~>1, the family {X(y;/): 0~<y<F) is discrete in X*, that is, 

each point of X* has a neighbourhood that meets at most one member of the family. As 

o o  

X ( y ) = U X ( y ; i ) ,  f o r 0 ~ < y < F ,  
i=1 

the family {X(y): 0~<y<F) is discretely o-decomposable in X*, as each set of the family 

is a countable union of sets belonging to a countable system of discrete families. 
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Now {X(y): 0~<y<F) is a discretely a-decomposable partition of X into So-sets. 

Hence,  the union of  any sub-family of this family is an So-set, and, in particular, the 

complement of  any set X(y), 0<~y<F, is an So-set. So each set X(y), 0<~y<F is both an 

So-set and a ~d~-set. 

Finally, we define the set-valued function H on X by taking 

H(x) = F(x) N clB(r/(x)) 

for each x in X. This ensures that H(x) is a non-empty compact  set of  diameter at most  

e, for each x in X. Further,  the restriction of  H to X(7), takes the form 

H(x) = F(x) n clB(y), for x E X(y), 

and so is upper semi-continuous on X(y), for 0~<y<F. 

By (13) the diameter of  the closure of  B(y) is less than e, for each 7 in F. Hence the 

closure of  H(Xe) is of  diameter less than e, for each y in F. It is easy to check that we 

have now satisfied all the requirements of  the lemma. 

Proof o f  Theorem 4. We define inductively a sequence of ordinals F(1), F(2) . . . . .  a 

sequence of  partitions 

{X(~l ,  ~2 . . . . .  ~n): (~1, ~2 . . . . .  ~n) E H(n)}, 

n=  1,2 . . . .  of  X, with 

H(n) = F(1)•215 n = 1,2 . . . . .  

and a sequence H(~ H (1), H (2) . . . . .  of  set-valued maps from X to Y, satisfying, for 

each n ~  > 1, the conditions: 

(a) {X(yl, 72 . . . . .  3/,,): (3'1, Y2 . . . . .  Yn) E H(n)} is a discretely a-decomposable parti- 

tion of  X into sets that are both So-sets and also ~ - se t s ;  

(b) /_/~,0 takes only non-empty compact  values of  diameter at most  1/n, with 

H('~ for xEX; 
(c) H(n)(X(y~,yz . . . . .  yn)) has closure with diameter at most  1/n, for each 

(7'1,3'2 . . . . .  y,,) in II(n); and 

(d) for (Yl, Y2 . . . . .  y~) in II(n), with X(yl, Y2 . . . . .  y~):4:~, the restriction of  H (~) to 

X(y~, Y2 . . . . .  yn) is upper semi-continuous. 

We obtain the ordinal F(1), the partition {X(y0:y~ E 11(1)} and the set-valued map 

/4 ~ satisfying the conditions (a), (b), (c) and (d) by a direct application of  L e m m a  2, 
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with e= l .  Now suppose that, for some n~>l, the ordinals, the partitions and the set- 

valued maps satisfying (a), (b), (c) and (d) have been chosen up to and including n. Not 

of necessity, but for notational convenience, we take the next step using the proof of 

Lemma 2 as well as its statement. As in the proof of Lemma 2, using Lemma 1 with 

e= 1/(n+ 1) we choose a disjoint transfinite sequence {B(y): 0~<y<F(n+ 1)} of ~; :sets  in 

Y and a transfinite sequence {R(y): 0~<y<F(n+ 1)} of closed sets satisfying the condi- 

tions (~t), (13), (3') and (8). We replace F in the proof of Lemma 2 by H (n). We proceed 

just as in the proof of Lemma 2, but operating separately within each set 

X(y l ,  Y2 . . . . .  Yn) of the partition 

{ X ( y l ,  Y2 . . . . .  Yn): (Yl, Y2 . . . . .  Yn) E l-l(n)} 

to obtain a discretely o-decomposable partition 

{ X ( y l ,  Y2 . . . . .  7n, Yn+l) :  Yn+l ~-" F(n+ 1)} 

of X(y l ,  Y2 . . . . .  7,,) into sets that are both relative ~o-sets and also relative ~d, rsets .  The 

only difference from the situation in Lemma 2 is that now some of the sets 

X(y l ,  Y2 . . . . .  Y,,+O may be empty. It is clear that the ordinal F(n+ 1), the partition 

{ X ( y l ,  Y2 . . . . .  Yn+l) :  (Yl, Y2 . . . . .  7,,+ l) E Fl(n+ 1)} 

and the set-valued function H ('+ 1) obtained in this way satisfy the conditions (a), (b), 

(c) and (d) with n replaced by n+ 1. 

It remains to define f by taking 

0o 

f(x)= f'l H(n)(x), forxEX, 
n=O 

and to verify that fis a well-defined selector for F that is Borel measurable of the first 

Borel class in the two ways. As the sequence H(~ H~ H(2)(x) .... is a 
decreasing sequence of non-empty compact sets with diameters tending to zero, it is 

clear that f ( x )  is a well-defined point of F(x)  for each x in X. Note that this argument 

holds, despite the fact that there is no necessary relationship between the topology that 

we use on Y and the metric on Y, in terms of  which the diameters are defined. 

To prove tha t f i s  of the first Borel class in the Hausdorff topology we consider any 

closed set J in Y and show that f - l ( J )  is a ~,rset in X. We verify that 

00 

X " x f - t ( J )  = 13 LI{X(yI,y 2 .. . . .  y . ) \ (H(") ) - l ( J ) : (y l ,y  2 .. . . .  yn)En(n)}. (1) 
n=! 
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Clearly xEX" , , , f - l (J ) ,  if, and only if, 

or, if, and only if, 

f(x)r 

63 

As 

or, equivalently, 

x E X\ (H(n) )  - l (j). 

and 

Thus 

{ / ( 7 1 , 7 2  . . . . .  7n): (71,72 . . . . .  7n) E H(n)} (2) 

is a partition of  X, the required formula follows. By the upper semi-continuity of our 

maps, each set 

X(71,72, ..., 7, ,)\(H(")) - 1 (J) 

is open relative to X(T1,72 . . . . .  7,0, and so is an ~:o-set in X. As each family (2) is 

discretely o-decomposable,  it follows that the union (1) is an ~o-set in X, and f -~(J )  is 

a %-set,  as required. 

Now suppose that G is any set in Ythat  is open in the topology of  the metric 0. I f x  

is any point o f X  wi th f (x )E  G, then, for some n>0,  the closed ball with centre f(x) and 

radius 1/n, defined in terms of  0, is contained in G. Hence,  using condition (c), for some 

(Yl, 72 . . . . .  7.) in H(n), we have 

X E X(71 ,72  . . . . .  7n) 

f(x) ~ f ( X ( 7 1 , 7 2  . . . . .  ~n)) C= H(n) (x (71 ,72  . . . . .  7n)) C G.  

o o  

f - l ( G )  --" O O {X(71, 72 . . . . .  7n): (71,72 . . . . .  7.) E H(n) and Ht")(X(71,72 . . . . .  7n)) ~ G ) .  
n = l  

(3) 

J n [nN=l H(n)(x) ] -- ~. 

As J is closed, and H~ H ( 2 ) ( x ) ,  . . .  is a decreasing sequence of compact sets, this 

holds, if, and only if, for some integer n~> 1, we have 

J N H('~ = (3, 
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As before, it follows that f-l(G) is an ~o-set in X. Hence f is a Borel measurable 

function of the first Borel class, using the 0-topology. 

We are grateful to R. W. Hansell for drawing our attention to the useful fact that 

the formula (3) implies that the family ( f - l (G) :  G 0-open} has a closed o-discrete 

base. It follows immediately from (3) that each set f - l (x ) ,  with G 0-open in Y, is the 

union of those of the sets of the family 

{ X ( ~ I ,  ~2 . . . . .  ~/n): (~1, ~2 . . . . .  ~n) 6 H(n) and n I> 1} 

that it contains. Thus, introducing a simpler notation, we have a discretely o-decompo- 

sable family ( E ( 0 ) : 0 6 0 )  of ~:o-sets that form a base for the family {f- l (G):  G 

p-open}. Now we can write 
oo 

E(0) = u E~"~(0), 0 6 O, 
n=l 

with each family {E('~ 0 6 0 } ,  n~>l, a discrete family of closed sets. The family 

(E~n)(0): 0 E O  and n>~l} is a o-discrete family of closed sets that is a base for the 

family {f- l (G):  G p-open). 

It is well known that, i f f  is a Borel measurable function of the first Borel class 

from a metric space X to a separable metric space Y, then the set of points o f X  w h e r e f  

is discontinuous is an ~:o-set of the first category in X, see [23, p. 394]. Now Hansell 

[12, Theorem 10] shows that when f satisfies the condition of the last paragraph, then 

the standard proof can be easily modified to apply without the need for the space Y to 

be separable. It follows, in our case, that the set of points of X where f is 

p-discontinuous is an ~:a-set of the first category in X. 

We can now prove two theorems refining Theorems 7 and 8 stated in the introduc- 

tion. 

THEOREM 5. Let  X be a metric space and let Yo be weakly closed subset o f  a 

Banach space Y. Suppose that each bounded subset o f  Yo has the point o f  continuity 

property for  the norm. Let  F be an upper semi-continuous set-valued map from X to Y 

with its weak topology. Suppose that F takes only non-empty weakly compact values 

contained in Yo. Then, using the norm topology on Y, the set-valued map F has a Borel 

measurable selector f o f  the first Baire class. The set o f  points o f  X, where f is norm- 

discontinuous, is an ~o-Set o f  the first category in X. 

THEOREM 6. Let X be a metric space and let Yo be a weak-star closed subset o f  

the Bananch space Y* dual to a Banach space Y. Suppose that each bounded subset o f  
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Yo has the weak-star point o f  continuity property. Let F be an upper semi-continuous 

set-valued map from X to Y* with its weak-star topology. Suppose that F takes only 

non-empty weak-star closed values contained in Yo. Then, using the norm topology on 

Y*, the set-valued map F has a Borel measurable selector f o f  the first Baire class. 

Further, the set o f  points o f  X where F is norm-discontinuous is an ~o-set o f  the first 
category in X. 

Note that when Yo=Y * the space Y* has the weak-star point of continuity 

property, if, and only if, it has the Radon-Nikodpm property, see the remarks in the 

introduction. 

Proof o f  Theorem 5. The conditions ensure that each non-empty bounded weakly 

closed subset of Y0, taken with its relative weak topology can be fragmented using the 

n o r m .  

Write 

and 

Yn = {Y E Y0: IlYll ~< n}, n t> I, 

Fn(x)=F(x)NY~, xEX,  n ~  l, 

XI = {x: F(x) fl Y1 =~ (~}, 

X~ = {x: F(x) N Y~-I = ~ but F(x) N Y~ ~= ~} ,  n >I 2. 

Then, as F is upper semi-continuous, using the weak topology on Y, the family 

{X,: n~>l} is a partition of X into sets that are both ~o-sets and also ~-sets .  Further, 

for each n~>l, the restriction of Fn to X~ is an upper semi-continuous set-valued map 

into Y,, with its relative weak topology, with non-empty weakly compact values. Thus 

the set-valued map F,, and the spaces Xn and Yn satisfy the conditions of Theorem 4, 

using the norm on Y as the metric Q. Hence we can choose a Borel measurable selector 

f~ of the first Borel class for F~ on X~, using the norm topology on Yn, for each n~ > 1. 

Now the function f defined by 

f(x)=fn(x), forxEX,,, n ~  > 1, 

is a Borel measurable selector for F of the first Borel class. Although the continuity 

properties o f f c a n  not be deduced from those of the partial functions fn on Xn, n~>l, 

the argument used in the proof of Theorem 4 applies, and we conclude that the set of 

points of X where f is norm-discontinuous is an ~o-set of the first category in X. 

5-858288 Acta Mathematica 155. Imprim6 le 28 aoflt 1985 
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We prove t h a t f i s  of the first Baire class on X. Using the norm topology on Y, the 

family {XnNf-I(G): G open} has a closed o-discrete base in X,,, for n~>l. Since each 

set X~, n~>l, is an ~:o-set in X, it follows, without difficulty, that the family {f - l (G):  G 

open} has a closed e-discrete base in X. 

A space Y is said to have the extension property with respect to a space X, if every 

continuous map from a closed subset of X to Y can be extended to a continuous map 

from X into Y. Now Dugundji and Borsuk, see [3, Theorem 3. I, p. 58], show that a 

Banach space Y always has the extension property with respect to a metric space X. 

Further, Hansell, in [13, Theorem 6], shows that if f is a Borel measurable map of the 

first Borel class from a metric space X to a metric space Y, having the extension 

property with respect to X, and if the family {f-l(G): G open} has a closed e-discrete 

base, then the standard proof for Ythe real line (see [23, w 31, Theorem 7]) can be easily 

modified to show that f i s  a point-wise limit of a sequence of continuous functions from 

X to Y. One family {E(0): 0 E O) of sets in a space X is said to be a base for another 

family {Xr: 7 E F} in X, if each set Xy, 7 E F, is the union of those sets of {-~(0): 0 E O} 

that it contains. 

Fitting these results together, we find that the selectorf is  of the first Baire class. 

Proof o f  Theorem 6. The result follows from Theorem 4 by the method used to 

prove Theorem 5. 

Theorems 7 and 8, stated in the introduction follow immediately from Theorems 5 

and 6. 

w 4. Maximal monotone maps 

In this section we obtain selection results for maximal monotone maps. We need three 

lemmas. The first derives some of the elementary results of the theory in a slightly 

refined form using a simple proof. The second quotes deeper results due to Rockafellar 

[31]. 

LEMMA 3. Let F be a maximal monotone map from a Banach space X to its dual 

space X* and let B* denote the unit ball o f  X*. For R>0, let FR be defined by 

FR(x) = F(x) N [RB*], for x ~X.  

Then, for each R>0, the set-valued map FR is a weak-star upper semi-continuous map 

with convex weak-star compact values. The domain 

D = {x: F(x) :~ f~) 

o f F  is an ~o-set. 
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LEMMA 4 (Rockafellar). Let F be a maximal monotone map from a Banach space 

X to its dual space X*. Suppose that the interior Do o f  the convex hull o f  the domain D 

of  F is non-empty. Then Do coincides with the interior o f  D, is dense in D and is a 

convex open set. Further, F is weak-star upper semi-continuous and locally bounded 

on Do. 

LEMMA 5. Let F be a monotone map from a Banach space X to its dual space X*. 

Suppose that the domain D o f f  contains Xo and is dense in a neighbourhood o f  xo. Let  

f be a selector for F on D, and let H be a maximal monotone map whose graph 

contains the graph o f  F. I f  f is weak-star continuous at Xo, then H(xo) reduces to a 

single point and H is bounded on some neighbourhood o f  xo and is weak-star upper 

semi-continuous at Xo. I f  f is norm continuous at Xo, then H is norm upper semi- 

continuous at Xo. 

If, in addition, D is a ~6-set that is dense in an open set G in X, and f is a norm 

Borel measurable selector o f  the first Borel class, then there is a ~-se t ,  contained in D 

and dense in G that is simultaneously: 

(a) the set o f  points o f  D where f i s  norm continuous; 

(b) the set o f  points o f  D where F is point-valued and norm upper semi-continu- 

ous; 

and 

(c) the set o f  points o f  D where H is point-valued and norm upper semi-contin~ 

OUS.  

When the selector f is weak-star continuous at x0 and X is reflexive, it follows 

immediately from the lemma by use of the results of Rockafellar [3 I] that Xo is an 

interior point of the domain D of H. 

We remark that the theory of monotone maps and of maximal monotone maps 

becomes much simpler when one can work within the interior of their domain. A simple 

example illustrates the difficulties that occur when the domain has no interior. Consider 

the set-valued map F from/2 to/2 defined by 

F(x) = {x} 

for those 

x = ( x l , x z ,  x3 . . . .  ) 
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• n2~ 
n = l  

F(x) = (~. 

It is easy to verify that F is a maximal monotone map and that its domain is dense in/2, 

but has empty interior. Further, F is nowhere locally bounded in 12. 

Proof  o f  Lemma 3. We first prove that for each x in X, the set F(x) is convex and 

weak-star closed. Fix Xo in X and let x~', x~ be points of F(xo). Then for each choice of 

~, ~* with ~EX, ~* EF(O, we have 

so that 

(~-x0, ~*-x~) t> 0, 

(~-x0, ~*-xT) >I 0, 

(~-x0, ~*-(O-O)x~+OxT) ) >-o, 

for 0~<0~<1. As F is a maximal monotone map, we have 

(1 - O) x~+ Ox~ E F(Xo) 

for 0~<0~<1. Thus F(xo) is convex. 

Now consider any point x~ in the weak-star closure of F(xo). For each choice of 

~, ~* with ~EX, ~* EF(~), and each n ~ l ,  the set of points x* with 

( ~ - x  o, x*-x~) >I -1 /n ,  

is a weak-star neighbourhood of x~, and so contains a point, x* say, of F(xo). Hence 

( ~ - x  o, xn-Xo) >--1/n, 

and, as x* E F(Xo), 

Thus 

(~-xo, ~*-x*) >-o. 

~ - X o ,  ~*-x~) >I - 1/n, 
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for n~> 1, so that 

(~-x0, ~*-x~) I> o. 

As F is maximal, this implies that M;EF(xo). Thus F(xo) is weak-star closed. 

We use X~',) to denote X* with its weak-star topology. We prove that the graph 

MR = {(x, x*): x E X and x* E FR(x)} 

of FR is closed in XxX~',). Let (~, ~*) be a point of the closure of MR in XxX~',). 

Consider a general point (x0, x~) of the graph M of F, with Xo4=~. Let e>0 be given and 

write 

,~_ �89 
Ilxffll+g" 

The set of points (x, x*) with 

IIx-~ll < ~, 

* _  * I (Xo-~,x~-x*) < (Xo-~,Xo ~ )+~,  

is a neighbourhood of (~, ~*) in XxX~',). So we may choose a point, (Xl, x]') say, of MR 

in this neighbourhood of (~, ~*). Then IIxTII-<R. Further, as F is a monotone map, 

(Xo-Xl, Xo-Xl) >I O. 

Thus 

Hence 

(Xo-~, x~'-~*) > (Xo-~, xff-x~')-�89 

* * 1 -- (Xo-X~, x~'-x~) + (x~-~, Xo-X~ ) - ~ 

* * _ 1  
- -HXI- -~ [ [ "  HXo--XI II ~E 

>I -IIx~-~ll (llx~'ll+R}-�89 I> -e .  

(Xo-~, x~'-~*) I> o, 

for all xo, x~ with x~ E F(xo). As F is a maximal monotone map this ensures that 

~*EF(x*). As the ball [[x*il~<R is weak-star closed, we also have H~*H~<R. Hence 

(~, ~*) E MR as required. So MR is closed in XxX~,). 
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Consider any weak-star closed set J in X*. As 

F~'(J) = proj x ( M  R n {XxJ} } = projx (MR n {Xx(JnRB*)}} 

with B* the unit ball of X*, this set F~'(J) is the projection of the closed set 

MR A {Xx(JARB*)} 

of XxX~',) onto X through the weak-star compact set RB*. Hence F~I(J) is closed in 

X. Thus FR is weak-star upper semi-continuous. By the first paragraph, FR takes 

convex weak-star compact values. 

As 

the set D is an ~ : : s e t .  

ao 

D = U F~'(X*), 
R=I  

Proof of Lemma 4. This follows immediately from Theorem 1 and Corollary 1.2 of 

Rockafellar [31]. Rockafellar does not state his results in quite this way, but his results 

do imply those stated here. 

Proof of  Lemma 5. Let H be a maximal monotone map from X to X* whose graph 

contains that of F. Then the domain E of H contains the domain D of F. 

We may suppose that D is dense in the neighbourhood 

B(x0; = {x: IIx-xoll < 

of Xo, with e>0. 

Now suppose that the selector f ,  defined on D, is weak-star continuous at Xo. It 

follows that f must be bounded on some relatively open subset of D containing Xo. 

Changing the value of e>0, if necessary, we may suppose that, for some M>0,  

II$(x)ll M, 

for all x in D A B(Xo; t). 
Our first aim is to prove that H is bounded in some relatively open subset of E 

containing x0. Suppose that this is not the case. Then we can choose sequences (~,,) 

and (~*) with 

[l~n-Xo][ ~< e/(4n), 

~* e H(~.), 
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for each n>~l. Now the set of points x satisfying 

IIx-~.ll < �89 

is a non-empty open subset of B(x0; e). Since D is dense in B(x0; e), we can choose dn in 

D satisfying 

IId~-~ll  < �89 

for each n~> I. Since H is a monotone map we have 

o <~ (d~-~., f(d.)-~*) 

= ( d ~ - ~ , , - ~ * ) + ( d , - ~ , f ( d , ) )  

~< I1~*11 (d.-~., -~:*/11~*11) +�89 

< - ]ne+ �89 - oo, 

as n--->o0. This contradiction shows that H is bounded on some neighbourhood of Xo. 

Changing the value of e, if necessary, and choosing a new M, we may suppose that 

Ilhll ~< M for all h in H(x) with x in ENB(xo, e). 

The next step is to show that H(xo) must reduce to a single point. Suppose that 

H(xo) contains a point x~ other than the point f(xo) of F(xo),--H(xo) selected by f. 

Choose ~ in X with 

( ~, f ( x  o) - x~ )  = - 2. 

Then xo+n- l~EB(xo;e )  for all sufficiently large n, say for n>~no. Since D is dense in 

B(xo; e), we can choose ~n with 

xo+ n-l~7n E D, 

II~.-$II < I / (2M) ,  

for n>~no. Since H is a monotone map, 
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0<~ n(xo+n-lrln-Xo,f(xo+n-lrl, ,)-x~) 

= ( t in - t ,  f(xo+n-lrl,,)-x'~) 

+ ( ~, f(xo+n-lrl,,)-f(Xo)) 

+ ( t ,  f(Xo)-X~> 

~< [[r/,-t[ [ 2M-2  

+ ( t ,  f (xo+n-lrl , ) - f (xo))  

<~ - 1 + < ~, f (x o + n-;rl , ) - f ( x  o) ) 

as n--+oo, using the weak-star continuity o f f  at Xo relative to D. This contradiction 

shows that H(xo)=F(xo)=f(xo). 
Using the boundedness of H in the neighbourhood B(xo; e) and Lemma 3, we see 

that H is necessarily weak-star upper semi-continuous in B(xo; e) and so, in particular, 

atxo. 

We now suppose that f is norm continuous at Xo and show that H is norm upper 

semi-continuous at Xo. Since a norm continuous function is certainly weak-star con- 

tinuous, we may use the results of the previous paragraphs. Suppose, for sake of 

argument, that H is not norm upper semi-continuous at Xo. Then we can choose 6>0, 

and sequences t . ,  t* with 

II;.-xoll < e/(Zn), 

t* E H(tD, 

IIt*-f(xo)ll I> 6, 

for each n~  1. 

For each n ~ l ,  we can choose ~. in X with 117.11=2 and 

Then, for n>~l, 

( ]In, t*n --f(Xo) ) >I 6. 

Iltn +(e/4n)  .-xoll < e/n <~ e. 

By the density of D in B(xo; e) we can choose r with 

11,7.-  11 < l/n, 
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and with 

~n+(d4n) ~n in D. 

Since ~n+(e/4n)~ converges in norm to x0 through points of  D, the image points 

f(~+(e/4n) ~,,) converge in norm to f(xo) as n--)oo. 

Using the fact that H is a monotone  map, we deduce that 

0 <~ 4n(~,,+(e/4n) ~,,-~,,, f(~,,+(e/4n) ~,,)-~*) 

= e(rl, ,, ffxo)-~*) 

+~(,7., f(~+(dan) ~)-f(xo) ) 

+E ( ~,,- tl n, f(~ + (e/4n) ~) - ~*) 

<~ -eO + 2ellf (~, +( d4n) r  (xo)ll + 2eMll~.-q .ll 

as n-- -~.  This contradict ion shows that H is norm upper  semi-continuous at Xo. 

We now consider  the case when D is a ego-set that is dense in an open set G in X, 

a n d f i s  a Borel  measurable selector  of  the first Borel  class. The set D is a completely 

metrizable space a n d f i s  a Borel  measurable function of  the first Borel  class f rom D to 

X* with its norm topology.  By a result,  going back to Baire 's  thesis, as recent ly  

extended to the non-separable case by  Hansell  [13], the points of  norm continuity o f f  

form a ~ - s e t  U that is dense in D and so also dense in G. This set U can now be 

immediately identified with the sets (a), (b) and (c) in the s tatement  of  the lemma. 

We now prove the main result of  this section. 

Proof of Theorem 9. First  consider  the case when X has a equivalent norm whose 

dual norm on X* is strictly convex.  Le t  q0 denote  this strictly convex norm on X*, and 

let ~*  denote  the corresponding unit ball 

�9 * = (x*: 9(x*) ~< I}.  

By L e m m a  3, for  each integer r>0 ,  the set-valued function 

Fr(x)= F(x)n[r~*], for xEX, 

is weak-star upper  semi-continuous with weak-star  compact  values. Despite the fact 

that F(x) itself may not  be weak-star  upper  semi-continuous,  the arguments in Theo-  

rems 1 and 3 apply and the nearest  point selector f for  F(x) is a weak-star Borel  
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measurable selector of the first Borel class on D. Further, the set of  weak-star 

discontinuities of f is contained in an ~ - s e t  of the first category in D. Since we have 

taken the interior Do of D to be non-empty, the set J of points of Do where f is weak- 

star continuous, contains a c~o-set that is dense in Do. Applying Lemma 5 to the 

monotone map obtained by restricting F to Do, we can identify J with the set of points 

of Do where F is point-valued. 

Now consider the case when X* has the Radon-Nikod~,m property. By Lemma 3, 

for each integer r>0,  the set-valued function 

F~(x) = F(x) N [rB*], for x E X, 

is weak-star upper semi-continuous with convex weak-star compact values. Using 

Theorem 8, we can choose a norm Borel measurable selectorfr of the first Borel class 

for F~ on its domain Dr, which is a closed set in X (see the proof of Lemma 3). Define f 

on D by taking 

f ( x )=f l ( x ) ,  if xEDl ,  

and 

f(x)=f~(x),  if x E D r \ D r - 1 ,  r>-2. 

It is easy to verify t ha t f i s  a norm Borel measurable selector of the first Borel class for 

F on D, and that {f-~(G): G norm open in X*} has a closed a-discrete base. It follows, 

as in the proof of  Theorem 5, that f i s  of  the first Baire class on D. 

Restricting F and f to the open set Do we obtain a monotone map (no longer 

maximal, in general) with a norm Borel measurable selector of the first Baire class. It 

follows immediately, from Lemma 5, that there will be a ~ - s e t  contained in Do, dense 

in Do, and so also in D, that is both the set of all points of Do at which f is norm 

continuous with respect to Do and also the set of points of Do at which F is point- 

valued and norm upper semi-continuous with respect to Do. 

w 5. Subdifferentials and the Radon-Nikod~ property 

As we have explained in the introduction, the subdifferential of a lower semi-continu- 

ous convex function fdef ined  on a Banach space X, taking values in the extended real 

line, and taking finite values on some convex set with a non-empty interior, is a 

maximal monotone map from X to X*. When X* has the Radon-Nikod)~m property, 

Theorem 9 applies, and we find, in particular, that the subdifferential has a norm Borel 
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measurable selector of the first Baire class on its domain of definition. In this section, 

we first prove the strengthened converse to this result, stated in the introduction. 

Proof of  Theorem 10. Let F be a subdifferential map with domain of definition D. 

Let U be a (a, rse t  that is dense in the interior Do of D, and suppose that f is a norm 

Borel measurable selector for F on U. Then U is a completely metrizable space. By an 

extension due to Hansell [13] of a classical result [23, p. 400], there is a @~-subset U~ of 

U, dense in U, with the restriction of f to U~ norm continuous at each point of U1. 

We can now apply Lemma 5. We find that F is point-valued and norm upper semi- 

continuous at each point of U~ which is a ~ - se t  in X that is dense in Do. Thus the 

convex function giving rise to the subdifferential is Fr6chet differentiable on a dense 

@,rsubset of the set where it is finite. Thus X is an Asplund space (see the introduction 

for the definition), and, by a result of Namioka and Phelps [25], the space X* has the 

Radon-Nikod#m property. 

w 6. Attainment maps 

Throughout this section, K will be a non-empty weakly closed set in a Banach space X. 

The attainment map F of K is the set-valued map defined on the dual space X* of X by 

the formula 

F(x*) = {x:xEX and ix, x*) = sup {(k,x*): kEK} }, 

so that F(x*) is the set of points of K at which the linear functional x* attains its 

supremum over K. We prove Theorem 11, stated in the introduction. 

Proof of  Theorem 11. We first verify that F is a monotone map from X* to X**. Let 

x~ and x~' be distinct points of X* and suppose that Xo E F(M;) and xl E F(xT). Then 

(xo, = sup{(k,x ): k e r )  I> 

and similarly 

so  that 

(xl,x ) >>- (xo,xT), 

) = ) - ( x o ,  xT ) + (xo, ) >-o. 

Thus F is monotone. 

We next consider case (a), when K is weakly compact. In this case all linear 
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functionals attain their suprema on K, so that D* =X*. We verify that F is weakly upper 

semi-continuous. Consider any point x~f in X* and any weakly open set G in X with 

F(x~) c G. 

Then K \ G  is weakly compact and ~x, x~) obtains its supremum, q say, over K \ G  at 

some point h of K \ G .  As h is not in F(x~), this supremum q must be strictly less than 

the value, p say, taken by (x,x~) on F(x~). So 

(x,x~) <<.q for x in K \ G ,  

(x, x~) = p for x in F(x~). 

As K \ G  and F(x[;) are bounded, we can choose e>0, so that 

(x,x~) <~q+~p fo rx  in K \ G ,  

(x,x~) >~q+~p for x in F(x~), 

for all x~ with IIxT-x~ll<e. It follows that F(xT)cG for all such xT. Thus F is weakly 

upper semi-continuous. 

As K is weakly compact, it is dentable (see [8, p. 204]). As F takes only non-empty 

weakly compact values contained in K, Theorem 5 applies and F has a norm Borel 

measurable se lec tor fof  the first Baire class on X*. As F is a monotone map from X* to 

X**, Lemma 5 applies and there is a ~o-set U* dense in X* that is both the set of norm 

continuity points of f and also the set of points where F is point valued and norm upper 

semi-continuous. 

The conditions in (b) have been chosen to ensure that the same proof applies with 

only the obviously necessary modifications. 

w 7. Metric projection 

In this section we prove Theorem 12 stated and discussed in the introduction. 

Proof of Theorem 12. Under our hypotheses, Theorem 5 applies and F has a norm 

Borel measurable se lec to r fof  the first Baire class on Uo. By the result of Hansell [13], 

used in the proof of Lemma 5, there is a ~ - se t  UI dense in U0, and so also dense in X, 

with f norm continuous on Uo at each point of U~. 

Now suppose that X is strictly convex. To prove that F is point-valued and norm 

upper semi-continuous, with respect to U0 at a point x~ of U~ it is enough to show that, 
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for each e>0, there is an open neighbourhood N of x,, with diamF(Nn Uo)<~e. 
Suppose, on the contrary, that x~ E U~, but that, for some e>0, we have 

diam F(N A Uo)>e, 

for all open neighbourhoods N of x~. As f is continuous on Uo at Xl, we can take N to 

be an open neighbourhood of xl with 

[If(x)-f(xO II < ~e, 

for all x in NA Uo. As f(Xl)~.F(NA Uo) and diamF(NA Uo)>~e, we can choose x2 in 

NA U 0 and h in F(X2) with IIh-f(xl)ll> �89 As N is open in X, we can choose x3 to be a 

point of N in the relative interior of the line segment [x2, hi. As the unit ball of X is 

strictly convex, every point of the ball, defined by 

Ilx-x3l[ <~ Ilh-x31l, 

other that h, is in the interior of the ball defined by 

IIx-x211 IIh-x311. 

As hEF(x2),-K, and [Ih-x2lI=O(x2), it follows that F(x3)=(h}. As IIh-f(xPll>�89 we 

can choose ~* in X*, with 

(h-f fxl) ,  ~*) > ~. 

so the half-space 

(x, ~*) > ~+ (f(x,), ~*) 

is a weak open set containing F(x3). By the weak upper semi-continuity of F, we can 

choose an open neighbourhood M of x3 contained in N with F(M n Uo) contained in this 

open set. As Uo is dense in X, we can choose x4 in Mn UocNn Uo. Then 

(f(x4)-f(xl), ~*) > ~, 

but 

]lf(x4)-f(xl)ll < ~. 

This is impossible as I1 *11= 1. The required result follows. 
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