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Let P be a partially ordered set. If r<w, then [P]” denotes the set of all sequences
{(ay,...,a,) such that ay,...,a,€EP and a,<p...<pa,. If y is an ordinal and if a;, i<y
are order types (isomorphism types of linearly ordered sets), then the symbol P—(a)._,
means that for any partition [P]'=U,_, K, there exists an i<y and a chain AcP such

that tpA=q; and [A]'cK;. The negation of the partition symbol is written with -
instead of —. Note that if P is a linearly ordered set, then [P]" and P—>(a,-),f<y have the

r

usual meanings. If a;=a for all i<y, then we write P—(a), instead of P—(a),

This paper is a study of the partition symbol P—(a,), for partially ordered sets P
such that P—>(x),’, for some infinite cardinal »2. Our main result for the case x=w is the

following theorem which proves a conjecture of Galvin [10; p. 718].

THEOREM 1. Let P be a partially ordered set such that P—(w).. Then
P—(a); foralla<w, and k<w.

This theorem completes a rather long list of weaker results: Erdés-Rado [7], [8],
Hajnal [11], Galvin [9], Prikry [21], Baumgartner-Hajnal [1] and Galvin [10]. The
history of the problem is discussed in [1; pp. 193-194], [4; pp. 271-272] and [10; pp.
711-712). The most general results previously obtained in the direction of Theorem 1
are a result of Baumgartner and Hajnal [1] who proved Theorem 1 for the case when P
is a linearly ordered set, and a result of Galvin [10; p. 714] who proved Theorem 1
under the stronger hypothesis P—(y).. The hypothesis P—(w). in Theorem 1 is
known to be necessary since P—(w, w+1)* implies P—(w). (see [10; p. 718]).

Let us now consider a generalization of Theorem 1 to higher cardinals ». Unfortu-
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nately, there is a restriction to any such generalization since w,-»>(w,+®); is known to

be consistent with GCH ([4, p. 272]). On the other hand, Erdés and Hajnal proved ([4;
p. 273]) that w2—>(w1+n)§ for all finite n assuming CH. This was later generalized by

Shelah [22] to all higher regular cardinals. In [4; p. 282] it is asked whether this result
holds for all order types; i.e., whether ‘P—"(ah);no implies <p—>(w,+n)i for all order types

@ and all k, n<w. In a subsequent note we shall answer this question positively, but in
this paper we present the following general answer in the case k=2.

THEOREM 2. Suppose x is a regular cardinal and A*<x. Let P be a partially
ordered set such that P—(x),,. Then

P— (x+&)3 for all E<A.

The next result is an analogue for partially ordered sets of a well-known partition
relation for cardinals (see [5; § 17]).

THEOREM 3. Assume A=R, and 0=2. Let x=6* and let P be a partially ordered set
such that P—>(x)},. Then

P—(a, (cfA+1),)* forall a<x™ and y <cfA.

Let P be a partially ordered set, let [P]~“=U,, [P]’, and let f:[P]““—y be a
given colouring. We say that a chain AcP is end-homogeneous with respect to fif for
every s€[A]=? and for every a, b€ A with max (s)<pa, b, we have f(s"a)=f(s"b). If
v is an ordinal and if a is an order type, then the symbol P—(a);* means that for

every partition f:[P]=”—y there is an end-homogeneous chain of type a. The end-
homogeneous chains are very useful in proving partition relations of the form
P—(ay);.,, where r>2. But the partition relations of the of the form P—(a);* have

their own interest independent of this, and they are also very useful in many other
combinatorial problem concerning partially ordered sets. The case P=x"* of the
following result is the well-known partition relation for cardinals (see [5; § 15]).

THEOREM 4. Assume A=R, and 0=2. Let x=6" and let P be a partially ordered set
such that P—(x).. Then

P— (A+1)5°.

One of the main points of our proof of the above theorems is the fact that we may
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restrict ourselves to trees. This fact is proved in § 1 by using the operation P defined
there and a result from [25].

In § 2 we prove Theorem 1 for partially ordered sets of bounded cardinality. In §3
we eliminate this hypothesis using a forcing argument.

In §4 we develop a technique for proving partition relations for trees which are
now of great interest owing to the results of § 1. But these partition relations have their
own interest which is independent of § 1. An example is the following relation which is
a corollary of a result proved in §4.

nonspecial tree — (nonspecial tree, w+1)>.

This relation means: If T is a tree which is not the union of countably many antichains
and if [T]*=K,UK, is a given partition, then either there exists a set X< T which is not
the union of countably many antichains with [X]?cK,, or else there is a chain AcT of
type w+1 with [A]’cK;. Note that since w, is a nonspecial tree, this result has as an
immediate consequehce the well-known relation w,;—(w;, w+1)? proved by Erdds and
Rado [8; p. 459]. In § 4 we also give the proof of Theorem 3.

The proof of Theorem 2 is given in § 5.

The proof of Theorem 4 is given in §6. In §6 we also prove the Stepping-up
Lemma for partially ordered sets and deduce several corollaries.

The technique developed in §§ 1 and 4 can also be used in several other combina-
torial problems about partially ordered sets, e.g., set-mapping problems on partially
ordered sets, etc. This approach will be discussed elsewhere.

We conclude the introduction with a few words about the notation. All undefined
terms can be found in any standard text on set theory (e.g., [S]). The letters
a,8,y,9,&, ... are reserved for ordinals, and #, 4, 6, ... for infinite cardinals. %(A) is the
set of all subsets of A considered as a partially ordered set ordered by c.

If P is a partially ordered set and if A and B are subsets of P, then A<pB means
that a<pb for every a€A and b E€B. If K<[P)? and if a €P, then K(a) denotes the set
{bEP: (a,b)EK or (b,a) EK}.

A tree is a partially ordered set T such that f={s € T: s<rt} is well-ordered by <7
for every t € T. The order type of { is called the height of 7 in T, ht7(#). The ath level of
Tis the set T,={tE€T: htr(t)=a}, and ht (T)=min {a: T,=3} is the height of T. If A is a
set of ordinals, then T{A=U,es T,. If t€T, then T'={s€T:t<ys}. For technical
reasons, we shall assume that every tree has a minimal element denoted by @. If Uis a
subset of T then we say that f: U->T is regressive if for every t€ U\ {Q}, f()<rt.

Note that if T is a tree, then T-»>(x). is equivalent to saying that T is the union of
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<x antichains. In this case we call T a x-special tree. A special tree is an Ry-special
tree.

If a is an ordinal, then by a* we denote the minimal infinite cardinal above a, i.e.,
at=Ko+|a|*.

The result of Theorem 1 was announced in [26]. We would like to thank Professor
Fred Galvin for many valuable communications concerning the problems considered in
this paper.

§ 1. On the operation ¢P

Suppose that (A, R) and (B, S) are two given structures where R and S are binary
relations. Then we say that (A, R) is (B, S)-embeddable if there is a mapping f: A—B
such that f(a) S+ f(b) for all a, bEA with aR.. b. Note that f need not be one-to-one.
The following simple fact about this notion will be used quite often in this paper.

LEMMA 1. Suppose P and Q are partially ordered sets such that P is Q-embed-
dable. Let r be a positive integer, and let y and a;, i<y be ordinals. Then

P—(a); < implies Q— (ai)::<y‘

If sf=(A, R) is a structure with one binary relation R, then by o/ we denote the
structure (oA, =) where oA is the set of all one-to-one mappings s with domain « € Ord
such that £<n<a implies s(§) Rs(r7). Let o’ of denote the structure (¢’A, =) where ¢'A
is the set of all s in oA with domain a successor ordinal. Note that ¢’ is -
embeddable. The following basic fact about o5 is proved in ZF alone.

THEOREM 5. For any structure s with one binary relation, o is not sf-embed-
dable. '

Proof. Otherwise, let ff0A—A be an embedding. Define s:Ord—A by
s(a)=f(s[a). Then s is well-defined and one-to-one, a contradiction.

Let AA) denote the set of all one-to-one mappings from ordinals into A, and let
W(A) denote the set of all well-orderable subsets of A. We consider AAA) and W(A) as
partially ordered sets under the ordering . It is clear that AA) is #{A)-embeddable
via the mapping s—range(s), and that (HAA), c)=0(A, A?). So the following ZF-
results are all consequences of Theorem 5.

COROLLARY 6. There is no f: W(A)—A such that f(C)#f(D) for all CeD in W(A).
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COROLLARY 7 (Galvin, Laver). Ax)—(a). for all x=w and a<x®.
COROLLARY 8 (Galvin). P(x)—(a)) for all x=w and a<x*.

A structure related to A(A) and #W(A) seems to have been first considered by F.
Hartogs [12] who, via a similar argument, proved the weaker result that there is no one-
to-one mapping from the height of HAA) into A. Corollary 6 improves a result of A.
Tarski [23] to the effect that there is no one-to-one f: W(A)—A. The case x=w of
Corollary 7 was first proved by R. Laver (unpublished) answering a question of Galvin.
The general result was since then proved by Galvin (unpublished). These results are
included here with their kind permission. Let us note that Galvin’s original proofs of
Corollaries 7 and 8 used the Axiom of choice which from now on will be assumed in
this paper.

If P is a partially ordered set then an element s of oP is uniquely determined by its
range. So in this case we may and will consider oP to be the set of all well-ordered
chains of P. The ordering on oP will be denoted by <-where s<-¢ means that s is an
initial part of ¢. The operation oP for P a partially ordered set was first considered by D.
Kurepa ([13], [15]) who proved Theorem 5 for & a partially ordered set ([14]; see also
the paper of S. Ginsburg referred to in [15]). He also proved that ¢Q is a nonspecial tree
([15]). Note that this is an immediate consequence of the fact that 0Q is not Q-
embeddable since Q-embeddability for partially ordered sets is the same as being the
union of <R, antichains which is again an old result of Kurepa ([15]; see also [25]). The
next result from [25; Theorem 5] is one of the key tools in our proofs of Theorems 1-4.
Since [25] contains only the proof of the countable case of this result, for the conve-
nience of the reader we sketch the proof of the general theorem.

THEOREM 9. The following are equivalent for every partially ordered set P.

(1) P+(0);.
(2) oP is P(x)-embeddable.
(3) O'P is the union of <x antichains.

Proof. Only the implication (3)=-(1) requires a proof (see [25]). Suppose
o'P=U,., A, where each A, is an antichain of ¢’P. For a<x, let

B,={s€0'P:t¢ A, for all t€0’P with s<-1}.

Note that A,c B, for all a. Let << be a fixed well-ordering of ¢’ P. Now for each a€P
we define t,(a) € o’ P by induction on a<x as follows. Suppose 75(a) has been defined
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for all B<a such that t(a)<-1g(a) and max tg(a)<pa for all y<f<a. Define
T,(a)={t€o’'P:maxt<pa and tg(a) <t for all < a}.

Then T (a)+D since (Ug<qtg(a))U{a} ET,(a). Let t,(a) be the <<-least member of
T.(a)NB, if this set is nonempty; otherwise let ¢,(a) be the <<-least element of T,(a).
This finishes the induction step.

For a€P, let

Ha)= ( U ta(a)) U{a}.

a<<x
Then t(a) € ¢’ P, max t(a)=a and t,(a)<-t(a) for all a<x.
Claim 1. If t(a) €A, then t(a)=t,(a).

Proof. Note that Ha)EA.cB, and ta)€ET,(a). Hence T (a)NB,*+D, and so
t,(a) EB,. Since t,(a)€B, and t.(a)<-H(a)EA,, we must have Ha)=t,(a) by the
definition of B,,.

In proving P—(x)! it suffices to show that for all a<x, the set {a€P:H(a)EA,}
contains no chain of type x. So by Claim 1 it suffices to show the following:

i

Claim 2. For a<x, let P,={a € P: t(a)=t,(a)}. Then P, contains no chain of order
type a*.

Proof. Otherwise, let A=a™ and let {a;: £<i} be the increasing enumeration of a
chain from P,.

Note that To(ag)=To(a,) for E<n<a. Thus to(a,)<<ty(ag). So there is a <A and
1,€0’'P such that fo(az)=t, for all £<é<A. Now &psé<n<i implies Ti(ag)c=Ti(a,)
and ty(a,)<<ti(ag). So we can find £y=<&;<1 and ¢, €E0’P such that 7,(ag)=t, for all
§1=é<A. Continuing in this way, we obtain sequences (&s: f<a) and (#5:f<a) such
that 15(az)=tp for all £g<E<A. Let §=sup {&s:f<a}. Then £<A and f(ap)=t.(as)=t,
for all £<£<A. But this contradicts the fact that max t(a)=a for all a€P. This finishes
the proof of Claim 2 and also the proof of Theorem 9.

Theorem 9 is saying that P—(x)! is equivalent to o’P—(x)! for any partially
ordered set P. Since o’P is P-embeddable this shows that in proving Theorems 14 we
may restrict ourselves to trees. This will be an essential point in our proofs of these
results.

The next result shows that in considering partition relations for partially ordered
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sets P with the property P—)(x),‘1 we may restrict ourselves to the case A=x. The proof

of this result is contained in the above proof of Theorem 9.

THEOREM 10. P—(x)! iff P—(a")]

a<x®

THEOREM 11. P—(x)} iff P—(x),.

Let us also mention the following unpublished result of Galvin which is included
here with his kind permission and which is an immediate consequence of Theorem 9.

THEOREM 12 (Galvin). If A=zx=w and if P—>(x)i then P—>(a),11 for all a<x™.

Probably the most natural examples of partially ordered sets P such that P—(w)),
are w, R, 0Q, oR, etc. In general, the most natural examples of partially ordered sets P
such that P—(x)) are x*, P(x), and Ax). We shall see later that many partition
relations for partially ordered sets P such that P—(x)} follow from the corresponding
partition relations for partially ordered sets P such that P—(x)..

§2. 'Constructing large homogeneous chains

Let p be the least cardinal » for which the following proposition does not hold: if
(Ag,:a<x) is a sequence of subsets of w such that N ¢ A, is infinite for every finite
Fcx, then there exists an infinite set Bcw such that B\ A, is finite for every a<x (see
[17; p. 154])). In this section we shall prove the relation

nonspecial tree — (a)?

for nonspecial trees of cardinality <p.

The proof is given in a sequence of lemmas. Some of the lemmas are taken from
(1], (10] and [16], but for the convenience of the reader we include proofs.

For each nonzero ordinal a<w, we fix a sequence {a(n): n<w) of ordinals such
that w®=%,<, ©*® and a(n)<a(n+1) for n<w. If a>1, then we choose a(0)=1. Thus
for every well-ordered set A of type w*® we have fixed decomposition A=U,-,A,
such that A,,<A, for m<n, and tpA,=w®? for n<w. Let A"=U,<m<wAm fOr
n<w.

Let ¥ be a fixed nonprincipal ultrafilter on @. By induction on a<w;, we define a
uniform ultrafilter %,(A) on every well-ordered set A of type w® as follows. If a=0,



8 S. TODORCEVIC

U,(A) is the unique ultrafilter on A. Let I<a<w,; and let A be a well-ordered set of
type w?®. For BcA we let

BEU,A) iff {n:BNA,€EUunAn)}EV.

An easy induction on a<w; shows that tp B=w® for every B€ %,(A). The following
lemma is taken from [16; p. 1031]. It first appeared implicitly in [1; p. 197].

LEMMA 2. Assume x<p, a<w,, and A is a well-ordered set of type w®. Let
(Bg: E<x) be a sequence of elements of U A). Then there is a BcA, with tp B=w*
such that B\ By is a bounded subset of B for every E<x.

Proof. The proof is by induction on a. The case a=0 is trivial. Assume a>0 and
that lemma holds for all f<a. Thus for each n<w we can find C,cA, with
tp C,=w™® such that C,\B; is bounded in C, for every £<x such that B:NA,€
UamfA,). Since x<<p, we can find an infinite Ncw which is almost included in each
Ne={n:B:NA, € Uy(A,)} for E<x. Now for E<x we define f;: € “w by

min{m:C,N(A,)"c B} ifn€EN;
fin) = )
0 otherwise.

Since x<p, we can find g € “w which eventually dominates each f;, for £<x. Now for
n€EN we define B,=C,N(A,)*". Let B=U,enB,. The tpB=w® and B\ B; is
bounded in B for every <.

Let T be a fixed nonspecial tree of cardinality <p, and let [T]>*=K;U...UK; be a
fixed disjoint partition. We have to show that for every a<w there exist an i€ {1, ..., k}
and a chain AcT such that tpA=w® and [A]’cK;. Instead of directly constructing
arbitrarily large homogeneous chains in T we shall proceed as in [1] and [10] and
construct arbitrarily large chains with the following property which is somewhat
weaker than being homogeneous. A chain AcT is called almost homogeneous if
whenever A’c A has type w®, then for all 8<a there are C,BcA’ and i€{1,...,k} such
that tp C=o”, tpB=w*, C<rB and CxBcK;. Let ¥ denote the set of all almost
homogeneous chains in 7. The next lemma shows why it is more convenient to work
with almost homogeneous chains.

LEMMA 3 ([10; p. 720]). Suppose (A,:n<w) is a sequence from ¥ such that
An<rA, for m<n. Let A=U,<,A,. If for each m<w there exists an i,,€{1,...,k}
such that A, xA,cK; for all n>m, then A€ .



PARTITION RELATIONS FOR PARTIALLY ORDERED SETS 9

Proof. Let f<a<wy, A'cA and tpA'=w”. If for some n<w, A'cA¢U...UA, then
tpA’' NA;=w” for some i<rn, so we can use the fact that A;€ ¥#. So assume A’ is cofinal
in A. Choose CcA’ so that tpC=¢® and CcA,, for some m<w. Let B=A'\
(AgU...UA,,). Then tp B=w" and CngK,.m.

The next lemma shows that in order to construct arbitrarily long homogeneous
chains in T it suffices to construct arbitrarily long almost homogeneous chains in T.

LEMMA 4 ([10; p. 271]). For every a<w; there exists f<w, such that for every
BE X with tp B=w? there is an AcB with tp A=w” and [APcK; for some i€{1, ..., k}.

Proof. For B,ay,...,q;<w;, the symbol B—(ay,...,a;)* denotes the statement:
for any B € % with tp B=c” there exists i€ {1, ...,k} and AcB such that tpA=w" and
[A]ZgK,.. For the proof of Lemma 4 it suffices to prove the following: if
0<ay,...,4<w, and f<w,, and if for any i€ {1,...,k} and any y<a; there exists a
B:{»<B such that Bi(y)—(aj,...,0i 1,7, Ais1s...,0)%, then B—(ay,...,a)*. The
details of the proof of the latter statement are left to the reader.

Let 2 denote the set of all nonspecial subtrees of T. For X€X let Z|X denote the
set 2N P(X). Then for every X€X and every S<w,; we need to construct an almost
homogeneous chain BcX of type «® which is bounded in X. The boundedness is
needed for the purpose of induction, and it is the new and essential difficulty which
does not occur in the proofs from [1] and [10]. More particularly, fix X€X and <o,
and suppose we have proved that for every YEZ|X and every y<f we can find a
bounded almost homogeneous chain in Y of type w?. Using the induction hypothesis
and some additional arguments we construct a sequence (B,:n<w) of members of #
such that B,cX, tp B,=«*", B,<;B, and B, XB,cK, for n>m. The new difficulty is
that we must construct the sequence (B,:n<w) in such a way that B=U,.,B, is a
bounded subset of X. At first sight this constraint seems to require some distributivity
assumption on the tree T which rules out many examples of nonspecial trees. However,

we shall show that such a sequence can be constructed without any additional assump-
tion on T.

LEMMAS. Let X€X and let f: X—Ord be such that s<tt implies f(s)=f(t). Then f
is constant on some Y€Z|X.

Proof. Let X'={t€X:T'nX is a special tree}. Then X’ is a special tree and
Xo=X\X' has the property that for every t€X,, T'nX, is a nonspecial tree. There
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must be a ¢ € X, such that fis constant on Y=T'nX,, since otherwise we would get a
decreasing w-sequence of ordinals.

The next lemma is the main result of this section. It completes the proof of
T—(a); for all a<w, and k<w.

LEMMA 6. For every B<w, and X€E€ZX there exists a bounded subset B of X such
that BE ¥ and tp B=o”.

Proof. The proof is by induction on 8. The case §=0 is trivial; so we assume 8>0.
Let < be a fixed well-ordering of .

Fix t€X. By induction on n<w we construct, if possible, sequences
(Bu(): n<w) €®¥ and (i (t): n<w) €*{1,...,k} as follows. Let n<w and assume that
B, (t) and i,(?) are defined for every m<n. Let

*,()={A€H:AcXniand tpA =™ and (Vm<n)(B, (XA cK, ,)}.

If %,()=0, we stop the induction. So assume ¥,(f)+@. Let A,(r) be the <-least
element of %,(f) and let

X, ()= {s€EX:s>7A,(D}.

For s€X,(t) we let i; be the unique i€{1,...,k} such that K{(s)NA,(¥)€ Upmy(An(D)).
By Lemma 2, there exists a CcA,(#) such that tp C=¢®™ and such that C\K,.’(s) is

bounded in C for every s €X,(1). Let C,(f) be the <-least such C. Let [,(¢) be the least
I<w such that (C,(1))'cK,(9). (Note that 1€ X,(#).) Let B,(=(C,(1)"” and let i,()=i,.

This completes the inductive definition.
Claim. For some t€ X, B,(t) and i,(t) are defined for every n<w.

Proof. Assume the contrary, i.e., that for every ¢ € X there exists an n(f)<w such
that B,(f) and i,(¢) are defined for every m<n(t), but ¥, (1)=2. Since XEX we can
find YEZ|X and n<w such that n(t)=n for every t€Y.

By induction on m=<n we define a decreasing sequence (Y,,: m<n) of members of
2|Y and sequences

(Bp:m<n)€"¥ and (i,:m<n)€"{1,... k)
such that

B,(=B, and i,(t)=i, forallm<nandt€Y,,.,,.
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Let Yo=Y. Assume m<n and Y,, is defined. Then for every ¢t € Y,, we have that
*,(D={A€H-AcXniand tpA =™ and (Vj<m)(BxAg K\,

since B/(t)=B,; for every j<m. Thus we have that #,,(f)c #,,.(u) for t<ru in Y,,. Hence
Ap(D=A,(w) for t<yu in Y,. By Lemma S, there exist Y, €X|Y,, and A,,€H
such that A, (r)=A,, for every t€Y,,.,. Furthermore we assume that for some
in€{l,....,k} and l,,<w we have i,(t)=i,, and 1,.(t)=l,, for every t€Y,,.,. Note that
Xm(O={s€X:s>7A,,} for every t€Y,,.,. Hence for some C,€ ¥, C,(t)=C,, for
every t€Y,,,. Hence Bm(t)=Bm=(Cm)I’" for every €Y, . This completes the induc-
tive definition of (Y,,: m<n), (B,:m<n) and (i,,: m<n). Thus in particular Y, is
defined and

B, xY,cK; forevery m<n.

By the induction hypothesis, we can find a bounded subset A of Y, such that A € ¥ and
tpA=wP™. Let 4, € Y, be a bound of A. Then AcXnfyand B, (t)xA <K, ) for every
m<n, since B,(t,)=B,, and i,(t)=i, for every m<n. Hence A€ #,(t,). But this
contradicts the fact that %,(f)=%2 for every tEY.

Fix a t€X for which B,(t) and i,(t) are defined for every n<w. Let
B=U,_,B,(?). Then tpB=¢’ and by the construction B,(OXB,(OcK, , for every
n>m. Hence by Lemma 3 we know that BE %. Since B is bounded by ¢ in X this
completes the proof of Lemma 6.

§3. Proof of Theorem 1

In this section we finish the proof of Theorem 1 by eliminating the assumption |T|<p
from §2.

We say that a partially ordered set € satisfies the o-finite chain condition if there is
a partition 6=V, €, such that for every n, €, contains no infinite set of pairwise
incompatible (in €) elements. The following lemma is well-known.

LEMMA 7. For every cardinal » there is a o-finite chain condition poset € which
Jorces x<p. '

Proof. Let A=(A,: a<x) be a sequence of subsets of w such that Ar=N,crA,
is infinite for every finite Fcx. Let €; denote the set of all pairs p=(A,, F,) where A,

and F, are finite subsets of w and x, respectively. For p, g€ €; define
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p<q iff A,0A, F,oF,and A\A, gAFq.

Then €; is the standard o-centered poset which forces an infinite subset of w almost

included in any A, ([17; p. 154]).
Choose a cardinal 8 such that *=0. Let (%,: a<0) be a finite support interation
of posets 4; such that €, forces x<p ([17]). A simple and standard argument shows

that €, satisfies the o-finite chain condition.

LEMMA 8. Let € be a partially ordered set satisfying the o-finite chain condition,
and let P be a partially ordered set such that P—(w).,. Then P has the property
P—(w)), in any forcing extension by €. :

Proof. By Theorem 9, we may assume that P is a tree. So let T be a nonspecial tree
and let (T,:n<w) be a %-name for a decomposition of 7. Let 6=U,,<, €, be a
decomposition witnessing the o-finite chain condition of €. For each t€T, we can fix
m, n,€w and p,€ €, such that p, forces 1€ Tn,- Since T is nonspecial we can find

m,n<w and an infinite chain bcT such that m,=m and n,=n for all t€b. By the
property of €, there must be s<t in b such that p, and p, are compatible in 4. So any
extension of p, and p, forces (T, n<w) not to be an antichain-decomposition of T.
This completes the proof.

Now we are ready to finish the proof of

nonspecial tree — (a)? for all a < w, and k<.

So let T be a nonspecial tree, let [T]*=K;U... UK, be a given disjoint partition, and let
a be a fixed countable ordinal. By Lemmas 7 and 8 let € be a o-finite chain condition
poset which forces |T|<p and T—>(w).,. By §2 we can find i€ {1, ...,k}, pE %, and a ¢-
name A for a chain of T such that p forces tpA=a and [APcK;. Let 4 be a ¢-name for
the unique isomorphism of « and A, and let {(a,: n<w) be an enumeration of a. By
induction on n<w, choose a decreasing sequence (p,: n<w) of elements of € and a
sequence (t,:n<w) of elements of T such that py=p and p,., forces h(a,)=t,. Then
for each m, n<w, t,<rt, iff a,,<a,. Hence {t,: n<w} is a chain of T of order type a
such that [{¢,: n<w}PcK:.

§ 4. Partition relations for trees

The results of §1 suggest a study of partition relations for trees in order to get
corresponding partition relations for partially ordered sets in general. This section is
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devoted for such a study. It turns out that partition relations for trees are very natural
generalizations of partition relations for cardinals and that several well-known partition
relations for cardinals are straightforward consequences of the corresponding relations
for trees.

Let T be a tree such that ht(T)=x is a regular uncountable cardinal. We say that a
set Acx is nonstationary with respect to T (see [24; p. 251]) iff there exists a regressive
mapping f: T[|A—T such that f ~1(s) is the union of <x antichains for every s€ T. Let

NSr={A cx: A is nonstationary with respect to T}.

Note that by the well-known theorem of Neumer [20], if T is a chain of length » then
NS=NS,. It is clear that NSt is a x-complete ideal on x». Note also that if T’ is an
initial part of T then NS;cNS7. Hence if T has a chain of cardinality », then
NS7=NS,, since clearly NS,,cNSr.

THEOREM 13 ([24; p. 251)). NSt is a normal ideal on x.
The following result is the key in proving several partition relations for trees.

THEOREM 14. Assume x=A". Then the following are equivalent for every tree T of
height x.

(1) xENS.
(2) {6<x: cfod=cfA} ENST.
(3) T is the union of <A antichains.

Proof. The implications (3)=-(1), (3)=(2) and (1)=-(2) are trivial. So we have only
to prove (2)=(3).

Let E={0<x:cfd=cfA} and let f:T|[E—T be a regressive mapping such that
f7(s) is the union of <A antichains for every s€T. For every s€T we fix a
gs: f~1(s)—A such that g;'(y) is an antichain of T for every y<A. Also for every
T\{D} we fix an enumeration (sg(?):B<A) of {s€T:s<rt}. Let j:A—>AXAxA be a
bijection such that j(&)=(a, 8,7) implies a<§&.

Fix t€ T\{@}. By induction on £<A we define a sequence (ug(?): £<1) of mem-
bers of fU {t} as follows. Let ug(t)=%. If £ is a limit ordinal let us(f)=sup {u,(1): a<&}.
Suppose ugt) has been defined. If ugf)=¢, then let wug,1(t)=ugt). So assume
ug)<rt. Let j(§)=(a, B, 7). Then a<& and s=s4(u,(?)) is defined. If the set

g, ' MN{vET: ut) <;v<;t}
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is nonempty, let ug,(7) be the unique element of this set. Otherwise let ug(#) be the
minimal element of {vET: ut)<rv=yst}.

Claim 1. For every tET\ {QD} there exists £<A such that ug(t)=t.

Proof. Otherwise, let tET\{@} be such that ug )+t for every E<i. Then
(uglt): E<A) is a strictly increasing sequence from f. Let u=sup {ug(t): E<A}, and let
O=hty(u). Then S€E, hence f(u)=s is defined and s<,u. Choose a<A such that
s<7u,(f). Choose B<A such that s=ss(u,(t)). Let y=g,(u) and £=j""(a, B, 7). Then

g 'pn{ve T:ut)<pv<pt} = {u}.

Hence ug.(f)=u contradicting the fact that ug, (H<ru.

For t€ET\{D}, let &(#)=min {{<A:ugr)=t}. By Claim 1, &(t) exists for every
tETN\{D}. Let X;={tET\{D}:&(®)=&}. Then T\{D}=Ue<; X;, so the following
claim finishes the proof of Theorem 14.

Claim 2. For each £<4, X; contains no chain of cardinality £*.

Proof. Assume the contrary and let £,<A be such that X 5 contains a chain A of

type 0=Ro+|&|*. Let (Z5: 3<6) be the increasing enumeration of A.

By induction on £<&, we show that the sequence (ug(zs):0<6) is eventually
constant. If £=0 or if £ is a limit ordinal, the proof of this fact is straightforward. So we
assume (ug(ts): 0<0) is eventually constant and prove that (ug.(ts): 3<0) is eventu-
ally constant. Let &p and u be such that wugts)=u for every OJp<d<0. Let

J&)=(a,B,7).
Case 1. There is a 6,<8 such that 6,=4d, and
g '\n{vET: u<vst, } # 90,

where s=sﬁ(ua(t(,])). Then the unique element of this interesection is equal to ugz+(ts)

for every 0 such that 6,<0<®#.

Case II. Otherwise. Then for every 6 with dp<d<0 we have either wug,(t5)=
ugt,), or else u,,,(t,) is the minimal element of {v€T:u<v<t}. Hence

(ug, (t5): 6,<0<8} is constant.
In particular, <”§0(t6): 0<80) is eventually constant. But this is a contradiction since

ugo(t5)=td for every <@. This contradiction completes the proof of Claim 2.
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THEOREM 15. Assume A=R,, 0=2 and x=6*. Then for all y<cfA,
non-x-special tree — (non-x-special tree, (cf1+ 1),,)2.

Proof. Let T be a non-x-special tree. We may assume that ht (T)=x". Let y<A4 and
let

[TPP=K,u U J,

i<y

be a given partition. Let E={d<x*:cfd=cfx}. Then by Theorem 14, E¢ NS7.

For every tE T [E and for every i<y, let S{f) be a =-maximal subset of f such that
[S(OU {t})>cJ;. If for some tET[E and i<y we have that [S(¢)|=cfAi, we are done,
since tp (S{U {t})=cfA+1 and [S{)U {t}’cJ.. So we may assume that |Si(£)|<cfA for
every tET|E and every i<y. Since cfx=cfi, for every tET[E there exists f()<rt
such that

U S0 <, f(0).

i<y

By Theorem 14 we can find an s € T such that £~!(s) is not the union of <x antichains.
Since <%=, we can find (S;:i<y) and a non-x-special subtree X of f~'(s) such that

S(r)=S§; forallt€EX and i<y.
The following claim finishes the proof of Theorem 15.
Claim. [X)*cK,.

Proof. Otherwise there exists u<rt in X and i<y such that {u,t}€J; Since
S{u)=S{)=S;, we have that u€¢ S(¢) and [S{(H)U{u}U{t}]*cJ;, contradicting the c-
maximality of S;(¢).

COROLLARY 16 (see [5; §17]). Assume A=Ry, 022, and y<cfi. Then
) — (6Y*, (cEA+1),).

The following consequence of Theorem 14, which we mention without proof,
generalizes the well-known A-system lemma for cardinals ([5]).

THEOREM 17. Assume *=x. Let T be a non-x-special tree and let {F,:tET) be a
sequence of sets such that |F|<A for all t€ET. Then there exist a non-x-special subtree
T’ of T and a set F such that F,nF,=F for all s,tE€T' with s<rt.
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It is clear that Theorem 4 follows directly from Theorem 15 using the results of § 1,
so we shall now restrict our attention to some further applications of these two results.

THEOREM 18. Let x be a regular cardinal and let P be a partially ordered set such
that P—>(x)1,_,. Then

P—(a,(x+1),)* foralla<x™ and y<.

Proof. Let A=2*% and let €,, be the standard x-closed poset which collapses A to .
Then |€,|=A, and so 6,, forces x=2%=1 and P—(x).. So by Theorem 4, €, forces

P—(a, (;¢+1),,)2 for all a<x™ and y<x. Since %,, is #-closed, an argument similar to
that of §3 shows that P—(a, (x+1),)? is really true for all a<x* and y<x.

COROLLARY 19. P—(x")), implies P—(a, (x*+1),)* for all a<x**.

Theorem 15 is not the strongest result that can be proved using the same methods.
Namely, a similar proof shows that we can also have an analogue of Theorem 17.1 from
[5].

Let us now consider the following corollary of Theorem 15.
COROLLARY 20. Nonspecial tree—(nonspecial tree, w+1)?.

Since w; is a nonspecial tree, an immediate consequence of Corollary 20 is the
well-known relation @;—(w,, w+1)? proved by Erdos and Rado in [8; p. 459]. Con-
cerning this Erdos—Rado result Hajnal [11; p. 283] showed that CH implies
w,+> (w1, w+2)>. On the other hand, the author [27] found a model of set theory in
which @;—(w;,a)* holds for all a<w;. Hence it is natural to ask the following
question.

Problem. Is nonspecial tree—(nonspecial tree, w+2)? consistent?
The negative result of Hajnal has the following generalization.

THEOREM 21. Assume MA. Suppose T is a nonspecial tree of cardinality 2% with
no uncountable chains. Then there is a partition [T=KoUK, so that

(1) there is no nonspecial tree X<T with [X)*cK,,
(2) there are no sets A, B<T so that A<rB, tpA=w, |B|=2, and AXBcK;.

COROLLARY 22. Assume MA. Then

nonspecial tree - (nonspecial tree, w+2)>.
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Proof of Theorem 21. Let T be a nonspecial tree of cardinality x=2" with no
uncountable chains. We may assume that the underlying set of T is » and that a<rf
implies a<B. Let (As: E<x) be a fixed enumeration of (1.

Using MA and induction on a<x we construct sets S,cd={f: B<ra} such that:

(i) S4NSg is finite for a+p.
(i) If £&<a and if A;nd is not covered by finitely many Sg with f<a, then
SaﬂAg*@.

Since G is countable, MA applied to a standard o-centered poset (see [17; p. 154]) will
give us S,cd satisfying the <x requirements of (i) and (ii).
Define [T]*=K,UK, by

{B,a}EK, iff BES,.
For the proof of Theorem 21 it suffices to prove the following Claim.
Claim. There is no nonspecial subtree Xc T with [X]*cK,.

Proof. Suppose to the contrary that X< 7 is a nonspecial tree such that [X PcK,.
We may assume that 7°nX is a nonspecial tree for every a€X. (Here
T*={BET:a<rf}.)

For € X, we define

Cs={a€T:S,nANX is infinite}.
Fact 1. Cg is finite for every BEX.

Proof. Otherwise, let BEX be such that Cg is infinite. Choose §<x such that
A5=ﬁ nX. Since MA holds and since TnX is a nonspecial tree, it has cardinality x
(see [2]). So we can find a € TnX such that £<a. By (i) and by the fact that Cp is
infinite, it follows that A;Nd is not covered by finitely many S, with y<a. Hence by
(i), S.NAz+@. This contradicts the fact that [X]*cKo.

For n<w, let X,={B€X:|Cgl=n}. Then by the Fact 1, X=U,<,X,. The next
fact finishes the proof of the claim, since we are assuming that X is a nonspecial tree.

Fact 2. For each n, X, is a special tree.

Proof. Suppose to the contrary that for some n, X, is not a special tree. Pick
a€X, such that T°nX, is a nonspecial tree. Let (Bi,...,8,) be the increasing
enumeration of C,. Choose a’' € TnX, such that T nX, is a nonspecial tree and

2858288 Acta Mathematica 155. Imprimé le 28 aoft 1985
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such that A={y€X,:B8,<y<ra’'} is infinite. Choose a £<x such that Ag=A. Since
T% nX, is nonspecial, it has cardinality x» (see [2]). Hence we can find «’ € T* N X,
such that §{<a”. Note that C,-={f;, ..., .}, hence SgN A, is finite for every f<a”. By
(i), this means that S,-NA;+@ contradicting the fact that [X,]°cK,. This completes
the proof.

Let us remark that the assumption that T has no uncountable chains cannot be
dropped from Theorem 21, since in the model of w;—(w;,®)* constructed in [27]
Martin’s axiom holds.

§ 5. Proof of Theorem 2

Using the trick from the proof of Theorem 18 and results of § 1 it suffices to show under
the assumption »*=x and A*<x that

non-x-special tree — (x+§)§ for all E<A.

So let T be a fixed non-x-special tree, let [T]>=K,UK, be a given partition, and &
be a given ordinal such that {<A<x. We may assume that T contains no homogeneous
non-x-special subtree, since otherwise we are done.

LEMMA 9. Either T contains a homogeneous chain of type x+& or else there is a
sequence (A;:i<E) of chains of T such that

(1) tpA;=2 and [AJcK,

(2) Ai<rA; and A;¥xA;c K, for i<j.

Proof. Let E={6<x*:cfé=x}. Let < be a well-ordering of the set of all 0-
homogeneous chains of 7.

Fix tET|E. By induction on i<£ we define, if possible 0-homogeneous sets A‘cf
such that:

(@) Ajx{1}cK,, and tpA}=A.

(b) Ai<rA;] and AjXA/cK, for i<j.

Suppose j<& is such that A! is defined for every i<j. Let AJ‘. be the <-least 0-
homogeneous chain A of type A such that Ac/nK,(r) and such that Al<;A and -
AIXAcK, for all i<j, if such a set exists; otherwise we stop the induction at stage j.

If for some ¢ € T|E the induction has never stopped, we are done. Otherwise, for
every tET[E there is a j(f)<€ such that A!was defined for every i<j(r) but Aj, was
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not. By Thoerem 14 and by the fact that x*=», we can find a non-»-special subtree
XcT|E, j,<&and (A;i<j,)so that j(#)=j, and Ai=A, for all t€X and i<j,. Choose
1,€X such that Y=T°nX is not x-special and there exists a 0-homogeneous set

BciynX such that tp B=x. Such t, and B exist by Theorem 15 and our assumption that
T contains no homogeneous non-x-special subtree.

Claim. |K()nB|<A for all t€EY.

Proof. This claim follows from the fact that for every 1€ Y, Aj'.o was not defined.

By »*=x, we can find a non-x-special tree ZcY and CcB such that K,()nB=C
for all t€Z. Let D=B\C. Then tpD=%» and DXZcK,. By Theorem 15 there is a 0-
homogeneous chain EcZ of type &£. Then DUE is a 0-homogeneous chain of type x+&.
This finishes the proof of Lemma 9.

For each tE€ T|E we fix, if possible, a sequence (B!:i<&) of chains from T* such

that
(c) tpBi=A and [B{]’cK,,
(d) Bi<;Bjand B{xB;cK, for i<j.

By Lemma 9, we may assume that the set of all € T|E for which (B!:i<&) does not
exist is x-special. Now for every t € T[E for which (B!:i<&) exists, and for every i<¢,

we fix a c-maximal set S'cf such that:

(e) [S.fu{f}]zc_:Ko,
) tp(K,(s)nB)=¢ for every s€S;.

Assume first that there exist t€ T|E and i<& such that |S!)=x. Since A*<x, we
can find C<S! and D B! such that tpC=x, tp D=£ and for every s €C, the inclusion
DcK(s)nB; holds. Hence CUD is a 0-homogeneous chain of type x+&, so we are
done. Thus we may assume |S|<x for every € T|E and i< for which §; is defined.

By Theorem 14 and by the fact thatx*=2x, we can find a non-x-special subtree X<T|E
and a sequence (S;:i<£) such that for every t€X, (B! i<&) exists and

Si=S, forall t€X and i<é.

By Theorem 15, we can find a chain AcX of type x such that [A]?’cK; and such that
Y={t€X:t>7A} is not a x-special tree. Now we consider the following two cases.
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Case 1. For some t€Y, |[Ko(t)NA|=x. Let s € Ko(1)NA. Then for every i<& the set
S;U{s} satisfies the first requirement (¢) from the definitions of !, i.e.,
[S;U{s, 1}]’<K,. By the maximality of S; we have that s does not satisfy the condition
®, i.e., tp(K(s)NB)<&. Since M<x, we can find CcK,(OnA with |C|=x and
(D;:i<§) such that K(s)nBi=D, for every s€C and i<&. For each i<§, we choose
t,€ B)\D; arbitrarily. Then CU {t;: i<&} is a 1-homogeneous chain of type »+£. Hence

we are done.

Case 11. For all tE€ Y, |Ko(f) N A|<x. Since x»*=x and since Y is a non-x-special tree,
we can find a non-x-special subtree Zc Y and a set BcA such that Ky(¢Y)nA=B for all
t€EZ. Let C=A\B. Then tpC=%, [C}*’cK; and CXZcK,. By Theorem 15, there is a
chain DcZ such that tpD=& and [D]*’cK;. Then CUD is a 1-homogeneous chain of
type #+£&, so we are done also in this case.

This completes the proof of Theorem 2.

§6. Constructing end-homogeneous chains

In this section we give a proof of Theorem 4 and mention some applications of this
theorem. So let A=R,, 6=R,, x=6%, and let P be a partially ordered set such that
P—>(x).. We shall prove that P—(A+1);*.

Let f: [P1=“—0 be a given partition. We consider the following two cases

Case 1. For some A,<4, 6"°=x. Then »*=x. By results of § 1 we may assume that
P=T, where T is a non-x-special tree of height x*. Let E={d<x*:cfd=cfx}. Then by
Theorem 14, E¢ NS. For every tET|E we fix a c-maximal subset S,cf such that
S,U{t} is an end-homogeneous chain with respect to f, i.e., f(x"s)=f(x"s’) for all
x€E[S,U{f}]° and s,s’ €S,U{t} with max(x)<rs,s’. If |S|=A for some tET[E, we
are done since tp(S,U{r})=1+1. So we may assume |S|<A for all tET[E. Since
cfx=1, for every t€ T|E we can find h(r)<rt such that S, is bounded in 7 by A(f). By
Theorem 14 we can find an s€ T such that A~ !(s) is not the union of <x antichains.
Since x*=x, we can find Sc§ and a non-x-special subtree Xch~!(s) such that

S,=S forall tEX.
Furhermore, we may assume that

fxD=f(x"¢) forall x€[S]"” and t,' EX.
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Pick u<rt in X. Then by the above properties of S and X we have that S,U{u} U {¢} is
an end-homogeneous chain contradicting the maximality of S,.

Case 11. 8* <x for all A’<A. Fix t € oP. We shall define the standard tree ordering
<, on ¢ induced by the partition f[[f]<“ (see [5; § 18]). In what follows a, b, c, ... are
elements of r and < is the restriction of <p to t. If a€¢, then 4 denotes the set
{b€Et:b<a}. For every a €t we define h,: a—2 by induction on b<a. Assume b<a and
h,(c) has been defined for every c<b. Let A, ,={c<b: h,(c)=1}. Then we put

hb)=1 iff f(x"b)=f(x"c) for all xE[A, ,]=*.
Let A,={b<a: h,(b)=1}. Now for a, b €t we define
b<,a iff bEA,.

Then <, is a tree ordering on ¢ since clearly bEA, implies A,=A,Na=A, ,. More-
over, A,={b€t:b<,a}. The proofs of the following facts are straightforward.

Fact 1. Let t€0P and let a and b have the same limit height in (¢, <,). Then
{c€t:c<,a}={c€t: c<,b} implies a=b.

Fact 2. If t€oP and if a€t has height a in (1, <,), then a has at most #**
immediate <,successors.

Fact 3. If 5,t€E0P and if s<-t, then <,=<,[s, and moreover (s, <,) is an initial
part of (f,<,).

Claim. For some t € gP, the height of (t,<,) is =A+1.

Proof. Suppose to the contrary that ht (¢, <,)<A for every t€cP. For a<i, let
%,=(0“*°)*. Then by the assumption, xz<x,<x for f<a<Ai. Let

W= {u€%: u(a)€x, for all a € dom (u)}.

Then [W|=x. We shall consider W as a tree ordered by <.

Fix t€oP. By induction on the levels we construct an isomorphical embedding
g (t,<,)—(W, c) as follows. Let a€¢ and assume g/(b) is defined for every b<,a.
Let a<A be the height of a in (¢, <;). If a is a limit ordinal we put g(a)=U,_ ,g,(b). So

assume now that a is a successor ordinal. Let B=a—1 and let b be the immediate
predecessor of a. Then the set of all immediate successors of b in (f,<,) is well-



22 S. TODORCEVIC

ordered by <p, hence by Fact 2, there is a §<xg such that a is the §th immediate
successor of b in (¢, <,). Let g(a)=g,(b)"E. This completes the inductive definition.

Fact 4. If 5,t€0P and s<-t, then g,=g,[t.

Proof. Follows directly from Fact 3 and the definition of g, for t € oP.

For t€EP, let H()={g(a):a€t}. Then by Fact 4, we have that s<-¢ implies
H(s)cH(?) for s,t€EoP. Thus H:oP—%P(W) is a strictly increasing mapping which
contradicts Theorem 9, since |W|=x and P—(x),. This proves the Claim.

Fix ¢ €oP such that (¢, <,) has height =1+1. Let a €¢ has height 4 in (¢, <,). Then
{b€Et:b<,a}=A, has order type 1. By the definition of <,, it follows that A,U{a} is an
end-homogeneous chain with respect to f. Since tp(A,U{a})=A4+1 this completes the
proof of Theorem 4.

COROLLARY 22. Let P be a partially ordered set such that P—->(2");,, then
P— (x*+1 ;f".

COROLLARY 23. If P is a partially ordered set such that P—>(2’~‘);,_,, then

P— (x+1)7* for all y<x.
The following lemma is a generalization of the well-known Stepping-up Lemma for

cardinals (see [5; § 16]). It is the main tool for proving positive partition relations for
partially ordered sets for exponent r>2.

THEOREM 24 (Stepping-up Lemma). Let #=Ro, 2<r<w, and let y and a;, E<y be
ordinals. Let P be a partially ordered set such that P—>(2’~‘)1,_,. Then

x— (o), implies P—(ag+1)i,.

Proof. Let P be a partially ordered set such that P—>(2’~‘)1,_, and let f: [P]"—y be a

given partition. We may assume az=r holds for all £<y in which case we must have
y<x by the assumption x—-»(ag)g,;‘y. By Corollary 23 there is a chain AcP, end-

homogeneous with respect to f, such that tpA=x+1. Let a be the maximal point of A.
If {by,...,b,_1} EA\ {a} we put

g({bla ---’br—l}) =f(<b1’ seey br—ba))-

Since x—(a,);2!, there exist £<y and BcA such that tp B=a, and g"[B""'={£}. Since
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A is an end-homogeneous chain, this implies f"[BU{a}]"={&}. This completes the
proof since tp(BU {a})=ag+1.

COROLLARY 25. If P is a partially ordered set such that P—)(Z”);,_‘, then

P— (x+ l)f, for y < cfx.

Let » be a cardinal and let n<w. Then by induction on n we define expy(»)=x and
€XPr+1(x)=€xp,(2¥).

COROLLARY 26. Assume A=Ry, =2 and 2<r<w. Let P be a partially ordered set
such that P—(x)., where x=exp,_,(6%). Then

P— (65", (cfd),)" for y<cfi.

Proof. By Corollary 16, we have (6%)*—((8", (cf A+1),)*. Now by induction on
2<r<w, using the Stepping-up Lemma, we actually get the stronger result

P— (8 +r-2, (cfA+r-1),).

COROLLARY 27. Assume A=y, and 2<r<w. Let P be a partially ordered set such
that P—(x)}, where x=exp,_(1). Then

P—((2H", @M

For a set A and n=1,2,... we define P'(A)=PA) and P**(A)=P(P"(A)). We
consider #*(A) as a partially ordered set under the ordering <. The following result is
an immediate consequence of Theorem 1 and the Stepping-up Lemma.

COROLLARY 28. 9"‘(a))——>(oz)2+1 for all a<w, and nonzero k, n<w.

Using Ramsey’s theorem and the Stepping-up Lemma we have also the following
result of Galvin announced in [10; p. 718].

THEOREM 29 (Galvin). Let P be a partially ordered set such that P—(w)),. Then

P—(w+1);, forallrk<w.

Galvin remarks that Theorem 29 is in a sense best possible since w,+(w, w+2)>.
He also remarks that by using Nash-Williams’ generalization of Ramsey’s theorem [19;
p. 33] in the above proof of Theorem 29 one obtains the following stronger result.
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THEOREM 30 (Galvin). Let P be a partially ordered set such that P—(w)}, and let
€ be a collection of finite chains in P such that no element of € is an intitial segment of
another. Then for every k<<w and every function f: €—k there is a chain AcP such that
tpA=w+1 and f is constant on €N[A]=".
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