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0. I n t r o d u c t i o n  

Let U?tO be a bounded domain in R d, d~>l, and for every xEU let B ~ be an open ball 

contained in U with center x. If f is a harmonic integrable function on U then 

f(x) = A(Bx ) ~ f dA for every x 6 U (*) 

(A Lebesgue measure on Rd). The converse question to what extent this restricted mean 

value property implies harmonicity has a long history (we axe indebted to I. Netuka for 

valuable hints). Volterra [26] and Kellogg [20] noted first that  a continuous function f on 

the closure U of U satisfying (*) is harmonic on U. At least if U is regular there is a very 

elementary proof for this fact (see Burckel [7]): Let g be the difference between f and 

the solution of the Dirichlet problem with boundary value f .  If g#0 ,  say a=sup  g(U)> 
0, choose x6{g=a} having minimal distance to the boundary. Then (*) leads to an 

immediate contradiction. In fact, for continuous functions on U the question is settled 

for arbitrary harmonic spaces and arbitrary representing measures #x # ~  for harmonic 

functions. 

If f is bounded on U and Borel measurable the answer may be negative unless 

restrictions on the radius r(x) of the balls B ~ are imposed (Veech [23]): Let U = ] - I ,  1[, 

/ (0 )=0 ,  f = - i  on ] -1 ,0[ ,  f= l  on ]0, 1[, 0~B x for x?t0 (similarly in R d, d/>2)! 

There are various positive results, sometimes under restrictions on U, but always 

under restrictions on the function x~-+r(x) (Feller [9], Akcoglu and Sharpe [1], Baxter [2] 

and [3], Heath [17], Veech [23] and [24]). For example Heath [17] showed for arbitrary U 

that  a bounded Lebesgue measurable function on U having the restricted mean value 

property (.)  is harmonic provided that ,  for some e>0,  cd(x, CU)<r(x)< (1-~)d(x,  CU) 
holds for every x6U. Veech [23] proved that  a Lebesgue measurable function f on U 
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which is dominated by a harmonic function and satisfies (*) is harmonic provided U is a 

Lipschitz domain and the radii r(x) of the balls B ~ are locally bounded away from zero. 

A survey of the history up to 1973 is contained in [22]. 

Even if f is continuous some additional condition is needed (see Littlewood [21]): 

Let U=]O, 1[ and let (a,~) be a sequence in ]0, �89 which is strictly decreasing to zero. Let 

A--{an: nEN} .  Define r(an)=an-an+2, for xEU\A take any B ~ such that  B~AA=~. 
Proceeding by recurrence it is easily shown that  there is a (unique) continuous function 

f on U such that  f is (locally) affinely linear on U\A, f=O on [al, 1[, f(a2)=l, and (*) 

holds (also) for the points xEA. Of course, f is not harmonic on U and it is unbounded. 

(A similar construction in R d, d~>2, would lead to a rotation invariant continuous func- 

tion f on the unit ball U ion U\{0} resp.) which oscillates at the boundary OU Cat 0 

resp.), has the restricted mean value property (*), but  is not harmonic.) It has been 

shown that  this cannot happen for continuous bounded functions on the unit interval 

(Huckemann [19]). 

To the best of our knowledge, however, even for continuous bounded functions on 

the unit ball in R d, d>~2, the question if the restricted mean value property implies 

harmonicity has been open until now. 

We intend to show that ,  for every bounded domain U ~  in R p, every continuous 

function f on U which is bounded by some harmonic function h>~ 0 on U and satisfies 

( . )  for a family (B~)~eu is harmonic. As a by-product we shall obtain that  even every 

Lebesgue measurable function f on U which is bounded by some harmonic function h~>0 

on U and satisfies ( , )  for a family (B~)~E~r is harmonic provided the radii of the balls 

B ~, xEU, are bounded away from 0 on every compact subset of U (improving [17] and 

[23]). 

In contrast to the preceding work on the problem our proof will be given in a purely 

analytic way (though many parts of it are based on probabilistic ideas and could as 

well be expressed probabilistically). It will use the Martin compactification, in par- 

ticular the minimal fine topology, and exploit properties of the Schrhdinger equation 

Au-~d(. ,CU)-21Au=O on U (~f>0, A a suitable subset of U). 

1. M a i n  results  

Before stating our main results we have to introduce some notation. Throughout  this 

paper we fix a harmonic function h ~> 1 on U. A numerical function f on U is called lower 
h-bounded, upper h-bounded, h-bounded if there exists cER+  such that  f>~-ch, f <~ch, 
IfI <~ch, respectively. Given xER d and ~>0, let 

B (x) = {y e a s :  IlY-xll < Q .  
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It will be convenient to write [A[ instead of A(A) for the Lebesgue measure of a Borel set 

A C R  d. For every xEU, let y(x) denote the distance d(x, CU) of x from the (Euclidean) 

boundary 0U. We write C(U) for the set of all continuous real functions on U. 

Given a real function r on U such that  0<r~<o, we shall say that  a Lebesgue mea- 

surable lower h-bounded numerical function f on U is r-supermedian if 

1 /B .fd)~ 
I(z)/> IBr~)(~)l ~(x)(~) 

for every xEU. An h-bounded Lebesgue measurable function f will be called r-median 
if f and - f  are r-supermedian or, equivalently, if 

1 /B fdA f(x)= LSr(~)(x)l ~(~)(x) 

for every x EU. Clearly every lower h-bounded superharmonic function s on U is r- 

supermedian and every h-bounded harmonic function g on U is r-median. 

Let us fix once and for all a Whitney decomposition Q for U (see [14]). Q is a 

parti t ion of U into countably many disjoint (dyadic) cubes of the form 

d 

Q=H[mi2-m,(mi+l)2-m[ ,  m E  Z, mi EZ,  
i~--1 

such that,  for every QEQ,  the diameter 5(Q) of Q satisfies 

1 <. d(Q, OU) < 3. 
~(Q) 

Then for every Q E Q 

~(q) <~ e < 4~(Q) on Q. 

The lower bound for d(Q, OU)/5(Q) implies that  there exists a constant C > 0  (depending 

only on the dimension d)  such that  

sup g(Q) <~ C inf g(Q) 

for every QEQ and every harmonic function g~>0 on U. For every m E N = { 1 ,  2, 3, ...} 

let Um denote the interior of the union of all QE Q such that  5(Q)~>2 -m. Note that  the 

open sets Um are increasing to U and that  

2 -m <-..d{Um,OU) ~<4.2 -m. 
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Fix O < a ~  �89 Given a Lebesgue measurable lower h-bounded numerical function f on U, 

we define a function ]~ on U by 

]~(x)=sup{aER:I{f>~ah}MQi>~a[Q[}, xEQEQ. 

_ 1 Allowing, however, that  a is small we For our purpose it would be sufficient to take a -  ~. 

shall obtain in addition a new proof for the existence of minimal fine limits of harmonic 

functions and the connection with the Perron-Wiener-Brelot  solution for the Martin 

compactification. 

Note that  ]a  is lower bounded on U, constant on each QE Q, and that  

inf 

If f is a Lebesgue measurable upper h-bounded function on U, we define similarly 

f_,~(x)=inf{aER:l{f ~ah}MQi>~a]Q[}, xEQEQ. 

Obviously, _ f ~ = - ( - f ) ~ .  Moreover, if f is an h-bounded Lebesgue measurable function 

on U, then f , ~ .  Indeed, if xEQEQ and a > ) ~ ( x )  then I{f>.ah}NQl<aiQ[, hence 

I{f<ah}MQl > (1 - a ) lQI  ~>aIQI, f~(x)  <a .  If f is continuous, then of course f l /2  =]1/2.  

Let OMu denote the Martin boundary of U, let cOMu be the set of minimal points 

in OMu, and let K:(uuoMu)• V---+[0, co] be a Martin function for U (see [18], [8]). Let 

X denote the (unique) measure on oMu such that  x(OMu\oMu)=o and 

= / g ( z , x )  x(dz), x � 9  h(x) U. 

Given any measurable function ~ on oMu such that  ~+ or ~ -  is x-integrable, we define 

a numerical function H ~  on U by 

= / g(z,x)~(z) x(dz), x �9 H~(x) U. 

If ~o is x-integrable then H ~  is harmonic on U. We recall that  the Martin compactification 

is h-resolutive ([8, p. 110]), i.e., that ,  for every bounded measurable function ~ on OM~ ~, 

H ~  = inf{s : s superharmonic on U, l iminf s(x)/h(x) ~ ~(z) for every z �9 oMu} 

= sup{t: t subharmonic on U, limsup t(x)/h(x) <<. ~(z) for every z �9 oMu}.  

For every zEOMu, let Afz denote the filter of the intersections of minimal fine neighbor- 

hoods of z with U, i.e., 

.N'~ = {V C U : U\ V is minimal thin at z}. 
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Recall that  a subset A of U is not minimal thin at z if 

URA(~,.) = K(z,. ) 

(where URA----inf{s:s superharmonic ~>0 on U, s~v  on A}), i.e., in probabilistic terms, 

if for every yEU the probability K(~")RA(y) that  Brownian motion on U starting at y 

and conditioned by K(z,. ) will hit A before exiting at z is equal to 1 (see [8]). 

Now suppose that  f is a lower h-bounded numerical function on U which is Lebesgue 

measurable. We extend ]~ to a function on UuOMu defining 

L(z)  = { l imsupg.  • ,  zeoMu,  

O, Z E o M u \ o V U .  

By [8, p. 216], fi~ is Borel measurable on OMu. Let us note that  

]~(z) = sup{a E R :  {]a/> a} not minimal thin at z}, z E oMu. 

Indeed, fix zEOMu. If b>limsup~fz ]~ then there exists VEAf~ such that  sup]~(V)<b, 
and hence {]~>~a} is minimal thin at z for every a>/b. Conversely, if a 6 R  such that  

{]~>~a} is minimal thin at z, then {]~<a}eAf~ and hence lim sup~f, ]~<~a. 
If f is an upper h-bounded Lebesgue measurable function on U, we define similarly 

{ liminf:v, f~ ,  zEoMu, 

Is(z)= 0, zeOMu\oVu. 

Obviously, . f ~ = - ( - f ) ~  on uuOMu and if f :  U--*R is h-bounded and Lebesgue mea- 

surable, then f~  < ]~. 

We are now ready to state our first result: 

THEOREM 1.1. Let r be a real function on U such that 0 < r ~ Q  and let f be a lower 
h-bounded l.s.c, function on U which is r-supermedian. Then f >/H fa for every 0 < a ~  1 5" 

The details of the proof will have to be postponed to Section 4. However, let us give 

a brief outline right now: To that  end assume for sake of simplicity that  h = l .  By Lusin's 

theorem there exists a continuous function ~ on uuOMU which is nearly ]a on OMU. Fix 
xEU and e>0.  Let t be a subharmonic function on U such that  limsup~_.~ t(y)<~(z) 
for every zEOMu and t(x)>H~(x)-r There exists m E N  such that  t - e < ~  on U\Um. 
Choosing a suitable superharmonic function s~>0 on U such that  s(x)<r  we obtain a 

subset 

A=(U\Um)M{f+s>T-r  
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of U such that  the union of all Q6 Q satisfying ]AMQ] >~aiQ ] is not minimal thin at the 

points zEOMu. As a consequence, for every 6>0, every continuous solution u > 0  of the 

SchrSdinger equation AU--~Q-21AU=O o n  U is unbounded. This fact allows us to show 

that  starting with unit mass at x the iterated sweeping induced by the ball means on 

B,(u)(y), yEU, and stopped at A does not reach the boundary of U. The (transfinite) 

limit measure a is supported by A and satisfies a(f)<~f(x), a(s)<~s(x), and a(t)>~t(x). 

Since f+s>~t-2~ on A, we conclude that  f(x)+~>~f(x)+s(x)~t(x)-2c>~H~o(x)-3~. 

Thus f >1 H ]~. 

COROLLARY 1.2. Let r be a real function on U such that O < r ~  and let f be a 

continuous h-bounded function on U which is r-median. Then f = H ] ~ = H  f_~ for every 

O<a<~ �89 In particular, f is harmonic. 

Proof. Since f and - f  are r-supermedian, Theorem 1.1 implies that  f>~Hf~ and 

- f > ~ H ( - f ) ~ ,  i.e., f<~gf_~. Knowing _f~ ~<f~ we conclude that  f = H f ~ = H ] ~ .  [] 

Surprisingly, Theorem 1.1 is strong enough to improve in addition the known results 

on Lebesgue measurable functions having the restricted mean value property (Heath [17], 

Veech [23]). 

THEOREM 1.1'. Let r be a real function on U such that 0 < r ~ t )  and r is bounded 

away from 0 on every compact subset of U. Let f be an h-bounded Lebesgue measurable 

function on U which is r-supermedian. Then f>~H f~ for every 0<a~< 1 

Before giving the proof let us write down the corollary which follows from Theorem 

1.Y in the same way as Corollary 1.2 followed from Theorem 1.1. 

COROLLARY 1.2'. Let r be a real function on U such that O<r~Q and r is bounded 

away from 0 on every compact subset of U. Let f be an h-bounded Lebesgue measurable 

function on U which is r-median. Then f = H ] a = H  f_ ~ for every 0<a~< �89 In particular, 

f is harmonic. 

Proof of Theorem 1.Y. Let us fix a continuous bounded potential p on U which is 

strict (e.g. the potential of Lebesgue measure on U). For every m E N ,  define 

am= inf {IBr(x)(x) ip(x)- /B pdA}. 

Clearly, the sequence (am) is decreasing. We claim that  am>O for every m e N .  Indeed, 

let (x~) be a sequence in Um such that  

\ JBr(zn)(xn) 
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Then there exists a subsequence (y~) of (x,~) such that  (y,~) converges to a point xEUm 
and (r(yn)) converges to a real number s. By assumption on the function r we know 

that  s > 0. Hence by bounded convergence 

= /B pd~>O. am IB,(x)lp(x)- ,(x) 

Let cER+  such that  Ifl<<.ch, fix xoEU and e>0.  There exists m0~>3 such that  XoE 

Umo =:Vmo. For every m>mo define 

V~ =Um\U~-l. 

For every m>~mo there exists a compact subset Am of V,~ such that  flare is continuous 

and 

iVm\Aml<e2_.~ am+2 
c sup h(Vm)" 

We may assume without loss of generality that  x0EAmo. Let A denote the union of the 

sets A,~, m>/mo. Then U\A is open and fiA is continuous. Let us define an h-bounded 

function g on U by 
{ f(x)+sp(x), x E A, 

g ( x ) =  ch(x)+ep(x), xeU\A.  
Clearly, g is 1.s.c. We claim that  g is r-supermedian. 

To that  end fix xEU and define BX=B~(~)(x). If xEU\A then of course 

1/o 1/o 
So assume xEA. We have xEVk for some k>>.mo. If k>mo then BZf)Vk_3=O, since 

Q>~2 -(k-3) on Uk-3 whereas, for every yeB ~, g(y)<~r(x)+Q(x)<.2Q(x)<8.2 -k. There- 

fore we obtain that  
( x )  

x \ A  m = m a  o,k-- 2) \Am 

oo 1 1 ( /B ) 
<~ e Z 2-'~ a~+2 <~ -~eak <<. e ]BXlp(x) - pd)~ . 

re=max(too,k--2) 

Hence 

IBZlg(x)-s gdA >/ lB:~lf(x)- fB~ "f d)~-2 fB.\achd)~+e(lBxlp(x) - s  pd)~) >>.O. 

Thus g is r-supermedian and we conclude by Theorem 1.1 that  g>~Hf~. In particular, 

f(xo)+Ep(xo)>~H f~(Xo). Therefore f>>.H f~. [] 

Moreover, it may be interesting to note that  Corollary 1.2 implies the following well 

known result (see e.g. [8, pp. 207, 219]): 
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COROLLARY 1.3. If f is an h-bounded harmonic function on U, then ~(z):= 

]imx. //h exists for x-a.e, zEoMu and f =H~a. 

a~-~]~ is decreasing and a~-*_f~ is increasing. Defining f ,  f_: 

](z)= sup )~(z), f(z)= inf f~(z) 
o<,~<~ �89 o<,~<�89 - 

Pro@ Obviously, 

OMu--~R by 

we obtain by the preceding corollary that f ~< ] and 

f = Hf = HI. 

So f = f  x-a.e. In order to finish the proof it therefore suffices to show that, for every 

zEoMu, 

f ( z ) ~ l i m i n f  -fh' limsup -fh ~](z). 
- j~  ~% 

So fix zEOMu. In order to prove that lira supx ~ f /h~f(z)  we assume, as we may (adding 

a suitable multiple of h), that f~h. Consider 0<a<limsup~f~ f /h and take c>1 such 

that ac2<limsup~fz f/h. Then {f)acUh} is not minimal thin at z. 

Since 6(Q)<d(Q, aU) there exists a constant 0 < e ~  v/1/d (depending only on c and 

the dimension d ) such that for every harmonic function g/>0 on U and every x E Q E Q 

lg(x) ~g ~cg(x) o n  Be$(Q)(X). 

Note that, for every xEQE Q, 

IB  (Q) (x)nQ]  >1 2 -d  IB 6(Q)(X)] > e d = :  a .  

IQI IQI 

Let xE{f~ac2h}. Then xEQ for some QEQ and f/h~c-2f(x)/h(x))a on B~(Q)(X), 
hence ]{f>~ah}MQi>/aiQI, ]a(x)>~a. So {f>/ac2h}c{L>~a} and therefore ~(z)~a 
since {f~ac2h} is not minimal thin at z. Thus /(z)~/~(z)~a, f(z)~limsupx~ f/h. 
Replacing f by - f  we finally obtain that f(z)~liminfjvz f /h finishing the proof. [] 

2. S c h r S d i n g e r  e q u a t i o n  w i t h  s i n g u l a r i t y  at  t h e  b o u n d a r y  

Let us first recall some notions and basic facts. Given a relatively compact open subset 

W # O  of R d let Hw denote the (classical) harmonic kernel for W, and let Gw denote 

the Green function on W such that AGw(., 9)=-ev  for every yEW. Suppose that V~0 

is a bounded Borel measurable function on W. Then, for every ~ECb(CgW), there exists 
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a unique continuous solution UECb(W) of Au-Vu=O such that  lim~--.z u(x)--~(z) for 
A - - V  every regular point z E OW. The mapping ~ u  defines a kernel H W . We have 

H~w-V-_(I+KY)- loHw 

where 

g Y  u(x) = ]w Gw(x, y)u(y)Y (y) )~(dy), x E W. 

(For further details see e.g. [5] or [15].) 

LEMMA 2.1. Let 6>0, a,b>O and let W0=]- �89189  d, W--( I+~)Wo.  Then there 

exists a constant ~/<1 such that for every r > 0 ,  for every Borel measurable ]unction 

0 ~ V ~ b r  -2 on rW satisfying frwoV dA>/ard-2, for every bounded harmonic ]unction 

g>~O on rW, and every continuous solution O~u~g of Au-Vu----O on rW the inequality 

u<.~/g holds on tWo. 

Proof. It suffices to consider the case r=l .  By [15], there exists c > l  such that  

sup u(Wo) ~< cinfu(Wo) 

for every Borel function 0 ~< V ~< b on W and every continuous solution u/> 0 of A u - V u  = 0 

on W. Define 

~? :-- inf {Gw(x, y): x, y E W0) 

and 

Finally, let O~V~b be a Borel function on W, let g>~0 be a bounded harmonic function 

on W, and let u~>0 be a continuous solution of Au-Vu=O on W. Then, for every xEWo, 

hence 

(1 § ~ )  u(x) <. u(x)+ KYu(x)  <. g(x), 

i.e., u(x)<~g(x). (The inequality u§ follows from the fact that  u + K Y u  

is harmonic on W and nminf~-~z(g-(u+K~u))(x)=liminf~z(g-u)(x)>~O for every 

z~OW.) [] 
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LEMMA 2.2. Let V>~O be a locally bounded Borel measurable function on U, let Lm = 

A - 1 u ~ V ,  m e N ,  and define g m f = f v . ~ f ( y ) G v ( . , y ) Y ( y ) A ( d y  ) (m EN ,  f>~O Borel 

measurable). Then, ]or every m E N ,  there exists a unique Borel function gm>~O on 

U such that gm+Kmgm=h. The ]unctions gm are continuous and satisfy Lmgrn=O on 

U. The sequence (gin) is decreasing. Moreover, Flmrn--.oo gm=O if and only if there is no 

h-bounded continuous solution u > 0 of the SchrSdinger equation A u -  Vu =0 on U. 

Proof. Fix m E N  and, for every kEN,  define 

amk = g # :  h. 

Then the sequence (gmk)kEN is decreasing and 

gm := lim gmk 
k---~ oo 

is a continuous positive function on U satisfying Lmgm=O. Since Guk ( ' ,  y ) = G u ( ' ,  y ) -  

Hu~Gu( ' ,  y), we know that  

gmk + Krngmk - Huk Kmgmk = h 

for every kEN.  Moreover 

lim Huk Kmgmk = O, 
k---~ oo 

since Kmgmk <~Kmh for every m E N ,  Kmh is a potential on U, and hence the harmonic 

minorant limk--.oc Hu~Kmh of Kmh is zero. Thus 

gm + Kmgm = h. 

The uniqueness of gm follows from a general domination principle (see e.g. [16]). 

Given k E N  the sequence (gmk)meN is decreasing. Therefore the sequence (gin) 

is decreasing and g:--limm--.o~ gm is a continuous h-bounded solution of A u - V u = O .  

On the other hand, let O<<.u<~h be a continuous solution of A u - V u = O .  Then Lmu= 

lv\v.~ Vu>.O, hence 

u <~ HL'~u <<. H L : h = g m k  

for all k, m E N ,  i.e., u<~g. 

Thus g = 0 if and only if there is no h-bounded continuous u > 0 satisfying A u - V u  = 0 

on U. [] 
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PROPOSITION 2.3. Let A be a Borel subset of U, let c~>0, and assume that, for 

every zEoMu,  the union D of all QEQ satisfying IAMQI>~(~IQI is not minimal thin at 

z. Then, for every 5>0 and every solution u>0 of the SchrSdinger equation 

AU--~IAU=O 

on U, the ]unction u/h is unbounded. 

Proof. Choose m i E N  such that Uml#o.  Suppose that k>~l and that tokEN has 

been chosen. Let Wk=Umk and let 

Ok = {Q E Q: 5(Q) < 2 -(m~+2), IAnQI/> alQ[}, Dk = U Q. 
QE2~k 

Then DkMWk=O and DCU, nk+2UDk. Since U,,~+2 is a compact subset of U, our 

assumption on D shows that Dk is not minimal thin at the points zEOMu, i.e., 

URDk _ r({ z . K(z,.)--~*~ ' J 

for all zEaMu. (It is not difficult to show that in hc t  AADk is not minimal thin at 

zEaMu.) Integrating with respect to X we obtain that 

=h. 

There exists a finite subset ~ of ~k such that the closure Ek of the union of all QECk 

still satisfies 

> �89 onW . 

Finally, we may choose mk+l E N such that Ek C Umk+l, 

1 d(Q, OUm~+,)>5~(Q) fora l lQEEk,  and v'~k+,REk>�89 onWk. 

Note that for Wk+l=Um~+~, 

Hw~+,\E~(1E~h)=W~+'RE~ > lh  on Wu 

(see e.g. [4, p. 254]). Fix ~>0 and define V----$Q-21A. Let (gin) be the sequence defined 

in Lemma 2.2 and let vk=gmk. By Lemma 2.1 there exists 7<1 such that, for all natural 

numbers 1 ~ k < L, 
V L  V L  - -  

sup -~- (Ek) < 7 s u p  --~- (Wk+l)- 

Fix LEN. Then O~vL~h and VL is subharmonic on U, hence for all kEN 

~/k:= sup (Wk) = sup -~- (0Wk). 
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Using again that VL is subharmonic we conclude that, for all l<.k<L and xEWk, 

VL(X) ~ HW~+~ \E~ VL(X) ~ HWk+~ \E~ [(~k+ll0w~+~ +~/~?k+l lE~)h](x) 

= yk+l [gwk+, \Ek h(x) - (1 --~/)Hwk+~ \E, (1Ek h) (x)] 

~< yk+l [h(x)- �89 (1-'y)h(x)] =�89 +~)~k+lh(x). 

Hence 

r/k ~ l(1-}-~)rlk+l. 

Since ~?L~I we thus obtain that, for every IEN, 

VL < ( �89 on W,. 

Therefore, limL-~oo VL =0 on U. By Lemma 2.2 the proof is finished. [] 

The next two propositions are crucial for our approach. Expressed in probabilistic 

terms we shall meet the following situation (see the outline of the proof for Theorem 

1.1 given in the first section): A subset A of U will be constructed such that Brownian 

motion on U will hit A with probability 1 before leaving U. We want to know that this 

holds as welt for the iterated sweeping induced by ~--*(h(x)lB~(~)(x)I)-lhlB~(~)(~).~, 

xEU. Clearly this sweeping has less chances to hit A than (h-)Brownian motion. There- 

fore we have to find some stopping by A which can be expressed in terms of Brownian 

motion (not using the function r), which occurs with a smaller probability than for our 

iterated sweeping, and which is nevertheless strong enough to stop Brownian motion 

before reaching the boundary of U. The next proposition is essential for the proof that 

this goal can be achieved by killing Brownian motion at a rate 5Q -2 while it passes the 

set A, 5>0 being a (very small) constant. 

PROPOSITION 2.4. Let ~,~?E]0,1[. Then there exists a constant 5>0 such that for 

every ball B=Br(x) ,  r>0,  x E R  d, for every harmonic function g>~O on B, and for all 

Borel sets A ' c A c R  d satisfying A'NBnr(x)=~ or ]ANBI>~IB ] the following holds: If  

0 <~ V <. 5d(., OB)-21A , 

is a Borel measurable function on B and if O~u~g is a continuous solution of A u - V u =  

0 on B then 

1 /B udA. >1 \A 

Proof. It clearly suffices to consider the case where B is the unit ball. Let w be the 

solution of 
1 

Aw = -Eo + - -  
]B] 
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on B with boundary values zero on OB. (Of course we may write down w explicitly, 

e.g. w(y)=-(1/2r)In [[y[[ +(I]y[[ 2 -1 ) /4 [B[  if d=2,  but  it will not be necessary to use the 

explicit formula.) Clearly w depends on y only through {lYlI- Since (-~o+(1/IBI)X)(B)= 
0, we therefore obtain by Green's formula that  the normal derivative of w at OB is zero. 

Consequently, there exists a constant a > 0  such that  

a 
[ - (1-11yll) for Ilyll <1. 

Choose ~ < b < l  such that  

l_bd< !~ 
2 " 

By [15] there exists a constant c > l  such that  for every Borel measurable 0~V~<I on 

�89  and every continuous solution u>~0 of Au-Vu=O on �89  

sup u(y) <~ c inf u(y). 
Ilyll~<b IlYll~<b 

Define 
( ( ( 2 / 2  4C2 ~ )/-1 

5 =  max 2a, ] - ~  'j3(1-??)2 Bwd)~ . 

Now let A ' c A  be Borel subsets of R d such that  A'N~?B=O or IANBI)~IBI, let V be a 

Borel measurable function on B such that  

5 
0 <~ Y(y) <. (1-ilyH) 2 1A,(y) 

for all yEB, let g>~0 be a harmonic function on B, and let O<~u<~g be a continuous 

solution of Au-Vu=O. By Green's formula 

1 

(Apply Green's formula to B'=(I -e )B ,  w'=w-w(OB'),  and let e>O tend to zero. 

Use that  Ifo., , (OwlOn) ol <~lOwlOnl(OB') foB, uda and that  fOB, uda< fOB' gda= 
a(OS')g(O).) Hence 

(fB fA, ) 

A wVud)~<a f (1-11yll):V(y)u(y))~(dy) IBI ,\,B JA,\,s 

/A udX <<- l fA <. a5 '\rib -~ u d)~. 

Clearly, 
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Therefore 

if AtM~IB=O. 

and 

Hence 

1 /B\AUd)~ u(O) >~ ~ 

Suppose now that IAnBI~>/31BI. Then 

IAnbBI >1 IAnBI-IB\ bBI >1 (~-(1-ba) )lBI > �89 

V~<5 ~ <1  on �89  

IBI /A,n,BWVUdA ~ c u ( O ) ~ l B l  ~ s  wdA 

1/nud,~" ~ -~cu(O)iBi ~ lu(O) /AnbB l d~ ~ -~ 

Thus 

finishing the proof. [] 

Straightforward calculations show that, for d>~ 2, the condition that A'MB~r 5 0  or 

lAMB[ >/flIBI cannot be omitted: If V=61r and u=H~-Yl  then 

1 /B ud)~ u(O) < ~ \~ .  

if ~ > 0 is sufficiently small! 

The following proposition will be necessary for our application of Proposition 2.4. 

PROPOSITION 2.5. Let ~,r/E]0, 1[, let r: U--*R such that 0<r~Q,  and let E be a 
Borel subset of U. Define 

F = {y E E: IEMBr(~)(x)I <. fliB~(~)(x)I and Iix-y]I < ~lr(x) for some x E U}. 

Then, -for every Q E Q, 
5V~ d 

IFMQI ~ ~ ( ~ _ ~ )  c(d)lQI, 

where c( d) denotes the Besicovitch constant (depending only on the dimension d ). 

Proof. Note first that F is a Borel set (it is open relative to E). Fix QEQ, let x0 

denote the center of Q, and let Q'=xo+5v/-d(Q-xo). For every yEFMQ choose y'EU 
such that IEnB~(~,)(y')I<ZIB~(~,)(y')I and Ily'-~ll<~r(y'). Then 

r(y') <~ e(y') ~< Ily'-yll+~(y), 



A CONVERSE TO THE MEAN VALUE THEOREM FOR HARMONIC FUNCTIONS 153 

hence 

and 

s(y) : :  (1-vi)r(y')  < Q(y) 

Ay := B~(y)(y) C B,(y,)(y')MQ'. 

By the theorem of Besicovitch ([14]) there exist disjoint sets Fj cFMQ, l<~j<.m<.c(d), 
such that  for each jE{1,  ... ,m} the balls Ay, yEFj, are disjoint and 

F n Q c  U 
j=l  ycF~ 

Then 

j = l  yeFj j----1 yeFj 

IBr(.,)(y')l- 5=, 
j = l  yEFj 

fl ~ Ay c(d)lQ'[ =Z c(d)iQ]. 
( l - v )  d .= ~ F j  ~< 

[] 

3. Sweep ing  of  m e a s u r e s  

In this section we shall study transfinite sweeping of measures generated by 

~x ~ (h(x)[Br(x)(x)])-lhlB~(~)(x) A, x e U. 

We have to show that  stopping at suitable subsets A of U the transfinite sweeping does 

not reach the boundary of U. It will be just as easy to start  in an abstract setting. 

Let Y be a compact metrizable space and let JP[ denote the set of all positive 

(Radon) measures on Y. Let P C r  be a convex cone such that  P - P  is uniformly 

dense in C(Y). (The following considerations can easily be extended to a locally compact 

metrizable space Y using function cones (in the sense of [4]), but we shall not need 

that  generality.) Let -< denote the specific order on ~/[ defined by P,  i.e., u-~# if and 

only if u(p)~#(p) for all pEP.  We take a sequence (p,~) in P that  is total in C(Y) 

and choose era>0 such that  po:=~- '~=l e,,~p,~EC.(Y). Now suppose that  tt, ue.h4, u-<#. 

Then clearly u(p0)~<#(p0). Moreover, u = #  if and only if u(p0)=tt(po). 

Let T denote the set of all specifically decreasing mappings of A4 into As[, i.e., 

T={T]T:A~I-~A4, T#-< # for all tt 6,tr 
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For every T E T  and g e M ,  let M T ( g )  denote the smallest w*-closed, T-stable subset Af 

of M containing g. Obviously, 

M r ( g )  c {~ e M :~ ~ , }  

and 

PROPOSITION 3.1. 

oEMr(g). 

MT(g) = {g}UMT(Tg). 

For every T E T  and g e M ,  there exists a T-invariant measure 

Proof. Fix T E T ,  g e M ,  and define 

a := inf {v(po) : v E MT(g)} �9 

Choose a sequence (vn) in MT(g) such that lim~-~o~ vn(po)=a. There exists a subse- 

quence (v~) of (vn) which is w*-convergent to a measure crEM. Then aE./V4T(#) and 

a(po)=lim~__.~ ~(po)=a. Since To'EJ~T(g) and T~-<a, we know that a<(Ta)(po)<~ 

cr(po)=a, hence Ta=a.  [] 

Actually much more is true: 

PROPOSITION 3.2. Let T E T  and g e M .  Then for every VEMT(I.t), 

Mr(g)={eeMT(g):~<e}uMr(~). 

In particular, J~T(g) is totally ordered (with respect to -<). There exists a unique T- 

invariant measure gT in M/IT(It). It is the smallest element in J~4T(g). 

Proof. For every vEA4T(g) define 

and let 

AZ= {v e MT(g) :  T ( ~ \ { v } )  C :P~}. 

Since :D~ is w*-closed, we obtain that, for every yeA/', 

M r ( g ) = D ~ U M r ( ~ )  

and hence 

v~ = {~ e MT(g)  : ~(po)/> .(po)}. 
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We claim that Ar----A4T (#). Obviously, # EAr since :D~ = {#}. Furthermore, Ar is T-stable. 

Indeed, let pEAr. Since A4T(#)=~PvUA4T(V) and A4T(V)={v}UA4T(TV) we conclude 

that 
= . 

Hence T(:Dv\{p))C:D~ implies that T(lPT~\{Tv})CDTv, i.e., TreAT. Finally, suppose 

that (p~) is a sequence in Ar which is w*-convergent to PEA4T(#). Consider QE:/P~\{v}. 

Then Q(po)>v(po)=limn-~ vn(po). If h e N  such that Q(p0)>vn(p0) then Q E ~ \ ( ~ ' n } ,  

hence TQE~.~, vn-~TQ. Therefore v--~Tp, TpE:D~. So AT is w*-closed. 

Having shown that Ar=A4T(I~) we obtain that A4T(/~) is totally ordered. By Propo- 

sition 3.1 there exists a T-invariant crEJ~4T(/Z). If v is any T-invariant element in A4T(#), 

then Mr(V)----{v}, hence MT(/~)=:D,, i.e., v - ~  for every ~EA4T(#). In particular, v = a  

finishing the proof. [] 

From now on suppose that T is a kernel on Y such that Tp<~p for every pE~ ~ and 

that T:AJ--*A4 is defined by 

(T#)(f)=#(Tf), fEC(Y).  

Then clearly T#-<# for every #EAZl. 

PROPOSITION 3.3. Let s>-c~ be a l.s.c, function on Y such that Ts<.s. Then 
v(s)<~#(s) for every PEJ~T(12). 

Proof. Consider 

N = { .  e M :  . ( s )  < 

Obviously pEAr. If yeAr then (Tv)(s)=v(Ts)<xv(s)<~#(s), i.e., TREAT. Finally, let 

(vn) be a sequence in Ar which is w*-convergent to a measure pEA4. Then v(s)~< 

liminf,~__.~ pn(s)<.#(s), hence pEAr. Thus J ~ T ( ~ ) C A r "  [] 

Define the base b(T) of T by 

b(T)= {xE Y : Te~=e~). 

Clearly, b(T) is a Borel subset of Y. 

LEMMA 3.4. Every T-invariant hE.A4 is supported by b(T). 

Proof. Since Tpo(x)--(Tex)(po) and Tex-<e~ for every xeY,  we have Tpo<~Po 
and b(T)={Tpo--Po). Fix a T-invariant aEA4. Then a(Tpo)=(Ta)(po)=a(po), hence 

a( { Tpo <p0})=0, i.e., a(Cb( T) )=O. [] 

11 -- 935204 Ac ta  M a t h e m a t i c a  171. lmprim~ le 2 f~vrier 1994 
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Let 

LEMMA 3.5. Let #EM and v, QEJ~T(#) such that v-<Q. Then lb(T)lJ>~lb(T)~. 

Proof. By Proposition 3.2, vEA4T(~). Hence it suffices to consider the case 8=#.  

J~f----- (v E J~T(#) : lb(T) 1]/> lb(T)#}- 

Clearly, #EAr and Af is T-stable. Suppose that  (~n) is a sequence in H which is w*- 

convergent to a measure v E M T  (#). The representation vn = lb(T)# § (vn -- lb(T)#) shows 

that  the sequence (Vn--lb(T)#) in M is w*-convergent to a measure T E M  such that  

V=lb(T)#-}-T. So b'EJ~ f. Thus J ~ f = J ~ T ( # )  finishing the proof. [] 

LEMMA 3.6. Let A be a Borel subset of b(T) and define a kernel T' on Y by 
T'(x,.)=lcAT(X , .) if xEY\b(T), T(x, . )=e,  if xEb(T). Then T 'ET and, for every 
#EJ~, 1y\A#T=Iy\A#T ,. 

Proof. Obviously, T'ET. Moreover, it is easily seen that  b(T')=b(T) (if T(z,. )#r 
then T'(x,. )#r since TI~<I). Fix #EA~/and consider the set 

A f - -  (v E A4T(#) : 1y\AV -: 1y\Av' for some ~' E fidT,(#)). 

Of course, #EAr. Furthermore, it follows immediately from the definitions that  1y\A~: 
1y\Av' implies that  1y\ATv:ly\AT'V' .  So J~ is T-stable. 

Next let (vn) be a sequence in Af which is w*-convergent to vEA4T(#). Choose ~"E 

,~4T,(#) such that  1y\A~n:lY\AV" , nEN. In order to show that  vEAl we may assume 

that  (~,') is w*-convergent to a measure v'EA4T,(#). Moreover, by Proposition 3.2, we 

may assume without loss of generality that  the sequences (v,~) and (v ' )  are monotone 

with respect to specific order. Then by Lemma 3.5 the sequences (1AVn) and (1A~") are 

monotone with respect to ~<, the usual order between measures. Hence the sequences 

(1AUn), (1AU') are w*-convergent to measures Q, Q', respectively, such that  ~(Y\A)--  

Q'(Y\A)=O. So we obtain that  u=Q+lim,~__.~ 1y\AVn, u'=Q' +limn--.oo 1y\AV'n, 1y\A~: 
1YkAP'. Thus Af=A4T(#). 

Finally, let v'EA4T,(#) such that  1y\A~T=Iy\AlJ. Then 

Iy\AT'IJ = Iy\AT].t T = Iy\A~ T = iy\Al]' , 

hence T'v'=v'. By Proposition 3.2, l]t=].tT ,. [] 

Let us now make a suitable choice of Y and P. We take a sequence (qn) of continuous 

potentials on U having compact superharmonic support such that for every x E U and 

every neighborhood W of x there exist n, mEN with O<~qn-qm<<.iw, (qn--qm)(X)>O. 

There exists a metrizable compactification Y of U such that the functions qn/h, hEN, 
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can be extended to functions CnEC+(Y) separating the points of Y. If U is regular 

then the potentials qn (and hence the functions qn/h) tend to 0 at OU, so Y is the one 

point compactification of U. Let P c C + ( Y )  be the min-stable convex cone generated by 

{1}U{r nEN}. Then P - 7  ) is uniformly dense in C(Y). 

Given a Borel function O<r<~y on U and a Borel subset A of U, we define a Markov 

kernel P = P A x  on Y by 

S (h(x)lB~(~)(x)l)-lhlB~(~)(~)A' x E U \ A ,  
P(x, . ) 

L e~, x E A U ( Y \ U ) .  

Then Pp<~p for every pEP, i.e., PET.  Note that b(P)=AU(Y\U) .  Define P' as in 

Lemma 3.6. The following proposition will the main tool for the proof of Theorem 1.1. 

PROPOSITION 3.7. Let 0 < r ~ 0  be a Borel function on U and let A be a Borel subset 

of U. Assume that there exists a>O such that, for every zEOIMU, the union of all QE Q 
satisfying [AMQ[>~a[Qt is not minimal thin at z. Then, for every xEU, (e~)p(Y\A)=O, 

Proof. Choose ~=  �89 and define 

Ao ~ {y E A: IIY -Y[I �89 and ]AMB~(v,)(y')I <. ]~tS~(v,)(y')] for some y' E U}. 

By Proposition 2.5, ]AoMQ] ~ laiQ] for every QE Q and hence A':=A\Ao satisfies 

]A'nQI = IAnQI-IAonQI /> �89 

for every QE Q with [AnQ[ ~>alQ[. Moreover, for every y'EU, 

A'NBr(~,)/2(y')=g or IAnBr(v,)(y')t>~IB~(y,)(Y')I. 

Choose 5>0 according to Proposition 2.4 (with ~?---�89 and take 

V - -  ~ 2 1 A  , . 

Then for every continuous solution u>0  of A u - V u = O  on U the function u/h is un- 

bounded by Proposition 2.3. For every m E N  let gmEC+(U) such that g,~+Kmgm=h 
where Kmgm=fu,,gm(y)Gv( �9 ,y)Y(y))~(dy) (see Lemma 2.2). Then limm--,oo gm--O by 

Lemma 2.2 whereas by Proposition 2.4, for every m E N  and every yEU, 

1 f gm dA, gin(Y) >/ IBr(y)(y)l JBr(,)(u)\A 
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i.e., P'(gm/h)(y) <~ (gm/h)(y) for every yE U. 

Fix x0 E U and define 

We claim first that  a ' ( Y \ U ) = 0 .  To that  end choose a superharmonic function s > 0  on 

U such that  S(Xo)=l and limy__.~, yeV s(y)=oo for every irregular boundary point zEOU. 
Fix m E N  and define a 1.s.c. function ~m on Y by 

~m(X)= liminf g.~+s/m 
y-~, yeU h (Y)' 

Then ~m=(gm+s/m)/h on U and hence 

Plum ~< ~m. 

So we conclude by Proposition 3.3 that 

and therefore 

xEY. 

 m(xo) h( 0) 

lim a ' (~m) = 0. 

Hence the equality a'(Y\U)=O will be established once we have shown that  ~m~>l on 

Y \ U for every m E N. 

To that  end it suffices to show that  liminfx--,z r for every zEOU. Since 

0 ~ gm ~ h and hV is bounded on Urn, the potential Kmgm is bounded on U. Furthermore, 

limx-~z Kmgm(x)=O and hence limx_~z gm(x)/h(x)-= 1 for every regular boundary point 

zEOU. Now fix zEOU and choose a sequence (xn) in U such that  l i m n ~  xn=z and 

a:= l iminf r -~ lim gm(Xn)+s(xn)/rn 

If there exists a subsequence (Yn) of (xn) such that  l im~_~  gm(y~)/h(y,~)=l, then of 

course a/> 1. So assume that  lim supn~ ~ gm (xn)/h(xn)< 1. Then z is an irregular bound- 

ary point by our preceding considerations. Knowing that  

g,~ 1 

and that  Kmgm is bounded we obtain moreover that  lim s u p n ~  h (x ,~ )<~ .  Since 

tim~-~z s(x)=cx), we conclude that  lim~_,~ s(x~)/h(xn)=~, a=~.  
Therefore ~m~>l on Y\U,  a'(Y\U)=O. So a(Y\U)=a'(Y\U)=O by Lemma 3.6. 

Moreover, a(U\A)=O by Lemma 3.4. Thus a ( Y \ A ) = 0 .  Since P is a Markov kernel, we 

have , (Y )=l  for every uEMe(r  , hence a(Y)=l, a(A)=l. [] 

The following lemma shows that dealing with r-supermedian functions we may al- 

ways assume that  r is Borel measurable (cf. Veech [23]). 
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LEMMA 3.8. Let r be a real function on U such that 0<r~<0. Then there exist 

Borel measurable functions r ~, r" on U such that O<r~ <~ r<~ r" <~Q and such that every r- 

supermedian 1.s.c. lower h-bounded Lebesgue measurable function on U is r~-super~nedian 

and r'-supermedian. 

Proof. Define 

r" (x )=l imsupr (y ) ,  x e U .  
y---*X 

Moreover, let Ao=~,  Am={r>~2-m}, m E N ,  and define 

r ' (x)  = l iminf  r(y),  x �9 Xm\Xm-1 .  
y"--~X, y c  A m  

Clearly, 0 < r ~ ~< r <~ r"  E Q and r t, r "  are Borel measurable. Moreover, for every x �9 U, there 

exist t , x , ,  x ,  �9 U such that  lira ~ " " x n = h m x , = x  and l imr(x~)=r'(x) ,  l imr(x~)=r"(x) .  So 

the proof is easily finished using Fatou's lemma. [] 

4. P r o o f  o f  T h e o r e m  1.1 

In addition to the results of the preceding sections we shall need the following nice 

property of the Whitney decomposition. 

LEMMA 4.1. Let (xn) be a sequence in U that converges to a point z c o M u .  Let 

(Yn) be a sequence in U such that, for each n E N ,  the points Xn, Yn are contained in the 

same cube QneQ. Then (Yn) converges to z as well. 

Proof. For every QEQ with center XQ let Q--XQ+3(Q-XQ).  Then there exists a 

constant C > I  such that,  for every Q E Q  and for every harmonic function g>~0 on the 

interior of Q, 

sup g( Q ) <~ C inf g( Q ). 

In particular, for each h E N ,  the inequalities 

c Gu(yn, 5) <~ GU(Xn, 5) <~ CGu(yn, 5) 

hold for every 5EOQ.,~, hence by minimum principle for every 5EU\~)n.  

Given m E N ,  there exists nmCN such that  x,~EU\Um+3 for every n ) n m .  Then 

~)~V1U,~ = 0  for every n)n ,~ i  In particular, the sequence (y~) has no accumulation point 

in U. In order to show that l imyn=Z we may hence assume without loss of generality 

that  (yn) converges to a point z~coMu. Suppose that  the Martin kernel K is based at 

xoEU, i.e., 
Gv(x,. ) 

K ( x , . )  . . . .  , xEU.  
au(x, xo) 
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If  x0 E Um then the inequalities above imply tha t  for every n/> nm 

g(y~, . )  <. cUg(x~, .) on U \ 0 ~ ,  

hence 

K(z', .  ) <<. C2K(z, �9 ). 

Since K(z,.  ) is a minimal harmonic function, we conclude that  z~=z. [] 

COROLLARY 4.2. For every zEoMu and every neighborhood W of z, there exists a 
neighborhood W' of z such that every cube Q E Q intersecting W' is contained in W. 

Proof. Suppose the contrary. Choose a fundamental  system {W,~: n E N }  of neigh- 

borhoods of z satisfying Wn+IcW~, n E N .  Then for every n E N  there exists a cube 

Q n E Q  such tha t  Q~MW~r but  Q , ~ W .  Taking 

xnEQ~MW', ynEQn\W 

we obtain a sequence (xn) converging to z whereas of course (yn) does not converge to z. 

This contradicts Lemma 4.1. [] 

Having in mind the outline given in Section 1 the proof of Theorem 1.1 is now easily 

accomplished: Let r be a real function on U such tha t  0 < r ~< 0, let f be an r-supermedian 

1.s.c. lower h-bounded function on U, and fix 0<c~< 1. We have to show that  f ~ H f ~ .  
By Lemma 3.8 we may assume that  r is Borel measurable.  Since multiples of h are 

r -supermedian and 

g ( f  +ch)~ = H(]~ +c) = H]~ +ch 

we may assume that  f ~> 0. 

Fix xoEU, a > 0 ,  and ~>0.  There exists a compact  subset L of o1Mu such that  

](~]L is continuous and HIoMu\L(XO)<C/a. Choose ~EC(uuOMu) such tha t  ~ =  

inf ( ]~ ,a )  on L and  0 < ~ < a .  There exists a subharmonic function t on U such tha t  

limsup~__, z t(x)/h(x)<<.~(z) for every zEOMu and t(xo)>H~(xo)-e. Moreover, there 

exists a superharmonic function s/>0 on U such that  lim inf~_.z s(x)/h(x)>~a for every 

zEOMU\L and s(x0)<~.  Fix m E N  such that  t / h - e < ~  on U\Um and define 

Let 

D = {Q  E Q: IAMQ[ >1 ~IQI}, D = U Q. 
QE~) 

We claim that ,  for every zEOMu, the set D is not minimal thin at z. 
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Indeed, consider first z E L. There exists a neighborhood W of z such that  WM Um= 0 

and 

I ~ - ~ ( z ) l  < �89162 on W. 

By Corollary 4.2 we may choose a neighborhood W ~ of z such that  QcW whenever the 

cube Q E Q  intersects W'.  Since f ~ ( z ) > ~ ( z ) - � 8 9  we know by definition of fa(z) that  

the set 

A(z) := {x e W'nU : ].(x) > ~(z ) -  �89 

is not minimal thin at z. Given xEA(z) consider QE Q containing x. Then QcW, hence 

QcU\Um and ]~=f~(x)>~(z)-�89 on Q. Therefore 

f(Y) ],~(x)}l~l{yEQ:f(Y) >~(y)-~ } <~tAMQ', 

xeQEI).  This shows that  A(z)CD. So D is not minimal thin at z. 

Suppose next that  zEOMU\L. Consider a neighborhood W of z such that  

s - > a - e  on W 
h 

and choose a corresponding neighborhood W ~. Given xEW', we have x EQ  for some 

QEQ and then QcW. Hence QcU\Um and 

f+s  s 
- - i f -  ~> ~ > a - ~  ~> ~ - c  o n Q ,  

hence QcA. So QE79. Therefore W'CD which shows that  D is not minimal thin at z. 

Define Y,:P, and P=PA,r as in Section 3. Let crEJkdp(ezo) be P-invariant. Then 

by Proposition 3.7, 

a ( r \ A )  =0 ,  

Let pU denote the restriction of P on U. 

numerical function on U such that  pUv<~v. 

a(A) =1 .  

Suppose that  v is a 1.s.c. lower bounded 

Then a(v)<<.v(xo). Indeed, extend v to 

a 1.s.c. function w > - c ~  on Y (e.g. taking w=infv(U) on Y\U). Then Pw<~w, hence 

or(w) ~<w(x0) by Proposition 3.3, i.e., a(v)Kv(xo). 

In particular, a(f /h) <~ f(xo)/h(xo), a(s/h) <~ s(xo)/h(xo), and a(t/h) >~ t(xo)/h(xo). 
Since (f+s)/h>/~-r on A, we obtain that  

s(xo)+f(xo)h(xo) >~ a ~ a -2E >~ h(zo) 2e 7> g ~ ( x o ) - 3 &  

Since inf(9~, a)~+alo~v\ L on OMU, we know that  

g ( i n f ( ]~ ,  a))(Xo) <~ H(p(Xo)+aHloMu\L(XO) <~ g~(xo)+r 
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Thus  

f ( xo)  > H ( i n f ( ] ~ ,  a) ) (Xo) -  5Eh(x0). 

Since e > 0  and a > 0  are arb i t rary ,  we finally conclude t h a t  f(xo)>~Hf~(Xo),  and the  

p roof  is finished. 

Final remark. The  appl icabi l i ty  of our  m e t h o d  for the  p roof  of  the  ma in  results  is 

cer ta inly  not  res t r ic ted to  the  special case of  ball means,  Laplace  opera tor ,  and  a bounded  

domain  in Eucl idean space. 
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