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0. Introduction

Let U#@ be a bounded domain in R%, d>1, and for every z€U let B® be an open ball
contained in U with center z. If f is a harmonic integrable function on U then

f(z)=—1—)/ fdx foreveryzeU (%)
BI

A(B=

(X Lebesgue measure on R?). The converse question to what extent this restricted mean
value property implies harmonicity has a long history (we are indebted to I. Netuka for
valuable hints). Volterra [26] and Kellogg [20] noted first that a continuous function f on
the closure U of U satisfying (*) is harmonic on U. At least if U is regular there is a very
elementary proof for this fact (see Burckel [7]): Let g be the difference between f and
the solution of the Dirichlet problem with boundary value f. If g#0, say a=sup g(U)>
0, choose z€{g=a} having minimal distance to the boundary. Then (x) leads to an
immediate contradiction. In fact, for continuous functions on U the question is settled
for arbitrary harmonic spaces and arbitrary representing measures u,#¢, for harmonic
functions.

If f is bounded on U and Borel measurable the answer may be negative unless
restrictions on the radius 7(z) of the balls B® are imposed (Veech [23]): Let U=]-1,1{,
f(0)=0, f=—10n]-1,0[, f=10n]0,1[, 0¢ B* for x#0 (similarly in R¢, d>2)!

There are various positive results, sometimes under restrictions on U, but always
under restrictions on the function z—r(z) (Feller [9], Akcoglu and Sharpe [1], Baxter [2]
and (3], Heath [17], Veech {23] and [24]). For example Heath [17] showed for arbitrary U
that a bounded Lebesgue measurable function on U having the restricted mean value
property (*) is harmonic provided that, for some £>0, ed(z,CU) <r(z)<(1—¢)d(z,CU)
holds for every z€U. Veech [23] proved that a Lebesgue measurable function f on U
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which is dominated by a harmonic function and satisfies (*) is harmonic provided U is a
Lipschitz domajn and the radii 7(z) of the balls B® are locally bounded away from zero.
A survey of the history up to 1973 is contained in [22].

Even if f is continuous some additional condition is needed (see Littlewood [21}):
Let U=]0,1[ and let (a,,) be a sequence in |0, [ which is strictly decreasing to zero. Let
A={a,: n€N}. Define r(an)=a, —an+2, for zeU\ A take any B” such that B*NA=2.
Proceeding by recurrence it is easily shown that there is a (unique) continuous function
f on U such that f is (locally) affinely linear on U\ 4, f=0 on [a1, 1], f(az)=1, and (x)
holds (also) for the points z€ A. Of course, f is not harmonic on U and it is unbounded.
(A similar construction in R, d>2, would lead to a rotation invariant continuous func-
tion f on the unit ball U (on U\{0} resp.) which oscillates at the boundary oU (at 0
resp.), has the restricted mean value property (*), but is not harmonic.) It has been
shown that this cannot happen for continuous bounded functions on the unit interval
(Huckemann [19]).

To the best of our knowledge, however, even for continuous bounded functions on
the unit ball in R?, d>2, the question if the restricted mean value property implies
harmonicity has been open until now.

We intend to show that, for every bounded domain U#@ in R?, every continuous
function f on U which is bounded by some harmonic function h>0 on U and satisfies
(%) for a family (B*),<y is harmonic. As a by-product we shall obtain that even every
Lebesgue measurable function f on U which is bounded by some harmonic function h>0
on U and satisfies (x) for a family (B®),ey is harmonic provided the radii of the balls
B*, z€U, are bounded away from 0 on every compact subset of U (improving {17] and
23)).

In contrast to the preceding work on the problem our proof will be given in a purely
analytic way (though many parts of it are based on probabilistic ideas and could as
well be expressed probabilistically). It will use the Martin compactification, in par-
ticular the minimal fine topology, and exploit properties of the Schrédinger equation
Au—6d(-,0U)21,u=0on U (6>0, A a suitable subset of U).

1. Main results

Before stating our main results we have to introduce some notation. Throughout this
paper we fix a harmonic function h>>1 on U. A numerical function f on U is called lower
h-bounded, upper h-bounded, h-bounded if there exists cc R such that f>—ch, f<ch,
| f|<ch, respectively. Given z€R® and £>0, let

B.(z)={yeR%:|ly—z| <e}.
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It will be convenient to write | A| instead of A(A) for the Lebesgue measure of a Borel set
ACRY. For every z€U, let p(z) denote the distance d(x,CU) of z from the (Euclidean)
boundary OU. We write C(U) for the set of all continuous real functions on U.

Given a real function r on U such that 0<r<g, we shall say that a Lebesgue mea-
surable lower h-bounded numerical function f on U is r-supermedian if

1
fle)> [Br(z)(@)] /15,(,)(2) fax

for every z€U. An h-bounded Lebesgue measurable function f will be called r-median
if f and —f are r-supermedian or, equivalently, if

1
= —_— dA\
@)= 15 @) /B,(,)@ d

for every z€U. Clearly every lower h-bounded superharmonic function s on U is r-
supermedian and every h-bounded harmonic function g on U is r-median.

Let us fix once and for all a Whitney decomposition Q for U (see [14]). Q is a
partition of U into countably many disjoint (dyadic) cubes of the form

d
Q= H[m,-2“"‘, (mi+1)27™], meZ,m;€Z,

=1
such that, for every Q€ Q, the diameter §(Q) of Q satisfies

d(Q,aU)

'STHQ)

<3.

Then for every Q€@
6(Q)<p<486(Q) on Q.

The lower bound for d(Q, 8U)/6(Q) implies that there exists a constant C >0 (depending
only on the dimension d ) such that

supg(Q) < Cinf g(Q)

for every Q€Q and every harmonic function g0 on U. For every meN={1,2,3,...}
let Up, denote the interior of the union of all Q€ Q such that §(Q)>2"™. Note that the
open sets Uy, are increasing to U/ and that

2™ L A(Up, V) <4-27™.
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Fix O0<a< % Given a Lebesgue measurable lower h-bounded numerical function f on U,
we define a function f, on U by

fo(@)=sup{aeR:|{f >ah}NQ|>0a|Q|}, z€QecQ.

For our purpose it would be sufficient to take a= % Allowing, however, that « is small we
shall obtain in addition a new proof for the existence of minimal fine limits of harmonic
functions and the connection with the Perron—Wiener—Brelot solution for the Martin
compactification.

Note that f, is lower bounded on U, constant on each Q€ Q, and that

mt L Q) <Fo<sw L@, 12 fumin@izalal

If f is a Lebesgue measurable upper h-bounded function on U, we define similarly

fo(z)=inf{aeR:|{f <ah}NQ|>a|Q[}, z€Q€Q.

Obviously, f,=—(~f),. Moreover, if f is an h-bounded Lebesgue measurable function
on U, then f,<f,. Indeed, if z€Q€Q and a>f,(z) then |{f>ah}NQ|<a|Q|, hence
[{f<ah}NQ|>(1-0)|Q|>c|Q|, f.(z)<a. If f is continuous, then of course f;/,="f; 5.

Let MU denote the Martin boundary of U, let OMU be the set of minimal points
in &MU, and let K:(UUOMU)xU— |0, 00] be a Martin function for U (see [18], [8]). Let
x denote the (unique) measure on 8™ U such that x(8MU\8MU)=0 and

h(x)=/K(z,x)x(dz), zeU.

Given any measurable function ¢ on MU such that ¢t or ¢~ is x-integrable, we define
a numerical function Hp on U by

H(p(x)=/K(z,:c)<p(z)x(dz), zeU.

If  is x-integrable then Hy is harmonic on U. We recall that the Martin compactification
is h-resolutive ([8, p. 110]), i.e., that, for every bounded measurable function ¢ on 8M1",

Hyp=inf{s: s superharmonic on U, liminf s(z)/h(z) > ¢(z) for every z € MU}

= sup{t: ¢t subharmonic on U, limsup #(z)/h(z) < ¢(z) for every z € OMU}.

For every z€ MU, let N, denote the filter of the intersections of minimal fine neighbor-
hoods of z with U, i.e.,

N,={V CcU:U\V is minimal thin at z}.
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Recall that a subset A of U is not minimal thin at z if
URﬁ(z,-) = K(Zv ' )

(where URA=inf{s : s superharmonic >0 on U, s>v on A}), i.e., in probabilistic terms,
if for every ycU the probability ¥(*) Rf(y) that Brownian motion on U starting at y
and conditioned by K(z,-) will hit A before exiting at z is equal to 1 (see [8]).

Now suppose that f is a lower h-bounded numerical function on U which is Lebesgue
measurable. We extend f,, to a function on UUOMU defining

7.(2) limsupy, f,, 2€8MU,
zZ)=
* 0, 2€MU\OMU.

By [8, p. 216], f, is Borel measurable on #MU. Let us note that
fa(2) =sup{a € R:{f, >a} not minimal thin at 2z}, z€dMU.

Indeed, fix z€8MU. If b>limsupy, f, then there exists V €N, such that sup f,(V)<b,
and hence { fQZa} is minimal thin at z for every a>b. Conversely, if a€R such that
{f.>a} is minimal thin at 2, then {f,<a}€N, and hence limsupy, f,<a.

If f is an upper h-bounded Lebesgue measurable function on U, we define similarly

£.0) liminfy, f,, z€8MU,
zZ)= -
= 0, 2€dMU\OMU.

Obviously, f,=—(~f), on U UOMU and if f:U—R is h-bounded and Lebesgue mea-
surable, then f, < fa
We are now ready to state our first result:

THEOREM 1.1. Letr be a real function on U such that 0<r< g and let f be a lower
h-bounded l.s.c. function on U which is r-supermedian. Then f>Hf, for every O<a<%.

The details of the proof will have to be postponed to Section 4. However, let us give
a brief outline right now: To that end assume for sake of simplicity that h=1. By Lusin’s
theorem there exists a continuous function ¢ on UUOMU which is nearly f, on 8MU. Fix
z€U and £>0. Let t be a subharmonic function on U such that limsup,,,, t(y) <y(z)
for every 2z€0MU and t(z)>Hp(x)—¢. There exists meN such that t—e<p on U\Up,.
Choosing a suitable superharmonic function s>0 on U such that s(z)<e we obtain a
subset

A=(U\Un)N{f+s>¢p—¢}
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of U such that the union of all Q€ Q satisfying | ANQ|>a|Q)| is not minimal thin at the
points z€MU. As a consequence, for every 6>0, every continuous solution u>0 of the
Schrodinger equation Au—69~214u=0 on U is unbounded. This fact allows us to show
that starting with unit mass at z the iterated sweeping induced by the ball means on
B,()(¥), y€U, and stopped at A does not reach the boundary of U. The (transfinite)
limit measure ¢ is supported by A and satisfies o(f)< f(z), o(s)<s(z), and o(t) 2t(z).
Since f+s>t—2¢ on A, we conclude that f(z)+e>f(z)+s(z)>t(z)—2e>Hp(z)—3e.
Thus f>Hf,,.

COROLLARY 1.2. Let r be a real function on U such that 0<r<g and let f be a
continuous h-bounded function on U which is r-median. Then f=Hf,=H fo for every
0<a<%. In particular, f is harmonic.

Proof. Since f and —f are r-supermedian, Theorem 1.1 implies that f>Hf, and

—f2H(~f),, ie, f<Hf,. Knowing _fO,Sfa we conclude that f=H_fa=Hfa. d

Surprisingly, Theorem 1.1 is strong enough to improve in addition the known results

on Lebesgue measurable functions having the restricted mean value property (Heath [17],
Veech [23]).

THEOREM 1.1'. Let r be a real function on U such that 0<r<o and r is bounded
away from 0 on every compact subset of U. Let f be an h-bounded Lebesque measurable
function on U which is r-supermedian. Then f>Hf, for every O<a<%.

Before giving the proof let us write down the corollary which follows from Theorem
1.1 in the same way as Corollary 1.2 followed from Theorem 1.1.

COROLLARY 1.2'. Let r be a real function on U such that 0<r<g and r is bounded
away from 0 on every compact subset of U. Let f be an h-bounded Lebesque measurable
Junction on U which is r-median. Then f=H fa=H fa for every 0<a< % In particular,
f is harmonic.

Proof of Theorem 1.1'. Let us fix a continuous bounded potential p on U which is
strict (e.g. the potential of Lebesgue measure on U). For every meN, define

am= inf {|B,, (@)lp(z)— / pd)\}.
zeln | ) Br(e)(z)

Clearly, the sequence (a,,) is decreasing. We claim that a,, >0 for every meN. Indeed,
let (z,,) be a sequence in U,, such that

am = lim (lBr(xn>(wn)Ip(xn)— / pd,\).
e Br(an)(@n)
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Then there exists a subsequence (y,) of (z,) such that (y,,) converges to a point z€U,,
and (r(y,)) converges to a real number s. By assumption on the function r we know
that s>0. Hence by bounded convergence
an=IB@)p@)- [ pdr>0.
()
Let ceR4 such that |f|<ch, fix 2g€U and £>0. There exists mg>3 such that zq€
Umg=:Vim,. For every m>mq define

Vi = Up \Un—1.

For every m>mg there exists a compact subset A,, of V,, such that f|4, . is continuous
and

— Am+42
Vm\A Mo T
[Vn\Am| < €2 csup h(Vp,)

We may assume without loss of generality that o€ A,,,. Let A denote the union of the
sets A, m>2mg. Then U\ A is open and f|,4 is continuous. Let us define an h-bounded
function g on U by
f(x)+ep(z), =z€A,
(=)= { ch(z)+ep(z), zeU\A.
Clearly, g is l.s.c. We claim that g is r-supermedian.
To that end fix z€U and define B*=B,(;)(z). If z€U\ A then of course

g(m):ch(m)+6p(m)>-l—/ (ch+ep)d)\>—lm—/ gdX.
1B?| Jpe |B*| Jp=

So assume z€A. We have z€V}, for some k>mg. If k>mg then B®NU;_3=9, since
0>2~*=3) on U,_3 whereas, for every y€B%, o(y)<r(z)+o(z)<20(z)<8-27%. There-
fore we obtain that

chd) < / chdA
Joa >

m=max(mg,k—2) m\Am

(o]

1 1
e Z 2" amy2 < 50k < 3¢ (lelp(z)—/B pd)\).

m=max(mg,k—2)

Hence
|B$|g(x)—/ gdA>|Bz|f(z)—/ fd)\—2/ chd)\+5(|B’”|p(a:)~/ pd/\) >0.
B= B= B=\A B*=
Thus g is r-supermedian and we conclude by Theorem 1.1 that g>Hf,. In particular,
f(zo)+ep(zo) = HSf,(0). Therefore f>HF,. O

Moreover, it may be interesting to note that Corollary 1.2 implies the following well
known result (see e.g. [8, pp. 207, 219]):
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COROLLARY 1.3. If f is an h-bounded harmonic function on U, then ¢(z):=
limy, f/h exists for x-a.e. z€OMU and f=Heop.

Proof. Obviously, a— f, is decreasing and aw fo is increasing. Defining f, £
oMU —-R by
f(2)= sup fo(2), [f(z)= inf f,(2)

0<agi o<agt

we obtain by the preceding corollary that f< f and
f=Hf=Hf.

So f= f x-a.e. In order to finish the proof it therefore suffices to show that, for every
zedMU,

f(2) < liminf i, lim sup ! < f(2).

- ~N. h N, h
So fix 7€} U. In order to prove that limsup,, f/h< f(z) we assume, as we may (adding
a suitable multiple of k), that f>h. Consider 0<a<limsup,, f/h and take ¢>1 such
that ac?<limsupy,, f/h. Then {f>ac?h} is not minimal thin at 2.

Since 6(Q)<d(Q, dU) there exists a constant 0<e<+/1/d (depending only on ¢ and

the dimension d) such that for every harmonic function g0 on U and every z€Q€Q

1
lo(z)<g<co(z) on Buya)(@):
Note that, for every z€Q¢€ Q,

|Bes (@) (z)NQ) d|Bes@ @) a_
il ql >el=:a.

Let z€{f>ac?h}. Then z€Q for some Q€ Q and f/h>c™2f(x)/h(z)>a on Besq)(x),
hence |[{f>ah}NQ|>e|Q|, f.(z)>a. So {f>ac’h}C{f,>a} and therefore f,(z)>a
since {f>ac?h} is not minimal thin at z. Thus f(2)>7,(z)2a, f(z)>limsupy, f/h.
Replacing f by —f we finally obtain that f(z)<liminfy, f/h finishing the proof. a

22"

2. Schriodinger equation with singularity at the boundary

Let us first recall some notions and basic facts. Given a relatively compact open subset
W#@ of R? let Hw denote the (classical) harmonic kernel for W, and let Gw denote
the Green function on W such that AGw (-, y)=—¢, for every yeW. Suppose that V>0
is a bounded Borel measurable function on W. Then, for every ¢ €C,(0W), there exists
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a unique continuous solution u€Cy(W) of Au—Vu=0 such that lim,_,, u(z)=¢(z) for
every regular point 26 W. The mapping ¢+ u defines a kernel Hﬁ,‘v. We have

Hy vV =(I+K¥) Y-Hw

where
KYu(z) = /W G (e, yyu)V () Ndy), zEW.

(For further details see e.g. [5] or [15].)

LEMMA 2.1. Let €>0, a,b>0 and let Wo=]-1,1[?, W=(1+e)W,. Then there

erists a constant y<1 such that for every r>0, for every Borel measurable function
0KV Kbr=2 on rW satisfying frWon)\>ard‘2, for every bounded harmonic function
920 on rW, and every continuous solution 0<u<g of Au—Vu=0 on rW the inequality
u<vg holds on rWy.

Proof. It suffices to consider the case r=1. By [15], there exists ¢>1 such that
sup u(Wp) < cinf u(Wy)

for every Borel function 0V <b on W and every continuous solution >0 of Au—Vu=0
on W. Define

n:=inf {Gw(z,y):x,y € Wo}
and

any 1
=1{1 —) .
7= (145

Finally, let 0V <b be a Borel function on W, let g0 be a bounded harmonic function
on W, and let u>0 be a continuous solution of Au—Vu=0 on W. Then, for every z€ Wy,

KYu(z) = /W u(y)Gow (z,9)V () Ady) > “ 2y /W vars Du)

hence

(1+?) u(z) < u(z)+Kiyu(z) < g(z),

ie., u(z)<yg(z). (The inequality u+K},u<g follows from the fact that u+Kju
is harmonic on W and liminf,_,,(9~(u+K}u))(z)=liminf,_..(g—u)(x) >0 for every
z€OW.) O
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LEMMA 2.2. Let V =0 be a locally bounded Borel measurable function on U, let L,,=
A-1y,V, meN, and define Knf=[, f(y)Gu(-,y)V(y)Mdy) (meN, f>0 Borel
measurable). Then, for every meN, there exists a unique Borel function gm>20 on
U such that gm+Kmgm=h. The functions g, are continuous and satisfy Lygm=0 on
U. The sequence (g,) is decreasing. Moregver, imm— 00 gm =0 if and only if there is no
h-bounded continuous solution u>0 of the Schrédinger equation Au—Vu=0 on U.

Proof. Fix meN and, for every k€N, define
gme = Hj™h.
Then the sequence (gmi)ren is decreasing and
Im = klijgo Imk

is a continuous positive function on U satisfying L,,gm=0. Since Gy, (-,¥)=Gu(-,y)—
Hy,Guy(-,y), we know that

gmk +ngmk "'fIU)c ngmk = h

for every k€ N. Moreover

lim Hy, Kmgmk =0,
k-—o00

since Kpmgme < Kmh for every meN, K, h is a potential on U, and hence the harmonic
minorant Bmy_,oc Hy, Kb of K, h is zero. Thus

gm+EKmgm=nh.

The uniqueness of g, follows from a general domination principle (see e.g. [16]).

Given k€N the sequence (gmr)men is decreasing. Therefore the sequence (g,)
is decreasing and g:=lim,, . gm is a continuous h-bounded solution of Au—Vu=0.
On the other hand, let 0<u<h be a continuous solution of Au—Vu=0. Then L,,u=
1w, Vu20, hence

u < H{;;"u < H[Ij;"h = Gmk
for all k,meN, i.e., ugg.

Thus g=0 if and only if there is no h-bounded continuous u >0 satisfying Au—Vu=0
onU. a
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PROPOSITION 2.3. Let A be a Borel subset of U, let a>0, and assume that, for
every z€0MU, the union D of all Q€ Q satisfying |ANQ|>c|Q) is not minimal thin at
z. Then, for every §>0 and every solution u>0 of the Schrodinger equation

6
Au—?lAuzo

on U, the function u/h is unbounded.

Proof. Choose m; €N such that Up,, #2. Suppose that k>1 and that m; €N has
been chosen. Let W =U,,, and let

D ={Q€Q:6(Q) <2~ ™% 14nQ|>clQl}, Dr= U @
QEDy
Then DyNWi=@ and DCUp,+2UDg. Since Up, 42 is a compact subset of U, our

assumption on D shows that Dj is not minimal thin at the points zeé){"! U,ie.,

URg,Ez,-) = K(z’ : )

for all 2z€MU. (It is not difficult to show that in fact ANDjy is not minimal thin at
2€8MU.) Integrating with respect to x we obtain that

URD* = h.

There exists a finite subset &, of Dy such that the closure Ej of the union of all Q€&
still satisfies
YR > h on Wy.

Finally, we may choose my1€N such that ExCUy,,,,

dQ,Unm,,,)>16(Q) forall Qe&, and Yms1iRF* >1h on Wi.
Note that for W1 =Un,,,,
Hw,,\g.(1g,h)="**R* > 1h on W,

(see e.g. [4, p. 254]). Fix §>0 and define V=6p~21,4. Let (gm) be the sequence defined
in Lemma 2.2 and let vy =gy,,. By Lemma 2.1 there exists v<1 such that, for all natural
numbers 1<k<L,

v v I
sup —~ (Ex) < ysup - (W),

Fix LeN. Then 0<vz <h and vz is subharmonic on U, hence for all ke N

i 1= sup %(Wk) =sup %(BWk).
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Using again that vy, is subharmonic we conclude that, for all 1<k<L and z€Wj,

vL (%) < Hwy1\EVL(Z) € Hw, \ B, (M1 lowi sy +YMk4+118, )R] (2)
:T/k+1[HWk+1\Ekh(x)_(1—7)HWk+1\Ek(lEkh)(x)]
< [A(2) = 3 (1=7)h(z)] = $(14+7)mrs1h(2).

Hence
M < 3(1+HY)M+1-
Since 1z <1 we thus obtain that, for every [€N,

v < (%(1+7))L_lh on W,.

Therefore, limy_,o, vz =0 on U. By Lemma 2.2 the proof is finished. O

The next two propositions are crucial for our approach. Expressed in probabilistic
terms we shall meet the following situation (see the outline of the proof for Theorem
1.1 given in the first section): A subset A of U will be constructed such that Brownian
motion on U will hit A with probability 1 before leaving U. We want to know that this
holds as well for the iterated sweeping induced by e (h(z)|Br(o)(z)]) " hlp, )N
z€U. Clearly this sweeping has less chances to hit A than (h-)Brownian motion. There-
fore we have to find some stopping by A which can be expressed in terms of Brownian
motion (not using the function r), which occurs with a smaller probability than for our
iterated sweeping, and which is nevertheless strong enough to stop Brownian motion
before reaching the boundary of U. The next proposition is essential for the proof that
this goal can be achieved by killing Brownian motion at a rate §o~2 while it passes the
set A, §>0 being a (very small) constant.

PRroPOSITION 2.4. Let 3,1n€]0,1[. Then there exists a constant §>0 such that for
every ball B=B,(z), r>0, t€RY, for every harmonic function g>0 on B, and for all
Borel sets A'Cc ACR? satisfying A'NB,,(z)=2 or |ANB|>3|B| the following holds: If

0KV <bd(-,0B) 14

5 a Borel measurable function on B and if 0<u<g is a continuous solution of Au—Vu=
0 on B then 1
u(z) 2 — wd.
|B| JB\a
Proof. It clearly suffices to consider the case where B is the unit ball. Let w be the
solution of

1
Aw=—gp+-—
| BI
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on B with boundary values zero on dB. (Of course we may write down w explicitly,
e.g. w(y)=—(1/27)In|ly||+({lyl|*—1)/4|B| if d=2, but it will not be necessary to use the
explicit formula.) Clearly w depends on y only through ||y||. Since (—eo+(1/|B|)A)(B)=
0, we therefore obtain by Green’s formula that the normal derivative of w at B is zero.
Consequently, there exists a constant a>0 such that

a

w(y) < W(l—llyll)2 for n<lyll <1.

Choose n<b<1 such that
1-* < 1B
By [15] there exists a constant ¢>1 such that for every Borel measurable 0V <1 on

3(1+b)B and every continuous solution u>0 of Au—Vu=0 on $(1+b)B

sup u(y) <c inf u(y).
llyll<b llyll<b

o= (o2 (53) e [, )

Now let A’C A be Borel subsets of R? such that A'nnB=0 or |[ANB|>f|B], let V be a
Borel measurable function on B such that

Define

é
0<V(y) < m'”)—zlfi' (¥)

for all yeB, let g=>0 be a harmonic function on B, and let 0<u<g be a continuous
solution of Au—Vwu=0. By Green’s formula

1
—u(0)+—/ ud)\=/ uA'w=/ wAu=/ wVudi= | wVud.
|B| JB B B B A’

(Apply Green’s formula to B'=(1—¢)B, w'=w~w(8B’), and let ¢>0 tend to zero.
Use that | f,5 uw(0w/8n)do|<|8w/On|(8B') [y5 udo and that [y, udo< [yp gdo=
0(0B')g(0).) Hence

u(0)=—1- / udh—|B| | wVud\}.
|B|\J/g Al
Clearly,

B[ wudi<a [ -V Ay
A’\nB A'\nB

<ad ud)\gl/udk.
A'\nB 2 A
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Therefore 1
0> — udX
u(0)> 1Bl Jp\a

if AnnB=g2.

Suppose now that |ANB|>43|B|. Then

|ANbB| > |ANB|~|B\bB| > (8- (1-b"))| B > 38/B]

and
2 \2
V<6 ( b) <1 on i(1+b)B.
Hence
|B| wVud < cu(0) 2IBI/ wdA
A'nNnyB ( )
—u(O)|B| u(O) / 1dA< - / wdA.
Thus
[Bf/ wVud\=|B]| Vwud\+|B| und)\S/ ud
A’ A'\nB A'nnB A
finishing the proof. a

Straightforward calculations show that, for d>2, the condition that A'NB,,#@ or
|ANB|>B|B| cannot be omitted: If V=615 and u=H5 "1 then

1
u(0) < — udA
) |B| JB\eB

if £>0 is sufficiently small!

The following proposition will be necessary for our application of Proposition 2.4.

PROPOSITION 2.5. Let 3,m€]0,1], let r:U—R such that 0<r<p, and let E be a
Borel subset of U. Define

F={y€E:|ENB,(4)(2)| < BBx)(z)| and ||z—y| <nr(z) for some z€U}.
Then, for every QEQ,
pral<s( 22V ewiel,
where c(d) denotes the Besicovitch constant (depending only on the dimension d).

Proof. Note first that F is a Borel set (it is open relative to E). Fix Q€Q, let o
denote the center of Q, and let Q'=z9+5vd(Q—zo). For every ye FNQ choose y' €U
such that |ENB,«, (4" )|<B|By)(¥')| and {ly’ —yl|<nr(y’). Then

r(y) <ely’) <y —yll+o(y),
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hence
3(y) :=(1-n)r{y’) < o(y)
and
Ay =B, (y) C Bry)(¥')NQ'.

By the theorem of Besicovitch ([14]) there exist disjoint sets F;CFNQ, 1<j<m<c(d),
such that for each j€{1,...,m} the balls A,, y€F}, are disjoint and

FrQc U U 4,

J=1 yEF;

Then

IFNQI<Y Y IFNAIL) | > IENB ) ()]
=1 yE€F;

j=ly€eF;

i::ZF Boy(¥) = dZZI vl

j=1y€EF;

— B 5vd .
= - n)dz; ok y| Tocai=p( 3 )(dnm 0

3. Sweeping of measures

In this section we shall study transfinite sweeping of measures generated by
Ex > (h(.’l?)'B,,.(m) (.’I))D—lhlB'_(w)(z)A, zel.

We have to show that stopping at suitable subsets A of U the transfinite sweeping does
not reach the boundary of U. It will be just as easy to start in an abstract setting.

Let Y be a compact metrizable space and let M denote the set of all positive
(Radon) measures on Y. Let PCC*(Y) be a convex cone such that P—P is uniformly
dense in C(Y). (The following considerations can easily be extended to a locally compact
metrizable space Y using function cones (in the sense of [4]), but we shall not need
that generality.) Let < denote the specific order on M defined by P, i.e., v<p if and
only if v(p)<u(p) for all pe P. We take a sequence (pm) in P that is total in C(Y)
and choose &,,>0 such that po:=).,_; €m Pm €C(Y). Now suppose that u, v€M, v<p.
Then clearly v(po)<u(po). Moreover, v=y if and only if ¥(po)=p(po)-

Let 7 denote the set of all specifically decreasing mappings of M into M, i.e,,

T={T|T:M—-M, Tu<pforall pe M}.
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For every T€T and peM, let Mz(u) denote the smallest w*-closed, T-stable subset A/
of M containing p. Obviously,

Mr(p)C{veM:v<pu}
and

Mr(p) = {p}UMr(Ty).

PROPOSITION 3.1. For every TET and peM, there exists a T-invariant measure
cEMp(p).

Proof. Fix TeT, p€M, and define
a:=inf{v(po):v e Mr(p)}.

Choose a sequence (v,,) in Mr(u) such that lim,_,o, ¥n(po)=a. There exists a subse-
quence (v,) of (vn,) which is w*-convergent to a measure € M. Then ce Mr(p) and
o(po)=limu_c vh(po)=a. Since To€ M7 (1) and To <o, we know that a<(T'o)(po)<
o(po)=a, hence To=o. O

Actually much more is true:

" PROPOSITION 3.2. Let T€T and p€M. Then for every ve Mr(u),
Mr(p)={e€ Mz(u):v <o} UMr(v).

In particular, Mr(1) is totally ordered (with respect to <). There exists a unique T-
invariant measure pr tn Mr(u). It is the smallest element in Mr(u).

Proof. For every vE Mr{us) define
D, ={o€Mp(u):v<pg}

and let
N={veMr(u):T(D,\{v})CD,}

Since D, is w*-closed, we obtain that, for every veN,

Mz () =D, UMz (v)

and hence
D, ={e€ Mr(p): o(po) = v(po)}-
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We claim that N'=My(p). Obviously, u€N since D, ={u}. Furthermore, N is T-stable.
Indeed, let v€N. Since My (u)=D,UM7z(v) and Mr(v)={v}UMr(Tv) we conclude
that

Dr, =D, U{Tv}.

Hence T(D, \{v})CD, implies that T(Dr,\{Tv})CDry, i.e., TveN. Finally, suppose
that (v,) is a sequence in A which is w*-convergent to v€ Mr(u). Consider gD, \{v}.
Then o(po)>v(po)=lim,— s Vn(po). If nEN such that o(pg)>vn(po) then o€Dy, \{vn},
hence Tp€D,, , v, <Tg. Therefore v<Tp, ToeD,. So N is w*-closed.

Having shown that N'=Mr(u) we obtain that M7(pu) is totally ordered. By Propo-
sition 3.1 there exists a T-invariant 0 € Mz (u). If v is any T-invariant element in My (u),
then Mr(v)={v}, hence Mr(p)=D,, i.e., v<p for every p€ Mr(g). In particular, v=0
finishing the proof. O

From now on suppose that T is a kernel on Y such that Tp<p for every p€P and
that T:M— M is defined by

(Tw)(f)=u(Tf), fec(Y).

Then clearly Tu<p for every pe M.

PROPOSITION 3.3. Let s>—o0 be a Ls.c. function on Y such that Ts<s. Then
v(s)<pu(s) for every ve My (p).

Proof. Consider
N={veM:v(s)<u(s)}.

Obviously p€N. If veEN then (Tv)(s)=v(Ts)<v(s)<u(s), i.e., TvEN. Finally, let
(vn) be a sequence in N which is w*-convergent to a measure v€ M. Then v(s)<
lim inf,, o0 ¥n(s) < p(s), hence v€N. Thus Mz(u)CN. O

Define the base b(T) of T by
(T)={z€Y :Te,=¢,}.

Clearly, 5(T) is a Borel subset of Y.
LEMMA 3.4. Ewvery T-invariant c € M is supported by b(T).

Proof. Since Tpo(z)=(Te;)(po) and Te,<e, for every z€Y, we have Tpo<po
and b(T)={Tpo=po}. Fix a T-invariant c€ M. Then o(T'po)=(T0o)(po)=0(po), hence
c({Tpo<po})=0, i.e., o(CH(T))=0. O

11-935204 Acta Mathematica 171. Imprimé le 2 février 1994



156 W. HANSEN AND N. NADIRASHVILI

LeEMMA 3.5. Let pe M and v, o€ My (1) such that v<g. Then lyyv21ymye-

Proof. By Proposition 3.2, v Mr(g). Hence it suffices to consider the case g=p.
Let

N ={v e Mr(u): 1oy 2 Lpr)1}-

Clearly, p€N and N is T-stable. Suppose that (v,) is a sequence in N/ which is w*-
convergent to a measure € Mr(u). The representation v, =1p(7)p+(Vn—lp(ryp) shows
that the sequence (vp,—1y)p) in M is w*-convergent to a measure 7€M such that
v=1yryp+7. So veN. Thus N=Mz7(p) finishing the proof. O

LEMMA 3.6. Let A be a Borel subset of b(T) and define a kernel T' on Y by
T'(z, )=1gaT(x,-) if zeY\NT), T(z, )=¢, if z€b(T). Then T'€T and, for every
BEM, Iy\apur=1y\apT-

Proof. Obviously, T'€T. Moreover, it is easily seen that b(T")=b(T) (if T(z, - ) #e,
then T"(z, - )#e, since T1<1). Fix u€M and consider the set

N ={veMr(p):1y\av=1y\aV' for some v/ € M7/ (p)}.

Of course, p€N. Furthermore, it follows immediately from the definitions that ly\av=
ly\av' implies that 1y\4Tv=1y\4T'v'. So N is T-stable.

Next let (v,,) be a sequence in A which is w*-convergent to v€ Mp(u). Choose v/, €
M () such that 1y\ 4vn=1y\ ¥, n€N. In order to show that vEN we may assume
that (v,,) is w*-convergent to a measure v’ € Mz (). Moreover, by Proposition 3.2, we
may assume without loss of generality that the sequences (v,) and (v),) are monotone
with respect to specific order. Then by Lemma 3.5 the sequences (14v,,) and (1477,) are
monotone with respect to <, the usual order between measures. Hence the sequences
(1avn), (14v},) are w*-convergent to measures g, o, respectively, such that g(Y'\ A)=
¢'(Y\4)=0. So we obtain that v=p+lims_,cc Ly\a¥n, V' =0 +limp 00 Ly\ ¥, ly\av=
ly\a?'. Thus N=Mr(u).

Finally, let v'€ Mg+ (1) such that 1y\ 4 ur=1y\a¥’. Then

1y\AT’I// = ].y\AT/J,T = ly\A HT = ly\AI/’,

hence T'v'=v'. By Proposition 3.2, v'=pq. O

Let us now make a suitable choice of Y and P. We take a sequence (g,,) of continuous
potentials on U having compact superharmonic support such that for every z€U and
every neighborhood W of z there exist n,meN with 0<g, —gm <lw, (gn—gqm)(x)>0.
There exists a metrizable compactification ¥ of U such that the functions g,/h, neN,
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can be extended to functions v, €C*(Y) separating the points of Y. If U is regular
then the potentials ¢, (and hence the functions g, /h) tend to 0 at OU, so Y is the one
point compactification of U. Let PCCt(Y) be the min-stable convex cone generated by
{1}U{¥n: neN}. Then P—7P is uniformly dense in C(Y').

Given a Borel function 0<r<p on U and a Borel subset A of U, we define a Markov
kernel P=P4, on Y by

Pz, )= ()| Bro)(@)) " hlp, )N TEU\A,
e z€ AU(Y\U).

Then Pp<p for every peP, i.e., PET. Note that b(P)=AU(Y\U). Define P’ as in
Lemma 3.6. The following proposition will the main tool for the proof of Theorem 1.1.

PROPOSITION 3.7. Let 0<r<g be a Borel function on U and let A be a Borel subset
of U. Assume that there exists a>0 such that, for every z€ MU, the union of all Q€Q
satisfying |ANQ|>a|Q| is not minimal thin at z. Then, for every z€U, (e;)p(Y \A4)=0,
(E m) p(A) =1.

Proof. Choose 3=1a(10vd )_dc(d)“1 and define
Ag={yecA:|ly'—yll < 3r(y) and |ANB,(y)(¥')| < BBr(y)(y')| for some y' € U}.
By Proposition 2.5, [AoNQ|< 3a|Q| for every Q€ Q and hence A':=A\ Ay satisfies
|A'NQI=14NQ|-|4NQ| > 32|Q|
for every Q€ @ with |ANQ|>a|Q|. Moreover, for every y' €U,
A'NByy2(y')=2 or |ANBy(y') 2 BByl

Choose 6 >0 according to Proposition 2.4 (with n:%) and take

4
V= ?1,4/.

Then for every continuous solution u>0 of Au—Vu=0 on U the function u/h is un-
bounded by Proposition 2.3. For every meN let g, €CT(U) such that gm+Kmgm=h
where ngm=fUmgm(y)GU( -, 9)V(y) M(dy) (see Lemma 2.2). Then limp, . gm=0 by
Lemma 2.2 whereas by Proposition 2.4, for every meN and every yeU,

1
Im(y) 25— / gm d,
" |Br) W] I,y (u1\4
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i.e., P'(gm/h)(y)<(gm/h)(y) for every yeU.
Fix zq€U and define

0=(510)P’ Ulz(EEO)P"
We claim first that ¢'(Y\U)=0. To that end choose a superharmonic function s>0 on

U such that s(z¢)=1 and lim,_,, ycy s(y)=00 for every irregular boundary point z€9U.
Fix meN and define a l.s.c. function ¢,, on Y by

. . . Gm+s/m
= £ 2m /"
on(e)= Jiminf, =

Then ¢, =(gm+s/m)/h on U and hence

(y), €Y.

P,‘Pm < Pm-

So we conclude by Proposition 3.3 that

' gm(Zo)+1/m
o' (om) < em(@o) < T h(mo)
and therefore
lim o'(¢m)=0.
m—00
Hence the equality ¢’/(Y'\U)=0 will be established once we have shown that ¢,,>1 on
Y\U for every meN.

To that end it suffices to show that liminf, ., @, (x)>1 for every z€0U. Since
0<gm<h and AV is bounded on U,,, the potential K,, g, is bounded on U. Furthermore,
limg_,,; Kmgm(z)=0 and hence lim,_,, gm(z)/h(z)=1 for every regular boundary point
z€0U. Now fix z€9U and choose a sequence (z,,) in U such that lim,_, , =2 and

R TI Y gm(x")_I-s(m")/m
@= yl—lgl, ;/%fU om(y) = nlin;o h(zy) '

If there exists a subsequence (y,) of (z,) such that lim, e gm(¥n)/h(yn)=1, then of
course a21. So assume that limsup,, o gm(2x)/M(2x)<1. Then z is an irregular bound-
ary point by our preceding considerations. Knowing that

—giﬁ + %ngm =1
and that K,,g,, is bounded we obtain moreover that limsup, . h(z,)<oo. Since
limg.,, s(z)=00, we conclude that limy,_ o 8{Z5)/h{(Ts)=00, a=c0.
Therefore ¢m 21 on Y\U, o/(Y\U)=0. So o(Y\U)=0'(Y\U)=0 by Lemma 3.6.
Moreover, o(U\ A)=0 by Lemma 3.4. Thus ¢(Y'\ A)=0. Since P is a Markov kernel, we
have v(Y')=1 for every vE Mp(e,,), hence o(Y)=1, o(A)=1. O

The following lemma shows that dealing with r-supermedian functions we may al-
ways assume that r is Borel measurable (cf. Veech [23]).



A CONVERSE TO THE MEAN VALUE THEOREM FOR HARMONIC FUNCTIONS 159

LEMMA 3.8. Let r be a real function on U such that 0<r<g. Then there exist
Borel measurable functions r',r" on U such that 0<r' <r<r" <o and such that every r-
supermedian l.s.c. lower h-bounded Lebesgue measurable function on U is r’-supermedian
and 1"’ -supermedian.

Proof. Define
r'(z)=limsupr(y), zeU.
y—z

Moreover, let Ag=@, A,,={r>2"™}, meN, and define

r'(z)= liminf r(y), z€An\Am_1.
y—z,YyEA,
Clearly, 0<r'<r<r"<oand r',r" are Borel measurable. Moreover, for every z€U, there
exist z,,, z) €U such that lim z}, =lim !/ =z and limr(z})=r'(z), limr(z.)=r"(z). So
the proof is easily finished using Fatou’s lemma. O

4. Proof of Theorem 1.1

In addition to the results of the preceding sections we shall need the following nice
property of the Whitney decomposition.

LemMA 4.1. Let (z,,) be a sequence in U that converges to a point 2€dMU. Let
(yn) be a sequence in U such that, for each neN, the points T,,,y, are contained in the
same cube Q,€Q. Then (y,) converges to z as well.

Proof. For every Q€@ with center z¢ let ézzQ+%(Q—xQ). Then there exists a
constant C'>1 such that, for every Q€@ and for every harmonic function g0 on the
interior of Q,

sup 9(Q) < Cinf g(Q).

In particular, for each n€N, the inequalities
1

CGU(yn; Z) < GU(xn, Z) < CGU(ym 2)

hold for every zeaém hence by minimum principle for every ZeU \én

Given meN, there exists n,, €N such that z,€U\Un43 for every n=n.m,. Then
énﬂUm =@ for every n>n,,. In particular, the sequence (y,) has no accumulation point
in U. In order to show that lim ¢, =2z we may hence assume without loss of generality
that (y,) converges to a point z’€dMU. Suppose that the Martin kernel K is based at

zo€U, ie.,
. GU(J"a )

= Culma) Y

K(z,-)
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If 20€U,, then the inequalities above imply that for every n>n.,
K(Yn, ) SC?K(2n,) onU\@n,

hence
K(Z',-)<C*K(z,-).

Since K(z,-) is a minimal harmonic function, we conclude that z’'=z. a

COROLLARY 4.2. For every z€0MU and every neighborhood W of z, there exists a
neighborhood W' of z such that every cube Q€ Q intersecting W' is contained in W.

Proof. Suppose the contrary. Choose a fundamental system {W,,: n€N} of neigh-
borhoods of z satisfying W,,,1 CW,,, neN. Then for every n€N there exists a cube
Qr€Q such that Q,NW/ #£2, but Q,¢W. Taking

Tn € Qnmwl, Yn € Qn\W

we obtain a sequence (z, ) converging to z whereas of course (y,) does not converge to z.
This contradicts Lemma 4.1. g

Having in mind the outline given in Section 1 the proof of Theorem 1.1 is now easily
accomplished: Let r be a real function on U such that 0<r< g, let f be an r-supermedian
Ls.c. lower A-bounded function on U, and fix 0<a<%. We have to show that f>HFf,,.
By Lemma 3.8 we may assume that r is Borel measurable. Since multiples of h are
r-supermedian and

H(f+ch),=H(fo+c)=Hf, +ch

we may assume that f>0.

Fix zo€U, a>0, and £>0. There exists a compact subset L of MU such that
folr is continuous and Hlsm r(zo)<e/a. Choose peC(UUMU) such that o=
inf(f,,a) on L and 0<p<a. There exists a subharmonic function ¢ on U such that
limsup,_,, t(z)/h(z)<¢(z) for every z€ U and t(xo)>He(zo)—e. Moreover, there
exists a superharmonic function s0 on U such that liminf, ., s(z)/h{z)>a for every
2€0MU\L and s(zo)<e. Fix meN such that t/h—e < on U\U,, and define

A:(U\Um)ﬂ{f—j—;—sch—e}.

Let
D={Qe€Q:|ANQ|>0a|Q|}, D= U Q.
QeD

We claim that, for every z€ MU, the set D is not minimal thin at z.
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Indeed, consider first z€ L. There exists a neighborhood W of z such that WNU,, =@
and

lp-w(2)| <l onW.

By Corollary 4.2 we may choose a neighborhood W’ of z such that Q CW whenever the
cube Q€ Q intersects W'. Since f,(2)>p(2)—1¢e, we know by definition of f,(z) that
the set

A(2):={zeW'nU: f(z)> p(z)—Le}

is not minimal thin at z. Given x€ A(2) consider Q€ Q containing z. Then Q CW, hence
QCU\Up, and f,=f,(x)>¢(z)—ie>¢p—¢ on Q. Therefore

aIle\{yeQz%zfa(w)} {yEQ:%zw(y)~6}

z€Q€eD. This shows that A(z)CD. So D is not minimal thin at z.
Suppose next that €U\ L. Consider a neighborhood W of z such that

< <1ANQY,

s
—ﬁ>a~s on W

and choose a corresponding neighborhood W’. Given z€W’, we have z€Q for some
Q€ Q and then QCW. Hence QCU\U,, and

f252%>a—e><p—e on @,

hence QC A. So QeD. Therefore W’ C D which shows that D is not minimal thin at z.
Define Y, P, and P=P,, as in Section 3. Let c€ Mp(ez,) be P-invariant. Then
by Proposition 3.7,

o(Y\A)=0, o(A)=1.

Let PY denote the restriction of P on U. Suppose that v is a l.s.c. lower bounded
numerical function on U such that PUv<v. Then o(v)<v(zo). Indeed, extend v to
a Ls.c. function w>—o0 on Y (e.g. taking w=infv(U) on Y\U). Then Pw<w, hence
o(w)<w(zo) by Proposition 3.3, i.e., o(v)<v(zp).

In particular, o(f/h)< f(zo)/h(xo), o(s/h)< s(z0)/h(z0), and o(t/h)2t(zo)/h(z0).
Since (f+s)/hzp—e>(t/h)—2¢ on A, we obtain that

s(zo)+ f(zo) frs\L (¢t t(2o) 1
Oh(xo) 0 20( - >>g(ﬁ—25)>h(x0) —25>me(xo)—3s.

Since inf(f,, a)<p+algupy g on OMU, we know that

H(inf(f,,a))(z0) < Hy(zo)+aH1gmyp (o) < Hp(zo)+e.
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Thus
(o) > H(inf(f,, a))(zo)—5eh(zo).

Since >0 and a>0 are arbitrary, we finally conclude that f(zo)>Hf,(zo), and the
proof is finished.

Final remark. The applicability of our method for the proof of the main results is
certainly not restricted to the special case of ball means, Laplace operator, and a bounded
domain in Euclidean space.

References

[1] AKcoGLu, M. A. & SHARPE, R. W., Ergodic theory and boundaries. Trans. Amer. Math.
Soc., 132 (1968), 447-460.

[2] BAXTER, J. R., Restricted mean values and harmonic functions. Trans. Amer. Math. Soc.,
167 (1972), 451-463.

[3] — Harmonic functions and mass cancellation. Trans. Amer. Math. Soc., 245 (1978), 375~
384.

[4] BLIEDTNER, J. & HANSEN, W., Potential Theory—An Analytic and Probabilistic Approach
to Balayage. Universitext, Springer, 1986.

[5] BOUKRICHA, A., HANSEN, W. & HUEBER, H., Continuous solutions of the generalized
Schrédinger equation and perturbation of harmonic spaces. Ezposition. Math., 5 (1987),
97-135.

[6] BRUNEL, A., Propriété restreinte de valeur moyenne caractérisant les fonctions harmoniques
bornées sur un ouvert dans R"™ (selon D. Heath et L. Orey). Exposé n°® XIV, in Séminaire
Goulaouic-Schwartz, Paris, 1971-1972.

[7] BURCKEL, R. B., A strong converse to Gauss’s mean value theorem. Amer. Math. Monthly,
87 (1980), 819-820.

[8] DooB, J. L., Classical Potential Theory and its Probabilistic Counterpart. Grundlehren
Math. Wiss., 262. Springer, 1984.

[9] FELLER, W., Boundaries induced by nonnegative matrices. Trans. Amer. Math. Soc., 83
(1956), 19-54.

[10] FENTON, P. C., Functions having the restricted mean value property. J. London Math.
Soc., 14 (1976), 451-458.

[11] — On sufficient conditions for harmonicity. Trans. Amer. Math. Soc., 2563 (1979), 139-147.

[12] — On the restricted mean value property. Proc. Amer. Math. Soc., 100 (1987), 477-481.

[13] GoNG, X., Functions with the restricted mean value property. J. Xiamen Univ. Natur.
Sci., 27 (1988), 611-615.

[14] DE GUzZMAN, M., Differentiation of Integrals in R™. Lecture Notes in Math., 481. Springer,
1975.

[15] HANSEN, W., Valeurs propres pour l'opérateur de Schrédinger, in Séminaire de Théorie du
Potentiel, Paris, No. 9. Lecture Notes in Math., 1393, pp. 117-134. Springer, 1989.

[16) HANSEN, W. & Ma, ZH., Perturbations by differences of unbounded potentials. Math.
Ann., 287 (1990), 553-569.

[17] HEATH, D., Functions possessing restricted mean value properties. Proc. Amer. Math. Soc.,
41 (1973), 588-595.

[18] HeLMS, L. L., Introduction to Potential Theory. Wiley, 1969.



A CONVERSE TO THE MEAN VALUE THEOREM FOR HARMONIC FUNCTIONS 163

[19] HUCKEMANN, F., On the ‘one circle’ problem for harmonic functions. J. London Math.
Soc., 29 (1954), 491-497.

[20] KELLOGG, O. D., Converses of Gauss’s theorem on the arithmetic mean. Trans. Amer.
Math. Soc., 36 (1934), 227-242.

[21] LiTTLEWOOD, J. E., Some Problems in Real and Complez Analysis. Heath Math. Mono-
graphs. Lexington, Massachusetts, 1968.

[22] NETUKA, I., Harmonic functions and mean value theorems. (In Czech.) Casopis Pést. Mat.,
100 (1975), 391-409.

{23] VEECH, W. A., A zero-one law for a class of random walks and a converse to Gauss’ mean
value theorem. Ann. of Math., 97 (1973), 189-216.

[24] — A converse to the mean value theorem for harmonic functions. Amer. J. Math., 97
(1975), 1007-1027.

[25] VESELY, J., Restricted mean value property in axiomatic potential theory. Comment. Maith.
Univ. Carolin., 23 (1982), 613-628.

[26] VOLTERRA, V., Alcune osservazioni sopra proprietd atte individuare una funzione. Atti
della Reale Academia dei Lincei, 18 (1909), 263-266.

WOLFHARD HANSEN NIKOLAT NADIRASHVILL
Fakultit fiir Mathematik Fakultat fiir Mathematik
Universitit Bielefeld Universitat Bielefeld
Universitatsstrafle Universitatsstrafle
D-33615 Bielefeld D-33615 Bielefeld
Germany Germany

Received April 23, 1992
Received in revised form March 30, 1993



