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1. Let  the real line R act as a topological transformation group on the locally compact  

Hausdorff space S. This means tha t  we are given a group homomorphism t ~ Tt from the 

Abelian group R into the group of homeomorphisms of the topological space S with the 

proper ty  tha t  the function (t, p) ~ Ttp from R • S to S is continuous. The action of R on 

S can be used to define the convolution of a measure on S with a function on R. Let  M(S) 

be the Banach space of bounded complex Baire measures on S and let Li(R) be the group 

algebra of R. The convolution of 2 in M(S) with / in LI(R) is the measure 2~e / in  M(S) 

given by  

(2  +/) E = |~(f_tE)/(t) dt 
JR 

for all Baire subsets E of S. Convolution in turn can be used to associate with a measure 

on S a closed subset of R called the spectrum of the measure. Let  2 be in M(S) and let J(2) 

be the collection of all / in Li(R) with 

2~I=0. 

J(2) is a closed ideal in LI(R). The spectrum of 2, denoted by  sp(2), is the closed subset of 

R where all Fourier transforms of functions in J(2) vanish (i.e. sp(2) is the hull of  the ideal 

J(2)). 2 will be called analytic if sp(2) is contained in the nonnegative reals, and 2 will be 

called quasi-invariant if the collection of 2 null sets is carried onto itself by  the action of 

R on S. Thus to say tha t  2 is quasi-invariant means tha t  

]AI(TtE) =0 

for all t in R whenever E is a Babe  subset of S with 

121E =o, 
(1) This  work  was  suppor ted  b y  the  Nat ional  Science Founda t ion .  
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where 12 ] is the total  variation of 2. The aim of this paper  is to show tha t  analytic measures 

are qua~.invariant. 

When S is a compact Abelian group and the action of R on S is given by  translating 

with the elements of a one-parameter subgroup of S, the theorem tha t  analytic measures 

are quasi-invariant is the deLeeuw-Glicksberg generalization of the F. and M. Riesz 

theorems [2]. Let  S be the circle group, let the one-parameter subgroup be S with ~-~ e ~t 

the homomorphism of R onto S, and let 

Tt(e ~) = e~te ~. 

Then sp(2) is the set of integers where the Fourier coefficients 

(n) =/~ e-tnx d2(etZ ) 

do not  vanish, and consequently 2 is analytic ff and only ff its Fourier coefficients vanish 

for negative indices. To say tha t  2 is quasi-invariant means tha t  every rotation of the 

circle group cantles the collection of 2 null sets onto itseff, and this in turn  means, if 2 +0 ,  

tha t  2 has the same null sets as Lebesgue measure. Thus if the Fourier coefficients of 2 

vanish for negative indices and 2 ~=0, then 2 and Lebesgue measure are mutual ly absolutely 

continuous. These are the F. and M. Riesz theorems [8], and this way of looking at  them 

(i.e. tha t  analytic measures are quasi-invariant) is due to deLecuw and Gllcksberg [2]. 

This paper  has four parts  in addition to the introduction. Par t  2 contains a theorem 

about  triples of one-parameter groups of linear transformations. Par t  3 contains a theorem 

tha t  gives a necessary and sufficient condition for a measure in M(S) to he quasi-invariant. 

This theorem was suggested to me by  work of Helson and Lowdenslager [5] and its proof 

uses the theorem in par t  2. The theorem tha t  analytic measures are quasi-invariant is in 

par t  4. The proof of this theorem uses the quasi-invariance criterion given in par t  3. Par t  5 

contains several applications of the theorem tha t  analytic measures are quasi-invariaut. 

These applications, with one exception, imitate applications given by dcLeeuw and Glicks- 

berg in [2]. 

My measure theory terminology comes from Halmos '  book [3], and a convenient 

reference for the Fourier theory I use is Rudin's  book [10]. 

2. This par t  is about one-parameter groups of linear transformations and the Fourier 

theory tha t  goes with these groups. I will begin with some basic definitions and lemmas tha t  

will be used throughout the paper, and then give a theorem about  triples of one-parameter  

groups of linear transformations. This theorem says tha t  a certain commutat ion relation 
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and spectral condition are equivalent, and is essential to the proof of the quasi-invariance 

criterion given in par t  3. 

Let  X be a Banach space and let A t be a nniform|y-bounded strongly-continuous one- 

parameter  group of linear transformations of X. 

De]initio~ 1. The convolution of x in X with / in the group algebra LI(R) is the vector 

x~e / in  X given by 
f l  

x ~ /= jRAtx/(t) dr. 

When it is necessary to indicate the one-parameter group used to define the convolu- 

tion of x with 1, I will write x ~e A/- For  a given x in X, A t x is a bounded continuous function 

on R with values in the Banach space X, and  the integral in the definition is the strong 

integral of A t x with the bounded complex measure/( t )  dr. 
X is an LI(R) module with LI(R) acting on X by convolution, and in particular 

w h e r e / ~ g  is the familiar convolution defined in the group algebra LI(R). (1) is true because 

At is a one-parameter group. Moreover X is a continuous LI(R) module for 

I1 . Ill < (l ,b I1 ,11)II llf 11( )1 ;t. 
Let x be in X. I will denote by J(x) the collection of all I in L~(R) with 

x ~ f  =0.  
J(x) is a closed ideal in L](R). 

Definition 2. The spectrum of x is the closed subset of R where all Fourier transforms 

of functions in J(x) vanish (i.e. the spectrum of x is the hull of the ideal J(x)). 
The spectrum of x will be denoted by sp(x), or by  spA(x) when it is necessary to indicate 

the one-parameter group used to define J(x). Then 

sp(z) = 13 [1=0] 

where the intersection is taken over all / in J(x) and 

hs) = f e ,,,l(t) dr. 

I learned this very general definition of spectrum from [6, p. 992]. Definition 2 is the 

familiar definition of spectrum when X is the Banach algebra of all bounded complex 

uniformly-continuous functions on R and At is translation by  t. 
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LI~MMA 1. Let I run through an approximate identity in Ifl(R). Then z~e I converges in 

norm to x. 

P r o o  I. 

x-)e f - x =  f n ( A t x - x ) l ( l ) d t =  fltl< ( A t x - x ) / ( t ) d t +  f l t l~e(Atz -x ) / ( ' )d '  

and hence 

IIz + 1 -  gl < lub I A , z -  zll + (lub IIA,II + 1) Ilgl I /(t) at. 
t <e t dlt l~>e 

When e is little the first term on the right is small, and when I is far along the integral on 

the right is small. 

LEMMA 2. Let x be in X and let / be in I)(R). 

1. sp (z+ l ) / s  coma/ned in sp(x). 
2. sp(z~el) is contained in the support o I ]. 

3. x~e I =0  whenever sp(x)/s contained in the interior o I the set where ] is O. 

4. x-)e I =x whenever sp(x) is contained in the interior o/the set where ] is 1. 

Proo I. 1. Let  s be in R but  not in sp(x). Then there is g in J(x) with ~(s)= 1. g is in 

J(x~]) for 
( z + l ) * g  = (z+g) +1, 

and hence s is not in sp(z~el). 

2. The proof of 2 depends on the elementary fact that  given s in R and an open set 

containing s, then there is a function in LI(R) whose Fourier transform is 1 at s and 0 outside 

the  open set. Let  s be in the complement of the support of ], and let g in LI(R) be such that  

~(s) =1 and ]~=0. Then/ -~g=O,  hence g is in J(x-~/) for 

(x+l)+g=x+(t+g) ,  
and hence s is not in sp(x~/) .  

3. The proof of 3 is the nonelementary fact tha t  if J is a closed ideal in the group 

algebra LZ(R) and if the hull of J is contained in the interior of the set where ] is 0, then ] is 

in J [10, 7.2.5]. 

4. The proof of 4 depends on 3. Assume that  sp(x) is contained in the interior of the set 

where ] is  1. Let  g be inLl(R) and let h = l ~ g - g .  The set where ] is  1 is contained in the set 

where ~ is 0 since ~ = ] ~ - 0 ,  and therefore sp(x) is contained in the interior of the set where 

J~is 0. By 3 
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( x ~  / - x ) ~ g  = x~eh =0 .  

Thus J(x-)ef-x) is LI(R), and hence x-)e/=x by Lemma 1. 

LEMMA 3. 1. sp(Atx ) = sp(x) 

sp(cx) -- sp(x) (c ~:0) 

sp(x +y)  c sp(x) U sp(y). 

2. Let E be a subset o/R.  The collection o/all x with sp(x) contained in E is an At in- 

variant subspace o/X,  and it is a closed subspace i / E  is closed. 

3. The subspace consisting o/all x with sp(x) com~x~ is dense in X. 

Proo/. 1. The first two assertions are clear. For example 

(A, x) ~1 = At(x~/)  

and hence J(A~x)--J(x). 

Let  s be in R but  not in sp(x) U sp(y). Then there is / in J(x) with ](s) = 1 and g in J(y) 

with ~(s)=l .  ]-)eg is in J(x+y) for 

(x§ ~g) = (x~e /)-)eg + (y-)eg) ~ /, 

and hence s is not in sp(x+y) for (/-)eg)^(s)=l. 

2. Let  M be the collection of all x with sp(x) contained in E. That  M is an A~ in- 

variant subspace of X follows from 1. 

Assume that  E is closed and let x be in the norm closure of M. Let  s be in the comple- 

ment of E, and let / be in LI(R) with f(s)= 1 and E contained in the interior of the set 

where ] is  0. Then y~e /=0  for all y in M, and hence x~e/=0. Thus s is not in sp(x) and conse- 

quently sp(x) is contained in E. 

3. Let  / with support of f compact run through an approximate identity in LI(R). 

Then x * / c o n v e r g e s  in norm to x by  Lemma 1 and sp(x*/ )  is compact by Lemma 2. 

Let B t be another uniformly-bounded strongly-continuous one-parameter group of 

linear transformations of X. In  addition, let Y be another Banach space and let T t be a 

uniformly-bounded strongly-continuous one-parameter group of linear transformations 

of Y. Finally, let L be a bounded linear transformation from Y into the Banach algebra 

B(X) of all bounded linear transformations of X. For each t in R and y in Y, B t L(y) and 

L(Tt y)At belong to B(X), and the theorem that  follows gives a necessary and sufficient 

condition that  they be the same. 
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T H E OR E M 1. The ]oUowing commutation relation and spectral condition are equivalent. 

Commutation relation: 

BtL(y) = L ( T t y ) A t  /or all t in R and y in Y. 

and 

Spectral condition:/or all x in X and y in Y,  and/or all a and b in R,  

Spr(y) ~ (a, ~ )  
implies spB(L(y) x) = (a + b, ~ )  

sp~(x)c (b, r 

spr(y) ~ ( - ~ ,  a) 
implies spB(L(y) x) = ( -- r a + b). 

sps(x) c ( - r b) 

The spectral condition is equivalent to the seemingly stronger spectral condition: 

spB(L(y) x) = closure (spr(y) + spA(x)) 

for all x in X and y in Y. The version I will use, however, is the one given in the s ta tement  

of Theorem 1, and for this reason I will not say anymore about  the other version. The proof 

of Theorem 1 will use a (known) proposition equivalent to the fact tha t  a particular two 

dimensional linear subspaee of R x R • R is a spectral synthesis set, and therefore I will 

present this proposition before giving the proof of Theorem 1. 

Let  G be the linear subspace of R • R x R consisting of all points of the form (a, b, a 5r b). 

PROI~OSITIObl " 1. Let ~ be a bounded continuous/unction on R • R x R. The spectrum 

o/~b is contained in G i/  and only i/  

r s, t) = ~(r + v ,  s + v ,  t - v )  (2) 
]or all r, s, t, v in R. 

Proo/. The fact tha t  (2) holds when the spectrum of ~b is contained in (7 is an easy 

corollary of (and in turn  implies) the fact  tha t  (7 is a spectral synthesis set [10, 7.5.2]. 

However, one can argue more directly. 

Let  J(r  be the collection of all / in the group algebra LI(R • R • R) with 

~-1 =0, 

where -)e is the familiar convolution. J(r is a closed ideal in LI(R  x R x R). The spectrum 

of ~, denoted by  sp(~), is the closed subset of R x R • R where all Fourier transforms of 

functions in J(~b) vanish. 

Let  T be the linear t ransformation from R into R x R x R given by  

Tv = (v, v, - v ) ,  

let / be in LI(R), and let g be in / f l (R  x R x R). Then 
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(r * r l ) * a  = 4 "  (a * r / )  (3) 

where r ~ rl(P) = i R e ( p -  T,,) l(v) dv 

a rt(p) = f a(p-  Tv)/(v) and dr. 

Replacing 4(P) in (3) by exp(ip.q) and evaluating (3) at (0, 0, 0) gives 

(g ~ r/)^(q) = ~(q) l(q' + q" - q'"), (4) 

where q = (q', q", q'"). 

Assume that  sp(4) is contained in G. Let  0 be in the interior of the set where ~ vanishes. 

Then by  (4) G is contained in the interior of the set where (g ~e r/)^ vanishes, hence the hull 

of the ideal J(4) is too, and thus g-~ r/ belongs to J(4) [10, 7.2.5]. Hence by (3) 

(4 ~ r / )~g  =0. 

This holds for all g in LI( R x R • R) and consequently 

r  =o .  (5) 

This holds for all / with f vanishing on an open set containing 0, and hence it holds for all 

/ with f (0)=0 since the set whose only member is 0 is a spectral synthesis set [10, 2.6.4]. 

(This means that  any function whose Fourier transform vanishes at  0 can be approxi- 

mated in norm by functions whose Fourier transforms vanish on open sets containing 0.) 

Because (5) is true for all / in LI(R) with 

f /(~) dv= 
O, 

4 ( P -  Tv) is constant in v, and this is what I want. 

This argument is due to Reiter [7]. I have given it  to let the reader, if interested, keep 

track of what is going into my argument that  analytic measures are quasi-invariant. 

Conversely, assume that  4 ( P -  Tv) is constant in v for each p in R • R • R. Let  ] be in 

LI(R) with ~(0)=0. Then 

and hence by (3) 4~e(g ~-r/) = 0 

for all g in LI(R • R • R). This and (4) show that  sp(4) is contained in G. 

Here is the proof of Theorem 1. 
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1. Let  y be in Y, x in X, z in X*, and let $ be the bounded continuous function on 

Moreover, 

and hence 

R x R x R given by 
~(r, s, t) = <B, L(T,  y )A,  z, z>, 

where <x, z> is the value of the linear functional z at the vector x. 

The commutation relation holds i/  and only i / /or  all ~ o/the kind just described 

r s, t) =r  +v,  s+v, t -v )  (6) 
/or all r, s, t, v in R. 

Por assume that  the commutation relation holds. Then 

r s, t) = (L(T~ TT y)At  A8 x, z) = (Z(TT+t y)As+~ x, z). 

Conversely, assume that  (6) is true for all ~ of the kind described. Then 

(B_,  L(T~ y) A t x, z) = r t, - t) = r O, O) = (L(y) x, z), 

and since this holds for all z in X* and x in X, 

B_tL(Tt  y )At  = L(y). 

This of course is the commutation relation. 

Now, by Proposition 1, the commutation relation holds if and only if sp(r is contained 

in G for all r of the kind described. I will complete the proof of Theorem I by showing that  

the spectral condition holds if and only if sp(~) is contained in G for all r of the kind de- 

scribed. 

2. Let/ ,  g, and h be in LX(R) and let k be the/unction in LI(R • R • R) given by 

k(r, s, t) = / ( - r ) g ( - s ) h ( - t ) .  

Then ((L(y ~e r / )  (x ~- ~ g)) ~e s h, z) = ~ ~e k(0, 0, 0). (7) 

L(y ~ r / )  = f, L(T,y) [(r) For dr 

and x = f A.xg(s) ds 

L(y ~er/) (x ~e~g) = f  L(T,y)  and hence Asx/(r) g(s) dr ds. 
J I~x l~  

(L(y ~e r/) (x ~e Ag)) ~e ~ h = f B ~ L ( y  ~e r /)  (x ~ A g) h(t) dt 
J a  
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(L(y ~ r /)  (x ~Ag)) ~-sh = BtL(T,y)  A , x  /(r) g(8) h(t) drdsdt. 
x R x R  

Finally 

( (L(y ~e r /)  (x ~ A g)) ~e s h, z} = f R • R • R (Bt L(Try)A,  x, z}/(r) g(s) h(t) dr ds dt 

and this last integral is r ~e k evaluated at  (0, 0, 0). 

3. Assume that the spectral condition holds. Let (a, b, c) be in R • R x R but  not in G. 

Then e 4 a  + b. Suppose a + b < c and choose e > 0 such that  

a+b+48<e.  
L e t / ,  g, and h in LI(R) be such that  

] = 0  on ( - ~ , - a - e )  
A 0 g =  on ( - o % - b - e )  

~ = 0  on ( - a - b - 4 e ,  oo). 
By Lemma 2 

sp r (y~  r / ) c  ( - a ' 2 e ,  c~), spA(x~eAg)c(--b--2e , oo), 

hence by the spectral condition 

sps(L(y ~ r / )  (x ~-~ g)) c ( - a -  b -4e ,  r 

and now again by Lemma 2 

This and (7) give 

This in turn gives 

(L(y ~-r ])(x ~e~ g)) ~e s h -- 0. 

r  o, o) = o. 

~ k  =o 

for when a function is translated the set where its Fourier transform vanishes does not 

change. Now in addition le t / ,  g, and h be such that  

] ( , a )  = ~ ( -b )  ~- ~ ( - e )  = 1. 

Then ~(a, b, e) = 1, and thus (a, b, c) does not belong to sp(r 

A like argument using the second part  of the spectral condition shows that  (a, b, c) is 

not in sp(r when e<a+b, and hence sp(r is contained in G. 

4. Assume that sp(r is contained in G/or all r  the kind described at the beginning. 

Let x and y be such that  
spr(y)c  (a, ~ ) ,  spA(x)c (b, c~). (8) 

I want to show that  
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spn(L(y) x) c (a + b, oo ). (9) 

Suppose for the moment  both spr(y ) and spa(z) are compact,  and hence 

spr(y) c (a + 2e, d), spa(x) c (b +2~, d), 

where e is positive. The argument  will use the elementary fact tha t  given a compact interval 

and an open set containing it, then there is a function in LX(R) whose Fourier t ransform is 

1 on the interval and 0 outside the open set. I ~ t  / and g in LI(R) be such tha t  

] = 1  on (a+2e,  d), ~ = 1  on (b+2e, d). 

By Lemma 2 Y ~ r ] = Y, x ~- a g = x, 

and thus L(y) x = L(y ~ r / )  (x ~- a g). (10) 

Let  h be a third function in Lx(R). Then by  (10) and (7) 

((L(y)x) ~nh ,  z) = 4  ~/r 0, 0). (11) 

Now let I and g in addition to the condition already placed on them be such tha t  

] = 0  on ( -oo ,  a+e), ~ = 0  on ( -oo ,  b+e) 

a n d l e t h b e  s u c h t h a t  ~ = 0  on ( a + b + e ,  oo). 

Then ~ ( r , s , t ) = 0  for t < r + s + e  

since ~(r, s, t) = ]( - r ) g ( - 8 ) ~ ( - O ,  

and hence k belongs to J(r  since sp(r is contained in G and G is contained in the interior 

of the set where $ is O. We have ~ ~ k = 0 and in particular 

r ~ k(O, O, O) = O, 

and now by  (11) ((L(y)x) -~ n h ,  z )  = O. 

This holds for all z in X*, and therefore 

(L(y) x) -~ n h = O. 

Thus h is in Jn(L(y)x). Finally let c ~< a + b and let h in addition to the condition already 

placed on it  be such tha t  
~(c) -- 1. 

Thus c does not belong to spn(L(y)x), and I have shown tha t  (9) holds. 
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Now drop the assumption that  spr(y ) and sp~(x) are compact, but keep the assumption 

(8), and let c ~< a + b. In addition, let e positive be such that  Spr(y ) is contained in (a + e, oo), 

let h in ZI (R)  be such that  both ~(c) =1 and ~ is 0 on the open interval (a-t-b-t-s, oo), and 

let / in LI(R) be such that  f has compact support. By Lemma 2 

s p r ( Y ~ r / ) ~ ( a §  oo), spA(x~e,J)c(b,  oo), 

and both spr(y~ r/) and spA(x % A/) are compact, and thus by the preceding paragraph 

sps(L(y %r/)(x ~A l)) C (a +b +e, oo). 

In particular spB(L(y %r/) (x ~-~/)) is contained in the interior of the set where ~ is 0, and 

so again by Lemma 2 
(L(y -~ r /) (x -~ A [)) -~ B h = O. (12) 

Now let / run through an approximate identity in LZ(R). Then L(y ~ r/)  (x %A/) converges 

in norm to L(y )x  by Lemma 1, and from this and (12) we get 

(L(y)x) -~ B h = O. 

Thus h belongs to JB(L(y)x),  and c is not in spB(L(y)x) for ~(c) = 1. 

I have shown tha t  the first pa~  of the spectral condition holds, and a like argument 

shows tha t  the second part holds too. This completes the proof of Theorem 1. 

The application to be made of Theorem 1 in the next part will be with X = H  and 

A t = B t =  Vt where H is a Hilbert space and Vt is a strongly-continuous one-parameter 

group of unitary transformations of H. For this reason I will describe here some well-known 

things about one-parameter unitary groups. 

H will always denote a Hflbert space. A one,parameter family M t of closed subspaces 

of H is called decreasing if M t is contained in M, when s < t, and a decreasing one-parameter 

family is called a resolution of the identity if VMt is H and A M t has as its only member the 

vector 0, where VMt is the smallest closed subspace o f / / con ta in ing  all Mt and A Mt is the 

largest closed subspace of H contained in all Mr. 

Let M t be a one-parameter family of decreasing closed subspaces of H forming a 

resolution of the identity, and assume in addition that  the family Mt is continuous from 

the left, i.e. 
Mt = A M , =  NM,.  

s<l ;  S<L 

Because the family Mt is decreasing and continu0us from the left, there is a Borel measure 

P on R with range contained in the lattice of orthogonal projections of the Hilbert space H 

and with the property 
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P[8.oH =Ms@Mr, (13) 

where Ps is the value of P at the Borel set E and MsGMt is the orthogonal complement of 

Mt in M 8 [4] [3, Ch. 2, Ch. 3]. Becanse of (13) 

PRH = VMt@ AMt = H  

and P[,.oo)H= M,@ AMt= M,. 

P is called the spectral measure generated by Mr. Let Vt be the Fourier transform of the 

spectral measure P. Vt is the strongly-continuons one-parameter group of unitary trans- 

formations of H given by 
p 

Vt = j Re -~t dP~. 

L~.MMA 4. Let E be a closed subset of R and let x be in H. Then spy(x)/s contained irr 

E if and only i /PBx = x. In l~articular, spv(x)/s coraained in [t, oo)/ /and on /y / /x  be/ong~ 

to Mr. 

Proof. Let ] be in/~(R). Then 

x .vl= fJdPxffi folaPx+ fJdpx, (14) 

where G is the complement of E. 

Assume that spy(x) is contained in E, and let ] be such that the support of ] does not 

meet E. Then 

J d P x  = 0 

and (Lemma 2) x ~e v/= O. 

f .  fdPx = 0 Hence 
~ L r  

for all such f, and consequently Pax =0. Thus 

PEx =PEx+Pax  =PRx =x. 

Conversely, assume that PEx =x. Then Pax =0 and (14) becomes 

. v/: fJdv . 

Thus x ~e v ] = 0 when f is 0 on E, and hence spy(x) is contained in E. 
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A one-parameter unitary group in turn generates a resolution of the identity. For let 

Vt be a strongly-continuous one-parameter group of unitary transformations of H, and let 

Mt be the collection of all x in H with spy(x) contained in [t, oo). Then 

L]~MMA 5. Mt is a one-Tarameter /amily o/decreasing closed subspaces o / H  continuous 

/rein the left and/orming a resolution o/the identity. 

Proof. By Lemma 3, each Mt is a closed subspace of H and VMt is H, and clearly the 

one-parameter family Mt is decreasing and continuous from the left. Finally A Mt is trivial, 

for if x belongs to A Ms, then 
z~vt  = 0  

whenever t has compact support (Lemma 2), and hence x = 0 (Lemma 1). 

Stone's theorem [9, p. 383] completes the circle by telling us tha t  Vt is the unitary 

group generated by the family M t. I will not need this. 

3. This part contains a criterion for quasi-invariance. The criterion will be used in the 

next part to show that  analytic measures are quasi-invariant, and its proof will depend on 

the preceding theorem about triples of one-parameter groups of linear transformations. 

S is a locally compact Hausdorff space with the real line R acting as a topological 

transformation group on S, and T t is the one-parameter group of homeomorphisms of S 

tha t  defines the action of R on S. 

De/inition 3. When ] is a function on S, Tt / i s  the  function on S given by composing 

] with T-t: 
T , / ( p )  = I(T_tP). 

With Tt defined on functions in this way, Tt is a uniformly-bounded strongly-con- 

tinuous one-parameter group of linear transformations of C0(S), where Co(S) is the Banach 

algebra of all complex continuous functions on S that  vanish at infinity. That Tt is a 

uniformly-bounded one-parameter group of linear transformations of Co(S ) is clear. That 

this group of linear transformations is strongly-continuous follows from (and in turn 

implies) the assumption that  the function (t, p) ~ Ttp from R x S to S is continuous. When 

] is in Co(S), spr(/) will mean the spectrum that  is defined with this group of linear trans- 

formations (Definition 2). 

# will always denote a bounded positive Bake measure on S. Ls(/~) is the ttilbert space 

of all complex/~ measurable functions / with 

f ltl~dl~ < ~ .  

The inner product in Ls(#) is given by 
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</, g} = f/yds. 

The criterion for quasi-invariance of # is part  3 of the following theorem. 

T H ~, o R E M 2.  T h e  ] o ~ ) w ~ n g  a re  equivalent. 

1. /~ is quasi-invarlant. 

2. There is a stronf]ly-centinuous one.parame$er group Vt o/unitary trans/ormutions o/ 

L~(#) with the property (commut~iou relation) 

v', fig) = T, I v t  g (15) 

/or all t in R, / in Co(S), and 9 in L~(t~). 

3. There is a one-parame$er /amily Mt of decreasing closed subspaces o/L~(iz)/orming a 
resolution of the identity and with the property (spectral condition)/or all s and t in R and [ in 

Co(S), 
spr( / )c(s  , ~ )  implies ]MtcMs+t. (16) 

At least to people interested in group representations, the equivalence of 1 and 2 is 

very well known. Theorem 2, and in particular the equivalence of 2 and 3, was suggested 

to  me by  work of Helson and Lowdenslager [5]. 

Proo/. Let Tt # be the Baire measure given by 

(Tt#)E =I~(T ~E) 
for all Baire subsets E of S. Then 

f T_tgdt~= f gd(Tt/~) (17) 

for all Baire functions g. 

1 implies 2. Assume that # is quasi-invariant. This means tha t  Ttl~ is absolutely con- 

tinuous with respect to/~ for each t in R. Let  Ct be the Radon-Nikodym derivative of Tt/~ 

with respect to/~, and define Vt by 

Vt g = V~t Tt g. 

From (17) we get fT_,gd =fgf, 
for all Baire functions g. This in turn gives 

(18) 
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and hence Vt is a unitary transformation from L2(/~) into L2(#). The group property of the 

Tt implies that  the one-parameter family of/~ measurable functions ~6 t is a cocycle, i.e. the 

~6 t satisfy the functional equation 

r =~, T, Ct (,u) (19) 

for all s and t in R. For by (18) 

for all Baire functions g. The functional equation (19) and the group property of the Tt in 

turn imply that  V t is a one-parameter group, for 

V~+tg = V~T,V~t T~+tg= V~,T,(V~t Ttg)= V~ Vtg. 

Finally, the commutation relation (15) is clear from the definition of Vv 

To show that  Vt is strongly-continuous is a little work, and since I will not need this 

to show that  analytic measures are quasi-invariant, I will omit the argument. 

2 implies 1. Assume that there is a one-parameter group Vt o/unitary trans/ormations o/ 
L~(#) with the property (15). (Vt need not be strongly-continuous.) Then in particular 

by taking g= V_tl, and hence 
Tt I = Vt(lV_t 1) (/~) 

flT, lpd  JlIPIV ,Zl=d  (20) 
c 

for all / in Co(S ). When E is a compact Baire set, the characteristic function of E is the 

pointwise limit of a decreasing sequence from Co(S), and hence by (20) 

t~(TtE) = fE IV=t1 [3 d/~ (21) 

for all compact Baire sets E. Because Baire measures are regular, (21) is true for all Baire 

subsets E of S, and this shows that  # is quasi-invariant (and incidentally that  l/r = I V~ 11 )" 

2 implies 3. Assume that there is a strongly-continuous one-parameter group Vto/ unitary 
trans/ormatious o/L~(#) with the property (15). Let Mt be the collection of all g in L2(#) with 

spv(g ) contained in [t, ~) .  By Lemma 5, M t is a one-parameter family of decreasing closed 

subspaces of L2(#) forming a resolution of the identity. Moreover, by Theorem 1 (with 
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X=L2(/~), A s = B t  = V=, Y=Co(S) ,  and L(f) multiplication by f), the spectral condition 

(16) holds. 

3 implies 2. Assume that there is a one-parameter family M t o/decreasing closed subslxw, es 

ol L2([~) forming a resolution of the identity and with the property (16). Replacing Mt by 

As<tMs we may assume in addition that  the family Ms is continuous from the left. Let  P be 

the spectral measure generated by Ms and let Vt be the Fourier transform of P. I will again 

use Theorem 1 (with X=L=(/~), A t = B t  = Vt, Y--Co(S), and L(f) multiplication by f) to 

conclude this time that  the commutation relation (15) holds. The first part of the spectral 

condition of Theorem 1 is that  for all f in C0(S), g in Ls(F), and s and t in R, 

sp~( l )  c (s, oo)  
implies 

sp  v(g) c (t, ~o)  
spv(fg)c (8+t, co), 

and this follows from (16) and Lemma 4. The second part  of the  spectral condition of 

Theorem 1 is tha t  for all f in C0(S), g in L~(#), and s and t in R, 

sp~( / )  c ( - oo ,  s)  
implies spv(fg) c ( - o% s+t) .  (22) 

spv(g)c ( - c~, t) 

I will complete the proof of Theorem 2 by showing that  (22) holds. 

Let f be in Co(S ). Then spr(~ ) = -spr(f).  For let g be inLZ(R). Then 

for Tt f  = Td ,  and hence J(D = J(f). The assertion follows from this for 

~(~) =~(- 8). 

Now let / in Co(S ) and g in L2(#) satisfy the hypothesis of (22). By Lemma 4 there is an 

r smaller than t with g in the range of P(-oo. r), and by Lemma 4 too the conclusion of (22) 

will be true if fg is in the range of P(-oo. s+r). Let h be in Ms+r. By the spectral condition (16) 

[h is in Mr since spr(f)is contained in ( - s ,  oo), and hence g and ]h are orthogonal since 

P(-oo, r) and Pr,.oo) have orthogonal ranges. Thus 

f fgfidl~ = fh> = 0 (g, 

and consequently fg is orthogonal to Ms+r. Hence 

P(-o~.,+jg = fg 

and this is what I want. This completes the proof of Theorem 2. 



ANALYTIC AND QUASI-INVARIANT MEASURES 49 

4. This par t  contains the theorem tha t  analytic measures are quasi-invariant. Before 

coming to the theorem and its proof, I want to talk at  greater length, than in the introduc- 

tion, about  the convolution of measures and functions. 

The assumption tha t  the function (t, p) -+ T t p  from R x S to S is continuous impl ies  

tha t  it is also a Baire function (i.e. the inverse image of a Baire subset of S is a Baire 

subset of R • S). For it is the homeomorphism (t, p)-~ (t, T t p) of R • S followed by  the 

canonical projection (t, p)-~ p of R x S onto S, and hence is the composition of Baire 

functions. 

Let  g be a bounded Baire function on S, let ~t be in M(S), and let / be in LI(R). Then 

g(T t 19) is a Baire function on R x S, and by the Fubini theorem 

is a Borel function on R, 

is a Baire function on S, and 

f T_t g d~ 

fR T_t g fit) dt 

In  particular, if g is the characteristic function of a Baire subset E of S, then T_t g is the 

characteristic function of T_tE, and hence ~(T_tE) is a bounded Borel function on R. 

The convolution of ~t with / is the measure 2~e/ in  M(S) given by  

(2 ~+/) E = fR 2(T-t  E)/( t)  dt 

for all Baire subsets E of S. Then 

fad(,~ ~e /)= fR(f T_~gd2) /(t)dt. (24) 

This is just the definition of 2~e /when g is the characteristic function of a Baire set, and 

now the usual argument gives (24) for all bounded Baire functions g. (23) can be written 

g ~e / = fn  Tt g/(t) where dr. 

THEORV.~ 3. Analytic measures are quasi-invariant. 
4--662905 Acta mathematica. 118, Imprim6 le 11 avril 1967 
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_Proo/. The proof will be the quasi-invariance criterion given by part  3 of Theorem 2. 

Let  2 be an analytic measure, let # be the total variation of 2, and let Mt be the closure in 

L2(/x) of the linear set of all g in Co(S ) with spr(g) contained in (t, oo). I will show that  the 

one-parameter family Mt of decreasing closed subspaees of L2(Ft) satisfies the spectral 

condition (16) and that  
VMt = L~(#) (26) 

h M t  = [0]. (27) 

I t  turns out that  (16) and (26) are true with any #, and only to get (27) will I use the fact 

tha t  # is the total variation of an analytic measure. 

The spectral condition (16) clearly follows from the spectral condition that  for all 

] and g in Co(S ) and s and t in R, 

SpT(/) C: (8, C~) 
implies spr ( /g )c (s+ t ,  ~) ,  (28) 

sp~(g)~ (t, oo) 

and this in turn follows from Theorem 1. For in Theorem 1 let both Banach spaces be 

C0(S), let the three one-parameter groups of linear transformations be Tt, and let L(/) be 

multiplication by / .  The commutation relation in this setting is just that  Tt is multiplicative 

(T t is an algebra homomorphism of C0(S)), and hence the first part  of the spectral condition 

of Theorem 1 holds (i.e. (28) holds). 

VMt contains a dense subspaee of C0(S ), for all g in Co(S ) with spr(g) compact belong 

to VMt, and by Lemma 3 the set of such g is dense in Co(S ). Hence (26) holds. 

To get (27) I will use the following corollary of the analyticity of 2. 

Let g be in Co(S ) with spr(g ) contained in the positive reals. Then 

f g d2 = 0. (29) 

get (29) let r = f T ,  g To d2. 

r is a bounded (uniformly) continuous function on R, and moreover 

sp(~b) c - sp(g) fi sp(2), (30) 

where sp(r is the familiar spectrum of r For let r be a real number not in sp(2). Then 

there is / in J(2) with ](r)= 1. By (24) 

fR•( - dt = O. (31) t) l(t) 
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J(2) is a closed ideal in the group algebra LI(R) and hence it is translation invariant. Thus 

(31) continues to be true when/(t) is replaced by/ (s  +t) and we get 

r = 0 .  

This shows that  r is not in sp(r and sp(r is contained in sp(2). Now let r be a real number 

not in -sp(g). Then there is / in J(9) with f ( - r )  =1. By (25) 

fR r l(t) dt = O. (32) 

Again, (32) continues to be true when fit) is replaced by f i t -s)  and we get 

r  = 0  

where ]*(t)=/(-t). This shows that  r is not in sp(r and sp(r is contained in -sp(gJ. 

But now (30) implies that  sp(r empty, and therefore r vanishes identically. In, 

particular r  and this is (29). 

Now let h be in AMt and let / be in Co(S ) with spr(/) contained in (s, ~ ) .  Then for gt 

in Co(S ) with spr(g) contained in ( - s ,  cr 

f lgr dla = f ig  d2 = 0 

by (28) and (29), where r is the Radon-Nikodym derivative of 2 with respect to/x. Since 

h is in M_~, h can be approximated in L2(#) by such g, and therefore 

fl h4, d# = 0. 

This holds in particular for all / in Co(S ) with spr(/) compact, and hence for all / in Co(S ~ 
(Lemma 3). Therefore h=O since [r =1 (#). This gives (27) and the proof of Theorem 3 i~ 

complete. 

The full proof of Theorem 3 uses (along with other things) two basic facts about closed 

ideals in Abelian group algebras: 

1. A set with one member is a spectral synthesis set. 

2. A closed ideal contains every function whose Fourier transform vanishes on an 

open set containing the hull of the ideal.  

Moreover, 2 follows from 1 (in a nonelementary way), and therefore one might say that~ 

Theorem 3 is a grand corollary of 1. 
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5. This final part contains four applicatiorLs of the theorem that  analytic measures 

are quasi-invariant. These applications, with one exception (Theorem 6), imitate applica- 

tions given by deLeeuw and Glicksberg in [2]. 

The first is to the way R acts on analytic measures, and is more an application of the 

proof of Theorem 3 than of the statement. Moreover, it is the outcome here and not the 

application tha t  imitates what is in [2]. 

THEOREM 4. When 2 is an analytic measure, Tt2 moves continuously in M(S). 

Proo]. Let # be the total variation of 2, let ~t be the Radon-Nikodym derivative of 

Tt # with respect to #, and let Vt be the strongly,continuous one-parameter group of 

unitary transformations of LZ(/z) given by the proof of Theorem 3. Then 

r = I v~ 11' (33) 

and Vt[ = Tt [Vt 1 (34) 

for all ] in L'(/~). (33) follows from (21), and (34) holds at least for all ] in Co(S ) by the com- 

mutation relation (15). Because of (33), the linear transformation given by the right side 

of (34) is an isometry of Ls(#), and hence (34) holds for all [ in L'(#). 

Now let ~ be the Radon-Nikodym derivative of 2 with respect to/z. Then the Radon-  

Nikodym derivative of T t 2 with respect to g is Ct Tt 4, for by (17) 

fgd(Tt2)= f T-tgCd/z= fgCtTtCd/z. 

This in turn  gives II T , 2 -  T~2II = f l v , ~ v ,  1 - Vsr a~ (35) 

for by (33) and (34) CtTtr = VtCVtl. 

By the Schwarz inequality the right side of (35) does not exceed 

( f  d#) ~ times ( f  [vtr V,r 2 d/z)�89 ( f  IVtl- V,11z d#) �89 

This shows that  Tt 2 moves continuously in M(S) for Vt is strongly-continuous. 

When 2 is in M(S) and E is a Baire set, the trace of 2 on E, denoted by hE, is the 

measure in M(S) given by 
2El~ = 2(EF)  

~or all Baire sets F. 
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Let  2 be in M(S), let a be a positive measure on the Baire subsets of S, let E ~ be a 

Baire set with the proper ty  t h a t  E ~ is a ~ null set and has greatest  12[ measure among all 

null Baire sets, and finally let E' be a Baire set with the  proper ty  tha t  E' is contained in 

S \E"  and  has greatest  121 measure among all Baire sets contained in S\E".  Then E' 0 E ~ 

carries 2. Le t  2' be the trace of 2 on E' and 2" the trace of 2 on E u. Then  2' is absolutely 

continuous with respect to ~, 2 ~ and a are singular, and 

2 = 2' + 2". (36) 

The (unique) decomposit ion (36) is called the Lebesgue decomposit ion of 2 with respect to  a. 

The next  application of Theorem 3 is to  the  Lebesgue decomposit ion of an  analyt ic  

measure with respect to a quasi-invariant  measure. This will use L e m m a  6 and  L e m m a  8. 

De/inition 4. Let  2 be in M(S) and let E be a Baire set. E is called 2 invar iant  under  

the act ion of R if E A T t E  is a 2 null set for all t in R. 

LF~MMA 6. Let 2 in M(S) be quasi.invariant, let (~ be a positive quasi.invariant measure 

on the Baire subsets o /S ,  and let E' and E ~ be the disjoint Baire sets used to de/ine the Lebesgue 

decomposition (36) o~ 2 with respect to (~. Then E' and E ~ are 2 invariant under the action o /R .  

Proo/. Tt E" is a ~ null set since a is quasi-invariant,  and hence T t E~\E" is a 2 null set 

(for all t in R) because of the extremal  proper ty  tha t  E" has. Now 

E = (T_t E \E 

and hence E" \T t  E" is also a 2 null set since 2 is quasi-invariant.  Thus E " A T  t E" is a 2 

null set. 

E'O E " T t E "  carries 2, for E ' t J  E"  carries 2 and E~ATt  E" is a 2 null set, and  hence 

Tt E ' \E '  is a 2 null set (for all t in R) since T t E' does not  meet  T t E". The roles of E '  and  

TtE '  in this a rgument  can be interchanged to  give tha t  E ' \ T t E '  is a 2 null set, for 

TtE 'U T tE"  also carries 2 (since 2 is quasi-invariant).  Thus E ' A T t E '  is a 2 null set. 

Lv.MMA 7. Let 2 in M(S) be quasi-invariant and let the Baire set E be ~ invariant under 

the action o /R .  Then the trace o /2  on E is also quasi-invariant. 

Proo/. Let  the Baire set F be a 2~ null set. Now 

and 

F T _ t E  = F ( T _ t E \ E  ) U F E T _ t E  

E T t F  = T t ( F T _ t E  ). 
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Hence F T _ t E  is a '1 null set since T _ t E \ E  and F E  are, and thus T t F  is a 'is null set since 

'1 is quasi-invariant. 

A corollary to Lemma 6 and Lemma 7 is tha t  the components in the Lebesgue de- 

composition of a quasi-invariant measure with respect to a positive quasi-invariant measure 

are also quasi-invariant. 

LEMMA 8. Let '1 be in M(S) and let the Baire set E be '1 invariant under the action o~ R. 

Then 

]or all / in LI(R), and thus sp('1E) is contained in sp(,1). 

Proo/. ('1 ~-/)s F = ~R'1(T_tET_tF)/(t) dt 

for all Bake  sets F.  Now 

'1( T_t E T_t F ) = '1( E T_t E T_t F ) = '1( E T_t F) 

~ince E A T _ r E  is a ,t null set, and hence 

('1 -)e /)EF = f '1(ET-tF) /(t) dt = ('1E -)e [) F. 
Js  

THEOR~.M 5. Let '1 be an analytic measure, let (; be a positive quasi-invariant measure 

vn the Baire subsets o /S ,  and let 
'1 ='1'+'1" 

.be the Lebesgue decomposition (36) o /2  with respect to a. Then both sp(,1') and sp(,1") are con. 

~ained in sp(,1). In  particular, ,1' and ,1 n are analytic. 

Proo/. Theorem 3, Lemma 6, and Lemma 8. 

VChen S is the circle group and R acts on S in the standard way (Tt(e ix) = ette~Z), the 

collection of all analytic measures coincides with the annihilator in M(S) of the algebra 

A 0 where A 0 is the collection of all functions in C(S) whose Fourier coefficients vanish for 

nonpositive indices. A 0 is an ideal, and in fact a maximal ideal, in the familiar algebra A of 

all functions in C(S) whose Fourier coefficients vanish for negative indices. There is a like 

characterization, generalizing this, of the collection of all analytic measures when there is 

no assumption about  S or the way R acts on S. 

Let  A be the collection of a l l / i n  Co(S) with spr(/) contained in the nonnegative reals, 

and let A 0 be the collection of all / in Co(S ) with spr(/) contained in the positive reals. By 

Lemma 3 and Theorem 1 (again with X =  Y=Co{S ), A t = B ,  = Tt, and L(/) multiplication 
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by  [), A is an algebra and A 0 is an ideal in A. Though A is a closed subalgebra of Co(S) 

(Lemma 3), A o in general will not be closed, and the closure of A0, though a proper closed 

ideal in A when S is compact, will not in general be a maximal  ideal. 

P~OPOSITIO~ 2. The collection o/analytic measures coincides with the annihilator in 

M(S) o/ the algebra A o. 

Proo[. Let 2 be in M(S). I showed in the proof of Theorem 3 that  ~ annihilates A o when )t 

is analytic. Assume now tha t  

f g d,~ = O. 

for all g in A 0. 

Let  g be in Co(S ) and let / be in LI(R). Then by  (24) and (25) 

fgd(Z+/)=f(g+/*)dZ, (37) 

where/*(t) =/(- t ) .  Now let s < 0  and choose / with f (s)= 1 and the support  of f contained 

in the negative reals. Then g+]* belongs to A 0 by Lemma 2, and therefore 

f gd(2 +/)  0 

by (37). This is true for all g in C0(S), and hence 

4+/=0. 
Thus s is not in sp(2). 

Proposition 2 implies tha t  the linear space of analytic measures is weak star closed in 

M(S), and consequently the unit ball of this linear space is weak star  compact, and there- 

fore (by the Krein-Milman theorem) this unit  ball is the weak star closure of the convex 

hull of its extreme points. Theorem 6 gives a little information about  these extreme points. 

De/inition 5. Let  2 be in M(S). ,~ is called ergodic if every Baire set tha t  is ~ invariant  

under the action of R is either a ~ null set or carries 2. 

Being ergodic may  not mean anything. For example, when S is the circle group and 

R acts on S in the standard way, every measure in M(S) is ergodic. 

De/inition 6. Let  ~ in M(S) be quasi-invariant. 2 is called minimal if 2 is either abso- 

lutely continuous or singular with respect to every positive quasi-invariant measure on the 

Baire subsets of S. 

L ~ M MA 9. Let ~ in M(S)be quasi-invariant. Then ~ is minimal i/and only i/~ is ergodic. 
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Proo 1. Assume tha t  I is ergodic. Let  a be a positive quasi-invariant measure on the 

Baire subsets of S, and let E '  and E ~ be the disjoint Baire sets used to define the Lebesgue 

decomposition (36) of 1 with respect to a. E n is t invariant under the action of R (Lemma 6), 

and therefore E" is a t null set or E" carries I .  With the first alternative t is absolutely con- 

tinuous with respect to a, and with the second ~ and a are singular. Thus t is minimal. 

Assume now tha t  1 is minimal, and let the Baire set E be 1 invariant  under the action 

of R. Since t is quasi-invariant, the trace of ~ on E is also quasi-invariant (Lemma 7), and 

therefore 1 is absolutely continuous with respect to i s  or 1 and t~ are singular. With  the 

first alternative E carries i ,  and with the second E is a t null set. Thus t is ergodic. 

THEOREM 6. The extreme points o/the unit ball in the linear space o/analytic measures 

are minimal. 

Proo 1. Let i be an extreme point in ball A~. Then 2 is ergodic. For let the Baire set E be 

2 invariant  under the action of R. Then 2s is analytic (Lemma 8). I f  neither 2E nor 1 - ~ E  

is 0, then 
IE i - IE 

t =  II t ll + lli-t ll Ill I s l l '  I I ~ E I  

and this contradicts the assumption tha t  2 is an extreme point in ball A~ for 

Hence 2 s = 0  or 2 =2s. With the first alternative E is a I null set, and with the second E 

carries 2. Thus I is ergodic. 

2 is now minimal by  Theorem 3 and Lemma 9. 

Let  clA 0 be the uniform closure of the algebra A 0. A closed Baire set E is called an 

interpolation set for clA 0 if every function in Co(E) is the restriction to E of a function in 

clA 0. The last application of Theorem 3 is to interpolation sets for the algebra clA 0. 

LE~tMA 10. Let E be a Baire set with the property that ]or each p in S the Borel set 

[ t e R  I T~ p e E ]  

has linear measure zero. (Roughly speaking, E meets each orbit in a set o] linear measure zero.) 

Then E is a null set ]or every quasi-invariant measure in M ( S). 

Proo]. Let  g be the characteristic function of E, let ] in LI(R) be nonnegative and not 

the zero vector, and let # in M(S) be positive and quasi-invariant. Then 
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by (23) and the assumption about E. Hence 

/~(T_tE) -~ f T_ a d# = 0 

for almost all t in t.he set where / is positive, and thus E is a ~u null set since/~ is quasi- 

invariant. 

LEMMA 11. Let p be in S and let / be in A .  Then the closed set 

It e R ] / (Tt  p) = O] 

either has linear measure zero or is all o/ R.  

Proo/. Let g be the bounded continuous function on R given by g( t )=/ (T tP) ,  and let 

u be in LI(R)  with the support of 4 contained in the nonnegative reals. Then the support 

of (gu) ̂  is also contained in the nonnegative reals. For let s be in R and let 

v ( t )  = e '~  u (  - t ) .  

f R e - m / ( T ~ p )  u(t) dt = (/~e v) (p). Then ( g u ) ^ ( 8 )  

Now assume s<0 .  Then/~ev=O b y  Lemma 2 for sp(/) is contained in the nonnegative reals 

and ~ is 0 on (s, c~), and hence (gu)^(s)=0. 

Since the Fourier transform of gu vanishes on the negative reals, either the closed set 

where g vanishes has linear measure zero or g vanishes identically (for g(t)u(t)dt is an ana- 

lytic measure with R acting on itself by translating with the members of R, and by Theorem 

3 it has the same null sets as Lebesgue measure if g and u are not identically zero). 

TH E 0 R ~ M 7. Let E be a closed Baire subset o / S .  The/ol lowing are equivalent. 

1. E is a null se t /or  all analytic measures. 

2. E i8 an interpolation se t /or  clA o. 

3. For each p in E the closed set [t E R I Tt  P E E] has linear measure zero. 

4. For each p in S the closed set [t E R I Tt  P E E] has linear measure zero. 

Proo]. 

3 implies 4. Because T t is a one-parameter group of homeomorphisms, every non- 

empty set in 4 is a translate of a set in 3. 
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4 implies 1. Theorem 3 and Lemma 10. 

1 implies 2. Proposition 2 and Bishop's general Rudin-Carleson theorem [1]. (Though 

the spaces in [1] are compact, the arguments in [1] apply to locally compact spaces.) 

2 implies 3. Let  p be in E and let ~ be the function from R to S given by  ~b(t) = T t p. 

Then ~ is continuous and the set in 3 is r  Moreover, 

E = E ' U E  ~ 

and r  = r  U ~ - I E ' ,  

where E' has p as its only member  and E ~ is E with p taken out. Now t in R belongs to 

r  if and only if Tt does not move p, and hence r is a closed subgroup of R. 

Suppose r  has positive linear measure. Then, being a closed subgroup of R, it  

must  be all of R, and hence 
Tt p = p (38) 

for all t in R. This implies tha t  
g(p) = 0 (39) 

for all g in clA o. For let  g be in Co(S ) and let / be in LI(R) with the support  of ] disjoint 

from sp(g). Then 
g~/=0  

by Lemma 2, and, on the other hand, 

g ~e I(P) = g(P) ~(0) 

by (38). Hence (39) holds for g in Ao, and therefore it holds for g in elA 0. ((38) implies too 

tha t  a mass concentrated at  p is an analytic measure.) 

(39) contradicts the assumption tha t  E is an interpolation set for clAo, and hence 

r  has linear measure zero. 

Let  K be a compact set contained in r  Then r  is compact and contained in E ", 

and now because E is an interpolation set for clA o there is an / in elA o wi th / (p )  = 1 and 

/ =  0 on t K .  By Lemma 11, K has linear measure zero. 

Since every compact set contained in r  has linear measure zero, r  too has 

linear measure zero. 

Clearly, in the proof of Theorem 3 it is not necessary to assume tha t  the measure 

is analytic, but  only tha t  sp(2) is bounded below or above, and for this reason there are 

the following more general versions of theorems 3 through 6. 

THEOREM 3'. When ~ is in M(S) with sp(2) bounded below or above, ~ is quasi.invarian$. 

THEOREM 4'. When ~t 18 in M(S)wi th  sp(2) bounded be/qw or above, T t~  moves con- 

tinuously in M(S).  
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T H ~ O R E ~  5'. Let ~ be in M(S)  with sp(2) bounded below or above, let (7 be a positive 

quasi-invariant measure on the Baire subsets o /S ,  and let 

2 = 2 ' + 2 "  

be the Lebesgue decomposition (36) o/,~ with respect to (~. Then both sp(2') and sp(2 ") are con- 

Sained in sp(2). 

PROPOSITION 2'. Let E be a closed subset o / R  and let G be the complement o / E .  The 

closed linear set o/all  measures in M(S)  with spectra contained in E coincides with the annihi- 

l~ator in M(S)  o/the linear set o/all/unctions in Co(S ) with spectra contained in - G. 

THEOREM 6'. Let E be a closed subset o / R  bounded below or above. The extreme points 

v / t h e  unit ball in the linear space o /a l l  measures in M(S) with spectra contained in E are 

minimal. 
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