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1. Let the real line R act as a topological transformation group on the locally compact
Hausdorff space 8. This means that we are given a group homomorphism ¢+ 7'; from the
Abelian group R into the group of homeomorphisms of the topological space S with the
property that the function (f, p)—~ 7T',p from R X8 to § is continuous. The action of R on
S can be used to define the convolution of 4 measure on 8 with a function on R. Let M(S)
be the Banach space of bounded complex Baire measures on 8 and let L(R) be the group
algebra of R. The convolution of A in M(S) with f in L1(R) is the measure A% f in M(S)
given by

(A f) E= Lz(T-tm fe) ds

for all Baire subsets E of S. Convolution in turn can be used to associate with a measure
on 8 a closed subset of R called the spectrum of the measure. Let 4 be in M(S) and let J(2)
be the collection of all f in L(R) with

Axf=0.

J(A) is a closed ideal in L}(R). The spectrum of 1, denoted by sp(4), is the closed subset of
R where all Fourier transforms of functions in J(4) vanish (i.e. sp(4) is the hull of the ideal
J(2)). A will be called analytic if sp(4) is contained in the nonnegative reals, and A will be
called quasi-invariant if the collection of A null sets is carried onto itself by the action of

R on 8. Thus to say that A is quasi-invariant means that
|A|(T.E)=0
for all ¢ in B whenever E is a Baire subset of S with

|A|E =0,

(1) This work was supported by the National Science Foundation.
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where |1] is the total variation of . The aim of this paper is to show that analytic measures
are quasi-invariant.

When 8§ is a compact Abelian group and the action of R on § is given by translating
with the elements of a one-parameter subgroup of S, the theorem that analytic measures
are quasi-invariant is the deLeeuw-Glicksberg generalization of the F. and M. Riesz
theorems [2]. Let S be the circle group, let the one-parameter subgroup be S with ¢ > e
the homomorphism of R onto S, and let

T (e¥) = e'le®,

Then sp(4) is the set of integers where the Fourier coefficients

. 27
im)= J; e~ @] (ei%)
do not vanish, and consequently 1 is analytic if and only if its Fourier coefficients vanish
for negative indices. To say that A is quasi-invariant means that every rotation of the
circle group carries the collection of A null sets onto itself, and this in turn means, if 140,
that A has the same null sets as Lebesgue measure. Thus if the Fourier coefficients of 1
vanish for negative indices and 440, then 4 and Lebesgue measure are mutually absolutely
continuous. These are the F. and M. Riesz theorems [8], and this way of looking at them
(i.e. that analytic measures are quasi-invariant) is due to deLeeuw and Glicksberg [2].

This paper has four parts in addition to the introduction. Part 2 contains a theorem
about triples of one-parameter groups of linear transformations. Part 3 contains a theorem
that gives a necessary and sufficient condition for a measure in M(8) to be quasi-invariant.
This theorem was suggested to me by work of Helson and Lowdenslager [5] and its proof
uses the theorem in part 2. The theorem that analytic measures are quasi-invariant is in
part 4. The proof of this theorem uses the quasi-invariance criterion given in part 3. Part 5
contains several applications of the theorem that analytic measures are quasi-invariant.
These applications, with one exception, imitate applications given by deLeeuw and Glicks-
berg in [2].

My measure theory terminology comes from Halmos’ book [3], and a convenient
reference for the Fourier theory I use is Rudin’s book [10].

2. This part is about one-parameter groups of linear transformations and the Fourier
theory that goes with these groups. I will begin with some basic definitions and lemmas that
will be used throughout the paper, and then give a theorem about triples of one-parameter

groups of linear transformations. This theorem says that a certain commutation relation
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and spectral condition are equivalent, and is essential to the proof of the quasi-invariance
eriterion given in part 3.

Let X be a Banach space and let 4, be a uniformly-bounded strongly-continuous one-
parameter group of linear transformations of X.

Definition 1. The convolution of « in X with f in the group algebra L!(R) is the vector
zx*fin X given by

z % f=f Az f(¢) di.

When it is necessary to indicate the one-parameter group used to define the convolu-
tion of x with /, I will write ¢, f. For a givenzin X, A, x is a bounded continuous function
on R with values in the Banach space X, and the integral in the definition is the strong
integral of A, « with the bounded complex measure f(t)d:.

X js an L'(R) module with L!(R) acting on X by convolution, and in particular

zx(f*g) = (@*f)*yg, )

where f%g is the familiar convolution defined in the group algebra LY R). (1) is true because
A, is a one-parameter group. Moreover X is a continuous L( R) module for

o 1< tab |4 11 1701 .

Let « be in X. I will denote by J(z) the collection of all f in L1(R) with

x¥f=0.
J{(zx)} is a closed ideal in LY R).

Definition 2. The spectrum of z is the closed subset of R where all Fourier transforms
of functions in J(x) vanish (i.e. the spectrum of z is the hull of the ideal J(x)).

The spectrum of = will be denoted by sp(z), or by sp,(x) when it is necessary to indicate
the one-parameter group used to define J(x). Then

sp(x) = N [f=0]

where the intersection is taken over all f in J(z) and
fis)= f e Btf(t) dt.
R

I learned this very general definition of spectrum from [6, p. 992]. Definition 2 is the
familiar definition of spectrum when X is the Banach algebra of all bounded complex
uniformly-continuous functions on R and A, is translation by &.
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LEMMA 1. Let f run through an approximate identity in LY(R). Then x % f converges in

norm to x.
Proof.
x*f—x=f (A,x—x)f(t)dt=f (A,x—z)f(t)dt+f (A,z—z) f(t)dt
R lti<e iti=e

and hence
¢ 1=l < b D=l + ol + 1) o ety .

When ¢ is little the first term on the right is small, and when f is far along the integral on
the right is small.

LrmMa 2. Let 2 be in X and let f be in LM R).

sp(x % f) is contained in sp(x).

. sp(@f) is contained in the support of f.

@ % f =0 whenever sp(z) is contained in the interior of the set where f is 0.
x % | =2 whenever sp(x) is contained in the interior of the set where f is 1.

Lol

Proof. 1. Let s be in R but not in sp(x). Then there is ¢ in J(x) with §(s)=1. g isin

J(xxf) for
(x*f)xg = (x%g)*f,

and hence s is not in sp(xxf).

2. The proof of 2 depends on the elementary fact that given s in R and an open set
containing s, then there is a function in L( B) whose Fourier transform is 1 at s and 0 outside
the open set. Let s be in the complement of the support of £, and let g in L'(R) be such that
§(s)=1 and f§=0. Then f*g=0, hence g is in J(z*f) for

(@xf)xg=zx(f*g),
and hence s is not in sp(z ).

3. The proof of 3 is the nonelementary fact that if J is a closed ideal in the group
algebra LY(R) and if the hull of J is contained in the interior of the set where fis 0, then f is
in J [10, 7.2.5].

4. The proof of 4 depends on 3. Assume that sp() is contained in the interior of the set
‘where fis 1. Let g be in L(R) and let h =f%g —g. The set where f is 1 is contained in the set
where / is 0 since A =] —§, and therefore sp(x) is contained in the interior of the set where
his0.By3
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(zxf-—x)%g=2%h=0.
Thus J(z % f—z) is L(R), and hence % f=2z by Lemma 1.

LemMMa 3. 1. sp(4;z) = sp(z)
sp(cz) =sp(x) (c=+0)
sp(z +y) < sp(x) U sp(y).

2. Let E be a subset of R. The collection of all x with sp(x) contained in E is an A; in-
variant subspace of X, and it is a closed subspace if E is closed.

3. The subspace consisting of all x with sp(x) compact is dense in X.
Proof. 1. The first two assertions are clear. For example

(Az)*f=Ayx*])
and hence J(A4,x)=J(x). (
Let s be in R but not in sp(x) U sp(y). Then there is f in J(z) with f(s) =1 and g in J(y)
with §(s)=1. fxg is in J(z+y) for

(@ +y)*(fxg) = (xxf)xg+(yxg)*f,
and hence s is not in sp(x+y) for (f%¢)"(s)=1.

2. Let M be the collection of all # with sp(z) contained in E. That M is an 4, in-
variant subspace of X folows from 1.

Assume that Z is closed and let x be in the norm closure of M. Let ¢ be in the comple-
ment of E, and let f be in L}(R) with f(s)=1 and E contained in the interior of the set
where fis 0. Then yx f =0 for all y in M, and hence % f =0. Thus s is not in sp(z) and conse-
quently sp(x) is contained in E.

3. Let f with support of f compact run through an approximate identity in L'(E).
Then 2% f converges in norm to z by Lemma 1 and sp(z* f) is compact by Lemma 2.

Let B, be another uniformly-bounded strongly-continuous one-parameter group of
linear transformations of X. In addition, let ¥ be another Banach space and let 7', be a
uniformly-bounded strongly-continuous one-parameter group of linear transformations
of Y. Finally, let L be a bounded linear transformation from Y into the Banach algebra
B(X) of all bounded linear transformations of X. For each ¢ in R and y in Y, B, L(y) and
I(T,y) A, belong to B(X), and the theorem that follows gives a necessary and sufficient
condition that they be the same.
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THEOREM 1. The following commutation relation and spectral condition are equivalent.
Commutation relation:

B.Ly)=L(T,y)A; foralltin Randyin Y.
Spectral condition: for all z in X and yin Y, and for all a and b in R,

SPT(?/) <(a, ) .
spa(@) < (b, =) implies spp(L(y)x)< (a+b, o)

and SPT(?/) < ( — oo, a) . .
8p ()< (— o0, b) implies spa(L(y)x)< (— o0, a+Db).

The spectral condition is equivalent to the seemingly stronger spectral condition:

spa(L(y)«) < closure (spr(y) +sp4(*))
for all zin X and y in Y. The version I will use, however, is the one given in the statement
of Theorem 1, and for this reason I will not say anymore about the other version. The proof
of Theorem 1 will use a (known) proposition equivalent to the fact that a particular two
dimensional linear subspace of B X B X R is a spectral synthesis set, and therefore I will
present this proposition before giving the proof of Theorem 1.
Let @ be the linear subspace of B X R x R consisting of all points of the form (a, b, a +b).

ProPosSITION 1. Let ¢ be a bounded continuous function on R X R X R. The spectrum
of ¢ is contained in G if and only if
o(r, 8,8) =d(r+v,s+v,t—v) 2)
forallr, s, ¢, vin R.
Proof. The fact that (2) holds when the spectrum of ¢ is contained in @ is an easy
corollary of (and in turn implies) the fact that G is a spectral synthesis set [10, 7.5.2].

However, one can argue more directly.
Let J($) be the collection of all f in the group algebra LY(R x E X R) with

$xf=0,
where % is the familiar convolution. J(¢) is a closed ideal in L'(R X R X R). The spectrum
of ¢, denoted by sp(4), is the closed subset of R x R X R where all Fourier transforms of
functions in J(¢) vanish.
Let T be the linear transformation from R into B X B X R given by

Tv=@,v, —v),

let f be in LY(R), and let g be in L}(R X R x R). Then
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@ %2y %g =% (g %1h) ®)
where ¢ *rf(p)= Lrﬁ(p — Tw) f(v) dv
and g % of(p)= f o(p=T0) [0

Replacing ¢(p) in (3) by exp (ip-q) and evaluating (3) at (0, 0, 0) gives

%20 (@ =§@fg +q" —¢") (4)
where q= (4', q”, q”')'

Assume that sp(¢) is contained in @. Let 0 be in the interior of the set where f vanishes.
Then by (4) G' is contained in the interior of the set where (g %, f)” vanishes, hence the hull
of the ideal J(¢) is too, and thus g% ,f belongs to J(¢) [10, 7.2.5]. Hence by (3)

(¢ *7f)*g=0.

This holds for all g in L'(R X R X R) and consequently

$*2f=0. ()

This holds for all f with / vanishing on an open set containing 0, and hence it holds for all
f with f(0)=0 since the set whose only member is 0 is a spectral synthesis set [10, 2.6.4].
(This means that any function whose Fourier transform vanishes at 0 can be approxi-
mated in norm by functions whose Fourier transforms vanish on open sets containing 0.)
Because (5) is true for all f in L(R) with

[ tora0=o,

&(p— T'v) is constant in v, and this is what I want.
This argument is due to Reiter [7]. I have given it to let the reader, if interested, keep
track of what is going into my argument that analytic measures are quasi-invariant.
Conversely, assume that ¢(p —T') is constant in » for each pin R X R X R. Let f be in
LY R) with f(0)=0. Then
¢*7f=0
and hence by (3) dx(g*.f)=0

for all g in L'(R x R X R). This and (4) show that sp(¢) is contained in G.
Here is the proof of Theorem 1.
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1. Let y be in Y, z in X, z in X*, and let ¢ be the bounded continuous function on

R X R X R given by
é(r, 8, t) =<(B, L(T, y) 4, =, 2,

where (z, z) is the value of the linear functional z at the vector x.
The commutation relation holds if and only if for all ¢ of the kind just described

¢(T, 8, t) =¢(1‘+’0, 8+’U, t__v) (6)
forall r, s, ¢, v in R.

For assume that the commutation relation holds. Then
$(r,8,8) =<LUT, T, y) A A, %, 2) = L(T114y) 4oy %, 2)-
Conversely, assume that (6) is true for all ¢ of the kind described. Then
(B L(T,y) A, , 2> = $(t, t, —t) =$(0, 0, 0) =<L(y)z, 2),
and since this holds for all z in X* and z in X,
B_,L(T,y)A,= L(y).

This of course is the commutation relation.

Now, by Proposition 1, the commutation relation holds if and only if sp(¢) is contained
in @ for all ¢ of the kind described. I will complete the proof of Theorem 1 by showing that
the spectral condition holds if and only if sp(¢) is contained in G for all ¢ of the kind de-

scribed.

2. Let f, g, and h be in L(R) and let k be the function in LY(R X R X R) given by
k(r, s, t) = f(—r)g(—8)h(—1).

Then (LY %21 @ % 49)) % 51,25 =% K0, 0,0) )
For Ly 2f) = [ L) f0) dr

and THAg= LAng(s) ds

and hence Ly % of) (% % 19) = f L(Ty) A, fir) gl drds.

Moroover,  (Lly % £f) (e %.0) % 5h = | BLly %zl) % an) O

and hence
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(Lly * o) (@ % 49)) % g h = f B.L(T,y) A;x f(r) g(s) h(t) dr ds di.

RXRxR

Finally

Iy * 2f) (@ % 49)) ¥ 5k, 2> = (B I(T,y) A, 2> f(r) g(s) h(t) dr ds di

RXRxR

and this last integral is ¢ % k evaluated at (0, 0, 0).

3. Assume that the spectral condition holds. Let (a, b, ¢} be in R’ X R X R but not in G.
Then ca+b. Suppose a +b<¢ and choose ¢ >0 such that

a+b+4e<c.
Let £, g, and % in L(R) be such that

f=0 on (—o0, —a—¢)

§d=0 on (—oo, ~b—¢)

h=0 on (—a—b—4e oo).
By Lemma 2
spr(y % r )< (—a—2¢, o), SPa(® % 4 9) = (—b—2¢, o0),

hence by the spectral condition

spa(L(y * 7 f) (x % 49))=(—a—b—4e, =),

and now again by Lemma 2
Ly %) (x*,49)) ¥ h=0.

This and (7) give ¢x%(0,0,0)=0.
This in turn gives ¢*%k=0
for when a function is translated the set where its Fourier transform vanishes does not
change. Now in addition let f, g, and 4 be such that
f(—a)=§(—=b) =h(—c) = 1.
Then £(a, b, ¢) =1, and thus (a, b, ¢) does not belong to sp(4).

A like argument using the second part of the spectral condition shows that (a, b, c) is
not in sp(¢) when ¢ <a +b, and hence sp(4) is contained in G.

4. Assume that sp(p) is contained in G for all ¢ of the kind described at the beginning.
Let z and y be such that

spr(y) < (a, o),  spu(x)< (b, oo). (8)
I want to show that
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spa(L(y) )< (a+b, ). 9)
Suppose for the moment both sp,(y) and sp,(x) are compact, and hence
spr(y) < (a+2¢, d), spulz)< (b +2¢, d),

where ¢ is positive. The argnment will use the elementary fact that given a compact interval
and an open set containing it, then there is a function in LY{ R) whose Fourier transform is
1 on the interval and 0 outside the open set. Let f and g in L'(R) be such that

f=1 on (a+2¢4d), d=1 on (b+2¢d).
By Lemma 2 y*¥:f=y, T¥,9=2,
and thus Ly)x =Ly ¥ ) (x % 4 9). (10)
Let k be a third function in LY R). Then by (10) and (7)
{(L(y)x) % gk, 2) = $ % k(0, 0, 0). (11)
Now let f and ¢ in addition to the condition already placed on them be such that

f=0 on (—oco,a+te), d=0 on (—oo,bteg)

and let A be such that h=0 on (a+b+g, o).
Then k(r,s,)=0 for t<r+s+e
since k(r, s, 1) = f(—)§(—8)h(—1),

and hence k belongs to J(¢) since sp(¢) is contained in G and @ is contained in the interior
of the set where £ is 0. We have ¢ x k=0 and in particular

$K(0,0,0) =0,
and now by (11) {I(y)x) *ph,2) =0.
This holds for all z in X*, and therefore

(L{y)x) ¥ gh =0.

Thus & is in Jz(L{y)z). Finally let c¢<a+b and let & in addition to the condition already

placed on it be such that
ki) =1.

Thus ¢ does not belong to spg(L(y)z), and I have shown that (9) holds.
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Now drop the assumption that sp,(y) and sp,(z) are compact, but keep the assumption
(8), and let ¢ <a+b. In addition, let ¢ positive be such that sp,(y) is contained in (a +¢, o),
let % in LY(R) be such that both /(c)=1 and % is 0 on the open interval (@ +b+s, o), and
let f in LY{(R) be such that f has compact support. By Lemma 2

SPT(y*Tf)C(a+E’ °°), SPA(x*A/)C(b) °°):
and both spy(y % ;f) and sps(z % 4f) are compact, and thus by the preceding paragraph
sps(L(y %1/} (x % 4 /)< (@ +b+e, o).

In particular spy(L(y % 7 f) (x % 4 f)) is contained in the interior of the set where % is 0, and

so again by Lemma 2
Ly %)@ *4f)) %50 =0. (12)

Now let f run through an approximate identity in L(R). Then L(y % 5 f) (x % 4 f) converges
in norm to L(y)x by Lemma 1, and from this and (12) we get

(L)) % gk =0.

Thus % belongs to J5(L(y)x), and ¢ is not in spz(L(y)z) for h(c) =1.
. I have shown that the first part of the spectral condition holds, and a like argument
shows that the second part holds too. This completes the proof of Theorem 1.

The application to be made of Theorem 1 in the next part will be with X=H and
A;=B,=V, where H is a Hilbert space and V, is a strongly-continuous one-parameter
group of unitary transformations of H. For this reason I will describe here some well-known
things about one-parameter unitary groups.

H will always denote a Hilbert space. A one.parameter family M, of closed subspaces
of H is called decreasing if M, is contained in M, when s <t, and a decreasing one-parameter
family is called a resolution of the identity if VM, is H and A M, has as its only member the
vector O, where V.M, is the smallest closed subspace of H containing all M, and A M, is the
largest closed subspace of H contained in all M.

Let M, be a one-parameter family of decreasing closed subspaces of H forming a
resolution of the identity, and assume in addition that the family M, is continuous from

the left, i.e.
M=ANM.=NM,

s<t s<t
Because the family M, is decreasing and continuous from the left, there is a Borel measure

P on R with range contained in the lattice of orthogonal projections of the Hilbert space H
and with the property
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Py nH=M,0M, (13)

where Py is the value of P at the Borel set E and M,© M, is the orthogonal complement of
M, in M, [4] [3, Ch. 2, Ch. 3]. Because of (13)

P,H=VNMoAM,=H
and P[s,oo)H=MseAMt=Ms'

P is called the spectral measure generated by M,. Let V, be the Fourier transform of the
spectral measure P. V, is the strongly-continuous one-parameter group of unitary trans-
formations of H given by

Vg=f C_“tdps.
R

LeMMA 4. Let E be a closed subset of R and let x be in H. Then spy(x) is confained in
E if and only if Py x = x. In particular, spy(x) is contained in [t, oo) if and only if x belongs
to Mt-

Proof. Let f be in L(R). Then
x*yf=f fdPx=f fdPx+f fdPz, (14)
R G E .

where @ is the complement of E.
Assume that spy(x) is contained in E, and let f be such that the support of f does not

meet E. Then
f fdPx=0
E
and (Lemma 2) x % yf=0.
Hence J‘ fdPz=0
¢

for-all such f, and consequently P;z=0. Thus
Ppx=Pgx+Pyx=Prx=u.
Conversely, assume that Pzz=2. Then Pyz=0 and (14) becomes

z ¥ yf= fgfdPx.

Thus 2 %, f =0 when f is 0 on E, and hence spy(x) is contained in E.
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A one-parameter unitary group in turn generates a resolution of the identity. For let
V. be a strongly-continuous one-parameter group of unitary transformations of H, and let
M, be the collection of all x in H with spy{(z) contained in [¢, co). Then

LeMMmaA 5. M, is a one-parameter family of decreasing closed subspaces of H continuous
from the left and forming a resolution of the identity.

Proof. By Lemma 3, each M, is a closed subspace of H and VM, is H, and clearly the
one-parameter family M, is decreasing and continuous from the left. Finally A M, is trivial,
for if x belongs to A M, then

z¥yf=0
whenever f has compact support (Lemma 2), and hence =0 (Lemma 1).

Stone’s theorem [9, p. 383] completes the circle by telling us that V,is the unitary

group generated by the family M,. I will not need this.

3. This part contains a criterion for quasi-invariance. The criterion will be used in the
next part to show that analytic measures are quasi-invariant, and its proof will depend on
the preceding theorem about triples of one-parameter groups of linear transformations.

8 is a locally compact Hausdorff space with the real line R acting as a topological
transformation group on S, and 7T'; is the one-parameter group of homeomorphisms of §
that defines the action of R on 8.

Definition 3. When f is a function on 8, T',f is the function on S given by composing
Jwith T_,:

T.f(p) = {(T_.p).

With 7', defined on functions in this way, 7', is a uniformly-bounded strongly-con-
tinuous one-parameter group of linear transformations of Cy(S), where Cy(S) is the Banach
algebra of all complex continuous functions on S that vanish at infinity. That 7T, is a
uniformly-bounded one-parameter group of linear transformations of Cy(8) is clear. That
this group of linear transformations is strongly-continuous follows from (and in turn
implies) the assumption that the function (¢, p) > 7, p from R X S to § is continuous. When
fis in Cy(8), spy(f) will mean the spectrum that is defined with this group of linear trans-
formations (Definition 2).

1 will always denote a bounded positive Baire measure on S. L*(u) is the Hilbert space
of all complex 4 measurable functions f with

flflzdy< o0,

The inner product in L*u) is given by
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o= ffﬁdu-
The criterion for quasi-invariance of y is part 3 of the following theorem.
TaEOREM 2. The following are equivalent.
1. u is quasi-invariant.
2. There is a strongly-continuous one-parameter group V, of unitary transformations of
L) with the property (commutation relation)
Vilfg)=T:fV.g (15)
foralltin R, f in Cy(S), and g in L(u).
3. There is a one-parameter family M, of decreasing closed subspaces of L*(y) forming

resolution of the identity and with the property (spectral condition) for all s and t in R and f in

CO(S):
spr(f)< (s, 00) implies [M,=M,,. (16)

At least to people interested in group representations, the equivalence of 1 and 2 is
very well known. Theorem 2, and in particular the equivalence of 2 and 3, was suggested

to me by work of Helson and Lowdenslager [5].
Proof. Let T, u be the Baire measure given by

(T w)E=w(T_E)
for all Baire subsets E of S. Then

fT-tng = f ga(Tp) amn
for all Baire functions g¢.
1 implies 2. Assume that p is quasi-invariant. This means that 7', p is absolutely con-
tinuous with respect to u for each ¢ in R. Let ¢, be the Radon-Nikodym derivative of 7' u
with respect to u, and define ¥V, by

V‘g=WETtg.

From (17) we get JT_tgdu=fg¢, du (18)

for all Baire functions g. This in turn gives
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f|Vt9|2d,“ = ff/’tTt lg[?dp= flyF du

and hence V, is a unitary transformation from L?(u) into L2(u). The group property of the
T, implies that the one-parameter family of » measurable functions ¢, is a cocycle, i.e. the
¢, satisfy the functional equation

¢s+t =¢s Ts d’t (:u) (19)
for all s and ¢ in R. For by (18)

[otositu= f T\ igdp = f T g dp = f 06T oy du

for all Baire functions g. The functional equation (19) and the group property of the 7', in
turn imply that V, is a one-parameter group, for

Vseeg= Va;TsV;S-thivtg: VgTs(Vzﬁ—tTtg) = Vs Vtg'

Finally, the commutation relation (15) is clear from the definition of V..

To show that V, is strongly-continuous is a little work, and since I will not need this
to show that analytic measures are quasi-invariant, I will omit the argument.

2 implies 1. Assume that there is a one-parameter group V, of unitary transformations of
L) with the property (15). (V, need not be strongly-continuous.) Then in particular

Tf=VfV_. 1) (w)
by taking g="V_;1, and hence

fthflzdu= fl/lle_tllzdu (20)

for all { in Cy(S). When F is a compact Baire set, the characteristic function of & is the

pointwise limit of a decreasing sequence from Cy(S), and hence by (20)
w(T.E) =f |V_ (12 du (21)
E

for all compact Baire sets . Because Baire measures are regular, (21) is true for all Baire

subsets E of S, and this shows that x is quasi-invariant (and incidentally that VqS_g =|V.1]).

2 implies 3. Assume that there is a sirongly-continuous one-parameter group V, of unitary
transformations of L¥(u) with the property (15). Let M, be the collection of all ¢ in L*(u) with
spy(g) contained in [¢, co). By Lemma 5, M, is a one-parameter family of decreasing closed

subspaces of L*(u) forming a resolution of the identity. Moreover, by Theorem 1 (with
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X=L*(u), A;=B,=V,, Y=0y(S), and L(f) multiplication by /), the spectral condition
(16) holds.

3 implies 2. Assume that there is a one-parameter family M, of decreasing closed subspaces
of L¥(u) forming a resolution of the identity and with the property (16). Replacing M, by
As<: M, we may assume in addition that the family M, is continuous from the left. Let P be
the spectral measure generated by M, and let V, be the Fourier transform of P. I will again
use Theorem 1 (with X =L2u), 4,=B,=V,, Y=0yS), and L(f) multiplication by f) to
conclude this time that the commutation relation (15) holds. The first part of the spectral

condition of Theorem 1 is that for all f in Cy(8), g in L*(u), and s and ¢ in R,
8 < (s, oo
prif) (0, ) implies spy(fg)<=(s-+¢, o),
SPV(g)C (t, °°)

and this follows from (16) and Lemma 4. The second part of the spectral condition of
Theorem 1 is that for all f in Cy(8), g in L*(u), and s and ¢ in R,
8 C(—o0,8
Brif) < ) jmplies spy(fg) < (— oo, s +1). (22)
Spy(g)= (oo, f)

I will complete the proof of Theorem 2 by showing that (22) holds.
Let f be in Cy(8). Then spr(f)= —spy(f). For let g be in L(R). Then
[%29=F%17
for T',f=T,f, and hence J(f) = J(f). The assertion follows from this for
d(s)= ﬁ( - 8).
Now let f in C,(S) and ¢ in L2(u) satisfy the hypothesis of (22). By Lemma 4 there is an

r smaller than ¢ with g in the range of P, 5, and by Lemma 4 too the conclusion of (22)
will be true if fg is in the range of P_,,, ;1. Let h bein M. By the spectral condition (16)
fh is in M, since spy(f)-is contained in (—s, o), and hence g and fh are orthogonal since

P » and P ) have orthogonal ranges. Thus
ffgﬁ du=<g,fhy=0

and consequently fg is orthogonal to M,,,. Hence

P sinlg=1g
and this is what I want. This completes the proof of Theorem 2.
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4. This part contains the theorem that analytic measures are quasi-invariant. Before
coming to the theorem and its proof, I want to talk at greater length, than in the introduec-
tion, about the convolution of measures and functions.

The assumption that the function (¢, p)— 7', p from R xS to S is continuous implies
that it is also a Baire function (i.e. the inverse image of a Baire subset of S is a Baire
subset of R xS). For it is the homeomorphism (¢, p)— (¢, T, p) of R xS followed by the

canonical projection (¢, p)—~ p of RXS onto S, and hence is the composition of Baire
functions.

Let ¢ be a bounded Baire function on S, let A be in M(S), and let f be in L(R). Then
g(T, p) is a Baire function on R XS, and by the Fubini theorem

JvTﬁtgdl

is a Borel function on R, f T_.qft)dt
R

is a Baire function on S, and

fn(fT—t g dl) f(8) dt = f(fR T_,9f@) dt) da. (23)

In particular, if ¢ is the characteristic function of a Baire subset E of S, then T'_, g is the
characteristic function of 7'_, E, and hence A(T_,E) is a bounded Borel function on R.

The convolution of 4 with f is the measure A f in M(8) given by

(Axf)E= f AMT_E)f(t)dt
R
for all Baire subsets E of S. Then

fgd(l *xf)= fR(fT_tgdl) f(£) dt. (24)

This is just the definition of A% f when g is the characteristic function of a Baire set, and

now the usual argument gives (24) for all bounded Baire functions g. (23) can be written

J;Z (th gdl) f(&)di= J(g * f) dA, (25)

where g*f= f T, g f(¢)dt.

THEOREM 3. Analytic measures are guasi-invariant.
4 — 662905 Acta mathematica. 118. Imprimé le 11 avril 1967
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Proof. The proof will be the quasi-invariance criterion given by part 3 of Theorem 2.
Let A be an analytic measure, let x4 be the total variation of 2, and let M, be the closure in
L2(u) of the linear set of all g in Cy(S) with spr(g) contained in (¢, o). I will show that the
one-parameter family M, of decreasing closed subspaces of L*(u) satisfies the spectral

condition (16) and that

AM,=[0]. (27)

It turns out that (16) and (26) are true with any p, and only to get (27) will I use the fact
that u is the total variation of an analytic measure.

The spectral condition (16) clearly follows from the spectral condition that for all
fand gin Cy(8) and s and ¢ in R,

Pr) S0, ) plies spalfg) < (5-+, o0), (28)
spr(g) < (¢, o)
and this in turn follows from Theorem 1. For in Theorem 1 let both Banach spaces be
Cy(S), let the three one-parameter groups of linear transformations be 7', and let L(f) be
multiplication by f. The commutation relation in this setting is just that 7', is multiplicative
(T is an algebra homomorphism of Cy(S)), and hence the first part of the spectral condition
of Theorem 1 holds (i.e. (28) holds).
VM, contains a dense subspace of Cy(S), for all g in Cy(S) with sp,(g) compact belong
to VM,, and by Lemma 3 the set of such ¢ is dense in C(S). Hence (26) holds.
To get (27) I will use the following corollary of the analyticity of .
Let g be in Cy(8S) with spy(g) contained in the positive reals. Then

f gdA=0. (29)

To get (29) let d(t) = JTtgd/'l.

¢ is a bounded (uniformly) continuous function on R, and moreover

sp(¢)< —sp(g) N sp(4), (30)

where sp(¢) is the familiar spectrum of ¢. For let r be a real number not in sp(4). Then
there is f in J(1) with f(r)=1. By (24)

f d(—1t) f(t) dt=0. (31)
R
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J(4) is a closed ideal in the group algebra L(R) and hence it is translation invariant. Thus
(31) continues to be true when f(t) is replaced by f(s+¢) and we get

dxf=0.

This shows that r is not in sp(¢), and sp(¢) is contained in sp(1). Now let r be a real number
not in —sp(g). Then there is f in J(g) with f{( —r) =1. By (25)

f . B(t) f(t) dt=0. (32)

Again, {32) continues to be true when () is replaced by f(t —s) and we get
$xf*=0

where f*(#)=f(—t). This shows that r is not in sp(¢), and sp(¢) is contained in —sp(g)-
But now (30) implies that sp(¢) is empty, and therefore ¢ vanishes identically. In
particular ¢(0) =0 and this is (29).
Now let & be in AM, and let f be in Cy(S) with sp,{f) contained in (s, oo). Then for g
in Cy(8S) with sp;(g) contained in (~s, o)

Jigb = [tgar=o

by (28) and (29), where ¢ is the Radon-Nikodym derivative of 1 with respect to u. Since
hisin M_,, h can be approximated in L?(u) by such g, and therefore

fths du=0.

This holds in particular for all f in Cy(S) with sp(f) compact, and hence for all f in Cy(S)
(Lemma 3). Therefore =0 since |¢| =1 (). This gives (27) and the proof of Theorem 3 is.
complete.

The full proof of Theorem 3 uses (along with other things) two basic facts about closed
ideals in Abelian group algebras:

1. A set with one member is a spectral synthesis set.
2. A closed ideal contains every function whose Fourier transform vanishes on an
open set containing the hull of the ideal.

Moreover, 2 follows from 1 (in a nonelementary way), and therefore one might say that.

Theorem 3 is a grand corollary of 1.
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5. This final part contains four applications of the theorem that analytic measures
are quasi-invariant. These applications, with one exception (Theorem 6), imitate applica-
tions given by deLeeuw and Glicksberg in [2].

The first is to the way R acts on analytic measures, and is more an application of the
proof of Theorem 3 than of the statement. Moreover, it is the outcome here and not the

application that imitates what is in [2].

- THEOREM 4. When A i3 an analytic measure, T A moves continuously in M(S).

Proof. Let i be the total variation of 4, let ¢, be the Radon-Nikodym derivative of
T.u with respect to u, and let V, be the strongly-continuous one-parameter group of
unitary transformations of L?(u) given by the proof of Theorem 3. Then

9Ss=!thl2 (33)
and Vif=T,1V.1 (34)

for all f in L2(u). (33) follows from (21), and (34) holds at least for all f in Cy(S) by the com-
mutation relation (15). Because of (33), the linear transformation given by the right side
of (34) is an isometry of L3(u), and hence (34) holds for all f in L2(u).

Now let ¢ be the Radon-Nikodym derivative of 1 with respect to u. Then the Radon—
Nikodym derivative of T, A with respect to u is ¢, T', ¢, for by (17)

[oaan= 7 9pau-[aprpan.
This in turn gives | TA—T. 4| = Jth $V, 1V, $V,1|du (35)

for by (33) and (34) $:Top=V,$V,1.

By the Schwarz inequality the right side of (35) does not exceed

(J‘d,u)?f times (flVﬂﬁ -V, ¢ cl,u);f + (flV,l -V, 1J d‘u)*.

This shows that T', A moves continuously in M(8) for V, is strongly-continuous.
When A is in M(S) and E is a Baire set, the trace of A on E, denoted by A, is the

measure in M (S) given by
A F =AEF)
for all Baire sets F.
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Let A be in M(S), let o be a positive measure on the Baire subsets of S, let £” be a
Baire set with the property that E” is a o null set and has greatest |1] measure among all
o null Baire sets, and finally let E’ be a Baire set with the property that E’ is contained in
S\E" and has greatest |1| measure among all Baire sets contained in S\E”. Then E'U E”
carries A. Let 1’ be the trace of A on E’ and A" the trace of A on E”. Then 1’ is absolutely

continuous with respect to o, ” and ¢ are singular, and
A=X+A". (36)

The (unique) decomposition (36) is called the Lebesgue decomposition of 1 with respect to a.
The next application of Theorem 3 is to the Lebesgue decomposition of an analytic

measure with respect to a quasi-invariant measure. This will use Lemma 6 and Lemma 8.

Definition 4. Let 4 be in M(8S) and let E be a Baire set. E is called 1 invariant under
the action of Rif EAT,F is a A2 null set for all { in R.

LeMMA 6. Let 2 in M(8S) be quasi-invariant, let ¢ be a positive quasi-invariant measure
on the Batre subsets of S, and let E' and E” be the disjoint Baire sets used to define the Lebesgue
decomposition (36) of A with respect to 0. Then E’' and E" are A invariant under the action of R.

Proof. T, E" is a o null set since ¢ is quasi-invariant, and hence T, E"\E" is a A null set

(for all ¢ in R) because of the extremal property that E” has. Now
E\T.E"=T,(T_,E'\E")

and hence E"\T; E” is also a A null set since A is quasi-invariant. Thus E"AT, E" is a A
null set.

E'UE"T,E" carries A, for E'U E" carries 1 and E"AT,E" is a A null set, and hence
T,E'\E'is a A null set (for all ¢ in R) since 7', B’ does not meet 7', E”. The roles of B’ and
T.E’ in this argument can be interchanged to give that E'\T,E’ is a A null set, for
T.E'UT,E" also carries A (since 1 is quasi-invariant). Thus E'AT,E’ is a A null set.

Lemma 7. Let 2 in M(8) be quasi-invariant and let the Baire set E be 2 invariant under
the action of R. Then the trace of A on E is also quasi-invariant.

Proof. Let the Baire set F be a Az null set. Now
FT_,E=F(T_,E\E)UFET_,E

and ET.,F =T FT_,E).
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Hence FT_,E is a A null set since T_, E\E and FE are, and thus 7', F is a Az null set since
A is quasi-invariant.

A corollary to Lemma 6 and Lemma 7 is that the components in the Lebesgue de-
composition of a quasi-invariant measure with respect to a positive quasi-invariant measure

are also quasi-invariant.

Lemma 8. Let A be in M(S) and let the Baire set E be A invariant under the action of R.

Then
(A% g =Ap*f

for all f in LY(R), and thus sp(Az) s contained in sp(d).

Proof. Ax e F= f MT_,ET_,F)f(t)ds
R
for all Baire sets F. Now
MT_,ET_,F)y=AET_,ET_,F)=MET_,F)

since EAT_, K is a A null set, and hence
(A% e F = f MET . . F)f(t)dt= Az % f) F.
R

THEOREM 5. Let A be an analytic measure, let o be a positive quasi-invariant measure
on the Baire subsets of 8, and let
A=A+A"
be the Lebesgue decomposition (36) of A with respect to 0. Then both sp(A’) and sp(1”) are con-
tained in sp(A). In particular, A’ and A" are analytic.

Proof. Theorem 3, Lemma 6, and Lemma 8.

When S is the circle group and R acts on § in the standard way (7', (e') = e*e’), the
collection of all analytic measures coincides with the annihilator in M(S) of the algebra
A, where A4, is the collection of all functions in C(S) whose Fourier coefficients vanish for
nonpositive indices. 4, is an ideal, and in fact a maximal ideal, in the familiar algebra 4 of
all functions in CO(S) whose Fourier coefficients vanish for negative indices. There is a like
characterization, generalizing this, of the collection of all analytic measures when there is
no assumption about S or the way R acts on §.

Let A be the collection of all f in Cy(8) with spr(f) contained in the nonnegative reals,
and let A, be the collection of all f in Cy(S) with sp,(f) contained in the positive reals. By
Lemma 3 and Theorem 1 (again with X =Y =Cy(8), 4,=B,=T,, and L(f) multiplication
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by f), 4 is an algebra and 4, is an ideal in 4. Though A is a closed subalgebra of Cy(S5)
{(Lemma 3), A, in general will not be closed, and the closure of 4, though a proper closed

ideal in 4 when 8§ is compact, will not in general be a maximal ideal.

ProrosiTioN 2. The collection of analytic measures coincides with the annthilator in
M(8) of the algebra A,

Proof. Let A be in M(8). I showed in the proof of Theorem 3 that A annihilates 4, when 4
is analytic. Assume now that
fg di=0.
for all g in A4,.

Let ¢ be in C\(S) and let f be in L*(R). Then by (24) and (25)

f gd(h )= f (g% 1) dl, (37)

where f*(t)=f(—t). Now let s <0 and choose f with f(s)=1 and the support of f contained
in the negative reals. Then gx f* belongs to 4, by Lemma 2, and therefore

fgd(l *f)=0
by (37). This is true for all g in Cy(S), and hence

Axf=0.
Thus s is not in sp(4).

Proposition 2 implies that the linear space of analytic measures is weak star closed in
M (S), and consequently the unit ball of this linear space is weak star compact, and there-
fore (by the Krein—Milman theorem) this unit ball is the weak star closure of the convex

hull of its extreme points. Theorem 6 gives a little information about these extreme points.

Definition 5. Let A be in M(S). 4 is called ergodic if every Baire set that is A invariant
under the action of R is either a A null set or carries A.
Being ergodic may not mean anything. For example, when § is the circle group and

R acts on 8 in the standard way, every measure in M(S) is ergodic.

Definition 6. Let 4 in M(S) be quasi-invariant. 4 is called minimal if 2 is either abso-
lutely continuous or singular with respect to every positive quasi-invariant measure on the
Baire subsets of S.

LeMMA 9. Let A in M(S) be quasi-invariant. Then A is minimal if and only if A is ergodic.



56 FRANK FORELLI

Proof. Assume that A is ergedic. Let ¢ be a positive quasi-invariant measure on the
Baire subsets of S, and let E' and E” be the disjoint Baire sets used to define the Lebesgue
decomposition (36) of A with respect to o. E” is A invariant under the action of R (Lemma 6),
and therefore E” is a A null set or E” carries 4. With the first alternative 2 is absolutely con-
tinuous with respect to o, and with the second 1 and ¢ are singular. Thus 2 is minimal.

Assume now that A is minimal, and let the Baire set E be A invariant under the action
of R. Since 1 is quasi-invariant, the trace of A on E is also quasi-invariant (Lemma 7), and
therefore 1 is absolutely continuous with respect to A; or 1 and Az are singular. With the
first alternative ¥ carries A, and with the second E is a A null set. Thus 4 is ergodie.

THEOREM 6. The extreme poinis of the unit ball in the linear space of analytic measures
are minimal.

Proof. Let 1 be an extreme point in ball 4§. Then 4 is ergodic. For let the Baire set E be
A invariant under the action of R. Then A; is analytic (Lemma 8). If neither Az nor A—12;
is 0, then
A=Az

~ Ik =l

=+ A2

and this contradicts the assumption that 1 is an extreme point in ball 4§ for
|4l + |12 —2gl = |Af] =1.

Hence A;=0 or 1=2;. With the first alternative E is a A null set, and with the second £
carries A. Thus 1 is ergodic.

A is now minimal by Theorem 3 and Lemma 9.

Let cl4, be the uniform closure of the algebra 4,. A closed Baire set E is called an
interpolation set for cld, if every function in Cy(E) is the restriction to £ of a function in

cl4,. The last application of Theorem 3 is to interpolation sets for the algebra cl4,.
LeMMA 10. Let E be a Baire set with the property that for each p in S the Borel set
[LER|T,pEE]

has linear measure zero. (Roughly speaking, E meets each orbit in a set of linear measure zero.)
Then E is a null set for every quasi-invariant measure in M(S).

Proof. Let g be the characteristic function of E, let f in L{R) be honnegative and not

the zero vector, and let 4 in M (S) be positive and quasi-invariant. Then



ANALYTIC AND QUASI-INVARIANT MEASURES 57

fn(fT_tgd,u)f(t) dt=0

by (23) and the assumption about E. Hence

w(T_, B)= fT_,g du="0

for almost all ¢ in the set where f is positive, and thus # is a u null set since g is quasi-

invariant.

LeMwma 11. Let p be in S and let f be in A. Then the closed set
[tER|{(T.p) =0]

either has linear measure zero or is all of R.

Proof. Let g be the bounded continuous function on R given by g(t)=HT,p), and let
% be in L}(R) with the support of 4 contained in the nonnegative reals. Then the support

of (gu)” is also contained in the nonnegative reals. For let s be in R and let

o(t) = e*tu(—1).
Then ()™ (6) = Le‘mﬂm) wlt) dé=(f % v) (p)-

Now assume s <0. Then fx%v=0 by Lemma 2 for sp(}) is contained in the nonnegative reals
and ¢ is 0 on (s, oo), and hence (gu)"(s) =0.

Since the Fourier transform of gu vanishes on the negative reals, either the closed set
where g vanishes has linear measure zero or g vanishes identically (for g(¢)u(t)dt is an ana-
lytic measure with R acting on itself by translating with the members of R, and by Theorem

3 it has the same null sets as Lebesgue measure if ¢ and u are not identically zero).
TuEOREM 7. Let E be a closed Baire subset of S. The following are equivalent.

1. E is a null set for all analytic measures.

2. E is an interpolation set for cld,.

3. For each p in E the closed set [LtER|T, p€ E] has linear measure zero.
4. For each p in S the closed set [t€ R| T, p € E) has linear measure zero.

Proof.

3 implies 4. Because T, is a one-parameter group of homeomorphisms, every non-
empty set in 4 is a translate of a set in 3.
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4 implies 1. Theorem 3 and Lemma 10.

1 implies 2. Proposition 2 and Bishop’s general Rudin—Carleson theorem [1]. (Though
the spaces in [1] are compact, the arguments in [1] apply to locally compact spaces.)

2 implies 3. Let p be in E and let ¢ be the function from R to S given by ¢(t)=T,p.

Then ¢ is continuous and the set in 3 is $—1E. Moreover,
E=EUE"
and ¢1E =¢E'U$IE",
where E’ has p as its only member and E” is E with p taken out. Now ¢ in R belongs to
¢~1E’ if and only if T, does not move p, and hence ¢—1E’ is a closed subgroup of B.

Suppose ¢—1E’ has positive linear measure. Then, being a closed subgroup of R, it

must be all of R, and hence
T.p=p (38)

g(p) =0 (39)
for all ¢ in cld,. For let g be in Cy(S) and let f be in L(R) with the support of f disjoint
from sp(g). Then

for all ¢ in R. This implies that

gxf=0
by Lemma 2, and, on the other hand,

g% f(p) = 9()(0)
by (38). Hence (39) holds for g in 4,, and therefore it holds for ¢ in cl4,. ((38) implies too

that a mass concentrated at p is an analytic measure.)

(39) contradicts the assumption that E is an interpolation set for cl4,, and hence
¢~1E’ has linear measure zero.

Let K be a compact set contained in ¢—1E”. Then ¢K is compact and contained in E”,
and now because E is an interpolation set for cl4, there is an f in cld, with f(p)=1 and
f=0 on ¢K. By Lemma 11, K has linear measure zero.

Since every compact set contained in ¢—1E” has linear measure zero, ¢—1E” too has
linear measure zero.

Clearly, in the proof of Theorem 3 it is not necessary to assume that the measure 4
is analytic, but only that sp(A) is bounded below or above, and for this reason there are
the following more general versions of theorems 3 through 6.

THEOREM 3'. When A is in M(S) with sp(4) bdunded below or above, A is quasi-invariant.

THEOREM 4'. When A is in M(S) with sp(A) bounded below or above, T'y A moves con-
tinuously in M (S).
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THEOREM 5'. Let A be tn M(S) with sp(A) bounded below or above, let o be a positive

quasi-invariant measure on the Baire subsets of S, and let

A=+

be the Lebesgue decomposition (36) of A with respect to 6. Then both sp(A') and sp(A") are con-
tained in sp(4).

ProPosiTION 2'. Let E be a closed subset of R and let G be the complement of E. The

closed linear set of all measures in M(S) with spectra contained in E coincides with the annihi-
lator in M(S) of the linear set of all functions in Cy(S) with spectra contained in —G@.

TaroreM 6'. Let E be a closed subset of R bounded below or above. The extreme points

of the unit ball tn the linear space of all measures in M(8S) with spectra contained in E are
minimal.
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