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1. Introduction

In the subject of global analysis, there is a wealth of results in the case of a compact
manifold which do not depend on the choice of a riemannian structure on the manifold,
but in the non-compact case much less is known and moreover the results depend on the
choice of a riemannian structure.

In this paper we study elliptic differential systems of order m on non-compact mani-
folds which are euclidean at infinity, in weighted Sobolev spaces H; ;. Such a study has
been done in weighted Hélder spaces Cy %, for equations of order 2 in [4]. On the other
hand, M. Cantor has proved [2] closed range and isomorphism theorems for elliptic oper-
ators of order m in R”, in weighted Sobolev spaces W? 5, where p>n/(n —m). His paper is
based on a work by L. Nirenberg and H. Walker [14] on the null spaces of such operators
with continuous coefficients. In the present article we show that this restriction on p is
unnecessary. Although we shall treat explicitly only the case p=2 which is of special
interest since W3 ;=H, ; is a Hilbert space, the results extend trivially to any p>1. The
hypotheses on the coefficients which we make, permit the study of nonlinear systems in
the same framework.

Our exposition is self-contained, except in as far as it requires knowledge of local
elliptic theory and results proved in [14] for operators with continuous coefficients on R".
The method relies on an improvement, given in § 2, of the imbedding theorem and multi-
plication lemma for the W% ;s spaces. This improvement allows us to have 6> —n/p instead
of 20 as in [2]. In §3 some of the elliptic estimates on a compact manifold, with or
without boundary, are recalled. In § 4 we extend the elliptic theory on R” of [14] to oper-

ators with coefficients in the spaces H; In § 5 we derive an isomorphism theorem for
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elliptic operators with constant coefficients on R”. Finally, in § 6, we use these results to
study elliptic operators on a euclidean at infinity manifold, deriving theorems on the
finite dimensionality of the kernel, the closedness of the range, as well as isomorphism
theorems.

Our work finds application to the study of the constraint system in general relativity,
extending previous work by M. Cantor [3] and Y. Choquet-Bruhat and J. York [6], as
well as to many geometrical and physical problems which have been previously studied

on compact manifolds (cf. for example [11]).

2. Properties of the H ; spaces

Let M be a C®, connected, manifold with a (positive definite) C® riemannian metric e.
Let E be a C tensor bundle over M. We denote by D(E, M), or simply by D when no
confusion can arise, the space of (° sections of £ with compact support in M, endowed
with the Schwartz topology. We denote by D'(E, M), or simply D’, the dual space of
distributions. We denote by D the operator of covariant derivation in the sense of dis-
tributions: D¥f is the tensorfield, kth derivative of the tensorfield (section of E) f.

We choose arbitrarily a fixed point O on M and we set
a(®) = (1 +(d(0, 2)))"", (2.1)
where d is the riemannian distance function on M.

Definition 2.1. 0%, 1€N, BER, is the Banach space of O! sections of E for which the

following norm is finite

Il = sup >, 1{(0(76))‘”"1D"f(ﬂc) 3.

eM Ok
Here, | D*f(z)| denotes the e-norm of the tensor D¥f at .

Definition 2.2. H, 5, sEN, 6€R, is the space of all equivalence classes of sections f of
E such that for 0<k<s, D*f is measurable and ¢°**| D¥f| is square integrable in the

metric e. H, ; is a Hilbert space with respect to the inner product
(1> foduy 5= 2, J' o*®*ODEf - D fydule),
O<hkss J M

where D*f, - D¥f,(x) denotes the inner product in the metric e of the tensors D¥f,, D*f, at z,
and du(e) is the volume element of e. We shall write the norm

1/2
"f"HS_d = (.f: f)}{/:.o :{ Z fM02(6+k)' Dkflzd/l(e)} .

O<k<s
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The topology of the space H, ; does not depend on the choice of the origin point O:
different origin points give equivalent norms. If s>s;, d224;, it obviously holds H, ;<
H,, s,. Moreover, we have the following:

Lemma 2.1. If (M, e) is a complete riemannian manifold and if s>s;, 6 >6,, the injec-

tion H; s—Hj, s 18 a compact map.

Proof. The result is well known when M is R" and e the euclidean metric. (Cf. for
example [1].)

We shall give here a simple proof that the closed unit ball in H, ; is a compact set
in Hy s, which does not make hypotheses on the sign of §;.

We denote by Bj the open ball

By, = {x€M|d(0, x) <R}

and by x5 a O function with support in B,,, equal to 1 in Bj. Let {f,} be a sequence in
H; 5 with ||f,||s, ,<1.8Since H, ,is a Hilbert space, {f,} admits a subsequence, still denoted
{fx}, which converges weakly to some f€H, ;5 with |/f||x, ,<1. Let us set

.fn =Xan+(1 _XR)fn'

The sequence {yf,} is bounded in the Sobolev space H(B,z) as one sees from

122 full B = ‘L > | Di(Xaty) P dpte)

o O0<k<s

<c 3 f | D, Paute)

0<k<s

(c a constant depending only on |[xz| c«s,,), which together with

f | D* 1,2 du(e) < sup 0"2(’”&)] o0 Dkf, 2 dpu(e)
Byz Bap

28
gives

Nxztfall 2o < callfallm,, o

(M, e) being complete and C®, the closure B,; of B,y is a compact manifold with 0=
boundary. Therefore, by the Rellich compactness theorem, {yzf,} admits a subsequence
{x&fn,} which converges strongly in H,(B,z) to some fr€H(B,z). Clearly, fz=f on Bp.
To show that {f,} converges strongly to f in Hj,_ s, we write
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$1 5 1/2
N = toille,, 5, = {f 2, o ‘*k’ID"(f—fn‘)lsz(e)}
M k=0
51 1/2
< {f Z 0‘2(6‘+k)|Dk(f—fni)|2d,u(€)}
Bp k=0

+R6’_6UM 3 6| Dk~ y) I2du<e)}ms

—Bp k=0

The last integral is bounded by
17l o+ Wl 2, < 2-

Thus, the last term is bounded by &/2 if
R> (4/8)1/(6_61)'

When R has been so chosen we take n,; large enough for the first integral to be also less
than ¢/2, which achieves the proof. [

Remark. The lemma is still true for non-complete manifolds with boundary if B,y is
compact and has the cone property.

In a similar way we can show

Lemwma 2.2, If (M, e) is a complete riemannian manifold and if s>s,, 6>0,, for every

£>0 there exists a C such that for every fEH ;:

IAllz, 5, < ellfllz, 5+ Cllflleg, o

We now introduce

Definition 2.3. A riemannian manifold (M, e) is euclidean at infinity if there exists a
number R, such that (1) M — By, is the union of a finite number of disjoint connected
open sets Q,, 4 =1, ..., p diffeomorphic by a diffeomorphism ¢, to R*— B, where B is a
closed ball of R™. (2) On each Q,, the metric e is the pullback by ¢, of the canonical eu-

clidean metric of R*— B.

Remarks. If (M, e) is euclidean at infinity it is complete if and only if Bp, is compact.
If (M, e) is complete and euclidean at infinity, the space D(E, M) is dense in H, ; for
every s€EN, 6€ER.

Consider now R™ together with its euclidean metric and for 0 <e<1, let ¢, be the

differentiable transformation of R* defined by

x>y s (2.2)

B o(x)



ELLIPTIC SYSTEMS IN H ; SPACES 133

where
o(@) = (1+ || )2 (2.3)

is the function defined for general manifolds by (2.1) (@, is the identity transformation
of R*), The Jacobian matrix of ¢, is

oyt 0,
with
!
0ii— 0y—(1—¢) ("1 T lez)

a quadratic form which is uniformly equivalent to d;;if 0 <e<1. The inverse of 6 is given by

it

(07Y)y=0y+(1—¢) ENEES

Consider the operator T, acting on functions f on R” with values in some vector space V

in the following way:
T.f =fop:™. (2.5)

T, is bijective, it is a linear operator, and satisfies T'(f,f,} = T:(f1) To(fz). Thus T, is an

automorphism of the ring of functions on R".

LeMMaA 23. For each 0<e<l,T, is an isomorphism: (a) C3(R™—C5.(R") and
(b) H; s(BR")~ H; (ssnimpie—nis(R"), for every s€N, JER.

Proof. From (2.5) and (2.4) we have:

i
0@ & (@) = o) 2 @2

T.f
oy’

T,
3?} (9.

(y)

=0,() 6*(z) 2

On the other hand from (2.3) and (2.2) we obtain
o*(x) < o(y) < 20" (x). (2.6)

Thus, since 0;; is uniformly equivalent to d,;, we conclude that there exist positive con-

stants ¢; and ¢, such that

¢1|(@Df) (@) |* < [(@DT.f)(y)|? < ¢, ] (6 Df) ()|~
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Similarly we find

a3 |EDN@P< S [(@DLN WP <a 3 | @D @)

k=0

(for different constants c¢,, ¢,). Then (2.6) implies that

s 8

o3P DN@P S IAHDTNEE<aS | D@ @)

k=0

from which part (a) of the lemma follows at once. To obtain part (b) we note that according

to (2.4) the volume elements dy and dx are related by

det O(x)
dy = E;m(——) dx

and therefore by (2.7) and (2.6) there exist positive constants ¢, and c, such that
8 8
¢ z I (015+ka',) (x) Izdx < z (Gn(l—e)/2s+5/s+ka:Ts f) (y) I2dy
R” k=0 R” k=0

<af 3l D@ 0

LeEMMA 24, If (M, e) is a complete riemannian manifold, euclidean at infinity, the

following inclusion holds and is continuous:

H, ;< C5
if ' <s—nf2,d <i+n/2.

Proof. If f€H, ; we write
f=xrf+A~xa)],

where ¥5€ D, supp ¥z < By, B> R,. The classical result for compact manifolds with %
boundary implies
1rf€CY, & <s—n[2, B arbitrary.

We are then left to the study of the function (1 —yz)f whose support is the disjoint union
of the Q,’s. We denote by f, the function on R" (with support the exterior of some open
ball) corresponding to (1—xz)f in the diffeomorphism ¢,. We have f,EH, s(R"); Now
since f€H, s(R™) is equivalent to ®"*D¥f€H,_,(R") for 0<k<s, it is clear that

H, ;B" < C3RB") if & <s—n/2. (2.8)
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To prove the stronger statement we argue as follows: € H, ;(R") implies by Lemma 2.3 (b)

TefEHs.(8+n/2)/e—n/2(Rn)-
Therefore, by (2.8)
T f€C% rnoyic—niz(BR)
and by Lemma 2.3 (a)
F €03 niz-ensa(R™).

Since this holds for every 0<e<1, we conclude that f€CS(R") for every & <d-+mn/2.
Finally, the continuity of the inclusion follows from the fact that 7', is an isomorphism. [

Lemma 2.5. If (M, e) is a complete riemannian manifold euclidean at infinity we have
the continuous multiplication property
H81.51XH82.62_) s.0
by
(fo f)=H® s

if 81, 8,28, 88y +8,—n[2, 8 <8y +3,+n/2.

Proof. As in Lemma 2.4 the statement follows from the corresponding statement on
R" together with the classical result for compact manifolds with C® boundary. Now since
f€H, ;(R™) is equivalent to o***DFf€H _,(R*) for 0<k<s, it is clear that we have the

continuous multiplication property
HSx.dl(Rn) X HSnnaz(Rn) g HS,01+(52(RTL) (2'9)

if 8, 8,>s,8<s8;+8—n/2. To prove the stronger statement we argue as follows:
h€H, o (B7), f,€H,, 5,(R") imply by Lemma 2.3 (b)
Te(fl) EHsl.((SnJrn/Z)/e—n/Z(B’n): Ta(.fz) EHsz.(52+n/2)ls—n/2(B‘n)-
Therefore, by (2.9)
Te(fl) Te(fz) = Ts(f1® fz) EHs,(dl+dz+n)/s—n(Rn)

and again by Lemma 2.3 (b)
f1® fz eHs.51+5e+n/2—en/2(Rn)'

Since this holds for every 0 <e<1, we conclude that f, ®f,EH, s(R") for every d <, +0,+
n/2. Finally, continuity follows from the fact that 7', is an isomorphism., [

CoroLrarY 2.1. If (M, e) is a complete riemannian manifold euclidean at infinity,
H, ; is a Banach algebra if s>n2, 6> —n/2.
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3. Elliptic theory on a compact manifold K (with or without boundary)

A linear differential operator of order m on sections of the tensor bundle E over the mani-
fold M is a linear mapping C°(E, M)—~D'(F, M), with F another tensor bundle over M,

which reads

K

Lu= 3 a,Dfu
0

k

i

where a,,0<k<m, are given tensorfields over M, sections of the tensor bundle
(@TMYQE*®F (in local coordinates where u=(u"%) we have o, D'u=(v""%) with
vhhi=gpiphe Dy L Dyut). The operator L can be extended from C® sections
of E some vector subspace of D'(E, M), depending on the regularity properties of the
coefficients a,. The system is said to be elliptic if for each £ €M the linear map between
the fibers E, and F, over z of ¥ and F

E,~F, by u®)ra,(Q&) u(x)

is an isomorphism for every covector £54-0 at z.

This hypothesis is expressed in local coordinates by
det (d,,£™ 40, for all £==0,
where @,, and £ are the representatives of a,, and &:
@nE™ =i, s E 8, 1T =1,.., N.

Note that this determinant does not depend on the choice of coordinates, since a,,&" is a

section of E® E*. The ellipticity condition implies that Nm is even. If
det (d,£") > A(e(&,E)™", 4>0

we say that the system admits the ellipticity constant 4.

We shall give here a result for elliptic linear systems on a compact manifold which is
not the finest possible as far as the hypotheses on the g, are concerned, but which is easy
to obtain from results proved in the available literature, and is sufficient for application

to quasilinear elliptic systems.

TaEOREM 3.1. (Gérding [9], Douglis-Nirenberg [7], Morrey [13].) Let L,

Iu=a,D"u
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be a linear homogeneous elliptic operator on K, with a,, continuous on K. Then the following

estimate holds for every w€H,,
lulls, < () Zuflz + fjulj),

where the constant ¢ depends only on K, the ellipticity constant A, the C° norm of a,, and its

modulus of continuity.

From this fundamental theorem we shall deduce the following:
TurorEM 3.2. Let L=270 0, DF be a linear elliptic operator on K with coefficients
such that a, €I, with, for 0<k<m, s,2s—m>0 and
8> g +k—m+1.
Then the following estimate holds
lulla, <o {l|Zulln,_,.+ [lullz} 3.1)

where the constant ¢ depends only on (K, e) the ellipticity constant A of a,, and the I, norms

of the a;’s.

Proof. (1) The hypotheses imply that a,,€C?, its C° norm and modulus of continuity
depending only on its H; norm. We have
1

e
O Dy = Lt — kz a, D'u.

0

Thus, by the previous theorem, for every w€H,,

m—1
Lu— 3 a,DFu
k=0

ol <ef . ®2)

Since || D¥ul|r, , .<|u|a,_, if 0Sk<m—1, the multiplication lemma gives
"ak.Dku"Lﬁ <C"ak“ka”u“Hm_l, 0<k<m—l, (3.3)

if s4+m—1~k—n/2>0. Also, it is well known that, on a compact manifold, one can

choose arbitrarily >0 and find & C such that, for every € H,,
lull -y < ellwll, +Clluf oo (3-4)
We then deduce from (3.2), (3.3) and (3.4) that

lfull o < € {1 2] 2o+ ] 22}
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(2) When the inequality (3.1) is known for some s>m, one deduces the estimate of

order s +1. Indeed, differentiating Lu we obtain

S o, D*(Du)=DLu~ 3 DayDiu— 3 a, My, (3.5)
k=0 P}

k=0

where

k-1
Mk= Z RtDk_l_iu
1=0

and the R, are linear in the ¢th derivatives of the Riemann tensor of the metric e and come
from the commutation of covariant derivatives in (3.5). If we suppose that v€H,,; and

for 0<k<m:s,2s+1—m and §,>n/2+k—m+1, then

S Do, DFul|  <c3 |Dals, I1D4ulla,
k=0 o k=0
<e( 2, loul, ) Il
k=0
Similarly, we obtain
2 & M, 3 llaklla,k | M5, _,
%=0 . k=0

and
”Mk”Hs—k < C”'M”Hb—l’

where ¢ depends only on (K, e). Applying inequality (3.1) to (3.5) gives then
[ Dull,< ¢ {| DLut|| 2, _p+ (|l s (3.6)

¢ depending only on (K, e), the ellipticity constant A of @, and H,, norms the a,’s. In-
equality (3.6), together with inequality (3.1) for s, yields inequality (3.1) for s--1.

Remark. The hypothesis on s, can be weakened to

n
>—-+k—m,
>5 m

if we assume that |[a||z_ for 0<k<m—1 and || Da,|[z ., are sufficiently small.
L7 8,,—1 y

4. Elliptic theory on R"

The following theorem is a particular case of a theorem proved in [14].

TarorEM 4.1 ([14], Theorem 3.1). Let L,
u=a,D"u
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be a linear homogeneous elliptic operator on R”, such that
an—A,€C8 B>0

where L= A,, D™ is an elliptic operator with constant coefficients. Then for any real number §
there exists a constant ¢ such that for every w€ Hw® (\ H, ; the following estimate holds:

Neullzr, o < Xl g+ 2, 03

Remark. Tt is clear from the proof that the hypothesis «€H,, made by Nirenberg-
Walker can be replaced by u € Hie.
We deduce from this theorem (see also Cantor [2] in the same spirit):

THEOREM 4.2. Let Lu be an elliptic differential system on R*,

Lu= 3 a,Dru,
k-0

with coefficients such that:
a’kEHsk.ﬁk: 0<ksm—1

am—AmeHsm.d

m

with s, =8 —m, 8> n[2)+k—m -1, 8, >m—k—(n/2), for 0<k<m. Then for any real num-
ber & and any s=m there exists a constant ¢ such that for every w€HL° N Hy 5 the following
inequality holds

l[ll, 5 < e{ll L]l g+ Hell 6, 53- (4.1)

Proof. (1) The hypotheses imply by Lemma 2.4 that a,—4,,€C} for 8,,+n/2>>0.
Thus we can apply the previous theorem to

m—1

@y D™ u = Ly~ }go a, DFu,

obtaining, for every u€Hw® N H, 4

m—1

Lu— 3 o, D*u

k=0

el , < {

+ ]]u]],,o, 6}. (4.2)

9, 0+m

Choosing a real number ¢’ such that for every 0<k<m, ,—m+k-+n/2>35—8'>0, Lemma

2.5 gives
m—1 m—1
S G DFu <c( S ua,cug%dk) ol 3)
k=0 Hy,8+m k=0
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under the above hypothesis on s,. Also, since ¢’ <4, Lemma 2.2 implies that we can choose

arbitrarily £>0 and find a C such that, for every u€H,, ;,

el s <ellwllm, s+ Ollwlla, o 44
We then deduce from (4.2), (4.3) and (4.4) that

l[ellz, s < € {1 Lull g+ [l 53

(2) We now suppose that inequality (4.1) holds for some s>m and every J€R and
we shall prove it for s +1. Applying the estimate (4.1) for s and the real number § 41 to

a, D¥(Du) = DLu — goDakD"u

o
JANE

'we obtain

k=0

L

1Dull, 5,0 < c{

s—m,0+m+1

Lemma 2.2 implies that under the hypotheses made on s, and 8, (where now s;=s+1—m)

m m
kZO Da, Dku”Ha—m. S+m+1 < ckgo "Dak”H:,,-1.6k+1”Dku”Hs—k,6+k

<e(’3 Pl Nl ) ol

k=0

—

Thus we find
[ Dullz, s0n< e {| DL, ,, 54y + 2lls, 53

which, together with the inequality (4.1) supposed for s, § gives inequality (4.1) for s+-1, 4.
O

Remark. The hypothesis on s, can be weakened to

g >g+ ]G —m
if we assume that
m—1
IcZ) ”a’k”H,k,ak + ”“m - Am”H,m‘ Om

is sufficiently small.
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5. Equations with constant coefficients

It is known (cf. John [10]) that the homogeneous elliptic system on R* with constant

coefficients
Lu=A4,,D™u

has a fundamental solution of the form
() = I'y(@) + Ty () log | =]
where I'y and I'y are homogeneous of degree m—= in x, and I'; =0 either if n is odd or if
n>m. We deduce from the existence of such a fundamental solution the following lemmas
(adapted from Nirenberg-Walker [14]):
LeMua 5.1. The homogeneous elliptic system with constant coefficients
Lu=A,D"u=f

has at most one solution in Hy® N Hy 5 if 6> —n/2.

Proof. Let {g}o<r<e be a collection of CF functions on R such that

(i) 0<&p(x) <1, VZER™ Ep(z)=1 for || <1, &p(x) =0 for |z| >2R.

(ii) there exists a constant ¢, independent of R, such that
| DEg(z)| < cR*, Vz€R", 0<k<m.
Since I' is a fundamental solution (LT'=4§) and £,% has compact support we have
Eru =1"% L(&zu),

the convolution of three distributions, two of them (L, &;%) with compact support being
associative (cf. for instance [5]). We may express

L(SRu)=§R.DM+ % O’,DlERD'"—lu.
-1
Thus
Epu=T"% (Ex Lu)+ f

R<|v|<2R

L(z—y) El Ci(D'éa D" u) (y) dy,

which if 4 € Hi¢° may be rewritten as

Epu=T# <§M)+é (=1, 1,
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where

f= fk. .<2RD'""’[F<ww> D En(y)]u(y) dy.

By Schwarz’ inequality and the properties of I' and the family {£5}, I, is bounded by

12

1
t<{[ ot ey DesiPds] Tl

. m—1 lO a r— - 12

<c{f o ¥(y) __g*lzm“—‘zy-‘lﬁ R0 d?/} [l o
R<lyl<2R K=o |z —y]

<R og R”u”Ho_,,-

1, tends to zero when E tends to infinity if 6> —n/2. Thus Zu =0 implies #=0. O

Under the hypotheses of Lemma, 5.1, if 2| <R we have:

w(z) = f Tw—9) (g)dy+ J@)+ 5 (—1)"C, 1),

=1

where

J(@)= fm T - 10y

If now we assume f€H, 5., then J is bounded by

1/2
<l oot -0l s,

- log® |z —y| }1/2
< g 2(0+m) il - 3 A )
° {J-R<y<23 ®) | — g™ Y ”fuffo,om

<R log R|f||z, 5,

and therefore, if § > —n/2, also tends to zero when R tends to infinity. Hence

wo)- [ Te-viwa, 1~ )

Leuma 5.2. If m<n and f€H 5,, with —n[2<d<—m+n[2, then every solution u

in H;3° 0 Hy 5 of
Lu= A, D"y —~f

is also in H,, s and there exists a constant ¢ such that

"u"Hm, 8 < c”f"Ho,a-x-m' (5'2)
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Proof. We write u=1u; +u,, with u, =£zu for some fixed R. Since #; has support in

B,y we have from Theorem 3.1
Weta ]l ey < © 1Lt ]| s+ 20a | macoy}-

To estimate u, we use (5.1) to write, if m<n

s ly["*°| fal)| _
]| wg() | <CfRn 2]z —y [y [ dy, fo=Lus

which gives if x €R" — By, since also supp f<R"— By,

) usla)] <o f ") fo)]

e 2| —y [y [0

and thus, by Lemma 2.1 of Nirenberg-Walker [14), if 6> —»/2 and m +6 <n/2
”u2”Ho.¢s < c”Lu2“Ho,m+6
which in turn by Theorem 4.1 implies

lell,, 5 < el Latall 2, -

On the other hand we can express

Luy= A, D™Epu) =Ep Ay Du+ S O, A, D*ép D™ .
k=1

Hence we have
[t ||ty < € LIl trp + ]| 3, _ s}

Analogously we find

“Lu2"Ho.m+a7< ¢ {”Lu”Ho.mM + "u”Hm—l(B2R)}

(5.3)

(5.4)

(5.5)

(5.6)

having used the fact that for functions with support in some fixed bounded set the norms
H, and H, ; are equivalent. We conclude from (5.3), (5.4), (5.5), (5.6) that, 8’ being chosen

arbitrarily,
Vulls,, s <o {Lull, s+ Null, s o3

(5.7)

Using the fact that, under the hypothesis on §, L is injective on H,, ; (Lemma 5.1) and

that H,, , is compactly imbedded in H,, ; ; if ' <é (Lemma 2.1) we deduce from inequality

(5.7) the existence of a constant ¢ such that

el 5 < clllullm, s
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Indeed, if there is no such c there exists a sequence {u,} with |[u,||5, ;=1 such that
||, 5. tends to zero. For &' <d we have [Ju,||s,_, , <1. Thus {u,} admits a con-
vergent subsequence in H, ;. still denoted {u,}, and |ju,—u,| 5, , , is arbitrarily
small, as well as |L(u,—%y)| 5, 5., by the hypothesis. By inequality (5.7) applied to
U, —U,, the sequence {u,} converges also in H,, ; to some wu, different from zero since

145, ;=1. This contradicts the injectivity of L.

TrEOREM 5.1. The homogeneous elliptic differential operator with constant coefficients

on R":
L=A,D"

m<mn, ts an isomorphism H; s—~H_ . 5., if sz2m, —nf2<d< —m+n/2.

Proof. L is injective by Lemma 5.1. We construct a solution of Lu=f when f€D by
w=T%f.

It is well-known that this solution is 0, thus also in Hy°. We prove it is in H, ; by the
same computation used to estimate ||u||HO 5 in the proof of Lemma 5.2, which shows also
that w€H,, 5. The density of D in H,_,, 5,,, together with inequality (5.2), completes the
proof of the surjectivity of L and the continuity of its inverse.

6. Elliptic linear systems on manifolds euclidean at infinity

We consider now linear differential operators of order m on sections of a tensor bundle E

over a riemannian manifold (M, e), euclidean at infinity (definition 2.3),

Lu= 3 o, DFu.

k=9

We shall make the following hypotheses on the coetficients a,, 0 <<k<m, which are given
tensortields over M, sections of the tensor bundle (R TM)'Q E*® F.

Hypothesis I (regularity). (M, e) is a complete riemannian manifold euclidean at in-

tinity and there exist nonnegative integers s, and real numbers §; such that

sk>g+k—m+ 1,6k>m—k—g, 0<k<m

and
(1) az€H,, 5, 0<k<m—1

(2) am_AmeHs

e Om?
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where 4, is a C® tensorfield on M which is constant (D4,,=0) in each neighborhood Q,
of infinity.
It results from hypothesis I and Lemma 2.5 that for any d€R, L is a continuous

linear map
L:H,5>Hy powm by ur>2 aDfu
k=0
if s,Zs—m=0.

Also, hypothesis I and Lemma 2.4 imply that there exists a >0 such that a,, — 4,,€Cj.

Hypothesis 11 (ellipticity, cf. § 3). For each € M the linear map between the fibers
E,and F, over x of § and F

E,~F, by ulz)—>a,(® u(z)
is an isomorphism for every covector £<=0 at z.
THEOREM 6.1. Let (M, e) be a complete riemannian manifold, euclidean at infinity.
Suppose that the coefficients of L satisfy hypotheses I and II. Then if s=m, s,=s—m and §

is any real number, there exists a positive constant ¢ such that for every w€HL° N Hy 5 with

Lu€H,_, 5., the following estimate holds:
llullH.,5 se {”Lu“H.—m,é+m + ”u“HD,d}‘

Proof. Tt relies on the elliptic estimates on a compact manifold (§ 3) and on R® (§4).
Let R be a fixed number B> R, and let y, and y, be C® functions on M such that

yr(®) =1 for x€ By, yz(x) =0 for x€M — B,y
pa(e) =1 i x€Q,, pu(x) =0 if 2€Qz BFA.
For every 4 we have

r
u=ug+ > uy,
A=1

where uz=y,u has its support in By, while u, = (1 —y;)w,% has its support in Q,. We have

ella, o < Hlemllz, o + 3 Netalls, o (6.1)

(a) By the elliptic theory on a compact manifold with boundary there exists a con-
stant ¢ such that

"uR“Hs(Bzx) < c{”LuR”Hs-m(Bzze) + “uR”L’(BzR)}' (6'2)
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On the other hand we have
m m k
Lug= 2 @ D*(pu)=XpLu+ > > Cfa,D'Xp D" lu,
k=0 k=1 1=1
from which follows

1Ll oo < € {1 Lt o+ [0l 1,12} (6.3)

Combining (6.2) and (6.3) and taking into account the fact that on B, with R fixed,
the H, and H, , norms are equivalent for any o €R, we obtain
lulln, s < e {NLulln, _p somt Illm_s, o} (6.4)
with §" arbitrary.
(b) Let us denote by 4, the image by the diffeomorphism ¢, of u,; it is a RY valued
function on ¢,(Q,)=R*—B. Let us denote by L the linear operator acting on @, and

corresponding to L. Applying Theorem 4.2 to Li, we obtain
lalla, o < ¢ {1 Laallz,p, psm+ | all, o3

The H, ; norms defined on M of tensorfields with support in Q, are equivalent to the

H, ; norms defined on R" of their images by ¢,. Thus, we have also
l[wallz, s < e {lLualln, 50+ llwall, 5} 6.5)

On the other hand we can express

m m k
LuA= z ak'Dk((l_xR)u)=(1_xR)Lu— Z Z OkaleXRDk“lu,

k=0 k=1 1=1

from which follows
“LuA”Hs—m, 5+m < ¢ {”Lu"Hs——m, d+m + ”u”Hs—l(BzR)}' (6.6)

Combining (6.5) and (6.6) we obtain
"uA"Ha,a < ¢ {“M”Hs—m,6+m+ ”u”Ho,d + ”u”Hs—l,d’} (67)
with ¢" arbitrary. Finally, (6.7) and (6.4) together with (6.1) imply the result, if we choose

¢’ <§ and use Lemma 2.2.

THEEOREM 6.2. If the operator L satisfies hypotheses I and 11, if s>m, s, =s—m and

if —n[2<6<—m+n[2,(}) then there exists a constant ¢ such that for every w€ Hy 4

lullz, s <o {lIZwlla,_psem+lulla . 5} (6.8)

(1) Note that there exists such a d € R if and only if n>m.
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with 8" arbitrary. If in addition L is injective, there exists a constant ¢ such that the following
inequality also holds:

llls, 5 < el Lull, (6.9)

—m, §+m "

Proof. Following the argument of Theorem 6.1, we now use Lemma 5.2 to estimate

us by
lallz, 5 < el Leotallz,_ 54 (6.10)
where
m—1
LoouA = AmD’"uA = L’MA - (am - Am) DmuA — 2 ay DkuA.
%=0

By hypothesis I we have a,—A4,€H; ,; and @€ ; , 0<k<m—1, with §,>m—k—n/2,
0<k<m. Thus we have also a,,—4,€H,_ 3 and o, €H,
that §,> Sk >m —k—n[2. Therefore, by Lemma 2.5

5 0<k<m -1, for some J; such

m—1
(am—Am)DmuA'I' z “Ic-DkuA
K=

0

m—-1
<ol Aulli 5, S Nl ) sl -

Hy_m,64+m

Now for any f€H, , restricted to M — By, and any g €R, we have if ¢’ <g

[H{IEARTS AR ] PARS A%

It follows that if we take R large enough we can deduce from (6.10)

"uA"Hl,d < c”LuA”H—m,(H-m’

which, together with (6.6), (6.4) and (6.1) gives inequality (6.8) with " arbitrary. From
this inequality we can prove, by following the argument of Lemma 5.2, that if L is in-
jective inequality (6.9) is also satisfied.

TurorEM 6.3. If the operator L satisfies hypotheses I and 11, if s>m, s,=s—m and
if —n[2<6<—m-+n[2 then L maps H, 5 into H,_,, 5., with finite dimensional kernel and
closed range.

Proof. Since L is continuous, ker (L) is a closed subspace of H; ;. It is finite dimen-
sional if and only if the set S={u€ker (L)| |||z, ,=1} is compact. It therefore suffices
to show that every sequence in the closed subset S contains a subsequence which is Cauchy

in Hy,s. Let {u,} be such a sequence. If " <4 we have ||u,||x,_, , <1 and since [[u,||s, ,=1
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by Lemma 2.1 there exists a subsequence, still denoted {u,} which is Cauchy in H, ; ;.
Applying inequality (6.8) of Theorem 6.2 to w, —u,. we have, considering that {u,}<ker (L)

"un"uw”Hgasgc"uﬂ__unwbﬂvhy

which shows that {u,} is Cauchy in H, ;. Hence ker (L) is finite dimensional.

To show that the range of L is closed we note that since ker (L) is finite dimensional
we may write H, ;=ker (L)® W with W closed. The operator L is injective on W; there-
fore, as in Theorem 6.2 there exists a constant ¢ such that

l[ulls, s < el L]l

s—m, §+m

(6.11)

holds for all w€W. Now let {f,} be a sequence in L(H, ;) such that f,~f€H _, 5. .. Lot
{w,} be the corresponding sequence in W such that Lw,=f,, n€N. Applying (6.11) to
w, —w, Wwe see that {w,} is a Cauchy sequence in W. Hence, since W is closed, w,—~w€W

and Lw=f. Thus the range of L is closed. d

We denote by E,, s>m, the set of elliptic linear differential operators L=>%_o a;, D",
whose coefficients satisfy hypotheses I and II, with s, >s—m. We define a metric (hence

a topology) on £, by setting

d(L,L')= sup |ax—aills, , -

0<k<m

TaEOREM 6.4. Let Lu be an elliptic linear differential system
Lu= Y a,D%u
k=0

such that L belongs to a continuous family L,€ By, t€1=[0, 1], L, =L, of injective operators.

Then if Ly is an isomorphism H, s~H,_, 5.0, with

—n/2 <d < —m-+n/2,
the same 1s true for L.

Proof. L, being an isomorphism, the same is true of L, for ¢ <e. One shows that L,
which is by hypothesis injective, is also surjective, by considering that if f€H,_, 5.0
there exists, for each f<¢, u,€ H; 5 such that L,u,=f. By Theorem 6.2 we have for every
vE€H, s and tel

"’U”Hs, é < c”Ltv”Hs—m. §+m’
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where the constant ¢ can be chosen independent of ¢, since I is compact. Thus we have

luelia, s < clifll s, 5m-

Hence if £, is a sequence of numbers converging to & the sequence {u; } is uniformly bounded
in H,, and therefore admits a subsequence still denoted {u;} which converges weakly
to some u in H; ;. The sequence {L; u,=f} converges weakly to L,u in H, ,, s m. Thus

L,u={, and L, is surjective. [

In the case that E is the trivial tensor bundle M xR and m =2, the elliptic linear
operator, satisfying the regularity hypothesis T

Lu =ay- D?*u+ay- Du+ay,

acting on scalar functions w on M, is by the maximum principle (cf. for example [8]) in-
jective on HY° N 9., 8 >0, if a, is bounded and a,<0. Thus if L is a linear differential
operator of order 2 acting on scalar functions, L€ F, and ¢,<0 implies that L is injective
on H ; if s>n/2+2,5> —n/2. Since the subset I, of operators in E, having a,<0 is
convex, by Theorem 6.4 if there is some Ly€ I, which is an isomorphism H ;~H,_, 5,
with —n/2 <0< —2+n/2, then every L€ is such an isomorphism. We shall in fact show

THEOREM 6.5. (A.)* with u a positive integer less than n[2 is an isomorphism:H, 3~
Hy 5y 5000 8f $>2p4n[2 and —n[2 <6< —2u-+n/2.

Proof. (1) A, is by the maximum principle injective on C2n C3., §'>0, therefore on
H, if s>nf2+2,6> —nf2. If €D, A,u=] has one solution [4] u€C5,, thus u€H, 4,
d <n{2 —2. By Theorem 6.2 this solution satisfies the inequality

lllz, o< ellfll s, 5000

which gives, by completion of D in the H,_, ;., norm the surjectivity of A, on H _, 5.,
and the continuity of its inverse.

(2) We then proceed by induction. Assuming the theorem for y=v—1, we shall dem-
onstrate it for y=v. Let w€H, 5 with s>2v+n[2, 6> —n/2, satisfy (A,) u= A (A u)=0.
Since AL 'w€H, o4 1) s420-1 and §—2(» —1)>2+n/2, 6 -+2(r —1)> —n/2, it follows that
A% =0 and therefore, by the assumed injectivity of A%, u=0. Hence (A,) is injective
on H ;. Let now f€H, ,, 5,5, With s>2v+n/2, —n/2<d< —2v+n/2. We shall show that
there exists a € H, ; such that (A,)'u=f. We write

Av=F (A u=uv.
Since fE€EHy_, 5,0 With & =s—2(y—1)>2+n/2 and § =0 +2(» —1) satisfying —n/2<§’' <
—2+4-n/2 there is a v€H, 5 =H,_5,_1) s450_1) Such that A,v=f. Then the inductive hypo-
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thesis gives a u€H, s such that (A,)'u=v. Thus (A,) is surjective on H_,, 5,,,. Finally,
the continuity of the inverse of (A,)” follows from that of the inverses of (A,)’! and A,.

We conclude with the following theorem which is a consequence of the preceding ones

and is useful in general relativity (a particular case L= A, on R" is treated in [12]).
THEOREM 6.6. Let L be the linear second order operator on scalar functions over M
L=A,+f

where A, is the laplace operator of an asymptotically euclidean riemonnian metric g on (M, e),

that is such that
g—e€H, ,, o>n/2+1,0> —n/2

and f is a scalar function, fE€Hy, s, 6,>2 —nf2, s4>n/2 —1, f <0, then L is an 1somorphism
H, s—~H, 5 5.5 if 2<s<2+inf (55, 0 —1), s>n/2, —n/2<d< —2+n/2.
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