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1. Introduction 

In  the subject of global analysis, there is a wealth of results in the case of a compact 

manifold which do not depend on the choice of a riemannian structure on the manifold, 

but in the non-compact case much less is known and moreover the results depend on the 

choice of a riemannian structure. 

In this paper we study elliptic differential systems of order m on non-compact mani- 

folds which are euclidean at infinity, in weighted Sobolev spaces Hs. ~. Such a study has 

been done in weighted HSlder spaces C~' ~, for equations of order 2 in [4]. On the other 

hand, M. Cantor has proved [2] closed range and isomorphism theorems for elliptic oper- 

ators of order m in R ~, in weighted Sobolev spaces W~.~, where p >hi(n-m). His paper is 

based on a work by L. Nirenberg and tI. Walker [14] on the null spaces of such operators 

with continuous coefficients. In  the present article we show that  this restriction on p is 

unnecessary. Although we shall treat explicitly only the case p = 2  which is of special 

interest since W 2s, ~ =Hs.~ is a Hilbert space, the results extend trivially to any p > 1. The 

hypotheses on the coefficients which we make, permit the study of nonlinear systems in 

the same framework. 

Our exposition is self-contained, except in as far as it requires knowledge of local 

elliptic theory and results proved in [14] for operators with continuous coefficients on R n. 

The method relies on an improvement, given in w 2, of the imbedding theorem and multi- 

plication lemma for the W~,~ spaces. This improvement allows us to have 5 > -n ip  instead 

of ~ >~0 as in [2]. In  w 3 some of the elliptic estimates on a compact manifold, with or 

without boundary, are recalled. ~n w 4 we extend the elliptic theory on R n of [14] to oper- 

ators with coefficients in the spaces Hsk .$~. In  w 5 we derive an isomorphism theorem for 
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elliptic operators with constant coefficients on R n. Finally, in w 6, we use these results to 

s tudy elliptic operators on a euclidean at  infinity manifold, deriving theorems on the 

finite dimensionality of the kernel, the elosedness of the range, as well as isomorphism 

theorems. 

Our work finds application to the study of the constraint system in general relativity, 

extending previous work by  M. Cantor [3] and Y. Choquet-Bruhat and J.  York [6], as 

well as to many  geometrical and physical problems which have been previously studied 

on compact manifolds (cf. for example [11]). 

2. Properties of the H~.~ spaces 

Let M be a C ~176 connected, manifold with a (positive definite) C OO riemannian metric e. 

Let  E be a Coo tensor bundle over M. We denote by  ~ ( E ,  M), or simply by O when no 

coilfusion can arise, the space of Coo sections of E with compact support in M, endowed 

with the Schwartz topology. We denote by  ~'(E,  M), or simply 9 ' ,  the dual space of 

distributions. We denote by  D the operator of covariant derivation in the sense of dis- 

tributions: D ~/is the tensorfield, kth derivative of the tensoffield (section of E) [. 

We choose arbitrarily a fixed point 0 on M and we set 

a(x) = (1 + (d(0, X))2) 1/2, (2.1) 

where d is the riemannian distance function on M. 

De/inition 2.1. C~, 1EN, tiER, is the Banach space of C 1 sections of E for which the 

following norm is finite 

ll/llc -SUp 7. 
" xEM 0~k~l  

Here, [D~/(x)[ denotes the e-norm of the tensor D k / a t  x. 

De/inition 2.2. Hs.s, seN, teR, is the space of all equivalence classes of sections / of 

E such tha t  for 0~<k~<s, Dk/ is measurable and oZ+k[Dk/] is square integrable in the 

metric e. H~,~ is a Hilbert space with respect to the inner product 

O<~k<~s 

where lY~]1 �9 Dk/2(x) denotes the inner product in the metric e of the tensors D~]I, D~]2 a t  x, 

and dtz(e ) is the volume element of e. We shall write the norm 
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The topology of the space H~.~ does not depend on the choice of the origin point 0: 

different origin points give equivalent norms. If  s>~sl, 6~>~x, it obviously holds H~.s~ 

H~.~,. Moreover, we have the following: 

LEMMA 2.1. I /  (M, e) is a complete riemannian mani/old and q s >81, (~ >~1,  the in]ee. 

tion Hs.~-+Hs,.~ ~ is a compact map. 

Proo/. The result is well known when M is R n and e the euclidean metric. (Cf. for 

example [1].) 

We shall give here a simple proof tha t  the closed unit ball in H~,~ is a compact set 

in H~,.~,, which does not make hypotheses on the sign of ~1. 

We denote by B R the open ball 

B~ = { x e M l  d(O, x) < R } 

and by ZR a C ~ function with support in B2R , equal to 1 in BR. Let  {/~} be a sequence in 

Hs.a with ]]],l]H,. 0 ~< 1. Since H~.e is a t t i lbert space, {/~) admits a subsequence, still denoted 

{/~), which converges weakly to some ]eH~.~ with [[/[[H,.~<l. Let  us set 

In = Za/n + (1 -ZR)/n. 

The sequence {ZR/~) is bounded in the Sobolev space H~(B~) as one sees from 

a constant depending only on which together 

gives 

< 

(M, e) being complete and C% the closure /]2R of B2R is a compact manifold with C ~ 

boundary. Therefore, by the Rellich compactness theorem, {X~/~) admits a subsequence 

{Z~/n~) which converges strongly in Hs,(B~R) to some/REH,(B~) .  Clearly, / ~ = /  on BR. 

To show that  {/=~} converges strongly to / in H~,.~, we write 
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]]/ -- /.,]]...,, = ( /M ~=o a2(~'+~) l D~(/ -- /~,) ]~ dy( e) y ~ 

}" 
t R k=O 

]:n. 

I , ( J  M - B  B k=0 

The last integral is bounded by 

ll/II-.., + 2. 

Thus, the last term is bounded by  el2 if 

R > (4/e) 1/(~-~'). 

When R has been so chosen we take n~ large enough for the first integral to be also less 

than  e/2, which achieves the proof. []  

Remark. The lemma is still true for non-complete manifolds with boundary if B2~ is 

compact and has the cone property. 

In a similar way we can show 

L~MMA 2.2. I /  (M, e) is a complete riemannian mani/old and i / s > s l ,  ~>~1, /or every 

s > 0 there exists a C such that/or every /EHs.,: 

lllll.... .  IIlll..., + cll/ll.0,,. 
We now introduce 

De/inition 2.3. A riemannian manifold (M, e) is euclidean at  infinity if there exists a 

number  R 0 such tha t  (1) M - ~ n 0  is the union of a finite number  of disjoint connected 

open sets ~A, A = 1 ..... p diffeomorphic by  a diffeomorphism ~A to R n - / ~ ,  where /~ is a 

closed ball of R n. (2) On each ~A, the metric e is the pullback by ~A of the canonical eu- 

clidean metric of R n -  B. 

Remarks. I f  (M, e) is euclidean a t  infinity it is complete if and only if/~R0 is compact. 

I f  (M, e) is complete and euclidean at  infinity, the space D(E, M) is dense in He.8 for 

every s E57, 8 ER. 

Consider now R n together with its euclidean metric and for 0 < e < l ,  let % be the 

differentiable transformation of R n defined by 

X 
x ~->y = (r(x)l_~, (2.2) 
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where 

(~(x) = (i + Ix I~) 1/~ (2.3) 

is the funct ion defined for general manifolds by  (2.1) (~01 is the  ident i ty  t ransformat ion 

of R~). The Jacobian mat r ix  of q8 is 

~y~ O~j 
~x t al_ , (2.4) 

with 

O~j = 6~j-- (1 - e) - -  
X t X ] 

0 § I~1 ~) 

a quadrat ic  form which is uniformly equivalent  to (~s if 0 < s  < 1. The inverse of 0 is given by  

(0-1)~j = ~,j + (1 - e) 
(1+~1~1~) ' 

Consider the  operator  T6, acting on functions / on R n with values in some vector  space V 

in the following way: 

TU = / o ~ ; ~ .  (2.5) 

T~ is bijeetive, it  is a linear operator,  and satisfies T~(/lf2 ) = T,(/O T~(/2 ). Thus T~ is an 

automorphism of the ring of functions on R ". 

L~MMA 2.3. For each 0 < e < l ,  T~ is an isomorphism: (a) C~(R~)~C~/~(R n) and 
n ~ n (b) H~.~(R ) Hs,(~+nl~)ls_nl~(R ),/or every sEN, ~6R. 

Proo/. From (2.5) and (2.4) we have: 

(~(x) ~x ~ (x) = (~(x) ~x t 8yj (x)8 ~Y~T~/(Y) 

= O~(x) o~(x) ~ ~ (y). 

On the other  hand from (2.3) and (2.2) we obtain 

a~(x) < a(y) ~< 21%~(x). (2.6) 

Thus, since 0~j is uniformly equivalent  to  ~j ,  we conclude t ha t  there  exist positive con- 

stants c 1 and c~ such t ha t  

c, I (~DI)(~)1' < l (~DT~I)(Y)l' < ~1 (oDI)(~)1 ~- 
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Similarly we find 

k=O k=O k : 0  

(for different constants c 1, c2). Then (2.6) implies that 

k=O k=0 k=0 

from which part (a) of the lemma follows at  once. To obtain part (b) we note that  according 

to (2.4) the volume elements dy and dx are related by 

det O(x) 
dy = a--~-ff(x) dx 

and therefore by (2.7) and (2.6) there exist positive constants c 1 and c~ such that  

LgMMA 2.4. / /  (M, e) is a complete riemannian mani/old, euclidean at in/inity, the 

/ollowing inclusion holds and is continuous: 

Hs.~ c C$: 

i / s '  <s -n /2 ,  ~' <(~ +n/2. 

Proo/. If /E H j  we write 

l = gR/+ ( 1 -gR) l, 

where ZRE 9 ,  supp gRc B2a, R > R  0. The classical result for compact manifolds with C ~ 

boundary implies 

ZRfEC~', s' < s - n / 2 ,  fl arbitrary. 

We are then left to the study of the function (1 -;/R)/ whose support is the disjoint union 

of the ~A's. We denote by/A the function on R" (with support the exterior of some open 

ball) corresponding to (1 -gn) /  in the diffeomorphism ~v~. We have /AEH~.~(R~); Now 

since / E Hs, ~(R n) is equivalent to a~+ZD k/E H~_k(R n) for 0 ~< k ~< s, it is clear that  

Hs,~(R n) ~ C~'(R n) if s' < s - n / 2 .  (2.8) 
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To prove the stronger statement we argue as follows: 1EHs.~(R n) implies by Lemma 2.3 (b) 

Therefore, by (2.8) 

and by Lemma 2.3 (a) 

T~/~ ~' C(~+~)~_,,~(R ) 

Since this holds for every 0<e~<l,  we conclude that  /eC$:(R ~) for every ~ '<~+n /2 .  

Finally, the continuity of the inclusion follows from the fact tha t  T~ is an isomorphism. []  

LE~MA 2.5. I /  (M, e) is a complete riemannian manilold euclidean at in/inity we have 

the continuous multiplication property 

H,,.~ • H~,.~-~ H~.~ 
by 

(h, le)e->ll| lu 

i / s  1, sz >~s , s <sl +s2 -n /2  , ~ <~1 +~2 +n/2. 

Proo/. As in Lemma 2.4 the statement follows from the corresponding statement on 

R ~ together with the classical result for compact manifolds with C ~ boundary. Now since 

/EHs.8(R n) is equivalent to a~+kDk/EH~_k(Rn ) for 0~<Ic~<s, it is clear that  we have the 

continuous multiplication property 

Hs,.~,(R n) • Hs~.~(R n) ~ Hs.~I+~(R n) (2.9) 

if sl, s2>~s,s<sl+s~-n/2.  To prove the stronger statement we argue as follows: 

/leH~I.~,(R~),/2eHs~.~(R ~) imply by Lemma 2.3 (b) 

T~(h) e H~,.(~,+n/2)/~_,~/2(Rn), T~(I~) e H~.~.<~,+,~I2)I~_~I2(R'~). 

Therefore, by (2.9) 

T~(I~) T~(12) = T~(I1 | 12) eH~.(~+~+~)/~-~(R ~) 

and again by Lemma 2.3 (b) 

/1 |  ~ Hs,~l+$~. + n/2-enl2(R~) �9 

Since this holds for every 0<e~<l,  we conclude that  II| ~) for every (~ <(~1+~2 § 

n/2. Finally, continuity follows from the fact tha t  T 8 is an isomorphism. [ ]  

COROLLARY 2.1. I /  (M, e) is a complete riemannian mani/old euclidean at in/inity, 

Hs. ~ is a Banach algebra i] s>n/2,  ~> -n /2 .  
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3. Elliptic theory on a compact manifold K (with or without boundary) 

A linear differential operator of order m on sections of the tensor bundle E over the mani- 

fold M is a linear mapping C~ M)--+D'(F, M), with F another tensor bundle over M, 

which reads 

.Lu-- ~ a,~.D~u 
k=O 

where ak, 0~<]c~<m, are given tensorfields over M, sections of the tensor bundle 

(|174174 (in local coordinates where u=(u~'"~p) we have %D~u=(v~'"J~)with 
v~"'Jq=a~]:::~'~'"'JqDz, ... Dzkum"~). The operator L can be extended from C ~ sections 

of E some vector subspace of D' (E,  M), depending on the regularity properties of the 

coefficients a k. The system is said to be elliptic if for each xEM the linear map  between 

the fibers Ex and/~x over x of E and F 

E~ ~ F~ by u(x)~->a,~(| 

is an isomorphism for every covector ~=4=0 at  x. 

This hypothesis is expressed in local coordinates by  

det ( 5 ~  m) ~=0, for all ~ 0 ,  

where 5m and ~ are the representatives of am and ~: 

- -m  I - I  ~il...~f,a (am+ )+--a+,...+mj+ ~ , I , J = I , . . . , N .  

Note tha t  this determinant does not depend on the choice of coordinates, since am~ m is a 

section of E |  E*. The ellipticity condition implies tha t  Nm is even. I f  

det (hm~ m) 7> ~(e(~, ~))nm/a, ~ > 0 

we say tha t  the system admits the ellipticity constant ~. 

We shall give here a result for elliptic linear systems on a compact manifold which is 

not  the finest possible ~s far as the hypotheses on the a~ are concerned, but  which is easy 

to obtain from results proved in the available literature, and is sufficient for application 

to quasflinear elliptic systems. 

T H E O R ~  3.1. (Gs [9], Douglis-Nirenberg [7], Morrey [13].)Let L, 

L u  ~ c~mDm~ 
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be a linear homogeneous elliptic operator on K,  with a m continuous on K.  Then the/ollowing 

estimate holds/or every u e H,n 

lluH,~ ~< c(]l~ull~ + l]uHL.), 

where the constant c depends only on K,  the ellipticity constant ~, the C o norm of am and its 

modulus o/continuity.  

From this fundamental  theorem we shall deduce the following: 

T~EO~EM 3.2. Let L ~ ' ~ = o  a~Jl~ be a linear elliptic operator on K with coefficients 

such that a k E Hsk wi th , /or  0 <~ k <~ m, s~ >1 s - m >~ 0 and 

n 
s k > ~ + k - - m + l .  

Then the/ollowing estimate holds 

IlUlIH~ ~ C {llLull.._m + Ilul(~'}, (3.1) 

where the constant c depends only on (K, e) the ellipticity constant ~ of a m and the H ~  norms 

o / the  a~' s. 

Proof. (1) The hypotheses imply tha t  am E C 1, its C o norm and modulus of continuity 

depending only on its Hs~ norm. We have 

m-1 

a , n D m u = L u  - ~ akDku. 
k-o 

Thus, by  the previous theorem, for every u EH m 

Since II D~ull ~ - . ~  ~< Ilu I1-~-~ if 0 ~/~ ~ m -- l, the multiplication lemma gives 

lla~D~ll~, ~< c[la~ll.,~llul[.~o. 0<Jc~m--1, (3.3) 

if s ~ + m - l - l c - n / 2 > O .  Also, it is well known that ,  on a compact manifold, one can 

choose arbitrarily e > 0 and find a C such that ,  for every u ~Hm, 

llull.o~ < ~llull.~ + Cllull.. (3.4) 

We then deduce from (3.2), (3.3) and (3.4) tha t  

lluH~,~ ~< c (]I~H~. + INI, '}. 
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(2) When the inequality (3.1) is known for some s>~m, one deduces the estimate of 

order s + 1. Indeed, differentiating Lu we obtain 

akDk(Du)=DLu - ~ DakD~u - ~ akMk, (3.5) 
kffi0 k=O k=O 

where 
k - 1  

Mk= ~ RtDk-I-~u 
t=o 

and the R~ are linear in the i th derivatives of the Riemann tensor of the metric e and come 

from the commutat ion of covariant derivatives in (3.5). I f  we suppose tha t  uEH~+ 1 and 

for 0~<k~<m: sk>~s+l -m and sk>n /2+k- -m+l ,  then 

~ D%D~u <~ c ]]Dak]]H,k_~IID~U]]H~_ k 
I I k=O I IH._  m k = 0  

Similarly, we obtain 

2 a~Mk <.c [lakll.o~tlMkl.._~ 
kffi0 H~_m k=O 

and 
IIM ll.._  < cllull.._l, 

where c depends only on (K, e). Applying inequality (3.1) to (3.5) gives then 

HDu[[-. < (3.6) 

c depending only on (K, e), the ellipticity constant 2 of a m and Hsk norms the ak's. In- 

equality (3.6), together with inequality (3.1) for s, yields inequality (3.1) for s + 1. 

Remark. The hypothesis on s k can be weakened to 

q$ 

s k > ~ + k - - m ,  

if we assume tha t  II  ll-.  for 0 < k ~ < / - 1  and llDa ll., are sufficiently small. 

4. Elliptic theory on R n 

The following theorem is a particular case of a theorem proved in [14]. 

THEOREM 4.1 ([14], Theorem 3.1). Let L, 

-- am Dmu 
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be a linear homogeneous elliptic operator on It  ~, such that 

a -A eC , 

where Loo ~-- Arn D m is an elliptic operator with constant coefficients. Then/or  any real number 

there exists a constant c such that for every u 6 H~ ~ fl Ho.$ the following estimate holds: 

llull. ,  < c{llZ ll.o, +o + llull.0, } 

Remarlc. I t  is clear from the proof that  the hypothesis u 6Hm made by Nirenberg- 

Walker can be replaced by u s H~ ~ 

We deduce from this theorem (see also Cantor [2] in the same spirit): 

T]z]~o~EM 4.2. Let Lu  be an elliptic differential system on R n, 

Lu - ~ ak Dk u , 
k=O 

with coefficients such that: 

a~EHs~.ak, 0 ~ k ~ m - 1  

with sk >~s-m,  s a > ( n / 2 ) + l c - m  + l,  (~k>m--k--(n/2), /or O<~k<~m. Then for any real num- 

ber ~ and any s>~m there exists a constant e such that for every uEH~~176 Ho. ~ the following 

inequality holds 

liull.,. < + IIulI.o, }. (4.1) 

Proof. (1) The hypotheses imply by Lemma 2.4 that  am-A,nEC ~ for ~m+n/2>fl>O. 

Thus we can apply the previous theorem to 

m--1 
a mDmu=L~  - ~ akD~u, 

k=0 

obtaining, for every u E H 1~176 N H0. 

m--1 ~} 

(|! k~o llHo,a+ m 

Choosing a real number ~' such that  for every 0 4 Ic <~ m, ~ -  m + Ir + n/2 > ~ - 8' > O, Lemma 

2.5 gives 

k=0 HO,~+ m 
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under  the  above  hypothesis  on sk. Also, since c~' <c$, L e m m a  2.2 implies t h a t  we can choose 

arb i t rar i ly  e > 0  and find a C such tha t ,  for every  uEHm,a, 

IlUIIH~_I.,. < ~]]UIIH,~.~ + CllutlHo.~. (4.4) 

We then  deduce f rom (4.2), (4.3) and  (4.4) t h a t  

(2) We  now suppose t h a t  inequal i ty  (4.1) holds for some s>~m and every  c~ER and 

we shall p rove  it  for s + 1. Applying the  es t imate  (4.1) for  s and  the  real n u m b e r  c$ + 1 to 

k=O k=O 

we obta in  

" k=O Hs_m,(~+m+l 

L e m m a  2.2 implies t h a t  under  the  hypotheses  made  on sk and  ~k (where now sk/> s + 1 - m) 

k=O 

m-1 

H.II... § 

Thus we find 

which, together  wi th  the  inequal i ty  (4.1) supposed for  s, ~ gives inequal i ty  (4.1) for  s + 1, ~. 

[] 

Remark. The  hypothesis  on sk can be weakened to  

if we assume t h a t  

is sufficiently small. 

ra-1  

2 Ila~ll.,..o. + libra-- Amll..o, ~o 
k=O 
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5. Equations with constant coeIiicients 

I t  is known (el. John [10]) tha t  the homogeneous elliptic system on R n with constant 

coefficients 
Lu =- AmDmu 

has a fundamental solution of the form 

F ( X )  = ~0(X)"gF r1(3~) log Ix I 

where F 0 and F 1 are homogeneous of degree m - n  in x, and F I = 0  either if n is odd or if 

n > m. We deduce from the existence of such a fundamental solution the following lemmas 

(adapted from 51irenberg-Walker [14]): 

LEMMA 5.1. The homogeneous elliptic system with constant coe//icients 

Lu -- Am Dmu = / 

has at most one solution in H 1~176 N Ho. ~ i/(~ > - n / 2 .  

Proo/. Let {~R}0<a<oo be a collection of C~ ~ functions on R n such that  

(i) 0~<~(x)~<1, VxERn; ~R(x)=l for Ix[ ~<1; ~R(x)=0 for [x[ ~>2R. 

(ii) there exists a constant c, independent of R, such that  

[ D ~ ( x ) [  < eR -k, u  0 < k < m .  

Since F is a fundamental solution (LF =(~) and ~ u  has compact support we have 

the convolution of three distributions, two of them (L, ~nu) with compact support being 

associative (of. for instance [5]). We may express 

L(~Ru) = ~nLu+ ~ C~Dt~Dm-Zu. 
l = l  

Thus 

~ a u = F *  (~aLu) + fR r ( x - - y )  ~ c~(nz~RDm-lu)(yldy, 
~<lul~<2R z=l 

which if u EH~ r may  be rewritten as 

~R u = F * (~R Lu) + ~ ( - 1)m-zC, I~, 
l=1 
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It = J R~<IyI<2R Dm-z[F(X-- y) Dl ~R(Y)] u(y) dy. 

By Schwarz'  inequali ty and the  properties of F and the  family ( ~ } ,  It  is bounded by  

{fR j 11'~ ]Iz] <~ a-2~(y)[D'*-Z[F(x-y)  DZ~R(y)][2dy[ [[u H0~ 

m-t 1og~]x__y[ R -e(l+k) 111e 

< c'R -~-n/~ log R[[u[[~0.~. 

I t tends to  zero when R tends  to  infinity if 5 > - n/2. Thus Lu  = 0 implies u = 0. [ ]  

Under  the hypotheses of Lemma  5.1, if Ix[ < R  we have: 

u(x) = ~ r ( ~ -  y) l(y) dy + J(~) + ~ ( - 1)m-% Z~(~), 
JB 2.~ /=1 

where 

J(x)  = J~<IyI<2R F ( x -  y) [~R(Y) - 1]/(y) dy. 

If  now we assume [ e H0.$+m, then  J is bounded by  

11/2 IJl<{f~J-"'~ I II111~o,~+~ 
2 1/2 

< ~'R -~-~'~ log RIIlll~o,~+o 

and therefore,  if ~ > - n / 2 ,  also tends to zero when R tends to  infinity. Hence 

u(x)= fmP(x-y)/(y)dy, /=Lu. (5.1) 

Lv, MMA 5.2. I /  m < n and [ E Ho,e+ m with - n / 2 < ~ < - - m + u / 2 ,  then every solution u 

in H~~ n Ho.~ O/ 
Zu---- AmDmu = [ 

is also in Hm. ~ and there exists a constant c such that 

Ilull.~.~ < ~lllll.o.~+~- (5.2) 
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Proo/. We write u=ut+u~, with ul=~Ru for some fixed R. Since u 1 has support  in 

/~2R we have from Theorem 3.1 

ti~tii'.(B~R>--< c IILUlil--0(B~R> + ll~lll~.<~R)~" (5.3) 

To estimate u s we use (5.1) to write, if m<n 

R lYlm§176 " 

which gives if x E R ~ -  Ba, since also supp / ~ R ~ -  Bs, 

and thus, by  Lemma 2.1 of :Nirenberg-Walker [14], if ~ > -n /2  and m +~ <n/2 

which in turn by Theorem 4.1 implies 

[[~II,,o,~ < ~llLu~llHo.~+~. (5.4) 

On the other hand we can express 

Lul = A,~D'*(~Ru) = ~AmDmu+ ~ CkA,~Da~RD'~-ku. 
k - 1  

Hence we have 

Analogously we find 

llL~ll-o.,+~< r (ll/ull-o.,+~ + I[~IIH~_:=~)} (5.6) 

having used the fact tha t  for functions with support  in some fixed bounded set the norms 

H~ and Hs. ~ are equivalent. We conclude from (5.3), (5.4), (5.5), (5.6) that ,  ($' being chosen 

arbitrarily, 

11~,II-., ~< ~ (IV~ll,o,~,§ 11~I1-o_~.~.}- (5.7) 

Using the fact that ,  under the hypothesis on ~, L is injective on H~.$ (Lemma 5.1) and 

tha t  Hm. ~ is compactly imbedded in Hm-l.~' if (~' <c~ (Lemma 2.1) we deduce from inequality 

(5.7) the existence of a constant c such tha t  
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Indeed, if there is no such c there exists a sequence {u.} with HUn[[H,,.~=I such that  

IILu ll.0, +  tends to zero. For 8 '<~ we have Thus {u~} admits a con- 

vergent subsequence in Hz_l. 8, still denoted {u=}, and is arbitrarily 

small, as well as by the hypothesis. By inequality (5.7) applied to 

u,~-u,~,, the sequence {u~} converges also in H~.a to some u, different from zero since 

Ilu=ll. ,  = 1. This contradicts the injeetivity of L. 

T ~ oR ~ M 5.1. The homogeneous elliptic di//erential operator with constant coeHicients 

o n  l~n: 

L = AmD m 

m <n, is an isomorphism Hs,a-->Hs_m,a+m i/s>~m, - n / 2 < 5 <  - m e n ~ 2 .  

Proo/. L is injective by Lemma 5.1. We construct a solution of Lu=]  w h e n / E  O by 

u = F * / .  

I t  is well-known that  this solution is C ~, thus also in H~ ~ We prove it is in H0.$ by the 

same computation used to estimate Ilull.0,  in the proof of Lemma 5.2, which shows also 

that  u EHm.a. The density of O in Hs_m.~+a, together with inequality (5.2), completes the 

proof of the surjectivity of L and the continuity of its inverse. 

6. Elliptic linear systems on manifolds euclidean at infinity 

We consider now linear differential operators of order m on sections of a tensor bundle E 

over a riemannian manifold (M, e), euclidean at  infinity (definition 2.3), 

Lu = ~ a~ l ~  u. 
k~ 0 

We shall make the following hypotheses on the coefficients %, 0 ~<k~m, which are given 

tensorfields over M, sections of the tensor bundle (| TM) k | E* | F. 

Hypothesis I (regularity). (M, e) is a complete riemannian manifold euclidean at in- 

t inity and there exist nonnegative integers se and real numbers de such that  

n 
s k > ~ +  k - m +  1, d k > m - k - ~ ,  0~< k~<m 

and 

(1) akEHs~,~k, 0 ~ k ~ < m - 1  

(2) am-AmeHs.,,~,., 
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where A m is a C ~ tensorfield on M which is constant  (DAm=O) in each neighborhood g2 A 

of infinity. 

I t  results f rom hypothesis  I and Lemma 2.5 tha t  for any  ~ER, L is a continuous 

linear map  

L: Hs.~-~H~-m.O+m by  u~-> ~ akDku 
k=O 

if sk >~ s -- m >~ O. 

Also, hypothesis  I and L e m m a  2.4 imply  tha t  there exists a fl > 0 such tha t  a m - A~ E C~. 

Hypothesis 1 I  (ellipticity, cf. w 3). For  each x E M  the linear map  between the fibers 

Ex and F x over x of E and 17 

E~-+F~ by  u(x)~--~am(| 

is an  isomorphism for every covector ~=~0 a t  x. 

THEOREM 6.1. Let (M, e) be a complete riemannian mani/old, euclidean at in/inity. 

Suppose that the coe//icients o[L  satis]y hypotheses I and I I .  Then i/s>~m, sk >~s-m and (5 

is any real number, there exists a positive constant c such that/or every u E H~ ~176 N Ho.$ with 

Lu E H~-m.~+,n the/ollowing estimate holds: 

liu]l...  c + Ilull.0. }. 

Proo]. I t  relies on the  elliptic estimates on a compact  manifold (w 3) and  on R n (w 4). 

Let  R be a fixed number  R > R 0 and let Za and  Y)A be C ~176 functions on M such t h a t  

ZR(x) = 1 for xEBR, zR(x) = 0  for x E M - B 2 R  

~A(x) = 1 if xEs ) = 0  if xE~B, B # A .  

For  every u we have 
P 

u=uR+ ~ ua, 
A=I 

where un = g n u  has its support  in B2R while u A = (1 --ZR)~AU has its support  in ~A. We have 

Ilull. ,  < Ilu ll.s, + 5 lluAll... . (6.1) 
A 

(a) B y  the  elliptic theory  on a compact  manifold with boundary  there exists a con- 

s tant  c such t h a t  
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On the  other hand  we have 

LuR'--- ~ akD~(ZRu)=Z~Z,u+ ~= ~ C~akD~ZRD~-Zu, 
kffiO k = l  l=1 

from which follows 

Iliu,~ll.~=(B~+ <~ c {IIL~II.. =<B~)+ Ilull.~_l<.~,} (63) 

Combining (6.2) and (6.3) and taking into account  the  fact  t ha t  on B2n , with R fixed, 

the Hs and Hs, e norms are equivalent  for any  9 E It, we obtain 

IluRIl.:,~ ~< c {llLull.=_. ~+. + Ilull.._l, ~,} (6.4) 
with 5' arbi trary.  

(b) Let  us denote by  ~TA the  image by  the  diffeomorphism +A of uA; it is a I t  N valued 

function on ~0A(~A)=It~--B. Let  us denote by  L the linear operator  acting on ~A and 

corresponding to  L. Applying Theorem 4.2 to  L~A we obtain 

The H:.8 norms defined on M of tensorfields with suppor t  in ~A are equivalent to the 

H:.~ norms defined on 11 ~ of their images by  ~A. Thus, we have also 

Ilu~l]... ~< c {llLu~ll.._=,~+= + IIn/I~0,~}. (6.5) 

On the other  hand  we can express 

LUA: ~ ak.Dk<<l-Z~)u)=<l-Z=)Lu - ~ ~ C~akD:XnDk-Zu, 
k - O  k = l  l = l  

from which follows 

[[Lu~l[~,_o ~+= ~< c {ll~uI[.._o.~+= + IluIl-~_:(.=>}. (6.6) 

Combining (6.5) and (6.6) we obtain 

Ilu~ll.. ~ ~< e {IIL~[I.:_=.~+ + llull-0,~ + IluI[-:_: ~,} (6.7) 

with 5' arbitrary.  Finally, (6.7) and (6.4) together  with (6.1) imply the result, if we choose 

5' <5  and use L e m m a  2.2. 

T ~ o ~ v , M  6.2. I / the  operator L satis/ies hypotheses I and I I ,  i/s>~m, sk >~s-m and 

i/ - n/2 < 5 < - m § then there exists a constant c such that/or every u E Hs. ~ 

II~ll-,,~ ~< ~ {IIL~II-,_=,~+= + llui].._~ ~.} (6.s) 

(~) Note that there exists such a (~ E It if and only if n>m. 
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with (5' arbitrary. I / i n  addition L is in]ective, there exists a constant c such that the /o l lowing 

inequali ty  also holds: 

l lu l l , . .o<cl lLul l , .  ..... ~+ .  (6.9) 

uA by  

where 

Proo/.  Following the argument of Theorem 6.1, we now use Lemma 5.2 to estimate 

lluAl[,..o < cllLoou~[[,,._.,.o+o (6ao) 

m--1 

LoouA ~ Am DmUA = Lu~ - (a m - A,n) DmuA -- ~ ak D~UA �9 
k=O 

By hypothesis I we have a m - A ~ E H,~.a~ and a k E Hs~" *k, 0 ~ k < m - 1, w i t h  ~ > m - k - n/2,  

0 < k < m .  Thus we have also am--AmEHs,~.g,~ and akEHs,.S~, 0~<k~<m-1,  for some ~k such 

tha t  5k > ~k > m - k - n/2.  Therefore, by Lemma 2.5 

m--1 ) 
(am-Am) Din'leA+ ~,lazcDku A <e llam-A.dl..j,, ~+~_o lla~ll,,.~.~ lluAll-.. 

II k=O IIH,_m.a+ra = 

/~ow for any/EH~.Q restricted to M - J ~  R and any Q ER, we have if Q' <Q 

IIIII-,,Q<--~) ~< R~~ ~ 

I t  follows tha t  if we take R large enough we can deduce from (6.10) 

which, together with (6.6), (6.4) and (6.1) gives inequality (6.8) with c~' arbitrary. From 

this inequality we can prove, by  following the argument  of Lemma 5.2, tha t  if L is in- 

jective inequality (6.9) is also satisfied. 

TH]~OREM 6.3. I /  the operator L saris/ice hypotheses I and I I ,  i /  s>~m, sk > ~ s - m  and 

i/  - n / 2  <(~ < - m  + n/2  then L maps  Hs. a into H . . . . .  a+,n w i t h / i n i t e  dimensional  kernel and 

closed range. 

Proo/.  Since L is continuous, ker (L) is a closed subspace of Hs.$. I t  is finite dimen- 

sional if and only if the set S = { u e k e r  (L)[ Ilull.,.~=l} is compact. I* therefore suffices 

to show tha t  every sequence in the closed subset S contains a subsequence which is Cauchy 

in Hs.~. net  {u=} be such a sequence. I f  8 ' < 8  we have Ilu~llH._l.~ <1 and since Ilu~ll... ~ =1 
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by  Lemma 2.1 there exists a subsequence, still denoted {un} which is Cauchy in H~_L$,. 

Applying inequality (6.8) of Theorem 6.2 to u~ -u~, we have, considering tha t  {Un} ~ ker (L) 

which shows tha t  {Un} is Cauchy in He. $. Hence ker (L) is finite dimensional. 

To show tha t  the range of L is closed we note tha t  since ker (L) is finite dimensional 

we may  write Hs .$=ker  (L)| W with W closed. The operator L is injective on W; there- 

fore, as in Theorem 6.2 there exists a constant c such tha t  

Ilull ,. cll ull ,_m.+  (6.11) 

holds for all uC W. Now let {/~} be a sequence in L(Hs.~) such that/n-->]EH~_m.~+m. Let  

{w~} be the corresponding sequence in W such tha t  Lwn=/n, hEN. Applying (6.11) to 

Wn-Wn, we see tha t  {wn} is a Cauchy sequence in W. Hence, since W is closed, w ~ w E  W 

and Lw = ]. Thus the range of L is closed. []  

We denote by E~, s >~m, the set of elliptic linear differential operators L =  ~ - 0  % D~, 

whose coefficients satisfy hypotheses I and ][I, with sk>~s-m. We define a metric (hence 

a topology) on E~ by  setting 

d(L, L') = sup a k -  a~ ]H,k ~k" 
O~k~m 

T H ~ o ~ E ~ 6.4. Let Lu be an elliptic linear di]/erential system 

Lu= ~ akD~u 
k~O 

such that L belongs to a continuous/amily L t E Es, t E I = [0, 1], L 1-~ L, o/injective operators. 

Then i / L  o is an isomorphism H s . ~  Hs_m,~+m, with 

-n /2  <~ < -re+n~2, 

the same is true/or L. 

Proo/. L o being an isomorphism, the same is true of Lt for t<e .  One shows tha t  Le, 

which is by  hypothesis injective, is also surjective, by  considering tha t  if ]eH~_m,~+m, 

there exists, for each t < ~, ut E Hs.~ such tha t  Ltu t =/. By Theorem 6.2 we have for every 

vEH~.$ and tC 1 

Ilvll., < cllL vll.. 
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where the  constant  e can be chosen independent  of t, since I is compact .  Thus we have  

Hence  if tn is a sequence of numbers  converging to  s the  sequence (ut~} is uni formly  bounded 

in Hs.$ and  therefore admi ts  a subsequence still denoted (u~.} which converges weakly  

to some u in Hs. ~. The sequence (Ltun=/}  converges weakly  t o / ~ u  in Hs_m.~+ m. Thus 

L~u -~/, and L~ is surjective.  [ ]  

I n  the  case t h a t  E is the  t r ivial  tensor  bundle M •  and  m = 2 ,  the  elliptic linear 

operator ,  satisfying the  regular i ty  hypothesis  I 

Lu = a 2. D2u q-a 1. Du +ao, 

act ing on scalar functions u on M,  is by  the  m a x i m u m  principle (cf. for example  [8]) in- 
HlOC j ective on e N CO,, ~ ' >  0, if a 1 is bounded and  a 0 ~<0. Thus  if L is a l inear differential  

opera tor  of order 2 acting on scalar functions, L E  E~ and a o ~<0 implies t h a t  L is inject ive 

on H j  if s>n/2+2,  O>-n /2 .  Since the  subset  Is of operators  in E~ having a 0 ~ 0  is 

convex,  by  Theorem 6.4 if there  is some LoEI ~ which is an  isomorphism H~.~->H~_2.~+2, 

with - n / 2  <(~ < - 2  + n/2, then  every  L E I s is such an isomorphism.  We shall in fact  show 

THEOREM 6.5. (Ae)" with tt a positive integer less than n/2 is an isomorphism:H~,~ 

Hs_2~.~+2 ~ i / s  >2/z § n/2 and - n/2 <(5 < - 2 #  + n/2. 

Proo/. (1) A e is b y  the  m a x i m u m  principle injective on C ~ N C~,, ($'>0, therefore on 

Hs.~ if s>n/2+2, ~ > - n / 2 .  I f  / E O ,  A~u=/ has  one solution [4] uEC~_2, thus  uEHs.~, 

(~ <n/2--2. B y  Theorem 6.2 this solution satisfies the  inequal i ty  

which gives, by  complet ion of ~ in the  H~_2.~+ 2 norm the  sur ject ivi ty  of A~ on H~_2.~+ 2 

and  the  cont inui ty  of its inverse. 

(2) We  then  proceed b y  induction.  Assuming the  theorem for # = v -  1, we shall dem- 

ons t ra te  it  for # = ~ .  Le t  uEH~.~ with s>2~+n/2, ~> -n/2,  satisfy (A~)~u--- A~(A~-lu) =0 .  

Since A~-lu EHs_2(~_I),~+~(~_I ) and s - 2 ( ~  - 1) > 2  +n/2, (~ + 2(v - 1) > -n/2,  i t  follows t h a t  
i v -  1 A~-lu=O and therefore,  b y  the  assumed inject ivi ty  of ~ , u =tJ. Hence  (A~) ~ is injective 

on Hs.~. Le t  now / E Hs-2~.~+~ wi th  s > 2v + n/2, - n/2 < ~ < - 2v + n/2. We shall show t h a t  

~here exists a uEH~.~ such t h a t  (Ae)~u = / .  We  write 

~v =/, ( h ~ ) ~ - ~ u  = v.  

Since / ~Hs,_2.~,+2 wi th  s '  = s - 2 ( v -  1) > 2 +n/2 and ~' =(~ + 2 ( v -  1) satisfying - n / 2  <(~" < 

- 2  +n/2 there  is a v~Hs,~, =H~_2(~_l).~+~(~_x) such t h a t  Aev = / .  Then  the  induct ive hypo-  

9t - -802907 Acta mathematica 146. Imprim6 le 5 Mai 1981 
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thesis  gives a u EH~.~ such t h a t  (Ae)~- lu--v .  Thus  (Ae)" is sur jec t ive  on H~_2,.~+2,. F ina l ly ,  

the  con t inu i ty  of the  inverse  of (Ae)~ follows f rom t h a t  of the  inverses of (A~) "-1 and  A e. 

W e  conclude wi th  the  fol lowing theorem which is a consequence of the  preceding ones 

and  is useful in  genera l  r e l a t i v i t y  (a pa r t i cu la r  case L = A e on R" is t r e a t e d  in [12]). 

THEOREM 6.6. Let L be the linear second order operator on scalar [unctions over M 

L -  = A g + [  

where A~ is the laplace operator o /an  asymptotically euclidean riemannian metric g on (M, e), 

that is such that 
g-eeH~,.o, a>n/2+l, 9>-n/2 

and / is a scalar [unction, ]eHs,.~o, ~ 0 > 2 - n / 2 ,  So>n/2-1 ,  [<0, then L is an isomorphism 

Hs.a-->Hs_2.~+2 i / 2  < s  < 2  + i n f  (So, a -  1), s > n / 2 ,  - hi2 < ~ < - 2 + hi2. 
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