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1. Introduction

Let X be a Banach space over the real numbers. Let n and k be integers with 2<%k <n.
We say that X has the n.k. intersection property (n.k.L.P.) if the following holds:

Any n balls in X intersect provided any % of them intersect.

In [2], O. Hanner characterized finite dimensjonal spaces with the 3.2.1.P. by the
facial structure of their unit hall. He also proved that this property is preserved under I,-
and I, -summands, ie. direct sums X@®Y with the l;-norm |z||+|ly|| or the I, norm
max (]|z[|, |ly]]). We shall prove the converse of this result. Any finite dimensional Banach
space X with the 3.2.1.P. is obtained from the real line by repeated ,- and [-summands.
Hanner proved this for dimension at most 5.

In sections 2 to 4 we gradually introduce the concepts and theorems that we need.
To become familiar with the techniques involved, we have included the proof of some of
the results. In sections 5 and 6 we prove some technical lemmas and characterize the
parallel-faces and split-faces among the faces of the unit balls of Banach spaces with the
3.2.1.P. These results are used in the proof of the main result in section 7.

Banach spaces are denoted X, Y, and Z. The closed ball in X with center x and radius
r is denoted B(z, r), but for the unit ball we write X; =B(0, 1). The dual space of X is
written X*. The convex hull of a set § is written conv (S) and the set of extreme points
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of a convex set 'F is written o,F. (X®Y), and (X@Y), o denotes the direct sum of X
and ¥ with the norms [|(z, »)|| =||=| +||¥|| and ||(x, ¥)|| =max (|||, [|¥||) respectively.
All spaces are assumed to be real.

2. Faces of the unit ball

If M is a subset of the unit ball X, of X, we denote by face (M) the smallest face of
X, containing M. Recall the following fact:

Lemma 2.1, Let M= X, and let y€X,. Then the following two statements are equivalent:
(1) y€face (M)
(2) There exist x€conv (M), z€X, and o€ (0, 1] such that
z=oy+(l—a)z.
The notion of parallel-faces will play a central role throughout this paper.

Definition 2.2. Let F and H be faces of X; with Fc H. F is called a parallel-face
of H if there exists another face G of H such that the following conditions are satisfied:

1) FnG=9

(2) H=conv (FUG)

{3) Whenever x,, 2,€ F, 4, ¥,€G and 4, 2,€[0, 1] are such that

Mo+ (1=2)yy =A%y +(1—2,) Y,
then 4, =4,.

Ezample 2.3. Assume H is the face in Fig. 2.1. Clearly F, is a parallel-face of H. The
face F, satisfies (1) and (2) but not (3) in definition 2.2.
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It follows from Theorem 3.6 that if X has the 3.2.1.P., then (3) is a consequence of
(1) and (2) in definition 2.2.
We denote by P(H) the set of all proper parallel-faces of H when H is a face of X,.

Py (H) is the set of all maximal (with respect to inclusion) proper parallel-faces of H.

Definition 2.4. Let F and H be faces of X, such that F< H. F is called a split-face
of H, if there exists another face G of H, such that the following conditions are satisfied:

Q) FnG=0
(2) H=conv (FUGQ)
{3) Whenever xz,, 2,€ F, 4, ¥,€G and 1,, A, €[0, 1] are such that

Mz +H(1=A)yy = A2+ (1 —25) Y

then A, =4, and if 4,50, 1 then also z; =z, and ¥, =y,.
Obviously every split-face is also a parallel-face. The opposite is not true.

Example 2.5. Let X =(I3®R),, and let H be the following maximal proper face of
X,: H=conv (z,, %y, &3, T4, ¥5) Where 2;=(1,1,1,0), £,=(1, —1,1,0), z,=(1, —1,—1, 0),
z,=(1,1, —1,0) and 2,=(0, 0, 0, 1).

The vertex {x;} is a split-face of H, conv (z,, %,) is a parallel-face but not a split-face
of H, and conv (2, #;) is neither. See Fig. 2.2.

When F and H are faces of X; with F< H, we denote by Fy the set

Fy={z€H: face (z) N F=0}.
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Note that if F is norm-complete, then H =conv (F U Fy) [1]. If F is a parallel-face of H,
then necessarily H =conv (FU Fy) and Fy is convex. In fact, Fy=@ in definition 2.2.
Example 2.3 shows that F; can be convex even though F is not a parallel-face. Usually

Fy is non-convex. Fy is convex if and only if it is a face.

TrEOREM 2.6, [3]. Let H be a face of X,. Let F be a split-face of H and assume M is
face of F and N is a face of Fy. Then conv (M U N) is a face of H.

Proof. Show this or look at [3].

Definition 2.7. Let F be a proper face of X,. F is called an M-face if there exists a
G EP,(F) such that GzEP,(F).
It H is a proper face of X;, we denote by m(H) the following number (if it exists)

m(H) = sup {dim span F: F is an M-face of H}.
m(X) denotes the number (if it exists)
m(X) = sup {m(H): H a proper face of X,}.

Ezample 2.8. (a) Let H be as in example 2.5. The largest M-face of H is F=
conv (%, &y, 3, 4), 80 m(H)=dim span F'=3 <4=dim X.

(b) Let X=(l§®R),OO. Let F'=conv (2, ..., ) where z,=(1,0,0,1), 2,=(0,1,0,1),
z,=1{0,0,1,1), 2,=(1,0,0, —1), ;={0, 1,0, —1), #4=(0,0, 1, —1). Then ¥ is a maximal
proper face of X,. Both G=conv (2, @y, #3) EPy(F) and Gr=conv (z,, x5, @) EPy(F).
Hence F is an M-face. We have

m(F) = dim span F =4 =dim X,
(a) and (b) should be compared with the main result Theorem 7.3.

Definition 2.10. X is called a CL-space if X; =conv (¥ U — F) whenever F is a maximal
proper face of X;.

ProrositionN 2.11, [7]. Let X be a finite dimensional space. Then the following state-

ments are equivalent:
(1) X is a CL-space.
(2) For all 2€0,X, and {€3,X7, f(x)= *1.
(3) X* i¢s a CL-space.
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Example 2.12. (a) If X =13, or X =17, then X is a CL-space.
(b) Assume X is a finite dimensional CL-space and let {f, ..., f,} <9, Xi be a basis
for X*. Then the mapping 7T": X1y defined by

T(x) = (f](x): veey fn(x))

is a linear isomorphism that maps every extreme point of X, to a corner of the n-cube
(Ix);. Hence the unit ball X; can be obtained as a convex hull of some subset of ,(I%);,

where n=dim X. This was observed in [7].

3. Intersection properties

Definition 3.1. Let n and k be integers with 2 <k <n. X is said to have the ».k. inter-
section property (n.k.1.P.) if the following condition is satisfied:
Any 7 balls in X intersect provided any % of them intersect.

Example 3.2. (a) Let {[x;, y,]}i-1 be a set of n balls in B with #,; <y, for all 4. If they
intersect mutually, then x; <y, for all 7 and §, such that there exists an x €R with z; <z <y,
for all ¢ and j. Thus € N~ [=;, ;). Hence the real line has the n.2.1.P. for every n>2.
It follows that R has the #n.2.1.P. for all n>%k>2.

(b) It follows from Helly’s theorem that every Banach space X with n=dim X <co
has the (n+2).(n+1).1.P.

We refer to [7] for an extensive study of the intersection properties. Let us mention

here without proof the following results.

TaEorEM 3.3, [7]. X has the 4.2.1.P. if and only if X* is isometric to the space L,(u)

for some measure u.

CoROLLARY 3.4, [7]. Assume X is finite dimensional. X has the 4.2.1.P. if and only if
X =13, where n =dim X.

THREOREM 3.5, [6]. Assume X is finite dimensional. X has the 4.3.1.P. if and only if
X=(E,®...® E,),, where dim E,€{1, 2}.

In the following we shall be concerned only with the 3.2.1.P. Hanner characterized
the finite dimensional spaces with the 3.2.1.P. by their facial properties [2]. The following
theorem which extends Hanner’s results was proved by Lima.

TarorEM 3.6, [5]. If X is a real Banach space, then the following statements are equiv-
alent:
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(1) X has the 3.2.1.P.

(2) If », y€ X with ||x|| =||ly|| =1 and face (x) N face (y) =D, then ||z —y|| =2.

(3) If Fy and F, are disjoint faces of X,, then there exists a proper face F of X,, such
that F.c F, F,c —F and X, =conv (F U —F).

(4) If x, y€X, then there exist z, u, v€X such that

x=z+u, =l = ||l + ]
y=2+v, lloll = ll=l + [l

o =3l = lleli + ol
(5) X* has the 3.2,1.P.

CoroLLARY 3.7, [4]. If X has the 3.2.LP., then X is a CL-space.

Example 3.8. (a) Since 3, has the 3.2.1.P., we get from (5) of Theorem 3.6 that {f has
the 3.2.1.P.

(b) Assume Y and Z have the 3.2.1.P. Then (Y ©Z),, has the 3.2.1.P. by (4) of Theorem
3.6 and (Y ®©Z),, has the 3.2.1.P. by (1) of Theorem 3.6.

ProPOSITION 3.9. Assume X is a finite dimensional CL-space and that F and H are
proper faces of Xy such that F< H. If F is a maximal proper face of H, then F is a parallel-
face of H.

Proof. Since F i a proper face of H, there exists an 2 €8, A\ F. By Proposition 2.11
and [5; Proposition 3.2], there exists an f€3,X7Y such that f(x)= —1 and f=1 on F. Let
G={y€H: f(y)=1} and M={y€H:f{(y)=—1}. By Proposition 2.11, we get H=
conv (G U M). Hence @ is a parallel-face of H. Since F= G and F is a maximal proper
face of H, we get F' =@, such that F is a parallel-face of H.

Prorosron 3.10. Assume X is a finite dimensional space with the 3.2.1.P. and that F
and H are proper faces of X; such that FSH. Then the following statements are equivalent:

(1) F is a parallel-face of H.
(2) Fy is convex,
(3) There exists €0, X7 such that F={x€H: f(x)=1}.

Proof. Note that Fy is convex if and only if it is a face. Since dim X < oo, we always
have H=conv (F U Fy). It follows from Theorem 3.6 that if (1) and (2) in definition 2.2
is satisfied, then (3) is also satisfied. Now the equivalence of (1), (2), and (3) is obvious.
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ProrositioxN 3.11. Let X be a finite dimensional space with the 3.2.1P. and let F
be a proper face of X,. Then Y =span F is a CL-space.

Proof. Let € Y with |[#] =1.Then we can writex =y —z wherey, z€cone (F) = Ui F.
By (4) of Theorem 3.6 we may assume ||z|| =||y|| +|[z]|- Hence Y;=conv (F U —F), and
2,Y,=0,FU —8,F<d,X,.

Let x€8,Y,; and let f€0,Y;. By the Hahn-Banach theorem, there exists a g€9,X7
such that g|y=/. Hence, we get f(z) = +1. Thus ¥ is a CL-space.

That most CL-spaces do not have the 3.2.1.P. was known by Hanner [2]. Here is an
example which shows that ¥ in Proposition 3.11 need not have the 3.2.1.P.

Example 3.12. Let X=(l§®l§),w. Let f=(1,1,1,0,0,0) and g=(0, 0,0, 1, 1, 1) €5, X7,
and define a face @ of X, by
@ = {wEX: f(o) = 1 =g(a)}.
Then
G ={(ty, ..., tg) EXy: 8y + o+ =Fy +E5+Eg=1}.

Y =span @ is a CL-space by Proposition 3.11. Consider the following extreme points of
G x1=(1’ 0,0, 1,0, 0): x2=(01 1,0,0,1, 0), ?/1=(0, 0,1,0,1, 0)’ y2=(1$ 0,0,0,0, 1)’ %=
0,0,1,1,0,0), and 2,=(0, 1, 0, 0, 0, 1). Then we have

Ty + (Y1 —Y2) = 2o+ (21— 2,)
and it is easy to see that (in Y)
Y e B ) W
face( ) )nface( 3 ) &.

By (2) of Theorem 3.6, we get that ¥ does not have the 3.2.1.P.

4, L- and M-summands
Definition 4.1. Let P be a projection in X,
(1) P is called an L-projection if for all x€X,

|| = |P]| + ]|z —Px].
(2) P is called an M-projection if for all z€X,
ll#|| = max ([[P], ||l=—Pa]).

(3) The range of an L-projection is called an L-summand of X.
(4) The range of an M-projection is called an M-summand of X.
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Observe that if P is an L-projection in X, then X =(Y@Z),, where ¥ =P(X) and
Z=(I-P)(X). Similarly, if P is an M-projection in X, then X =(Y ®Z),  where Y =P(X)
and Z = (I —P)(X). The following proposition was proved by Alfsen and Effros in [1]:

ProprosiTiON 4.2, [1]. Let P be a projection in X. Then P is an L-projection in X if
and only if P* is an M-projection in X*.
The same paper of Alfsen and Effros contains the following result.

ProProsiTION 4.3, [1]. Assume X, contains a maximal proper face K such that X, =
conv (K U —K). Then the map F—span F is a one-to-one correspondence between the proper
split-faces of K and the proper L-summands of X.

Since we will use one half of this result in section 7, we will indicate the proof of this
part here.

So assume F is a proper split face of K. It follows from the definition of a split-face
that K =conv (F U Fg). (In fact, Fx=G in definition 2.4). Define ¥ =span F and Z=
span Fy. Then X =Y +Z. Assume £€ Y N Z. Then x =1, —y, =2, —2z, where y,, ¥, € cone (F)
and z,, z,€cone (Fx). Hence y, +2,=¥,+2,. Using that the norm is additive on cone (K)
and (3) in definition 2.4 we get ¥, =y,. Hence 2 =0 and Y NZ=(0). Thus X =Y @ Z.

Let now y€Y and 2€Z and z=y+2. We can write x=x, —z, where x,, z,€cone (K)
and ||| = ||| +||o,]|. Then use that K=conv (FU Fg) and write z;=y;+2z; where
y;€cone (F) and z;Econe (Fg); i=1, 2. Then x =y +2z=(y; —Y,) + (2, —2,). Since X =Y DZ,
we get y =y, —y, and 2=z, —z,. Using that the norm is additive on cone (K) now gives

leell = Nl ]| + fl2e]] = flon+2a]] + iz +2e]
=l + |zl + || 9all + |22l
= gl +|l=ll = ll=]l.

Thus X =(Y@® Z),, and Y is the range of an L-projection in X.

ProprosiTiON 44. If X has the 3.2.1.P. and Y is an L- or M-summond of X, then Y
also has the 3.2.1.P.

Proof. Use that Y is the range of a norm-one projection in X.

5. The spaces H"(X)
Definition 5.1. Let n>2 be an integer. We denote by H™(X) the space

Hn(X) ={X= (x].’ seey x,,)eX": i xi=0}

-1
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equipped with the norm

x|l = ;1 |l for x = (24, ..., z,) € HYX)

Clearly H™(X) is a closed subspace of (X@®...® X);». In dealing with the intersection
properties mentioned in section 3 the spaces H"(X) have shown to be very useful. This ,
stems from Theorem 5.2 below which was proved in [4]. This theorem translates the inter-
section properties of balls in X into properties of the set of extreme points of the unit
balls of the spaces H*(X*). We shall refer to the following subsets of H*(X): For 4, j in-
tegers with 1<{<j<n, let 8}; be defined by

Sty ={x=(2, ..., %,) EHY(X): ||x||]=1 and x,=0 when k=1, j}.
For a proof of the following theorem we refer to [4].

THEOREM 5.2, [4]. Let n>2 be an integer. The following statements are equivalent:

(1) X has the n.2.1.P.
(2) & HMX*), e U{Sh 1<i<j<n}.

Example 5.3. Let X =R. Then H3%X) is a subspace of I} of co-dimension 1. H3(X),
is the convex hull of {xi, .., X3} where x;=(2-%, 0, —21), x,=(21, —2-1, 0), x;=
0, —2-1,271), %, = —X,;,X; = —X, and X¢= —X;. Hence H3(X), is a regular hexagon. Since
{Xy, s X6} 87,2V 8% 3 U 83,5, X* has the 3.2.L.P. by Theorem 5.2. This agrees with our
earlier observations. In the same way, we can show that R has the n.2.L.P. for all n>3.

Here we shall be concerned only with the 3.2.1.P. Let us include a proof of the fol-

lowing result.

LeMMA 5.4, [4]. Assume X has the 3.2.L.P. and that X = (x4, 25, %3, %,) €0, H{ X)), with
X & (U1<i<j<sS%;). Then the following statements hold:

(1) la,]| =41 for i=1,2, 3, 4.

@) o +ayl] =21 for 1<i<j<d.

(3) face (4x;) Nface (—4x,) =0 in X, for 1<i<j<4.

Proof. By Theorem 3.6 there exist z, u, v €X such that

2, =z2+u, llzaf] = floel] + |2
— Xy =2+, |22l = [[oll + |||
llzs +o]} = [|aef] + [[2]]-
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Thus

X= (xl’ Loy T3, x4) = (u’ —0, %3, £L'4) + (Z, —%, 05 O)
and

I=l= 3 e
= -+ ol + el + el + 20
=|(u, —v, x5, z)|| + [z, —2,0,0)].

Since x¢S12, we get z=0. Hence [j&;+,| =]u|+[v]|=]] +]|z.[- By symmetry
[ +2;]| = ||| + ||2,|] for all 3, j=1, 2, 3, 4. This now gives

1 llaea]] + lJa]| = flg +2]] = |les + 4] = llas| + [|al

ol + llsll = lle +aal] = llza+a]] = lwell + [l

Adding these equations gives ||z =||2,||. By symmetry and the fact that [|x[| =1, (1) and
(2) follows. (3) follows from
i+l = |zl + [l

The next result will be used several times in sections 6 and 7.

THEOREM 5.5. Assume X is finite dimensional with the 3.2.1.P. Assume x=
(2, Za, T, 2,) €6, HYX), with all x,=0. Then there exists a ¥ = (¥, Ya, Ys» Ys) €0, HHX), such
that all y,€6,X, and y,€ face (x;) for i=1,2, 3.

Proof. ||a;[| =1 for all ¢ by Lemma 5.4. Choose y, €9, face (x;)<,X,. Then by Lemma
2.1 there exist o €(0, 1] and 2, € X, such that

=0y +(1—oy)z.
Define

Z = (0 Y, Tas T3, (1 —041) 2 + ).

By (2) of Lemma 5.4 we get |(1—a;)2+2,)|=(1—0y)+1. Hence |z]]=4, such that
z€H4X),. If 412€conv ({8} ;: 1 <i<j<4}), then we can write z as follows
Z = (Y, Ty, X5, (1 —01)21 +)
= (bp ’_bli 07 0) +(b2’ O: —bz, 0) + (b37 0, O: —b3)
+ (O, b49 ’—b4! O) + (09 b5’ 0, “"bs) +(0’ 0’ b6! _bd)
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where a; = [lay 4| = [|Ba]] + [[a]] + [[05]]> leall = [|6a]| + ||2a]] + ||Bsl| and so on. By Lemma 5.4
face (x,) N face (—z,) =9. Hence we must have b, =b,=b,=0. But then

2—ay = [[(L—oty) 2+,
= 1Bs][ + [lBs ]| + o6
= [jo ]| + flal] + [| |
=240

which is a contradiction since o, >0. Hence there exists a y'=(yi, y3, 43, ¥1) Eface (z) N
6. HX), with ||yi|| =1 for all 4. Clearly yI =y, and yi€face (z,) for i =2, 3. We repeat the
procedure on the second coordinate of y!, and then one more time on the third coordinate
and find y = (¥, ¥, Y3, ¥a) €0 H(X), with ||y,|| =1 for all 7 and y, €9, face (z;) for i=1, 2, 3.
Then clearly y,= —y; — ¥, —¥y;€0,X, since X is a CL-space.

It is a consequence of the main result Theorem 7.3, that if x is as in Theorem 5.5,
then already «,€0,X, for all 7.

6. Characterizations of parallel- and split-faces

In this section X is a finite dimensional Banach space with the 3.2.1.P. and K is a
proper face of X,. With the tools of the previous chapters in hand, we are now able to
characterize the parallel-faces and the split-faces among the faces of K

THEOREM 6.1. Let F be a proper face of K. Then the following statements are equivalent:

(1) F is not a parallel-face of K.
(2) There exist x, €0, F and x,, yy, yo€ 9, K N Fx such that

Tyt %y = Y1+ Y,

Proof. (2) =(1) follows by using Proposition 3.10.
Assume (1) holds. By Proposition 3.10 again there exist a,, a,€ Fx such that

2Ya, +a,) ¢ Fx, ie.
F N face (2-Y(a, +ay)) + 2.

Hence there exist x,€9, F, «€(0, 1] and a, €K such that
27Yay +a,) = oy + (1 ~a)ay.

Then
a = (ay, @y, —20y, —2(1 —a)a,) € HY{X),.
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If 4-ta€conv ({Si;: 1 <i<j<4}), then we can write

a = (ay, ay, —20;, ~2(1 —x)a,)
= (bl’ _b1s 09 0) +(bz’ 0! ""b2’ O) + (b3’ 0: 0: _b3)
+ (O: b4» _b4, O) + (0’ bs, O: "bﬁ) + (0: 01 be: _b(i)

where [[as]| = o3| + 5ol + [Bal, laall =[]l + [Ba]l + l] amd s0 on. Since ay, a, €, we
get b, =0, and since a,, @, € Fx and 2, € F, we get b, =b,=0. Hence

21 —a) = [[2(1 — ) ay|
= [all + o] + [a]
= flaal + g + 122
=2(1+a)

which is a contradiction since &> 0. Thus there exists z = (2;, 2,, 23, 2,) €0, face (a) N 6, HYX),
with [[z;]| =1 for all ¢ by Lemma 5.4. Clearly z;= —=, and z,€face (a,) for_i=1, 2. Using
Theorem 5.5 we find ¥,€9, face (a;) for 1 =1, 2 and z,€0,X; such that

Y1+Y2 =T+,
Clearly x,€ K and since F is a face, we get x,€ Fx. y,€ face (a;)< Fx for 1=1, 2.

TeEOREM 6.2, dssume F is a proper parallel-face of K. Then the following statemenis

are equivalent:

(1) F is not a split-face of K.
(2) There exist y,, Y, €0, F and y,, y, €8, Fx such that y, ==y, and

Y1i+Y: =Ys+Ys

Proof. Note that we assume that Fy is a face. (2) =(1) is trivial, so assume (1). Since
F is a parallel-face but not a split face of K, there exist z;, ;€ F and =,, z,€ Fy such

that z,=+x, and
X+ oy = T+ 2.

From Theorem 3.6. (4), it follows that there exist z, #;, #;€X such that

vy =ztu, L=z =[] +[w]
2y =2+ 1= ||zl =l2l] + [lus]
llo =s]] = lfua]] + ||| > O
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Similarly, there exist v, u,, 4, € X such that

Ty =v-tug, 1= |lz,]| = [[of| + [
By =0ty 1=z]] = flof| +[|u
l[ @2 —all = |ual] + [luall-
Thus we get o= ||u, || = ||us|| = [|#o|| = || a|| and u; +uy=us+u,. Clearly

u = o Y(uy, Uy, —u;, —u,) EHYX),.

Now choose any vE€g,face (u)= H{X),. By the above reduction, we get that v¢
(Uici<i<aSi)). In fact, VEST » implies ||, +,|| <2, vES], s implies [Juy —us|| <|uy|| + [|us||
and so on.

From Lemma 5.4. and Theorem 5.5. it follows that there exists y = (¥, ¥s, —¥s, —¥4) €
0. H*X); such that all y,€8,X; and for 1=1, 2,3, y,Eface (au,)<face (z;). Hence
Y1, Y3 €0, F with y, =y, and y, €0, Fx. Clearly also y, €9, Fg.

Example 6.3. Let K=H in example 2.5. Let F =conv (x,, ;). Since y, #,, 2, € Fx and
Xy -+, =2y + 14, it follows that F is not a parallel-face.
Let G'=conv (z;, ,). Since z,, 2,€G% and =, +a,=x,+,, it follows that @ is not a

split-face.

COoROLLARY 6.4. Let F be a proper face of K. Then the following statements are equiv-
alent:

(1) F is a split-face of K.
(2) For all 2€8,F and all y€ 8, Fg, conv (z, y) is a face of K.

COROLLARY 6.5. Let 2, €0, K. Then the following statements are equivalent:

(1) {z,} is a split-face of K.
(2) For all y€8,K, conv (x,, y) is a face of K.

CorROLLARY 6.6. Let 2,€0,K. Then the following statements are equivalent:

(1) {=,} is not a split-face of K.
(2) There exist xy, x5, 2, € 9, K\ {,} such that

X+, =23+,
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7. Finite dimensional Banach spaces with the 3.2.LP

Throughout this section, let X be a finite dimensional Banach space with the 3.2.1.P.
The first proposition is essential for the proof of our main theorem, which appears after
the proposition. The rest of the section then consists of a series of lemmas which con-

stitute the proof of the main theorem.

ProrosiTION 7.1. Assume H is a proper face of X; and that F is a proper parallel-face
of H. Then the following stotements are equivalent:

(1) F is a maximal proper face of H,

(2) For all €0, Fy, H=*face (x, F).

(3) There exists an x €0, Fy such that H =face (z, F).

(4) For all x, y€d, Fy, there exist u, v€0, F such that x+u=y+v.

(5) dim span H=1+dim span F.

Note that face (, F) means face ({#} U F) and is described in Lemma 2.1.

Proof. (1)=(2)=(3} is trivial. To prove {3)=(5) we can use the same arguments as
those of (2)={4) and (4) =(5) below.

(2) =(4). Let x, y€0,Fy. If =y, then we can pick any u=v€9,F and we are done.
So assume z=y. By (2), H ={face (z, F) such that y€face (z, F). Since X is finite-dimen-
sional we have F =face (z) for some z€F. Thus y€face (27%(x+2)), such that for some

w€X; and some x>0
2 Yz +2) = oy + (1 — ) w.

Just as in the proof of Theorem 6.1 we can find % €9, face (z) =6, F and v€0,X; such that
r+u=y-+o.

Then clearly v€H and since F is a parallel-face of H, we get v€9, F.
(4) =(5). Let €9, F. For all y€3, F\{x}, there exist by (4), u, v€8, F such that

r+Uu =y+v.
Hence y€Espan (z, F). Since H=conv (F U Fy) this gives that H<span (», F) such that
dim span H = 1+dim span F.

(5) =(1). Suppose that F is not a maximal proper face of H. Then there exists a face
G such that F$G S H. Thus

1+dim span F < dim span G < dim span H.
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(Note that if K is a maximal proper face of X; with H< K, then (span H)N K =H and
similarly for F' and G.)
The proof is complete.

COROLLARY 7.2. Assume G and H are proper faces of X, such that G H and that
there exists x €0,H\G. If F is a maximal face of H such that G< F and ¢ F, then F is a
parallel-face of H and dim span F +1=dim span H.

Proof. By the proof of Proposition 3.9, we get that F is a parallel-face of H. For each
Y€, H\F, we get w€face (y, F). Now the proof of (4)=(5) in Proposition 7.1 gives that
dim span ¥ +1=dim span H.

If x, y€0, X, are such that conv (z, y) is an edge of X,, then clearly conv (z, ) is an
M-face. More generally, it easily follows from Proposition 7.1 that if z, y €9, X with x +y=50,
then face (2-1(x +y)) is an M-face. Thus m(X) is welldefined if dim X >2 and

2 <m(X)<dim X.

Recall that m(X) is the dimension of the largest subspace of X which is spanned by a
proper M-face of X,. Our main theorem follows:

THEOREM 7.3. Assume X is a finte dimensional Banach space with dim X >2. If X
has the 3.2.1.P. then the following statements are equivalent:

(1) X contains a proper L-summand.
(2) X* contains a proper M-summand.
(3) m(X*)=dim X*.

4) m(X)<dim X.

(6) There exists @ maximal proper face of X, which contains a proper split face.

Since either m(X) <dim X, in which case X contains a proper L-summand by Theorem
7.3, or m(X)=dim X, in which case X contains a proper M-summand by Theorem 7.3,
the following corollary easily follows using Proposition 4.4 and induction.

CoroLLARY 7.4. Every finite dimensional Banach space with the 3.2.1.P. can be ob-

tained by forming l,- and I -sums of the real line.

Proof of Theorem 7.3. (1)<(2) is Proposition 4.2. (5)<>(1) is Proposition 4.3. (2) = (3)
is Lemma 7.5 below. (3)=(4) is Lemma 7.6 below. (4) =(5) follows from the Lemmas 7.8,
7.9, and 7.10 below.
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Lemma 7.5 is a generalization of example 2.8. Recall that we assume that X is a
finite dimensional Banach space with the 3.2.1.P.

LemMa 7.5, If X contains a proper M-summand, then m(X)=dim X.

Proof. By assumption X contains an M-projection P with P==0, I. By Proposition 4.3
P* is an L-projection in X*. Then clearly P*f=f or 0 for all f€6,X7. Choose f,€0,X7. By
replacing P by I—P if necessary, we may assume P*fy=f,. Let K={x€X;: fi(x)=1}.
Since X is a CL-space we get X;=conv (K U —K). Define U =2P —1. Then U is an iso-
metry and U2=1. If 2€ K, then

folUz) = U*fo(x) = fo(2) = 1.
Hence U(K)=K.

Since P=£I, there exists an f€9,X7 with P*=0, i.e. U*f= —f. Define F={z€K:
f(z)=1}. Then F is a parallel-face of K and Fr={x€K: f(x)= —1}. Since U*f= —f, we get

U(F)=F; and U(Fy)=TF.

Let G be a maximal proper face of K containing F. By Proposition 3.9, G is a parallel-
face of K. Hence there exists a g€9,X7 such that G={z€K: g(x)=1}. If P*g=g, then
U(@)=@G such that Fr=U(F)<= U(G)=G and thus G@=K. This contradicts that & is a
proper face of K. Hence P*g=0. But then U(G)=G% and Fi=U(F)< U(G) =G such that
G< F. Hence F=G and F is a maximal proper face of K. Similarly we show that Fx is a
maximal proper face of K.

We have shown that effery maximal proper face of X, is an M-face and the proof is

complete.
LemMA 7.6, If dim X >2 and m(X)=dim X, then m(X*)<dim X*.

Proof. Since m(X)=dim X, there exists a maximal proper face K of X, which is an
M-face. Assume for contradiction that m(X*)=dim X*. Then there exists a maximal proper
face K* of X7 such that K* is an M-face. By replacing K* by —K* if necessary, we may
assume that there exist x,€0,K such that K*={f€X7: f(z,) =1}.

Let F be a maximal proper face of K such that Fg is a maximal proper face of K.
By interchanging F and Fy if necessary we can find f,, € 9,K* such that

K ={z€X;: fy(x)=1} and F ={x€K:{f(z)=1}.

Since dim X >2, there exists a ¢ € 8, K*\ {f,, /}. Let G={z€K: g(x)=1}. G is a parallel-face
of K and G=F, Fg, K,?. This implies that GN F=+D, GN Fx+D, Gx N F+D, and
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Ge N Fr==@. (Indeed, if GN F =0, then F<Gx such that F=Gx and f= —g since F is a
maximal proper face of K.) Thus for all choices of signs

Ilfoifig]i =3.

Note that this holds for all g €8, K*\ {f,, /}. We shall show that this implies that K* cannot
be an M-face.
We assume for contradiction that K* is an M-face, and let H be a maximal proper
face of K* such that also H' = Hg. is a maximal proper face of K*. We look at three cases.
(i) Assume f,, f€H (or both are in H’). Then by Proposition 7.1 there exist g, 2 €0, H’
(or 9, H) with f,+g=f-+k. But then

1 =&}l =|lfo—f+g]| =3

which is a contradiction.

(ii) There exists a g€, face (2—1(fo+/))\{/o /}. Then there exist «>0 and an AEXT

such that
og -+ (1 —a)b =271(fy + ).

By chosing « as large as possible in (0, 1], we can assume g¢face (k). By Theorem 3.6
there exists an 2 €9,X, such that g(z)=1 and h(x) = —1. Since X is a CL-space, we get

200—1 = ag(x) + (1 —a) h(x) = 27Yfy(x) +f(x)) €{1, 0, —1}.

Henee «=2-1, and f,+f=g+4. But then

1 =2 =llfo+f—gll =3
which is a contradiction.

Thus it only remains to consider case (iii).

(iii) fo€H, f€H’ and face (2-1(f,+f)) =conv (f,, f). Let N beYa maximal proper face
of H such that f,¢N. (Here we use dim X>2 to ensure that N==(@.) But then
N nface (271(f,+f)) =@. By Theorem 3.6 there exists a parallel-face M of K* such that
N M and fo, fEM' =M. It MO H' =0, then H'c M’, so H' =M’ and H = M. This is a
contradiction. Hence M | H'==@. Thus we get by Proposition 7.1

dim X* > dim span M/
2 dim span N +1

= dim span H
=dim X*-1.

2 — 802907 Acta mathematica 146, Imprimé le 4 Mai 1981
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Hence dim span M =dim X*—1, such that M is a maximal proper face of K by Proposi-
tion 7.1. Again by Proposition 7.1 there exist g, h €9, M such that

Hence

1= &l = lfo—f+g]l =3

which is a contradiction. The proof is complete.
We shall now give a short proof of (1) =(4) in Theorem 7.3.

Lemma 7.7. Assume dim X >2 and that X contains a proper L-summand. Then
m(X)<dim X.

Proof. Assume for contradiction that m(X)=dim X. Then some maximal proper face
K of X, is an M-face. Let F and F’' = Fj be maximal proper faces of K.

Since X contains a proper L-summand, K contains a proper split-face G by Proposi-
tion 4.3. Also G' =G% is a split face and

m(X) =dim X = dim span G'+dim span G

We can assume G N F'==@. By Theorem 2.6, H =conv (G U (F N @)) is a proper face of K.
Since F= H, we get F=H. Thus F’'< ¢’ and hence F' =& such that F =G. By Proposition

7.1 we get
dim X = dim span G +dim span ¢

= dim span F +dim span F’
=2(dim X —1)

such that dim X =2. A contradiction. The proof is complete.
It remains to prove (4)=(5) in Theorem 7.3. This follows from the following three
lemmas. Note that once we have shown that one maximal proper face of X; contains a

proper split-face, then it follows that all maximal proper faces of X; have this property.

LemMA 7.8. Let M be a proper face of X, and let F be a proper parallel-face of M.
Assume F is a maximal M-face in M and that G and H are disjoint maximal proper faces
of F. Then G and H are parallel-faces of M.

Proof. Let €9,H. Choose a maximal proper face S of M such that G< Sandz €8’ =Sy.
Then 8 is a parallel-face of M by Proposition 3.9. Since ¢ is a maximal proper face of F,
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we get SN F=G. Let F'=F), and assume there exists a 2€9,F’ N S’. Then x€face (z, S)
such that by Proposition 7.1 there exist a, b€ 8,8 such that

z-4+a=2z-+b.

Define F,=face (z, F). Since F is a parallel-face of M, we get by Proposition 7.1 that F
is a maximal proper face of F,. F' is a parallel-face and € F and z€F’. Hence a € F’ and
bEFNS=G. But then GU{a}<= SN F,and HU {z}< 8" N F,. Hence SN F, and 8'N F, are
maximal proper faces of F,. Thus F, is an M-face of M containing F. This is a contradic-
tion such that we have F'< 8. But then §'=H is a parallel-face of M. Similarly we show
that G is a parallel-face of M.

Lemma 7.9. Assume m(X)<dim X and let F be a proper M-face of X, with m(X)=
dim span F. Let K be a moximal proper face of X, with F< K. Then F is o parallel-face of K.

Proof. Assume for contradiction that F is not a parallel-face of K. Then, by Proposi-
tion 3.10, F'% is non-convex. There exists a face M such that F< M < K and M is minimal
with the following properties: Fj, is non-empty and non-convex. (Fy =@ simply means
that F is a proper subface of M.) Then by Theorem 6.1 there exist x€9,F and ¥, y,,y,€

8,M n Fj; such that
Z+Y =141 +Y,

Clearly M =face (y, F) since M is minimal with ¥y=+@ and non-convex.

Since F is an M -face, there exist a pair of disjoint maximal proper faces G and H of F,
We can assume x € H since F =conv (G U H).

We want to show that 7' =face (y, H) is an M-face with dim span 7'>dim span F,
This will be our final contradiction.

Let N; and NV, be maximal proper faces of M such that F< N, NN, and y,¢ N, and
Y1 ¢ N, Then, by Corollary 7.2, N, and N, are parallel-faces of M. We have z, 3, €N, and
Y, Y2€(N1)u, and @, y, €N, and y, y; €(Ny)u.

Since N, is a proper face of M containing F, we have that F is a parallel-face in N,.
Then, by Lemma 7.8, H is a parallel-face of N; such that 8=Hy,=conv (Fy, UG) is a
parallel-face of N,. We can thus choose a maximal proper face F, of M such that Sc F,
and z¢S. Then clearly F, N N;=8 and (F,),, N N,=H.

Since y, €T N N, and y€T', we get HST N N,$ 7. Hence

dim span F = dim span H+1
< dim span (T N N,)

< dim span 7.
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F"Since (Fy)u N T is a parallel-face of T containing H, we get T =face (y, T'N (Fy)u)-
Hence, by Proposition 7.1, 7' N (F,)y is a maximal proper face of T
Thus it remains to show that F, n T is a maximal proper face of 7.
Let us draw a picture. We look upon M from above G.

G

s e O

—t—>
N,

Fig. S.i

Assume for contradiction that there exists
2€89, M Nface (F, F,N Ny Fy) 0 (FpucN NyN Fy).
Then there exist z; € F, 2, € F, N Ny N Fyy, w€M and o €(0, 1] such that
22y +2) =z + (1 —x)u.

The argument used to prove Theorem 6.1 shows that we may assume 2, z; and « are

extreme points and «=2-1. Hence
2, +2, =2+4u.

F< N, such that z,, 2,, € N,. We have 2, € F and z€ Fy,. Hence w € F since F is a parallel-
face of N,. Furthermore z,€ F; and z€(F;)y. Hence w€F;, and then 4 €F N F;=G. Also
2, €(F,)u 0 F=H. Using that ¢ and H are parallel-faces of N, which follows from Lemma
7.8, we get a contradiction. Hence (F,)y N N, N Fi and face (F, Fy N N, N Fy) are disjoint.
By Theorem 3.6 there exists a parallel-face N, of M such that

2€F U (F,NN,NFy)S N,

and
yze(Fl);u NN,N Fyc (Ns);w-

(If F, N N,N Fy =3, we can take Ny=N,.)
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Define S;=N; N (N,)u NNy and S,=(N,)y N N, (N,)y. Clearly 3, €S, and y,€S8,.
We want to show that 7' =face (Sy, S).

Since
Sz n F1=F1 n (Nl):Wn Nz n (Na)fw

S (FiNFy N Ny) 0 (Ny)y
=Ny N (Ng)y =2

we get Sy (Fy)u and F; N (N N (V) S (Np)y. Let w€0,H. Then u€face (y,, F,), such
that by Proposition 7.1 there exist s, { €9, F,; such that

%48 =y, +1.

We have wEN,; N N,N N, and 4, €(Ny)y N Ny (Ng)jr=S;. Hence s€F; N (NN (Ng)nS
(Ny)y. But then tEN, N (N, N Ny=8;. Hence T<face (S;, S,). Let next £€9,8;. Then
tEface (y, N,), such that, by Proposition 7.1, there exist a, b €9, N, such that

t+a=y+b.

YEF N (N N (Ng)ae N (Ny)pr and (€N, 0 (Ny)y N Ny implies that a € (Ny)u N Ny N (Ny)y <
(Fyu such that bEN, N (F,)y=H. Hence S,< T, and it follows from the computation
that §;< F; N 7. Thus in order to show that 7' =face (S, S,) and that F; N T is a maximal
proper face of 7', it suffices to show that S,<face (z, F, N T).

Thus let #€0,8,=(F,)y. Then wu€face (y, N;). By Proposition 7.1 there exist

a,b€9,N, such that
u+a=y+b.

Now 4 €8, (Fy)u and y€F,. Hence b&(F,)y N Ny=H. Thus S,face (y, H)=T. Also
u€face (x, F;), so, by Proposition 7.1, there exist a, b €0, F, such that

w+a=x+b.

Here u€(Ny)uN NyN (Ny)u< (Fy)y and x€N,NN,N N, Hence bEF, N (N )y N (Ng)usS
(Ny)y. Thus g€ FiN N, N (Ny)yy N Ny=F NS, F,nT. Hence b€T =face (S;, S,) such
that b€T n F,, and we have proved that S,<face (z, F; N T').

The proof is complete.

LeMma 7.10. Assume m(X)<dim X. Let F be a proper M-face of X, with m(X)=
dim span F. Then there exists a maximal proper face K of X, such that F is a split-face of K.
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Proof. Choose a maximal proper face K of X, such that F< K. Assume for contradic-
tion that F is not a split-face of K. By Lemma 7.9 F is a parallel-face of K, such that,
by Theorem 6.2, there exist z,, z, €9, F and y,, y,€0, Fx such that

Ty +Y; = T+ Yo

Choose F, a maximal proper face of F such that 2, € F, and »; ¢ F';. Then choose a maximal
proper face F, of F such that (F,)s< F, and ,¢ F,. Then (F)r N (Fy)r=2.If F; N F,=0
then, by Lemma 7.8, F, is a parallel-face of K. This is impossible since @, y; ¢ F; and
2, € F;. Hence F; N F,+D.

Choose N, and N, maximal proper faces of K such that #,€ F;< N, and , ¢V, and
2,€F,= N, and 2,¢N,. Then clearly N, N F=F, and N,N F=F, Assume there exists a
YEB((N)x N (Vo)) Nface (F, Ny NN Fg). Then, as in the proof of Theorem 6.1, there
exist a€8,K, b€8, F and c€0,(N, N N, 0 Fx) such that

y+a=>b+c.

We get bEF N (NxN (No)x=F 0 (F)iN (Fp)5=2. This shows that (Np)x N (Np)x) and
face (F, N, N N,n Fy) are disjoint faces. By Theorem 3.6, there exists ¢ €6, X7 such that
@=1 on face (F, NN N,N Fg) and ¢ =—1 on (Ny)xN (Np)z. Let S=Kng=(1) and let
K, =conv (§U —8g). Then K; is a maximal proper face of X; and FSK,. F is also a
parallel-face of K; by Lemma 7.9. If ¥, ¥, €Sk, we replace them by —y, and —y,.

Let f,€0, X5 such that N;,=K n f7!(1) for =1, 2. Then

=10 fF-Dn K,
= conv [(TY(~1) N fzX(=1) N 2,8) U (fT*(—1) N fr*(=1)  (~2,8))]
= /1) 0 f251) 0 Sk = 2.

Let M, be maximal proper faces of K, such that K, nf1)eM,; for i=1,2 and
z, ¢ M, and 2, ¢ M,. Then (M,)r, N (M,)x, =D. Denoting K, by K and M, by N,, we have
shown that we can assume (N,)x N (N,)x=2.

Let G and H be a pair of maximal proper faces of F. By Lemma 7.8, G and H are
parallel-faces of K. Hence we have x;, ,€@ or z;, z,€H. Thus we can assume z;, z,€H.
Let fy, for f5» €0, X5 such that N,=K nfi(l), N,=Knfz} 1), G=Knf;s'(1) and H=
KEnfi}(1). Let f=2"1f, +f5) and g=27(f,+1,). g(x,) =1 gives ||g|| =1. If GN N, =0, then
Q< (F))r< F,, such that G=F,. Hence z,€Q. This is a contradiction. Thus G N N,==0
and ||f|| =1.
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Assume now that face (—f) Nface (g)=D. Then there exists by Theorem 3.6 an
2, €0, X, with f(z,) =g(x) =1. lf 2, €K, then 2, € (N, N G) N (N, N H)cGNH=0.Ifz,€ — K,
then —a,€((Ny)x N Gx) N (No)x N Hy)< (Ny)g N (N,p)x=D. Hence face (—f) N face (g)+2.

Choose k€0, face (—f) Nface {g). Just as in the proof of (ii) in the proof of Lemma 7.6,
we find A,, h,€8, X7 such that

—fi=fs=h+h and fo+fy=h+h,

Let now T=Knh3*1). Then (N;NG)U((N)xkNH)ST; and ((N)gNGx)U
(N,NH)YST. We have z,€EN,N H<T. Furthermore z;€(N,)x and z,EN, gives y,€
(NN Gx< T. Similarly 2, €N, and x,€(N,)r gives y; €(No)x N Hx< Tx. Hence 2,€ T'x.

We have shown that F NN, N N,==@. Assume now that H N N; N Ny=. Then there
exists a w€P, AN N, N N,. Clearly G N (N;)x=2 implies F,< G. This is impossible because
%, € F, N H. Hence we may choose a v€3,G N (V)= N,. H is a maximal proper face of F,
so by Proposition 7.1, there exist a, b€9,H such that

a+v=>b+w.

v¢ N, and w€N, gives a€N, and b¢N,. (NN (Ny)x=2 gives bEN, Hence a€HN
N, N N,, which is a contradiction. '
Choose y€9,HNN,NN,=T. Then y€face (zy, 3)=7F. Hence, by Proposition 7.1,

there exist ¢, d €9, @G such that
cty=2x,+d.

Here y€N, N N, and z,€N, 0 (N,)g such that cEG N (N,)g<S N,. Thus dEN, N G< Tk. But
then y €T N Tx=@. This is a contradiction. The lemma is proved.
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