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1. Introduction 

Let X be a Banach space over the real numbers. Let  n and k be integers with 2 ~< k < n. 

We say tha t  X has the n.k. intersection property (n.k.I.P.) if the following holds: 

Any n balls in X intersect provided any  k of them intersect. 

In  [2], O. I-Ianner characterized finite dimensional spaces with the 3.2.I.P. by  the 

facial structure of their unit  hall. He  also proved tha t  this property is preserved under 11- 

and /oo-summands, i.e. direct sums X |  Y with the y n o r m  ]]xli + HY]I or the lop-norm 

max (llxl], ]] y]]). We shall prove the converse of this result. Any finite dimensional Banach 

space X with the 3.2.I.P. is obtained from the real line by  repeated 11- and/~-summands .  

t tanner  proved this for dimension a t  most 5. 

In  sections 2 to 4 we gradually introduce the concepts and theorems tha t  we need. 

To become familiar with the techniques involved, we have included the proof of some of 

the results. In  sections 5 and 6 we prove some technical lemmas and characterize the 

parallel-faces and split-faces among the faces of the unit  balls of Banach spaces with the 

3.2.I.P. These results are used in the proof of the main result in section 7. 

Banach spaces are denoted X, Y, and Z. The closed ball in X with center x and radius 

r is denoted B@, r), but  for the unit  ball we write XI=B(O, 1). The dual space of X is 

written X*. The convex hull of a set S is written cony (S) and the set of extreme points 
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of a convex set f/v is written ~e2'. (X|  Y)i1 and (XG Y)z0o denotes the direct sum of X 

and Y with the norms [[(x, y)[[ = Hx[[ + [[YII and I[(x, y)ll--max (lixil, IiyiI) respectively. 

All spaces are assumed to be real. 

2. Faces of the unit  ball 

If  M is a subset of the unit ball X 1 of X, we denote by face (M) the smallest face of 

X 1 containing M. Recall the following fact: 

L • M~ A 2.1. Let M ~ X~ and let y E X 1. Then the/ollowing two statements are equivalent: 

(1) y6face (M) 

(2) There exist x6conv (M), z 6 X  1 and ~6(0, 1] such that 

x = a y +  (1 -~ ) z .  

The notion of parallel-faces will play a central role throughout this paper. 

De]inition 2.2. Let  E and H be faces of X 1 with F_c H. F is called a paraUel-/ace 

of H if there exists another face G of H such that  the following conditions are satisfied: 

(]) F n G = •  

(2) H = cony (F  0 G) 

(3) Whenever Xl, x~ ~ F,  Yl, Y~ 6 G and ~1, ~ s [0, 1] are such that  

then ~1 =~2. 

Example 2.3. Assume H is the face in Fig. 2.1. Clearly F 1 is a parallel-face of H. The 

face F2 satisfies (1) and (2) but  not (3) in definition 2.2. 
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I t  follows from Theorem 3.6 tha t  if X has the 3.2.I.P., then (3) is a consequence of 

(1) and (2) in definition 2.2. 

We denote by  P(H) the set of all proper parallel-faces of H when H is a face of X 1. 

PM(H) is the set of all maximal  (with respect to inclusion) proper parallel-faces of H. 

De]inition 2.g. Let F and H be faces of X i such tha t  F ~ H .  2' is called a split-lace 

of H, if there exists another face G of H, such tha t  the following conditions are satisfied: 

(1) /~ N G = O  

(2) H = cony (iv U G) 

(3) Whenever xl, x2EF , Yl, y~EG and 21, 22E[0, 1] are such tha t  

21X 1 ~- ( 1 - Xi) Yl = X~ x~ + (1 - ~ )  Y2 

then 21=22 and if 21:~=0, l then also Xl=X 2 and Yl=Y2. 
Obviously every split-face is also a parallel-face. The opposite is not true. 

Example 2.5. Let X=(/~@R)z, ,  and let H be the following maximal proper face of 

XI: H = c o n v  (xl, x~, x3, x4, xs) where x l= (1  , 1, 1, 0), x~=(1, - 1 ,  1, 0), x3=(1 , - 1  , - 1 ,  0), 

x4=(1, 1, - 1 ,  0) and x~=(0, 0, 0, 1). 

The vertex {Xs} is a split-face of H, cony (xl, x~) is a parallel-face but  not a split-face 

of H,  and cony (xl, xs) is neither. See Fig. 2.2. 

When F and H are faces of X 1 with _~_~H, we denote by  FH the set 

F~, = {xeH: face (~) n F = ~}. 



A. B. HANSEI~ AND ~. LIMA 

Note  t h a t  if F is norm-complete,  then  H = c o n y  (F  U FH) [1]. I f  F is a parallel-face of H,  

then  necessarily H = cony (F  U FH) and FH is convex. I n  fact, ~'H = G in definition 2.2. 

Example  2.3 shows tha t  FH can be convex even though  F is no t  a parallel-face. Usual ly  
t ! 

F n  is non-convex.  FH is convex if and only if it is a face. 

TH~ORWM 2.6, [3]. Let H be a/ace o] X 1. Let iv be a split-lace o] H and assume M is a 

/ace o] F and 2~ is a/ace o/F'H. Then cony (M U N) is a/ace o/H. 

Proo/. Show this or look a t  [3]. 

Definition 2.7. Let  2'  be a proper face of X 1. F is called an  M-face if there exists a 

GePM(F) such t h a t  G'FePM(_F). 

I f  H is a proper face of X~, we denote by  re(H) the  following number  (if i t  exists) 

re(H) = sup {dim span F :  F is an M-face of H}. 

re(X) denotes the number  (if it exists) 

m(X) = sup {re(H): H a proper face of X1}. 

Example 2.8. (a) Le t  H be as in example 2.5. The largest M-face of H is F =  

cony @1, x2, xa, x4), so m(H)=dim span F = 3 < 4 = d i m  X. 

(b) Let  X=( l~Qt t ) l .  Let  F = c o n v  (x 1 .. . . .  xs) where xl=(1 , 0, 0, 1), x2=(0  , 1, 0, 1), 

xa=(0 ,  0, 1, 1), x4=(1,  0, 0, - 1 ) ,  xs=(0 ,  1, 0, - 1 ) ,  xs=(0 ,  0, 1, - 1 ) .  Then  F is a maximal  

proper face of X 1. Bo th  G = c o n v  @1, x2, xa) EPM(F) and  G ~ = c o n v  (xa, xs, x6) ePM(F). 

Hence F is an M-face. We have 

m(.F) = dim span _~ = 4 = dim X. 

(a) and (b) should be compared with the  main  result  Theorem 7.3. 

De/inition 2.10. X is called a CL.space if X 1 = cony ( F  U - P)  whenever  F is a maximal  

proper face of X 1. 

PXOl'OSlTIOl,~ 2.11, [7]. Let X be a/inite dimensional space. Then the/ollowing state- 

ments are equivalent: 

(1) X is a CL-space. 

(2) For all xEaeX 1 and/E~eX~,/(x)-= +_1. 

(3) X* is a CL-space. 
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Example 2.12. (a) I f  X = l~o or X = l~, then  X is a CL-space. 

(b) Assume X is a finite dimensional  CL-space and let  {/1 . . . . .  /~}_=O~X~ be a basis 

for X*. Then  the  mapp ing  T: X-*l~o defined b y  

T ( x )  = (/~(x) . . . . .  /~ (x) )  

is a l inear i somorphism t h a t  maps  every  ex t reme  point  of X 1 to  a corner of the  n-cube 

(1~04. Hence  the  uni t  ball X 1 can be obta ined  as a convex hull of some subset  of ~(l~o)1, 

where  n = d im X.  This was observed in [7]. 

3. Intersection properties 

1)e]inition 3.1. Let  n and  ]c be integers with 2 < k < n .  X is said to have  the  nJc. inter- 

section p rope r ty  (n.Ic.I.P.) if the  following condit ion is satisfied: 

A n y  n balls in X intersect  provided any  k of t hem intersect .  

Example 3.2. (a) Le t  {[x~, Y~]}i~l be a set of n balls in R with  x~<~y~ for all i. I f  t hey  

intersect  mutual ly ,  then  x~ ~< yj for all i and  j, such t h a t  there  exists an x E R with  x~ ~< x ~< yj  

for  all i and  ]. Thus  x e  n~=l [x~, y~]. Hence  the  real line has the  n.2.I .P,  for every  n~>2, 

I t  follows t h a t  R has  the  nJv.I .P,  for  all n>]c>~2. 

(b) I t  follows f rom Hel ly ' s  t heorem t h a t  every  Banach  space X with  n = d i m  X <  oo 

has the  (n + 2).(n + 1).I.P. 

We  refer to [7] for an extensive s tudy  of the  intersection properties.  Le t  us ment ion  

here wi thout  proof the  following results. 

T ~ E O R E M  3.3, [7]. X has the 4.2.I .P.  i] and only i / X *  is isometric to the space LI(/~ ) 

/or some measure is. 

COROLLARY 3.4, [7]. Assume X is finite dimensional. X has the 4.2.I .P.  i] and only i/ 

X = l~o where n = dim X.  

T H E O R E m  3.5, [6]. Assume X is finite dimensional. X has the 4.3.I .P.  i / a n d  only i/ 

X = ( E I ( ~ . . . |  E~)zo o where dim E~e{1,  2}. 

I n  the  following we shall be concerned only wi th  the  3.2.I .P.  Hanne r  character ized 

the  finite dimensional  spaces wi th  the  3.2.I .P.  b y  their  facial propert ies  [2]. The  following 

theorem which extends  Hanne r ' s  results was proved  b y  Lima.  

THEOREM 3.6, [5]. I / X  is a real Banach space, then the/ollowing statements are equiv- 

alent: 
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(1) X has the 3.2.I.P. 

(2) If x, y e X  with llxll----I/y//=1 and face (x)f/face (y) = ~ ,  then I ] x -y  H =2.  

(3) I//71 and/73 are disjoint/aces o/X1, then there exists a proper/ace/7 o/X1, such 

that/71~_/7,/72~_ -72 and X1 =cony  (/7 U --/7). 

(4) I / x ,  yEX,  then there exist z, u, vEX such that 

(5) X* has the 3.2.I.P. 

x = Ilxll = ll l[ + Ilull 

y = Ilyll = II ll + Ilvll 

I I x - y l l  --- Ilull + llvl[ 

COrOLLArY 3.7, [4]. I / X  has the 3.2.I.P., then X is a CL-spaee. 

/~xample 3.8. (a) Since l~ has the 3.2.I.P., we get from (5) of Theorem 3.6 that  l~ has 

the 3.2.I.P. 

(b) Assume Y and Z have the 3.2.I.P. Then (Y| has the 3.2.I.P. by (4) of Theorem 

3.6 and (Y| has the 3.2.I.P. by (1) of Theorem 3.6. 

PROPOSITXOZ~ 3.9. Assume X is a ]inite dimensional CL-space and that ~ and H are 

proper/aces o/ X1 such that/7~_ H. 1]/7 is a maximal proper/ace o/H, then/7 is a parallel. 

/ace o/ H. 

Proo/. Since/7 is a proper face of H, there exists an xEOeH",,,/7. By Proposition 2.11 

and [5; Proposition 3.2], there exists an /E~ ,X~  such t h a t / ( x ) =  - 1  a n d / = 1  on/7 .  Let  

G={yeH:/(y)=-l} and M = { y e H : / ( y ) = - l } .  By Proposition 2.11, we get H =  

cony (G U M). Hence G is a parallel-face of H. Since /7___G and /7 is a maximal proper 

face of H, we ge t /7  = G, such t h a t / 7  is a parallel-face of H. 

P R o P o s x o ~  3.10. Assume X is a/inite dimensional space with the 3.2.I.P. and that/7 

and H are proper/aces o / X  1 such that/7~H. Then the/ollowing statements are equivalent: 

(1) /7 is a parallel-lace o/H. 

(2) •H is convex. 

(3) There exists/eaeX ~ such that F = ( x E H : / ( x ) = l } .  

Proo/. ~o te  that  ~v H is convex if and only if it is a face. Since dim X < ~ ,  we always 

have H = e o n v  (/7 U FH). I t  follows from Theorem 3.6 that  if (1) and (2) in definition 2.2 

is satisfied, then (3) is also satisfied. Now the equivalence of (1), (2), and (3) is obvious. 
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PROPOSITION 3.11. Let X be a/inite dimensional space with the 3.2.1.1 ). and let iv 

be a proper/ace o / X  1. Then Y -- span 2'  is a CL-space. 

Proo/. Le t  x E Y wi th  [[ x H -- 1. Then  we can write x = y - z where y, z E cone (iv) = O a>~ 0 2iv. 

B y  (4) of Theorem 3 6  we  m a y  assume llgl = Ilyll + I l g l - ~ e n c e  r l = c o n v  (iv U - - iv) ,  and  

Le t  xE~e Yx and let lE~e Y~. B y  the  t t a h n - B a n a c h  theorem,  there  exists a gE~eX* 

such t h a t  gl r=/�9 Hence,  we ge t / (x )  = • 1. Thus  Y is a CL-space. 

T h a t  mos t  CL-spaces do not  have  the  3.2.I .P.  was known b y  Hanne r  [2]. Here  is an 

example  which shows t h a t  Y in Proposi t ion 3.11 need not  have  the  3.2.I .P.  

Example 3.12. Le t  X = 3 (ll| L e t / = ( 1 ,  1, 1, 0, 0, 0) and  g=(O, 0, 0, 1, 1, 1) E~eX~, 

and  define a face G of X 1 b y  

G = {~ ~ X ~ : / ( x )  = 1 = g(x)}.  
Then 

G = {(t  1 . . . . .  t6) e X I :  t 1 + t 2 + t 3 = t4 + t 5 + t 6 = 1}.  

Y = s p a n  G is a CL-space b y  Proposi t ion 3.11. Consider the  following ex t reme points  of 

G: Xl=(1  , 0, 0, 1, 0, 0), x2=(0,  1, 0, 0, 1, 0), y l = ( 0 ,  0, 1, 0, 1, 0), y2=(1 ,  0, 0, 0, 0, 1), Zl= 

(0, 0, 1, 1, 0, 0), and z~=(0,  1, 0, 0, 0, 1). Then  we have  

xl + (Yl-Y2) = x~ + (z 1 -z~)  

and it  is easy  to see t h a t  (in Y) 

B y  (2) of Theorem 3.6, we get  t h a t  Y does not  have  the  3.2.I .P.  

4. L- and M-sllrnrnantls 

Definition 4.1. Le t  P be a project ion in X.  

(1) 19 is called an  L-2~rojection if for all xEX, 

Ilgl = llP~ll + I [ ~ - P g [ .  

(2) P is called an M-2~ro]ection if for all xEX, 

Ilgl = m a x  ([[Pxll, l [ ~ - W l l ) .  

(3) The  range of an  L-project ion is called an  L.summand of X.  

(4) The  range of an  M-projec t ion  is called an  M-summand of X.  
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Observe that  if P is an L-projection in X,  then X . . ( Y |  ~ where Y = P ( X )  and 

Z =  ( I - P ) ( X ) .  Similarly, if P is an M-projection in X, then X = (Y| where Y =P(X)  

and Z = ( I - P )  (X). The following proposition was proved by Alfsen and Effros in [1]: 

PROPOSITION 4.2, [1]. Let P be a projection in X .  Then P is an L-projection in X if 

and only i/ P* is an M-projection in X*. 

The same paper of Alfsen and Effros contains the following result. 

PROPOSITION 4.3, [1]. Assume X 1 contains a maximal proper ]ace K such that X 1 = 

cony (K O - K ) .  Then the map F-~span/~ is a one-to-one correspondence between the proper 

split-laces o / K  and the proper L-summands o / X .  

Since we will use one half of this result in section 7, we will indicate the proof of this 

part  here. 

So assume F is a proper split face of K. I t  follows from the definition of a split-face 

that  K = c o n v  (2'U _Y~). (In fact, _Y'K=G in definition 2.4). Define Y--span F and Z =  

span FK. Then X = Y + Z .  Assume xE Y N Z. Then x = y l - Y 2  =Zl-Z2 where Yl, Y2 Econe (F) 

and zl, z2Econe (F~). Hence y l+z2=y2+z l .  Using that  the norm is additive on cone (K) 

and (3) in definition 2.4 we get Yl=Y2. Hence x = 0  and Y NZ=(0).  Thus X =  Y Q Z .  

Let now yE Y and zEZ  and x = y + z .  We can write x = x l - x  2 where xl, x2Econe (K) 

and Hxll=]]xlH+Hx2ll. Then use that  g = c o n v ( F U F ~ )  and write x~=y~+z, where 

y~ e cone (F) and z~ e cone (F~:); i -- 1, 2. Then x --y + z -- (Yl -Y2) + (zl -ze). Since X = Y(~Z, 

we get Y = Y l - Y 2  and z - - z l - z  ~. Using that  the norm is additive on cone (K) now gives 

--  t lnl l  + Ill, i[ + lly211 + II  l] 

/> liyil + il [[ = l] ll. 

Thus X = (Y| Z)~, and Y is the range of an L-projection in X. 

PaOPOSXTTO~ 4.4. I / X  has the 3.2.I.P. and Y is an L- or M.summand o/ X ,  then Y 

also has the 3.2.I.P. 

Proo/. Use that  :Y is the range of a norm-one projection in X. 

5. The spaces Hn(X) 

1)e]inition 5.1. Let n >2 be an integer. We denote by Hn(X) the space 

Hn(X)={ x=(xl ..... ~n)~Xn: ~ ~'--0} ,-1 
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equipped with the  no rm 

llxll = ~: IIx,II for x =  (x,, . . . , x = ) ~ H " ( X )  
~=1 

Clearly Hn(X) is a closed subspace of (X| In dealing with  the  intersection 

propert ies  ment ioned  in section 3 the  spaces H=(X) have  shown to be ve ry  useful. T h i s  

s tems f rom Theorem 5.2 below which was proved  in [4]. This  theorem t rans la tes  the  inter- 

section propert ies  of balls in X into propert ies  of the  set  of ex t reme points  of the  uni t  

balls of the  spaces H~(X*). We shall refer to the  following subsets of H~(X): For  i, 7" in- 

tegers wi th  1 ~< i <7" ~< n, let S~.j be defined by  

~int ~--- { X = ( X  1 . . . . .  ~n)eHn(X): Ilxll = 1  a n d  x k = 0  w h e n  k=#i, ]}. 

For  a proof of the  folIowing theorem we refer  to  [4]. 

T H E OR E M 5.2, [4]. Let n > 2 be an integer. The/oUowing statements are equivalent: 

(1) X has the n.2.I .P.  

(2) ~H~(X*)x ~_ U {S~.j: 1 ~< i < j ~< n}. 

Example 5.3. Let  X = R. Then  H3(X) is a subspace of l~ of co-dimension 1. Hs(X)I 
is the  convex hull of {x 1 . . . . .  xe} where x1=(2  -1, 0, - 2 - 1 ) ,  x2=(2  -1, - 2  -1, 0), x3=  

(0, - 2  -1, 2-1), x4=  - X l ,  x 5 = - x  2 and x6 = - x s .  Hence  H3(X)I is a regular  hexagon.  Since 

{Xl, X6}~18 ,2  (J ~18 3 V 3 X *  . . . . .  $2.3, has  the  3.2.I .P.  b y  Theorem 5.2. This agrees wi th  our 

earlier observations.  I n  the  same way,  we can show t h a t  R has the  n.2.I .P,  for all n ~> 3. 

Here  we shall be concerned only wi th  the  3.2.I .P.  Le t  us include a proof of the  fol- 

lowing result.  

LElVtMA 5.4, [4]. Assume X has the 3.2.I .P.  and that x = ( x l ,  x2, x3, x4)E~eH~(X)I with 

x ~ ( U  l<,<t<4S~j). Then the ]ollowing statements hold: 

(1) Ilxdl = 4 - 1 / o r  i = l ,  2, 3, 4. 

(2) ]]x,+xt[ I = 2  - 1 / o r  1 <<.i<~i<<.4. 

(3) face (4x,) f3 face (--4xj)  =• in X 1/or 1 ~ < i < ] < 4 .  

Pros/. B y  Theorem 316 there  exist  z, u, v E X such t h a t  

H = Z + U ,  IIHll = Ilull + II~ll 

IIx~ll = 11~11 + I1~11 

llH+x~ll = Ilull + Ilvll. 
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Thus 

and 
x = (xl, x2, x~, x4) = (u, - v ,  x3, x4) + ( z ,  - z ,  0, 0) 

4 

II~tt-- ~ IlxJt 
l = l  

= Ilull + Ilvll + Ilx~ll + IIx, l[ + 211=11 

= ll(u, - v, xa, x,)ll + II(~, - ~, o, o)11. 

Since x r  we  get  ~ o .  Hence  l l x l §  l l = l l u l l § 2 4 7  
llx~+xr = IIx~ll + llxAI for all i,/'=1, 2, 3, 4. This  n o w  gives 

and 
I[Xl]] ~-IIx~ll = IIx~+x~ll = IIx~+x4]l = IIx~ll + [Ix~ll 

llx, ll + IlxMl = II~ +xMl = llx~+x~ll = llx~ll + IIx~H. 

B y  s y m m e t r y  

Adding these equations gives lIxlll = [[x,[[. B y  s y m m e t r y  and the fact  t h a t  []xl[---1, (1) and 

(2) follows. (3) follows from 

IIx, +xAI = llx, ll + IIx~ll. 

The next  result will be used several t imes in sections 6 and 7. 

T ~ E O ~ M  5.5. Assume X is /inite dimensional with the 3.2.1.1 ). Assume x =  

(xl, x2, xa, x4)E~Ha(X)4 with all x~=O. Then there exists a y-~ (Yl, Y~, Ys, Y4)E~eH4(X)4 such 

that all y~ E ~eX1 and y~ E face (x~)/or i = 1, 2, 3. 

Proo/llx,[I = 1  for all i by  L e m m a  5.4. Choose yle~e face (Xl)__~eX 1. Then by  L e m m a  

2.1 there exist a lE(O , 1] and z l E X  1 such t h a t  

Define 
x 1 = a l y  1 + (1 - ~1) Zl. 

z = (a ly  1, x~, x a, ( 1 - a l )  zl+x4). 

B y  (2) of L e m m a  5.4 we  get  l l ( 1 - a l ) z l + x 4 ] l = ( 1 - ~ l ) + l .  Hence  I lz l [=4,  such  that  
z EH4(X)4. I f  4 -1zEconv  ({S~j: 1 ~< i<]<4}) ,  then  we can write z as follows 

z = (al'yl, xi, x3, (1--~I)ZI~-X4) 

= (b 1, - b  1, 0, 0 ) + ( b  2, 0, -b~ ,  0 ) + ( b  3, 0, 0, - b  a) 

+ (0 ,  b4, -b4 ,  0) + (0, b 5, 0, - b s )  + ( 0  , 0, b e, -b6)  
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where ,x~--I[~Ylll  = IIb~ll + llb, II + IIb~ll, IIx~ll---Ilb~lI + IIb, ll + IIb~ll and so on. By Lemma 5.4 
face (x~) N face (--x~) = O .  Hence we mus t  have b 1 =b~ =b  4 =0 .  Bu t  then 

2 - = ~  = I1(1-=~)~§ 

= IIb~lI + fibril + lib011 

- -  II=~ylll + IIx~ll + llx~ll 
= 2 §  I 

which is a contradict ion since ~1>0.  Hence there exists a y l=(y~,  y~, y~, y~)Eface (z)N 

~eH~(X)~ w~th Ily~ll =1  ~or all i. Clearly y l=y l  and y~Eface (x,) for i = 2 ,  3. We repeat  the 

procedure on the  second coordinate of yl, and then  one more t ime on the third  coordinate 

and find y = (yt, y~, Ya, Y,)E8eHa(X)a with Ily,[[ = 1 for all i and y~ ES, face (x,) for i =  1, 2, 3. 

Then clearly Y4 = -Y l -Y2-YaE8~X1 since X is a CL-space. 

I t  is a consequence of the  main  result Theorem 7.3, t ha t  if x is as in Theorem 5.5, 

then already x,E~eX 1 for all i. 

6. Characterizations of parallel- and split-faces 

I n  this section X is a finite dimensional Banach  space with the 3.2.I.P. and K is a 

proper face of X 1. Wi th  the tools of the previous chapters in hand, we are now able to  

characterize the parallel-faces and the split-faces among the  faces of K 

THEOREM 6.1. Let F be a proper/ace o /K .  Then the/oUowing statements are equivalent: 

(1) ~ is not a 19arallel-/ace o / K .  

(2) There exist xl E ~eF and x~, Yl, Y2 E aeK N F'K such that 

x 1 d- x 2 = Yl § Y~. 

Proo/. (2)~(1) follows by  using Proposit ion 3.10. 

Assume (1) holds. By  Proposi t ion 3.10 again there 

2-1(al + as) (~ F~r, i.e. 
iV N face (2-1(al + as) ) 4= ~). 

exist 
p 

al, a S E FK such t h a t  

Hence there exist xlE~e.F , aE(0,  1] and a4EK such tha t  

Then 
2-1(al + as) = ~ 1  + (1 -- ~) a 4 . 

a ---- (al, as, --2~1, --2(1--~)a4) EHa(X)4. 
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If 4-1aEeonv ({S~j: 1 ~i<]~4}), then we can write 

a -~ (al, a2, --2axl,  --2(1--~)a4) 

~--- (hi, - h i ,  O, O) q-(b~, O, -b~,  O)+(b a, O, O, -ba)  

+(0, b4, -b4, 0 )+(0 ,  bs, 0, -bh)+(0 ,  0, be, -be) 

where [[al[l=iibl[[-~-[ib21[+[[bail, [lau[[=l[blliw[Ib4li+Hbhll and so on. Since al, a~EK, we 

get  b l = 0  , and since as, a2E2,~r and x l E F  , we get  b~=ba=O. Hence 

2 ( 1 - ~ )  = [[2(1-~)aaU 

= N + IlbhH + Hb011 

= [[all I + [la2I] + []2o~c1[I 
= 2(1 + ~) 

which is a contradiction since ~ > 0. Thus there exists z = (zl, z~, z a, z4) E ~e face (a) N ~Ha(X)4 

with [Iz~l[ = 1  for all i by  L e m m a  5.4. Clearly z ~ = - x ~  and z~efaee (a0 f o ( i = l ,  2. Using 

Theorem 5.5 we find y~ E~ e face (a~) for i = 1, 2 and xgE~eX1 such tha t  

Yl + Y2 = xl + x~. 

Clearly x 2 E K and since F is a face, we get  x~ E $'~. y~ E face (a~)~ F~  for i = 1, 2. 

TH~O~V.~ 6.2. Assume F is a proper paraUel-/ace o/ K. Then the ]ollowing statements 

are equivalent: 

(1) 2, is not a split-lace o/ K.  

(2) There exist Yl, Y3 E~ 2' and Y2, Ya E3~ F'K such that Yl 4:Ya and 

Yl + Y2 = Y3 + Ya. 

Proo/. Note  tha t  we assume tha t  2"~ is a face. (2)~(1)  is trivial, so assume (1). Since 

F is a parallel-face bu t  no t  a split face of K,  there exist x~, xa~2, and x~, x a ~ _ ~  such 

t h a t  x~ =t=xa and 
X 1 + X 2 = X 3 + X 4 �9 

From Theorem 3.6. (4), it follows tha t  there exist z, u~, u a ~ X  such t h a t  

Xl -- ~ + ~ ,  1 -- IIx, II --IHI + Ilulll 

�9 , = ~+u~ ,  1 ---Ilx~ll- H + Ilu~ll 

I l x , - ~ l l  = Ilu, II + Ilu~ll > o. 
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Similarly, there  exist  v, us, u 4 E X such t h a t  

xs = ~ + u ~ ,  x = llx~ll = H + Ilu~ll 

�9 ~ = ~ + u , ,  1 - 11~I1 = Ilvll + llu~ll 

l l ~ s - ~ l l  --  Ilusll + llu411. 

T h u s  w e  get  ~ = Ilu~H = I1%11 = llusll = llu~ll a n d  u ~ + u s  = %  + u 4 .  Clearly  

u = a - l ( u ,  u s, - u s ,  -u4)  e t t4(Xh.  

Now choose any  vE~face (u )_=H4(X)4 .  B y  the  above  reduction,  we get  t h a t  v ~  
S 4 (l J,<,<,<4 ~.,). I n  fact ,  veS~.2 implies Ilxl+xsll <2, ~ e s , '  ~ implies ]lUl-U~[I < Ilulll + 11%11 

and so on. 

F r o m  L e m m a  5.4. and  Theorem 5.5. i t  follows t h a t  there  exists y = (Yl, Y~, -Ya, -Y4) E 

OeH4(X)4 such t h a t  all y~EOeX 1 and for i = l , 2 , 3 ,  y~Eface(oc-lu~)~_face(x~). Hence 

Yl, YaEOe -F with Yl~Y3 and ysEOeF). Clearly also y4E0~F).  

Example 6.3. Let  K = H  in example  2.5. Le t  F = c o n v  (x4, xs). Since xl, x2, xsEF'K and 

x I + x 4 = x 2 + xs, i t  follows t h a t  F is not  a parallel-face. 

Le t  G = c o n v  (x3, x4). Since Xl, xsEG'K and x l + x 4 = x s + x  S, i t  follows t h a t  G is not  a 

split-face. 

C O r O L L A r Y  6.4. Let F be a proper/ace o/ K. Then the/ollowing statements are equiv- 

alent: 

(1) F is a split-lace o / K .  

(2) For all xEae2' and all yfi~F'K, cony (x, y) is a/ace o/ K.  

C o R o L LARu 6.5. Let x I E ~eK. Then the/oUowing statements are equivalent: 

(1) {xl} is a split./ace o / g .  

(2) For all ye~eK,  cony (x 1, y) is a/ace o/ K.  

COROLLARY 6.6. Let XlEOeK. Then the /ollowing statements are equivalent: 

(1) {Xl} is not a split-lace o/ K.  

(2) There exist x2, xs, x 4 e ~eK~(x l }  such that 

xi+x~ = xs+x4. 
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7. Finite dimensional Banach spaces with the 3.2.I.P 

Throughout this section, let X be a finite dimensional Banach space with the 3.2.I,P. 

The first proposition is essential for the proof of our main theorem, which appears after 

the proposition. The rest of the section then consists of a series of lemmas which con- 

stitute the proof of the main theorem. 

P~OPOSITIOZq 7.1. Assume H is a proper /ace o / X  1 and that ~' is a proper parallel-/ace 

o /H .  Then the/ollowing statements are equivalent: 

(1) F is a maximal proper/ace o /H .  

(2) For all xE~eE'~, H = f a c e  (x, F). 

(3) There exists an xe~eFH such that H = f a c e  (x, F). 

(4) For all x, yE~FH,  there exist u, vE~eF such that x + u = y §  

(5) dim span H = 1 + dim span/v.  

/~ote tha t  face (x, F) means face ((x} U/~) and is described in Lemma 2.1. 

Proo/. (1)~(2)~(3)  is trivial. To prove (3)~(5) we can use the same arguments as 

those of (2)~(4) and (4)~(5) below. 

(2) ~(4). Let  x, yE~eFH. If  x=y ,  then we can pick any  u=vE~e2' and we are done. 

So assume x ~ y .  By (2), H = f a c c  (x, P) such tha t  yEface (x, F). Since X is finite-dimen- 

sional we have F = f a c e  (z) for some zEF.  Thus yEface  (2 -1 (X§  such tha t  for some 

w E X 1 and some ~ > 0 
2-1(x+z) -- a y + ( 1  - a ) w .  

Jus t  as in the proof of Theorem 6.1 we can find u E ~e face (z)= ~e F and v E aeX1 such tha t  

x §  = y §  

Then clearly vEH and since F is a parallel-face of H, we get v E ~ F .  

(4) ~(5). Le t  xe~eF~.  For  all y e ~ e F ~ { x } ,  there exist by  (4), u, ve~eF  such tha t  

x §  = y + v .  

Hence y Espan (x, F). Since H = cony (F  0 FH) this gives tha t  H g  span (x, F) such tha t  

dim span H = 1 § dim span 2'. 

(5) ~(1). Suppose tha t  F is not a maximal proper face of H.  Then there exists a face 

G such tha t  F ~ G ~ H. Thus 

1 + dim span /7  ~< dim span G < dim span H.  
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(Note that  if K is a maximal proper face of X 1 with H~_K, then (span H)N K = H  and 

similarly for F and G.) 

The proof is complete. 

COROLLARY 7.2. Assume G and H are proper/aces o/ X 1 such that G~_H and that 

there exists xE~eH",,G. I / E  is a maximal/ace of H such that G~ F and x ~ F ,  then F is a 

parallel-face of H and dim span F +  1 =dim span H. 

Proof. By the proof of Proposition 3.9, we get that  F is a parallel-face of H. For each 

y E ~ e / / ~ F ,  we get xEface (y, F). Now the proof of (4)*(5) in Proposition 7.1 gives that  

dim span E + 1 = dim span H. 

If  x, yE~eX 1 are such that  cony (x, y) is an edge of X1, then clearly cony (x, y) is an 

M-face. More generally, it easily follows from Proposition 7.1 that  if x, y E~eX with x + y ~ 0 ,  

then face (2-1(x§ is an M-face. Thus m(X) is welldefined if:dim X~>2 and 

2 < m(X) <. dim X. 

Recall tha t  m(X) is the dimension of the largest subspace of X which is spanned by a 

proper M-face of X r Our main theorem follows: 

THEORE~ 7.3. Assume X is a / in te  dimensional Banach space with dim X > 2 .  I / X  

has the 3.2.I.P. then the/ollowing statements are equivalent: 

(1) X contains a proper L-summand. 

(2) X* contains a proper M-summand. 

(3) re(X*) =dim X*. 

(4) m(X) <dim X. 

(5) There exists a maximal proper face o / X  1 which contains a proper split face. 

Since either m(X) <dim X,  in which case X contains a proper L-summand by Theorem 

7.3, or m(X)=dim X, in which case X contains a proper M-summand by Theorem 7.3, 

the following corollary easily follows using Proposition 4.4 and induction. 

COROLLARY 7.4. Every finite dimensional Banach space with the 3.2.I.P. can be ob- 

tained by forming l r and loo-sums of the real line. 

Proof o/ Theorem 7.3. (1)~(2) is Proposition 4.2. (5)~*(1) is Proposition 4.3. (2)~ (3) 

is Lemma 7.5 below. (3)~(4) is Lemma 7.6 below. (4)~(5) follows from the Lemmas 7.8, 

7.9, and 7.10 below. 
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Lemma 7.5 is a generalization of example 2.8. Recall tha t  we assume tha t  X is a 

finite dimensional Banach space with the 3.2.I.P. 

LEMMA 7.5. I / X  contains a proper M-summand, then re(X) =d im X. 

Proo/. By assumption X contains an M-projection P with P~O, I. By Proposition 4.3 

P* is an L-projection in X*. Then clearly P*/=f or 0 for all ] e ~ X ~ .  Choose ]oE~X~. By 

replacing P by  1 - P  if necessary, we may  assume P*/o=/o. Let K=(xEXI:/o(x)=l} .  

Since X is a CL-space we get X l = c o n v  (K U - K ) .  Define U = 2 P - I .  Then U is an iso- 

merry and U2= I. I f  x E K,  then 

/o(Ux) = U*/o(X) = / 0 ( x )  = 1. 
Hence U(K)=K. 

Since P ~ I ,  there exists an /E~eX~ with P*/=O, i.e. U*/=-] .  Define 2"=(xEK: 

/(x) = 1}. Then F is a parallel-face of g and 2"x = (x E K: ](x)= -1} .  Since V*/= - / ,  we get 

U(F) = 2"~ and U(2"K) = 2'. 

Let  G be a maximal  proper face of K containing F. By Proposition 8.9, G is a parallel- 

face of K. Hence there exists a gEOeX ~ such tha t  G={xEK: g(x)=l}. I f  P*g=g, then 

U(G)=G such tha t  F'K= U(F)~_ U(G)=G and thus G=K. This contradicts tha t  G is a 

proper face of K. Hence P*g=O. But  then U(G)=GK and F ~ =  U(F)~_ U(G) =G'K such tha t  

G~F.  Hence 2"=G and 2" is a maximal proper face of K. Similarly we show tha t  F~ is a 

maximal  proper face of K. 

We have shown tha t  every maximal proper face of X1 is an M-face and the proof is 

complete. 

L~MMA 7.6. I ]  dim X > 2  and re(X) = d i m  X, then re(X*) <d im X*. 

Proo]. Since re(X)=dim X, there exists a maximal proper face K of X 1 which is an 

M-face. Assume for contradiction tha t  re(X*) = dim X*. Then there exists a maximal proper 

face K* of X~ such tha t  K* is an M-face. By replacing K* by  - K *  if necessary, we m a y  

assume tha t  there exist x 0 e~eK such tha t  K* = {/e X*: ](Xo) = 1}. 

Let  2" be a maximal  proper face of K such tha t  F~r is a maximal proper face of K. 

By interchanging F and F~ if necessary we can find/0, /E ~eK* such tha t  

K = (xEXI:/o(x) =1} and F = (xeK:/(x)  =1}. 

Since dim X > 2, there exists a g e ~eK*~(/0, /}.  Let  G = (x e K: g(x)= 1 }. G is a parallel-face 

of K and G~F,  2"~, K, ~ .  This implies tha t  G N F ~ O ,  G N F ~ = ~ ,  G~ N 2"~=O, and 
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G~fl F ~ # ~ .  (Indeed, if GN F = O ,  then F_~G~r such tha t  F~-G~ and ] - -  - g  since ~ is a 

maximal proper face of K.) Thus for all choices of signs 

I I / 0 ~ / + _ a l t  = 3 .  

Note tha t  this holds for all g E ~ K * ~ { f 0  , f}. We shall show tha t  this implies tha t  K* cannot 

be an B-face.  

We assume for contradiction tha t  K* is an M-face, and let H be a maximal proper 

face of K* such tha t  also H ' =  H~r. is a maximal  proper faee of K*. We look at  three cases. 

(i) A s s u m e / 0 , / E H  (or both are in H') .  Then by  Proposition 7.1 there exist g, hES~H' 

(or GH)  w i t h / o + g = / + h .  But  then 

1 = Ilhll = l l ] o - ] + g l 1 - 3  

which is a contradiction. 

(ii) There exists a gE~ e face (2-x(/o+/))~{/0, ]}. Then there exist a > 0  and an hEX~ 

such tha t  
~g + (1-ot) h = 2-1(lo + l). 

By chosing ~ as large as possible in (0, 1], we can assume g~face (h). By Theorem 3.6 

there exists an xEO~X 1 such tha t  9 (x )= l  and h(x)= - 1 .  Since X is a CL-space, we get 

2 ~  - 1 = ~gCz) + (1 - ~) h(~) = 2-1qo(x ) + / (x) )  e { 1, 0, - 1 }. 

Hence ~ = 2  -1, and ]o+]=g+h. But  then 

1 = Ilhll = I I / 0 + / - g l [  = 3 

which is a contradiction. 

Thus it only remains to consider case (iii). 

(iii) /oEH,/EH' and face (2-1(/o+/))=conv (/0,/). Let  N be Va maximal  proper face 

of H such tha t  [otN. (Here we use dim X > 2  to ensure tha t  N # ~ . )  But  then 

N N face (2 - I ( /o+/ ) )=O.  By Theorem 3.6 there exists a parallel-face M of K* such tha t  

N ~ M  and/o,  [EM'=M'~.. I f  M N H ' = ~ ,  then H ' ~ M ' ,  so H ' = M '  a n d ' H = M .  This is a 

contradietion. Hence M n H '  # ~ .  Thus we get by  Proposition 7.1 

dim X* > dim span M 

1> dim span N + I  

= dim span H 

= dim X * - I .  

2 - 802907 Acta mathematica 146. Imprim6 le 4 Mai 1981 
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Hence  d im span  M = d im X* - 1, such t h a t  M is a m a x i m a l  p roper  face of K b y  Proposi-  

t ion  7.1. Again  b y  Propos i t ion  7.1 there  exis t  g, h6OeM such t h a t  

Hence  
/o+g =/+h. 

1 = l lhli  - -  l l / o - . i + g l l  = 3 

which is a contradic t ion .  The  proof  is complete .  

W e  shall  now give a shor t  proof  of (1) ~(4)  in Theorem 7.3. 

Lv, M~A 7.7. Assume dim X > 2  and that X contains a proper Z.summand. Then 

m(X) < dim X .  

Proo/. Assume for con t rad ic t ion  t h a t  m ( X ) = d i m  X. Then  some m a x i m a l  p roper  face 

K of X 1 is an  M-face.  Le t  F and  F ' = F ~ :  be maYimal  p roper  faces of K .  

Since X conta ins  a p rope r  L - s u m m a n d ,  K contains  a p roper  spl i t - face G b y  Proposi-  

t ion  4.3. Also G'= G'K is a spl i t  face and  

re(X) = dim X = dim span  G + d im span G'. 

W e  can assume G' N 1 v ' ~ O .  B y  Theorem 2.6, H = c o n v  (G [ ( F  N G')) is a p roper  face of K .  

Since 2'__ H,  we ge t  iv = H.  Thus  F '_c  G' and  hence F '  = G' such t h a t  F = G. B y  Propos i t ion  

7.1 we ge t  
d im X = d im span G + d im span G' 

= d im span  F + d im span F '  

= 2 (dim X - 1) 

such t h a t  d im X = 2. A contradic t ion .  The  proof  is complete.  

I t  r emains  to  p rove  (4 )~(5)  in Theorem 7.3. This  follows f rom the  following th ree  

lemmas .  ~ o t e  t h a t  once we have  shown t h a t  one m a x i m a l  p roper  face of X 1 contains  a 

p rope r  spli t-face,  t hen  i t  follows t h a t  all  m a x i m a l  p roper  faces of X 1 have  this  p rope r ty .  

LEMMA 7.8. Let M be a proper/ace o/ X 1 and let 2' be a proper parallel-lace o/ M. 

Assume iv is a maximal M-lace in M and that G and H are disjoint maximal proper/aces 

o / F .  Then G and H are parallel-laces o / M .  

Proo/. Le t  x 6 ~eH. Choose a m a x i m a l  p roper  face S of M such t h a t  G_c S and  x 6 S '  = SM. 

Then  S is a paral le l - face of M b y  Propos i t ion  3.9. Since G is a m a x i m a l  p roper  face of F ,  
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we get S N F=G. Let/7'=F~ and assume there exists a z6@eF' ~ S'. Then x6face (z, S) 

such that by Proposition 7.1 there exist a, b 6 @eS such that 

x + a  = z + b .  

Define Fz=face  (z, F). Since F is a parallel-face of M, we get by Proposition 7.1 that  F 

is a maximal proper face of /'z. F is a parallel-face and x 6 / '  and z 6 F ' .  Hence a 6 / "  and 

b 6 _E N S = G. But  then G U {a}__c S N F,  and H [ {z}_c S'  N F~. Hence S A F~ and S'  f] F~ are 

maximal proper faces of F~. Thus F~ is an M-face of M containing F. This is a contradic- 

tion such that  we have F'__S. But then S'  = H  is a parallel-face of M. Similarly we show 

that  G is a parallel-face of M. 

L]~MMA 7.9. Assume m(X) <dim X and let F be a proper M-lace o / X  1 with m(X) = 

dim span F. Let K be a maximal proper/ace o] X t with F c_ K.  Then F is a parallel-lace o /K .  

Proo/. Assume for contradiction that  F is not a parallel-face of K. Then, by Proposi- 

tion 3.10, F~ is non-convex. There exists a face M such that  F c _ M c _ K  and M is minimal 

with the following properties: F~  is non-empty and non-convex. (FM~O simply means 

that  2' is a proper subface of M.) Then by Theorem 6.1 there exist x6~eF and y, Yl, Y2 6 

8eM N F~  such that  
x + y  = yl +Y2. 

Clearly M = f a c e  (y, F) since M is minimal with/'M=#~D and non-convex. 

Since F is an M-face, there exist a pair of disjoint maximal proper faces G and H of F. 

We can assume z e H  since F = c o n v  (G U H). 

We want to show that  T=face  (y, H) is an M-face with dim span T > d i m  span F. 

This will be our final contradiction. 

Let /V 1 and N~ be maximal proper faces of M such that  Fc_N I ~ N~ and y ~ N  x and 

Yl ~/Y~- Then, by Corollary 7.2, N 1 and Nz are parallel-faces of M. We have x, Yl 6NI  and 
! r 

y, y26 (N1)M, and x, y~eN~ and y, y16(N2)M. 

Since N 1 is a proper face of M containing F, we have that  F is a parallel-face in N~. 

Then, by Lemma 7.8, H is a parallel-face of N 1 such that  S=HN,  =cony  (F~v, U G) is a 

parallel-face of N 1. We can thus choose a maximal proper face F 1 of M such that  S__c F 1 

and x ~ S .  Then clearly F 1 N N I = S  and (F1)MN N I = H .  

Since Yl 6 T N N 1 and y6 T, we get H~ T 6] NI~ T. Hence 

dim span F = dim span H + 1 

< dim span (T (] N1) 

< dim span T. 
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~LSmce (F~)M N T is a parallel-face of T conta~oJng H, we get T = f a c e  (y, T N (F1)M). 

Hence, by  Proposition 7.1, T N (F1)M is a maximal proper face of T. 

Thus it remains to show tha t  F 1 N T is a maximal  proper face of T. 

Let  us draw a picture. We look upon M from above G. 

G 

I - - - /  . . . . . . .  

N2 
~'ig. 3.1 

Assume for contradiction tha t  there exists 

ze~eM N face (/~, F~NN2N/~ '~)  11 ((F~)MN N2 N F~). 

Then there exist z l ~ F ,  z 2 E F  1 f1.2V2 N .F'M, u E M  and ~E(0, 1] such tha t  

2-1(zl +z~) = ~z + (1 - ~) u. 

The argument used to prove Theorem 6.1 shows tha t  we may  assume zl, zu and u are 

extreme points and ~ = 2 -1. Hence 
z l + z  2 = z + u .  

F_~2Y~ such tha t  zl, z 2, u E N  2. We have z~eF  and zf iF~.  Hence u q 2  since F is a paral le l  

face of N2. Furthermore z~EF 1 and z E ( F 1 )  M. Hence uf iF1 ,  and then u G F  N F I = G .  Also 

z 1E (F1)~ N F = H .  Using tha t  G and H are parallel-faces of N~ which follows from Lemma 

7.8, we get a contradiction. Hence (F1)M N N2 N FM and face (F, F 1 N N~ N FM) are disjoint. 

By Theorem 3.6 there exists a parallel-face N 3 of M such tha t  

xeF  u (F1 n N~O F~)___ N3 
and 

! ! ! 

(If F a N N~ N FM=O,  we can take Na=N1.  ) 
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Define $I =Nx N (N~)M N Na and S~ = (N~)M [1 N~ N (Na)~. Clearly y ~ S ~  and y~S~ .  

We want to show that  T =face ($1, S~). 

Since 

Z (2" 1 n 2,,~ n N2) n (N~)~ 

we get S~___ (2,~)~ and 2,~ N (N~)M N (N~)M___ (N~)M. Let  u e ~ H .  Then ueface  (y~, 2,~), such 

tha t  by Proposition 7.1 there exist s, t ~ ~ F~ such that  

u §  ~ y ~ §  

We have u E N 1 N N~ N N 3 and y~ 6 (N1)M N N~ N (N3)~ = $2. Hence s e 2" 1N (N1)M N (Na)M~ 

(N2)M. But  then tEiV 1N (N~)MN-~a=S1. Hence T ~ f a c e  ($1, $2). Let next  t E ~ S  1. Then 

t E face (y, ivy), such that,  by Proposition 7.1, there exist a, b E ~eN~ such that  

t §  = y §  

yEFF 1 N (Nx)~ N (N~)M N (Ns)M and t e n  I N (N~)'M N N 3 implies tha t  a e (N~)M N N~ N (Na)ME 

(2"1)M such that  bEN 1 N (2"I)M=H. Hence S1E T, and it follows from the computation 

that  S1E FF 1 N T. Thus in order to show that  T =face ($1, $2) and that  2,1 N T is a maximal 

proper face of T, it suffices to show that  S ~ f a c e  (x, 2,1 N T). 

C Thus let uE~eS2_(2,1) M. Then uEface(y,  N1). By Proposition 7.1 there exist 

a, b E ~ N  1 such that  
u §  = y §  

Now u E $2 ~ (2"1)M and y E 2"1. Hence b E (2"1)M N N 1 = H. Thus $2_ face (y, H) = T. Also 

u Eface (x, F1), so, by Proposition 7.1, there exist a, b E~eF 1 such that  

u §  = x §  

Here u E (N1) M N N 2 N (~V3)M_.~ (2"1) M and x EN 1 N N 2 N N a. Hence b E 2,1 N (N1)~ N (Na)M_ ~ 

(N2)M. Thus aE2,1N_TV1N(N2)MNNa=2,1NSI~_F1NT. Hence b E T = f a c e  ($1,$2) such 

that  b E T N 2,1, and we have proved that  S2g face (x, 2' 1N T). 

The proof is complete. 

LEMMA 7.10. Assume re(X)<dim X .  Let 2, be a proper M-lace o/ X 1 with re(X)= 

dim span F. Then there exists a maximal proper/ace K o] X 1 such that F is a split.face o / K .  
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Proo/. Choose a maximal proper face K of X~ such tha t  2'___ K. Assume for contradic- 

tion tha t  _~ is not a split-face of K. By Lemma 7.9 F is a parallel-face of K, such that ,  

by  Theorem 6.2, there exist xl, x ~ F  and Yl, yo.fi~2'~: such tha t  

x~ A-y~ = x 2 +Y2" 

Choose F1 a maximal  proper face of 2' such tha t  x2 ~ F~ and x I {~ ~1" Then choose a maximal  

proper face F2 of 2' such tha t  ( F ~ ) ~  ~v~ and x~ r F2. Then (F1)~ 13 (F~)~ = ~.  I f  F~ 13 F2 = 

then, by  Lemma 7.8, Fx is a parallel-face of K. This is impossible since x 1, y1~2'~ and 

x~eF~. Hence F 1 13 F 2 = ~ .  

Choose 1~ and N~ maximal  proper faces of K such tha t  x~ G F 1_ N~ and x~ (~2Vx and 

x~ ~ F2 ~_ N ~ and x~ ~N2. Then clearly N~ 13 F =  F~ and N e 13 F =  F 2. Assume there exists a 

yG~((Nx)'~13 (N~)'~)~ face (F, ~V 1 ~ ~V 2 13 ~ K ) - T h e n ,  as in the proof of Theorem 6.1, there 

exist a G ~eK, b G~e F and c ~e(N~ 13/Ve f3 F~) such tha t  

y+a  =b+c.  

We get b E F N (N1)~ N (/V2)~= F N (F1)~ 13 (F2)~ =gD. This shows tha t  ((N1)~ 13 (N~)~:) and 

face (~, N 1 13 N 2 13 F~) are disjoint faces. By Theorem 3.6, there exists ~ E ~ X ~  such tha t  

= 1 on face (~v, N 1 13 N~ N _~) and ~c = - 1 on (N~)K ~ (N~)~r. Let  S = K  13 ~-1(1) and let 

K l = c o n v  (SU -S~:). Then K~ is a maximal proper face of X~ and _ ~ K  1. iv is also a 

parallel-face of K~ by  Lemma 7.9. I f  Yl, y~eS'~, we replace them by  - y ~  and -yx .  

Let  ]~e~X~ such tha t  N i = K  N/[~(1) for i = l ,  2. Then 

] ~ 1 ( _  1) 1 3 / ; 1 ( _  1) 13 K 1 

= cony  [ ( /1-I(-  l )  N / 2 1 ( - 1 )  13 ~eS) U ( / ~ ( -  1) ~ / ; 1 ( - 1 )  13 ( --~eSK))] 

= - / ~ : ( 1 )  n / : 1 ( 1 )  13 ,s~: = o .  

Let  M~ be maximal  proper faces of K 1 such tha t  K 1 N/fl(1)___M~ for i = 1 ,  2 and 

x l ~ M  1 and x2r  2. Then (M1)K , 13 (M2)~:,=gD. Denoting -/~1 by  K and M~ by  N~, we have 
e e 

shown tha t  we can assume (Nx)K 13 ( N g ) K = ~ .  

Let G and H be a pair of maximal  proper faces of iv. By Lemma 7.8, G and H are 

parallel-faces of K. Hence we have xl, x~EG or xl, x~EH. Thus we can assume xl, x~EH. 

Let /1, /2, /a, heOeX~ such tha t  N I = K  13 /~1(1), N~ = K  13 /~(1), G = K  13 ]~1(1) and H =  

g ~/;a(1). L e t / = 2 - ~ ( h + / 3 )  and g=2-1(/2 +h) .  g(xl)= 1 gives ]]gn = 1. I f  G 13 N 1 =g D, then 

GE(.F1)'F~_F2, such tha t  G = F  2. Hence xlEG. This is a contradiction. Thus G13 N I # O  

and 11/11 =1.  
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Assume now t h a t  face ( - / ) N  face (g)=O. Then  the re  exis ts  b y  Theorem 3.6 an  

x 0 e DeX1 wi th  ](xo) = g(xo) = 1. If x o e K, t hen  x 0 e (N 1 n G)) n (N2 n H ) _  G N H = O. I f  x 0 e - K ,  

then  - x 0 e ((N1)~: N G~) N ((N2)~: N H~)_~ (N1) ~ N (N2)~ = O. Hence  face ( - f) n face (g) 4 0 .  

Choose here face ( - - / )  N face (g). J u s t  as  in the  proof  of (ii) in  t he  proof  of L e m m a  7.6, 

we f ind h 1, h 2 e ~ X~ such t h a t  

- / 1 - ] 3 = h + h  1 and  /2+]4=h+h2. 

Le t  now T = K A h - I ( 1 ) .  Then  (NIAG)U((N2)~AH'K)~T~ and  ((N1)~AG~)U 

(N2NH)~_T. W e  have  X l E N 2 f l H g T .  F u r t h e r m o r e  xle(N1)'K and  x~EN 1 gives y2E 
! ,' v ! t : p 

(N1) K N GK ~.~ T. S imi la r ly  x 1 E N~ and  x 2 E (N2) K gives Yl E (N~)K n H'K~ TK. Hence  x2 E T~. 

W e  have  shown t h a t  F fl ~V 1 n ~V2:~=O. Assume now t h a t  H fi N 1 N N~ = O .  Then  the re  

exists  a wE~eG N ~1 n N 2. Clearly G fi (N1)~=O implies  2~___ G. This  is impossible  because 

x2EF 1 N H. Hence  we m a y  choose a vE~eG fi (N1)K_N ~. H is a m a x i m a l  p roper  face of ~', 

so b y  Propos i t ion  7.1, there  exis t  a, bE~e.H such t h a t  

a+v  = b + w .  

v~2V 1 and  w E N  1 gives a E N  1 and  b ~ N  1. (Ni)~N (N2)~=O gives bEN 2. Hence  aEH N 

N~ fi N 2, which is a contradic t ion .  

Choose y EaeH A N 1 N N~E T.  Then  y ~ face (x2, G) = F .  Hence,  b y  Propos i t ion  7.1, 

there  exis t  c, dE~eG such t h a t  
c+y  =x~+d. 

Here  yEN~ N N~ a n d  x 2 ~ Y  ~ N (N2)~ such t h a t  cEG N (N2)K_~N 1. Thus  d E N  s N GE T'~. B u t  

then  y E T N T~: = 0 .  This  is a cont radic t ion .  The  l emma is proved.  
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