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§ 1. Introduction

We shall deal with a general class of second-order hypoelliptic partial differential
equations. For this purpose we develop an appropriate class of singular integral operators;
these will be modeled on convolution operators on certain nilpotent Lie groups. As a
result we are able to construct parametrices and to obtain sharp regularity results in
terms of various Sobolev spaces and Lipschitz spaces.

Background. The first example of the kind of differential operators to be studied here
came from several complex variables. The operator is the ], Laplacian associated with
the boundary analogue of the & complex. Its highest order part is a quadratic expression
in certain vector fields, which are the real and imaginary parts of the tangential holomorphic
vector fields. These vector fields do not span the tangent space. Kohn [13] was able to
show, nevertheless, that under appropriate geometric hypotheses [J, is hypoelliptic
because the missing directions arise as commutators of the complex tangential directions.

A far-reaching generalization of this basic idea was obtained by Hérmander [10].

He considered the operator

(1.1) X,+ 2 Xj,
j=1

Xy ...y X, are n+1 smooth real vector fields on a manifold M with the property that the
commutators up to a certain order suffice to span the tangent space at each point. Hor-
mander proved that the operator (1.1) is then hypoelliptic. Alternative treatments of
(1.1) were later obtained by Kohn [15] and Radkevitch [20]. All the arguments given
were essentially L? in character, but even in this context did not usually give optimal
estimates. The problem arose, therefore, of constructing an appropriate class of operators
which could be used to find approximate inverses to (1.1) and in terms of which sharp
estimates in L? spaces, Lipschitz spaces, ete. could be made.

The first step in this direction was taken in Folland and Stein [8], where the [,
Laplacian was studied in terms of operators modeled on convolution operators on the
Heisenberg group. Parametrices were constructed and various sharp estimates were obtained
for [J,. The intervention of the Heisenberg group (the simplest nilpotent, non-abelian
Lie group) in this context should not have been surprising. It suffices to recall that this
group is naturally isomorphic with the boundary of the unit ball in C*, »>1, in its un-
bounded realization.

Outline of the paper. The main objectives of the present paper are (i) to find nilpotent

groups suitable to the analysis of the operators (1.1) or variants thereof; (ii) to study related



HYPOELLIPTIC DIFFERENTIAL OPERATORS AND NILPOTENT GROUPS 249

questions concerning operators on these groups; (iii) to apply this analysis to the original
partial differential operators in order to obtain the regularity results described below.

We sketch first the idea leading to the construction of the suitable nilpotent groups.
Let X, ..., X,, be given vector fields on M with the property that the commutators up
to length not exceeding r span the tangent space at each point, and consider the following

examples:

(a) The X ; are linearly independent and span the tangent space (i.e. 7 =1). The nilpotent
group is then R”, and the singular integrals are the standard ones.

(by M=R2={(x, y)}, X,=0/0x and X,=x(d/0y). Observe that [X,, X,]=8/dy so that
X, and [X,, X,] span. Unfortunately, there exist no two-dimensional non-abelian nilpotent
Lie groups. However, if we add an extra variable, ¢, and write 5(1 =0/ox, 5(2 =0/ot +x(8/oy)
then 5(1, X , and [5(1, 5(2] span the Lie algebra of the three-dimensional Heisenberg.
Observe also that once one proves that 5(% +X2is hypoelliptic, then the hypoellipticity of
X%+ X3 follows as an easy consequence. It is clear from this example that the dimension
of the group to be used may be higher than that of the given manifold M.

(¢) Take M to be the boundary of a smooth domain in C'*', » =21, and the vector fields
are the real and imaginary parts of holomorphic vector fields which are tangent to M. If
the Levi form is everywhere nondegenerate, the Heisenberg group is the appropriate one; this
is the case studied in [8]. However, if the signature of the Levi form varies, the group that
one might naively associate would vary from point to point. In order to deal with this situa-
tion, as well as the more general situation where this phenomenon occursin more complicated
forms, we lift to a larger group for which all possible varying structures occur as quotients.

This group is the free nilpotent group of step r. (In our specific example above, r=2.)

We now leave these examples and return to our general problem. We shall show that
by adding an appropriate number of new variables we can. lift our original vector fields
to an extended space M. The resulting vector fields 5(1, ves X,,, and their commutators
up to length r are now free, i.e. satisfy the minimal number of relations at a given point,
and span the tangent space of M. At the same time we prove that at each point the vector
fields 5(1, ey 5(,, are well approximated by the left-invariant vector fields Y, ..., ¥, which
generate the Lie algebra of the free nilpotent group N of step r.

Thus the study of the operator, say

M=

(1.2) b:é;

1

I

7

is reduced to the analysis of the operator >/, 5(,2, and the latter is linked to the left-

invariant operator >, ¥7 on a (free) nilpotent Lie group.
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The results concerning the addition of variables to vector fields and the approximation
by left-invariant vector fields on free groups are obtained as Theorems 4 and 5 respectively
in Part II. The proofs of these theorems are intertwined and depend on a complicated
inductive procedure. We shall not describe the details here, but suggest that the reader
look at the statements of Lemmas 8.2, 8.3, 8.4, and 8.5 for the main ideas of the induction.

In the course of the proof of these theorems we exhibit a basic mapping @ of M x M
to Ny Among other things it generalizes the function (£, %)—~&—n. (Indeed, in example
(a) ® is essentially given by this function.)

In addition to studying operators of the form (1.1) we shall also consider the operators

(1.3) L= ,Zl X/2 +3 ’Zk el Xy, X

where the ¢, are given skew symmetric matrices of smooth functions. We are led to deal
with this elass of operators because the [, Laplacidn can be written as (1.3), modulo
lower order terms, where the ¢, are in fact matrices. (Recall that [J, acts on (p, ¢)-forms.)

Part I of this paper is devoted to the study of operators of the form (1.3) on groups,
where the X, are left-invariant vector fields and the ¢, are assumed to be constant. In
the case where c;, are actually scalars we give sufficient conditions for the hypoellipticity
of £ in terms of the size of the imaginary part of the ¢, (Theorems 1 and 1'). We also show,
using the rudiments of Fourier analysis on nilpotent groups, that the conditions are neces-
sary for a large class of groups. (See Theorem 2.) When the nilpotent groups have a natural
homogeneous structure (e.g. are graded) then whenever ( is hypoelliptic it has a unique
fundamental solution which is- homogeneous in"the appropriate sense. It turns out
(Theorem 3) that this fundamental solution then depends smoothly on the parameters
Cae- (1)

Part IIT is devoted to the analysis of the analogue of (1.3) in terms of the free vector

fields. We consider

(1.4) L= ~?+ 32 cjk[ij: X~k]

1 ik

M=

i

]

We construct a parametrix for € as follows. For each £€ M, we let ke(-) be the fundamental
solution of the operator Ce=>7"1 Y7 +3>,,0(E)[Y,, Y;] on the free nilpotent group Np.
Then the kernel of a parametrix for (1.4) is (with small modifications) given by K(&, )=

kO, £)).
The parametrix and the resulting regularity properties can then be studied by following

(*)} At this stage our work depends on some results of Folland [6].
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the techniques previously used in [8]. It might be worthwhile, however, to call to the
reader’s attention some of the features of this analysis which are not straightforward
adaptations from [8]. First, the properties related to the pseudo-metric which is determined
by @ (see § 12) are more complicated and a require a different approach to prove. Next,
the question of differential operators acting on operators such as the parametrix is dealt
with by a more direct, computational method. (See § 14.) Finally, the problem of bounds
for classical Lipschitz spaces (Theorem 14, § 16) had not been considered in [8].()

Part IV deals with the main applications. The passage from M back to M (and from
(1.4) to (1.3)) is accomplished by a simple technique which amounts to integration in the
added variables. This leads to the main regularity theorem for solutions of (1.3). An example
of this result (Theorem 16 in § 17) is as follows. Suppose £(f) =g, and g belongs to the frac-
tional Sobolev space L2(M), 1 <p<oo, >0. Then locally f belongs to L2, o/m(M). (Recall
that r is the least length required to obtain spanning commutators.) There are also further
results of this kind for new Sobolev spaces which take into account the special directions
X, ..., X,, and also for the standard Lipschitz spaces.

In § 18 we show how the analysis must be modified to apply to the operators of type
(1.1). The main difference arises in the choice of an appropriate nilpotent group to be used.
The group we shall use has generators Y,, Y, ..., ¥,; however, in determining the notion
of “length” of a commutator, Y, is given twice the weight that is given to Y3, ¥,, ..., Y.

Finally in § 19 we obtain the desired results for the ], Laplacian. Thus the estimates of
[8] are generalized to the setting where the Levi form need not be non-degenerate and the
metric is not necessarily one of the special metrics used in [8].

It is a pleasure to thank G. B. Folland, C. D. Hill, and J. J. Kohn for several useful
discussions during the preparation of this paper.

Part I. Operators on nilpotent Lie groups

§ 2. Sufficient conditions for hypoellipticity

Let @ be a (finite-dimensional) real Lie algebra, and G a corresponding connected
Lie group with exponential map exp &—@G. Every Y€® acts as a left-invariant vector
field (hence differential operator) on & by the equation

(Y)(x) = dfd(f(z exp t Y))]| g,

for €@ and fECP(G). (CF denotes the space of smooth, compactly supported functions.)
Any polynomial £ on @ is therefore also a differential operator. We shall be concerned

(1) In this connection see Greiner and Stein [9].
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with the problem of giving sufficient conditions on such a second order operator £ that it
be hypoelliptic in the following sense. Suppose U is an open subset of G and « is a distribu-
tion on U so that L(u) EC®(U); then it follows that w €C®(U).

For ¢, p€CP(GF) we let (p,y)= [cppdz, where dx is right-invariant Haar measure(!)
on G, and set ||lp|| =(p, p)}. We observe that (Yo, p)= —(p, Yy), for any ¥ €@ whenever
@, Y EOP(@). If ¢ = (c,) is any n x » matrix, we denote by ||¢|| the usual norm of the operator

acting on the standard #-dimensional coordinate Hilbert space.

TuEOREM 1. Suppose Yy, Y,, ..., Y, gencrate the Lie algebra &. Let C be the left-

tnvariant differential operator on G given by
z 7
£=Zl Y?+§ jzk bulY;, Yl

where (by) =b is a real skew-symmetric matriz. Then L is hypoelliptic if

llof| <1.

This theorem is proved by simple adaptations of arguments of Hormander [10],
Kohn [14], [15], and Radkevich [20]. The argument can be modified so as to cover the
general case (i.e. vector fields on some manifold whose commutators up to a certain length
span the tangent space, and not necessarily those that arise from a finite-dimensional
Lie algebra). However, this general case will anyway be subsumed in our later considerations
where we will make more precise statements.

The proof of Theorem 1 may be generalized to take into account the situation that
arises (i) when the matrix b is complex, (ii) when there are linear relations among the com-
mutators [Y,, ¥,]. To express the result we need the following additional definitions.

Suppose p is any real skew-symmetric matrix. Then under conjugation by an orthogonal

matrix, p can be put in block diagonal form. Each block is of the form ( g gf), where g,
&

is real. There are n/2 such blocks if » is even and (rn—1)/2 if » is odd. In the latter case a
zero appears in the last diagonal entry. One should observe that the numbers +4g,, j=
1, 2, ..., [n/2], are the eigenvalues of 9. We define the “trace norm,” |o|;, of ¢ as the
sum of the absolute values of the eigen-values of g, i.e. [|ofl, =2 2}2?|o;|.

The following facts are obvious as soon as g is put into block-diagonal form. Here

b and g range over real » x n skew-symmetric matrices.

(*) The distinction between right- and left-invariant Haar measure will be irrelevant in most of
what follows since all nilpotent groups are unimodular.
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(2.1) [t do)| <[1B]l llell.

2.2 b = tr(bo); - tr(bo)|.
(2.2) ol uf»ﬁl,gll r(bo)l; llells “sglllgll r(be)|

The generalization of Theorem 1 is as follows. We consider £=>71 Y7 +31 >, ¢4l Y, ;]
where (c;)=c=a-+1ib and a and b are real n xn skew-symmetric matrices. Now let S be
the subspace of all real skew-symmetric matrices s=(s;) so that >, .s;[Y;, Y;]=0. We
let B be the subspace of real skew-symmetric matrices spanned by a and S. Finally, let
R+ denote the orthogonal complement of R with respect to the inner product (d,, d,)=

—tr(d,d,), on the real skew-symmetric matrices.

THEOREM 1. Let L= Y;+4 >, cculY,, Yyl Then L is hypoelliptic if
(2.3) sup |tr(bo)| <1.

llelli<1
geRL

The proof of Theorem 1’ (and hence of Theorem 1) requires two simple lemmas.

(2.4) LemMA. Suppose 95, =i([Y;, Y11, f), for some fECP(G). The matriz o is real and

skew symmetric. Moreover,

(2.5) lell<2 2 I 7:/["

Proof. The fact that g is real follows immediately from the fact that (Zf, f)= —(f, Zf),
for any real left-invariant vector ficld Z. Skew-symmetry is obvious. Now let d= (d)
be the matrix of any orthogonal transformation, and set Yj=2,d; Y, Then clearly
2l X7 FI2=217 7|2 Moreover, if g;, =i([Y}, Yilf, f), a simple computation shows that
o’ =dgd~1. Thus with an appropriate choice of d we can assume that g has been reduced to
block diagonal form. It then suffices to prove the inequality corresponding to (2.5) for
each block and then add these inequalities. Thus we need to show that:

2.6) [[Yy Yalf, D] < X224+ || Yo f|12

So consider the fact that
(Y1+2Xo)f, (Y1+3Ye)f) =0.

This means that [| Yy f||2+ || Yof||2+4{(Yaf, Y1/)—(¥:f, Y4f)} >0. However
(Yof, Yi)=—(Y1 Yof ) and (X1f, Yyf) = — (Y, Y4f, /).

Hence ([ Yy, Y,lf, ) <||¥,f||>+ || Y2f][>. A similar result holds with Y, and ¥, interchanged
giving (2.6) and proving the lemma.
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(2.7) LEMMA. Write a=a™ +a® with ¢V €SN R and a® €SN R. If b satisfies
SUDjoili<i, ozt | B (B0) | <O, then there exists y €R such that b’ =b+ya'V satisfies
(2.8) sap |tr(b'e)| <0.

llell<1
geS+

Proof. Identify b with the linear functional b* on the vector space R*, given by
b*(o) = —tr(bp), 0 € B*. Then by the hypothesis,

|6*(0)] <Ollells

for all g, € R*. Since ||o||,+ [lo +o’[[1<[l¢’|l1 (see (2.2) for any real skew-symmetric matrices
0,0, the Hahn-Banach theorem guarantees the existence of a linear functional '* on
8+> R+ such that

(2.9) |0"*(0)| <0lo]l,, allo€S+,
and
(2.10) b'*(g) =b*(p) for p€R™..

Since S is spanned by R* and a!, a1 €8, (2.10) implies that b'* may be identified
with a skew-symmetric matrix b’ =b+-yal for some real y. Then (2.8) is immediate from
(2.9), proving the lemma.

To prove the theorem we show first that we have the inequality

(2.11) El | 7;7* < 4|(&f, D, FECF(G)
Write
(2.12) LLH=(CYHLN+3 2 bi([Y;, Yilf f)

+(2W)Z%UYan, )+ 5 aR(¥, 11D,

This formula follows from the definition of £ since b’ =b+ya™ =b+y(a—a'?). Using
(Y71, )= -] ¥, f||? we obtain from (2.12) the inequality

(2.13) ST, A1 <I(h, pl+ 3erv) + L= Wm ﬂﬂ”mwm

Note first that since #([Y;, Y1/, f) is real, Im(Lf, f) = —} tr(ap) and therefore

| tr(ag)| <2[(Lf, H]-
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Furthermore 3 g;,85=0 whenever > s,[Y,, ¥;]=0. Thus ¢ €S+, and hence
3| tr(@'0)] <Ollelly/2 <6 Z|| ¥ f]|*

where § =sup,est, o<1 | t2(0°0) | <1, by Lemmas 2.4 and 2.7. Also, since a'® €8, tr (a‘?g) =0.
Substituting these into (2.13) we obtain

N5 E<I(Ch N +6 Z Y fl12+ |1 —dy | [(€F, D]

This proves (2.11) with 4,=(1+ |1 —4y|)/(1-0).

Once (2.11) is proved one can follow the known arguments to prove hypoellipticity.
(See e.g. Kohn [15].) Using Sobolev norms || ||;=|| ||,z for functions supported in any
fixed coordinate patch U of G, one first shows that (2.1i) implies

(2.14) lolizs <o, o) + ol pecsw),

for some £>0. Next one shows that (2.14) implies the local estimate

(2.15) 12015+ < O{lI6: Coplls+ a0 llo}, @ €CB(T)

for all integer s, and all pairs ¢, £, €C3(U) so that {; =1 on the support of {. The hypo-
ellipticity follows from (2.15). We shall not repeat the arguments leading to (2.15) and (2.14)

since at that stage there are no new ideas.

§ 3. Graded and free Lie algebras

In order to formulate a converse to Theorem 1’, and also because of the basic role
they will play in what follows, we shall discuss certain particular classes of Lie algebras.
Firstly, the Lie algebra @ is said to be nilpotent of step r, if @+ =(0), where & is defined
inductively M=, G® =[G*1, @]. If =N is nilpotent it is well known that the
exponential map exp NN is a diffeomorphism of N onto the corresponding simply
connected Lie group N. (See [19].)

A Lie algebra 9 is said to be graded if it has a direct sum decomposition N =7, ® V7,
with the property that [V/, V¥]< V**/ if k+j<r and [V*, V/]=0 if k+j>7r. Observe
that a graded algebra is always nilpotent (and of step r). Graded Lie algebras (and in
particular the examples below) will be our basic object to study.

Example 1. A Heisenberg algebra N is a two step graded Lie algebra RN =V1@ V2
with the property that dim V2=1, and such that if A* is any non-zero linear functional on
V2, the bilinear mapping (X, ¥Y)—=>2*[X, Y] defined on ¥ x V! is non-degenerate.
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Ezample 2. A stratified algebra (using the terminology of Folland [6]) is any graded
Lie algebra with the additional property that V! generates the whole Lie algebra. We
shall also refer to this kind of algebra as a stratified algebra of type 1.

Example 3. Stratified algebra of type 11. This is the graded Lie algebra R=V'@ 72@...77,
so that there exists a Y€ V2, so that V! and Y, generate the Lie algebra. This is the kind
of Lie algebra that must be used in dealing with the general Hérmander-type second order

hypoelliptic operators, as in § 18 below.

Example 4. Free algebras Ny, ,. For each n and r>1 this is the algebra having n gene-
rators and r steps, but otherwise as few relations among the commutators as possible.
To define this algebra consider first the (infinite-dimensional) free Lie algebra & on »
generators Y,, ..., Y¥,,. (Cf. Jacobson [11], Chapter V, § 4.) Roughly speaking, &y is generated
by {Y,} with the only relations among the commutators being those forced by anticom-
mutativity and the Jacobi identity. For #>1, let %, , = &/@r¢+1)- Then N, , is nilpotent
of step 7 and it has the universal property that if ¢ is any other nilpotent Lie algebra of
step r with n generators, there is a surjective homomorphism of %;, , onto Jk.

N, is graded, Ry ,=>7_, @ V7, with ¥/ being spanned by all commutators of the form

[Vl Yoo (Yo, Y00

Example 5. Two-step algebra N,, associated to a graded algebra N. To every graded Lie
algebra 3 of step r, » >2, we can associate in a canonical way a two-step graded Lie algebra
N,. Write N=> @V’ and take Ny =N/>,;.. @ V.

Observe that >;., @ V' is an ideal, and R, is a graded algebra of two steps.

The converse of Theorem 1’ is as follows.

THEOREM 2. Let R=17_,V’ be a graded Lie algebra of step r, r>2. Suppose that V*
is spanned by Y, ¥, ... Y,. Let

L= Yi+4§2 eulY), ¥yl
j=1 5k

where c=a+1b and a, b are real skew-symmetric matrices. Assume:

(3.1) sup  |tr(bo)| =1,
eeR, [lell1<t

and

(3.2) Ny = 9?2/(7210%[171, Yil)

s not @ Heisenberg algebra. Then C is not hypoelliptic.
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Remark. The situation when N is a Heisenberg algebra is more complicated and still
somewhat obscure. Thus the proof of Theorem 2 shows that £ is not hypoelliptic when
SUPger+, olli<t | 12 (b@)| =1 even if Ny is a Heisenberg algebra. Moreover, if M is itself a
Heisenberg algebra, it is shown in Folland-Stein [8] and Boutet de Monvel-Tréves [3] that
L may be hypoelliptic even if sup,czt, o<1 | tt bo| >1.

§ 4. Harmonic analysis on IV and the proof of Theorem 2

Let £ be the differential operator defined in Theorem 2. We shall use the representation
theory of the nilpotent group N in order to find a function ¢ such that Lo =0, but ¢ ¢C.

Recall that a unitary representation of a Lie group N is a continuous homomorphism
7: N—Unit ¥, the unitary operators on a Hilbert space H,. By differentiation one obtains
a representation ds of N as skew Hermitian operators on . The motivation for considering
unitary representations to investigate the hypoellipticity of £ comes from the Plancherel
formula. Let NV be the set of all unitary irreducible representations of N and du the Plan-
cherel measure on N. For f€CP(N) and w€N let n(f) be the operator Jw7e(x) f(x)dc. Then
f—n(f) extends to an isomorphism of the square integrable functions on N with the space
of all 7(f) with inner product |y tr(7(f)n(g)*)du(x). (See e.g. Pukanszky [19] for the repre-
sentation theory of nilpotent Lie groups.)

This indicates that it might be possible to decompose £ as a direct integral

fﬁ dr( L) du(m).

If £ were hypoelliptic, we might try to invert £ by inverting each operator dm(L). An
obstruction to such an inversion would be a zero eigenvector of dn{L£). Thus we are led to
look for those st for which dn(L)v =0 for some 03=v€ I,.

Fortunately, we shall not have to make use of any deep results in representation
theory; we shall be able to construct explicitly all representations which will be needed.
In effect these representations will all factor through the quotient algebra 9.

Proof of the theorem. We shall prove the theorem first in the case when M is a two-
step graded Lie algebra and 3 a4[Y,,Y,]=0. In that case N =Ns, and our assumption is
that N is not a Heisenberg algebra. We can therefore write Jt=V1® V2 with [, V1]=V2
(If [VY, V1] is strictly contained in V2 then Y,, ..., Y, do not generate N and then clearly
£ is not hypoelliptic. Hence there is nothing to prove.)

There are now two cases:

() dim(V?) >2; (ii) dim (V?) = 1.
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Since > az[Y;, Y;]=0, R is the linear space of relations in V?, ie. if ¥,, ..., Y, form a
basis of V1, R={(s): >, s4[Y;, Y;,]1=0}. Thus the condition (i) implies that dim (R')=
dim V22>2. So then by continuity we can choose a g,€ B+ with g,==0 so that tr(bg,)=0.
Hence by continuity again we can choose a g€R* so that —tr(bg)=]lg]l,=1 (since
Sup, ez, o<t | t2(00)| = 1). In case (ii) we have little choice since R* is one-dimensional.
We choose g, so that
—tr(gb) >|lef|, = 1.

Now each p=(gy)€ R defines for us a linear functional ¢* on V2 by the equations
0*([Y;, Y;]) =0 Since g€ R+ implies D 045, =0 whenever > s;[Y;, ¥,]=0, the linear
functional is well defined. In case (ii), hypothesis (3.2) of the theorem assures that the
bilinear form g defined on V! x Vt by (Y, Y')=p*[Y, Y'] is degenerate. With the element
0 € Rt chosen as above we proceed with the proof.

Let +4p,9=1,2,..,1,2I<n, be the non-zero eigenvalues of g. By an orthogonal

change of basis we can find {Y;} satisfying, for j <k
0 ifjiseven or k=4j+1
(4.1) (¥}, ¥1])={ @, if j odd, k=j+1
0j>2+1.
Now for every 4, 0 <A < oo we construct a unitary representation m; of N on H; =L2(R%).
73 is defined by
T(€XP EY ) by, By ey by vy ) = FEys by ooy Bl oy ) i =2k—1, k<
7pexp tY})f = e'Hutef if § — 2k, k<1
7(exp tY;)f = e'**Pf,  where c(J) is a constant, if j = 2] +1
mlexp tY)f=F ifg§>20+1.
In case (i) we shall take ¢(4)=0 for all . We leave the determination of ¢(4) in case (ii)
for later.

Differentiation of the above gives the corresponding representation dz; on N defined

on the dense space of smooth functions §.

of )
2 =2%—1, k<I
a, 1=2k—1,

(4.2) dmy(Y)) f=1 A0t =2k, k<l

i) f  j=20+1
0 j>20+1.
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If j =2k —~1 then
dn([Y), Vi) = — dm([ Y1, Y1) = i20s.

dm; vanishes on all other commutators. From this one obtains
(4.3) dr)([Y ), Yi) = idgp.

From (4.2) and (4.3) we obtain
I N TIWARN 7 .
dry(L) = — (c(A))* + k§=:1 (37% -4 thk) +t3 jzk (@ + ibyy) 0ry-

We make the change of variables
M= Vﬂg:l bie
Noting also that a € R+, so that tr{ag) =0, we obtain
N T T R
(4.4) dmy(L)= 2 Aleel\ =~ ) + 5 2 ibwos— (c(A).
k=1 Mi 2

ik
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Fortunately, the eigenfunctions for the harmonic oscillator 82/on5 —15 are well known.

The Hermite functions
20 dY 2
Hy(n) = €™ m(e nk)
satisfy

2
(531]—2“77%) Hy=—-(2N+1)Hy, N=0,1,2,....
%

Furthermore, the collection of products
Hy,, wer oo vy=Hy, (1) Hy,(12) ... Hy(n)
forms an orthogonal basis of L*R?), so that the eigenvalues of

- f & .
leekl(—-z-—n‘i) are ~2 > |0x|(2N,+1), Nx=0,1,2,....
i<l ok K<l

In particular, take N,=0, all 4, and put H =H,, o, then
. f & 2 . A
SMallm— ) H= 42 |elH=~3 llel. H.

Hence from (4.4) we have
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A A
—llella—5 tr(be) — (e()?

as the eigenvalue of dn;(L) on H.

Now define

A 1/2
Mh(gww%wﬂ.

The previous discussion insured that the quantity inside the parentheses is non-negative.

‘We have therefore proved the following.

(4.5) LemmA. The Hermite function H=H, g, ... o satisfies dm,(L)H =0 for all 2>0.

Next we show

(4.6) LeMMA. Let (x) = [P<my(x) H, HYA™*dA, x €N, where {,) is the usual inner prod-
uct on H=L*R"). Then Lo=0.

Proof. Note first that if Y €N, and x€N then

(4.7) Y (mtix) H) = gtm(x exptY) H|io=mi(z)drs(Y) H.

By (4.2) and (4.3) it follows that for any X, X,, ..., X €N, and for fixed x €N, the function
(X, X, ... Xy70;(x) H)H is absolutely integrable on R’. Therefore,

(X1 X, ... Xy Kamp() H, Hy = {rmy(x)dm, (X, X, ... X)) H, H>.
In particular,
Couslw) H, Hy = (uy(w) dmy( ©)H, H 0.

It will follow that Ce =0 if differentiation under the integral sign can be justified. However,
by (4.7) and (4.2), since L is an operator of order 2, L{m,(x)H, H) grows at most as A2
for x fixed. Hence L{m,(x)H, H>A~* is absolutely integrable on [1, o). Therefore,

c f B Cova(w) H, HY A~*dA = f i Clmy(x) H, HY A~*dA ~0.

To complete the proof of Theorem. 2 (in the case N =Nz), it suffices to show that
p §C®(N). We shall prove this by showing that the restriction of ¢ to exp(R[Y,, Y,]) is
not smooth for some j, k. In fact, choose §, k so that g;==0, and note that by (4.3),
7(exp U Y, Y, ]) =e'"x, Put c=g,, for convenience and ¢(t) =@(exp {[¥,, ¥,]); it suffices

to show

o(t) = f " geagegy ¢ O°(R).
1
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To see this, note that since ¢ is obviously twice differentiable, we are reduced to show-
ing

f ¢ -2 1) ¢ O°(R).

1

This may be proved by writing

J;w ML) = f:o cos cAtA~2dA + if:o sin cAt A~ 2dA = I,(t) + L,(t)
and showing that the derivative of I,(t) is unbounded as i—0. Details are left to the reader.

This finishes the proof when 3 =3,. In the general case we adopt the notation (and
implicitly the point of view) we shall also use later.

Let 2%=ZL1 @ V" be a graded Lie algebra with Y 1 f’z s , spanning 7, and let
B s Py = V1 V2 = (T D500 @ VNS, 403 ¥ j» Tyel). Observe that h(V%)= V%, i=1, 2, and
that A is an isomorphism from V! to V! and a surjection of V2 onto V2 with kernel
Sl ¥ ¥l

Let ¥ and N denote the simply connected Lie groups corresponding to R and %
respectively, and N, that of the Lie subalgebra of %N spanned by >...®V*' and
Z}.kajk[i’b Y,]. Then N, is a normal subgroup of ¥, and N/Ny=N. Denote also by &
the canonical homomorphism %: ¥—>N/N,=N. Y,-:h(f'j), j=1, ..., n, is a basis for V.
We need to show that the operator £~=z I;§+% > cjk[f’ P Y,] is not hypoelliptic under
hypotheses (3.1) and (3.2). Now we have already seen that the corresponding operator
defined on the group N is not hypoelliptic; in fact we showed the existence of a ¢, so that
@ 4C™ but L(g)=0. Let now ¢(&)=¢(h(%)), ZEN. Then since I;j((f)) (&) = (Y ,;p) (h(Z)), and
Y, Y @) (&) = (Y, Yp) (h¥), it follows that £()=0; but ¢ is not in () and so the theo-
rem is completely proved.

§ 5. Dilations and homogeneity on groups

A family of dilations on a nilpotent Lie algebra 3 is a one-parameter group {§,} g +of
automorphisms of N determined by 6,(Y,)=t%Y,, where {¥ }1<;<m is a linear basis for N
and {a,}1<j<m is a set of positive real numbers. By the exponential map 9§, lifts to a one-
parameter group of automorphisms of N, the simply connected nilpotent Lie group cor-
responding to ; these automorphisms will again be denoted by {4;}. N, equipped with
these dilations, is then called a homogeneous group.

Any graded nilpotent Lie algebra R has a natural family of dilations {J,}. Indeed,
it M=>7_, VI, it is not hard to see that the mappings 8, defined on each V’ by §,(Y)=¢#Y,
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YEeV!, >0, extend by linearity to automorphisms of 9. In this paper we shall entirely
restrict our attention to these dilations on graded Lie algebras.

In this section we review some facts about operators on homogeneous groups, and
refer the reader to Knapp-Stein [12], Koranyi-Vagi [16], Folland-Stein [8], and especially
Folland [6], for details.

A homogeneous norm function on a homogeneous group N is a mapping z—> |z|, €N
satisfying

(i) |#| >0 and |x]| =0 if and only if =0,
(6.1) (ii) #— || is continuous on N and smooth on N —{0},

(i) [8y)| =t|x].

Since we shall consider here the case where 3t =], V7 is graded, we may exhibit a

particular norm function as follows. Any €N has a unique representation
z=exp(¥*4-Y2+...¥7), Y€V

Then we may define | | by

)

r 1/(27!
(6.2) lxl = (Z " yjll(zn)/j) ,
j=1

where || || indicates the Euclidean norm on V7.
We shall occasionally need the vector space sum of points of N: if x, y €N we write
x+y for exp(log  +log y). Then we have the “triangle inequalities™
|z+y] <yp(|z| + |y}), and

(5.8)
|zy| <y(]e| +]y])

for some constant y>1. Writing |||| for the Euclidean norm on N there exist positive
constants C; and C, such that for all |z| <1,

(5.4) Crllef| < [o| <Colj=l|™"-
The homogeneous dimension of N is defined by
r

(5.5) Q=]Zl j(dim V7).

It significance is that if du is Lebesgue measure on N, then dx/|«|? is invariant under the
dilations d,, t >0.
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A measurable function f on N will be called homogeneous of degree A if fod,=tf, all
t>0. Any function K which is homogeneous of degree —@Q-+o, 0 <o and smooth away
from the origin is locally integrable and thus defines a distribution 7'. 7' will be called a
homogeneous distribution of type «. Similarly, suppose K is a homogeneous function of
degree —@ which is smooth away from the origin and satisfies the mean value property
Ja<iz<o K(@)de=0, all a, b, 0<a<b. If c€C, then the pair (K, ¢) defines a distribution T'
given by
(5.6) T(f) =lim seror<l K(z) f{(z) dz -+ cf(0),

FECT(N). T will be called a homogeneous distribution of type 0. With a slight abuse of
notation we shall also denote a homogeneous distribution of type 0 by K.

A differential operator D or NV is called komogeneous of degree A if D(fod,)=t*(Df)od,,
all ¢>0. If f is a homogeneous function of degree « and D is homogeneous of degree 4,
then Df is a homogeneous function of degree «—A. If 7 is a homogeneous distribution of
type a4, then Dt is of type o—2.

Recall that if f and g are functions on N their convolution f ¢ is defined by

6.7) $ gly) = fo(w)g(x“y) dar= ff(yw‘l)g(x) .

It €07 and 7is a distribution we may define %7 and 7% f as C® funetions by (f %7)(x) =
7(f%), where f(y) =f(ay~) and (v % f) (®) =1(f,), Where f,(y) ={(y~a).

If 7 is actually a function these definitions agree with the usual notion of convolution
given by (5.7). If D is a left-invariant differential operator the reduction to the case D=
Y eN shows

(5.8) D(f%1)=f%Dr, and D(rxf)=1%(Df).

We shall need to discuss next the existence of fundamental solutions for a certain
class of left-invariant differential operators on a graded Lie group. For some of the applica-
tions below we shall have to deal with systems of such differential operators. For this
purpose we shall assume that our functions take their values in a finite-dimensional vector
space W over C. The coefficients of the differential operator £ in question, as well as the
fundamental solution K, will then take their values in the space of linear transformations
of W to itself. Thus the notions of homogeneity- defined above for scalar functions and
operators may be extended to this case by requiting the appropriate homogeneity of each
component or matrix entry.

Now let D=(D,) be a homogeneous differential operator of degree 4 and K = (K )
17— 762901 Acta mathematica 137. Imprimé le 20 Janvier 1977
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a homogeneous distribution of type «. We denote by DK the matrix of scalar distributions
(DK)o=2,D; K. Each (DK)y is a scalar distribution of type a4, by the above remarks.

(5.9) LEMMA. Let D, K be as above. Suppose that D is left-invariant. Let T be the operator
given on smooth compactly supported functions f by T(f)=fx% K. Then

(5.10) D(T(f)) = D(f ¥ K) = f%(DK).

Proof. The content of (5.10) is that convolution by the matrix product DK corresponds
to the composition of the operators D and I' when D is left-invariant. This follows from
the corresponding statement (5.8) in the scalar case. Since every component function of
DK is smooth away from 0 and homogeneous of degree (—@ + ) —4, the proof of the last
statement reduces to showing that if «=4, the components have mean value 0. This is
immediate from the scalar case. (See e.g. Folland [6], Proposition 1.8.) q.e.d.

Now if a fixed (positive definite) inner product, (,),, has been given in W, we may
define (f, 9)= fx(f, 9)o (x)dx whenever f, g€COP(N, W). We write L£* for the formal adjoint
of C,ie. (Lf, g)=(f, L*g) whenever f, g are smooth and have compact support.

The following theorem concerning the existence of fundamental solutions for left-

invariant differential operators will be crucial in our construction of parametrices.

ProrosiTioN A.(Y) Let £ be a left-invariant hypoelliptic differential operator on N
such that the formal adjoint £* is also hypoelliptic. If L is homogeneous of degree o, 0 < <@,
then there is a unique homogeneous distribution k of type o such that for all f€CP(N),

(5.11) C(fxk) = (Lhyxk =1.

We shall now state several results which are known in the scalar case; the extension
to the vector-valued case is immediate.

A fundamental result on convolution by homogeneous distributions is the following.

ProrosiTioN B. Let 7 be a homogeneous distribution of type o, 0 <a<Q. If a=0then
convolution by v extends from CYP(N) to a bounded mapping on LP(N), 1<p<oo, If x>0
convolution by T extends to a bounded map from LP to L9, where 1]q=(1/p)—(«/Q) provided
1<p<Q|a.

In defining the convolution of matrix-valued functions K and L we must take into
account the fact that in general L(x) K(x)=K(z) L(z). We put

(1) See Folland [6], Corollary 2.8. A similar result was also obtained both by R. Strichartz and the
second author (unpublished). The result in Folland [6] is stated in the scalar case (dim W =1); the same
argument holds as well in the general case.
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(K*L)(x) = fL(y) K(zy)dy.

Prorosition C. Let K,, Kg be homogeneous distributions of type «, >0, respectively
with Q> a+B>0. Then K, % Kz exists, and is a homogeneous distribution of type o+ . Further-

more, the associative law
(5.12) (f % K,) % Kg = f% (K, % Kpg)

holds for all fEL, if p<Q/(x+p).

§ 6. Smoothly varying families of fundamental solutions
Let N=>7.1 V! be a graded Lie algebra and let

(6.1) c=1‘§1 Y,2+%gcc,k[Y,, Y,
where Y, is a basis of V1, V1is assumed to generate N, and (cy) =c=a+1ib, where ¢ and b
are real skew-symmetric matrices.

By Theorem 1’ we know that whenever ¢, lies in a certain (open) subset of the n(n —1)-
dimensional parameter space £ is hypoelliptic. Proposition A in § 5 then tells us that C
has associated to it a unique fundamental solution, which is a distribution of type 2.
We shall be concerned with proving that this fundamental solution varies smoothly with
the (c;).

The considerations of the 9, problem in § 19 below will require that we prove our results
for systems. As we already did in § 5 we shall assume that our functions take values in a
finite-dimensional vector space W. The operator £ in (6.1) is then replaced by
CraYHI+13, e4lY,, Y] where each oy is a linear transformation of W to itself.
However now the necessary and sufficient conditions on the ¢, that C is hypoelliptic are
no longer as simple as those given in Theorems 1’ and 2. We shall assume nevertheless

that for some fixed (c;;) the two a-priori inequalities hold:

2T fle<clerp), recqm
and

T A<l eorw).

We now define £, by
Cy = -C"i’zyﬂc[yj) Yk]
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Then for y ranging in some open subset () of the parameter space (of real dimension =
n(n—1) x (dim W)?), and in particular for y sufficiently small, the operators £, and L}
satisfy >7.[| Y, {2 <C,|(L,f, )| and 37| Y, f12<C, (S F. )], for fECP(N). Thus by the
reasoning already quoted in § 2, both £, and C} are hypoelliptic. Now by Proposition A
in §5 it follows that for each y €(), there exists a unique homogeneous distribution %,
of type 2 on N, so that C,(k,) =16, and such that C,(f % k,)=(L,f) % k,=f for all fECP(N).

Our result on the smooth dependence of k, on y may be stated as follows.

TueorEM 3. The function (y, x)~>k,(x) is (jointly) C° on the set Q x (N —{0}).

Since each function k. (z), y €€, is homogeneous in z of the same degree, it suffices
to prove smoothness on the set O x {€N: 1< |z| <2}, where | | is a homogeneous norm
function. For this purpose we define C® to be the space consisting of all complex valued
functions which are smooth on {x€N:1<|x| <2} and which, together with all their
derivatives, are continuous on the closure {x EN: 1< |x| <2}. On C® we define a countable

collection of seminorms {|| ||}, &¢=(e, ..., «,) a multi-index of non-negative integers by

(%)“f(x)l.

The space C* is complete with respect to these seminorms.

I#l.= sup

1ge]<2

We shall say that a mapping f: Q—>C® is bounded if the positive functions y— [|f(3)||.
are bounded for each seminorm. Our proof will proceed in two steps.

Step 1. The mapping y—k,, of Q to C* is bounded on any compact subset of Q.

Step 2. For each x€N —{0} the function y—~k,() is C®, and its partial derivatives
with respect to y are bounded on compact subsets of Q x {x: 1<|2]| <2}.

Now Theorem 3 is proved from steps 1 and 2 by the following lemma.

(6.2) LEMMA. Suppose a complex valued function (y, x)—F(y,x) is defined on an
open subset U R™ x R™ and satisfies the following properties:

(i) F is C® in both variables x and v, separately.
(ii) AU partial derivatives of F with respect to either x or v are bounded on compact
subsets of U.

Then F is jointly C* on U.

This result is certainly not new, but, lacking an explicit reference, we give a proof.
Since the conclusion is local we may assume (after multiplying by suitable C® functions
of compact support) that F also has compact support. Let F(y’, #’) be the Fourier trans-
form of F. By our assumptions both |y’|¥F(y’, ') and |a’|*F(y’, ') belong to L? for any
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k>0. Therefore (|z’|%+ |y|2)*2F(y’, 2’) is in L? for all k>0, so FEC® by the Fourier
inversion formula.
We shall need some preliminaries before proceeding to the proof of steps 1 and 2.
For any y €Q write T, for the mapping corresponding to the kernel k..

(6.3) LeMMA. For any y,, 7,€Q,
TJ’I - Tw = T}’z(E’h - £Vl) T‘}'x'

Proof. Recall that this equality is with reference to smooth functions f of compact
support. Evaluating the right hand gives

Th(ch(Tyx f)) - T’)’z(£¥1(T’}'1 f)) = Tvl f - Tv:f

by identity (5.11) which proves the lemma.
It will be important in what follows to note that since £,,— L, is left-invariant, by
Lemma 5.9

(64) (Eyz - c}’l) (T’h f) = (c}’ﬂ - E’h) (Tw) f;

here (C,,—L,,)T,, is the mapping given by convolution by the kernel (C,,—L,.)%,,,
which is of type 0.

(6.5) LEMMA. Given y€Q, there exists &> 0 such that if |y —yo| <& the operator
E?’ = (£Yo - C’}') Tyo

satisfies
(6.6) 12, ll o <30

Proof. T, (f)=f*k,, %k, a homogeneous distribution of type 2. Thus each of the
operators Y,;Y, T, and [Y,, Y] T, is given by convolution with a homogeneous distribution
of type 0, and is therefore bounded on LP by Proposition B of § 5. This proves (6.6) for
¢ sufficiently small.

The following is a key point in the proof of step 1.

(6.7) LeMmma. The estimates

(6.8) Tl < Gyl £l»

hold with % =(1/p) —2/Q, and C,, bounded on any compact subset of C2.

Proof. It suffices to show that given any y,€CQ there is an ¢ neighborhood of y, so
that (6.8) holds for all |y —y,| < &. Let C, be the norm of T, as a bounded operator from
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L? to L? (see Proposition B of § 5). We shall prove (6.8) provided C, >2C, and ¢ is chosen
to satisfy conditions of Lemma 6.5. Then putting g=>%-0 E™f), E=(L,,—L,) T, we

have

Ioll< 32 11=2111,

However, since T,(f) =T),(g), by Proposition B
17D = 1Tl . < Collgll o < 2C6 [ £ 2,

and Lemma 6.7 is proved.

(6.9) LEMMA. There exists £>0 with the following properties: Whenever { and £, €0F
and £, =1 on the support of £ and y €Q

(6.10) leflla < CUlz Pl + 12712

The constant O depends on , 5y, k, and y, but when the first three are fized, C remains bounded

as y ranges over compact subsets of .

Proof. (6.10), without estimates for the constant C, is proved e.g. in Kohn [15] as a

consequence of the estimate
(6.11) ZIXAP<CUCLA+IAY recs.

Moreover, (6.11) is proved in Theorem 1’ in the scalar case, and is what we have assumed
in the general case. It is clear that C, remains bounded on compact subsets of Q. Now
(6.10) with the additional statement about the dependence of C' on y is a consequence
merely of keeping track of the constants in Kohn’s argument. We omit the details.

We may now prove step 1. Suppose that g is any complex valued function satisfying
(i) supp g< {z: 1< || <2}, and
(i) [|g@)|dz<1.
Now let f=1T,(9)=g%k,. Since £,T,(g)=g, in the sense of distributions, C,(f)=0 for
|z] <1. Also f=fg(y)K,(y@)dy is C® for |z| <1. Now apply the inequality (6.10)
with £, £, satisfying
£=1 for |z|<} and =0 for |2]|>1,
=1 for |2|<} and =0 for |z|>4.

Then
(6.12) el <Clfll=ClE@le< Cllall < O llgll
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where (', remains bounded as y ranges over compact subsets of Q. The next to last in-
equality follows from (6.8) and the last from Hélder’s inequality since p <2 and g is sup-

ported in a compact set. In our case inequality (6.10) becomes
(6.13) el < Cerllgllzns any &

An application of Sobolev’s Lemma then gives

a\* , ..
‘(8_90) f(())‘goﬂ, v".‘]" 5, any multi-index B.

In particular if D is any left-invariant differential operator on N i.e. a polynomial in the
Y’s, then

(6.14) [ (DH{0)] < Cop.yllgl 2o
However, f=gx k, so that

(6.15) Df(0) = (g Dk,)(0) — fg(y) Dk (1) dy.

Since ¢ is arbitrary among L? functions of norm <1 supported in {x; 1< [x| <2}, the

converse of Schwarz’s inequality can be applied to (6.14) and (6.15). The result is

1/2
( f IDk,,(y“l)lzdy) <0p,,.
1<ly|<2

By homogeneity of the kernel . (y~1) if 0 <§ <1, there exists C’, such that

172
(1 iowra)"<on,
1-0<|y|<2+46

Finally another application of Sobolev’s Lemma gives

a\#
() 5

with Cp , bounded as y ranges over compact subsets of Q. step 1 is therefore completely

su

< Cg,y
1<z]<2

proved.
We shall now prove step 2 i.e. that for # fixed the map y—£.,(z) is 0= with partial

derivatives bounded on compact subsets of (3. We have the identities

T,I—-E)=T, with E=(C,~L,)T,,

(as operators on smooth functions of compact support), which follow from Lemmas (6.3)
and (6.4). With the observation (I ~ E)(3i_o E¥)=1I — E'*! we obtain
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1
(6.16) T,= T,,,,( > E") + T, B,
k=0

We shall interpret (6.16) as a Taylor expansion in ¢ with remainder. First write
(6.17) E=(Ly,— L) Ty~ ; ' =0 By

where 7 are the coordinates of y, and each E,, y, is an operator of the form E, , (f) =f % k;, ,,,
with %;,,, of the form Y3(k.) or [¥3, Y,](k,). (See (5.10).) Hence each £,,,, is a homogeneous
distribution of type 0. Also, in view of step 1, each %, ranges over a bounded subset of
C® as y, ranges over a compact subset of Q.

For each §, consider the operator 7', E;, ,,. By Proposition C of § 5,

Ty By (f) = [ 3% oy, p0 % By).

Furthermore, by examining the proof of Proposition C (see e.g. [6], (1.13)) we may obtain
the stronger result that if k,, k, are kernels varying over a bounded subset of C®, then
then k, %k, varies over a bounded subset of C®. Thus the kernels (y!~y3) K ,,*k,,
vary over a bounded subset of C® if y,, ¥ are bounded. Now substituting (6.17) into (6.16)

we obtain for any f smooth and compactly supported,

.19 r=ix( 3 T4+ Ry —rl ™),

lal <1
where the k5 and R(y, y,) are homogeneous distributions of type 2 which vary over a
bounded subset of C* as y and y, vary in a compact subset of Q. However, by definition,
T.fy=f*k,. Hence
(6.19) k@)= 3 Y1 k00 4 Ry vy =yl

lel<1

for allz € N — {0}. For z fixed, 1 < |#| <2, (6.19) provides a Taylor expansion with remainder
for the function y—Fk,(x); for each I the coefficients kj?(x) and remainder E,(y, y,)(z)
are bounded as y, and o range over a compact subset of Q. Thus we may apply the converse
of Taylor’s theorem with remainder. (See e.g. [1], where a slightly weaker form is given
i.e. assuming the coefficients are continuous instead of bounded. An easy modification of
their argument proves a similar result in the bounded case.) Thus we conclude that y—%,(z)
is C® on (, and for each a,
%

(é;) ky(w) = B7(2).

Since k{” is bounded for y in a compact subset of Q, so is (8/0y)*k,(x), proving the
second claim of step 2. This completes the proof of step 2 and therefore of Theorem 3.



HYPOELLIPTIC DIFFERENTIAL OPERATORS AND NILPOTENT GROUPS 271

Part II. Extension of the manifold and approximation by a free group

§ 7. Lifting of vector fields to free groups

Let M be a real C® manifold of dimension m, and let X;, X, ... X, be real, smooth
vector fields on M such that finitely many commutators of the X,’s span the tangent space
at every point. We would like to associate to every point €M a nilpotent Lie group N,
and a local diffeomorphism @, identifying a neighborhood of £ in M with one of the identity
in N;. In this local coordinate system the X,, X,, ..., X, should be closely approximated,
in some sense, by left invariant vector fields Y, ..., ¥, generating the Lie algebra. This
is, roughly speaking, the approach used by Folland and Stein [8] to construct a parametrix
for the Laplacian [, of the tangential Cauchy-Riemann operator. For this case the vector
fields involved satisfy particularly simple commutation relations, and it is therefore
possible to assign the same group N;, the Heisenberg group of appropriate dimension,
at each point &.

In the general case there seems to be no natural group N baving dim N =dim M.
Consider, however, Example (b) of the Introduction, where the X, are not linearly inde-
pendent at each point. In that example it is necessary to add an extra variable and thus
to lift the original vector fields to a higher dimensional space. The resulting manifold may
then be identified with a nilpotent Lie group. With this example in mind, our approach
in general will be to lift the X, to a higher dimensional manifold M in such a way as to
eliminate inessential relations among the commutators. We will then assign to every
point E€IT the free nilpotent group on n generators of step r, where r is sufficiently large.
We now proceed to the details of this construction.

We shall refer to the elements in the linear span of
{[ Xy [ Xy oo [ Xy X J]L Y 1<45<n}

as the commutators of length s, and to the span of X;, X, ... X, as the commutators of
length 1 to avoid having to deal with this special case. If X is any vector field and £€M
we write X|; for the restriction of X to the tangent space at & Throughout this paper
we: shall assume that the commutators of length <r span the tangent space at every
Eel.

We now make precise the notion that a set of vector fields {W;};_1,2,....n, and their
commutators of lengths <s satisfy as few linear relations as possible at a given point &.
To do this, we compare the W, and their commutators with left-invariant vector fields
on a free nilpotent Lie algebra. Let »n, be the dimension of the free nilpotent Lie algebra

N, s of step s on n generators, and let m; be the dimension of the linear space spanned by
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all commutators of the W, of lengths <s restricted to &. It is not hard to see that m, <n,.
We shall say that W,, W,, ..., W, are free up to step s at & if m,=mn,. In particular, the
condition for s=1 means simply that W,|,, W], ..., W,|; are linearly independent.
Furthermore, note that if W,, W,, ..., W, are free up to step s at &, then they are free up
to step s at  for all 9 in a neighborhood of &.

We shall now lift our original vector fields {X}},_; o .. ., locally, to a higher dimen-
sional space in such a way that they become free up to step . We shall also write # for the

dimension of the free nilpotent Lie algebra of step r on # generators.

THEOREM 4. Let X, X,, ..., X, be vector fields on a manifold M of dimension m such
that the commutators of length <r span the tangent space at £EM. Then in terms of new
variables, ty,.q, tuie, ..., b there exist smooth functions Ay (n, t) defined in a neighborhood
U of £ =(& 0)EM x R™-™ — I such that the vector Fields {)Ek} given by

~ m P
(7.2) X=X+ Z Aa(m,t)
I=m+1 8t,

are free up to step r at every point in U.

The proof of Theorem 4 will require a precise notion of approximating an arbitrary
vector field on a graded nilpotent Lie group N by a vector field which is left-invariant.
If M=2>7,V' is the Lie algebra of N, a choice of basis {¥ .} of V/ for each j gives rise to
a coordinate system

() €Xp (2, U ¥ ).

For a multi-index o= (j, &y, jaky, -, 1:1k1), || = 21175 We write w, for us,, .k, - %z,
and D= for &'(Cuy,y, Oujp, ... Ouyx,). In terms of the definition of degree of homogeneity
given in § 5, if «, # are multi-indices w, D is a homogeneous differential operator of degree
|B] —|«|. For a general differential operator on N a notion of local degree (at 0) on N
is defined as follows. If f,(u) is smooth on N we shall say that the differential operator
fo(u) D% is of (local) degree <A if the Taylor expansion f,(u) D%~ 3 sc,5uz D* around u=0
is a formal sum of homogeneous differential operators of degree <A. More generally, a
smooth differential operator D=3 f,(x) D* is of local degree <1 if each f,(u) D* is.

Now suppose X,, X,, ..., X, are free up to step s at a point Eedt , and that the com-
mutators of length <s span the tangent space. For each j, 1<j<s, choose {X;} com-
mutators of length j with X,,=X,, k=1, 2, ..., n, such that {X,}, , restricted to fisa
basis of 7'z(M). Then {X jx},.x determines a system of coordinates around E by the expo-
nential map based at £

(7.3) (uge) <> exp(Suy X ) - €.
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This will be called a system of canonical coordinates; it is dependent on the choice of basis
{X }s.ne

We may now give our main result comparing X, with ¥;. {¥;}_;.». ..., generate

the free Lie algebra of step r as described in example 4, § 3.

TrEOREM 5. Let Xy, X, ..., X, be vector fields on a manifold M, £,€ M such that

(1) commutators of length <r span the tangent space, and

(i) {X.} s free up to step r at &,.
Choose {X ;.}, commutators of length <r, determining a system of canonical coordinates (u )
around 50 by (7.3). Let N =Ny, be the free Lie group of step r on n generators and N its Lie
algebra. Then there is a basis {¥ .} of % and neighborhoods V of £,€ ¥ and U of 0€ N with the
following properties. On V x V consider the mapping to U

(7.4) G)(g’ n) =exp (2 un Y u)€U,
where i =exp (3 4 X ,k)é. Then for each fized §~the mapping
7~ 0F(7) = ®(§~, 7) = (Ug)

s a coordinate chart for V centered at é: .

In this coordinate system
(7.5) X.=Y,+R, k=1,..n,
where R, is a differential operator of local degree <0.

Combining Theorems 4 and 5 we obtain the following local results for {X,} on a
manifold M such that commutators of length <7 span at each point. Fixing &,€ M, Theorem
5 gives prolongations {X} of {X;} with {X,} vector fields on M xR™ ™ g% =dim N such
that X, =X, on functions constant in the new variables ¢,. Furthermore, applying Theorem
5 shows that in local ecoordinates the X, thus obtained differ at each point £ from the

generators of a free nilpotent Lie algebra by operators of local degree <0.

§ 8. The main induction step.

We begin by giving a generalization of Theorem 5 which will be needed as well for the
proof of Theorem 4. For what follows we shall first have to extend the notion of systems

of canonical coordinates introduced in § 7.
Suppose {W} is a set of vector fields on a manifold M’, £€ M’, such that

(i) the commutators of length <s, span tangent space at £, and

(i) {W} is free up to step s<s,.
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A pariial system of canonical coordinates around & is determined by a choice of a set
of commutators {W,}, ,, with Wy, =W,. W, is a commutator of the {W,} of length j,
such that {W |}, is a basis of the tangent space and also satisfies the condition that
{W 1| }i<s spans the commutators of length <s at £. This second condition may be satisfied

by choosing each W with j as small as possible. The coordinate system is then given by

(up)oexp (3w W)

Now suppose Yy, ¥y, ..., ¥y, are generators of the free nilpotent Lie algebra Ny
of step s;. (We recall that with respect to the dilations of Nz, ., described in §5, each
Y,; is homogeneous of degree 1.) Then the correspondence

Wi Yo = @(Wa)
extends to a one-to-one correspondence
Wi Y po=p(Wy), §<s,

where {¥ ;,.},<; spans the commutators of length <s of the {¥,}, and the W, are as above.

Furthermore, this correspondence can be chosen so that if W, =[W; 1 &, Wis,]

(8.1) (P(ij) =[@p(W;_1, k), p(Wir,)]

We shall say that the correspondence @ is a partial isomorphism wup to step s.

For our generalization of Theorem 5 we shall assame that we are given vector fields
Wi, Wy, ..., W, which are free up to step s, but for which commutators of length s+1
are needed to span the tangent space of a fixed point £&. We shall assign to {W,} a nilpotent
Lie algebra %, of step s+1, free up to step s. In case Wy, ..., W, are actually free up to
step s +1, N, will turn out to be the free nilpotent Lie algebra of step s+1.

To simplify our construction we consider first the following example. Suppose % =3,
s+1=2, W, W,, W, are linearly independent (free up to step 1) and Wy, W,, W3 and
{{lW, W,1} span at &. Suppose that the only linear relation is given by

cy[W, Wz]lg'*“cz[Wz, WS]I§+63[W19 Ws]lg 22 biWilg'

Then N, will be the 2-step Lie algebra with generators Yy, Y¥,, Y, the only relation being
e[ Yy, Yol4co[Ya Yyl +cy[Y,, Yi]=0. Now consider the general case where W, ..., W,
are free up to step s, but span at step s+ 1. We construct N, of step s+1 in sneh a way
that the linear relations among the commutators of length s+1 correspond to the linear
relations of the commutators of the W, of length s+1 at £, modulo lower terms. Let
Y,, .., Y, generate Ny .4, the free Lie algebra of step s +1, and extend the correspondence

Wy=W;, Y, =7, to a partial isomorphism up to step s given by W, <Y ;. Now let
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Ne =Np, 541/, where J is the ideal spanned by

{kzk @il Yous Y1x,]: there exist ¢, such 1';haA;k§}:c Wt Wt Waree)|e = _gs e Waele}-
15K 12708 FES
D)

We identify Y with its image in R, for j<s, and extend the partial isomorphism
WYy j<s
by choosing a basis { ¥, ;} for the commutators of length s+ 1 in ;. Then if
Yoo =Yg Y,y Welet Yooy x> Weiq, n, where Wit o =[Wg, Wirl-
By construction, {W ;};<s+1 restriet to a basis of the tangent space at &.
(8.2) LEMmMmA. Let {W,} be free up to step s, and assume the commutators of length

<s+1 span at & Construct the nilpotent Lie algebra RN, as above and the correspondence

W oY i, where {Y,} generate Ny. Write each Y, and W, in the common coordinate system

() = eXp(jZk Upe Y ) eXP(jZIc Ui, W)« &
Then '
Wi =Y.+ By,

where Ry is of local degree <0 on the graded Lie group N corresponding to ;.

This lemma, and other technical results, will be proved in § 11. Theorem 5 is an imme-
diate consequence of Lemma 8.2 with s+1=r since N;=Ny , in case [W,} is actually
free up to step s+1.

We now show that we can add vector fields in new variables to the generators
Y,, Y, ..., Y, of 925 to produce Y, ..., ¥, free up to step s +1. More precisely, we have
the following.

(8.3) LemMmaA. There exist smooth functions yy,(, t), x€ N, t ER? such that
~ g P
Y=Y+ > yule, ty—, k=1,2,...,n,
=1 atl

are free up to step s+1 and are such that the commutators of length <s+1 span the tangent
space of Ng x R7.

Lemma 8.3 is proved by the following more general result, whose proof will be given
in § 11,
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(84) LrMma. Let & be a Lie algebra, J an ideal of &, &, the quotient &, =8/J and
m: &—®, the projection. Let ¥,, Yo, ..., ¥1,,€® be chosen so that (¥ 4), (¥ s), .o m(¥4,)
is a vector space basis of &, and let Z,, Z,, ..., Z, be a basis of J. Choose canonical coordinates
in a neighborhood of the identities of the comnected groups G, G, corresponding to &, ®,
respectively: . i
(w, v) = ((wy), (v))) < eXP(E1 Uy ffi"‘ 121 Y Z,)
on G, and

k ~
u=(u;) ‘—’eXP( 2 uy 7 Y;)) .
=1
Then there are smooth functions a,, on R* and b;, on R** such that

~ 7} 0
7= O S blu,n) =
! gaj”(u)aup % s ”)av,,

> 0
and m(Y,)= gajp(u) o
near 0.

Finally we combine Lemmas 8.2 and 8.3 to lift the {W,} to {i¥,} which are free up

to step s-+1. The result we prove is the following.

(8.5) LEMMA. Let {W,} be free up to step s with commutators of length <s-+1 spanning
at & Let {Y,} be the corresponding generators of the nilpotent Lie algebra N; as in Lemma 8.2.
Lift {Y,} to new vector fields {¥,}, Y=Yy + 2, yulx, 1)0/0t,, t ER?, by Lemma 8.3. Regarding
each W, as a vector field on Ny, the Lie group of Rg, put Wy=Wy-+2 v, t)0/ot,. Then
{Wy} is free up to step s+1, and commutators of length <s+1 span the (higher dimensional)

tangent space.

Proof. Using the coordinate systems given in Lemmas 8.2 and 8.4 we may regard
Wy and ¥, as vector fields on Ny ,.,. Then by Lemma 8.2, W, = ¥,+ R,, where R, is of
degree <0. (Note that if an operator on N, is of degree <0, then it is still of degree <0
when regarded as an operator on Ny ,,, by the correspondence of coordinate systems given

in Lemma 8.4.)

Now let {W .}, {¥ x} be the corresponding commutators of length j of the W, and ¥,
respectively. We claim that
(8.6) ij = ij"‘ ij

where K, is of local degree <j—1, which will prove the lemma. Indeed, this is true for
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9=1, where Wy, =W,, Y,;,=Y,. Now (8.6) follows easily by induction, using the simple
fact that if D,, D, are differential operators of local degrees less than or equal to 4, and A,
respectively, then [D,, D,] is of local degree <2, +4,.

§9. Proof of Theorem 4.

Now assume X,, ..., X,, are real vector fields for which the commutators of length
<r span the tangent space at a fixed point &. We show first how to lift the {X,} to {X’}
which are linearly independent ( —=free up to step 1) at £ Then we shall use the results of
§ 8 show that vector fields free up to step s can be lifted to be free up to step s+ 1.

Rearranging the X,’s if necessary we may assume X,, X,, ..., X,, p<n, is amaximal
set of linearly independent vectors among the X, at £, k=1, ..., n. Put

X%k=Xk; kg_p
9.1)

X},p+,=Xp+,+~i, 1=1,2,...,n—p.
Ot

The commutators of length s>2 of the {X},} are the same as that of the {X,}. Further-
more, Xjilg, k=1, ..., n, are linearly independent, where & =(& 0)€U xR™"?, and by
dimensional considerations their commutators of order <r span 7T (U xR""7%).

Assume now by induction that for some s>1 one can find vector fields Fj =
2t meihip(n, t)0)0L, where tERY ™ and A},(n, t) are defined and smooth for all (7, t)
in a neighborhood of (£, 0)€M x R?~™ such that

(9.2) (i) Xi=X,+F5, k=1, ..., n, are free up to step s, and
(ii) the commutators {X7j,}, of length <r span the tangent space at &;=(¢, 0).

If s4+1<r, Lemma 8.4 cannot be applied directly to lift the {X}} to {X3i*'}, to be free
up to step s +1. Therefore, in this case we shall restrict the X} to act on a lower dimensional
space. To do this we shall need specific information about the X7 in a partial canonical
coordinate system. Let u = (u ;)<>exp (D, 4, X5:) £ be such a system. In analogy with the
case where w is on a graded group we define the family §, of dilations by J,(u;) = (tFu),
and we define homogeneous functions as before with respect to J,. Note, however, that
unlike the group case degrees of homogeneity here may depend on the choice of partial
canonical coordinates if s+1<7r. We shall write O(|u|*) for any function whose Taylor

series at u =0 is a formal sum of homogeneous terms of degree >1.

(9.3) LEMMA. Suppose X3y, k=1,2, ..., n, are free up to step s, where commulators of

length <r span the tangent space at &, Let {X 3} be commutators determining a partial canonical
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coordinate system around &,
= (uy) <> exp( Z,:cuzk Xii) - &
e
Then if k' is fiwed, 1 <k'<n,

0
Ui,

X = > (gfdu) +efr '"'))—"' Zym u)

i<s

—+ 300"

where g}, s homogeneous of degree j—1, and efy, is homogeneous of degree s.

This lemma, will be provedin § 11. Using it, we define the vector fields Wi, k' =1,2, ..., %,
by

Wie= 2, (gm(u)+€:k(u)) +Z!71+1 (%) 5

j<s OUsyia, K

We think of the Wj, as acting on the Euclidean space with coordinates (u;), j<s+1.
Now we claim that {W7,} is free up to step s, and that the commutators up to step s+1
span the tangent space. To prove this, let W3, 1<j<s+1, be the commutators of the
Wik corresponding to the Xjy, j<s+1. We shall prove

(9.4) Wikiu-0= X | u-0,

for all j,<s+1. Indeed, applying (9.4) with j,<s will show that {Wi.} is free up to step s,
since {X3.} is free up to step s. Next, since Xj,;, | y—o =8/0%;,x,, (9.4) applied to all jo<s+1
show that {W,|.o} Spans the tangent space to the coordinates g, j<s+1.

To see (9.4) note first that by definition Wi,=Xic—2;x0(|u|°*")8/ou ;. We claim
that for any j,<s+1,

S XS, H—
(95) Wloku X7okn ]'zko(lul )au

To prove this, note that

0 . 7
s+1 k
[ | ul auixkl ’ gjﬂk?(u) aufzkz]

0 »
O(ju|**") - (gfn.())

(O(ul**1) 2 o

= —q¥
g]zkz(u) 8u i

8?"’7'2]{32 auhkz

The first term on the right has a coefficient which is O([u|""P*¢+1=%) = O(|u|*), while

the second term has a coefficient which is at least O(|»|**"). Similarly

|odul ;2 ezl |

s Yiaks
My Oy,

has coefficients which are O(|%|®). Applying this argument s times one obtains (9.5),
and hence (9.4).
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‘We may now apply Lemma 8.5 to the vector fields W3,. Thus we can find vector fields
Fi=2,vu(u, t)o[et,, tER®, such that by defining Wiil=W;,+ F}, we have that Wi;?,
k=1, ..., n, are free up to step s+1, and that their commutators of lengths <s-+1 span
the tangent space.

Now put
XS =X3+F k=1,2,...,n.

In order to complete the proof of Theorem 4 it will suffice to show that {X3*'} is free
up to step s +1, and that the commutators of lengths <r span the tangent space at (&;, 0)
in the extended space. Let {X;}'} be the commutators of the X}*' corresponding to the
{X5x}, and {W;i'} that of the Wii'=W3*'. To prove that {X}"'} is free up to step s+1
it will suffice to show that

(9.6) Xt umo= W3 |umo

for all j <s-+1. The proof of this is completely analogous to that of (9.4) because

0
3uh k1

[0<|u|“1) 2 i) 5‘;—}] —0(lu"*)

(i) =
3uhk,’ y’” 6tl’

8+1)

since O(|u| does not involve the variables ¢,.

Now we shall show that the Xji* span. First we claim that for any 7,
(9.7) Xt =X+ Fy,

where Fj, involves differentiation only in the new variables. To see (9.7) it suffices, since
Xiit= X3, -+ Fi, to note that if h(x) does not vary with the new #,’s, then

[h(u) 2

o Yii(u, t) é%] = h(u)a—z—jky?cl(u, t));—tl.

Now (9.6) shows
dim (span X} | y—t-0,§ <5+1) = dim (span X3, x|y, j <s-+1)+number of added variables.
Hence, because of (9.7)

dim (span Xjii!| u=¢-o) = dim (span X} |,_o) + number of added variables.

Since the reverse inequality is obvious, we have proved the spanning property.

§ 10. The Campbell-Hausdorff formula

We shall prove Lemmas 8.2, 8.4, and 9.3 by explicit calculations of vector fields
in canonical coordinates. Before giving the proofs, we need to make some preliminary
remarks on the application of the Campbell-Hausdorff formula.

18 - 762901 Acta mathematica 137. Imprimé le 20 Janvier 1977
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Let £€U, where U is an open subset of R, and suppose {W ;}; , are real vector fields
which form a basis of 7, the tangent space at £&. With U replaced by a smaller neighbor-
hood of & if necessary, the exponential map exp identifies each w=(u;) with >, .|us;|2
sufficiently small, with a transformation exp w-W, where u: W =2, yu; W . The image
of an element €U under this transformation will be denoted exp(u-W)n. Now if & is
fixed and f is a smooth function defined in a neighborhood of &, then f may be regarded
as a function of u near &; for any » near &, n=exp (u- W)§&, uniquely for some u = (uy,).
It might be useful in this section to distinguish between f as a function of # and f as a func-

tion of ». Thus we define f’ near =0 by
f'(u) = f((exp u- W)-§).
We claim that the Taylor expansion of f’ around % =0 is given by the formal power
series (e* ™f) (&). Indeed, this follows from the identity

9

10.1
(10.1) o

(F'(u)) = Wyf(expu- W)-§&).

The correspondence f«f on functions gives rise to a correspondence X «X’ of vector
fields, defined by X'f'(u) = Xf(exp (u- W)&). We want to calculate the Taylor series of X’
in local coordinates around u=(0). By the above, for any f’, the Taylor series of X'f’
around u =(0) is given by
(10.2) X'f(w)~e* "Xf(E),
where the right hand side is interpreted as a formal power series in . Now fix (j,, k) and
let f=hy,x, be the coordinate function h; k() =u;,k, if 7=exp (u+ W)&. Then e* “Xh; i, (&)

is the Taylor expansion of the coefficient of 8/0u;,,, at w=0. That is, if X' =2 aj,(w)0/0uy,
then

(10.3) () ~ ™ VX by 1 (E).

In order to calculate the right hand side of (10.3) we consider the formal power series
in % and 7 given by
(10.4) e* WerXf(£).
We may consider (10.4) as a formal power series in T whose coefficients are formal power

series in #. The right hand side of (10.2) is then obtained as the coefficient of T in (10.4).
We express this equality of power series symbolically by

(10.5) o VXHE) ~ (64 (@ oo
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In order to make use of the formula (10.5) we shall have to express e* "e** as an
exponential. This is done formally by the Campbell-Hausdorff formula: If # and y are
non-commuting indeterminates, the following is an equality of formal power series in z
and y, e.g., [21], LA 4.17:

(10.6) TV — g HUtREY)
Here A(z, y) is a formal sum over ordered pairs of positive integers (4, k) of terms

b0z, y) = v +§_>0 op,9) Dy,,..., Djrdiseen, (Ij(x! ¥
2<Eipi+lqi<k:

where ¢(p, q) is a constant,
(Adz)*(Ady)®, ..., (Adz)"(Ady)% Y(z) if ¢;=1

Dy,....0s000 0@ Y) =
brosey ey ) {(Adx)”’(Ady)“‘,...,(Ady)“i-l(Adx)”f‘l(y) if ¢;=0

with (Ada)(b) defined as [a b].

We consider the application of this formula to calculate the right hand side of (10.5)
for X = Wiy, 1 <k<mn, f=h;, Suppose that we are only interested in the Taylor expansion
up to an error which is O(|«|’), in terms of the homogeneity defined in § 9. By (10.6)

e VeV —exp(u- W+ tWas, +7( 2 c(Adu- W)?- Wip,) -+ O(ul, 72).

1<p<l

Thus,
(10.7) e Yo Vikh, o () = exp(u- W+ TWip, +7( 3 cp(Adw- WPWii,)) hiro(8) + O uf’, 7°).

1<p<l

Note also that since u W+t Wiy, +7(2 p<i¢, Ad(u- WYPWyy,) is an actual vector field
(rather than merely a formal power series), the coefficient of 7 in the first term on the right

of (10.7) is the actual derivative

d
77 Poaro(exp(u- W+ Wi +9( 2 c(Adu- W) - Wiy))- EDle=o-
T 1<p<l
§ 11. Proofs of the Lemmas of §8 and §9.
Our main technique in these proofs will be the use of the Campbell-Hausdorff formula

as developed in § 10.

Proof of Lemma 8.2. We assume W, =W,, k=1,2, ..., n, are free up to step s at &
and that commutators of length <s+1 span. Let W,— Y, {¥,} spanning %;, determine

the common coordinate system

%= (Uy) < eXP(;k: Uje ¥ i) > eXP(jZk U W ).
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In order to prove W, =Y, + R,., it suffices to show that if

0
Yi=> fflu)=—,
K gm( )8u§k

and

Wem 3 )5,
then
(11.1) fa(w) = fre(w) +O(|u|?).

Here, as in § 9, O(|u|’) indicates a function whose Taylor series at 0 is a sum of terms
homogeneous of degrees >j. Fix (jok,) and let A(s,x,), #jx, be the coordinate functions
around & and O respectively:

h]'oko((exp w - W) 5) = uinko)

h;‘ofﬁo(exp U Y) = Ujpkeos

where w- W =72, uy Wy, - Y =73, cuy Yy By (10.3), (10.5)

(1.2 o)~ (65 e T (6
By (10.7),
(11.3) e“' We’ Wu"hjnko(é) = exp(u . W -+ TW]}cr + T(ch(Ad(u . W))”) Wlkl) kfoka(f) + O(Iu]SH, '172).

A similar caleulation holds for f},, replacing W by Y and hj,x, by kj,x,. Thus we must
compare the expansions Ad(u- W)W, with Ad(u-Y)?Y .. If @, denotes either W,
or Y, then

(114) Ad(u * Q)p * Qlk; = z bpo:uoc Qaa a= (71 kl: j2 kz, [ERP jp kp),

where Ug = Wjs oy * Ujakea * vee® ujpkp’ and Qac = [Qhkn [Qhkz’ [ [REEE} [Q}pkp: Qlk’]’ (AN ’]'

Note that u, is homogeneous of degree |a| =>7_17; and @, is a commutator (of the
Qu) of length |«|+1. In calculating (11.3) we compare the expansions of W, and Y,.
It suffices to do this for |«|<s, since u, W,, |«| =s+1 will contribute a term which is
O(]w|°*') which may therefore by absorbed in the error term.

If |«] <s—1, then @, is a commutator of length <s. Hence by the partial isomorphism

up to step s
Y,= g Qare Yo 41,k

(11.5)
W,= % Ayt W1¢|+1.Ic:
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where the a,; are constants. Now suppose |«| = s. By the construction of N, if

(11.6) Y,= % O Yot

then

(1L.7) Wa=2 0 Worrut 2 e Wae+ 2 25(n) W,
k i<s ik

k
where z§,(&) =0. Substituting this into (11.3) gives
(11.8) e* ¥ wp, . (&) =exp(u+ W +TWip +7( D (g7(u) + ex(w)) Wy
i<s

=+ % Gss1,6(%) Weiin)+ ‘L’O(]uls) Zz%c Wik) hjoko(f) + 0(|u|s+1, 72),

where g, is homogeneous of degree j—1 if =2, g, =0, e, is homogeneous of degree s,
and the z§,(5) are smooth functions such that 25,(£)=0. (Note that the e; come from
the second term on the right in (11.7), multiplied by u,.)

Now we claim that the contribution of the term 7O(|u|%) 2;xju-s 25x() Wi

appearing in the exponential of (11.8), may be absorbed in O(|%|***,?). Indeed, since

(@5%(1) W 1) Pojoiey(8) = 25l EY (W e Py, ) (€) = O,

this term contributes only a product with other terms in the exponential, when the right
hand side of (11.8) is expanded. Since any product of 7O(|u|*)z5x(n) W, with one of the
other terms is O(|u]°**, 7?), the claim is proved. Thus

(11.9) (expu- W)(exp tWaiy) by, (&)
=exp(u- W+1Wie+7( Z (9 + exe) Wy + Z Fsrte Weit,n)) Pigieo§) + 0(|uls+1, 72)-

1<7<s 0
Now we claim that then
e Yool &) = Pioko
for p sufficiently small. Indeed, by (10.2) the left side is the Taylor series, in the variables
Pyes OF hsor((exp 2, 1P Wi)€E). By definition of Ay, this latter expression is equal to

Djores Proving the claim. Applying this to the exponential term on the right in (11.9), we

obtain
eu- We"-' Wlk'h (5) = { ujoko + T + t(giokn(u) + ejokn(u)) + O(Iuls+1’ Tz)’ lf (7'0 kO) = (1’ k’)
ke inko + T(G1ore(18) + €10s(t0)) + O(|w| "2, 72), otherwise,

where e;,x, is defined to be zero for j,=s+1. Thus we obtain by (11.2)
1+ Gjoeo(8) + €, () + O 26| **7), 3 (o, ko) = (1, &)

11.10 ka\¥) =
( ) Frorco®8) {ginku(u) + €5, (4) + O(w[**Y), otherwise.
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By a similar calculation for Y,;., using (11.5) and (11.6), we obtain

() {1+9f,ko(u)+0(|u|s“), if (fo. ko) = (1, ¥)
oo U)=

bl Fioko(®) + O(|u|**Y), otherwise.

This completes the proof of Lemma 8.2.

Proof of Lemma 9.3. We again let %;,x, denote a coordinate function and follow the
method of the proof of Lemma 8.2 to calculate W,. in partial canonical coordinates. It
is easy to check that we still obtain the expression (11.10) for f; (), and by the homo-

geneities given there this suffices to prove Lemma 9.3.

Proof of Lemma 8.4, We compute ¥, and z( ) in canonical coordinates by expanding

Fy ~ k2 ~
(11.11) exp(Zu, Y, + ZU]-Z,) exp(tYy)
i=1 =1
and
ky ~ ~
(11.12) eXP( 2, w7 Yi)) exp(t(¥Yy)),
=1

using the Campbell-Hausdorff formula (10.6). Since J is an ideal, any commutator which
contains a Z;, can be expressed as a linear combination of the Zj. Now the result can

be obtained by comparing the expansions of (11.11) and (11.12). We omit the details.

This supplies the arguments omitted from § 8 and § 9, and thus completes the proofs
of Theorems 4 and 5.

§ 12. Properties of the Map 0.

For any point Z:OEM =M ><R'7’“’", Theorem 5 produces a map O: ¥ x ¥—U, where V
is a neighborhood of Z-‘:, and U is a neighborhood of 0 in the free Lie group N =Ny , of step
r on n generators. Recall that for 7€ V we define @7: V—U by @ﬁ(é) =®(E, 7). To
simplify notation, we shall now assume that X, =X, k=1, ..., n, and omit the tildas.

Since ¢ is defined by means of the exponential map we have
(12.1) O, )= —0(x, &) =&, 9

Using (12.1) we may define a pseudo-metric ¢ on V by putting
(12:2) o6, m =10¢ 7|,

where | | is the norm function on N given by (5.2). We now show that g satisfies inequalities,

similar to the triangle inequality, which will be useful later.
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(12.3) Proros1iTION. If &, 0, L€V with (&, n) and (&, ) both <1, we have
(i) | 1) — 0, Ml < Oyle&, &) +e(&, ) "o(&, ) ='"),
(i) o(Z, ) <Cye(é, &) +on, ).
Note that this proposition is the analogue for the general case of Theorem 14.10 (d)

of Folland-Stein [8]. However, the proof of (12.3) seems to be much more complicated than
that of the corresponding result in [8].

Proof. We first show that (ii) follows from (i). By the inequality (5.3) on groups we

have

o8, ) = |8 )| = [{=BE& ) +O(, ) +OE, )| <y(|OE, | +[0E 9B, )
for some y >0. Since
(& O) +e(&, O e(&, )" < 2(0(&, §) +el&, M),

(ii) will be proved when (i) is.
To establish (i) we first prove

(i)’ O, n)—OE, )< Cye&, D)+ > > ol& &), n)9=b9).

1<jigr 1<)

For this we fix { and establish local coordinates around {. Let %y be the corresponding

coordinate functions:
i) = (OL(n)) je-
Now we define v=(v,,), w=(wy) as functions of £, 5 by

v = 0&(n),
and w = O&(Q).

Since
(expv-X)E =7, (expw-X)E=( (where v-X=2, 05X w-X=2, ,wiXy),

(exp v+ X)) (exp(—w-X)){ =.
Hence
hj(n) = hylexp v- X exp(—w- X){).

As in § 10 it follows that the Taylor series of k;, as a function of v, w, around v=0, w=0
is given by

(12.4) A M (9]

where ¢”" ¥ and ¢=*" ¥ are regarded as formal power series in v and w respectively.
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We now expand (12.4) using the Campbell-Hausdorff formula (10.6). Then
(12.5) e ¥ X=exp((v—w) - X+ > 4,9, X*+ 0(0 > ol w]Y)
lal<r <l<r

where o=(j ky, Jaks, ...r Tsks), | =20-176 Gu=0nk s > Wity With each gix=vyz or
wyy, and X =[X; 5, [Xinp [ s [Xio1k1, Xiyt], ..,]. X is a commutator of length |«|.
To check that (12.5) holds, it suffices to show that if || > r, then g, may be absorbed in
the error term O(2 <<, |7|']w]|""). By the definition of the norm on the group,

(12.6) sl <lol’ and  foou] <]l

where || || indicates Euclidean norm. (See (5.2).) We shall show, more generally, that for

any o,

(12.7) lg.ll=0( 3 |vft|w]).
O<i<|e]

By definition, g, =(91,m,P0me> s Vi my ) (Wi v Wigmy) With 20+ 31i=]a]. Observe,
however, that since ¢, is a coefficient of a commutator, it cannot be made up entirely of
either »’s or w's. Thus 0<3 I;<|«|. Putting /=2, I; and applying (12.6) we get (12.7).
From (12.5) and the above we have

€ T Ty (l) =exp(w—w) - X+ 3 O( 3 |ol|w[™ ) by (&) + OS]0l 0]

le| <7 O<i<|a]

=vfnko—wjoku+o ;I O(IUIIIWIfn_Z) + 0(0<zl<rl,v]llw]7—l).
Therefore, '

(12'8) (6(57 7]) - G(Z’ n))/oko = vjoku - (vjuko — Wipk, + o 32:} O(I U|l|w[h_ l))
=wio7€o+ Z O(I,vlllwlfo"l)-
O<li<]y
Now since |(uz)| < O Jicicr 2ullunl| ¥, () follows from (12.8). To prove (i), it suffices
to show that there exists a constant ¢’ such that if 4 and B are positive real numbers,
(12.9) A“B"%<(0'(4+ 4B

whenever 0<a<a,<1. Indeed, if (12.9) holds we put 4A=p(n, {), B=p(§ %), a=1r to
obtain

e, 0)"e(€, = < Clen, ) +e(n, ©)"a(&, m) ")
from which (i) will follow, given (i)’. To prove (12.9) we use the trivial inequality
Dy O0<z+y, H0<OLI.
Then put z=4, y=A42B'"?, and choose § such that 0 +a(l —0)=a,. ¢. e. d.

In defining integral operators on M =, we must first choose a suitable measure.

Since the invariant measure on N may be given by defining the Riemannian metric which
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makes {¥,},; orthonormal, we impose on J the metric making {X ;}, ; orthonormal.
For £ fixed, the differential A0z satisfies

d®g(Xjk|E)= ijlo-

Therefore the volume element d7 at é: in M is carried into the volume element du on Ny

at 0. Since any smooth function on N, which vanishes at 4 =0 is O(|u|), we have

(12.10) &ij = (1+0(|u|V)du.

Part III. Operators corresponding to free vector fields

We shall begin by giving an outline of the material presented in this and the remaining
part of the paper.

We are concerned with the situation that arises when we are given vector fields
X, Xy, ..., X, on a manifold M, whose commutators (up to length r) span the tangent
space at each point. In the previous part we have shown how, in terms of these vector
fields, we can embed M locally as a submanifold of a larger M and extend the vector fields
to 5(1, 5(2, s 5(,‘ so that these are free (up to step ) and span the tangent space of .
Part III will be devoted to the resulting analysis on M, and in particular to the study
of the integral operators which arise when inverting differential operators of the type
E= 3 B4 3 eulX, B

j=1

In Part IV we shall apply our results to the original situation involving the vector fields
X, X oy X

To simplify notation we shall in all of Part IIT omit the ~ and write X,, X,, ..., X,
for a set of vector fields which are free (up to step ) on M, and whose commutators up
to step r span the tangent space at each point. Shrinking M if necessary we obtain from
Part I1 the existence of the important mapping @: M x M~ N, where N is the free nilpotent
group on #n generators, of step r; (see § 7, Theorem 5).

We shall use ® to construct our basic integral operators. Our problem then becomes
that of proving that these operators satisfy certain commutation relations with differential
operators, and that they are bounded on appropriate spaces such as L2, L?, L%, 8%, and
A,. It is here that matters become very similar to the situation already studied in Folland-
Stein [8], where the group N was the Heisenberg group. We shall describe the arguments
required in full detail only when they are substantially different from those given in that

paper. The proofs that can be given merely by paraphrasing similar proofs of [8] will
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be outlined only. As in § 5 and § 6, we shall assume, however, that our functions may be
vector-valued. As before, by definition a vector-valued function will be said to be in a

certain class if each of its scalar-valued components is in that class.

§13. L? inequalities for operators of type i.

In the standard theory of singular integral operators (using the Mihlin-Calderén-

Zygmund formalism) the.operators are given in the form
13.) - (koo t) an

where, for each fixed z, k(x, 2) is a homogeneous function in z of suitable degree, and the
dependence on x is smooth.

In our situation matters will be similar. The analogue of (13.1) will be

(13.2) f—’fks(@(ﬂa &) f(n) dn,

where each k.(u) will be a homogeneous function of u defined on N, where the homogeity
is taken with respect to the standard one appropriate for N. Furthermore, the dependence
on & will be smooth. Observe that ®(z, £) plays the role of z—y.

Before giving formal definitions, we recall some notation concerning groups. N =N
is defined in § 3. With the standard homogeneity J, given on N as in § 5, the homogeneous
dimension  is that integer so that ,(du) =¢%du.(*) A function k defined on N —{0} which
is smooth away from the origin is said to be of #ype 4, >0, if

E(8y(w)) = £~ ° k() all £>0.

k is said to be of type 0 if the above holds with 4 =0 and the mean value of k vanishes, i.e.

f *(w)du =0,
agfu|<b

where |- | is the norm function. (See (5.2).)

We may assume (replacing M by an open relatively compact subset of M) that the
mapping O is uniformly smooth on M x M. Write d¢ for the measure given by the Rieman-
nian metric as described in § 12. A function K(&,#) on M x M will be said to be a kernel
of type 4, >0 if for any positive integer I we can write

(13.3) K(&m= 2 a&) (O, £)byn) + Ey(£, 7).

i=1

(1) Footnote: The reader should note that in the case treated in Folland-Stein [8], @ =2n +2.
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(a) B,eCH{M x M),
(b) a;, b,€CP(M), 1=1,2,..,s,

(¢) For each 4, the function >k (u), defined on N is of type >4 and depends smoothly
g yp

on &,

(Of course the integer s depends on 1.)

It is instructive to point out that the definition (13.3) is not as unsymmetric as it
might seem. Indeed we claim that if K(&,#) is a kernel of type 4 then so is K(z, &). To
see this, note first that since G(&, 1) = —O(, &) we are easily reduced to the statement that
if kg(u) is of type A and smooth in &, then a(&)k,(O(n, £))b(z) is a kernel of type A.

In fact, write w=/(u;)€N, where wu; =uy,n, &), and expand the function 7—k,(2)

in a Taylor expansion about the point £ in powers of the u;,. Then
2 u*
ko) = ke(2) + | %1 k2() 3+ Rz, ),

where k%(z) denotes the appropriate partial derivative of kg(z) with respect to &, and u*
is the corresponding monomial in the u;. Observe that if k(z) is of type A (as a function of
z) then so is kf*(z). With z=(uy;)=0(n, &) the kf”(u)u” are therefore of type >21. Finally,
if ¢ is sufficiently large, the function R,(z, u) with z=u=0(z, &) belongs to C{M x M).
This proves the assertion concerning the symmetry of kernels of type A.

Our final, and basic, definition is now as follows. An operator T is said to be of type A,
A>0if

(13.4) (Ti)&)= fMK(E, 1) {(n) dn,

where K is a kernel of type 2. We shall show below that this integral converges absolutely.
When 1=0, we say T is of type A if

(13.5) Ti(¢)= fMK(E,n)f(n)dn+a(§) 1(8),

where K is of type 0 and a €CP(M). The integral (13.5) will be taken in the principal-
value sense.

Several facts will be needed to show that the operators are well-defined. First observe
that if K is a kernel of type A,

(13.6) | K(E, n)| < Clo(&, 7)o,
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where ¢ is the pseudo-metric given by o(£, )= ©(&,3)|. Next, by (13.6) and the fact
that dy=(1+0(|u|))du, (see 12.10)

f IK(S,n)Idnscf |w|~ @ du < oo
e§.m<C

lul<C

if 1>0.(*) Now suppose 4=0. Using the vanishing mean-value property we have (as on
p- 479 of [8])

(13.7)

f K(&,n) dn' <CB—e)
e<g,mM<0

from which the existence of the principal value integral defining (13.5) follows easily for
smooth f, by using (13.6) (See [8], p. 480).

The first main theorem is as follows. Suppose 4 =0.

For each ¢>0 define 7', by

Ts(f)(£)=f K (&, ) f(n) dn + a(€) (£).
o >€

&.m

THEOREM 6. Suppose T is an operator of type 0. Then T can be extended to LP(M),
1<p<co, as follows: For each f€LP, im ., T (f)=T(f) exists in the L* norm, and the
mapping T—T(f) is bounded from L® to itself.

Proof. The first step is to prove that 7' has the required property when p=2. For this

purpose we may assume ¢ =0 in (13.5) and define
7= | K& mfmdn, k=0,12,....
2~ k<qef, mgz k1

Following the argument of {8], § 15, it suffices to show that

|722,) < cate-or,
and
|7 TY|| < o2~ 1k-1lir,

For simplicity we may assume that

where kg(u) is of type 0.

(1) Footnote: It is useful to recall that ‘rlulga |l =9 du=0; a* if >0 ‘f|u|>a ful= 9 du=0; a
if A<0. See Knapp-Stein [12], Folland-Stein [8], Folland [6].
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The main ingredients for the proof are:
(i) |K(&, n)| < Ap(£,7)”°, obtained from (13.6) with 2 =0;
(13.8) 1 (ii) the mean-value estimate (13.7);
(iii) the estimate
| K, ) — K, &)| < Cole(&, &) +e(& £)"etn, O~ 4)eln, £)~°~
when p(n, §) > Cp(§, {) for C sufficiently large.

To prove (iii), first write u=0(n,{), v=0(1, &) and note that if o(n,{) >Cp(&,{) then
|u| =0(1,0) > 0(0(€,0) +0(&: ) 00, 0)' =4 > Co| O, 1) — O, £) |, by (12.3), =C,|u~v].
By choosing C' sufficiently large, we may assure that C,>2. Therefore, estimating | K(z,
8)—K(n, &)|, oln, £)>Cp(£, £) becomes a question of estimating
(13.9) hp(w) —kev)  with [u] = 2]u—nv].

Now the difference in (13.9) can be written as
(13.10) {orlu) —hg(w)} + {keg(u) — Eg(v) }.

For the first bracket we have the successive estimates

| k() —kg(w)| < C|IE—&]| |F'(w)]| < C|[C -] |=]|~°
< 0|0, 8)— 0, &)| |u]|°<C|0(, ) -0, &) eln, )~

The first estimate above follows from the mean value theorem, the next by the homogeneity
of &', the third from the fact that {—~®(z, {) is a diffeomorphism, and the last since |u| =
o(n, &) < constant. For the second bracket of (13.10), observe that whenever k is a smooth
homogeneous function of degree —@), then

w—
[lcg(u)—lcg(v)|<0=—u—e—+vll for |u|>2lu—v|,

as a simple homogeneity argument shows. (See Lemma 8.10 in [8].) Putting these two to-
gether gives
| E(n, £)~ K, &) < 0[O, )~ O, &) | oy, £,
from which (13.8 iii) now follows by (12.3).
By using (13.8) the rest of the proof of the L2 boundedness may be completed as in
the case treated in [8]. To prove that 1" extends to a bounded operator on L?, 1 <p <2,

we need to show that for sufficiently large C

f | Ko(C, &) — Ko(E,m)|dL < O,
&, O)>Coé,n)
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where

K(, &) when o(C,&)>e
0 otherwise.

Ks(C> §)= {

This is proved by the same argument as in [8], upon using (13.8 iii) and the fact that

| K(&, )| < Co(&,7) °. Finally, the result for 2<p < oo then follows from the case 1 <p <2

by duality, in view of the essential symmetry of the kernel K(&, ) already discussed above.
The L? theory for operators of type 4, 2> 0 is much simpler.

TrEOREM 7. Suppose T is of type A>0. Then T has a bounded extension on L,(M),
1<p<oo, If 0<A<Q, T is bounded from LP(M) to LUM), where 1)q=(1/p)—(A/Q), if
I<p,g<ece.

The proof is not different from the proof of the corresponding theorem in {8]. See in
particular Theorem 15.11 and the general lemmas (15.2) and (15.3) used to prove it.

§ 14. Operators of type 4 and vector fields

We shall next study the interplay of the basic vector fields X, X,, ..., X, and the
operators T' of type .

Recall (from the definitions of § 7) that we have a doubly indexed family of vector
fields {X .}, 1 <j<r, where X, =X, and more generally the j index indicates that X
is a commutator of length § of the X, X, ..., X,,. The {X .} span the tangent space at each
point.

The results which we shall need are as follows.

TurorREM 8. Suppose T is an operator of type A=1. Then X, T and TX,, are operators
of type A—1.(%)
THEOREM 9. Suppose T is an operator of type A >0. Given the vector field X ; i, 1 <jg=<r,
there exist operators {T'; .} and T, so that
Xy xT'= ’Z Ty X+ To,
Wk

where the operator T'y;, is of type A+ —7, if 137, or of type A if j<<jo, and T'y is of type A.

Before proceding to the proof of Theorems 8 and 9, we review some notions concerning

homogeneity with respect to the family of dilations §,. Recall that a function f on N

() Strictly speaking one should say that there exists an operator T of type A —1 sothat TX f= 1" f
for smooth functions of compact support. A similar interpretation should be given to all further state-
ments of the same form.
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is said to be homogencous of degree A, if §,f(u) =t"f{u), where d,f(u) =f(d,u). A differential
operator D is homogeneous of degree 4, if D(8,h) =t"Dhod, for all functions k. Since we
are now primarily interested in local questions, we shall say that a function f is of (local)
degree >, if its Taylor expansion at 0 is a formal sum of terms each of which is homo-
geneous of degree >4,. Similarly, D is of degree <A, if its Taylor expansion is a formal sum
operators of degrees <1,. (See § 7.) In the sequel we shall use inplicitly the following simple

relations between functions and differential operators:
If f is a function of degree >4, and D is a differential operator of degree <A,, then

(i) /D is a differential operator of degree <A,—A1,, and

(ii) Dfis a function of degree >4, —2,.

Proof of Theorem 8. We consider first the case when 1>1. Using the reasoning in [8],
pp. 488490, it suffices to prove that whenever K(&, %) is a kernel of type 4, A>1, then
X5%K(&, n) and X7K(&, ) are kernels of type A—1, where the superscripts indicate the

variable of differentiation.

Recall from § 7 that the vector fields X, can be suitably approximated by the cor-
responding vector fields Y on the free nilpotent Lie group Ng. Now if  is fixed, we express

& near » in terms of u by £—u =0(, £). Then by Theorem 5,
(14.3) Xs=X,= Y, +R,
where R, is a differential operator of degree <O0.
It will also be useful to express Y, in canonical coordinates. Since §,(expr¥y)=

texptY,, Y, is a homogeneous differential operator of degree 1. Therefore, if we write

o 7
14.4 Y, = —— + (k)
( ) k 8u1k 1<Zl<’rgls (u) aulsa

each ¢i*)(u)0/ou, , is homogeneous of degree 1, and hence gi¥) is homogeneous of degree

1-1.

We are now ready to calculate X3 K(£, #). It suffices to restrict attention to a kernel
K(&,n) of the form

K(&, m) = a(&) kx(O(, £)b(x),

where k(u) is homogeneous of degree —@ + A and depends smoothly on £. Then a differenti-
ation on a(f) gives a kernel of type A. Similarly the differentiation with respect to & on
kg(u) again gives a function of the same type, 4, and this again leads to a kernel of type 4.

Finally we apply X§ to the & variable of ®(z, £) by using (14.3) and (14.4). Observe

that since Y, is a homogeneous differential operator of degree 1, ¥ (k;(«)) is homogeneous
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function k}(u) of degree A —1, while R,(k.(u)) is of degree >A. If the Taylor expansion of
R,(kz(u)) at u=0 is taken to enough terms the remainders will contribute a function of
% which is of class C?in u, whenever ¢ is fixed beforehand.

There remarks show that the kernel X K(&, ) satisfies the expansion property (13.3)
for A—1 and hence is a kernel of type A—1. The proof is the same for X7K(&, 7). This
concludes the proof of the theorem when 4>1.

The proof for A=1 is similar except for one modification. We need to show that if
k(w) is a kernel of type 1 on Ny, i.e. k(u) homogeneous of degree —@ +1 and smooth away
from the origin, then Y, k(u) is a homogeneous function of degree —@ with vanishing mean
value. The latter fact of course follows because Y kis a homogeneous distribution of type 0,
and all such are, modulo a constant multiple of the dirac delta function, given by a homo-
geneous function of degree —@ with vanishing mean value. (See e.g. Folland [6], Proposition

1.8.) Now the rest of the proof for the case 1 =1 is completed as in case of A >1.

Proof of Theorem 9. We first extend (14.3) and (14.4) to higher commutators. First
note that if D; and D, are differential operators of local degrees <4, and <A4,, respectively,
then D, D,, and therefore [ D;, D,], are of degree <A, +4,. Since each Y, ;, is a commutator
of length j of the ¥y, and X ,, is the corresponding commutator of the X, (14.3) may

be generalized to
(14.3") X5k = Y+ Ry,
where Ry, is a differential operator of degree <j—1. (14.4) generalizes to

(14.4") Yp=——+ > ¢is

Oy jirer Ouys
where g}¥ is homogeneous of degree I —j. This follows from the fact that Y, is homogeneous
of degree j.
We next claim that if R is any vector field of degree <j,, then
(14.5) B=73hy X5,

where each hy, has a Taylor expansion whose homogeneous terms are functions of degrees
2§ —Jo- In fact, expressing R first in terms of the 8/ou,,, we have
0
BR=a,—,
Z Qi 8u,—k
where the ay, involve homogeneities of degrees >4 —j,. By inverting the triangular system

(14.4), we obtain
0

(14.6) =Yyt 2 [P Y,
Oy, j<I<r



HYPOELLIPTIC DIFFERENTIAL OPERATORS AND NILPOTENT GROUPS 295

with each f{4®(u) homogeneous of degree I—j. Substituting this in the expression above
for R gives
where again the homogeneities of the by, are of degrees >j—j,. However since ¥ ;=
X5, — Ry, Ry, of degree <j—1 by (14.3') we may write

R= Zb,-k ka - ijk Ry
The term > b X5, is already in the proper form, while > b, Ry is of degree <j,—1.
Thus we may apply the argument again to R'= —2 b, R;. Continuing this way we

establish (14.5).
Let us next define the vector fields Y;, by

Yifi(—u)=— Y (f(—u)).

Because of (14.6) we have

guz= Vit 30— ¥
and hence by (14.4)
(14.7) Y =205 (w) Yis,
where gi¥ is homogeneous of degree [ —j,. Also, since @(&, 5) = —0(y, &) it follows from
(14.3) that
(14.3") Xh= — Y+ Rjy,

where R, is of degree <j—1. Thus if R is any vector field of degree <j,, then
(14.5") B=>hj X},
where each kj; has a Taylor expansion of homogeneous functions of degree =7 —7,.
In proving Theorem 9, we need to apply the vector fields X5 ,, to terms of the form
kg(O(n, £)) and to compare this with the effect of the X7, on k(@ (z, £)). When the differenti-

ation is with respect to & in k() we get a term of type 4 which is incorporated in 7'y. Now
let X5, and X7, act on the u variable. By (14.3"), (14.3"), (14.5), (14.5’), and (14.7),

Kjoro = 2, afti(w) X},
where each a}i*(u) is of local degree > max {j —j,, 0}. Hence,
Xl ew)) = 3, altf(uw) X (ke(w)) = 2, XTe(aft(w) ke(w)) — 2 Xl (w)) s(w).

alif'(u)kg(u) is a function of type >max{4, (j—j,)+A}. Thus the operator T, whose

kernel is K(&,n)=a(&)al(u)k(u)bn), with u=0(, &), is of type max {4, (j—j,) +4},
19— 762901 Acta mathematica 137. Imprimé le 20 Janvier 1977
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and is in the desired form for (14.1). The terms X7 ,(aj*s*(u)) k;(u) give operators of type 4,

which again are incorporated in 7';. This concludes the proof of the theorem.
CoRrOLLARY. Suppose T is an operator of type A, A=20. Then there exist operators

Ty, T4, ..., T, of type A so that

(14.8) X:’CqT= Z Tk‘Xk+Tﬂ'
k=1

Proof. Applying Theorem 9, we obtain
Xy T =2 TypXp+To

with T, of type A+j—1. Now consider, for example, the monomial 7'y, X,,, writing

X2k = [Xlk'a Xlk"]:
T?chzk = (Tszuc')XUc’ - (TZkXIk")Xlk"

By Theorem 9, Ty X, and Ty X~ are type A, since 7'y, is of type A+ 1. Hence Ty, X,
has the required form for (14.8). A similar argument holds for 7', X, j>2.

§15. Parametrices

We are now ready to achieve one of our main goals. We consider the differential

operator
(15.1) L=32 X+ %jzk enl X;, X,

where ¢=(c;,) is a skew symmetric matrix of smooth functions on M. For further applica-
tions the appropriate conditions to impose on the ¢, are of two alternative kinds. Recall
that the c;;, take values in the space of linear transformations of a finite dimensional

vector space W. (See § 5). In the scalar case (i.e. when dim W =1) we shall require
(15.2) [Tm c(&)]| <1 for each £€M,

where ||+|| denotes the operator norm as in Part I.

When the functions are vector-valued (and c; is a linear transformation) we shall
require the following less explicit condition on the ¢x-(*) Suppose Y, Y, ..., ¥, are the
generators of the free Lie algebra 3z ,. Then for each £ €M, we require that

(15.2') SHTHP<OUL P, ST HP<ONCEL DI, fECT,
for all €M, where L=, Y7+ 3D culé)[Y,; Yyl

(1) Observe by the results of Part I that in the scalar case (15.2) always implies (15.2’), and con-
versely (15.2’) implies (15.2) when n >3 and c is purely imaginary. In the general case it would be in-
teresting to determine more explicit conditions equivalent with (15.2).
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TEREOREM 10. Given a €CP(M), there exist operators P, S, and 8' so that
(i) P is of type 2,
(i) 8 and 8’ are of type 1,
(15.3) (iii) LCP=al+8, PC=al+8', where I denotes the identity transformation.

Proof. We pass to the free nilpotent algebra 9% with generating vector fields
Y, Y, .., Y, used to approximate the vector fields X,, by Theorem 5. For each £€M
consider the operator

n
Ce=121 Yi+312 LY, Y.
Now if we are in the scalar case and condition (15.2) holds, then so does {15.2') by (2.11)
of Part I. However, if (15.2") holds in either case, then Theorem 3 of Part I, guarentees
that £ is hypoelliptic and has a unique fundamental solution k; which satisfies the following

properties. (See § 5 and § 6).
(1) w~>kg(u) is of type 2 (as a function on N, the group corresponding to N);
(2) Lgke=0, where 0 is the Dirac distribution on N;
(3) The function £~ ky(u) is smooth in &.

We fashion our parametrix out of %, as follows. Consider any C* function b with com-
pact support in M such that b=1 on the support of @. Now let K be the kernel of type 2
given by

(15.4) K(&, 1) = a(§) ke (O(n, £)) b(n),
and P the corresponding type 2 operator

> f (& m)fn)diy.

To verify that P satisfies the properties (ii) and (iii) of the Theorem we follow the analog-
ous argument for the proof of Proposition 16.2 of [8], the only difference being that in our
case we shall have to carry out an additional differentiation on the & variable of kg(u).
Thus for fixed 7, let us consider the action of differentiation with respect to &, given by
LE(K (&, m))- We claim that the result is a(£)d,(&) + K, (&, 7), where K, will be a kernel of
type 1 and §,(£) is the delta function centered at 7.

In carrying out the indicated differentiations, it is easy to see that the main contri-
bution arises when all differentiation is on the w variable in kg(u), since the other dif-

ferentiations will lead to kernels of type 1 or higher. Now we approximate X, by Y, with
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error Ry, R, of degree <0. Then

‘C=12X12+%j§k:cjk[xh X,1=2 Y?+%jchfk(§)[Y/ Y, ]+A,

where A is a differential operator of local degree <1. The application of = Y7 +3Zc(£)[ Y,
Y,] to kg(u) gives us the delta function at % =0 (i.e. at £=7), and thus this term contributes
a(£)b(£)0(n) =a(&)d,(&). Since ky(«) is a kernel of type 2, the application of A to kg(u) is
a kerpel of type 1, and so leads to an operator of type 1. Putting the above together shows
that CP=al+8, where 8§ is of type 1. The proof for PL is similar. g.ed.

From Theorem 10 we can find a useful expression for f in terms of the X, f.

COROLLARY. Suppose a is @ C® function of compact support. Then there exists operators
Ty, T, ..., T,, of type 1, such that for any {€CF(M),

(15.5) af=é1 T, X,f+ Tof.

Proof. Apply the theorem to the special case when £=>7,X% and use (15.3). The
result is (15.5) with 7;=PX,, j=1, ..., n, and Ty=49". Since P is of type 2, T';=PX, is of
type 1 by Theorem 8 of § 14, and the corollary is proved.

§16. The spaces S?, L2, and A,

The basic properties of operators of type 4, and in particular, of the parametrix P
and the error terms S and 8’ of Theorem 10, will be expressed in terms of function spaces
which we now study.

For any integer k>0 and any p, 1 <p<oo, we define S% (M) to consist of all f€L?(M)
such that (X, X, ... X;)f€LP(M), all 0<I<k. For the norm we take

Mllg= S 1% Xz,
o<igr
where the sum is taken over all ordered monomials X; X;, ... X;;, 0<<I<r of the basic

vector fields.

THEOREM 11. Suppose T is an operator of type A, where A is a non-negative infeger.
Then T s bounded from S% to S8%..,.
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Proof. Write F=T(f). Then successive applications of Theorem 8 and the corollary
of Theorem 10 show that
X Ly =o<k'<k ].--z-jk’ Dot Ko Lo
where the operators T';, ;- are each of type 0. By Theorem 6 these operators are bounded
on LP(M) and the assertion of Theorem 11 then follows.

The function spaces S4(M) take into account the special directions given by the basic
vector fields X, ..., X,. For some other applications it is useful also to consider the classical
Sobolev spaces which don’t distinguish these directions. To study these spaces we can
embed M (which we may assume has already been shrunk) in R™(m=dim M) by an
appropriate coordinate chart. Then any compactly supported function f on M may be
extended to all of R™ by setting it equal to zero outside the coordinate neighborhood
corresponding to M. Now let LJ(R™), 1 <p<< oo be the classical Sobolev spaces. (See e.g.
Stein [22]). If f is a function on M we shall say fEL2(M) if af ELL(R™) for every a € CF(M).

Following this convention we shall say that a mapping T taking functions on M to
functions on M is bounded from L (M) to L7 (M) if for every pair a, b € C3(M ), the mapping
aTb is bounded from L} (R™) to L (R™). Of course the bounds of the mappings aTb may

depend on the cut-off functions @ and b.

TEEOREM 12.(1) Suppose T is an operator of type A, where A is a non-negative infeger.
Then T is a bounded mapping from LL(M) to LE, (M), for =0, 1 <p<oo,

The reader should recall that r is the least integer so that the commutators
[X:, [ X [... X]...], ], § <r, span the tangent space.
The theorem will be based on the following lemma.

(16.1) Lemma. Suppose T is an operator of type 1. Then T maps L*(M) to L, (M),
1<p<oo,

The proof of the lemma is merely a reworking of the argument (corresponding to the
case r=2) given for Proposition 19.7, pp. 508-514 of Folland-Stein [8], and so we may be
brief.

It suffices to consider 7' with a kernel of the form a(£)k,(O(n, £))b(n), where k(%)
is homogeneous of degree —@Q+1 and smooth jointly in & and » when u==0. We replace

(*) An elaboration of the argument shows that the result extends to any non-negative real 4.
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k¢(u) by the analytic family 2k,(u)|u|*™", 0 <Re(z) <r, and write 7', for the operator with

kernel a(&)2ki(@(n, £))| O(n, £)|*~ b(x).
Asin [8], and by the use of the reasoning in § 13 and § 14, one can verify the following.

(i) For each fELP(M), g € CF (M), the function z— [T,(f)gd& is analytic for 0 <Re(z) <r,
continuous in the closure of the strip, and of at most polynomial growth at infinity.

(i) When Re(z) =7, T,(f)€LIM) and | T ]| agm < O+ [2)™* ||l 720

(iii) For each z with Re(2)=0, T.(f)—=T,(f) in L*, as 2’ -z, when Re(z') >0. Moreover,

N T oy < O+ |2))2 (||| 22cany-

(In (ii) and (iii) above we have considered the natural extensions of 7T, to functions

on R™ as described above.) A combination of (ii) and (iii) via the Calderdn interpolation

theorem (see [4]) then gives

” Tl(f)"_r,{/r(nm) = " TU)"L" ®Bm) < Ollf”L”(M)

17
and the lemma is proved.

Still assuming 7' is of type 1, we shall show that 7' maps LY (M) to LY, q;rn(M). Consider
the vector fields X, 1 <j<r spanning the full tangent space. By Theorem 9, if 5 € CF(M),
then

Xpe T(0f) = 2. T X 0f) + T bf,
where T’ and T, are of type 1. If f€L], each X, bf is in L, and so by the lemma,
Xon, TOf €LY, (M). Since the X, span, this implies aTbf €LY, q;r(M). By repeating this
argument, we can show that 7' maps LI(M) to L, 44, when « is a non-negative integer.
The standard interpolation theorem for LE(R™) (see Calderén [4]) then shows that the
same result holds for any real &, 0 <o <o,

Finally, we drop the restriction that the operator 7' is of type 1. Suppose 7' is of type
A>1, and a is any smooth function of compact support. By induction it will suffice to show
that

(16.2) ol =3 T,T),

where T, is of type A—1 and 7 is of type 1. To prove (16.2), let P be the parametrix for
£=> X2 Then
al = TS —-2(TX,)(X,P),
which proves (16.2) with T\=17, Ty=S, and T,=TX,, T;=X,T. (The operators are of
the required type by Theorem 8.) This concludes the proof of the theorem.
There is the following basic inclusion relating the spaces S% and L%.



HYPOELLIPTIC DIFFERENTIAL OPERATORS AND NILPOTENT GROUPS 301

TeEorEM 13. S5(M)c Lf,(M).
Proof. Suppose first f€ST(M). By (15.5)

(16.3) af=é T,X,j+ T},

T, of type 1. Since X,;f€L?(M) by assumption, Theorem 12 shows af €L}, (M), proving the
case k=1. For k=2 apply (15.5) again to the function af, using another function a, € C§()
with a, =1 on the support of a. This gives

a)‘=jzj‘T,XjT},X,,f+Z T,X,Tf
» 3

By the corollary to Theorem 9 we can reverse the order of X,;T'; which gives

af= Z T!T,l, XIIX]'f+jklejT’]:,le,

[AN

where the T;, T, T are of type 1. An application of Theorem 12 then shows f€Lg,(M).
This argument can be continued indefinitely, giving the theorem.

We now come to the A, spaces. We shall say that f, defined on M, belongs to A,(M)
if af, extended to R™, belongs to A (R™) for any a €CP(M). For the basic properties of the
A, spaces, see e.g. Stein [22]. The main fact we shall prove is the following.

THEOREM 14. Suppose T is an operator of type A, A>0. Then
(a‘) T maps Aa(M) to Aaz+(l/r)(M)> "'f x>0,
(b) T maps L™(M) to Ay(M).

Remark. For the case r =2 see Greiner-Stein [9].

Proof.(t) We consider first the case 0 <4 <1. Everything will be based on the following
estimate:

(16.4) LEMMA. Suppose K(&,n) is a kernel of type 4, 0 <A<1. Then

(16.5) LI K(&,m)— K(&, )|dn < C|| & — &

(The notation |[|& —&,|| indicates the Kuclidean distance between two points
&L SHEMR™)

() We limit ourselves to the case r > 2. The argument given would have to be modified somewhat
to cover the classical case r =1 (see also the proof of Lemma 18.3 below).
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Proof. We divide the region of integration of the » variable into two subregions:

{n: 061, m) < d”‘fl _52”1”}

and
{n: 061, m) > dl|& —&[""}.
The constant d will be chosen in the course of the proof. We can as usual assume that
K(&, n)=a(8)k(O(n, £))b(n), where each u—kg(u) is a function of type A on the group
and the dependence on & is smooth.
Consider first

I1=f ‘K(é:p’])*K(fz, n)ldn-
eE m<d |l —&lLr

Observe that (£, &)=]0(&, &)| < O||O&,, &)Y since JJul[ < C Zi_i|ug] " <O||u]*".
(See (5.2) and 5.4).) However, ®(&, n) vanishes on the diagonal and is jointly smooth.
Therefore [|@(£, n)|| < C||& —x||, which combined with the above gives

061, &) < OJl&~ &'
From this and the “‘triangle inequality”
0(&5, ) < Clo(&y, m) +oléy, &)
(see (12.3)) we have the containment
{n: o€ m) < dl|E =&V} = {n: 0l ) < O[5 &)1

Hence we get as an estimate for I,

Il<f | K(&, n)ldn+f | K (&, )| dn.
eErm<d |6 ~&lMT o0&, M |E1— sl VF

In view of (13.6) and the properties of @(&, ) and the measure dy already discussed in
§ 12, we get

11<0f |u| 2 du< O || &, — & |
1l C |16 —EallliT

when 4>0. (See Footnote before (13.7).)

Next, consider

I,= | K(&,, ) — K(&,, m)|dn.

fe(él.n»d [1&e—&al 27

We shall estimate |K(&,, ) —K(&,, )|. Except for a trivial term which is dominated by
16, &l (o(&,, 7))~ ©**, this difference can be estimated by

(16.6) g, (w) —Fe,(w) | + | Fe,(w) — g, (v) |
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where u=0(, &) and v=0(, &). The first difference in (16.6) can be majorized by
Oll&, &) ||~ 9 =C)|&, —&llo(&,, )~ @**, which again gives a contribution of the size
of the trivial term.

We now focus on estimating the main term of (16.6): |ke(u) —kg(v)|. We write
w€N as u=(uy). Recall that the basic dilations are (u;)—>(#u;,), t>0. We claim that

(16.7) |k5(u)—k5(v)| <02 %‘Wk“%k‘ l'“lAQH_j,

j=1

whenever |u|>2|u—v|. To prove (16.7), we note that since both sides are homogeneous
of degree —Q-+2 under (u, v)—>(tu, tv), it suffices to prove the equality when |u| =1 and
|#—»] <3. In that case (16.7) is an immediate consequence of the smoothness of k()

away from u=0.
Now lu—v[ = |®(77> 51)‘(9(77: Ez)l < 0”9(77» &) —@(7]: 52)”1/1 <C1”§1‘§2”1/T

as before. Thus in the region under consideration, |u| > d||& —&,||"'" implies |[u| > 2|u—v|,

for d>2C,. Now fix d so that d=2C;. Then since > |uy —v;| < C'||O(n, &) — Oy, &)||
<C”||& &), (16.7) implies

Ikg(u) "kg(v)l < 0”51—52” ]ul - Q+i-r

when [u| = d]J& —&["".

Gathering together our estimates gives us
| Ky m)~ K€ )| < Ol —&all el )"

in the region used to define I,. Hence we obtain

L<Cl&-&] (&, m) @ "dn.

o M= || &- 1"

However, for any positive s,

f o(&m)" " dy < C’f lu| @4 "du=Cj,, 8"
e, m=s

lul=Cs

provided A <r, which holds in our case since A<1 and r>2 by assumption. This proves
the lemma.

The lemma immediately yields part (b) of the theorem when 0 <A<1.

We prove part (a) of the theorem first when 0 < <1. Suppose f€A (R™). Then there
exists a family f. € C°(R™) so that

@) fll o< CeYy j=1,...m, and ||f—f| o< Ce*
191 — 762901 Acta mathematica 137. Imprimé le 20 Janvier 1977
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whenever 0 <g<oo, In fact, we may take f.(x)=u(x, ¢), where » is the Poisson integral

of f, as in Chapter V of Stein [22]. The properties above then follow since
f—fe=— f (Ou/oy)dy, |ewfey]| ro < Cy=t and |ou/ox;|| 1o < Cy=t.
0

Observe O'<constant ||f| 4.
Suppose now T’ is our operator of type A<1. Write T'(f) =aT'(bf) with a, b€CF(M).
Let F=T'(f) and F.=T'(f.). Then by the lemma,

(16.8) | F= Fella,,<Cllf—fell e

Next note that

|7
16. F, 1S O Fe|[are + —F, .
169) 12 bam<O(1Elis 3| 2 7))
By using Theorem 9, it is an easy matter to express each (8/ox,) T"f, as
0 n 0
16.1 ——T, e) = T e T &)
(16.10) 20700~ 2, ,.k(axkf) + (1)

where the T'; , and T'; , are of type A. Therefore by the lemma and the bound for ||6w/éz;|| 1,
we get ||(8/0x;) Fe|| 5,,, <Ce>~L. Combining
this with (16.9) gives

(16.11) I If‘a||AWr)+1 <Ce ',
From (16.8),
(16.12) ”F—FEHAM'< Ce*.

Now we claim that (16.11) and (16.12) show that F€Ay,,,,. To see this, we can
argue as follows. Since 0 <a <1, A<1, and r>1, we have A/r + a<2. Therefore, it suffices
to show that |A} F|<C|h|*"*=, || <1, where A} F =F(x+h)+ F(x—h)—2F(x). Now
A% F =N’ (F —F,)+A5(F,). However, in general ||A® G| ;o< ]h[ﬂ“G”Aﬁ, if 0 <B <2. There-
fore, ||A% F|lio<C(|h|"" &+ |h]|*"*1e*1, by (16.11) and (16.12). We take therefore
e=|h| and get | A} F|| ;0 <C|h|*"** This proves that F €Ay .. when 0 <z <1.To prove
the theorem when k<o <k-1, we use the identity (16.10) k times (with f in place of f.)
and reduce matters to the case 0 <ax<1.

Thus the theorem is proved when 0 <A<1, and «>0 but non-integral. The case when
« is an integer then follows by the standard interpolation theorems for the A, spaces.
(See O’Neil [18], Taibleson [23], Calderon [4], and Lions-Peetre [17]). Finally, the restriction
0 <A<1is lifted by observing that by (16.2) each operator T of type 4, 1 <A, can be written
as a finite sum of operators, where each summand is the product of an operator of type

A—1 and one of type 1. This completes the proof of Theorem 14.
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Part IV. Applications

We present now the main applications of the theory. In § 17 we shall deal with the
regularity properties of the operator £=>7;X3-+} >, . cu[X;, X;], where X, ... X,, are
smooth real vector fields on M whose commutators up to step » span the tangent space,
and (c;) is a skew symmetric matrix of smooth functions. As in § 15, we shall allow the
c;; to take values in the space of linear transformations of a vector space W. In § 18 we
describe how the arguments must be modified to deal with an operator given by
>71X2+ X, where now it is assumed that X, ..., X,,, and their commutators up to some
step span. Finally in § 19 we show how by these methods we can obtain sharp regularity
results for the [, Laplacian arising from the &, complex on an appropriate C—R manifold.

The results for 3, extend those of Folland-Stein [8] in two ways:

(1) We may allow general metrics,

(ii) The Levi form need not be nondegenerate.

In all our applications we shall lift our initial vector fields X, ..., X, (and X,) on M
to X,, ..., X, (and X;) on M which are free in the sense described in Part II and in § 18
below. We then use the results of Part III to write down parametrices, estimates, ete.
for the corresponding operators on M in place of M. We therefore must begin here by

studying the restriction of operators on M to operators on M.

§17. Hypoelliptic operators, I: Sum of squares of vector fields

We are given smooth real vector fields on M with the property that commutators
of length <r span the tangent space at every point in some neighborhood of a fixed £,€ M.
The construction of Part II allows us to write 31 =M xT, (where M has, if necessary,
been shrunk to a smaller neighborhood of &;). Recall that in Part IIT we have written
M for M. Here T is the space of additional variables. Shrinking M, we will take T to be
an open ball centered around the origin in R™ ™, where 7 is the dimension of the free
group N , and m =dim M. We may thus assume M is an open subset of R™ with compact
closure. The vector fields X,, X,, ..., X,, on M are extended to vector fields X, ... X, on
M, which are free up to step 7.

We write é: (&, t) where é €M, €M, t€T. Since M is itself a coordinate neighborhood
of some Euclidean space we may take Euclidean measures d£ and dt on M and T respectively.
As a consequence, the product measure d&d is equivalent with the measure d& defined for
M in §12 above, up to multiplication by a factor which is bounded and has bounded
inverse. If f is any smooth function on M which is independent of ¢ (i.e. f(§~) =f(&, 0)) then
20 — 762901 Acta mathematica 137, Imprimé le 20 Janvier 1977
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~

X.(H=Xf), ¢=1, .., n. In this connection we define the extension operator E which

maps functions on M to functions on M in the obvious way:

(Bf) &) = f(&, 1) = 1),
where & = (&, t) € M. We shall also need to define a restriction operator R mapping functions
in M to functions on M as follows. Suppose ¢ € CP(T), with [y @(t)dt=1. Write

17.1) Ri(®)= fTﬂs, ) 9(0) .

The operator R depends on the particular ¢ we have chosen. We shall keep ¢ fixed in
the rest of the discussion, but it can be observed that our results are largely independent
of ¢. An obvious relation between £ and R is the identity

(17.2) RE -1

It is possible to define the function spaces Si(HM), L7 (M), and A, (M) in exactly the
same way as the corresponding analogues for M in § 16. (In fact, since in Part IIT we had
used the convention of labeling M, X, etc. by M, X,, etc., even the notations needed for
the present definitions are unchanged.)

The main properties of £ and R are contained in the following propositions.

(17.3) PROPOSITION. E is bounded mapping from SYM) to SyM); from LE(M) to
LE(M); and from A (M) to A (IT).

(17.4) PROPOSITION. R is a bounded mapping from SYIM) to SUM); from LE(M)
to LE(M); and from A () to A (M).

Proof. Suppose fELP(M). To see that Ef€LP(I) we check that [i|f(E, t)|?dE<co.
However, as we have observed, d&<cdfdt. Thus J il {(&, 8)|PdEdt < C [pf{ [ | /(£)|PdE} dt.
Since T is an open ball, it has finite Euclidean measure. Thus the integral on the right
above is finite, which shows that Ef€L?(J).

Next, it is obvious from the definition of £ and from the properties of the X, as exten-
sions of X, that

(17.5) XX, ... XL E(f) = EX), ... Xu(f).

From this and the previous remarks it is clear that E maps S3(M) boundedly to S(M).
To study the mapping F on the spaces LZ, recall the definition of L7 given in § 16. A function
f defined in M is in, say, L7(M) if for every a € C¥ (M) the function af (regarded as a function
on R™ when extended by zero outside M) belongs to the space LZ(R™). To prove that &
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is bounded, we must show that for every o € 0°(M) and b€ CX(M), the mapping f—bE(af)
induces a bounded mapping of LZ(R™) to L,,‘Z(R;”), where X =dim M. Now observe that

(17.6) (i)”(gt)”E(f)= OE((%)wf) if 7,=0

0
d if y,0.

From this it follows that E is bounded from L} to LY(H#) when k is an integer, and the
general case for all « positive is then proved by the standard interpolation theorem for
L7 spaces. (See Calderén [4].)

Finally, it is easy to see from the definitions that & is bounded from A, (M) to A (M)
when 0 <a<1. Using (17.6) leads immediately to an extension of this to all positive non-
integral values of «. The integral values of « are then obtained by the interpolation theorem
for A, spaces. (See the references quoted at the end of §16.) Proposition 17.3 is then
proved.

To prove Proposition 17.4, notice first that |(Rf)(£)] < [¢|/(&, t)| |¢(t)]|dt, and so by
Holder’s inequality, |(Rf)(&)|?<C [p|f(&, t)]|?dt. An integration in & gives [ |(Rf)(£)|?dé <
Of mfp|HE, t)|PdEdt <O [5|f(£)|?d&, which shows that R is a bounded mapping from
L*(J) to LP(M). We may generalize this by replacing ¢(f) by a function A(&, t) € C=(I),
which together with its derivatives is bounded on M. If R’ is defined by

7.7) BE) sz(§, 0 & B dt,

the above argument then shows

(17.8) | R'lf zoan < C||f]| Loty
Next we can see that

(17.9) X R(f) = RE,f + B(f),

where R’ is of the form (17.7). In fact, by (7.2),

2

at,f (&, t)dt.

X R-RE,= -3 szm@, ) (t)

An integration by parts then gives the desired formula with A(&, £) =2.,0/0t,(A, (&, t) @(2)).
Repeated application of formulae of the type (17.9) yields

(17.10) Xy, ...X, R=RX,,... X+ 3 RX, . X, +R,

where each R, and Ry is of the form (17.7).
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From (17.10) it is then obvious that R takes S3(J) to S4(M). The proof that R takes
L2(M) to LE(M), and A (M) to A (M) is similar to that for £ once we observe that

o) 0= () 1)

Now Proposition 17.4 is also proved.
For later purposes we observe that in the course of the above proof we have also in

effect shown the following.

(17.11) CoroLLARY. If R’ is an operator of the form (171.7), then R’ takes S(M)
to SY(M), LI(M) to LE(M), Ay (M) to A (M), and L(M) to L™(M).

Given any operator 7' mapping functions on M to functions on M we may define an
operator 7', mapping functions on M to functions on M by

T — RTE.
An operator 7 on M will be said to be smoothing of order A (A is a non-negative integer)

if it maps SE(M) to St (M), LE(M) to LL, 1. (M), =0, A (M) to Ayoapr(M), >0, and
LOO(M) to A},/T(M).

(17.12) ProrositioN. If T is of type A, then T is smoothing of order A. If L>1, then
X, T and TX, are smoothing of order A—1, 1 <k <mn.

The first statement follows from the definitions, Propositions 17.3 and 17.4, and the
results in § 16. For the second, use (17.9) and Theorem 11 of § 16.

We are now in a position to obtain our basic results for the parametrix of the operator
L=270X3+3 2, weunl X, Xi] on M. We shall assume that condition (15.2) holds for £

in the scalar case, or that (15.2') holds if £ is an operator on vector-valued functions.

TEROREM 15. Given a ECF(M), there exist operators P, S, and S’ so that
(a) P is smoothing of order 2,
(17.13) y (b) S and 8’ are smoothing of order 1,
LP=al+8, PL=al+8".

Proof. Let p€CP(T) with the property that y(¢) =1 on the support of ¢. (Recall that
(Bf) (&)= [ (&, Dp(t)ds.) Write d(&, t)=a(&)yp(t). Then according to Theorem 10 in § 15
there exist operators P, S, and §1 respectively of types 2, 1, and 1, so that

LP—aI+8 and PL=al+5,.
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Now multiply the second equation by the operator R on the left and by the operator
E on the right. It is clear that RGIE —al. Define S, = RS, E and P—=RPE. By (17.5)
we also have LE=FEL. Putting all these together gives PL=al + 8;, and half of our claim
is proved if we invoke proposition 17.12. . .

Next note that P LRPE =RCPE+[CR— RL) PE.However, by (17.10)CR— RC =
>t 1R X, + Ry and so

CP=al +RSE+3 R, X, PE+ Ry PE.
Kk

Thus we may take S = RSE+ S R} X, PE - Ry PE, and the required property for § follows
from Corollary 17.11, Proposition 17.3, and Theorem 8 in § 14. The theorem is therefore
proved.

By an iteration argument it is possible to refine the parametrix so that the error
terms in (17.13) are smoothing of any preassigned order. We shall exhibit a result of this

kind in the form most convenient for applications.

(17.14) COROLLARY. Suppose a, b, ¢ are in CP(M) with b=1 on the support of a,

and c=1 on the support of b. Then for each integer I there exist operators P, and S; so that
(17.15) PbL=al+8;c,

where P, is smoothing of order 2, and S, is smoothing of order 1.

Proof. We shall use the partial ordering @ <b to mean that b=1 on the support of a.
Suppose we are given any three functions «, §, y in CP(M) with the property a<f<y.
We can always find another function , so that a<g,<p. Now apply Theorem 15 with a
replaced by « and f replaced by f,f. The result is P(Lf,)=al +8' By However, L(f,f)=
Bo L(f) +2 2, X (Bo) X;(f) +1L(By)- Now put Py =P, and

81f = 8'(Bof) =2 Z,P(X(Bo) X () —P((LBN])-
Since fof=fo, it follows that P,=P,;. Also X,(By)y=X;(Bo), (LPo)y = LPo, and Boy =f,
imply 8,yf=2_8,f. Thus we obtain

(17.16) Py(BL() = of +8,(v1),

which proves the lemma for I=1.

To prove the general case, we proceed by induction. Suppose we wish to prove the
result for I, given the triple of functions a, b, ¢ with a<b<<¢. Choose o/, ¥’, ¢/, and «, 5, ¥
with

a=a'<b << aLfb<c<y,
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such that «, 8, y satisfy (17.16). By induction there exist operators P, ; and S,_, so that
(17.17) P ,(0’L)=a"+8,4¢

Since ¢’<e, then c¢’e=c¢’. Multiplying (17.16) by ¢’ and substituting for ¢’f in (17.17),
we obtain
(17.18) Py L) = o'f+ 8,4 (PLBLIN) — 'Sy

Now take P;=P, 1(b') -8, 1¢'P,f and 8,=8,_,¢8,y. Since b’'b=b’, fb=0, a =a', and yc =y,
we obtain (17.15) from (17.18). The corollary is therefore proved.

TrEOREM 16. Suppose f is locally in LP(M), and L(f)=g.

(@) If geEL(M), then fELY on(M), oz=0.

(b) If gEA(M), then fEA  om(M), o>0.

(¢) If gEL(H), then fE€Ag, (M)

(d) If gESL(M), then af €S%, o( M), for each a €ECT(M), 1 <p<oo, k=0,1, ....

Proof. We are assuming that £(f) =g holdsin the weak sense, i.e. [y fC¥@)dé = [ ngpdé,
for all p €CP(M). Now apply the adjoint of the identity (17.15) and insert in the above.
The result is

f Py(by) Gk = f (af + 8,) FdE.
M M

and therefore
(17.19) af = Py(bg) - Si(ef)

This identity holds for all triples a, b, c€CP(M) with a<<b<<c, and all . P, is smoothing of
order 2, and 8, is smoothing of order I. Choose 1> o+ (2/r). Then S(cf) ELL,2)r\ (M), and
P,(bg)ELL, 2;r(M). Since a is an arbitrary function in CF(M), it follows from (17.19) and
the above that f€LZ, 9;n(M). Parts (b), (c), and (d) of Theorem 16 have parallel proofs.

The theorem may be strengthened by assuming merely that f is a distribution on
M with L(f) =g, where g is in one of the spaces L2(M), LY (M), A (M), or S§(M). The proof
would require an elaboration of the argument, which we shall refrain from giving.

Our last result here is the sharp form of estimates studied in the L2 context by Hor-
mander, Kohn, and Radkevitch.

TaeoreM 17. Suppose X, X, ..., X, are real smooth vector fields whose commutators
of length <r span the tangent space at each point. If f and X ,fELI(M) (resp. A (M)) then
FELE ain{ M) (resp. Ayran(M)) when 1 <p<co and a>0 (resp. a>0).
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Proof. Let fELZ(M) such that each X,f€LZ(M) also, and put /= E(f), the extension
of f to M. By the Corollary of Theorem 10 in §15 (see (15.5)), there exist operators
To Ty, ..., T, of type 1 such that =S, T, X (H)+To(f). Now we have already observed
that X, (Ef)=E(X,f). Hence fELZ(M) and X,F €L2(M) by Proposition 17.3. Thus by
Theorem 12 in § 16, fELZ,q/(M), and finally by Proposition 17.4, f€LZ, q(M). The

proof for A, is similar.

It is easy to see that the argument also gives the following inequality. Whenever @ and b
are in CP(M) with b=1 on the support of a, then

(17-20) "“f IIL§+(1/,)(M)< ng1(" ijf",,;(M) + “ bf ”LZ(M))'

Finally, it may be worthwhile to exhibit a parametrix more explicitly. We shall
consider the case where £=>7_; X2, The operator P has a kernel which, apart from some

cut-off functions, is given by

(17.21) L Lq)(t) kO((&,1), (1, 5))) dids,

(&, m)€M x M. Here k is the fundamental solution (kernel) for the operator >}-; Y7 on the
free group Ny ,, as in § 5 of Part I; (£, t) and (), t) are points on the extended manifold
M =M xT; © is the basic mapping of M x M to Ny, described in § 7, and ¢ € CP(T) with
Irp(tydt=1.

§ 18. Hypoelliptic Operators, II: Operators of Hirmander type
We consider the differential operator £ given by

L= Z X?+X0,
=1

where X, X, ..., X,, are real smooth vector fields on M; we assume that these vector
fields, together with their commutators of some finite order, span the tangent space at
any point. We shall show here how the theory which has been worked out in particular
for operators of the form Y., X7 must be modified to take care of this more general case.

First we define the versions of the spaces S4(A) in the present context. Let X, ... X,
be a monomial with 0<j,<n, s=1, ...,]. We shall say that this monomial has weight
v if r =7, +2r,, where r, is the number of X,’s that enter with § between 1 and », and r,
is the number of X,’s. So in computing the total weight, we count each X, X,, ..., X,
to have weight 1 and X, to have weight 2. Similarly, the weight of a commutator [X},,
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[X,,, [..., X;;])...] is defined to be equal to the weight of the corresponding monomial
X5, Xy, o Xy (M)

Now when % is an integer, S}(M) is the collection of all f€LP(M) such that
... X;,f€LP(M) for all monomials of weight <k. For the norm we take

”f”s;;= Z” X ... Xj,fIIL”(M):

X;

1

where the sum is taken over all ordered monomials of weight <k. Observe that in a sense
this definition is not entirely optimal when % is an odd integer. In fact, when k=1 the
direction X is not explicitly involved. We shall return to this point later.

The spaces LY(M), x>0, and A (M) are of course defined as before. With these defini-

tions the main regularity result for solution of £(f) =g is then as follows.

THEOREM 18. Suppose L=>7 X2+ X,, where all commutators of weight <r span
the tangent space at each point, and L(f)=g, fELP(M), 1 <p <oco. Then the regularity results
for f, in terms of g, given in Theorem 16 (§ 17) hold for C as well.

In complete analogy with what has been done through § 17, we can proceed to prove
Theorem 18 by the following steps.

Step 1. Let &z, be the free Lie algebra on »+1 generators Y, Y,, ..., ¥, and let
<% be the ideal spanned by all commutators of weight >r-+1. (Recall that Y, has weight 2,
while Y,, Y,, ..., ¥, each have weight 1.) Then N=NI, =G /I will be called the free
nilpotent Lie algebra of type II, on n-+1 generators and of weight ». We can identify

Y, ..., Y, with their images in N5,. (We may assume 7 >2.) Now the mappings:

Y, —»#Y,
\ 7,»4,7Y, j=1,.,n

0 <t << oo, are easily seen to extend to automorphisms of 3. These dilations give a grading of
N=271®V;. V,is the subspace of N on which the action of é, is given by ¢. Alternatively,
V; is spanned by the commutators of weight j. Thus V', is spanned by Y, ..., ¥, and V,
is spanned by Y, and the [Y;, ¥,], 1 <j<k<n. N is then stratified of type II, according
to the definition in § 3.

Now the left-invariant differential operator Lo= 7., Y%+ ¥, is homogeneous of degree
2 with respect to the above dilations. Furthermore, £, and L£§ are both hypoelliptic,
according to Hormander’s theorem in [10]. Thus by Proposition A in § 5, there exists
a unique distribution & of type 2 so that Ly(k)=4. This is the fundamental solution of L.

(1) Obviously the weight of a commutator is not smaller than its length.
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Step 2. Returning to our original vector fields X, X, ..., X, on M, we shall say
that these are free up to weight s, s=1, 2, ... at a given point £, €M if all commutators
of weight <s, restricted to &;, span a subspace of maximal dimension, i.e. of dimension
equal to dim (NF,).

Now if we know that the commutators of weight <r span the tangent space at a
point &,, then in terms of additional variables, we can lift the vector fields X, X, ..., X,
to vector fields X,, X' 1 -» X, on M, so that these vector fields are free up to weight 7;
moreover, the commutators of weight <r will span the tangent space at the point (£, 0);
here M =M x R9. Secondly, if we define the mapping @ as in § 7, then at each point gem
we can introduce the canonical coordinate system centered at £. In terms of local coordinates
around any point 7 near £ we have

X,=Y,+R,
where R; has local degree <0 if j=1, ..., n, and R, has local degree <1. (Recall that the
variable u, dual to Y, has degree 2, while the variables u; dual to Y;, §=1, ..., n have
degree 1.)

The proofs of these facts are entirely similar to the situation detailed in Part II.

Step 3. We can now write down a parametrix for £=>7, X2+ X,. It is given by the
kernel K(&,n)=a(£)k(O@, £))b(n), where k is the fundamental solution for >/.; Y7+ ¥,
discussed above, and a and b € CF(M) with =1 on the support of a.

If we define operators of type 4 in the same way as in § 14, then the result of Theorem
10 holds for £ as well; that is, the operator P whose kernel is K (the parametrix) is of type 2,
and LP—al and PL—al are both of type 1.

Step 4. The results of § 16 can be extended, in large part, to include the current case.
Thus we can show that if 7’ is an operator of type 4, then if 4 is a non-negative integer,
T maps 8% to 85,5, and 7' maps L} to L], 4, if 1 <p<oo and 0 <o <oo. T'maps A, to ALy ar
and L® to Ay, if «>0 and 4>0. However in general it is not true that S; <= L%, although
inclusion does hold if £ is even or a multiple of ». (We have previously alluded to the reason
the inclusion may fail in e.g. the case when £=1.) The difference from the previous case
arises essentially from the fact that the representation formula (15.5) for f in terms of

X ;1 is no longer available. Instead we must use the formula

(18.1) al=P
7

X2+ PX,- 8,

M=

where P is the parametrix for > ; X5+ X,, and hence of type 2, and S’ is of type 1.

We outline next a proof of the assertions made above about operators of type 4.
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(18.2) LEmMmA. If T is of type A, =1 or 2, then T maps L*(I) to Lf,(I), 1 <p < oo,

The proof is a straightforward modification of the proof of the corresponding lemma,
(16.1) in § 16. (The inclusion 87 < L%, needed for the proof of the lemma still holds in this
case.)

One also needs the following analogue of Lemma 16.4.

(18.3) LEMmma. Suppose K(&, n,) is a kernel of type 2, 0<A<2. Then of Tf=
(K& n)fe)dn, T maps L) to Ay,(J).

Proof. If we were to exclude the case r=1 {which corresponds to the classical case)
and also =2, then we would have A/r <1, and the argument given for Lemma 16.4 actually
gives the desired result without modification. But when =2 or =1, then A/r may be >1
and the condition that 7f€A;, is more complicated to verify and thus needs an addi-
tional argument. One can proceed as follows. We assume r=2 and A=2, since the cases
r>2 or r=2, 0<A <2 have already been taken care of and the case r=1 can be treated
similarly.

We can restrict consideration to 7' with kernel of the form a(£)k(®(x, &))b(z), where
k(u) is homogeneous of degree --@ +2. (@ is the homogeneous dimension of the free nilpotent
algebra of type IT and weight r.) Let |-| denote the norm function, and for complex z
in the strip |Re z| <1, we write T, for the operator whose kerenel is a(£)k(©(, £))-
| @, £)|?b(n). Using the arguments of the proof of Lemma 16.1, one shows that when-
ever fEL®(M) and g €L} (M) the following hold.

(i) The function z— {3 T,(f)gdé is analytic and bounded in the strip —1 < Re (2) <1.
(i) When Re (2) = ~1, T(f) €Ai;o(M), and || T, f]] auuciy <AL+ [2])]|fl] -
(i) When Re (2)=1, T,(f) €Ag(H) and || T, f]| ausiy SAQ + [2] ]| ]| o-

(To prove (ii) we note that the operator 7', where Re 2=1 has a kernel which is like one
of type 1. To prove (iii} we use the fact that since r=2, X,, j==0,1, ..., n, and [X,, X,],
0<j<k<n, span all the tangent directions. Thus to prove T,(f) EAg (M), for instance,
we are reduced to a case similar to a kernel of type 1.)

Now a known complex convexity argument (see Taibleson [23] or Calderdn [5]) shows
that T'o(f) €Ay (M) and || Ty()]| audn < A||f||co- This proves the lemma.

With Lemmas 18.2 and 18.3 one shows as in § 16 that if T is of type 4 with <2,
then 7 maps LE(M) to L2, (M), AyH) to Apyain(M), if «>0, and L) to Ay, (M).
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To pass to the case of general A, one uses (18.1) to reduce the case A>2 to the cases 1—1
and A —2, and thus obtain the result for all 1 >0. We shall describe the rest of the argument
in terms of an example. Suppose that 7' is of type A and fELE(H). We want to show that
TFELE, gyn( ). Then it suffices to deal with a7'(f), where a €CP(J). By (18.1),

al'= 3> PT,— S'T.
=0

Here T,=X2T,if j=1, ..., n; and Ty=X,T. In any case T, is of type A—2. T is of type 1
and therefore also of type 4 —1. Since P is of type 2 and S is of type 1, we are reduced to
showing that 7', maps A, to Ay, -2y and T'maps A, t0 Ay a1y Thisreduces the problem
to the case of operators of types 4 —2 and A —1, and the induction is complete.

Step 5. The final step in the proof of Theorem 18 requires that we observe that the
properties of the mappings E and R, linking the function spaces on M with those on M,
expressed in Propositions 17.3 and 17.4 go through without change.

§19. Estimates for [,

Suppose M is a “partially complex” manifold of dimension 2141, 1>1. (See Folland—
Kohn [7], pp. 93-104.) M is then a ¢* manifold together with a smooth sub-bundle 7'; ,
(of “holomorphic” vectors) of the complex tangent bundle CT'(M), so that dimc (T, ¢); =1,
for §€M; also (T, ) N mg ={0}, and T , is integrable in the sense that the bracket of
two holomorphic vector fields (cross-sections of 7' ) is again a holomorphie vector field.

Assume we are given a hermitian metric on M, i.e. a positive definite hermitian form
on the complex tangent spaces CT', & € M, varying smoothly with &, and having the property
that (7T o), and m are orthogonal.

Since our considerations are purely local (i.e. we may assume that M has, if necessary,
been shrunk to a sufficiently small neighborhood of a given point &;) we may construct
a vector field N which is purely imaginary and is orthogonal to the spaces 7' o and T ,
at each point. Tt follows that 7', o, 7., and CN span the tangent space at each point.(*)

Now if Z and W are any two holomorphic vector fields, let ¢(Z;, W) be the smooth
function so that

(19.1) [Z, W), = —204(Zg, W)N; modulo (Z,, .., %, Z,, .., Z)).

Then @,(,), £€M, defines a hermitian form called the Levi form. Our basic assumption,

((19.10) below) will be in terms of the number of positive and negative eigenvalues of the

(*) N is ¢7 in the notation of Folland-Stein [8].



316 LINDA P. ROTHSCHILD AND E. M. STEIN

Levi form. We shall choose Z,, Z,, ..., Z, to be an orthonormal basis of smooth holomorphic

vector fields at each point. Then we have a corresponding matrix ¢;(&) given by
(19.2) [Z;,Z,] = —20,{(6) N modulo (Z,, ..., 21, Z,, ..., Z).

We shall be working in a neighborhood of the fixed point &,; we shall therefore make
the further choice as far as the basis Z,, Z,, ..., Z, is concerned that at &,, @ (&) is diagonal.
{(Note however that in general it is not possible to choose smooth vector fields Zy, Ly, ... 7
in such a way that ¢,(&) is diagonal for all £ in a neighborhood of &,.)

The partially complex structure described above allows one to define the g, complex;
using the given metric, we can also define the dual b, complex and the resulting Laplacian.
With our choice of basis we now set out to compute [J, rather explicitly. We follow the
formalism of [8], § 5 and § 13.

Let wl, ..., o' denote a dual basis to Z,, ..., Z;. A ¢g-form f is given by f=>. 7/=of;®,
where J =(sy, Sy, ..., §,), With & <8,<...<s,, @' =d" A®™... A®*. Suppose f=>,f,®,
g=>,f®" are a pair of g-forms whose coefficients (the f; and g;) belong to CF(M). Then
their inner product is given by (f, 9) =, (s ¢7) = > [1/:(£) g,(£)dE€, with d& the measure
induced by the metric. When f is a function (i.e. a 0-form) the Cauchy-Riemann operator
9, is defined by &,f=>/..Z,(f)@’. More generally, if f=23,f,@, then &,(>,f&’)=
2@ ) A&+ Dt A B (&T) =D D i1 Zy(f)s0; A &7+ E(f). Here E(f) indicates an expression
which depends linearly on f but not on derivatives of f. Similarly, the formal adjoint D,

satisfies
b3 ha) =3 3 B @ &+ E(.

Thus
bbgb(f) = j%}ZIc ijJ (Dk—l (CT); A (DJ) + S(Zf, Zf),

where E(Zf, Zf) represents an expression that depends on f and its first order Z and Z

derivatives, but not on higher derivatives or on N derivatives of F. Similarly,
0, Dy(f) = - kZJ ZjZkaCT)jJ (@, A &)+ E(Zf, Zf)
1. K,

Now if j=<Fk, then
& _l@p'Ad") =", ifjeJ, =0 ifjed,
while
&' N&F 1o’y =&’, ifj€J, =0 if j¢d.
However, if j=:Fk,
& _Wo'AD) = —d! A (BF _]D7).

Thus putting [1,=8, b,+D,5, we get
(19.3) Oef= 01+ OPf + E(2f, Zf).
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Here [J{"is a “diagonal”” operator (i.e. it does not mix components) given by
l — — P
(19.4) D‘J’(JZ ;&)= 2( —3) (jle, Z;+7Z;Z,+ ¢, Z/]) f, 6

with ¢] =1 if j€J, and &f = —1 if j ¢J. []¥ is the “non-diagonal” part given by
(19.5) l:l(bz)(JZ 0= =3 3 12y, Zy 0 My, | ).
J ¥k

Since the Levi form is diagonal at &, @;(&,) =0 if j==k. However, if ¢ is not identically zero
at &,, there exists some § for which g;(£,)==0. Without loss of generality we may take j=1.
Then by (19.2) we have

(2. Z,) = d36)[ 2y, 2,1+ E(Z. D),
where d;,(&,) =0, and d,(£) is smooth in a neighborhood of &,. Substituting this into (19.5)

gives

(19.5") D?)(; ;&)= — ;g gkdm(fn (Z,, Z,1f, 6" N (& &%) + E(ZF, Z§).

We now introduce the real and imaginary parts of the Z;, j=1, ..., . Let X, X,, ..., X,

n =21 be defined by

Zy=$X;~iX,;),
(19.6) _

Z;=3X;4+1X,,), 1=1,2,..,1L
The passage from the complex vector fields to the real vector fields induces a passage
from ! x! bermitian matrices to 2/ x 2l real skew symmetric matrices given as follows.
If @ is any ! x1 hermitian matrix the corresponding (real skew-symmetric) 2! x 21 matrix

@' is given by

19.) a*=( Im(a)) Re(a))

— Re(a) \ Im(a)

From (19.6) it follows directly that Z,Z,+Z,%,~3X3+X%,1) [Z,Z;]1=3X,, X;11].
Thus (19.4) becomes
(19.8) D(J)(JZ fLo)=—1 ; L,(f) &',
with

n i
C] = jzl X? += El:c y;.k[Xj: Xk‘],

= i

6"
0 3

and &’ is the diagonal matrix &), ~=¢/d,, 1<7j, k<L

where

')/J= (81)?=< 0
J




318 LINDA P. ROTHSCHILD AND E. M. STEIN

The identity (19.2) becomes
(19.9) [X), Xi] = 4i(gp(§)'™N modulo (X, X, ..., X,).

We now state the main hypothesis on the Levi form ¢ for a given ¢ at each point
ZeM:

(19.10) p = max(g+1,1+1—¢q), or p,>min(g+1,1+1—gq),

where p, is the larger of the number of eigenvalues of the same sign, and p, is the number

of pairs of eigenvalues of opposite sign.

(19.11) LEMMA. If the Levi form @ at &, satisfies the hypothesis (19.10), then

(19.12) [tr(7-"] < oll¢"]]:

for some ¢, 0< g <1.

Proof. We obviously have tr(y’p") =2 tr(¢'pg), where @, is the real part of the hermitian
matrix ¢. We have assumed that ¢ at £, is diagonal. Let 4,, ..., 4; by its eigenvalues. Then
tr(pg) =tr ('p) = > ). ;. By checking the four cases implicit in (19.10), one can see that
it is not possible for all the &/4;,7=1,2, ..., n to be positive, or all £/, to be negative.
Therefore, there is a number ¢, 0<o <1 such that |2 &1;| <o 2j.;|4;|. However, the

eigenvalues of ¢ are {+il,};_1,....;, so that ||p']|=2 2j.1|4,|, which proves the lemma.

By the lemma the linear functional z->tr (y’z) has norm not exceeding ¢, when defined
on the one-dimensional subspace spanned by ¢'(&,) in the space of # x n real skew symmetric
matrices. For the present purpose we take the norm on this space of matrices to be the
trace norm, || ||;. Thus by the Hahn-Banach theorem the linear function can be extended
to the whole space of skew symmetric matrices without increasing the norm. Invoking the
duality (2.2), this means that there is a real skew-symmetric 2/ x 2] matrix & =5j, with the

properties

Jo ot —
1913) { tr (Wg'(E0) =0

7 +#||<o<l.
Next, choose a smooth function #(£) so that &(£,) =" and

(19.13") tr (R (&)g'(E) =0

for all £ in some neighborhood of &,.
Because of (19.8) and (19.3) we can write

(19.14) —400,(f) = L) + EX)),
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where C(f)=> X7f+31 2 eulX;, Xi]f and E(Xf) is an error term depending linearly on f
and X,f, =1, 2, ..., n. In fact, c;(&) (D f; @) =1 2, (y7x(&) + Rix(E)) ;@ + terms coming from
05 (Note that 2 hju(£)[X;, X;]e= E(X,) by (19.13").) However, by (19.5") the coefficients
of the non-diagonal part, [J%, vanish at &=&, modulo an error term which may be
absorbed in £(XJ).

Thus for each j, k the value of the function ¢, at &, is a diagoral matrix. Furthermore,

(enl€0))1,1 = (yin(€o) +ik(&o))-
Hence by (19.13) and the results of Part I and in particular, Theorem 1, the condition

(15.2') is satisfied at &, and by continuity in a neighborhood of &;; we restrict ourselves
to this neighborhood in what follows. (For this application observe that since the Levi
form ¢ is non-zero, by (19.9) it follows that X, X,, ..., X, together with their commutators
of length 2 span the tangent space at each point.) We can therefore invoke Theorem 15

to obtain regularity properties of solutions of [J,.

TarorEM 19. Assume that the condition (19.10) is satisfied. If { and g are g-forms
each in LP with [,f =g, then the following hold.

(a) If g€LE(M), then f€LZ,1(M).

(b) If gEA (M), then fEA, (M), a>0.

(c) If gEL®(M), then fEA(M).

(d) If g€SUM), then af €S 2(M) for all a €CF(M).

Proof. By Theorem 15 for each a € C(°M) there exists a parametrix P which is smooth-
ing of order 2 and a smoothing operator S’ of order 1, so that PL=aI+8&'. Since —4[J,=
L+ E(Xf), we take P;= —4P and 8, =8"—P(E(Xf)). Then

(19.15) Py = af +54(f),

where 8, is then also smoothing of order 1. (See Proposition 17.12.)

Next we can iterate the identity (19.15) as in the proof of the corollary to Theorem
15 to obtain error terms which are smoothing of preassigned order. Finally the rest of the
proof of the theorem follows as in the proof of Theorem 16.

The above also gives optimal regularity results for global solutions of d,f =g on com-
pact manifolds, as in [8], § 17; we shall not enter into the details here.
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