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For X a subset of [0, 1], there is a family of properties which X might have, each of
which is stronger than X having Lebesgue measure zero, and each of which is trivially
satisfied if X is countable. The main properties in this family (apart from the Lusin-type
conditions, which are really meant to be stated in conjunction with 2% =N, or with Martin’s
axiom—see section 1) are

X has strong measure zero, i.e., if g, &, ..., &, ... (n<w) is a sequence of positive reals
then there exists a sequence Iy, I, ..., I, ... (n <w) of intervals with length I,<e, and
XS Uncoly

X has universal measure zero, i.e., {[X] has Lebesgue measure zero for each homeo-
morphism f: [0, 1]—+[0, 1], equivalently, for each nonatomic, nonnegative real valued
Baire measure g on [0, 1], u(X)=0.

If X has strong measure zero then X has universal measure zero. These are strong
restrictions to place on X—a nonempty perfect set, which can of course have measure zero,
cannot have either of these properties, hence no uncountable analytic set can have either
of these properties. The question thus arises as to whether there exist uncountable sets
with these properties.

For universal measure zero sets, the answer is yes—Hausdorff ([8]) constructed in
ZFC a universal measure zero set of power ®,.

For strong measure zero sets the situation is different. The notion of strong measure
zero is due to Borel ([2]), who conjectured ([2], page 123) that

all strong measure zero sets are countable.

In fact, though, uncountable strong measure zero sets can be constructed if the continuum
hypothesis is assumed—the Lusin set ([11]), a set, constructed with the aid of the CH,
having countable intersection with each first category set, has strong measure zero ([18]).
10~ 762901 Acta mathemathica 137. Imprimé le 20 Janvier 1977.
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The question thus became (see, e.g., [9], page 527) whether the conjecture is consistent.

An affirmative answer is the main result of this paper.

TrEOREM. If ZFC is consistent, then so is ZFC + Borel's conjecture.

In the forcing proof, a countable transitive model M of ZFC +2% =N, is started with,
and a cofinality preserving Cohen extension ¥ of M is found in which 2% =R, and there
do not exist any uncountable strong measure zero sets.

A certain purely set theoretic condition for uncountable cardinals <2% holds in this
Cohen extension—Sierpinski ([20]) proved that there exists no strong measure zero set
of power x if and only if for every family of sets {4 s€(2)<*} such that 4,=sx, 4,~,U
A=A, Ay N A =¢, with Card M., 4, <1 all f€(2), there exists a sequence n;,
1<w, of nonnegative integers such that if s;€(2)°® and Card s;=n,, all ¢<w, then
U i<a)ASi=’:x'

Regarding universal measure zero sets, Hausdorff’s theorem is best possible in the
sense that there is a model of ZFC + 2% >N, in which there are no universal measure zero
sets of power R, (add Sacks reals ([17]) or Solovay reals ([24]) to a model of 2% =R,).
This fact (not proved here) is an extension of an unpublished result of Baumgartner which
states that adding Sacks reals or Solovay reals to a model of 2% =X, gives a model in which
there are no strong measure zero sets of power X,.

In section 1 an account is given of the main results having to do with the existence
of uncountable strong measure zero and universal measure zero sets.(!) In the places where
the CH was originally used, we will note the more general results proved using Martin’s

axiom. In section 2 the main result is proved.

§ 1

TaeorEM 1.1 (Folklore). No nonempty perfect set can have universal measure zero.

Proof. Letting P be perfect, we may assume P is nowhere dense. Let O,, n <w, be
disjoint open intervals whose union is the complement of P. The theorem follows by in-
ductively choosing intervals I, s€(2)<®, with I;=[0, 1], I;~;, I;~; disjoint intervals whose
union is I, with Card N,<,I;.<1 for all f€(2)¢, in such a way that if u is the measure
defined by u(I,) =27, then, e.g., u(0,) <2~**?, whence u(P)>0.

TreEorEM 1.2 (Hausdorff [8], see [23]). There exvisis a universal measure zero sel

of power ;.

(1) References are the ones in this paper plus the ones in [9], [20] and [22]. The strong measure zero
property is classically referred to as “property C”°.
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Proof. We work over the Cantor space (2)°. For f, g€(2)®, let f<g mean Im Vn>m
f(n)<g(n); if f<g let 8(f, g) be the least such m. f <g means f<g and g < f. We will be done

by two claims.

Claim 1. There is a set {f,: a<w;} U {g,: a<w,;} with f,<f, <..<f,<...<g,<..<g,
such that there is no j€(2)” with Ve f,< j<g,.

Proof. Suppose a<w; and we have constructed F_,, G . (={fz p<a}, {95 f<a})
such that the following additional condition holds: for all 8 <a, P(F 4, g4), that is, for each
m <w there are only finitely many y <f with d(f,, g5) =m. We want to find f,, g, and make
sure that P(F_,, g,). Pick an h such that V8 <a fz<h<g, Forall f <o, P(F_ 4 h); using
this, construct a g, such that V8<a fz<g,<h and P(¥.,, g,), then choose f, such that
Vp <a fp<f,<g,. This completes the construction. If there were a j with Va<w, f,<j<g,,
then for some «, not P(F_,, j), which would contradict j <g, and P(F_,, g,).

Claim 2. Any set satisfying the conditions of Claim 1 has universal measure zero.

Proof. For a<w,, let Ty={h: f,<h<g,}. T, is an F, set. Let x4 be any nonatomic
nonnegative real valued Baire measure on (2)*, we will show Ja u(7,)=0 (and that will
give the claim). If there were no such «, then there would be an o such that Ya= e
wTy)=u(T,,)=e>0. Let j€(2)* satisfy u{f€Ta,: f(n)=j(n)}>¢/2, all n<w. Pick an
o> ey such that j¢T,. Let {i,: »<w} enumerate the numbers ¢ such that 7,{(3)=g,(¢).
T,=Un<oTom where T, ={f: f(i,) =f,(s,) all n>m}. Pick an m with u(T,,)>¢/2. Since
74T, there is an ¢,, n>m such that j(i,)4=g,(i,). We have that u{f€T,,: f(i.)3Fg.(1,)} =
Ul ET . 1(3,) =Fg,(2,)} = &/2, but this set is disjoint with T, and u(T,,,) >£/2, a contradiction.

TreorEM 1.3 (Folklore, see [9]). If X has strong measure zero then X has universal

measure zero.

Proof. The theorem follows from the fact that if 4 is a nonatomic, nonnegative real
valued Baire measure on [0, 1], then Ye>0 36>0 V intervals I (length (1) <d= u(I)<e).

We will prove now the theorem of Martin and Solovay that if Martin’s axiom holds,
then all sets of power <2% have strong measure zero ([12]). We note a slight strengthening,
the proof being essentially the same. The Rothberger property on X<[0, 1] ([15], it is
called property C” in [9] and [15]) states that if [,, is an interval around z, each x€X,
each n<w, then there exist members x;, x,, ..., Z,, ... of X such that X< U<, Lz, This

property implies that X has strong measure zero (take length [, =¢,, all z, n).

TueorEM 1.4. If Martin’s axiom, then every X <[0, 1] of power <2% has the Roth-

berger property, and hence has strong measure zero.
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Proof. The consequence of MA needed is the strong Baire category property [12]:
the union of <2% first category sets is of first category. Given (rational) intervals I,, as
in the definition, choose for each n<w an enumeration {I,,: x€X}={I3, I}, I3, ...}. For
each x€X define 4,={f€(w)*: x¢U ,<,I5™}. Since each 4, is nowhere dense in (w), there
is an f€(w)¢ — U ex 4,. Then X< U, ., I%™. For each n <w pick z, € X with 1™ =1, ,.
Then X< U<y Loun-

We now give (the Martin’s axiom version of) the original construction of a strong
measure zero sett of power 2%, Say X <[0, 1] is concentrated around a set C<[0, 17 if
whenever I, is an interval around ¢ all ¢ €0, then X — U ¢ I, has power <2%, A generalized
Lusin set() is an X which is concentrated around every dense subset of [0, 1] (equivalently,
X is concentrated around the rationals, Card (X N A4)<2% all 4 of first category).

TrEorREM 1.5. (Martin and Solovay, [12]) Martin’s aziom implies that there is a general-
ized Lusin set X of power 2%.

Proof. Let D,, «<2%, enumerate the dense open subsets of [0, 1]. Let X ={z,: a <2%},
where x,, chosen by the strong Baire category property, satisfies ,=4=24(8 <), 2, € N gea Dp.

TurorREM 1.6. Martin’s axiom implies that there is a strong measure zero set of power 2%,

Proof. It suffices to show that if MA and X is concentrated around C={c,: n<w},
then X has strong measure zero. Given g, >0 (n <w), pick for each n aninterval J, around
¢, of length &,,, then choose intervals K, of length &,,., to cover the strong measure zero
set X — Uncon-

Finally, a word about the nonreversibility of the implications

X is concentrated around a countable set ;7 X has

strong measure zero = X has universal measure zero.

Besicovitch ([1]) proved that if 2% =X, then there is a strong measure zero set which
is not concentrated around any countable set. By going through his proof or the proof
given by Darst in [5], it may be seen that such a set may also be constructed using Martin’s
axiom.

Sierpinski ([19], [21]) proved that if 2% =R, then there is a universal measure zero
set which does not have strong measure zero, by the following method. Clearly if X has
strong measure zero (respectively, is concentrated) and f: [0, 1]->[0, 1] is continuous then

fiX] has strong measure zero (respectively, is concentrated). Sierpinski constructed, with

(*) These are the MA versions of the classical definition, obtained by replacing <R, by <2% at
the relevant place in the definition of concentrated.
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CH, an X of universal measure zero and a continuous f such that f[X] does not have
universal measure zero. Darst ([7]) found such a construction where the f is also of bounded
variation. These results also hold under the assumption of Martin’s axiom.

§2.

The letter 71 varies over countable transitive models of ZFC. Unless otherwise stated,
in a statement about forcing the ground model is denoted by . The method for getting
an extension in which all strong measure zero sets are countable is as follows. A partial
ordering T is chosen such that adding a J-generic set @, is the same as adding a certain
real number canonically obtained from Gy. This real kills all the ground model’s uncountable
strong measure zero sets (for each uncountable X<=[0, 1], X €M, there is a tail end of
the real which codes up a sequence g,, n <w, such that there is no sequence I,,, n<w, in
M(G,] with length I <e&,, X= U, <, 1,). Since there are new reals in 7(G,], new uncount-
able strong measure zero sets may now appear; for example, T[G,], will be a model of 2% =X,
if ‘M is. So we will do an iterated forcing construction, successively adding J-generic reals
w, times. In the original iterated forcing argument of Solovay and Tennenbaum ([25]), a
condition gave information about finitely many of the generic sets occurring in the steps
of the iteration. Since then, Jensen (see [7]) and Silver (see [14]) have used iterated forcing
arguments with conditions not subject to the finiteness restriction. The conditions we
will work with give information about countably many of the generic sets occurring in the
steps of the iteration.

As Solovay and Tennenbaum say in [25) about the procedure for proving the con-
sistency of Souslin’s hypothesis, “Once a Souslin tree is killed, it stays dead.” Strong
measure zero sets are different; after an uncountable strong measure zero set has been
killed, it is possible to bring it back to life by a further Cohen extension—for example,
adding a Cohen real ([3]) to a model H forces all sets of reals in ¥ to have strong measure
zero in the extension.(t) When we iteratively add J-reals, however, it turns out that once
a strong measure zero set is killed, it stays dead.

For s, tE€(w)=?, let s <¢(s <t) mean that s is an initial segment (proper initial segment)
of t. The partial ordering J will consist of certain subtrees of (w)~*; 7'< (w)<* will be a mem-
ber of Jif and only if Vi€ T Vs <t s€ T, and there exists a member of T, called sy, such that

(i) Vs€T s<syor sp<s, and

(ii) Vs€T if s;<s then Card{n: s~ n€T}=N,.

{%) Thus Cohen reals and J.generic reals are at opposite ends of the spectrum from this point of
view. In between are Sacks reals and Solovay reals; upon forcing with one of these reals, a ground model
set will have strong measure zero in the extension if and only if it had strong measure zero in the ground
model. J-generic reals have the closest similarity in this context with Mathias reals ([13])—see below.
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Order T by S<T (T extends 8) iff T< S. A generic set G, < T canonically creates a generic
real g;: w—~>w, namely g; = U re¢, 7. A standard genericity argument shows that M[G,] =
Migs].

Notation: o is (w)<*, the least element of J. For T€J, s€T, T ;={t€T: s<t ort<s},
a member of J. Fix an enumeration of (w)~®, xg @y, <o) &y, ... (<w), such that
(a) z;<wx;=i<j, and (b) x;=s"m, x;=s"n, and m <n =¢ <j. This yields, for each T €T, an
enumeration 7C0>, T'(13, ..., T{(n), ... (n<w) of {s€T: s >s;} (via the natural isomorphism
of that set with (w)<“); we will use the notation 7'<0)> in place of s; from now on.
For 8, T €T, define

ST
to mean that
(a) S<T
(b) 8> =T, alli<a.

The set {T<0), ..., T<n)} determines a family of n+1 subtrees of 7' whose union is 7',
namely, for each ¢<n, the subtree S; (with 8,€J and with §; <0> =T(3>) is obtained by
taking the union of all 7'’s such that ¢ is an immediate successor of 7'¢7) in 7' and such that
t is not a T'(j) for any j<n. The set {S,, S, ..., 8,} will be referred to as the set of com-
ponents of T at stage »; note that they form a maximal set of incompatibles extending 7'.

LEmma 1. Let m<w and T,€F m<i<ow) satisfy T,<'T,, Let T,=
Unc{TK0), TKL, ..., T} Ufs; s<T, <0} Then T, is the unique T €J such that
Vizm T,>'T.

Proof. Clear.

LemMma 2. Suppose TET, k<w and @,, n<k are sentences of the forcing language such
that T W \¥/n<r @n- Then for each i <w there is a T" with T<'T'" and an 1<{0, 1, ..., k} of
power <i+1 such that T' ¥ \X/per @r-

Proof. In the case =0 this says that if T ¥ \X/n<z @, then for some 7" with 7'<°7",
InT’ I ,. We first prove this fact. Suppose it were false. We will construet an S€J with
T <9S8 such that for each s€8

37T, <°T" and T’ kg, 1)

This will be a contradiction since 7'<S§ and 8 could not be extended to force any ¢,.

By the assumption, we may begin by putting each ¢<7<0> into 8. Having put €S
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with ¢ > 1<0)> we then put a sequence s, with s € 7" and s of the form t~m, into § if and only if
(1) holds. The inductive construction of § will be done if there are always infinitely many
such s's. If that failed for ¢, then there would be an infinite 4 Sw withm€Ad =t"meT,
and an n<k and trees T™, m€A, with T"<°T,., and T" I ¢,. But then T, <°U ., T™
and U ,ea T, F@,, contradicting t€8.

This proves the case ¢ =0 of the lemma. The case >0 follows by applying the 0 case

to each of the stage i components of 7'.

LemMmaA 3. Suppose T€T, T ¥ a€M. Then there is a countable A in M and a T with
T<T" such that T +a€A.

Proof. If not, then we may construct, similarly to the case ¢=0 of Lemma 2, an § with
T <%8 such that for each s€S,

—37"'34 A€M, A countable in M, T, <°T", T ra€A. (2)

(for the induction use that if (2) holds for s € 7' with s > T'<0>, then it must hold for infinitely
many immediate successors of s in 7). But S could not be extended to force d¢ =a, for any

a €M, a contradiction.

LemMA 4. Suppose TE€ET, T A is a countable subset of ™. Then for each n<w there
is a countable A in M and a T" with T <"T" such that T' - A< A.

Proof. Case n=0. Let A ={dy, ty; -.-s &y, ...}. Construct T” by an appropriate w stage
fusion argument, arranging at step ¢, by applications of Lemma 3, that the possible values
of ¢, will be countably bounded by 7".

For the case n >0, apply the case =0 of the lemma to each of the stage n components
of T.

Thus J preserves cofinalities (over a ground model of 2% =X,).

The ordering P, for iteratively adding w, J-generic reals is defined as follows. We
inductively define p,, for 1 <a<w, (ordered by <,, with least element o,, and forcing
relation I ,) where p€ P, =p is a function whose domain is «, and where G, is a name for

the generic set over P,, by:

(i) P, (isomorphic to J) is the set of all functions p: 1, where p <, q iff p(0) <g¢(0).
(i) Das1=P@I™C ={p: dom p=a+1, p o€ P,, and p(x) is a canonical term in the
forcing language of P, for a member of J in M[G,]}, ordered by

P<gnqiff pla<,qla and qPa i, p(x)<qx).
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(iii) For « a limit ordinal, P, is the set of all p with dom p =« such that

(a) if 1<B <o then p[PFE Py, and
(b) for all but countably many g with 1 <f<ea, ¥,p(8)=0.(%)

The subscripts in <,, 0,, and |, will be dropped when context permits.
If 1<a<p, P4 is the set of all functions f with domain [e, §) such that o, U f€ Dj.
Order p=#in M[G,] by
f<g=3p€@, pUf<pUyg.

Standard facts about iterated forcing yield the following things. If & <g then ), is canoni-
cally embedded in Pg, and G,={pla: p€G,}. MG 5]=M[G,1[G*#], where G*F is M[G.]-
generic over P,

Write P+, G2 for p*:, G***. We will show later that in M[G.,], forcing with P* is
equivalent to forcing with (Pa,)™.

If p€ D, or p€ P4, let support p be the countable set in PN, {f€dom p: ¥ p(B)=0}.

Suppose 1 <f<w,, F is a finite subset of #, and n <w. Then define, for p, g€ Dy,

P<r¢
to mean that

(a) p<q
(b) for all € F g]a I p(a) <™g(e).

Fusion arguments will be done in accord with the following lemma.

Lemma 5. Suppose p,: n<w are members of Pg, and F,: n<w is an increasing chain
of finite sets such that U p<o, Fp=U <, support p,, and for each n, p, <, pn.,. Then there is
a (unique up to equivalence in the ordering on Dg) p, € Dy such that for each n<w, p,<F, P,

Proof. For a<f, define p,(a) to be a term in the language of P, representing the down-
wards closure of the set of all p,(«)<{t)>’s such that « € F,, and ¢ < n. We show by induction
on yp, 1<y <pf, that

P.TYED,
and that for each »,

Puly < FpnyPoly-

(*) This clause, when stated in the Boolean algebraic terminology of [25], becomes: Bj is the direct
limit of {(Bg: # <A)> when ¢f (1) >w, and is the inverse limit of (B 42 B<A> when cf(1) =o.
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(a) y=1. This case follows from Lemma 1.

(b) y=6+1,1<4. Then for all n, p,d<p, by induction; thus p,['d forces that the
term p,(d) stands for the element of J constructed from {p,(8): 6 € F,> in the manner of
Lemma 1. It follows that for all #, p, M +1 <%, 16112, M+ 1, as desired.

{c) 7 a limit ordinal. This case follows from the induction hypothesis.

An important difference between iterated foreing and side by side forcing is the follow-
ing. Suppose 1 <a<f, ¢’ € P,, and @ is a maximal antichain of {g € D,: g compatible with ¢'}.
Suppose that for each ¢€Q, p, is a condition in P, satisfying p,[ec=g. Then there is a
p€ Py which is the disjunction (greatest lower bound) of {p, ¢€Q}. Namely, pla=¢/,
and for y with e <y <f, p(y) is a term corresponding to the conjunction of the implications
q=p,(y) for g€Q. If p’€ Py and p’ <% p,, all ¢€Q, then p’ <% p.

Suppose p€ Py, {ry, 73, ..., r} S, and n<w and FcB are fixed by context with
F={a, ay, ..., &,}, 0y <ot <...<a;. Then define p™ =", a member of Pz extending p, to

be equal to p on coordinates not in F, and to satisfy, for 1 <s<,

P T o) ds the r ™ stage n component of p(a).

For n<w, the set of all p™ -~ "’s with each 7, <n is a maximal antichain above p. Namely,

if p<p,, then there are numbers r,, ..., 7; and a p, >p, such that for each j<¢,

Pa Mt length py(ar;)<0> > n -+ length p(e;)<0> and p,(a,)<0> belongs to the r,th stage n com-
ponent of p(a;).
Then p, extends p™ "

Suppose p€ Pg, F={ay, ..., s}, oy <..<o;<p, and n<w. Suppose g€ D, satisfies
pTi<% ¢ (where each r;<u and p™+ " is taken with respect to ¥ and ). Then the
amalgamation of p and ¢ is a p’ € P, such that

P<ip
g<Hp)r
defined as follows. Suppose « < and p’ [ has been defined.
(a) x=ect;. Let
p'(e) = (p(e) = (P())") U g()-
(we may assume without loss of generality that the term ¢(«) issuchthat p* o f (p(«))? < g(a)).

(b) ad¢F. If a<oy, let p'(x) =q(e). If a¢>ey, It o, be the maximum element of F

less than «, and let p’(«) be the conjunction of

(p'Pa) =" = g(a),
and = (pTa) ™= p(a).

It is seen that p’ satisfies the two properties above.



160 RICHARD LAVER

LeMMA 6. Let 1 <f<w,y, p€ Py, and let F={a;, s, ..., a;} be a finite subset of B with

o <ot <..<a; Let n<w. Then

(i) If k<w and p  W;crp;, then there is an I<{0, 1, ..., k} with Card I<(n+1)!
and a p’ such that p<% p" and p’ W1 @;-

(i) If p €M then there is a countable A in M and a p" with p < p’ such that p’ +d €A.

(iii) If p A is a countable subset of M then there is a countable A in M and a p’ with
Pp<Ep suchthat p’ tA< A.

(iv) If f<0<w, and p‘ I f€ DB then there is an f€ P8 and a p’ with p<% p’ such that
P HfE]

Proof. By induction on £,

(i)(a). f=1. This is Lemma 2.

(i)(b). B=0+1, 0=1. c=a; may be assumed. Let S, be a term for the k™ stage =
component of p(c), each k<. Since Lemma 2 holds in T[G,), there is a term S’ for each
k< such that

pho (S, <8, and 35 Sk ke).
By the induction hypothesis we may choose

}9[\0<2M%<§W... < Foon
and sets

Ip Iy o I,
such that for k<n, Card I, =(n+1)""* and

g I S Y/ @;.

jely

Let 8 be a term standing for the union of the 8%’s, I=U x<n I, Let

pl = qnﬁ<Sl>
Pp<Fp and p’ kW1 ;, as desired.
(i)(c) B alimit ordinal. Let f be a term, in the language of Ds,+1, for a member of P=+h#

such that pe,;+1 forces
pMa+L, B <f and 3 fio,
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Applying part (iv) of the lemma to «;+1, get a ¢ with p e, <% ¢ and an f€ P%*Fsuch
that g I+ f ={. Then find, by the induction hypothesis, a ¢’ with ¢<} ¢’andan I<={0,1,..., k}
with Card I <(n41)! such that
¢ el fig,
Take
P =qVf.

p’ has the required properties.

(ii) (a). p=1. This is Lemma 3.

(i) (b). B=0+1, ¢=>1. Since Lemma 3 holds in IM[G,] there are terms 7" and 4 in
the language of P,, standing for a member of ()™ and a countable subset of M
lying in TM[G,], such that p o forces that p(c) <"7' and that 7" -G €A. Applying part (iii)
of the lemma to o, get a g€ P, with pPo<},,¢, and a countable set 4 in I} such that

qrAcA.
Then
P =g~ <XT
is as desired.
(ii)(¢). B a limit ordinal. Using (iv) at o;,, as in case (i) (c), find a term 4 in the langnage
of Pa+1 standing for a countable subset of M lying in M[Gx+1], and a ¢ with p<i g
such that
g Fa€A.

Now use (iil) at «;+1 to get a p’ with ¢<% p’ and a countable 4 in T with

prAd<Ad.
p' is as desired.
(iii) Let A ={dy, dg, ..., Gy, ...}. p’ Will be constructed by a fusion argument. Namely,
start with p=p,=p,=...=p,, F=Fy=F,=...=F,, and build up sequences p, ., Pnig, -
and F,.,, F, ., ... and 4,, 4,, ... such that

(a) Vi pi<%'ipi+l
(b) Vi F,=F, 4, and U,., F;=U <, support p,
(e) Vi>0 4, is a countable set in M and p,y, Hd,€4,

To go from 4 to ¢+ 1 satisfying (a) and (c), use (ii). The fact that the support p;’s may
increase is handled by choosing the F/s as the construction proceeds, by a bookkeeping
method, in such a way as to make (b) hold. Set p’ =p,, the condition given by Lemma 5,
and let 4=U,;.,4; Then p’ and 4 satisfy the requirement of (iii).
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(iv) By (iii), there is a p’ and a countable A= [f, d) in T such that p < p’ and
o' I+ support f< A.

If y€[B, 8)—A4, let f(y) be a term in the language of P, for the 0 element of ()™ . If
y €4, let f(y) be a term in the language of D, such that f)=f(»)- Then f€ P* and

' kf=],
as required.
This completes the proof of Lemma 6.

Lemma 6 (iii) implies

LuemMMA 7. For each a<w,, w, 18 preserved in passage to M[G,].

For the rest of the proof M is assumed to be a model of 2% =N,.

To show that for 1 <g <w,, D,«; has the R, chain condition, we will define, for 1 <f <w,,
a W< Py with Card (W 4/ =)=N,, and show W cofinal in P,.

(@) wl = Dr

(ii) For f>1, Wy, is the set of all p€ P, such that pNFEUI, and statements of the
form s =p(B)<s) are decided by countable antichains = U, (that is, for p € Pj.,, a function

hg: (0)<® x w—{antichains < {g€ P, ¢ compatible with p[\8}} may be associated with
p(f) in such a way that

AT E(T)MCAVTi) is the unique s with hg(s, 1) €Gy;

(for p€ Py, with p[BEW s pEW,,, if there is a function Ay as above whose values
are countable subsets of Up).

(iii) For B a limit ordinal, U, is the set of all p € Dy such that if 1 < <B, p M€ W,

Leuwma 8. If p,, n<w, 8 a sequence of members of Wy, and F,, n<w, is an increasing
sequence of finite subsets of B with U peo Fo= U p<w Support v, and for each n, p, <F, Pn+q

then the fusion p,, of the p,’s, given by Lemma 5, ts in W .
Proof. p,(a){z) =p,(x){3> for some/all n>i with « € F,. The result follows.
Lemma 9. If p€ Dy, n<w, F a finite subset of f, then there is a p' €Wz withp<Fp'.

Proof. By induction on §

(a) p=1. Take p'=p.

(b) B=0+1, o>1. By induction, pick p,€ W, with pPe <}, po. We will construct
members pg, Py, ..., Py - (8 <w) of P, and an increasing sequence Fy, Fi, ..., F,, ... of finite
subsets of ¢, with Fy=F,=...=F,=F N0, py=p,=... =P,, such that
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(B Vip<EPin
(11) U 1<mFi = U i<w S“PPOI't P
(iil) letting 2,, 2,1, ..., ¥y yp> ... enumerate ()<, for each ¢ >n there is a finite maximal

antichain 4; of {¢€ D,, ¢ compatible with p,,,}, with 4, UW,, such that for
each g€ 4,, ¢ decides whether there is a &, and determines k if there is one, such
that z; =p(c)<k).
Suppose i >n and we have constructed p,, py, ..., p; and Fy, Fy, ..., F;. Let a=Card F,
b=(i+1)% Let ry, 1y, ..., T,_; be an enumeration of all sequences of the form (s, ..., 7,>

where each 7, <1. Let gy=p. We will define a sequence
i i i
90<}?191< Fyere < Fiqb;

and members g, g7, ..., ¢5-1 of W,. Suppose ¢, has been defined. Form the condition g%,
taken with respect to F; and . By Lemma 6(i) there is a g; with ¢}/ <%, ¢j, which decides for
which k, if any, that x;=p(c)<k) (to apply Lemma 6(i), use that there are only finitely many
k’s such that 3T «;=T<k}). By the induction hypothesis there is a ¢; € W, with ¢;<%,qj.
Let g;,, be the amalgamation of g, and ¢j. ¢,<%, ;.1

Let p1=¢, Let F; ;2 F,; be chosen as per a bookkeeping arrangement for making
(ii) hold. Tt is seen that (iii) holds for p,,, the finite antichain consisting of the ¢;’s of the
construction.

This completes the definition of the p,’s and F/’s. Let p, be the fusion of the p,’s.
By the induction hypothesis, pick a p€W, with p,<2,, p. Let

P =9 plo).

We have p<yp’. p' € Wy, namely, an h, for p’(c), as in the definition of U9y, may be formed
by taking A, (z;, k) to be the set of ¢;’s formed at stage ¢ which force that z; =p(a)<k).
(¢) B a limit ordinal. If ¢f(8) >w the lemma is clear. Assume cf(8) =w. Let

Fom=Fy=F, go=..=0,€ Woaxr 41

satisfy p|* dom ¢, <%, ¢,. Having picked F}, q,, and F,,;, let ¢;,; € Winex 5,41 satisfy

j+1 1
pldom gy, < Fii1 g

and

J+1
g < Fjpq0dom gy 97+1 [ dom q;.

Choose the F's so that U<, F;= Ui<w support ¢; and so that U, F, is cofinal in §.
Then, letting p,€ U, be /40, 0, ..., 0, ..., the p,’s form a fusion sequence. Set
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pl = Py

the fusion of this sequence. p’' €W, by Lemma 8, and p<7 p'.
This completes the proof of the lemma.

Lemma 10. (i) For § <w,, Card(W,/ =)=N,.

(ii) For f<w,y, Pg has the R, chain condition.

(iil) For B<w,, cofinalities are preserved in passage from M to MG 4].

(iv) For f<w, MIGRE2% =8, M[G,,]=2% =R,.

(v) If X is a set of reals in M[G,,,] of power <X, then X € M[G,] for some a<ws,.

Proof. (i). By induction on 8. At §=1 and at 8 a limit ordinal it is clear since 2% =x,
holds in M. If =0 +1 the term p(o) of a p€W, is determined up to equivalence by the
associated function A, in the definition of W 4; there are only 2% possible such &,’s.

(ii). The claim follows from Lemma 9, Lemma 10(i), and the fact that support p is
countable, p€ P,,.

(iii). From Lemma 7 and Lemma 10(ii).

(iv). Follows from Lemma 9, Lemma 10(i), and genericity.

(v). Follows from Lemma 10(ii) and Lemma 10(iii), and the countable support

property of the conditions.

Lemma 11. For B<w,, there is an isomorphism in TN[Gp] between (PF/=) and
(DWE/E)M[Gﬂ]'

Proof. wl'=w}'[G4] (Lemma 10(iii)). By the nature of the conditions, then, there is a
canonical function

H: pf—>pi°e,

defined in FM[G ], such that f <g<H(f) < H(g). We need to show H is onto the equivalence
classes of (],,)™". Let q€(Dw,)™ . Then by Lemma 6(iii) and genericity there is a
P€G,and a countable 4 in M such that

p rsupport g 4.

It follows that there is an f€ P# with support f= 4 such that in T[G 4],

H(f) =g,
as desired.
We will not need to distinguish between these isomorphic partial orderings below.
In the remainder of the proof it is shown that P, kills all uncountable strong measure
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zero sets. Given a set X in the ground model forced by a p€ P., to have strong measure
Zero, a Sequence &, &, ..., &, ... will be coded from the generic function g, given by
G,. Letting (I, I,, ..., I, ..> be a term for a sequence of intervals of lengths<¢,,
lying in M[G,,], the union of which covers X, and letting d, be the center of [, a p’ with
p<{yp', and finite sets of reals U,, for all nodes z of p’(0), will be chosen in M so that
if length x=Ilength p'(0)<0> +n, then no extension p” of p’, with p”(0)<0> ==, bounds d,,
away from all the members of U,. For each ground model realv ¢ U, U,, a p” = p’ can be con-
structed to force v ¢J ,,<wf »- Such a v thus cannot be in X, so X< |J, U, is a countable set.
The stipulation in this argument that X € ) is then removed by Lemma 10(v) and Lemma
11. The reader might want to check this argument for the case of forcing with P,, the

argument below being like that case with the more general type of fusion.

Lemma 12. Let d be a term for a real in M[Go,], € Do, F a finite subset of w,. Then
there is a p’ with p<%, p" and a real w€ M such that for every £>0, for all but finitely

many immediate successors t of p’(0)<0> in p’(0),
(@' (0)~p' ML, )  |d—u| <e.

Proof. Let ty, ty, ..., £, ... be the immediate successors in p(0) of p(0)<0>.

Fix n. We define an extension of the condition
2(0),~pl1, w,).
Applying Lemma 6(i) in [G,], there is a term fn such that

p(0);,, + p M1, wy) <% (o f, and f, determines which
of the intervals [0, 1/n), [1/n, 2/n), ..., [(n —1)/n, 1] contains d.

By Lemma 6(iv) there is a g, with p(0),, <°q, and an f, € D' such that
o - fo= fo

By Lemma 6(i) there is a ¢’ with ¢, <%¢;, and an [, of length 1/n such that

gn b1, Ha€L,
Now pick an infinite 4 e such that {I,: n€A4) converges to a real u. Let

Pn ="

Define p’ to be the disjunction of {p,: n€A4}. u and p’ satisfy the conditions of the lemma.
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LevMa 13. Let ¢ be a term for a real in. Gy, P € P, F @ finite subset of {1, w,), and
n<w. Then there is a p'€P,, with p(0)<°p’(0), pIM1, w,) <5 p' M1, wy), and a finite set
U of realsin M such that for each £>0, for all but finitely many immediate successors t of
2'(0)<0> in p’(0),

2 (0P ML, wy) FIuelU|d—u| <e.

Proof. Let Card F =i, b=(n+1). Let r,, ..., r,_; enumerate the sequences <{ry, ..., r;
with each r,<n. Let p,=p. We will define a sequence p,, py, ..., p, such that for §<b,
2,0)<%p,,,(0) and p,M1, wy) <% p,,1 M1, w,). Suppose p, ..., p; have been defined. Apply
Lemma 12 to p¥, getting a ¢,€ D,, and a real u, such that p} <%, ¢, and such that for
all £ >0, for all but finitely many immediate successors ¢ of ¢,(0)<0> in ¢,(0),

(@;000)°g; ML, @y) H |d—uy| <e.

Let p;,; be the amalgamation of p; and g¢;.
Let 9’ =p,, and U={u,, ..., u,_1}. Given ¢>0, it is seen that for each immediate

successor £ of /(0)K0> in p’(0) such that

Vi (2,000 g ML, o) F | —uy) <&
that
(p'(0))~p" M1, wy) I Hjld’_ufl <e

proving the lemma.

LEMMA 14. Let dy, dy, ..., 4;, ... be terms for reals in M[Ga,], and let p€ Pu,. Then
there is a p' with p<p', p(0) <°p'(0), and a finite set of reals U, for each s€p'(0), p'(0)<0>
<s, such that for each >0 and each node s of p'(0) with levels s =level p(0)<0> <-4, for all but

finitely many immediate successors t of s in p'(0),
(@002 M1, wy) FIu€U|d;—u] <e.

Proof. (Remark: Given F and n, p<%p’' could also be arranged as in the previous
lemmas.) The proof is by a fusion argument, modified (for convenience) in the first co-
ordinate. Let a =level p(0)<0>. Let p,=p. We will construct

Dos P15 ++0s Pys »ee and Fos -Fl, Bt ] F], o

such that U< Fy=U jco support p;,~{0}, p; <%, and all nodes of p,(0) having level
<a+§ belong to p,,(0).
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Suppose p; has been defined. Fix ¢ node s of level a+j in p;(0). Apply Lemma 13 to
the condition
(p,(0))sp, 1, ws)

getting a ¢° and a finite set of reals U, such that (p;(0)),"p,M1 ws) <%, ¢° and such that
for every ¢ >0, for all but finitely many immediate successors ¢ of s in ¢°(0),

(@0) g ML, w,) +IueU,|d;~u] <e.

Let p,,4 be the disjunction of {g°: s on level a 4§ of p,(0)}. p;,, satisfies the claimed
properties. Let F,,; be chosen by the appropriate bookkeeping arrangement,

Let p’ be defined by: p'(0)= N, p,0), p' M1, w,)=the fusion of {p,;]M1, w,): j <w}
(which exists under the assumption of p’(0)). p’ is as desired.

Lemma 15. If X s a set of reals in M which has strong measure zero in M[G.,], then
X 4s countable.

Proof. Suppose p X has strong measure zero. Let length p(0)<0>=n. In M[G,],
let g, be the generic function: w—w given by G,. Define ¢, for j=n by g;=1/g,(j +1). Let

Ly Ipyqs >

be a sequence of intervals of lengths &,, £,,,, ... such that X< |J;1,. Let a; be the center
of I
Back in M, apply Lemma 14 to d,, d, .y, ... and p, getting a p’ and sets U, s€p'(0),
sZ2p' (00> (=p(0)D).
We claim that
XsU.,U,

which will give the lemma. Suppose v is a real in M, v¢U,U,. Then we will find a 7' with
p'(0)<°7T such that
T~p' ML, wp) FoéU, 1,

which will prove » ¢ X. T is defined by induction on the nodes of p’(0); the choice of nodes
of level j+1 forces that v ¢ I,. Suppose ¢ on level j > has been put into T'. The immediate
successors of ¢ in 7' will be all but finitely many of the immediate successors of ¢ in p’(0).
Namely, since v ¢ U,, pick an ¢ with 2¢<|v—u|, all w€U,. Discard finitely many of the
immediate successors of ¢ so that, letting ¢ be the set of nodes of p’(0) comparable with any
of the remaining immediate successors of ¢,

g~ ML wp) +Iw€U,]d,—u| <e.

11762901 Acta mathematica 137. Imprim¢ le 20 Janvier 1977
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Choose k such that 1/k <¢; discard in addition all immediate successors of ¢ whose value at
j is less than k. Doing this at each ¢ of level j gives the induction step. The tree T is as
desired, giving the lemma.

To prove the theorem, it suffices to show that if X is a set of reals in 1[G,,,] of power
R,, then X does not have strong measure zero. By Lemma 10(v), X € [G'] for some f <w,.
If X had strong measure zero, we could, in view of Lemma 10 (iv) and Lemma 11, apply
Lemma 15 with M[G,] taken as ground model, concluding that X is countable.

This completes the proof.

‘We mention an alternative to using J-generic reals in the proof. The forcing conditions
for adding a Mathias real ([13]) to a ground model of ZFC are defined as follows. A condition
is a function f whose domain is an infinite, coinfinite subset of w, whose range < {0, 1},
with f-1{0} finite. The conditions are ordered by function extension. Some time ago, R.
Solovay informed the author that he and R. Jensen had proved that adding one Mathias
real kills the uncountable strong measure zero sets in the ground model. I recently proved
that iteratively adding w, Mathias reals (taking countable supports as in the above proof)
to a ground model of 2% =R, gives a model of Borel’s conjecture.

Let 7 be a countable transitive model of ZFC. For which cardinals #, 4, g in H is
there a cofinality preserving Cohen extension of # in which x is the least cardinal such that
there are no strong measure zero sets of that power, 4 is the least cardinal such that there

are no universal measure zero sets of that power, and 2% =u?
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