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For X a subset of [0, 1], there is a family of properties which X might have, each of 

which is stronger than  X having Lebesgue measure zero, and each of which is trivially 

satisfied if X is countable. The main properties in this family (apart  from the Lusin-type 

conditions, which are really meant  to be stated in conjunction with 2 s, =~r or with Martin's 

axiom--see  section 1) are 

X has strong measure zero, i.e., if e0, el . . . . .  en . . . .  (n <o)) is a sequence of positive reals 

then there exists a sequence I 0, 11, ..., I~ . . . .  (n<eo) of intervals with length In~<e. and 

x_ U ~<o,~. 
X has universal measure zero, i.e., /[X] has Lebesgue measure zero for each horace. 

morphism /: [0, 1]-~[0, 1], equivalently, for each nonatomie, nonnegative real valued 

Baire measure ~ on [0, 1],/~(X) =0.  

I f  X has strong measure zero then X has universal measure zero. These are strong 

restrictions to place on X a nonempty  perfect set, which can of course have measure zero, 

cannot have either of these properties, hence no uncountable analytic set can have either 

of these properties. The question thus arises as to whether there exist uncountable sets 

with these properties. 

For universal measure zero sets, the answer is yes- - t tausdorf f  ([8]) constructed in 

ZFC a universal measure zero set of power ~r 

For strong measure zero sets the situation is different. The notion of strong measure 

zero is due to Borel ([2]), who conjectured ([2], page 123) tha t  

all strony measure zero sets are countable. 

In  fact, though, uncountable strong measure zero sets can be constructed if the continuum 

hypothesis is assumed the Lusin set ([11]), a set, constructed with the aid of the CH~ 

having countable intersection with each first category set, has strong measure zero ([18]). 

10-762901 Acta mathemathica 137. Imprim6 le 20 $anvier 1977. 
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The question thus became (see, e.g., [9], page 527) whether  the conjecture is consistent. 

An  affirmative answer is the main  result of this paper. 

T H]~ OR ]~M. I] ZFC is consistent, then so is ZFC § conjecture. 

I n  the forcing proof, a countable transit ive model ~ of ZFC + 2 ~~ = ~r is s tar ted with, 

and a cofinality preserving Cohen extension ~ / o f  ~ is found in which 2 ~o = tr 2 and there 

do no t  exist a ny  uncountable  strong measure zero sets. 

A certain purely set theoretic condition for uncountable  cardinals < 2  s0 holds in this 

Cohen extension--Sierpinski  ([20]) proved tha t  there exists no strong measure zero set 

of power ~ if and only if for every family of sets {A~: sE(2) <~} such tha t  Ar A ~  o U 

A~I= A~ ,  A~o N A ~ I =  ~, with Card f'l,~<~Ar~n<<.l al l /E(2)% there exists a sequence n~, 

i<co,  of nonnegat ive integers such tha t  if s~E(2) <~ and Cards~=n~, all i<co, then  

U i<~A~#z .  

Regarding universal measure zero sets, Hausdorff ' s  theorem is best possible in the  

sense t h a t  there is a model of ZFC + 2 s0 > ~ in which there are no universal measure zero 

sets of power ~2 (add Sacks reals ([17]) or Solovay reals ([24]) to a model of 2"~~162 

This fact  (not proved here) is an  extension of an  unpublished result of Baumgar tner  which 

states t h a t  adding Sacks reals or Solovay reals to a model of 2 ~0 =~r gives a model ia  which 

there are no strong measure zero sets of power ~r 

I n  section 1 an account  is given of the main  results having to do with the existence 

of uncountable  strong measure zero and universal measure zero sets.(~) I n  the places where 

the CH was originally used, we will note  the  more general results proved using Mart in 's  

axiom. I n  section 2 the  main  result is proved. 

w  

T H E OR • M 1.1 (Folklore). No  nonempty per/ect set can have universal measure zero. 

Proo]. Let t ing P be perfect, we m a y  assume P is nowhere dense. Let  On, n <r be 

disjoint open intervals whose union is the complement  of P .  The theorem follows by  in- 

duct ively choosing intervals Is, s E(2) <~, with I r  = [0, 1], I~0,  I~^ 1 disjoint intervals whose 

union is /8, with Card N n<~ I/~n ~< 1 for all / E (2) ~, in such a way  tha t  if # is the measure 

defined by/x(Is)  = 2  -card~, then, e.g.,/x(0n) < 2  -(n+2), whence/x(P) >0 .  

THV.OREM 1.2 (Hausdofff  [8], see [23]). There exists a universal measure zero set 

o/power ~x. 

(1) References are the ones in this paper plus the ones in [9], [20] and [22]. The strong measure zero 
property is classically referred to as "property C". 
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Proo/. We work over  the  Cantor  space (2)% For  f, g~(2) ~, l e t /<~g  mean  9m Vn>m 

](n) <<-g(n); if ] ~<g let ~([, g) be the  least such m. f < g means  f < g and g ~ / .  We  will be done 

b y  two claims. 

Claim 1. There  is a set {]~: ~ <~Ol} U {g~: zr <wl} with  [0 <Ix <. . .  <]a  <. . .  <g= <. . .  <go 

such t h a t  there is no ]E(2) ~ wi th  u  f~<  ]<g~. 

Proof. Suppose ~ < w l  and  we have  constructed 2'<~, G<=(={fp: /~<~},  {gz: f l<~})  

such t h a t  the  following addi t ional  condition holds: for all fl < ~, P(F<z, g~), t h a t  is, for each 

m < w  there  are only finitely m a n y  7 </3 with ~(fr, gp) = m .  We want  to f ind [~, g~ and  m a k e  

sure t h a t  P(F<=, g~). Pick an  h such t ha t  u  fp<h<g~. For  all ~ < ~ ,  P (F<p ,  h); using 

this, construct  a g~ such t h a t  u  [Z<g=<h and P(F<~, g~), then  choose [~ such t h a t  

V/~ < ~ fZ < ~= < g=. This completes  the  construction.  I f  there  were a ] wi th  u162 <co 1 /= < ?" <g~, 

then  for some ~, not  P(F<~,  ]), which would contradic t  ?" <g= and P(.F<=, g~). 

Claim 2. Any  set  satisfying the  conditions of Claim 1 has  universal  measure  zero. 

Proof. For  ~ < w l ,  let T~={h:  ]c,<~h<~g~}. T= is an F~  set. Le t  # be a n y n o n a t o m i c  

nonnegat ive  real va lued  Baire measure  on (2) ~, we will show 3~ # ( T = ) = 0  (and t h a t  will 

give the  claim). I f  there  were no such ~, then  there  would be an ~o such t h a t  u  

/t(T~)=#(T~o)=e>O. Let  ]e (2 )  ~ sat isfy / t{feT~0:  ](n)=](n)}~e/2, all n<eo.  P ick  an  

~>cr such t h a t  ]~T~. Let  {in: n<eo} enumera t e  the  numbers  i such t h a t  /~,(i)=g~(i). 

T ~ =  Uz<~Tam , where T~m={[: [(i~)=]~(in) all n>m}. Pick an  m w i t h / t ( T a z  ) >s/2 .  Since 

]r there  is an  in, n > m  such t h a t  j(i~)~ga(i~). We have  t h a t  #{feTe0: ](in)=~=g~(in)}= 

/t{[ e T~: [(i~)#g~(in)} >~ e/2, bu t  this set is disjoint with Tam and/ t (T~a)  > e/2, a contradiction.  

T H E O R E ~  1.3 (Folklore, see [9]). 11 X has strong measure zero then X has universal 

m ~ a s u r ~  z e r o .  

Proof. The theorem follows f rom the fact  t h a t  i f / t  is a nonatomic,  nonnegat ive  real 

va lued  Baire  measure  on [0, 1], t hen  Ye > 0  36 > 0  u intervals  I (length ( 1 ) < 6  ~ / t (1 )  <e) .  

We  will p rove  now the  theorem of Mart in  and  Solovay t h a t  if Mar t in ' s  ax iom holds, 

t hen  all sets of power  < 2  ~0 have  s t rong measure  zero ([12]). We  no te  a slight s t rengthening,  

the  proof  being essentially the  same. The  Rothberger  p rope r ty  on X___ [0, 1] ([15], i t  is 

called p rope r ty  C" in [9] and [15]) s ta tes  t h a t  ff Ixn is an in terval  a round  x, each xEX,  

each n<eo,  then  there  exist member s  xl, x 2 . . . .  , x n . . . .  of X such t h a t  X_~ Un<~Ix~n. This  

p rope r ty  implies t h a t  X has s t rong measure  zero ( take length Ixn = e~, all x, n). 

THEOREM 1.4. I[ Martin's axiom, then every X__[0, 1] of power < 2  s~ has the Roth. 

better property, and hence has strong measure zero. 
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Proo/. The consequence of MA needed is the  s t rong Baire  ca tegory  p rope r ty  [12]: 

the  union of < 2  ~o first  ca tegory  sets is of f i rs t  category.  Given (rational) intervals  I ~  as 

in the  definition, choose for each n<eo  an  enumera t ion  { I ~ :  xeX}={I~  I ~ , / ~  . . . .  }. For  

each x e X define A x = {/e  (co)~: x ~ (J n<~ I~n)}. Since each A x is nowhere  dense in (co)% there  

is a n / E ( c o ) ~ -  ( J ~ z  A~. Then  X _  ( J , < ~ I ~  ~). For  each n<o~ pick x,~GX with I ~ ) = I ~ . ~ .  

Then  X~_ [.Jn<~I~,n. 

We now give (the Mart in ' s  ax iom version of) the  original construct ion of a s t rong 

measure  zero set 1 of power  2 s0. Say  X _ [ 0 ,  1] is concent ra ted  a round  a set  C_c[0, 1] if 

whenever  I o is an in terval  a round  c all c E C, then  X - (J c~e Ic has power  < 2 so. A generalized 

Lusin  set(:) is an  X which is concent ra ted  a round  every  dense subset  of [0, 1] (equivalently,  

X is concent ra ted  a round  the  rationals,  Card ( X  N A) < 2 s0 all A of first  category).  

T H E O R E M 1.5. (Martin and  S olovay,  [ 12]) Martin's axiom implies that there is a general- 

ized .Lusin set X o] power 2 ~~ 

Proo/. Let  Da, ~ < 2  s~ enumera te  the  dense open subsets of [0, 1]. Le t  X = {x~: r162 <2So}, 

where x~, chosen b y  the  strong Baire  ca tegory  proper ty ,  satisfies x~ @xB( fl < ~), x~ E N ~ ~ D p. 

T H w 0 R ~ M 1.6. Martin's axiom implies that there is a strong measure zero set o/power 2 ~o. 

Proof. I t  suffices to show t h a t  if MA and X is concent ra ted  a round  C=(cn: n<co},  

t hen  X has  s t rong measure  zero. Given en > 0 (n <co), pick for  each n an in terval  Jn  a round  

c,  of length e2,, t hen  choose intervals  K= of length e~.+l to  cover the  s t rong measure  zero 

set  X -  (Jn<~J~. 

Finally,  a word abou t  the  nonreversibi l i ty  of the  implicat ions 

X is concent ra ted  a round  a countable  set ~ X has  

s t rong measure  zero ~ X has universal  measure  zero. 

Besicovitch ([1]) p roved  t h a t  if 2 ~ =~r then  there is a s t rong measure  zero set  which 

is not  concent ra ted  a round  a n y  countable  set. B y  going th rough  his proof  or the  proof  

given b y  Dars t  in [5], i t  m a y  be seen t h a t  such a set  m a y  also be const ructed using Mar t in ' s  

axiom. 

Sierpinski ([19], [21]) p roved  t h a t  if 2s.=~r then  there  is a universal  measure  zero 

set  which does no~ have  s t rong measure  zero, b y  the  following method .  Clearly if X has 

s t rong measure  zero (respectively, is concentrated)  a n d / :  [0, 1]-~[0, 1] is cont inuous then  

][X] has  s t rong measure  zero (respectively, is concentrated) .  Sierpinski constructed,  wi th  

(1) These are the ]~IA versions of the classical definition, obtained by replacing < ~z by < 2s0 at 
the relevant place in the definition of concentrated. 
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CH, an X of universal measure zero and a continuous ~ such tha t  ][X] does not have 

universal measure zero. Darst  ([7]) found such a construction where the / is also of bounded 

variation. These results also hold under the assumption of Martin's axiom. 

w 
The letter ~ varies over countable transitive models of ZFC. Unless otherwise stated, 

in a s ta tement  about  forcing the ground model is denoted by  7~/. The method for getting 

an extension in which all strong measure zero sets are countable is as follows. A partial  

ordering ff is chosen such tha t  adding a [/-generic set G~ is the same as adding a certain 

real number  canonically obtained from Gz. This real kills all the ground model 's uncountable 

strong measure zero sets (for each uncountable X_~ [0, 1], X E ~ ,  there is a tail end of 

the real which codes up a sequence Sn, n <r such tha t  there is no sequence I , ,  n <co, in 

~(G~] with length I n <. en, X~_ U ~<~ In). Since there are new reals in ~(G~], new uncount- 

able strong measure zero sets may  now appear; for example, ~[Gz] ,  will be a model of 2 ~~ = ~r 

if ~ is. So we will do an i terated forcing construction, successively adding if-generic reals 

eo~ times. In  the original i terated forcing argument  of Solovay and Termenbaum ([25]), a 

condition gave information about  finitely many  of the generic sets occurring in the steps 

of the iteration. Since then, Jensen (see [7]) and Silver (see [14]) have used i terated forcing 

arguments with conditions not subject to the finiteness restriction. The conditions we 

will work with give information about  countably many  of the generic sets occurring in the 

steps of the iteration. 

As Solovay and Tennenbaum say in [25] about the procedure for proving the con- 

sisteney of Souslin's hypothesis, "Once a Souslin tree is killed, i t  s tays dead." Strong 

measure zero sets are different; after an uncountable strong measure zero set has been 

killed, i t  is possible to bring it back to life by  a further Cohen extension--for  example, 

adding a Cohen real ([3]) to a model ~ forces all sets of reals in ~ to have strong measure 

zero in the extension.(1) When we iteratively add [/-reals, however, it turns out tha t  once 

a strong measure zero set is killed, it stays dead. 

For s, t E (co)< ~, let s <~t(s <t) mean tha t  s is an initial segment (proper initial segment) 

of t. The partial ordering I/will  consist of certain subtrees of (o~)<~; T_~ (co) <~ will be a mem- 

ber of [ / if  and only if Yt E T Ys ~< t s E T, and there exists a member  of T, called st, such tha t  

(i) V s E T  s ~ s r  or sr<~,  and 

(ii) V s E T  if ST <~S then Card(n: s~nET)=Ir 

(1) Thus Cohen reals and [/-generic reals  are  a t  opposite ends of the spectrum from this point of 
view. In  b e t w e e n  are  S a c k s  reals  and Solovay reals; upon forcing with one of these reals, a ground model 
set will have strong measure zero in the extension if and only if it  had  strong measure zero in the ground 
model. [/-generic reals have the closest similarity in this context with M a t h i a s  reals  ([13])--see below. 
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Order ff by  S ~ T (T extends S) i]] T_~ S. A generic set G~_~ ff canonically creates a generic 

real g~: co-+co, namely g~ = 13 r~%ST. A standard genericity argument  shows that  ~[Gz]  = 

~[g~]. 

Notation: o is (co) <~, the least element of ft. For TEff ,  sET ,  T~={tET:  s< t  or t~<s), 

a member  of ft. Fix an enumeration of (co) <+, Xo, Xl ..... x,, ..... (n<co), such tha t  

(a) x+<xr and (b) xi=s~'m, x+=s'-'n, and m < n ~ i < ] .  This yields, for each TE[I ,  an 

enumeration T(0>, T ( I >  ..... T(n> ... .  (n <w) of {s E T: s ~>Sr} (via the natural  isomorphism 

of tha t  set with (w)<+); we will use the notation T<0> in place of sr from now on. 

~'or S, T E ~, define 

to mean that  

(a) S~<T 

(b) S ( i )  = T( i ) ,  all i ~<n. 

S < ~ T  

The set {T<0), ..., T<n)} determines a family of n + l  subtrees of T whose union is T, 

namely, for each i<~n, the subtree Si (with S~E ff and with St <0> =T<i>) is obtained by  

taking the union of all T / s  such tha t  t is an immediate successor of T<i) in T and such tha t  

t is not a T<]) for any  ]<~n. The set {So, S 1 . . . .  , S~} will be referred to as the set of com- 

ponents of T at stage n; note tha t  they form a maximal  set of incompatibles extending T. 

LWMMA 1. Let m<co and T~Eff ( m ~ i < ~ o )  satis/y T~<~T~+I. Let T w=  

U~<~(T~<0>, T~<I), ..,, T~<i>} U(s; s~Tm<0> }. Then T~ is the unique TE f f such  that 

u T~>~T. 

Proo/. Clear. 

L E ~ M A 2. Suppose T E ~, k < w and cp~, n <~ k are sentences o/the [oreing language such 

that T H- '~n<kq~. Then ]or each i<eo there is a T' with T<~T'  and an I~_ (0, 1, ..., k) o/ 

power <~i + 1 such that T' H- 'O~/nexcf~. 

Proo/. In  the case i =0  this says tha t  if T ~ k~6'n<k~ then for some T '  with T < ~  

3nT'  H-cfn. We fh'st prove this fact. Suppose it were false. We will construct an S E ~ with 

T ~ ~ such tha t  for each s E S 

~ 3 T ' 3 n T s < O T  ' and T'H-~%. (1) 

This will be a contradiction since T ~< S and S could not be extended to force any ~ .  

By the assumption, we may  begin by  put t ing each t ~<T(0) into S. Having put  t ES 
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with t ~> T<0> we then pu t  a sequence s, with s 6 T and s of the form t'-'m, into S if and only if 

(1) holds. The inductive construct ion of S will be done if there are always infinitely m a n y  

such s's. I f  t ha t  failed for t, then there would be an infinite A _ceo with m 6 A  ~V"m6 T, 

and an n ~< k and trees T m, m 6 A, with T m <~ o T n  n and T ~ H- ~=. Bu t  then T t -4< 0 [3 m eAT m 

and [3 meAT m H-~n, contradict ing t6S .  

This proves the case i = 0 of the lemma. The case i > 0 follows b y  applying the  0 case 

to each of the stage i components  of T. 

LEMMA 3. Suppose T61, T H-d67It Then there is a countable A in ~l~ and a T '  with 

T <<. o T'  such that T'  H- d 6 A.  

Proo/. I f  not,  then we m a y  construct,  similarly to  the case i = 0 of L e m m a  2, an S with 

T<~~ such tha t  for each s6S ,  

~ 3 T ' 3 A  A 6 ~ ,  A countable in ~ ,  T~<~ ~ T'  H-dEA. (2) 

(for the induct ion use tha t  if (2) holds for s E T with s ~ T<0>, then  it mus t  hold for infinitely 

m a n y  immediate  successors of s in T). But  S could not  be extended to  force d =a, for any  

a 6 ~ ,  a contradiction. 

LEMMA 4. Suppose TE ff, T H-~4 is a countable subset o / ~ .  Then/or  each n <eo there 

is a countable A in ~ l  and a T'  with T <<.nT' such that T' H- ~4 g A.  

Proo/. Case n = 0 .  Le t  .4 ={do, d 1 .. . . .  vi i . . . .  }. Construct  T '  by  an  appropriate  r stage 

fusion argument ,  arranging at  step i, by  apphcat ions of Lemma 3, t h a t  the possible values 

of d~ will be countably  bounded by  T'.  

For  the case n > 0, apply  the case n = 0 of the lemma to each of the stage n components  

of T. 

Thus  ~ preserves cofinalities (over a ground model of 2 s~ = ~1). 

The ordering ~)~: for i terat ively adding co2 if-generic reals is defined as follows. We 

induct ively define ~ ,  for 1 ~< ~<co~ (ordered by  ~<~, with least element %, and  forcing 

relation $ a) where p 6 ~a  ~ p  is a funct ion whose domain is ~, and where G~ is a name for 

the generic set over ~ : ,  by:  

(i) ~1 (isomorphic to if) is the set of all functions p: 1-~ i ,  where p ~< 1 q iff p(0) ~< q(0). 

(ii) ~ + ~  = O ~  i ~EG~1 = {P: d o m p  = zr + 1, T ['~ 6 O~, and p(~) is a canonical te rm in the  

forcing language of p~ for a member  of ff in 7tl[G~]}, ordered by  

p<~+lq i f f  p['ac<~q['~ and q['~ H-~p(o~)<~q(~). 
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(iii) For g a hmit ordinal, ~ is the set of all p with dom p = ~ such that  

(a) if 1 <~  < ~ then p ~fl E ~p, and 

(b) for all but  countably many fl with 1 < f l<g ,  ~-~p(fl) =0.(1) 

The subscripts in <~, 0a, and ~c a will be dropped when context permits. 

If  1 < a < f l ,  ~ is the set of all functions / with domain [a, fl) such that  o~ U/E ~)p. 

Order O~P in ~[G~] by 

l<g 3pea  put<pug. 

Standard facts about i terated forcing yield the following things. If ~ <15 then ~)~ is canoni- 

eany embedded in p~0 and Ga = {Io ~'a: p e Gp). 7~I[GD] = ~[Ga] [G:Z], where GaD is ~[G~]- 

generic over OdD. 

Write ~% G a for ~ ,  G ~ .  We will show later tha t  in ~[G~], forcing with ~)~ is 

equivalent to forcing with (~ , )~a~l .  

If  pC 0~ o r p e  0~P, let support p be the countable set in ~ ,  ( f lEdomp: ~p( f l )=0} .  

Suppose 1 <fl <co2,/V is a finite subset of fl, and n <e0. Then define, for p, q E ~)a, 

p<-..~q 

to mean that  

(a) p < q 

(b) for all a E F  q[ 'a ~p(a )~ 'q (a ) .  

Fusion arguments will he done in accord with the following lemma. 

L~MMA 5. Suppose Pn: n <eo are members o/ ~p, and Fn: n <w is an increasing chain 

o//inite sets such that U n<o, Fn = [.Jn<o, support Pn, and/or each n, Pn <~pn+l. Then there is 
.<n a (unique up to equivalence in the ordering on ~)~) Pw e ~)p such that/or each n <09, Pn-~F, p~. 

Proo/. For a <fl, define p~(a) to be a term in the language of ~ representing the down- 

wards closure of the set of all p=(~)<i>'s such that  a E F= and i ~< n. We show by induction 

on 7, 1 <7  <fl, that  

and that  for each n, 
~ n  

(1) This clause, when stated in the Boolema algebraic terminology of [25], becomes: B2 is the direct 
limit of (B#:/ff <2) when c](2) >co, and is the inverse limit of (BD: fl <2) when c/(2) =e9. 
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(a) ~ = 1. This case follows from Lemma 1. 

(b) 7 = ~ §  1 ~<(~. Then for all n, pn['c~<p~['~ by induction; thus p~['c~ forces tha t  the 

term p~(c~) stands for the element of ff constructed from (p~(c~): ~ e F~) in the manner of 

Lemma 1. I t  follows that  for all n, Pn 1"~ § 1 ~ ~.~(~+l)P~ ~'~ § 1, as desired. 

(c) ? a limit ordinal. This case follows from the induction hypothesis. 

An important  difference between iterated forcing and side by side forcing is the follow- 

ing. Suppose 1 ~< ~ </?, q' e ~)~, and Q is a maYimal antichain of {q e ~)~: q compatible with q'}. 

Suppose that  for each qeQ, pq is a condition in ~0p satisfying pql'o~=q. Then there is a 

p e e p  which is the disjunction (greatest lower bound) of {pq: qeQ}. Namely, pr 'a=q ' ,  

and for ~ with a~<7 <fl, P(7) is a term corresponding to the conjunction of the implications 

q ~Pq(7) for q eQ. If  p '  e Oz and p '  ~< ~ pq, all q e Q, then P'  ~< ~ P. 

Suppose p e P p ,  {r ,  r~, ..., r,} _ ~ ,  and n<eo and 2,_~fl are fixed by context with 

F = {al, a2 ..... a,}, al < a2 <..- < a,. Then define pr ...... r~, a member of OD extending p, to 

be equal to p on coordinates not in F,  and to satisfy, for 1 ~<s ~<i, 

p* ...... **(a~) is the r~ t~ stage n component of p(a~). 

For n <co, the set of all pr ...... Ws with each r, ~<n is a maximal antichain above p. Namely, 

if p ~<Pl, then there are numbers r~, ..., r, and a P2 >~P~ such that  for each ] 4 i, 

T~ ~ H- length p2(aj)(0) > n + length p(aj)(0) and p2(~j)(0) belongs to the rjth stage n com- 

ponent ofp(af). 

Then p ,  extends pr ...... r, 

Suppose p e p p ,  ~ = { ~ 1  . . . . .  ~t}, a l < ' " < ~ f < : f l ,  and n<w.  Suppose q e p ~  satisfies 

p ........ ~ ~< ~ q (where each r~ < n and pr .. . . .  r~ is taken with respect to 2' and n). Then the 

~malgamation of p and q is a p '  ~ Oz such that  

n 

q < o(p,y ....... , 

defined as follows. Suppose ~ < fl and :p' ['~ has been defined. 

(a) ~=a~. Let  
p'(~) = ( p ( a ) - ( ~ ( ~ ) ) ' 0  ~ q(~). 

(we may assume without loss of generality tha t  the term q(~) is such tha tp  1" ~ ~ (p(~))r~ 4 q(~)). 

(b) aC~F. If a < ~ ,  let p'(o~)=q(o~). If  a > ~ ,  let g~ be the maximum element of 2, 

less than a, and let p'(~) be the conjunction of 

(p'F'a) ~ . . . . . .  ~ " ~ q ( a ) ,  

and -7 (p'~'~) . . . . . . . . .  ~ p(g). 

I t  is seen that  p '  satisfies the two properties above. 
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LEMMA 6. Let 1 <~fl<~eo~, p E  0~, and let F = ( a ~ ,  ~ . . . .  , ~ }  be a finite subset o//3 with 

~ z < ~ < . . .  <a~. Let n <~o. Then  

(i) l /  Ic < o  and p ~- W ~<k q~j, then there is an I ~ { 0 ,  1 . . . .  ,/c} with C a r d / - ~ < ( n + l )  t 

and a p '  such that 3o <~ ~ p '  and 1o' H- "~/j~i q~. 

(ii) I / p  H- d E 7~I then there is a countable A in ~ and a p ' with p <~ ~. p ' such that p ' ~- d E A . 

(iii) 11/p ~-A is a countable subset o / ~  then there is a countable A in ~ and a p '  with 

p <~ ~.p' such that p" ~-A ~_A. 

(iv) 1]/3 <(~ <~e% and p H- f E  ~fl~ then there is an / E ~Z~ and a p '  with p <<. ~ p '  such that 

~' ~/=_/. 

Proo/. B y  induct ion on/3, 

(i) (a). /3 = 1. This is L e m m a  2. 

(i)(b). f l = ( ~ + l ,  a~>l.  ~ = ~  m a y  be assumed.  Let  ~k be a t e rm  for the  /r s tage n 

componen t  of p(g), each/~<~n. Since L e m m a  2 holds in ~ [G~] ,  there  is a t e rm  ~k' for  each 

/c ~< n such t h a t  

lot-o- H-(~k < o ~  and 3j ~ H-~o ). 

B y  the  induct ion hypothesis  we m a y  choose 

and  sets 

~O~'O" n n n F,~q0 ~< ~n~--. ~< Fnoqn 

Io, I 1 .. . . .  I,~ 

such t h a t  for k -~<n, Card I k = (n + 1) ~-1 and  

J ~ I k  

Let  ~t' be a t e rm s tanding for the  union of the  Sk s, I = [.J k< ~ Ik. Let  

p, = q . ~ ( S , )  

p ~< ~ p '  and  p '  H- xX/j~I ~j, as desired. 

(i) (c)/3 a l imit  ordinal. L e t f  be a term,  in the  language of 0~+1, for a m e m b e r  of 0 ~+1' ~ 

such t h a t  p [ ' ~  + 1 forces 
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Applying part  (iv) of the lemma to :r get a q with p~'~+l~<~ q a n d a n / E  ~)~+~'n such 

tha t  q 5 f - / .  Then find, by  the induction hypothesis, a q' with q < ~ q' and an I_~ {0, 1 .... , k) 

with Card I < (n + 1) ~ such tha t  

Take 

p '  has the required properties. 

(ii) (a). fl = 1. This is Lemma 3. 

q' H-3jEI / tb~s. 

p' =q'U/. 

(ii)(b). f l = a + l ,  a~>l. Since Lemma 3 holds in ~[G~] there are terms ~" and A in 

the language of ~ ,  standing for a member  of (~)~,[o~] and a countable subset of 

lying in ~[G~],  such tha t  p ['a forces tha t  p(a)~n~,  and tha t  ~" ~ d E A .  Applying par t  (iii) 

of the lemma to a, get a q E ~)r with p ~ ~ ~ n~ q, and a countable set A in ~ such tha t  

q H-A~_A. 

Then 

is as desired. 

(ii) (c). fl a limit ordinal. Using (iv) at ~i+1 as in case (i) (e), find a to rmA in the language 

of 0~+1 standing for a countable subset of ~ i  lying in ~[G~+I] ,  and a q with p ~< ~ q 

such tha t  

a H-a~A. 

Now use (iii) at  ~i + 1 to get a p'  with q ~< ~ p '  and a countable A in ~ with 

p'  H-A~_A. 

p '  is as desired. 

(iii) Let .4 ={all, d2, ..., d,~ . . . .  }. p '  will be constructed by  a fusion argument.  Namely, 

s tart  with p =Po =Pl  . . . . .  p , ,  F = F o = F 1 . . . . .  Fn, and build up sequences Pn+l, Pn+s .. . .  

and F~+I, Fn+ 2 . . . .  and A 1, A s ... .  such tha t  

(a) Vi ~<~ 

(b) Vi F~___ Fi+l, and [J t<~2'i = (J i<~ support p~ 

(c) V i > 0  At is a countable set in ~ / a n d  pi+n H-diEA t. 

To go from i to i + 1 satisfying (a) and (e), use (ii). The fact tha t  the s u p p o r t p / s  may  

increase is handled by  choosing the F / s  as the construction proceeds, by  a bookkeeping 

method, in such a way as to make (b) hold. Set p'  =p~,, the condition given by  Lemma 5, 

and let A = U t <~ A ~. Then p '  and A satisfy ~he requirement of (iii). 
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(iv) By (iii), there is a 1O' and a countable A _  [fl, 8) in ~ such that/9 < ~1O' and 

1O' ~- support ] _  A. 

If  7~[fl, ~) - A ,  let/(7) be a term in the language of ~)~ for the 0 element of (ff)~t%~. If  

7 ~A, let 1@) be a term in the language of ~ r  such that  ~f(7) = 1(7). Then / ~ p ~  and 

p' 

as required. 

This completes the proof of Lemma 6. 

Lemma 6 (iii) implies 

L ~ M ~ A  7. 2"or each ~<ro~, to 1 is loreserved in passage to ~[G~]. 

For the rest of the proof ~ is assumed to be a model of 2 s0 = ~r 

To show that  for 1 ~fl ~<eo 2, ~)p has the ~% chain condition, we will define, for 1 ~<fl ~<w2, 

a ~p___ ~)p with Card(Wp/=- )=~1, and show ~/9 D cofinal in ~p. 

(i) ~ 1  = Pl" 

(if) l%r fl ~> 1, ~ + 1  is the set of all 1O E ~9p+1 such that  1O ['fl E~/gp and statements of the 

form s =1o(fl)<i> are decided by countable antiehains ~ ~/9p (that is, forp  q Pp+I, a function 

hB: (o~)<~ • w-+ {antichains ___ {q E PB: q compatible with p ['fl)} may be associated with 

p(fl) in such a way that  

H-3TE(ff)~taplViT<i> is the unique s with hp(s, i)EGp; 

(for 1O E PZ+I with 1oI'fl~ig~, p~:llY~+~ if there is a function h~ as above whose values 

arc countable subsets of ~/9~). 

(iii) For fl a limit ordinal, ~ is the set of all 1O ~ P~ such that  if 1 ~< ~ <fl, 1O 1"~ ~ ~ -  

L ~  8. I/1O~, n <eo, is a sequence o/members o] ~19 ~, and 2"~, n <w, is an increasing 

sequence of ]inite subsets o] fl with U =<~ 2"n = U =<~ support g~n, and for each n, 1O~ ~ ~ 1O~ +~ 

then the/usion Po~ o/ the 1on's, given by Lemma 5, is in ~1~ ~. 

Proo/. p~(~)(i> =p~(~)(i> for some/all n >~i with a E 2,.. The result follows. 

L r M ~  9. 1 / p  E ~)p, n <09, 2' a finite subset o/f l ,  then there is a p '  fi 2l~ p with p ~ ~ p ' .  

Proo/. By induction on fl 

(a) f l = l .  Take 1o' =2o. 

(b) f l = a + l ,  a>~l. By induction, pick poE~/9r with 1o['a<<.~a,po. We will construct 

members 1Oo, Pl . . . . .  1O~ . . . .  (i <co) of ~)~ and an increasing sequence 2"0, 2"1 ..... 2"~ ... .  of finite 

subsets of a, with 2"o = 2"1 . . . .  = 2"= = 2" fl o, Po =IOl . . . . .  p, ,  such that  
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(i) u  pt~<~/o~+l 

(ii) U ~<oFt= U t<~ supportp~ 

(iii) letting xn, xn+l ..... xn+k . . . .  enumerate (co) <~, for each i/> n there is a finite maximal 

antichain A~ of {qE ~)~, q compatible with p~+~}, with A ~  ~ ,  such that  for 

each qEA~, q decides whether there is a k, and determines/r if there is one, such 

that  x~ =p(a)(]c~. 

Suppose d ~> n and we have constructed P0, Pl ..... p~ and 2' 0, F 1 ..... F~. Let  a -- Card 2'~, 

b=( i+ l )  a. Let  to, r I ..... r~_~ be an enumeration of all sequences of the form ( r  I ..... r~) 

where each r,n<~i. Let qo--P. We will define a sequence 

q0< ~q~ <~ ~ ... ~< ~q~, 

and members qo, q~ ..... q'~_~ of ~ .  Suppose q~ has been defined. Form the condition q~, 

taken with respect to F~ and i. By  Lemma 6(i) there is a q'~ with q[~ ~<Oq,, which decides for 

which k, if any, tha t  x~ =p(a) (k)  (to apply Lemma 6(i), use tha t  there are only finitely many 
# ~ 0  ~ /o's such that  3 T x~ = T(]c)). By  the induction hypothesis there is a q~ ~ ~ with q~ ~ ~ q~. 

Let  q~+l be the amalgamation of q~ and q~'. q~ ~< ~ q~+~. 

Let  p~+~ =q~. Let  ~'~+1--- F~ be chosen as per a bookkeeping arrangement for making 

(ii) hold. I t  is seen that  (iii) holds for P~+I, the finite antichain consisting of the q~"s of the 

construction. 

This completes the definition of the p~'s and F~'s. Let  p~ be the fusion of the p~'s. 

By the induction hypothesis, pick a / 5 ~  with T~< ~ o  ~. Let  

p '  = p~ ( p ( a ) ) .  

We have p ~< ~ p' .  1o' E ~ ,  namely, an h~ for p'((~), as in the definition of Wp, may  be formed 

by taking h,~(xt, Ic) to be the set of q~'s formed at stage i which force that  x~ =p((l)(]c). 

(c) ~ a limit ordinal. If c](~)>co the lemma is clear. Assume c](~)=m. Let 

iv0 . . . . .  ~'n = F, qo . . . . .  q~ ~ ~tqm~ vn+l 

satisfy p ~" dom qn ~< ~n qn" Having picked $'j, qj, and Fj+i, let qj+i E W ~  Fs+i satisfy 

p [ ' d o m -  .<j+i ,j+i 
~/i+l "~ Fj+ 1 

and 

q~,~ j+l do "~ FI+ 1 .eom ql ql+l ~" m q~,. 

Choose the E~'s so that  U t < ~ F ~  Ut<~ support qt and so that  U~<~F~ is cofinal in ft. 

Then, letting psE~/~p be qp<0, 0, ..., 0 . . . .  >, the pj 's form a fusion sequence. Set 
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p'  = :p~, 

the fusion of this sequence, p '  E ~/gp by Lemma 8, and p ~ ~ p'.  

This completes the proof of the lemma. 

L]~MMA 10. (i) For fl<e%, Card(7~qZ/-) =tO r 

(ii) _For fl <~r ~p has the tr chain condition. 

(iii) _For fl <~w2, eofinalities are preserved in passage from ~ to 7/~[Gz]. 

( iv)  .For  fl < (,02, ' ~ [~ ,8 ]  [- 2s~ = ~1, ] [ ~ [ ~ , ]  [- 2s'j = ~2. 

(v) I f  X is a set o/reals in 7'~'/[G~,~] o/power ~ 1 ,  then X E ~[G~] /or some o~ <co~. 

Proof. (i). By induction on ft. At fl = 1 and at fl a limit ordinal it is clear since 2 s0 = ~r 

holds in ~ .  If fl = a + 1 the term p(a) of a p E ~0p is determined up to equivalence by the 

associated function h~ in the definition of ~0~; there are only 2 s0 possible such hr 

(ii). The claim follows from Lemma 9, Lemma 10(i), and the fact that  support p is 

countable, p fi ~ .  

(hi). From Lemma 7 and Lemma 10(ii). 

(iv). Follows from Lemma 9, Lemma 10(i), and genericity. 

(v). Follows from Lemma 10(ii) and Lemma 10(iii), and the countable support 

property of the conditions. 

LEMMA 11. For fl<w2, there is an isomorphism in ~/~[Gp] between (~)B/=_) and 
(p~/--)~. 

Proof. w € .mr G 1 (Lemma 10(iii)). By the nature of the conditions, then, there is a 2 =t~2 L flJ 

canonical function 

defined in 7?/[GZ] , such that  f <~ g~H(])  <<. H(g). We need to show H is onto the equivalence 

classes of (p~)~ta~.  Let qe(~)mEG~ ~. Then by Lemma 6(fii) and genericity there is a 

p fi Gp and a countable A in ~ such that  

p $ support q _ A. 

I t  follows that  there is a n / E  pZ with support f~_A such that  in ~[Gp],  

H ( / )  - g,  

as desired. 

We will not need to distinguish between these isomorphic partial orderings below. 

In  the remainder of the proof it is shown that  ~)~, kills all uncountable strong measure 
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zero sets. Given a set X in the ground model forced by  a p E ~ to have strong measure 

zero, a sequence ~1, ~2 .... .  ~ . . . . .  will be coded from the generic function gt given by  

G~. Letting (-]1, ]~ ... . .  -]~ ... .  ) be a term for a sequence of intervals of lengths~<~, 

lying in ~ [ G ~ ] ,  the union of which covers X, and letting dn be the center of In, a p '  with 
p~<0 , {0} P ,  and finite sets of reals U~, for all nodes x of p'(0), will be chosen in ~ so tha t  

if length x= leng th  p'(0)(0) §  then no extension p" of p',  with p"(O)(O) =x,  bounds dn 

away from all the members of U~. For each ground model real v r U x Ux, a P  ~ >~:P' can be con- 

structed to force v ~ U ~<~ ]~. Such a v thus cannot be in X, so X ~  U x Ux is a countable set. 

The stipulation in this argument  tha t  X E ~ is then removed by  Lemma 10(v) and Lemma 

l l .  The reader might want to check this argument  for the case of forcing with ~)~, the 

argument  below being like tha t  case with the more general type of fusion. 

LEMMA 12. Let d be a term/or  a real in ~[G~..], pE  ~o~, F a linite subset o/~o~. Then 
~ 0  t there is a p '  with p -.~ Fu {o} P and a real u E ~ such that /or  every e > O,/or all b u t / i n i t 4 y  

many  immediate successors t o/p'(0)<0> in p'(0), 

,- l a - u l  

Proo/. Let to, tl . . . .  , t . . . . .  be the immediate successors in p(0) of p(0)<0>. 

Fix n. We define an extension of the condition 

p(o)~j~p P[], ~o2). 

Applying Lemma 6(i) in ~[G1] , there is a terra in  such tha t  

p(0)t= Sp  ~[1, w~) ~<~ and f= determines which 

of the intervals [0, 1/n), [1/n, 2/n) .. . . .  [ (n -1) /n ,  1] contains d. 

By Lemma 6(iv) there is a qn with P(0)tn ~ Oqn and an/n  E Ot such tha t  

By Lemma 6(i) there is a q~ with ~a ~<0~'~ and an In of length 1/n such tha t  

q'. ,-In ,- aeZn. 

Now pick an infinite A~eo  such that  <In: n E A )  converges to a real u. Le t  

p .  = q ' ~ / . .  

Define p" to be the disjunction of {Pn: n E A } .  u and p '  satisfy the conditions of the lemma. 
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L ~ A  13. Let d be a term [or a real in  ~[G~,], 19 E ~=~, F a finite subset of [1, to,), and 

n <co. Then there is a p" E ~)~ with p(0) --<~ 19 ~'[1, co,) ~< ~ 19' ~'[1, eoz), and a finite set 

U o] reals in ~ l  such that ]or each e > O, ]or all but finitely many  immediate successors t o/ 

~'(o)<o> in 19'(o), 
p'(0),~'19'~[1, co~) ~-~uE U I d - - u  I < e. 

Proo]. Let  Card F = i ,  b = ( n + l )  *. Let  r 0 .. . .  , rb-1 enumerate the sequences <r z .. . . .  r,> 

with each rj<~n. Let  19o=p. We will define a sequence Po,19~ . . . .  ,Pb such that  for ]<b,  

pj(0) ~< ~ j+1(0 ) and 19j ['[t, oJ~) ~< ~ 19j+1 ['[1, w~). Suppose Po, ---, Pj have been defined. Apply 

Lemma 12 to p~, getting a qj E ~ and a real uj such that  p~ ~ ~0)q~ and such that  for 

all e >0, for all but finitely many immediate successors t of qr in qr 

Let 19J+1 be the amalgamation of 19j and qj. 

Let  19' =19b, and U =  {% ... .  , u~_l}. Given e >0, it is seen that  for each immediate 

successor t of ~'(0)<0> in p'(0) such that  

tha t  

proving the lemma. 

Vj (qj(0))fqj~'[1, w~) ~- I d - u s [  < e 

(19'(0)),'~19 ' F'[1, o~) ~ 3 j l a - u j [  < 

L]~MMA 14. Let do, d 1 ..... dj, ... be terms /or reals in ~[G~=], and let p E ~ ) ~ .  Then 

there is a I9' with p<~p', p(O) ~<~ and a finite set ol reals U s for each sep'(0), p'(0)<0> 
<~s, such that/or each e >0 and each node s o[ 19'(0) with levels s =level T(0)<0> +~', ]or all but 

/initely many  immediate successors t o] s in 19'(0), 

(p'(O))t'-" p '  ['[1, co2) H-3uE U s ] d j - u ]  < e. 

Proo/. (Remark: Given zv and n, p <~ ~ yp' could also be arranged as in the previous 

lemmas.) The proof is by a fusion argument, modified (for convenience) in the first co- 

ordinate. Let  a =level p(0)<0>. Let  19o =P- We will construct 

Po, P l  . . . .  , p j  . . . .  and Fo, FI  . . . .  , $ ' j , - . .  

such that  U j<~ Fj  = U j<~ support p ~ -  {0}, p~ ~< ~Pj+z, and all nodes of p j(0) having level 

< a  + ?" belong to pj+l(0). 
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Suppose pj  has been defined. Fix a node s of level a+?" in pj(0). Apply Lemma 13 to 

the condition 

(pj(o))/'p~'EL co~) 

getting a q* and a finite set of reals Us such tha t  (pj(O)).('pj ['[1 coo < ~J u(0} qS and such tha t  

for every e >0,  for all but  finitely many  immediate successors t of s in r 

(r co~) ~ 3ufi vAa , -n l  < ~. 

Let  ~oj+ 1 be the disjunction of {r s on level a + j  of pj(0)}, ioj+1 satisfies the claimed 

properties. Let  Fj+ 1 be chosen by  the appropriate bookkeeping arrangement,  

Le t  io' be defined by: p'(0) = I'i fpj(0), p '  ~'[1, w 0 = t h e  fusion of {loj ~'[1, to~): j <to} 

(which exists under the assumption of p'(0)), p '  is as desired. 

LEMMAt 15. I] X is a set o/ reals in ~ which has strong measure zero in ~ [ G ~ ] ,  then 

X is countable. 

Proo/. Suppose p hLX has strong measure zero. Let  length p(0)<0>=n. In  ~[G1], 

let g~ be the generic function: t0-+to given by  G r Define ej for j~>n by  e j= l /g l ( j+ l  ). Let 

<I~, 1~+1 .. . .  > 

be a sequence of intervals of lengths en, en+l, . . .  such tha t  X ~  UjI~. Let aj be the center 

of I r 

Back in ~ ,  apply Lemma 14 to d~, ei~+1, ... and p, getting a 10' and sets Us, sEp'(O), 

~>p'(0)<0> (=p(o)<0>). 
We claim tha t  

x_~ U,r4, 

which will give the lemma. Suppose v is a real in ~/, v ~ U ~ Us. Then we will find a T with 

p'(0) 4 ~ T such tha t  

T ~ p '  r'[1, co~) ~ v f U j / ~ ,  

which will prove v e X .  T is defined by  induction on the nodes of p'(()); the choice of nodes 

of level j + 1 forces tha t  v $ Ij .  Suppose t on level J ~>n has been put  into T. The immediate 

successors of t in T will be all but  finitely many  of the immediate successors of t in/9'(0). 

Namely, since v ~ Ut, pick an e with 2e < I v -  u ], all u e Ut. Discard finitely m a n y  of the 

immediate successors of t so that,  letting q be the set of nodes of p'(0) comparable with any  

of the remaining immediate successors of t, 

qr'~'~'[l, c%) ~-3ue U, lC  -ul < e 

11 --762901 Acta mathematica 137. Imprim6 18 20 Janvi~r 1977 
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Choose k such that  1/k < ~; discard in addition all immediate successors of t whose value at 

?" is less than k. Doing this at each t of level ?" gives the induction step. The tree T is as 

desired, giving the lemma. 

To prove the theorem, it suffices to show that  if X is a set of reals in ~[G~,] of power 

tr then X does not have strong measure zero. By Lemma 10(v), X 6 ~[GB] for some fl <0) 2. 

If  X had strong measure zero, we could, in view of Lemma 10 (iv) and Lemma 11, apply 

Lemma 15 with )*t/[Gp] taken as ground model, concluding that  X is countable. 

This completes the proof. 

We mention an alternative to using P-generic reals in the proof. The forcing conditions 

for adding a Mathias real ([13]) to a ground model of ZFC are defined as follows. A condition 

is a function / whose domain is an infinite, eoinfinite subset of m, whose range g {0, 1}, 

with/-1{0} finite. The conditions are ordered by function extension. Some time ago, R. 

Solovay informed the author that  he and R. Jensen had proved that  adding one Mathias 

real kills the uncountable strong measure zero sets in the ground model. I recently proved 

that  iteratively adding 0)2 Mathias reals (taking countable supports as in the above proof) 

to a ground model of 2 s0 =to I gives a model of Borel's conjecture. 

Let 7 /be  a countable transitive model of ZFC. For which cardinals ~, i , / z  in ~ is 

there a cofinality preserving Cohen extension of 7/in which ~ is the least cardinal such that  

there are no strong measure zero sets of that  power, ~ is the least cardinal such that  there 

are no universal measure zero sets of that  power, and 2 ~, =/z? 
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