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Introduction 

This paper is mainly concerned with the classification of groups and the independence 

of laws in varieties of groups. However, the basic ideas go over to other varieties in the 

sense of universal algebra, especially varieties of associative and Lie algebras. We also deal 

with various problems outlined below whose proper context is the theory of triple homology. 

I n  view of the somewhat unusual mixture of disciplines, we have been at pains to make as 

few demands on the reader as possible; in particular, for most of the paper, we do not 

assume any knowledge of homology. 

Central to the whole paper  are the groups ~M(G) and ~P(G), defined in w 1.1 for any  

var ie ty  of groups !~ and any  group G. These are the Baer-invariants; the first modern 

t rea tment  is due to FrShlich [10], who considered associative algebras, and named the 

invariants after Baer 's  group-theoretical papers [2]. Further  work on the Baer-invariants 

of associative algebras appears in Lue [26] and [27]. For a recent discussion tha t  reverts 

to group theory and is more in the spirit of Baer 's  paper, see J .  L. MacDonald [28]. The 

group ~M(G) is always abelian, and is the Schur multiplier of G if ~ is the var ie ty  of 

abehan groups; ~P(G) is a central extension of ~M(G) by  the verbal subgroup of G, and so 

coincides with ~M(G) if G E !~. In  w 1.2 we consider the classification of groups into ~ -  

isologism classes after P. Hall. The larger the var iety ~ the cruder the classification, all 

groups in ~ falhng into the same class. The problem of constructing the groups in an 

isologism class is postponed to w 11.3, and the reader who wishes to get to this quickly 

should skip w167 1.3-4. In  w 1.3 we show how a slightly stronger property than  independence 

of the laws of a var iety !8 can be dealt with in terms of ~P(G) for suitable G, and we 

calculate ~P(G) in certain cases. In  w 1.4 the non-finitely based var ie ty  of Vaughan-Lee's  

in [38] is used to construct non-finitely generated groups ~P(G). The calculations are 

rather  involved, and the results are not used except to construct a counter-example in 

w 11.4. 

I f  G is a group in the var iety ~ ,  and A and B are left and right ~G-modules respectively, 

where ~ G  is a certain quotient ring of ZG, various well known theories, which here coincide, 
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define homology and eohomology groups !~n(G , A) and ~n(G, B) for all n~>0. w I L l  gives 

a summary of tile results on varietal homology tha t  are needed in the sequel. In  w II.2 

an interpretation of ~2(G, B) is given after Gerstenhaber [11], and in w II.3 this is used to 

construct an exact sequence, c.f. Lue [27]. If !~ is the variety of abelian groups, the minimal 

(or stem) groups in a ~-isologism (or isoelinism) class may be constructed by using Schur's 

theory of covering groups. w II.3 ends by using the above exact sequence to give a quantative 

account of the failure of the theory of covering groups for an arbitrary variety, and gives 

a theoretical procedure for constructing the groups in a ~-isologism class. The recursive 

procedure given in Evens [40] for constructing all finite p-groups is obtained by a suitable 

choice of ~.  The reader who is not interested in homology may take the interpretation of 

~I(G,/~) in w I L l  (ix), and of ~ ( G ,  B) in w II.2, as definitions, and read w II.3 without 

further reference to w167 II.1-2. 

In w II.4, various results of purely homological interest are given. A simple formula for 

~ ( G ,  A) and ~2(G, B) in terms of ~M(G) is given which is valid if ~ is 'big enough'. 

Thus a variety constructed in w 1.4 gives rise to a finite abelian group whose second integral 

homology and cohomology groups are not finitely generated. On a more theoretical level 

we call a variety ~ balanced if ~n(G, A) =0 whenever A is a projective !~G-module and 

n > 0 .  This is equivalent to the condition that  the groups ~n(G, A) and ~ ( G ,  B), which 

are defined by fixing the module and varying the group, agree with the appropriate Tor 

and Ext  defined by fixing the group and varying the module. The variety of all groups is 

known to be balanced, and here the Tor and Ext  give rise, after a dimension shift, to the 

classical (co-)homology of groups. General theory also shows that  abelian varieties, and 

varieties whose finitely generated groups are splitting groups (i.e. projectives relative to 

the surjections in the variety), are balanced. We conjecture that  this exhausts the class 

of balanced varieties of groups, and produce evidence to support the conjecture. Finally, 

a characterization of Schur.Baer varieties, as defined by P. Hall, (see the end of w 1.1), 

is given in terms of the exponents of (co-)homology groups. 

Our thanks are due to Grace 0rzeeh whose help with varietal obstruction was crucial 

to the early stages of the work, and to T. C. Hurley for showing us how to calculate the 

pandects of the polynilpotent varieties. We also had helpful conversations with A. S.-T. 

Lue, Peter M. Neumann, G. S. Rinehart  and g. C. Wilson. 

Preliminaries 

Our notation is based on that  of Hanna l~eumann [30]. A variety is a class of groups 

closed under the formation of subgroups, quotient groups and Cartesian products. Xoo 

denotes the group freely generated by {x 1, x 2, ,..}. If  !~ is a variety, V(X~) denotes the 
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intersection of the kernels of all homomorphisms of Xoo into all groups in ~ .  I t  turns out 

tha t  G fi !~ if and only if V(X~) is in the kernel of every homomorphism of Xoo into G. 

Also, a subgroup of Xoo is of the form V(Xoo) for some variety ~ if and only if it is a fully 

invariant  subgroup. Thus ~--~V(Xoo) is an order reversing bijection between the set of 

varieties and the set of fully invariant  subgroups of Xo0. I f  G is any  group, V(G) denotes 

the union of all images of V(Xoo) under all homomorphisms of Xoo into G. I t  is clear tha t  

V(G), the ~-verbal subgroup o/G, is a fully invariant  subgroup, and tha t  G E ~ if and only 

if V(G)=I. I f  n~>l, the subgroup of X ~  generated by  (Xl, ..., x~) is denoted byX=;  any  

element of X ~  is a word, and an element of Xn is an n-letter word. Any element of V(X~) 

is a law of ~ ,  and a law which is also an n-letter word is an n-letter law of ~ .  

I f  v is an n-letter word, and G (=) denotes the Cartesian product of n copies of G, v 

defines, in a natural  way, a map, also denoted b y  v, from G (n) to V(G). The largest normal 

subgroup/V of G such tha t  v factors through the natural  map G (~)-~ (G/N) (n) is denoted by  

v*(G). Other descriptions of v*(G) appear  a t  the beginning of w 1.1. The intersection of the 

subgroups v*(G) for all laws v of ~ is the ~-marginal subgroup V*(G) of G, and G/V*(G) 

is the marginal/actor o/ G. 

I f  vEX~ and O_~X~, v is a consequence of D, or ~ implies v, if v is a law of every var ie ty  

for which ~) is a set of laws. This is equivalent to the condition tha t  v be in the least fully 

invariant  subgroup of X ~  containing ~. I f  this is not the case there is a group G such tha t  

is a set of laws of G (that is, if w E D then w is in the kernel of every homomorphism of 

Xo0 into G), but  v is not a law of G. Then G is said to di/]erentiate v ]rom ~. I f  ~__ V(Xoo), 

and every law of ~ is a consequence of ~, ~ is a de/ining set o~ laws o / ~ ,  or ~) de/ines ~. 

A set of groups generates the least var iety containing it (such a var iety always exists); 

the var ie ty  generated by  the group G is denoted by  var  (G). 

A ~-spli~tting group is a group G E !~ tha t  is projective relative to the class of surjections 

in ~ .  Equivalently, every extension I~K--*E~G--->I with E in ~ splits. For example, a 

~-free group of rank a (that is a group isomorphic to F /V(F)  where /v  is free of rank a) 

is a ~-spli t t ing group for any  cardinal a. 

The var iety whose groups are all trivial will be denoted by  ~, the var iety of all groups 

by  ~ ,  the var ie ty  of all abelian groups by  9~, the var iety of all abelian groups of exponent 

n by  ?/n, the var iety of all nflpotent groups of class at  most  c by  ~ ,  and the var iety of all 

soluble groups of length at  most  1 by  ~z. The set of all varieties forms a complete lattice 

under V and A, loin and (set theoretic) intersection respectively. Also, if 1I and ~ are 

varieties one m a y  form the product 11 ~ ,  namely the class of all groups G such tha t  V(G) E 11. 

Multiplication of varieties is associative, and so the usual convention for exponentiation 

m a y  be used, and ~z=9~ z. For gl, g~EG, [gl, g~] denotes g~lg~g~g~; and for subgroups 
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H, K of G, [H, K] denotes the subgroup generated by  {[h,/el: hEH, leEK}. Commutators  

will be writ ten with the left-normed convention, tha t  is [xl, x~, ..., x~] denotes [[... [[[xl, 

x~], x3], x4] . . . .  ], xn]. I f  1I and !~ are varieties, [1I, ~ ]  denotes the var ie ty  of all groups G 

such tha t  [U(G), V(G)] = 1. Thus, [!~, ~] is the var ie ty  ' cen t re -by-~ '  of all groups G in 

which V(G) is central, and, in particular, ~c can be defined inductively by  ~ 0 = ~  and 

~c = [~c-1, ~]. I f  G is any group 7c(G) denotes the c-th term of the lower central series of G 

and Pc(G) the c-th term of the upper central series of G, so tha t  71(G) = G, 7~(G) = G' and 

$1(G) = ~(G), the centre of G. Thus if !~ = ~c, V(G) =7c+1(G) and, as is easy to prove, V*(G) = 

~JG). 

I f  G acts on a group K as a group of automorphisms in a given way K is a G-group 

(or a G-module if K is abelian) and G[K denotes the split extension of K by  G, given by  

G[K= {Elk: EEG, leEK} with multiplication (gl[kl)(g.z[Ic~)=glg~L~l 3- Usually G and K 

will be regarded as subgroups of G[K in the obvious way, so tha t  g[/c is written as gk; 

however, in the case when K <1 G, and so K is a G-group under the action of G by  conjugation 

(that is, /cg=g -1 /cg), every element of K is also an element of G, and the more precise 

notat ion will be needed. 

The cyclic group of order n generated by a is denoted by  C~(a) in multiplicative notation 

and by  Z~(a) in additive notation. I f  M is a monoid, ZM denotes the corresponding integral 

monoid ring, and Z~M the monoid ring with coefficients in the ring of integers mod n. 

The augmentat ion ideal I M  is the kernel of the ring homomorphism from ZM to Z (or 

Z~M to Z~) tha t  maps each element of M to 1. 

I f  ~:  E,~G, i= l ,  2 are surjections, the ]ibreproduct, E~ ~ E~ is the subgroup {(e~, %): 
B 

el ~1 = e~ ~2} of E 1 x E 2. Similarly if t~: B-~ ~(E~), i = 1, 2, are injections, E 1 x E= denotes the 

quotient group of E 1 x E~. obtained by  amalgamating the images of B; tha t  is, (E~ x Ee)/N 

where/Y is the normal subgroup {(bh, -bt~): b E B}. (Abelian groups will often be writ ten 

addit ively in a context  in which multiplicative notat ion is more common to avoid violating 

homological conventions.) Let  E t be an extension of K~ by G giving rise to an exact sequence 

I~Kt--->E~->G--->I, and let t~: B ~ ( K ~ )  be an injection whose image is a normal subgroup 

of K~, for i = 1, 2. The B becomes an Ei-module by  conjugation, centralized by  Kt, and 

hence a G-module. Suppose tha t  the same G-module structure is induced on B in either 

case. Then {(bh, -bt2):  b ~ B} is a normal subgroup of E~ x E~, and the resulting quotient 
B 

group is denoted by  E~ x E~. Note tha t  E t  x E~ and Ex x E= have natural  surjections onto 

B 
G, and tha t  B has a natural  injection into E~ x E~ and E~ x E=. I f  K~ = B and t~istheidenti ty 

for i = 1 ,  2, this gives rise to an extension 1-->B-+E~ x E~-+G->I, the classical Baer sum 

of the given extensions. 
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If  ~ is a variety and G 1, G 2 E ~,  the verbal product of G 1 and Gz is the group G obtained 

by  taking the free product G 1 ~- G 2 and dividing out V(G 1 ~e G2). There are natural  embeddings 

of G1 and G 2 in G; and G has the property tha t  given homomorphisms gt: G~-+H, H E ~ ,  

i = 1 ,  2, there exists a unique homomorphism ~: G ~ H  which agrees with ~ on G~, i = 1 ,  2. 

CHAPTER I 

Group theory 
w Basic Concepts 

We star t  with a discussion of the basic properties of marginal subgroups, as introduced 

by  P. Hall  in [15]. This leads to a new construction of a var iety from given varieties 1I and !~, 

namely the var iety of all groups G such tha t  U(G)c_ V*(G). The Baer-invariants are then 

defined, as in FrShlich [10], and their  basic properties are discussed. We have regretfully 

abandoned FrShlich's notat ion as it  clashes occasionally with group-theoretic practice. 

LEMMA 1.1. I / G  is a group, v is an s-letter word, and ~ is a variety, then 

(i) v*(G)={gEG: v(al, ..., a~_ l, ai g, a ~ + l  . . . . .  as )  =v(a 1 . . . .  a~) /or all i and all a I . . . . .  

as e G) 
= {gEG:  v ( a  1 . . . .  , a~_  1, g a s ,  a~+l . . . .  , a s )  = v ( a  1 . . . .  , as )  

/or all i and all al, ..., as E G}. 

(ii) I/O: G ~  H is a sur]ection, then v*(G)Og v*(H). It/oUows that V*(G) is a characteristic 

subgroup of G. 

(iii) I / v  is a consequence o/the set o/words Iv, then 

17 w*(G)~ v*(G); and, in particular, i / I v  de/ines ~ then 
we~J 

N w*(~) = v*(~). 
WEIO 

(iv) The/ollowing are equivalent: G E ~ ;  V(G) = 1; V*(G) = G. 

Proo/. Straightforward. 

Examples. 1. I f  ~ = ~ ,  V*(G)=~(G); more generally, if ~ = ~ c ,  V*(G)=~c(G). (See P. 

Hall [15].) 

2. I f  !~ =Pdm, V*(G) is the set of elements in $(G) of order dividing m. 

I f  hr<~ G and ~ is a variety, define [NV*G] to be the subgroup of G generated by  

{v(gl . . . .  , g~-l, gin, g~+l ..... , gs)(v(gl ..... gs)) -1: 

1 ~< i ~< s < ~ ,  v e V(Xs), gl, ..., g~ e G, n e N}. 

I f  E--I-+N~G--*G/2r [NV*G] corresponds to VI(E) in the notation of [10]. 

Our notation is mot ivated by  example 1 below. 
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P R O P O S I T I O N  1.2.  I/  iV <~ G and ~ is a variety, then 

(i) [NV*G] is the least normal subgroup T of G, contained inN ,  such that l~ / T ~_ V * ( G / T ) ; 

(ii) [NV*G] is the largest normal subgroup T of G such that/or every homomorphism 

O: G-+H with .~0~_ V*(H), T~_ ker O; 

(iii) I / N  is fully invariant subgroup o/G, then so is [NV*G]. 

Proof. Easy. 

PROPOSI~O~ 1.3. I f  -N <~ G and ~,  ~ are varieties such that ~ _  [ ~ ,  ~], then 

(i) iv n v(G)_~ [NV*G] _ IN, W(G)]; 

(ii) [V*(~), W(a)]=l .  

Proof. (See P. Hall [15]). 

(i) Clearly h r ~ V(G)~_ [NV*G]. If  wE W(Xt) is a law of ~ ,  then [w, xt+l] is a law of ~,  

and hence [NV*G] contains [w(gl . . . .  , gt), n] for all gl . . . .  , gtEG, nelV. 

(ii) This follows from (i), since if N =  V*(G), [NV*G] = 1. 

Examples. 1. If ~ =?I, [iVV*G] =[hr, G]. More generally, if ~ = ~ c ,  [NV*G] =[N,  G ... .  , 

G], with c repetitions of G. 

2. If ~ =9~m, [_NV*G] is generated by [N, G] O(nm: nE2V}. 

COROLLARY 1.4. I /  !~ is any variety other than ~,  and F is a free group o/rank >1 

then V*(F) = 1. 

Proof. A subgroup of a free group has a non-trivial centralizer only if it is cyclic. A free 

group has a non-trivial normal cyclic subgroup only if it is itself cyclic. If F is a free group 

o~ rank > 1, and ~ 4=~, then ~ ( F )  4=1. These well known facts, with Proposition 1.3 (ii), 

establish the result. Note tha t  the corollary generalises the fact that  a free group of rank 

> 1 has trivial centre. 

Define lI!~* to be the class of all groups G such that  U(G)~_ V*(G). Note that  this is 

unrelated to the product of two classes. 

PROPOSITIO~ 1.5. (i) 1I~* is a variety. If ,  /or any group G, UV*(G) denotes the cor- 

responding verbal subgroup, then (U V*) (G) = [U(G) V*G]. 

(ii) I f  u(xl, ..., xr) , v(xl, ..., xs) are words, then define,/or 1 <i  <~s, 

V(t)U = V(Xl ,  . . . ,  Xf__I, XiU(X,.~I , .. . ,  XrTs) , Xf+ 1 . . . . .  X$) (V(Xl,  . . . ,  Xs)) -1 ,  

v(~)u = v(xl . . . .  , xt-1, u(x~+l, ..., x,+~), x~+l, ..., x~) (v(xl . . . .  , x~-l, 1, x~+ 1 . . . .  , x~)) -1. 
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Let 11 and • be de/ining sets o/ laws /or 1I and ~ respectively. Then 1I~* is de/ined 

by each o/ the/oUowing sets: 

iv = (v(~)u: v(x i . . . .  , xs) e~, uEu ,  1 <~ i <~ s < oo}; 

iv'  = ( v ( % :  v (x l  . . . .  , x s ) e  V ( X ~ ) ,  u e u ,  1 <<. i <~s < ~o}. 

Proo]. (i) B y  Proposi t ion  1.2 (iii), [U(X~) V*X~] is fully inva r i an t  in X~ ,  and  b y  (ii) 

of t h a t  proposi t ion i t  is in the  kernel  of every  h o m o m o r p h i s m  of X~ o into  a group in 

ll!~*. To  complete  the  proof  it  is enough to check t h a t  every  homomorph ic  image  of 

Xoo/[U(X~)Y*Xoo] is in U~*,  and  this follows f rom (i) of the  same proposi t ion.  

(ii) lI!~* is defined b y  (v(~)u: V(Xl . . . . .  xs) e V(Xo~), u e U(X~) ,  1 ~<i ~< s < ~o}, b y  definit ion 

of (U V*) (X~). I t  is easy  to check tha t ,  for ~7 e U(X~),  v(t) (t is a consequence of (v(i)u:u e It}. 

The  proof  t h a t  i t  is sufficient to  t ake  v E ~ only  is in three  par ts .  

(A) (v-1)(~)u = ((v(~)u)-l) v, and  hence v(~)u implies (v-1)(ou. 

(B) (v~)(~)u = (v(~)u)(~(ou) ~-1, and  hence {v(~)u, ~(l)u} implies (v~)(~)u. 

(C) Le t  v E V(Xs) and  let w 1 . . . . .  ws be any  words; for some t, t h e y  are all t- letter words. 

P ick  some fixed i, 1 <~ i ~ t. I f  u(x  1 . . . . .  xr) Ett and 1 ~< k ~< s, t hen  

w;.~wk(xi  . . . . .  x~- l ,  x~u(x ,+i  . . . .  , xt+~), x~+i . . . . .  xt) = u k ,  

say, is clearly a law of lI. Then  v(w i . . . .  , w~) is a t-letter word,  and  

v ( w l  . . . .  , w~) (~ )u=v(wl  u~ . . . . .  w~u~) (v(w~ . . . .  , w~) ) - i  

= v( w~ n~ . . . . .  w ~ u~) (v(wi ,  w2 u~ . . . . .  w~u~)) - i  v( w ,  w~ u~ . . . . .  w ~us) ... ( v( w~ . . . . .  w~)) -1.  

Hence  v(w i . . . . .  ws)(~)u is a consequence of (v(i)ui, ..., v(~)us}. 

I t  follows t h a t  iv defines lI!B*. To  cheek t h a t  iv'  defines lI!B*, note  t h a t  

v(~)u = (v(xi, ..., xi_i, x~x~+i, x~+i, ..., xs)(s+i)u. 

Somet imes  iv'  can be reduced b y  replacing V(Xr b y  ~, and  even this set  can be re- 

dundan t ,  as is shown b y  the  following 

Examples. Le t  u be a defining set  of laws for 1I. 

1. I f  v = [ x  i . . . .  , xc+i], so t h a t  v defines ~c,  t hen  1~*~ is defined b y  {In, x2 . . . . .  xc+i]: 

u E It} ----- {v(~)u: u Ett}. This follows b y  induct ion on c, recalling t h a t  hr*(G) = ~c(G). I n  par t i -  
!~ * cular, ~ - - - ~ + a .  

2. Le t  v = [x~, x,] and  w = x?,  so t h a t  9 ~  is defined b y  i v, w}. Then  119~* is defined b y  

{vr ue l I }  U {w(i)u: ue l I} ,  as is easily seen. 

3. Le t  v =[[xi ,  x~], [xa, xa]], so t h a t  v defines ~ ;  then  1 1 ~  is defined b y  (v(i)u: uEll} .  

This can be p roved  b y  an  easy  c o m m u t a t o r  calculation. 
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4. On the other hand, in example 2, if m =2, so that  9~ 2 is defined by w and 9~ is defined 

by v, then ~ is not  defined by w(l)v=[xl, x~] 2. For the (restricted) wreath product 

C~ wr Coo satisfies this law, but  is not  nilpotent. However [x 1, x 2, xs] is clearly a law in 
~ * .  

PRO]~OSlTION 1.6. I] IlC_Utx, and ~ _  ~1 are varieties then: 

(i) 1I~*~111~; 
(ii) i/1I ~ [~ ,  ~], then 11~*~ [ ~ ,  !~], and ~11"~ [~ ,  ~]. In  particular, 1I~*~_ [1I, ~], 

and ?~8"___ ~ * = [ ~ ,  ~]. 

Proo/. (i) If  G E I ~ *  then UI(G)~ U(G)~_ V*(G)~ V~(G), so GEUl~*. 

(ii) From Proposition 1.3 (i) it follows that  [V(G)U*G]>~[W(G), V(G)] and hence 

~1I*~ [ ~ ,  ~].  The other result follows from the fact tha t  v(x 1 ..... xs) w =v(xl[xl, w] ..... 

x~[xs, w]) and hence [v(x 1 ..... xs), w] is a law in 1I~* whenever v(x 1 ..... xs) and w are laws 

in ~ and ~ respectively, and 1I_~ [ ~ ,  ~]. 

Examples. 1. The inequality 9~!~*___ !~9~* cannot in general be replaced by equality. 

For example, 9~@~ is defined by the law [[Xl, x~, xs], [x4, xs] ] and hence lies in the variety 

i ~  which contains only countably many non-isomorphic finitely generated groups. 

However | ~[* is the variety of all centre-by-metabelian groups which contains uncountably 

many non-isomorphic finitely generated groups, and so is much larger than 9~@~. (See 

P. Hall [16]). 
6 "  * 2. I t  is not true in general, even if 1I___ ~,  tha t  11~*_~ !~lI*. For example, ~)~2 2 ~ ~2~2" 

| * In  this case ~2 ~ "  is defined by the law [[xl, x2, xa, x~], [x~, x~]], and ~ ~ is defined by the 

law [[x~, x2], [xs, x~], x~, x6]. ~qow working inside ?6(Xoo)/?7(Xoo), and using basic com- 

mutators, it is straightforward to check that  the verbal subgroup corresponding to ~ *  
* contains elements which are not in the verbal subgroup corresponding to ~| mod?~(Xoo). 

PROPOS~T~O~ 1.7. I] 11 and ~ are varieties, then ~_~11"  and ~ U ~ * ;  and the 

inclusions are strict i /and only i] 11:4: ~ and ~ ~ ~.  

Proof. The inclusions, and equality if 1I = ~ or ~ = ~,  are clear. Now assume tha t  

1~ ~ ,  and so 1I _~ 9~ for some prime p. Define varieties ~MnlI  and 11Mn~ inductively as 

follows: ~ M  0 l~ =11M0~ = ~; and for n/> 1, ~Mn 1I = (~Mn_ ~ 1I) 1I*, l~Mn~ =11(l~Mn-~) *. 

If ~=~1I* ,  then ~=~M,~11~_~M,~9~, for all n~>0; and if ~=11!~*, then ~=]~Mn~ 
~Mn~ for all n~>0. Now if [ . J ~ M n ~  r and (J~~ each generate ~ ,  it  follows tha t  

! ~ = ~  if either ~ =lI!~* or !~-----~lI*, as required. 

First consider ~ M , , ~ r = ~ ,  say. From Example 2 after Proposition 1.5, W~(Xoo)=Xoo 

for n=O, and Wn(Xoo)= <[g, h], h~: g~Xoo, hEW,~_1(Xoo)> for n > 0 .  But  now Theorem 
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6.3 of Sta]lings [35] states that f] ~o Wn(Xoo) is trivial, and this gives that [7 o n gene- 

rates ~ as required. 

We  complete  the  proof  b y  showing t h a t  ~ = 9J w M n ~  for all n ~> 0. This is clearly t rue  

for  n = 0, 1. Assume t h a t  the  result  is t rue  for n - 2 and  n - 1, where n > 1; we need to p rove  

t h a t  91p~*_l=~n_19/* .  For  each u(x 1 .... , Xr) 6Wn_2(Xr) ,  r > 0 ,  let U ' (p )={u(x  1 . . . .  , x,_l, 

x,[xr+l, xr+s], x,+l . . . .  , xr), u(xl ..... x,-l, x~x~r+l, xi+i . . . .  , xr): 1 ~<i <~r}. Then  using Proposi t ion  

1.5. and  the  subsequent  examples:  

(i) ~[9~_1 is defined b y  ~ ={[u ,  xr+i] , u~: r > 0 ,  u 6  Wn_2(X~)}; 

(ii) ~ - 1  is defined b y  ~' = {u 'u- i :  r > 0, u 6 W,~_~(X~), u '  6 tt'(p)}; 

(iii) i t  follows f rom (i) t h a t  9/~f~*_1 is defined b y  iv = ( [ u ' ,  x~+l ] [u, x,+l] -1, 

[u, xr+lz] [u, x~+l] -1, (u')Pu-~: r > 0, u 6 Wn_~(X~), u' 6lt ' (p),  z = [Xr+~, xr+a] or x~+2}; 

(iv) it  follows f rom (ii) t h a t  ~[9~-19/* is defined b y  iv'  = {[u 'u -1, xr+~], (u'u-~)~': r > O, 

u e W~_~(x~), u '  6a'(p)}. 
* ~ * Now 9 ~ [ ~ _  1 and  ~_19~, are contained in [~, ~ - 1 ]  b y  Proposi t ion  1.6, so using (i) 

and (ii), each va r i e ty  satisfies the  laws 

iv"= {[u, x~+~, x~+~], [u~, x,], [u', u]: r > O, u e W._~(X~), u' 6u'(p)}. 

Hence,  in proving  t h a t  each of iv and  iv'  implies the  other,  the  laws iv" m a y  be 

used, and  the  result  is then  immedia te .  

We now introduce the  Baer - invar ian ts  ~M(G) and ~P(G). Le t  1-+R->F-+G-+I be 

a free presenta t ion  of G and ~ be a var ie ty .  Consider the  group (R f] V(F))/[RV*F]; i t  is 

abel ian since [RV*F]~_ [R, V(F)] b y  Proposi t ion  1.3 (i). I f  ~: G-+H is a homomorph i sm,  

and  H has the  presenta t ion  1--> R-+ F ~ H - +  1, then  there  exists a homomorphism/3:  F-~_F 

(not unique) which induces ~. Clearly/3 also gives rise to a homomorphism/3":  (R f] V(F))/ 

[R V*F]~ (~ ~ V(F) ) / [R  V*F]. 

L v . ~ a ~  1.8. (i) t3" is independent o/ the choice of 13; denote it by ~*. 

(ii) I f  ?: H ~ K ,  and K is supplied with a presentation, then (~y)*=~*~,*. 

(iii) ( R ~ V ( F) )/[ R V*_E] is independent o/the presentation G. 

Proo/. (i) Le t  fl' be a second h o m o m o r p h i s m  inducing ~. Then  for any  g 6 F,  gfl-- 

gfl' modulo  R; and  so, if v6 V(X~), t hen  v(g~fl . . . . .  g~fl)~v(g~fl', ..., g, fl') modulo [RV*F] 

for  all g~ . . . . .  g~ 6 F.  Hence  fl* = (/3')*. 

(ii) is clear. Hence,  t ak ing  G = H  and ~ the  ident i ty ,  i t  is easy to  check t h a t  =* is an  

isomorphism,  which proves  (iii). 

I n  view of the  lemma,  we denote  (R f] V(F))/[RV*F] b y  ~M(G) (M for  'mult ipl ier ' ) .  

I t  is clearly funetor ia l  in G, and if ~ = 9 / i t  is the  Sehur mult ipl ier  of G. 
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In  exactly the same way it  may  be shown that  V(~)/[RV*E] is independent of the 

presentation, and is funetorial in G; we denote this group by  ~P(G) (P for 'pandect'). 

Equating V(G) with V(F) /R  D V(F) gives rise to a central extension I -~ ~M(G)-~ ~P(G) 

V(G)-+I, natural in G. Of course, if Ge~3 then ~ M ( G ) - ~ P ( G ) .  

If  ~ is a variety containing G, these definitions may be adjusted by  requiring F 

to be a ~- f ree  group; this gives rise to relative Baer-invariants ~3~M(G) and ~3~P(G). 

I f  GeLt, then clearly ~ M ( G ) = ~ M ( G )  and !~3~P(G)=~P(G) whenever ~___1I~*. The 

relative Baer-invariant !39s is discussed in [24.1] in the case ! 3 ~ [ ,  and in [19] in the 

case ~ .  I t  turns out that  ~gj~M(G) is the first homology group of G with integral 

coefficients, in the homology relative to !3; whereas, provided ! 3 ~ v a r G ,  ~M(G)  

is the second ~-homology group of G with coefficients in Z(G), as proved in w II.4. 

If  1-~R->F-~G-~I  is a presentation of G, F acts by conjugation on (R A V(F))/  

[RV*_F]; and since [RV*F]_~ [R, V(F)], this induces an action of G. This action is clearly 

compatible with the isomorphism 1" used in Lemma 1.8 to establish that  (/~ A V(F))/  

[R V*F] is independent of the presentation. Thus ~M(G) is a G-module; in fact the action 

of g E G on !3M(G) corresponds under the functoriality of ~M(G) to the inner automorphism 

of G induced by  g. Similarly ~P(G) is a G-group, and the natural embedding of ~M(G) 

in ~P(G) is a G-homomorphism. We now examine some simple properties of this G-action. 

L ] ~ A  1.9. I / K  is a G-group and ~ is a variety, the ]ollowing are equivalent: 

(i) V(G[K)~_ G; 

(ii) K Z  V*(G[K). 

Proo/. (ii)~ (i) is immediate, so assume (i). For any v(x 1 .... , x~)E V(Xoo) and any 

gl[Ic 1 ..... gs[lc, EG[K, v(gl[]c 1 ..... g~[Ic~) =v(g 1 ..... gs) [k for some k 6 K ,  and (i) implies tha t  

k =  1. I t  follows immediately that  K~_ V*(G[K). 

If  the conditions of Lemma 1.9 are satisfied we say that  K is a ~G-group (or a ~G- 

module if K is abelian). This clearly implies tha t  K (as a group) is in ~ and that  V(G[K) = 

V(G). An  ~G-group, for example, is an abelian group on which G acts trivially. 

L ] ~ M A  1.10. I] N <~ G, IV is a ~G-group (with G acting via conjugation) i / a n d  only 

q N~_ V*(G). 

Proo[. There is an injection 0: G [N-~ G x G given by (g [n) 0 = (gn, g) for all g E G, n E N. 

I f  v(xl, ..., xs)e F(X) and gl[nl, ..., gs[n~eG[N, then v(g~[n I .... , g~[n~)O =(v(gln v ..., g~n~), 

v(gl . . . .  , gs)) and this is in GO if and only if v(glnl ..... gsnl) =v(gl ..... gs). The result now 

follow easily using the fact tha t  0 is an injection. 
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LEMMA 1.11. Zet K be a G-group and O: tt-~G be a homomorphism; regard K as an 

ll.group via O. I] K is a ~G-group then K is a ~ll.group; and conversely, ~rovided 0 is a 

sur#ection, if K is a !Sll-group then K is a ~G-group. 

Proof. Routine. 

In  particular, if K is a G-group and N <S G such that  N centralizes K, then, regarding 

K as a GIN-group, the above result can be applied with 0: G-~G/N the natural surjection. 

COROLLARY 1.12. I / B  is a G-module, and 1-~ B-~ E --> G o l is an extension o / B  by G, 

then B is a ~G-module i/and only i/ B~_ V*(E). 

Proo]. B E  V*(E) if and only if B is a ~E-module  (with E acting via conjugation) 

by Lemma 1.10. But  G ~- E/B and B as normal subgroup of E centralizes the E-module B. 

Lemma 1.11 now gives the result. 

LEMMA 1.13. Let K be a G-group. Then K is a ~G-group i] and only i/ V(G) centralizes 

K and K is a ~(G/V(G))-group. 

Proo]. If  K is a ~G-group K E  V*(G[K); so by  Proposition 1.3 (ii) K is centralized 

by V(G[K) = V(G). The result and its converse now follow immediately from Lemma 1.11. 

PROFOSITION 1.14. I /  Lt, ~ are varieties, the/ollowing are equivalent: 

(i) /or all G Eli, ~P(G) is a llG-group; 

(ii) 11!8"_~ !~ll*. 

Proo/. Assume (ii) and let GEII have the presentation I~R-->F-~G~I.  Put H =  

F/[RV*F]; then by  (ii) V(H) ~_ U*(II). Hence (by Lemma 1.10) V(H) is a llH-group, and is 

centralized by  R/[RV*F]. Lemma 1.11 gives immediately tha t  V(II) is a l~tG-group, and 

of course V(H) = ~P(G). 

Now assume (i), and take HEII~*.  Then for any presentation I~R~.F.->H->I 

of H, UV*(F)~_R. Put  G=F/U(F)  and E=F/(UV*(F)) .  ~P(G)= V(E) is a llG-group by  

assumption, and hence a liE-group, (by Lemma 1.11). Let  0: E ~ I I  be the natural surjec- 

tion. Then V(H) = (V(E)) 0 c (U*(E)) 0 ~_ U*(II). So H E ~ll* as required. 

In  particular, if GE ~, ~P(G) = ~M(G) is a ~G-group; and since the property of being 

a llG-group is clearly inherited by  sub-G-groups, ~M(G) is a llG-group whenever ~P(G) 

is, for any G. However, for ~M(G) we have a result, valid for all G, which is in general 

false for ~P(G). 

PROPOSXTION 1.15. For any group G and variety ~, ~M(G) is a ~G.group. 
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Proo/. Let  1-~/~-~F-~G-+I  be a presentation of G. Then R N V(F)/[RV*F] is ~ -  

marginal in 2'/[RV*F], and so is a ~(F/[RV*F])-group annihilated by  I~/[RV*F]. Hence 

~M(G) is a ~G-group. 

We end this paragraph with a discussion of the order of ~M(G) and !~P(G). Following 

P. Hall  [17], if v is a word and E a group, v is a Schur-Baer word on E if either v*(E) is of 

infinite index, or v*(E) is of finite index m, and the verbal  subgroup v(E) is of order dividing 

a power of m. t f  v is a Schur-Baer word on every group, v is a Schur-Baer word. Similarly, 

is a Schur-Baer variety on E, or is a Schur-Baer variety, if the corresponding statements 

hold with v*(E) and v(E) replaced by  V*(E) and V(E) respectively. Clearly v is a Schur- 

Baer word if and only if the var iety defined by  v is a Schur-Baer variety. 

P. Hall  conjectures in [17] tha t  every word is a Schur-Baer word; this conjecture 

remains open. Sehur proved in [34] tha t  Ix, y] is a Schur-Baer word, and this was extended 

by  Baer in [3] to outer commutators,  as defined before Theorem 3.6. In  fact, it is shown 

in [17] tha t  if v and w are Schur-Baer words on disjoint sets o~ letters, then [w, v] is a 

Schur-Baer word; also, tha t  the intersection of 2 Schur-Baer varieties is a Schur-Baer 

variety.  Turner-Smith proved in [37] that ,  if E and all its quotient groups are residually 

finite, then every word is a Schur-Baer word on E; and Merzljakov proved in [29] the 

corresponding result for E a linear group over a field, and for E almost a residually finite 

p-group for infinitely m a n y  primes p. 

The var iety ~ is finitely based if it can be defined by  a finite set of laws, and hence by  

one law. The n-letter laws of ~ are finitely based if they  are a consequence of a finite set 

of laws of ~ .  

T ~  E o~  E ~ 1.16. Every locally abelian-by.nilpotent variety ~ is a Schur-Baer variety. 

Proo]. I f  ~ is finitely based, then since, by  P. Hall [18], a finitely generated abelian- 

by-nilpotent group is residually finite, the theorem follows in this case from the result of 

Turner-Smith 's  quoted above, and appears in [17]. But  since, by  P. Hall [16], a finitely 

generated abelian-by-nfipotent group has the max imum condition on normal subgroups, 

i t  follows tha t  the n-letter laws of any locally abelian-by-nilpotent var ie ty  are finitely 

based for any  fixed n, and this is clearly enough to reduce the problem to the case in which 

is finitely based. 

The next  results explain our interest in Schur-Baer varieties. 

THE ORE~ 1.17. The/ollowing conditions on the variety ~ are equivalent: 

(i) ~ is a Schur-Baer variety; 



BAER-I~NVARIA:NTS, ISOLOGISl~I~ VARIETAL LAWS AND HOMOLOGY 111 

(ii) /or every finite group G, f~P(G) is o] order dividing a power o/ [ G I ; 

(iii) /or every finite group G, f~M(G) is o] order dividing a power o/ I G]. 

Proof. Let  ~ be a Schur-Baer variety, and I ~ R - + F ~ G ~ I  be a presentation of G, 

where G is of finite order m. Then since V*(F/[RV*_F])~ R/[RV*F], the marginal factor 

of _F/[RV*F] is of order dividing m, and hence V(_F)/[RV*F] = ~P(G) is of order dividing 

a power of m. Thus (i) ~ (ii). Conversely, with the same notation, if E is a group with 

marginal factor isomorphic to G, it  is easy to see tha t  V(E) is a homomorphic image of 

~P(G),  so (ii)~ (i). Finally (ii)<=~ (iii) since ~P(G) is an extension of !~M(G) by  V(G). 

T~:~ORE~ 1.18. I / f ~  is defined by a set o/Schur-Baer words, then/or all finite groups G, 

every element o /~P(G)  and o / ~ M ( G )  is o/order dividing a power o/[ G I . 

Proo/. I f  ~ is defined by  the set of words (v~}, and E is any group, then V*(E)= 

~v*(E) and V(E)=~-~v~(E). The result follows at  once. 

w Isologism 
In  [15] P. Hall  introduced the concept of ~-isologism, for any  var ie ty  ~ ,  and in [14] 

showed how 9~-isologisms (or isoclinisms) can be used in the classification of p-groups; 

see also [13]. The connection between Baer-invariants and isologism, which we establish 

in this paragraph, is hinted at  in the works of P. Hall  quoted above. 

I f  1->K-~E--->G--->I is an extension, ~(K) becomes, by  conjugation, an E-module 

centralized by  K, and hence a G-module. I f  !~ is a variety, G a group, and B a G-module, 

define a f ~ - G - B - e x t e n s i o n  to be an extension I~K--->E->G~I, and an inclusion 

t: B--->~(K) of G-modules, such that ,  regarding K and B as subgroups of E, K ~  V*(E) 

and B~_ V(E) ~ K. Note tha t  V(E) ~ K~_ ~(K) since, by  Proposition 1.3, [V*(E), V(E)] = 1. 

Also, for ~ - G - B - e x t e n s i o n s  to exist it is necessary and sufficient tha t  B be a ~G- 

module. Necessity follows from Lemmas 1.10 and 1.11, and sufficiency from Corollary 1.12. 

If  ~=I--->Ki->E~-->G~->I , t~: B~--->~(K~) is a ~ - G ~ - B ~ - e x t e n s i o n ,  i = l ,  2, then a 

weak f~-homologism (0, ~): E I ~ E ~  is a homomorphism 0: G1--->G 2, and a homomorphism 

~: B 1-~ B~ compatible with 0 (i.e. such tha t  (bg)~) = (bT) g0 for all b E B 1 and g E G1), satisfying 

the following condition. Let  yJ: E 1-+ E~ be any map (not necessarily a homomorphism) lifting 

0; then Vr>0 ,  YveV(X~),  and y t  1 ..... trEE 1 such that ,  v(tl, ..., t~)eB~, v(t ,  ..., t~)qJ= 

v(tl~ fl .... , t~y~). Since K2___ V*(E2), v(tl~ p .... , t~to ) is independent of ~, and ~ is determined by  

0 if B I = K  1 N V(E1); however, it is easy to see that ,  in general, a homomorphism 

0: G 1-+ G~ will not induce a weak homologism; since different expressions for an element b of B 1 

as the value of a law of !~ m a y  lead to different values for bT. I f  (0, ~) is a weak ~-homo-  

logism, and 0 and ~ are isomorphisms, then (0, ~) is a weak ~-isologism. For fixed G and B, 
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a weak ~-G-B- i so log l sm is a weak !~-isologism (0,~) such tha t  0 = l a  and ~0=1B. 

I ( ~ ,  G, B) denotes the set of weak ~ - G - B - i s o l o g i s m  classes and [~] denotes the class 

containing the ~ - G -  B-extension E. 

THE OR E~  2.1. For any ~G-module B, there is a natural bi]ection between Hem a (~M(G), 

B) and I (~ ,  G, B). 

Proo]. Let  a: ~M(G) ~ B be a G-homomorphism and 1 -+ R-+ F-~G-+  1 be a presentation 

of G. Denote F/[RV*.E] and R/[RV*F] by  P and /~  respectively. Then r162 can be regarded 

as a G-homomorphism f rom/~ N V(_F) to B, and _F can be given an action on B via tha t  of 

G"~F/R. Now let E denote the group obtained from F [ B  by  amalgamat ing /~  ~ V(F) 

with its image under ~ in B; it  is easy to check tha t  this does not lead to collapse. Define 

a map 0: E-+G by  (][b)O =/~ where ]E~', bqB  and ][b is the corresponding element of E. 

Then it  is easy to check tha t  0 is a surjeetion with kernel K = { / [ b l / e R ,  beB}. Also the 

obvious embedding t: B-+K maps B into r s ince/~ centralizes B. The extension E~-- 

1-~K~E-+G-+I, t: B-+r is a ! ~ - G - B - e x t e n s i o n ;  for, using the facts tha t  _~___ V*(_F) 

and B is a ~G-module,  if follows tha t  K~_ V*(E). I t  is also straightforward to cheek tha t  

[E~] is independent of the presentation of G. Define (I): Homa(!~M(G), B)-~I(!~,  G, B) 

by  ~(I) = [ ~ ] .  Then (I) is well-defined from above. I t  remains to construct an inverse E) 

for (I). Let  E-1--+K~E-+G-+I, t: B-+~(K), be a ~ - G - B - e x t e n s i o n ,  and 1-~R-+F-~G-~ 1 

be a presentation of G. This gives rise to commutat ive diagram 

1 --+ R/[R V*F]-~ .F/[R V*$'] -+ G-+ 1 

10 1 
1 - - ~ K  , E , G ~ I  

with exact rows, and d induces a G-homomorphism e, say, of .R N V(F)/[_RF*.F] = ~ M ( G )  

into B. I t  is easy to verify tha t  ~ depends only on [E], so tha t  O: I (~,  G, B) ~ H o m a  (~M(G), 

B) defined by  [~] @=~,  is well defined. I t  is straightforward to check tha t  q~ end | 

are inverse maps. 

I t  remains to connect weak isologisms with isologisms in the sense of P. Hall. Let  

E~ be a group, X i = V(Et), Kt  = V*(El), and G~ = EJK~ for i = 1, 2. Then a ~.homologism, 

(0, co): E ~ E ~  is a homomorphism 0: Gx-+G~ and a homomorphism co: X~-+X2 satisfying 

the following condition. Let  ~: E~-+E 2 be any  map  lifting 0, then for all r > 0 ,  and all 

v ~ V(Xr), and all t~ .... , tr ~ E~, v(t~, ..., tr) (0 =v(t~% ..., t~) .  I f  0, o~ are isomorphisms, (0, ~0) 

is a ~-isologism. Thus two groups are ~-isologic whenever evaluating the laws of !~ in 

either group gives rise to essentially the same maps. I f  (0, co) is a ~-homologism, eo is 

determined by  0 and eo is a G-homomorphism. 
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THwOR~M 2.2. Let ~ I ~ K t ~  E f ~ G ~  I , ti: B~-~(K~), be ~ - G ~ -  B~-extensions 

such that Ki=V*(E~) and B~e~=V(Et)AK~, /or i = 1 ,  2. Then Ei and ~ are weakly ~- 

isologic if and only i / E  i and E~ arc ~-isologie. 

Proo/. I f  E i and  E~ are ~-isologic, i t  follows a Iort iori  t h a t  ~i  and ~ are weakly 

~-isologie. For  the  converse, let ~i  and ~2 be weakly  ~-isologie. I t  is enough to assume 

t h a t  G i = G~ = G say, B i = B~-- B say, and  t h a t  ~i  and ~ are weakly !B - G - B-isologic. 

Then with the  no ta t ion  of the  proof of Theorem 2.1, [ ~ l ] @ = [ ~ s ] @ = a  say, and ~ is 

surjection. I f  1-~ R-~ F->G-> 1 is a presentat ion of G, there are commuta t ive  diagrams 

1 -~ ~ / [ R  V*_~] -~ ~ / [ R  V * F ]  ~ G ~ 1 

1 , . K ~ "  ~E~-----~G-+I 

with exact  rows, such t h a t  (~ induces ~, for i = 1, 2. Let  ~ induce/~:  V(F)/[RV*F]~ V(E~); 

then  there are commuta t ive  diagrams 

1 -+ ~M(G)-+ ~P(G) ~ V(G) -~ 1 

1 --~ B , V(E~) . . . . .  V(G) = 1 

with exact  rows which are central  extensions. The bo t t om rows of the  diagrams are deter- 

mined b y  the top row and ~, up to an au tomorphism of V(E~) t h a t  fixes B and V(G) 

elementwise. I t  follows t h a t  there is an isomorphism w: V(Ei )~  V(Es) such tha t  ~s=fi l  co, 

fixing B and  the  factor  group V(G). Then (la, co) is a ~-isologism: Ei->Es as required. 

Theorem 2.2 gives a correspondence between ~-isologism classes with ~-marg ina l  

factor  G and  certain weak ~-isologism classes, and  hence, b y  Theorem 2.1, with certain 

G-homomorphisms ~: ~M(G)-~B. We now consider the  problems of ascertaining which 

groups G can appear  as ~ -marg ina l  factors and which a E H o m a ( ~ M ( G ) ,  B ) t h e n  give 

rise to  ~-isologism classes with this ~-marg ina l  factor. 

For  any  gi . . . .  , g~EG and vE V(X~) such t h a t  v(g I . . . . .  g r ) = l  let v(gi, .., g~) denote the 

corresponding element of ~M(G), and let w~(x i . . . .  , x~+l) denote  v(~)u where u=xi ,  see 

Proposi t ion 1.5. For  a ny  g=~l, gEV*(G), let 

S(g) = {w~(gi . . . .  , gr, g): r >~ i >1 1, v E V ( Zr) , gl, "., gr E G }. 

T H ~ 0 R ~ M 2.3. ~ E H o m a  (~M(G), B) de/ines a ~-isologism class, with G as ~-marginal 

/actor, i/  and only i/  ~ is onto, and /or each gE V*(G), g=~l, S ( g ) ~ k e r  cr I/thesecondi- 

tions are satis/ied, and 1-+R-+F-+G~I is a presentation o] G with F=F][RV*F],  then 
8 -  752909 Acta mathematica 137. Imprim6 le 22 Septembre 1975 
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F l = F / k e r  ~ is a representative o/ this ~-isologism class, and so is JF1/T ]or any Y <~ F 1 

such that T A V(F1)= 1. Moreover, every representative o/this class arises in this way ]ro~r~ 

some presentation o /G  and some T. 

Proo/. If :r is onto, and 1-~ R-~ F-~ G-> 1 is a presentation of G, then the corresponding 

weak ~-isologism class is represented by  ~a, as constructed in Theorem 2.1, and ~a is 

I~R1-->FI~G-->I where F 1 is as above, and R l = R / k e r ~ ,  R=R/[RV*F] .  Then B is 

embedded in R 1 with image R t A V(F1), and if ]E V*(F1) and ] maps to g in G, ge V*(G); 
and the condition that  if g =~ 1, S(g)~: ker ~ ensures tha t  g = 1. Hence g l - -  V*(F1), and F~/ 

V*(F1) =~ G. If T <~ F1, and T A V(F1) = 1, then for any t E T,/1, ...,/r e 2' 1, v e V(X~), r >1 i >1 1, 

wi(/1 ..... / ,  t) e T f) V(F1) = 1. Hence T ~ V*(F1) = R 1. I t  follows that  F l I T  is !B-isologic 

to F I. 

Conversely, if E satisfies E / V * ( E ) ~ G  and V*(E)n V ( E ) ~ B ,  then let F be a free 

group with E as an epimorphie image, and R be the kernel of the composite F-+E->G. 

I t  is straightforward to check that  E is an epimorphic image of the corresponding group 

F1, that  the corresponding ~EHom~(~M(G),  B) is onto, and that  if g4=l, geV*(G), 

then since any e e E  which maps to g is not in V*(E), S(g)~ker  ~. 

Theorem 2.3 provides a procedure for constructing all ~-isologism classes with G 

as marginal factor. Consider first the identi ty map 1 = l~M(a ) ;  this will give rise to such a 

!B-isologism class if and only if S(g)~=l for each ge V*(G), g4=l. Also, if 1 does not give 

rise to such an isologism class, then neither will any ~eHoma(!BM(G), B) for any B. 

For example, if ~ =~f and G is a finite abelian group, then G can be the !B-marginal (or 

central) factor of a group if and only if the two largest invariants of G coincide (see [14]). 

If 1 does give such a ~-isologism class, one then investigates for each surjection 

~eHoma(~3M(G), B)whe the r  S(g)~ker  a. There are some short cuts which can be used 

in testing the properties of S(g); for example it  is sufficient to consider just those v e V(Xoo) 

which lie in some defining set for ~ .  Notice too that  

S(g) = (~(g, g2, -.., gr) -~(1,  g2 .. . .  , gr): r>~l, g~ . . . .  , a~eG, ve  V(Xr) and v(1, g~, ..., gr) =1) .  

Finally, if ~1 and g2 are surjeetions satisfying this condition, they determine the same 

~-isologism class if and only if there is an automorphism of G, such that  the corresponding 

automorphism of ~M(G) induces a bijection between ker al and ker aa. 

In  the case ~ = 2 ,  this procedure was used in [13] in the calculation of all ~-isologism 

classes (or families) represented by groups of order dividing 64. Again, if ~ =~f, every weak 

- G -  B-isologism class contains an element 1-~K-~E-~G-~I,  s B-*~(K), in which K = B 

and e = 1~. (If the class corresponds to the identi ty map on ~ M ( G ) ~ t h e  Sohur multiplier 
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of G-- then  E is a 'covering group' of G). In  particular, every ~-isologism class contains 

a group E such tha t  F*(E)~_ V(E). The classical proof depends on the fact that ,  when 

~=9~, subgroups of ~-free groups are ~-splitting groups, and subgroups of !~-marginal 

subgroups are normal. Clearly the only varieties with these properties are ~, 9Xz for m 

a positive square free integer, and ~. We shall return to this point in w II.3. 

Examples 1. Let  ~ = ~ 2 ,  E be nilpotent of class exactly 3, K =  V*(E)=~2(E), 
and B =  V(E)=~,(E). Then V*(E)=~(E)~F~(E)=V(E). Moreover, any group D which 

is ~-isologic to E is of class exactly 3, and so V*(D)D__ V(D). 

2. Let  ~ = ~ 2  and G=C2(zcx)• C2(a2). Take a presentation I~R~.F-+G-->I, where 

/7 is freely generated by {Yl, Y2}, and Y~->~i, i =1, 2. I t  is easy to see that  ~M(G) = 
V(F)/[R V*F] = Z~(zl)| Z2(z2), where zl is represented by  [Y2, Yl, Y~], i =-1, 2. Clearly, u g e 

G\(I}, S(g) = ~M(G); so if g: ~M(G)-+ B is any surjeetion with B 4=0, S(g) ~ ker ~. Such an 

is either an isomorphism or has kernel of order 2. (This latter is a possibility since G, being 

abelian, acts trivially on ~M(G).) But the group of automorphisms of G acts transitively 

on the set of subgroups of ~M(G) of order 2, so there are exactly 2 ~-isologism classes 

with marginal factor isomorphic to G. The first of these is represented by  /7/[RV*/7] = 
.F/TaTS, where y4 =74(/7), and ?~ is the subgroup of 17 generated by  the squares of the ele- 

ments of y3(F). To find a smaller representative of the class, a normal subgroup T of F 

is needed such that  B~_ T~Ta?~ , and T f3 Y3---~4~; then ~7IT is !3-isologie to/~/747~. 

I t  is easy to see that  T must be of index at least 64 in F.  The ~-isologism class (or family) 

I~17 in the Hall-Senior tables [13] is the only family of rank 6 (i.e. whose minimal representa- 

tives are of order 2 e) to lie in this ~z-isologism class. The other ~2-isologism class with 

marginal factor isomorphic to G clearly contains every group of order 16 and class 3; 

these all lie in Fa. The families D~ and 1"7 of rank 5, and Dis, Fi~ and l~is of rank 6, also 

lie in this class. 

3. Let  ~ = ~ 2 ,  and G=Ds=(al, a~: a~-=a~=[al, a2]~=l~. Take a presentation with 

y~->a~, i = 1, 2 as in Example 2. In  this case ~M(G) = (Za(z~) $ Za(z2))/(2(z ~ § z~)), where z 

is represented by  [y~, y~, y~], i=l ,  2. In  this case there are two new ~eatures. Firstly, G 

acts non-trivially on ~M(G), a 1 and a~ each sending every element to minus itself; and 

secondly, S([ax, a~])=2~M(G), so only surjections ~ whose kernel does not contain this 

subgroup give rise to ~-isologism classes. 

If  G is a finite group of order m, does it  follow that  every isologism class with marginal 

factor isomorphic to G has a representative of order dividing a power of m or at least of 

finite order? For  an arbitrary variety these questions remain open. Clearly a necessary 



116 C. R.  LEEDHA1VI-GREE~ AND S. MCKAY 

condition for an affirmative answer to the first question (assuming such isologism classes 

exist) is that  ~M(G) or equivalently ~P(G) be of finite order dividing a power of m; 

for example if !8 is a Schur-Baer variety (see Theorem 1.17). If  ~MG has this property 

then it  remains to decide whether _~ has a normal subgroup T of index a power of m such 

tha t  T ~ V(F)~ [R V ' F / a n d  T_~/L Now suppose tha t /~ ,  or equivalently _F, is residually 

finite. Then, since V(/~) is finite, _F has a normal subgroup T of finite index such that  T N 

V(_F) = 1, and if ~ is locally nilpotent, T can clearly be chosen to have index a power of m. 

Using Theorem 1.16, we have proved 

T H E O R ~  2.4. I] ~ is a locally abelian-by-nilpotent variety, and G is a/inite group 

o/order m, then every ~-isologism class with marginal/actor isomorphic to G has a/inite 

representative, and, i / ~  is locally nilpotent, has a representative o/order dividing a power o/m. 

We now investigate the abelian group structure on I ( ~ ,  G, B) induced by the natural 

bi]ection between Hom~(!l~MG, B) and I (~ ,  G, B) in Theorem 2.1. Le~ E(!l~, G, B) denote 

the class of ! 8 - G - B - e x t e n s i o n s ,  and let E~-~I-->K~-+E~-->G-+I, ~i: B-~(K~), E~EE(~,  
B 

G, B), i = l ,  2. Pu t  EI-~ E2---1-~K1 • K 2 ~ E  1 ~ E~-~G-->I, t: B ~ ( K  1 • see the pre- 

liminaries for the notation. I t  is easy to check that  ~1+ Ep~E(!8, G, B). If V(E~) N K~=I, 

call ~ a null extension. Clearly the sum of two null extensions is again null. Now the map 

| constructed in the proof of Theorem 2.1 is defined in terms of a map~F say of E(!l~, G, B) 

into Home (iBM(G), B), and it is easy to see that  ~ F  = 0 if and only i / ~  is a null extension. 

The proof of the following theorem is now straightforward, and we omit it. 

T ~ o R ~  2.5. The above addition on E(~,  G, B) induces the structure o /an  abelian 

group on I (~ ,  G, B) in such a way that the natural bi]eetion betwee~ / ( ~ ,  G, B) and 

Homc(~MG, B) o/Theorem 2.1 becomes an isomorphism. Two dements o /E(~,  G, B) belong 

to the same element o /1 (~ ,  G, B) i~ and only i/ they become isomorphic in the obvious sense 

on the addition to each o/a (possibly di/]erent) null extension. II  1--> K-~ E ~ G--> 1, ~: B-~ ~(K), 

represents an element o/ I (~ ,  G, B), then 1-+K-->E-->G-+I, -~: B-->~(K) represents the 

inverse element. 

w 3. Pandects 

In  this paragraph and the next  we consider the 'pandects' of the variety ~,  namely 

the groups ~SP(G), where G is a free abelian group, or more generally any relatively free 

group. If. G=X~/X~  and v is a law of ~,  then v determines an element ~ of ~P(G); and 

we consider the connection between the condition that  a set of laws lJ should define !8, 
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and the condition that  ~P(G) should be generated as End(G)-group, by  {~: vEIJ}. The 

paragraph ends with the explicit calculation of the pandeets of a class of varieties. 

Throughout this paragraph, o: denotes a positive integer or oo. 

If ] / a n d  ~ are varieties, then the ]/-o:-pandect of ~ is the group ~P(X~/U(X~))= 

V(X~)/UV*(X~), see Proposition 1.5; it  will be denoted by  V/U-o:.  In  particular, if ] /=9i,  

this will be abbreviated to the o:-~andect of ~ ;  this is a central factor of X~ by Proposition 

1.6. 

Examples. 1. If  ~ = 9%c, then VIA-o:  is the Schur multiplier of the ~-free group of 

rank o:; and this a free-abelian group, freely generated by  the basic commutators of weight 

c + 1 on at most o: letters. 

2. I t  will be proved in Chapter I I  tha t  V/A-o :  is the group denoted in [24. I I I ]  by 

~0(l-[, H e ( - ;  Z)), where ]-I is a free abelian group of rank o:. This was calculated for finite 

O: in [25] for the eases !~--9~cN | ~ ,  and | | Taking direct limits gives 

V/A - oo. 

Clearly the l I -o : -pandect  of ~ depends functorially on the ]/-free groups F~(II) 

of rank o:. In particular, if E(o:, ]/) denotes the semigroup of endomorphisms of F=(]/), 

then V~ U - o: is an E(o:, ]/)-group. Notice, however, that  E(o:, 9/) has a natural ring structure 

but  VIA - ~ is not an E(o:, 9/)-module. For example, if ~ = ~  =9/, then V/W - 2  is generated 

freely by  (an element represented by) [x~, xl], and twice the identity of E(o:, 9/) induces 

four times the identi ty on V~ W - 2  (as [x~, xl] ~+[x~, x~] = [x2, x~] 4 in V / W -  2). 

If  O: ~<fl ~< 0% the natural injection of X~ in X~ has a right inverse, and gives rise to 

an embedding of V/U-O: in V / U - f l  as a direct summand. We identify V/U-O: with this 

subgroup of V/U- f l ,  and for any veV(X=), ~ will denote the element (UV*(X~))v of 

V/U -f l ,  for all fl >~ O:, with a similar convention for subsets; the value of fl, when significant, 

will be clear from the context. 

The next  two results are easy. 

P~OPOSlTION 3.1. I /  ]/ and ~ are varieties, De_ V(Xa), and v is a consequence o/I~, 

then ~ is in the E(o:, lI)-closure o/1). 

C o R o L L A~ v 3.2. In  particular, i] ~ is defined by a set o] n-letter laws, and i] n < o: < 0% 

then V/U-o:  is the E(o:, lI)-closure o / V / U - n .  Thus n defines a 'stable range'/or the groups 

V/U-o: .  

Our next  aim is to consider a weak converse to Proposition 3.1; for example, if D__c V(X~) 

and ~ generates V/U-o:  as E(o:, ]/)-group, in what sense does D define the o:-letter laws 

olin? 
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Examples 1. Clearly, the larger 1I is, the more information V/U - a contains about the 

a-letter laws of ~.  In  particular if l I = ~ ,  V / U - ~  is V(X~); whereas if 1I=~, V ] U - a  

is trivial for all a and all ~ .  

2. If  ~ - - ~ ,  the 2-pandect is trivial, but  V(X~) is not trivial. 

3. The l l-pandect of ~ = ~ ,  for large enough (finite) a and 11 4 ~ ,  is powerful enough 

to distinguish ~ from ~;  for if 114=~ and ~ 4 ~ ,  then 1 I ~ ' 4 ~  (by Proposition 1.7), 

~nd so, for some finite ~, V~ U-co is no~ trivial. 

4. If ![9 and ~ are varieties such that  ~ fl 1I~* = ~,  then V / U -  a is generated by  the 

image of W(X~). If  ~ - - ~  this can only happen if ~ = ~  or l I = ~  (by Proposition 1.7). 

Suppose tha t  ~ is an non-nilpotent variety which contains a maximal nilpotent proper 

subvariety. Then if ti  is any nilpotent variety lI!~* is also nilpotent and hence ~ ~) 1I~* = ~ .  

The same remarks remain valid if "ni lpotent"  is replaced by "soluble" throughout. 

Clearly any non-nilpotent (non-soluble) variety which satisfies the ascending chain con- 

dition on nilpotent (soluble) subvarieties has a maximal nilpotent (soluble) subvariety. 

Examples are given by  var(Ss) in the nilpotent case, and var(A~) in the soluble case; 

for in both these cases the variety in question is a Cross variety, and has only a finite 

number of subvarieties (see [30] ch. 5). 

The following definitions strengthen the concept of independence of laws, so tha t  

Proposition 3.1 can be stated in a form in which the converse is also true. If 1I and 

are varieties, D is a set of laws of ~ ,  and v is a law of ~,  a group G lJ,~*-di//erentiates v/rom 

if GElid* and G differentiates v from ~). If  no such group G exists, then v is a lI!~*- 

consequence o/~.  Finally, ~ is l~*-defined by ~), and ~ is a ll!~*.basis/or ~ ,  if every law 

of ~ is a 11~* consequence of D. 

T ~ E o ~  3.3. With the above notation, the following are equivalent: 

(i) v is a ll~*-consequence o/~; 

(if) v is a consequence o/ D together with the laws o/1I~*; 

(iii) /or any a such that v and D are contained in Xa, ~ is in the E(a, U)-closure o] 

iu v / u - a :  

(iv) there exists an a such that v and 0 are contained in X a and ~ is in the E(a, R)- 

closure o~ ~ in V] U - a .  

Proof. Clearly (i) is equivalent to (if). 

Now assume tha t  (if) holds, and that  v and ~ lie in X a for some g. Then, by Proposition 
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3.1, ~ is in the  E(g ,  Ll)-closure of ~ U UV*(X~), which is jus t  the  E(~,  lI) .closure of ~ as 

required for (iii). 

Clearly (iii) implies (iv). Now assume t h a t  (iv) holds, where v=v(x: ... . .  x~) for m ~< ~, 

and  t h a t  there  exists a group G such t h a t  GELId*, ~ is a set  of laws for  G, and there  exist  

g: ..... g ~ G  such t h a t  v(g: . . . . .  g~) ~=1. Now choose a h o m o m o r p h i s m  0: X a ~ G  such t h a t  

x~0 = g, for  i -- 1 . . . . .  m. Then  0 induces a h o m o m o r p h i s m  0': V/U - ~ -~ G since U V* (G) = 1. 

Clearly the  E(~,  lI)-closure of ~ in V / U - ~  is in the  kernel  of 0% whereas v(x: .. . .  , x~)O'= 

v(g: . . . .  , g~) ~=1. Hence  no such group G exists, and  so (iv) implies (i). 

COROLLARY 3.4. The ~-letter laws o] ~ have a ]init~ lI~*-basis i /and  only i / V / U - g  

is finitely generated as E(~, l~)-grou T. 

COROLLARY 3.5. ~ is lI~*-de/ined by n-letter laws i/ and only i/ V / U - ~  is the 

E( ~ ,  lI)-closure o / V / U - n .  

We look now a t  the  s t ruc ture  of the  pandec ts  of ~ when ~ is defined b y  outer  com- 

m u t a t o r  words. We  know of no f ini tely based va r i e ty  whose ~-pandects ,  for finite ~, are 

not  f ini tely genera ted  as abel ian groups. The  nex t  result  shows t h a t  no such va r i e ty  can 

be defined b y  outer  c o m m u t a t o r  words. F ina l ly  we calculate precisely the  pandects  of 

of the  va r i e ty  of M1 polyni lpoten t  groups of f ixed class row. 

I f  1 ~< a, fl 4 ~ ,  let E(a ,  fl) denote  the  set  of maps  f rom {x: . . . . .  x~} into  {z: . . . . .  x~} 

(with the  obvious in te rpre ta t ion  for a or fl infinite). Le t  E(a)  denote  E(g,  a) regarded as 

monoid .  There  is an  obvious embedding  of E(:r in E(a ,  9~), and  hence of ZE(a )  in ZE(a ,  ~); 

thus  VIA-0:  m a y  be regarded as a ZE(a) -module .  Now,  if a is finite, ZE(a )  is f ini tely 

genera ted  as an abel ian group; and  so is a n y  f ini tely genera ted  ZE(a) -module .  Recall  

t h a t  outer commutators are defined induct ive ly  as follows: x: is an outer  commuta to r ;  and 

if u(x I .. . . .  X,n ) and v(x: ..... xn) are outer  commuta to r s ,  t hen  so is [u(x:, ..., x~), v(x,~+:, 

. . . .  x~+~)]. 

THV, ORE~ 3.6. Let D be a set o/outer commutators on at most o~ letters de]ining the variety 

~.  Then the fl-pandect o] ~ is generated as abdian group by the image o /~  under E(~, fl). 

Proo/. Let v(x 1 ..... xr) E~; then  in V/A - f l ,  ~(g~, ..., ghr') =v(g:[gl, h:], ..., gr[gr, hr]) = 

v(g: . . . . .  gr), for all g~, ht EX~, i = 1 . . . . .  r. F r o m  the  construct ion of outer  commuta to r s  and 

the  c o m m u t a t o r  relat ions it  is now s t ra ight foward  to  check tha t ,  in VIA - f l ,  for  all 9,: . . . . .  g ,  

g in Xp, and  for  all i, @(g: . . . . .  g~-:, g~ g, g~+: . . . . .  gr) =v(g:  . . . . .  g~) +v(g:  . . . . .  g~-:, g, g~+: . . . . .  g~) 

and  v(gl . . . .  , g~-l, g71, gi+l . . . . .  gr) = --v(g: . . . . .  gr)" I t  follows immedia te ly  t h a t  the f l -pandec t  

of ~ is genera ted  b y  {v(x~ .... . .  x,,): 1 <~ij<~fl, v(xl . . . .  , xr) EO}. 
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C o1~ O~LARu 3.7. I n  the above si tuation,  V I A - ~  is generated as Z(E=)-module  by ~. 

U n d e r  more  res t r ic t ive  hypotheses ,  t he  pandec t s  of ~ m a y  be ca lcu la ted  precisely.  

W e  shall  t a k e  the  bas ic  c o m m u t a t o r s  in  {xl, x~ . . . .  } to  be def ined  and  ordered  as follows. 

The  basic  c o m m u t a t o r s  of weight  1 are  xl, x2 . . . .  o rdered  b y  X l < X 2 <  .... I f  basic  commu-  

t a to r s  of all  weights  less t h a n  n have  been  def ined a n d  ordered,  t hen  the  bas ic  commu-  

t a to r s  of weight  n are  al l  t h e  c o m m u t a t o r s  of the  fo rm [Cl, c~] where  Cl and  c~ are  bas ic  

commuta to r s ,  t h e  sum of whose weights  is n, such t h a t  c l > c  ~ and,  if c l = [ c  3, ca] where  

c a and  c a are  basic  commuta to r s ,  t hen  ca ~< c2. F o r  the  order ing,  basic  c o m m u t a t o r s  of weight  

n are  grea te r  t h a n  those  of smal ler  weight  a n d  ordered  in  some a r b i t r a r y  f ixed  w a y  amongs t  

themselves .  

I f  ~ ... . .  r denotes  t h e  po lyn i l po t e n t  v a r i e t y  of class row (c 1 . . . . .  c~) ( tha t  is ~ , . . .~ r  = 

~ r ~ C r _ l  ..- ~c,) t hen  ~c .. . . .  r is def ined b y  the  law w r=w ~( x  I . . . . .  x~ .... cr) def ined induc-  

t i ve ly  as follows. Le t  w x =w~(x  I . . . .  , xc ,)= [xx, ..., x J .  I f  w I . . . . .  w~_ 1 have  been defined,  such 

t hen  w ~ -  [w~_~, w~_~, ..., w~C~)~], where  w~)~ =W~_l(X(~_~) ( .. . . . .  ~_p+~ .... , t h a t  w~ = w~(x~ . . . . .  x ..... ~) - (~) (~) 

Xkc~... ci_ 1 )" 

T ~ E o ~  3.8. (T. C. Hur ley) .  The  fl-pandect o / t h e  polyni lpotent  variety  ?~ ..... cr o/ 

class row (c 1 . . . . .  cr) i s / r e e l y  generated as a b d i a n  group by the set e l  elements represented by 

basic commutators  o / we i gh t  c l . . .  cr in  Pc1... c~(X B) �9 

Proo]. L e t  ~(~) deno t ed  ~c . . . . .  ~. Since P(r)(Xp)__~ ..... or(X#), and  (AP~r))(XD) 

y( ..... c~)+l(Xp), i t  is clear t h a t  t he  e lements  represen ted  b y  the  bas ic  c o m m u t a t o r s  of 

weight  e 1 ... cr in  P(~)(X~) f ree ly  genera te  (as abe l ian  group)  a subgroup  of t he  f l -pandee t  

of ~(~). I t  is therefore  sufficient  to  show t h a t  these  e lements  genera te  the  f l -pandect ,  t h a t  

is, b y  Theorem 3.7, t h a t  each image  of wr under  E(c  1 ... c~, fl) can be wr i t t en  as a p r o d u c t  

of such e lements  and  the i r  inverses  m o d  ( A P ~ ) ) ( X # ) .  The a r g u m e n t  will  be b y  i nduc t i on  

on r. The case r = 1 gives t he  wel l -known resul t  t h a t  ~c,/~c1+1 is f ree ly  genera ted ,  as  abe l i an  

group,  b y  the  basic  c o m m u t a t o r s  of weight  c 1. Assume now t h a t  the  resul t  is t rue  for  

~r-1.  I f  7 E E(c  I ... cr, fl) t hen  w r y  = [w~)_17, .(c~) ̂ .1 1Wow each w (k) ..., -w~_~j. r-x is t he  image  ~̂ ~~ 

unde r  an  e lement  of E(c l . . .  cr-1, fl), and  hence,  b y  the  induc t ive  hypothes is ,  can be expressed  

mod(AP~r_I ) ) (XB)  as a p r o d u c t  of basic  commuta to r s  of weight  c 1 ... c,_ 1 in  P(~-I ) (Xp)  

and  the i r  inverses.  Hence  w ~  can be expressed m o d  ( A P ~ ) ) ( X ~ )  as a p roduc t  of commu-  

t a to r s  of the  form [u 1 . . . .  , ucr ] and  the i r  inverses,  where  each u~ is a basic  c o m m u t a t o r  of 

weight  c 1 ... cr-1 in  P(~-I)(Xp).  N o w  [u 1 . . . . .  u j  is no t  necessar i ly  a basic  commuta to r ,  

b u t  i t  can be expressed as a p roduc t  of bas ic  commuta to r s  of weight  cr in  {u 1 . . . . .  Ue, }. 

Now, since uj and  uk have  the  same weights ,  if uj = Iv1, v2] then  v2 has  smal ler  weight  t h a n  
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%. I t  follows immediately that  a basic commutator in {Ul, ..., uc,} is also a basic commu- 

tator  in {xl, x 2 .. . .  }. Since u 1 ..... %, are in P(r-1)(Xp), any commutator of weight er in 

u 1 ..... %~ is in ycr(Pcr_l)(X~)) =Pcr)(XB). TMs completes the inductive step. 

w 4. Infinitely generated examples 

The problem of deciding which varieties are not finitely based has recently received 

much attention. In  this paragraph, which is based on the work of Vaughan-Lee, we exhibit 

various varieties ~ which have the stronger property of having (in the notation of w 3) 

no finite 9~*-basis .  This is equivalent to a non-finite-generation property of the  pandeets 

of ~ (see w 3); a homological interpretation will be given in Chapter II.  In [38], Vaughan- 

Lee finds a variety ~ with an infinite set of independent laws, and we shall show that  these 

laws are in fact ~ * - i n d e p e n d e n t .  This set of laws requires infinitely many letters, and by  

a further refinement of Vaughan-Lee's argument we shah find a variety 0 with infinitely 

many 9~0*-independent 3-letter laws. Bounding the number of letters will give rise to a 

striking counter-example in homology. 

T ~ o t ~  4.1. (Vaughan-Lee [38]). For each n>~l, let vn denote the word [[xl, x2, x3], 

IX4, Xb] , ..., [X2n_t_2, X2n_k3], IX1, X2, X3] ]. Let ~ be She variety de]ined by 

iv,, . . }  u [z,, 

and let ~,~ be the variety defined by leaving out the law vn /tom this set. Then ~ is a proper 

subvariety o/ ~n /or each n = 1, 2 ... . .  

The proof of this result is given in [38], and we shall reproduce just enough of the 

details to enable us to prove our stronger result. 

Let  An be the group generated by  elements a 1 ..... a2n , subject to the relations a~ = 

[a~, aj, %] = 1, 1 ~<i, ], k <2n. Thus An/A'~ and A" are elementary abelian 2-groups. Denote 

the coset A'~g by ~ for g eA~, with a similar convention for B ,  as defined below. 

Let  B~ be generated by  {b~: g e A , }  U {e~: yeA,/A'~} subject to the relations b~= 

[b~, bh, bk]=l, g, h, k e A , ,  and 

(i) [bg, b h ] = l  if y 4 # ;  

(ii) [b~,bh]=c~ or 1 if y = # .  

In  ease (ii) the choice of c~ or 1 depends on a subtle rule which willnot be given here; instead, 

the consequences of the rule tha t  will be needed are given. 

(~) Ibm, b([a,.a~]...[a2n_l.azn]g)] = c~, 

(hence B~ is generated by  {bg: g e An)), and B~, as a vector space over Z~, has a basis 

{c~:yeA~/A'~}. 
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(fl) Every permutation of the generating set {bg: g EAn} given by right multiplication 

by any fixed element of An induces an automorphism of Bn, so that  B~ is an A~-group. 

ttence there is an An-isomorphism between Bn/B'~ and Z~.An in which, VgeAn, ~g~g 
t ~ �9 A t and an An/A~-lsomorphlsm between B~ and Z2(n/An) in which, VyEAn/A'~, ~ + ~ .  I t  

will be convenient to denote bl and cf by b and c respectively, so that, YgEA~, bg=b g and 

c-~=c a. 

(y) Every permutation of the generating set {bo: gEAn) given by an automorphism 

of A~ obtained from a permutation of {a~} induces an automorphism of Bn. 

Using (fl), put D,~--An[Bn; then 

((~) Y d e B , , V m 4 n ,  and u ..... g~,,EDn,[d,[g~,g~] ..... [g~m_~,g~m],d]=l 

(e) The map 0: Bn • D~ ~)-~ B~ defined by (d, gl ..... g~n) 0 = [d, [g~, g~],..., [g~_~, g~n], d], 

(2 n)__> ~ 2 n  ~ ~ ' u and u . . . .  ,g~nEDn, factors as ~ •  (Bn/B~)| (An[A~) B~, where 

the first map is the natural surjection, and the second is the homomorphism induced by 

ba| A ... A y ~ n - ~ ,  where A =0 if y~ ..... g~n are linearly dependent, i.e. if ~x A ... A ~.n =0, 

and is 1 otherwise. Here ~ denotes g~ rood BnA'~. 

I t  is clear from these results, in particular from ((~) and (~), that  Dn satisfies all the laws 

used in the definition of Q, with the exception of v~, and so the theorem follows. 

I t  is also clear from (e) that  B~ is Q-marginal in D~, and our next aim is to replace D~ 

by a quotient group whose derived group will be Q-marginal. 

L~MA 4.2. Let r>2, and let hx ..... hrEDn, h,--/~d~, /~EBn, d~EAn. Then, equating 

B~/B'~ with Z2An as in (fi), [hl, ..., h~]B'~ =]~d~([d~, d~] -d2) (1 -da) ... (1 -dr)  +/~(1 -d~) • 

d~(1 -da) ... (1 -d , )  § - [d l ,  d2])d~(1 - d , )  ... (1 -dr) .  

_Proof. A straightforward commutator calculation. 

Using (fi) to equate B~ with Z~(An/A'~), let I =  B~ be the augmentation ideal. Since 

An~An is elementary abelian of rank 2n, it is easy to see that  I ~  I2~ ... D I2n~ 12n+1 --0 

is a properly descending sequence of subgroups, with 12n of order 2, the non-zero element 

being (1 -a l ) . . .  (1 -a~n). 

L ~ A  4.3. With 0 as in (e), (Tr(Dn) x D~n))0=I  r - i , /or  r>2 .  

Proo/. This follows at  once from Lemma 4.2. Applying the lemma to the law vn gives 

v,~(D,~) = V(D,,) = P ,  so that  Dn/I 3 satisfies all the laws used to define Q with the exception 

of v n. Now consider vn(dl, d~, d3, gl, ..., g2n), d,, g, ElP n. I t  follows from (e) that  multiplying 

g,, i = 1 . . . . .  2n, by any element of D~ does not affect the value of vn. Also, multiplying 

d~, i -- 1, 2, 3, by any element of D~ multiplies [dl, d~, da] by an element of 74(Dn), and so, 
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by (s) and Lemma 4.3, changes the value of vn by an element of I a. Hence D~/I a 

~*-di f ferent ia tes  v n from the other laws used in the definition of ~ .  In fact since Dn/D~ E~2, 

Dn/ZS~2 ~*-differentiates the laws. This proves: 

THEOREM 4.4. With the above notation, v~ is ~* - independen t  o/{v,: i:~n} U (x~, s, 

[ [ x .  x2, x~], [x4, xs, x~], [xT, x~]]}. 

COROLLARY 4.5. The A~- oo-pandect o / ~  is not finitely generated as E(oo, ~)-group. 

In [8], Bryant  proves that  the variety 1I =!~4!~ 2 is not finitely based, where ~ 

is the variety of all groups of exponent dividing n. He constructs groups which differentiate 

between laws of the form (x~ ... x~) 4, and it is straightforward to check that  these groups 

do in fact ~lI*-differentiate between the laws. This gives rise to analogues for Theorem 

4.4 and Corollary 4.5 for the variety ~4 ~2 and its oo.pandect. 

We now construct a variety ~ whose 3-pandect is not finitely generated as E(3, 9~2). 

group and, hence, as abelian group. I t  is easy to construct infinitely many independent 

2-letter laws by replacing the letters xj in vt by  independent generators of F~, but it  is 

not easy to decide whether these give a non-finitely generated 2-pandect. As a preliminary 

step we revert to the case of infinitely many generators. 

L~MM.~ 4.6..Let v'~ =Vn(X 1 .... , x2n+l; x2n+~ .... , x4n+l ) be the law [Ix 1 ... . .  x2n+l], [x~n+2, 

x~+3 ] . . . .  , [x4~, x4~+1], [x 1 ..... x2~+l]] and ~'  be the variety de]ined by (v'~: n = 1, 2 .... }. Then 

with the above notation, V'(Dn) =v'n( Dn) -~ 12n, and Dn ~9.~'*-di]/erentiates v'n /tom (v'~: i ~=n}. 

Proo/. The proof of Theorem 4.4 needs only the slightest adjustment to give this 

result. 

We use Lemma 4.6 and the laws v~ as the basis for our construction of the variety 

~,  rather than Theorem 4.4 and the laws v~, only because our attempts to use the latter 

(and simpler) situation failed. To use the groups D~ to differentiate 3-letter laws they must 

each be embedded in a 3-generator group. In view of (F), Dn is a C2~(8)-group, where s 

s _  l~ i -~<2n-1,  and a ~ acts on A.  by a~-a~+~, 2~=a~; on Bn by ba~-~b~,; and hence on D~. 

Then C2~(8 ) [Dn is generated by (8, a~, b}. Unfortunately, to get the construction to work, 

a slightly more complicated group is needed, namely (C2n(8) • C2(t)) [(Dn • Dn), where s 

acts on each copy of Dn as above, and t interchanges the copies of Dn. Call this group 

G~; G~ is generated by (s, t, (al, 1), (b, 1)}, and only the subgroup generated by {s, t, (ba~, 1)} 

is needed. I t  remains to define 0.  Put  

w,  = w , ( ~ ,  x~, x3) 

= v~([x~, x~], [x~, x~] ~', ..., [ %  x~] ' ; [x~, ~ ] ,  [Xl, x~] ~*, .... [x~, x~] . ), 

and let ~ be the variety defined by (wn: n =2, 4, 8, ...}. 
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THEOREM 4.7. With the above notation, the laws wn, n =2,  4, 8 .... are ~2O*-independent. 

COROLLARY 4.8. The 9~-3-pandect o/ ~ is not finitely generated as abetian group. 

In  particular, ~ is not a Schur-Baer variety. 

Proof of Theorem 4.7. I t  will be shown tha t  G n 9~2O*-differentiates wn from {w~: i #n ,  

i=2,  4, 8 . . . .  }. Since Ix1, xe] and its conjugates take values in D n • Dn, and Dn satisfies 

the laws v'~ for i # n ,  it follows tha t  G~ satisfies the laws w~ for i # n .  By the same token, 

if e is the non-zero element of 12~, Y(G,~) =w~(G,~)~_<(e, 1), (1, e)}. In  fact w~ is not  a law 

in G~, for wn((bal, 1), t, s) has each component  in D~ • D n equal to v'n(ba 1, ba~ . . . . .  ba2n, ba~; 

ba 2 ..... ba~) =e, b y  a simple application of Lemma 4.2 and (s). I t  remains to check tha~ 

G~ and s ~ are wn-marginal. This will imply tha t  Y(Gn) is central in Gn, so Y(Gn) = <(e, e)> is 

of order 2. 

Say tha t  g E G~ is marginal in the first place if w(glg, g2, g3)= w(gl, g2, g3), V gl, g2, ga E G~, 

with similar conventions for the second and third places. Say tha t  S__ G~ is marginal in the 

i th place if all its elements are. 

Since D~ is v~-marginal in Dn, D~ x D~ is marginal in Gn, and D~ x D~ (and a fortiori 

G~) is marginal in the third place. Let  gl, g~, gaEG~ and put  [gl, g~]g]=(dl,~+l, d2,~+1) for 

i = 0 ,  1, ..., 2n. The image of d~, in A~/A'~ will be denoted by  dj~; observe tha t  JJ. 2n+l = ~Jl- 

Let  d n =/jdj ,  ] = 1 ,  2 , / j eB~,  djEA~. Then LeB~/B' ,  ~-Z2A~ as in (fl). Let  ~j be the image of 

L in Z2(A~/A'~ ) and gj = ~(5) be the image of Lunder  the augmentat ion Z2(A,/A')-+ Z 2. Then 

w~(gl, g2, g3) = (galA1, e~2A2) (1) 

where Aj = 0  if c7 n . . . .  , c~j. an are linearly independent and is 1 otherwise. 

For 

w~(g .  g~, g~) = ( @ 1 .  dl~ . . . .  , d~. ~ , .  41~], dl~, ..., d~. ~ )0 ,  ( Ida .  d ~  . . . . .  d~, ~ ,  d~l], 

d2~ .... .  dl, 2~) 0), 

and hence this formula is certainly correct in the j- th place if A~ =0,  so suppose c~;1 . . . .  , 

~t. ~ are linearly independent. Then Lemma 4.2, together with (s), gives the ]th component  

of w~(gx, g~, g3) as the sum of 3 terms. The third te rm vanishes trivially; the second vanishes 

since (1- -g~l ) (1- -~ .2n+x)=(1-~n)2=0 in B'~=Z~(A,/A',); and the first gives e~r for 

( 1 - $ r  = e as  { o ~  . . . . .  ~r Sn}  
! 

is a basis for A~/A ~. 

The next  step is to prove tha t  s 2 is marginal in the third place. Since it has already been 

shown tha t  D= • D= is marginal in the third place it is enough to prove tha t  w~(g 1, g2, g3) = 

w~(gl, g~, g3 s2) whenever g3 =s~t~. Consider first the case when r is even. Then 
g~ ~r~t 

d~. ~+~ = d;1 = dn = d~l; so A~ = 0, 



BAER-INVARIANTS,  ISOLOGISM, VARIETAL LAWS AN]) HOMOLOGY 1 2 5  

and w~(g 1, g~, ga)=w~(gl, g2, g3 sa) =0. Assume now that  r is odd. Since at is independent 

of ga, the linear independence of {0~ n ..... d~. a~} is the only problem. Clearly 

dj.,+l=d~, if e = 0  or i i s  even 
ST* 

=da_j.1, i f e = l  and i i s o d d .  (2) 

If  e=0 ,  letting i go from 0 to 2 n - l ,  d*=(s') t goes through all elements of Gan(a ). If e = l ,  

letting i go from 0 to 2 n - 2  through even values, d * goes through all non-generators of 

Can(S), and letting i go from 1 to 2n - 1 through odd values, s r~ goes through all generators 

of Can(S ). Thus in either case replacing r by another odd integer permutes the elements 

{d n ..... dzan} among themselves, and does not affect the linear independence of {r 

Hence s a is marginal in the third place. 

The final step is to check that  

Vgl, ga, gaEGn and VgEG~, and for g = s  a, 

w,(glg, g2, gs)= w~(gl, gag, g3)= w~(gl, gi, ga). By the above calculationit is enough to consider 

ga=st ~, e = 0  or 1; also it is enough to prove that  w~(glg, ga, gs)=w~(gl, ga, ga). An easy 

calculation shows that  

O'n = {(d, d)(1, d')(/, ])(/', 1): d, d'eA~, 1,/'eB~, 
2n 

~' = Z ks 5, where E ks is even, o~(]') = 0} (D~ x D' ) .  
1 f 

I t  follows that  multiplying gl by  an element of G~ multiplies [gx, ga] by  an element of the 

form (d', d') (1, d") ([',/") rood D~ • D ' ,  where, if 

an ~ 
v _ tt _ v ,, d'=~k,~, and d " = ~ , ~ , , ~ k , =  a , -  ka,_~--Omod2 

and ~( / ' )=~( /")=0.  I t  follows from (1) that  the term (/ ' , /") can be ignored. With dj~ as 

above, let 
dn=~l,g, ,  and ~ 2 = ~ m , 5 , .  

(It is clear from (2) tha t  A x depends only on d n and c71~. ) Then it follows from (2) tha t  

either e = 0  and ml=li-1 for all i (suffices mod 2n) or e = l  and 0~l~=dax. Thus, multiplying 

gl by (d', d'd") replaces l~ by li+/c~, and replaces m, by  mi+/d,_l if e=0 ,  or by  m,+k',_l+ 
]c~'_~ if e =1.  I t  will be shown in Proposition 4.11 that  

�9 n n n g n 

i l =  i ( 0 ~ l i  . . . .  C~l, art)='(~ll2f)(~,lm,:q)+(~a,-1)(~,lm2i-1) roOd2, 

I t  is clear from the conditions on {/c:} and {/c~} m a t  of the four factors in this expression, 

either all or none is changed mod 2, so that  Az remains unchanged. Similarly for As. 
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The effect of multiplying gl by  s ~ will be to replace [ql, g~] by  [ql, g~]8, [s~, g~]. Let  

/2n 2n \ 
~:  t i i l [s=,g~] = | Z  ,a,, ~ m ,a , I  ( h , h ' ) m o d D ,  x D , , h , h  e B , .  

\ 1  1 / 

Then 
n n n 

l' ' - l' 5m ,= 5 3 , - , -  mode 
1 1 1 1 

and a ( h ) = a ( h ' ) = 0 .  I t  is clear tha t  in (1) ~1 and ~2 are unaltered. To evaluate the effect 

on A 1, notice tha t  l~ is replaced by  l~_a+l~ and m~ b y  mi_~+l~_l if e---0 and m~_~+m~_l 

if e- -1  for each i. Hence none of 

X 3 , - 1 ,  X l 2 i ,  Z m 2 i ,  XgT~2i-1 
1 1 1 1 

is altered mod 2, and so A 1 is unchanged. Similarly for A 2, and, subject to Proposition 4.11 

the theorem is proved. 

The problem has been reduced to a question about  determinants.  Pu t  r = 2n and let 

x~, Yt, i = l  . . . . .  r be indeterm]nates over the field of C complex numbers. The assumption 

tha t  n is a power of 2 will be held in abeyance. Let  ~(x, y) denote the determinant  of 

x l  x2 x3 . . .  xr  

X r - l  X~ X 1 . . .  ~ r - 2  

X r - S X r - 2  ~ r - 1  . . .  ~Cr-4 

x 3 x 4 x~ . . . x  2 

Y,  Y l  Y2 . . .  Y~-I  

Y , - 2 y r - l y ,  -.- Yr-a 

Y~-4Y,-sY~-~ ... Y,-5 
"_ : : 

Y~ Ya Y4 ... Yl 

Rearranging the rows so tha t  x and y rows alternate it can be seen tha t  this is equal (up 

to sign) to the block circulant 

where 
~Cr- 1 X r 

\Yr Y l /  \Yr-2 y r - z /  
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Let  ~ be a primitive n-th root of unity, then it  follows from T. Muir [41] Chapter 12, w 514 

that  this can be expressed as 
n--1 

( -  1) ~-~>(~-~>~ 1-I {x~ + ~ x ~ +  ... + ~ ( ~ - ~ x . I .  
k=O 

Let  o~ be an r-th root of unity, and let 

n n 7~ 

_ ~ 2  2 ' - 1  / " 

L~.M~A 4.9. Let 2 be a primitive r-th root o/unity, then 
n-1 

A(_x,y_)= l-I l~(x-,y_ ). 
0 

X n n Proo/. I t  is clear tha t  the product has the same coefficient of 1 Yl as A(_x, y), so it 

remains to check tha t  this product is equal to 

n - 1  

-~ ]-~ IX l -~  ~ X 2 - - ~ . . . . ~ ( n - 1 ) k X n [  where ~ = 2  z. 
k=O 

:Now 

0 

n-l{x + ~ x  + +~2('-1)~x x +~'x + +~2(n-1)kx 1 

=-  ~ ~ [(~ ~, 2 '~) (1~ ~, 2'~) - (~ ~,=~ 2 (~'-'~) (~ y~_~ ,~-~>~)] 
n--1 " - YI/~,(_x,_y). 

0 

PROPOSITION 4.10. I] n is a power o/2, 

(~ ) (~1 ~ ) (~ ) (~ ) A(_x,~y)- x~_l 25-1 § x~ y~, mod2.  

Proo/. In  the cyelotomic field Q(2), the prime ideal (2) ramifies and is the n-$h~power 

of the prime ideal (1 -2 ) .  Hence A is even if and only if 1 - 2  divides ]~(x, y) for some i, 

and this is true if and only if/~.(x,_y) is even. But  

and so the result follows. 
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CHAPTER II 

w Itomological machinery 

The homology we shall employ is a special case of a number of theories described by  

various authors. Theories of Barr  and Beck [6], and of Rinehart  [33], are most suited to 

our needs; for a brief account of how these and other theories are to be adapted to the 

varietal situation, see [24, I] w 2. 

If  C is a variety, and H E~,  (C, H) denotes a category whose objects are the groups 

in ~ supplied with a fixed surjection (usually suppressed) onto II. In  particular H, as an 

object of (~,  1]), will be assumed to be supplied with the identi ty map. The morphisms 

of (C, H) are the group homomorphisms for which the obvious triangle commutes; two 

of these homomorphisms are already required to be surjections, if the third is as well, 

the morphism is a sur]ection in (C, II). A reason for using (C, H) rather than C is tha t  if 

g is a H-module we wish to have a functor tha t  takes G in ~ to Der(G, B); but  this is 

possible only if there is a fixed homomorphism of G into 11, so that  B becomes a G-module. 

I t  is possible, and usual, to take the objects of (C, H) to be groups in C with any fixed 

homomorphism into H. The restriction to sur]ections produces occasional slight simpli- 

fications. Throughout this section, G will denote an object in (C, l-I). 

(i) If A is an abelian category with enough projectives, and T: (C, H)-~A is any 

functor, then for every integer n ~> 0 there is a functor Ca( - ,  T) from (C, IF[) to ,~, the n-th 

derived functor of T. The image of a morphism a under C n ( - ,  T) will be denoted by  ~ ,  

and not by C~(~, T); see (iii). 

(if) If  G is a C-free group (or more generally a C-splitting group) then ~n(G, T)=0 

for n > 0 ,  and C0(G, T)=T(G). (see [6], 4.4 and w 5 or [33], Proposition 2.7, Definition 

2.6 and Proposition 2.4). 

(iii) If  ~: E-+G is a surjection in (C, H) there are objects C~(~, T), and morphisms, in 

tha t  make a long exact sequence 

C~(~, T) ~ Cn(E, T) ~ Cn(G,T) ~ C,-1(~, T)-~. . .  a0 , C0(G, T)-~ 0. 

A commutative square 

6r 



BAER-INYARIANTS, ISOLOGISM, VARIETAL LAWS AND HOMOLOGY 129 

in (S, II), with ~ and 8 surjections, gives rise to a commutative diagram 

. . .  -~  S.+l(al, T)-~ S.(~, ~) ~ S.(E1, T) ~ . . .  

. . . - - ,  ~.+1(0~, TI--. (8, T)--- ( ~ ,  T ) - ~  . . . .  

I n  particular, the commutative square being a morphism of ~ into fl, S n ( - ,  T) defines 

a funetor on the appropriate morphism category (see [6], Proposition 2.2, in which ~ 

is not required to be a surjeetion, thus introducing an extra term on the right; or [33], 

Theorem 2.18. That the exact sequences in these theories agree when ~ is a surjection is 

proved in [24, II] Remark 1.3). 

(iv) The right H-modules B for which II [B lies in S are precisely the right SI I -  

modules, where S II is a certNn quotient ring of ZII. (See Knopfmaeher [22], or [24, I] w 1.) 

This is consistent with the terminology of w 1.1. If  P in (S, l-I) is S-freely generated by 

y, then IP| is freely generated, as right SII-module, by {(1 - y ) |  yey}, ([24, I], 
P 

Lemma 1.2). If  S contains 9I var lI, then clearly ~I I - ' -ZII .  Similar results hold for left 

modules; the same quotient ring S I I  occurs. 

If  A is a left SII-modnle, and T: (~, I I )~Mb is defined by T(G)~IG| then 
G 

Sn(G, T) and Sn(~, T) will be denoted by ~ ( G ,  A) and S~(~, A) respectively. If  A = SII ,  

regarded as a left SII-module, then T and its derived functors will be taken to have values 

in the category of right SH-modules. If  B is a right SH-module, and S: (S, H)-~4b ~ 

is defined by S(G)= Der (G, B), then Sn(G, S) and Sn(~, S} will be denoted by ~n(G, B) 

and Sn(~, B) respectively. These functors are all additive in the module. 

The group H is suppressed in the notation as it  plays only a minor role. If F ~ H  

is a fixed surjection, GE(S, F), and T: (S, H)-~A, then G defines an object G* of (S, H), 

T defines a functor T*: (S, F)->~,  and S=(G*, T) is naturally isomorphic to Sn(G, T*) 

for all n >~0. l~or example, writing G for G*, S~(G, A) takes the same values if G is regarded 

as an object of (S, H) or of (S, F). In particular, if G is fixed, we may take H =G. 

(v) A short exact sequence of left (right) SH-modules gives rise to a long exact 

sequence in homology or cohomology as in the classical theory; however, since varietal 

homology does not in general vanish in positive dimensions on projective modules, and 

similarly for cohomology and injective modules, these exact sequences are of little use, 

beyond the simple fact that  the (co-)homology groups are funetorial in the module. 

(vi) So(G, A) =IG| and S~ B) =Der  (G, B). If ~: E-~G is a surjectionin (S, II), 
G 

then S0(~, A)=(R/[R, S])| and S0(~, B)=ttomII(R][R, S], B), where R = k e r  ~, and 
1I 

S=ker(E-~II ) ;  here E acts on the right on R/[R, S] by conjugation, and this induces an 
S t -  752909 Acta mathematica 137. Imprim6 le 22 Scptembre 1976 
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action of H via E-~H.  (The evaluation of ~+(O, A) and ~'~ B) is easy in any appropriate 

theory; for a discussion of ~0(~, A) and g~ B), see the remarks before [24, I] Theorem 2.1). 

(vii) I f  ~ = ~ ,  the universal variety, then for all n > 0 ,  ~n(G, A)--Hn+I(G, A) and 

~n(G, B) =H~+I(G, B); see [5] or [33]. Hn(G, A) is defined as TorZ~(Z, A), and so, using 

the  exact sequence O->IG~ZG-+Z~O, TorZG(IG, A)=Hn+i(G,A) for n > 0 ;  thus 

~n(G, A)=TorZa(1G, A) for n/> 0, by  (vi). Similarly ~n(G, B)=Ex t~a ( IG ,  B) for n/> 0. 

I t  is a basic fact of the homology theories in question that  they give rise to the usual 

Tor and Ex t  if ~ is an abelian variety. For  example, if ~ =9~, ~ ( G ,  A) -~ Torn(G , A) and 

~n(G, B) = E x t  n (G, B); these vanish for n > 1. If  ~ ---9~m, then G, A and B must be of expo- 

nent  dividing m, and !Bn(G, A) -- Tor~Z~i(G, A), ~n(G, B) -- E x t , ( G ,  B). These vanish if n > 0 

and m is square free. 

(viii) I f  ~ is a variety containing ~ there are "change of var ie ty"  homomorphisms 

~ ( ~ ,  ~ ,  G, A): ~ ( G ,  A)'~n(G, A) and ~(!~,  !tg, G, B): ~n(G, B ) - ~ ( G ,  B). They are 

isomorphisms for n = 0 ,  and if n=-1 they are surjections in homology and injections in 

eohomology; see [24, III],  w 1 and Corollary 2.2. They are isomorphisms if n = 1 and 

contains 9~ var G; see [25]. Similar results hold if G is replaced by  a surjection, except that  

there is no analogue for the isomorphism obtained if n- -  1 and ~ contains ~ var G. 

(ix) ~i(G, B) classifies extensions 1-~ B-+ E-~ G-~ 1 such that  conjugation in E induces 

the given G-module structure on B, as in the classical theory, with the additional condition 

that  E lies in ~.  If I ~ B ~ E ~ G ~ I ,  i=l,  2, are extensions as above, so is their Baer 
2~ 

sum 1->B-+E i ~ E2~G~I. With this addition, the isomorphism classes of extensions 

form a group, with identi ty represented by  the extension 1-+B->G[B-~G~I; and the 

correspondence between the set of isomorphism classes of extensions and ~l(G, B) is a 

group isomorphism; see [7] or [33], w 3. This interpretation is easily seen to be respected 

by  change of variety homomorphisms in the obvious sense; which explains why ~01(~, ~[9, G, B) 

is an injection, and is an isomorphism if ! ~ 9 ~  var G. The interpretation is also natural 

in G and B. 

(x) If ~: D~G is a surjection in (~, l-I) with kernel/~,  ~l(~, B) classifies extensions 

I ~ B ~ K ~ R - + I  where K is a ~D-group as in w B-~K and K ~ R  are D-homomor- 

phisms, and the action of K on itself by  conjugation agrees with the action defined via 

K ~ I ~ D .  Here D acts on B via D~G, and on R by  conjugation; note tha t  B and R are 

both ~D-groups, and that  B is mapped into ~(K). If  I~B~L~R->I  is another such 

extension it  is equivalent to  1 -~ B-> K-~ R-~ 1 if there is a D-isomorphism between K and L 

inducing the identi ty on B and R. The set of equivalence classes forms a group under Baer 

sum (with the obvious action of D on the middle term) isomorphic to !Bl(~, B); the isomor- 

phism is natural in ~ ,  g and B. 
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The homomorphism ~I(D, B)-* ~l(g,  B) of (iii) corresponds to sending the extension 

1-*B-~E-*D-~ 1 to the extension 1-~ B-~K -* R-* I ,  where K is the kernel of the composite 

E-*D-*G. The action of D on K is induced by the action of E on K by conjugation; this 

is well defined since B centralizes K. See [33] w 4. 

(xi) If ~ there is an exact sequence 

~32(G, A) of 2 , !~(G, A)-->!~o(G , ~ 1 ( - ,  A))~![t)l(G, A) (Pl ,~I(G, A)__~0 

where ~01 and ~% are the change of variety homomorphisms of (viii); see [24, III].  If ~ 9 ~ .  

var G and ~ = ~ ,  ~01 is an isomorphism, ~c, is an injection, and the resulting short exact 

sequence O - + ~ ( G , A ) - ~ ( G ,  A ) ~ o ( G  , ~ I ( - , A ) ) - ~ 0  splits; see [25]. Similar results, 

with the arrows reversed, hold in cohomology. In  w II.3 we shall obtain a generalization 

of the cohomology exact sequence in which G is not required to lie in ~ .  

The next  result is needed to calculate a term in these exact sequences. 

(xii) With T as in (i), ~o(G, T) may  be calculated as follows. Take a ~-free (or 

~-splitting) group P0, and a surj ection P0-+ G with kernel R. This supplies P0 with a surj ec- 

tion onto II. Take another ~-free (or ~-splitting) group Q, with a homomorphism into R 

whose image generates R as normal subgroup of P0. Let  P1 he the verbal product of P0 

and Q. There are two surjections, d o and dl, of P1 onto P0, defined as follows. Each maps 

/)o, as a verbal factor of P~, identically onto P0; do maps Q into R by  the given homomorphism 

and d 1 maps Q to the identity. The composites of d o and of d I with Po--->G give coincident 

surjections of P1 onto G, and so, after a further composition, of P0 onto II; thus P~ may be 

regarded as an element of (~, II). Then !~0(G , T) =coker  (d 0 T - d  1 T). This is the beginning 

of the 'construction pas ~ pas' of Andrd [1]; a slightly more general construction is given 

in the proof of [33], Proposition 2.4, see [ibid], Definition 2.6., which also arises from the 

construction of Tierney and Vogel [36]. 

(xiii) In  conclusion, there is a number of obvious commutative diagrams, too large 

to enumerate. For example let (~, 11) be the category of varieties containing 1I, with 

morphisms the inclusions, and let ~ be the category of left 11II-modules. Then for every 

integer n>~O, ~n(G, A) defines a functor from (~9, ~)o~ • (]I, l-I) •  to Ab. The homo- 

morphism corresponding to a change of variety appears in (viii). 

w 2. An interpretation of ~2(G, B) 

Let a: D ~ G  be a surjection in ~,  and let B be a right ~G-module. By splicing two 

short exact sequences, one sees from (x) tha t  ~l(g, B) classifies exact sequences 1 -~ B-~ K -> 

D-5,~G-->I of ~D-groups, as defined after Lemma I. 1.9, where D acts on itself and on G 

via conjugation, the homomorphisms are all homomorphisms of D-groups, the action of 

9--762909 Acta raathematica 137. Imprim6 1r 22 Septembre 1976 
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D on B is induced by  the action of G on B via a, and the action of K on itself by  conjuga- 

tion agrees with the action defined via K ~ D .  This implies tha t  B is embedded in ~(K). 

I f  1 -~ B-~ K ~-~ D - ~  G -~ 1, i = 1, 2, are two such sequences they are equivalent, and correspond 

to the same element of ~ ( ~ ,  B), if and only if there is a D-isomorphism of K 1 onto Ku 

giving rise to a commutat ive diagram, 

1 , B  ,K~ , D  ,G--- - - -*I  

1 , B  , K  2 , D  , G  ,1 .  

The equivalence class containing a sequence $ will be denoted by  [$]. Let  Ex t l (~ ,  ~, B) be 

the set of equivalence classes of such sequences, so tha t  there is a natural  bijection between 

E x t l ( ~ ,  r162 B) and ~1(~, B). This becomes an isomorphism when the obvious addition is 

defined in E x t l ( ~ ,  a, B), see (x). Information on the natural i ty  of this isomorphism 

in ~ will be needed. I f  SI~I~B~K1--->D1--~G~I defines an element of E x t l ( ~ ,  ~, B), 

and if 0:D~-+D1 is a homomorphism, with D2E!~, such tha t  Oo~=fl, say, is a surjection, 

then put  $2=-I-+B--*K2-*D2~-d*G~I, where K ~ = K l x D  2. The homomorphisms are the 

natural  ones, and with the natural  action of D 2 on K2, $2 clearly defines an element of 

Ext l (~ , /~ ,  B). Thus 0 defines a map 0": Extl(!~, ~, B ) ~ E x t l ( ~ , / ~ ,  B) sending $1 to $2. 

Also 0 defines a morphism of fl to ~ (put y =0 and (~=la in (iii), the roles of :r and/~ are 

reversed), and hence 0 induces a homomorphism 01: ~1(~, B)-* ~l(fl, B); and if s 1 e ~1(zr B), 

% E ~1(//, B) correspond to $1 and S~ respectively, then slO 1 = s~. The more general case in 

which G is allowed to vary  is similar, but  will not be needed. 

Pu t  C2(~, G, B ) =  IJ~ E x t l ( ~ ,  ~, B), the union being taken over all surjeetions r162 in 

with image G. Working within a Grothendieck universe, C2(!~, G, B) becomes a set. I f  

S~- I  ~ B - ~ K ~  D~->G-+I, [$~] eC2(!~, G, B), i = l ,  2, 
B 

let [$1] § =[S],  where S-1--*:B--*K1 • K2--->D1 x D2-+G--->I; the action of D 1 x D~ on 
B 

K 1 • K s is the natural  one. I t  is easy to see tha t  addition is well defined, and makes 

C2(~, G, B) a commutat ive monoid, with identi ty the sequence 1-+B- -%B~G-~G~I ,  

where B ~ G  is the trivial map. This addition will become compatible with the addition 

already defined in Ex t l (~ ,  ~, B) on the introduction of the equivalence relation of similarity 

below. (The proof of this s ta tement  is contained in the proof of Theorem 2.1.). 

I f  S=-I--->B-->K-+D--->G--*I defines an element of C2(~, G, B), say tha t  S and [S] 

are null if the commutat ive diagram 
I ~ K--* E~G-+ I 

111  
I ~ B ~ K - - ~ - D ~ G ~  I 
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with exact rows can be completed, with E E ~,  in such a way that  the action of E on K by  

conjugation agrees with the action via E-~ D. I t  is easy to see tha t  the null elements of 

C2(~, G, B) form a submonoid.  Say that  two elements of C2(~, G, B) are similar if they 

become equal on adding to each a (possibly different) null element. This is clearly an 

equivalence relation that  respects addition. Let  Ex t  2 (~, G, B) denote the resulting quotient 

monoid. 

THEOREM 2.1. Ext~(~,  G, B) is an abelian group, naturally isomorphic to ~2(G, B). 

Proo/. Define @: C~(~, G, B)-~ ~2(G, B) as follows. If IS] EExt  1 (~,  ~, B) corresponds to 

sE~l(~,  B), let [$ ]0  be the image of s under ~l(g, B ) ~ 2 ( G ,  B) as in (iii). Then, in 

particular, for a homomorphism ~ with domain a U-flee group P (and such an ~ always 

exists), since ~ ( P ,  B)=0 ,  the exactness of ~1(~, B)_>~(G,  B)_+~(p,  B) shows that  

is onto. If the domain of ~ is an arbitrary group D in ~,  the exactness of ~I(D, B)-~ 

~1(~, B ) _ ~ ( G ,  B), together with the last part  of (x), shows that  [ $ ] |  if and only 

if $ is null. I t  remains to check that  @ is additive. Let  S~-I-->B-+K~D~---*G~I define 

an element of E x t l ( ~ ,  a~, B), st be the corresponding element of ~1(~,  B), and t~ be the 

image of s~ in ~1(~, B), i = 1, 2; here ~: D 1 x a D~-+G is the canonical surjection, and the 

morphism of ~ to ~ is given by  the projection 0~: D 1 ~ D ~ D i .  Let  t E ~1(~, B) correspond 

to [S1]+[S~]. Since the composite ~1(~,  B)-~!~(~, B ) ~ ( G ,  B) coincides with the 

homomorphism ~(g~, B ) - ~ ( G ,  B), see (iii), it is enough to check that  t 1 +t2=t. l~ow, 

if R~=ker ~ ,  t~ corresponds to f f~=-I~B~K~ x R~-+D 1 ~ D ~ G ~ I ,  ] = 3 - i ,  where the 

homomorphisms and the action of D 1 ~ D~ on Ks • R~ are the obvious ones; see the discussion 

of the functoriality of E x t l ( ~ ,  ~, B) in ~ before the statement of the theorem. So t l§  2 

corresponds to if, where ff is obtained by adding ffl and if2 as elements of Extl(!~, ~, B); 
J~ 

see (x). I t  is easy to see that  ~--I--->B~K 1 • K2~D1 ~ D 2 ~ G ~ I ,  again with the obvious 

maps and action; but  [~] = [$1] § [32]. This completes the proof tha t  ~ induces an isomor- 

phism between Ext~(~,  G, B) and ~2(G, B). I t  is easy to see how Ext2(~,  G, B) becomes 

a functor of !8, G and B (varying G requires the introduction of a 'base' group H), and the 

naturali ty of the isomorphism is then routine. 

lVo~e. ~f $~=- I -~B-+K~D~ G-~ I  defines an element of C~(~, G, B), i = l ,  2, [$1] 

is related to [S~] if there is a commutative diagram 

1-+ B ~  KI-~ I)I-->G~ I 

I ~ B-" K 2 ~  D2~G--" 1, 

where Kv-,K~. is a Dl-homomorphism , D~ acting on K 2 via D ~ D  2. I t  is easy to see, 
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as in Gerstenhaber [11], tha t  similarity is the finest equivalence relation on C2(!3, G, B) 

with the property that  related elements are equivalent. 

The second cohomotogy group can also be interpreted in terms of obstructions. This 

was first done for the variety of all groups by  Eilenberg and MacLane in [9]; for a t reatment  

based on the Gruenberg resolution, see [12]. A triple-theoretic technique deahng with 

commutative algebras was produced by Barr in [4], and generalized by Grace Orzech in 

[32]. Her  results include the case of varieties of groups. 

Let  1-+K-+E->G-,-1 be exact and let B=~(K) .  Then E acts by conjugation on K, 

and this gives rise to a homomorphism O: G-+Out K, the group of outer automorphisms 

of K. A G-module structure is induced on B by 0. Conversely, given 0: G-+Out K, 0 makes 

B=~(K)  into a G-module, and obstruction theory asks whether 0 arises as above from 

an extension, and if so, in how many ways. The solution is obtained by associating with 

every such 0 an element of Ha(G, B)= ~(G, B) in such a way that  those arising from 

extensions correspond to 0. If 0 does arise from such an extension, then ~I(G, B) acts 

naturally, faithfully, and transitively on the set of all such extensions. Moreover, every 

element of �9 B) does arise from some 0. 

Suppose that  in the above situation E e l ,  ~ some variety. Let  N = i m  0, and M 

be the inverse image of/V in Aut K. I t  is easy to see that  K is a ~M-group, and this makes 

B a ~G-module. If  0: G-~0ut  K satisfies this condition, and Ge ~,  call 0 a ~-G-B-core. 

Orzeeh's obstruction theory then associates with every ~ - G - B-core an element of ~ (G, B), 

those that  arise from extensions are those that  are associated with 0, and given a fixed 

! ~ - G - B - c o r e  associated with 0, ~I(G, B) acts naturally, faithfully and transitively 

on the set of extensions giving rise to the given core. Introducing an equivalence relation 

on the set of ~ - G - B - c o r e s  they can be made into a group 0bs(~ ,  G, B), after the style 

of [9], so that  the above theory gives rise to an injection of 0bs  (~, G, B) into ~ ( G ,  B), 

natural in !~ and G; this injection is an isomorphism if the ~-free groups of large enough 

rank have trivial centres. This condition on the centres cannot be dispensed with; for 

example it  is clear tha t  0bs (~, G, B) is trivial if !~ is an abelian variety, whereas the only 

abelian varieties ~ for which ~2(G, B) is always trivial are those of exponent m, where 

m is 0 or a positive square-free integer. 

The requirement tha t  B be the whole of the centre of K has two disadvantages. 

Firstly, i t  means tha t  0bs (!~, G, B) is not  funetorial in/~,  and secondly that  some elements 

of ~ ( G ,  B) may not arise as 'obstructions'. We now indicate how a theory without these 

drawbacks can be constructed, see Gerstenhaber [11]. 

Given 0, G E ~ ,  B, K, M and N as above, there is an exact sequences 0 ~ 1 -+ B~K-+ D-~ 
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G-~I,  where D = M •  G, K-~D is induced by  the homomorphism K-~M given by  the 
IV 

action of K on itself by  conjugation, and D-~G is the canonical projection. I f  D acts on 

K via the projection D ~ M ,  te defines an element of C2(Q, G, B). The Q - G - B - c o r e  

defined by  0 arises from the extension 1 -~K-~E-~G-~I  if and only i~ the commutat ive 

diagram 
1 - ~ K - ~ E - ~  G-~ 1 

1 . - - ~ B ~ K ~ D ~ G ~ I  

can be completed in such a way tha t  the action of E on K by  conjugation agrees with the 

action via E-~D. 

Now eM1 a commutat ive diagram 

1-----~ B-.---* K ~ L ~ G ~  I 

1 11 
I ~ ( K ) ~  K->.D->G~ I, 

where B is now just a G-submodule of ~(K), the rows define elements of C2(Q, G, B), 

is the inclusion, and the given action of L on K agrees with the action via L->D,  a relative 

Q - G - B - c o r e .  Thus a relative Q - G - B - c o r e  may  be throught  of as a part ial ly solved 

extension problem. Call an exact sequence 1-~K-~ E-~ G-+ 1 tha t  fits into the commutat ive 

diagram (3), with D replaced by  L, and the same condition on the action of E on K,  a 

8olution to the above relative Q - G -  B-core. 

The connection with cohomology is now immediate.  A relative Q - G - B - c o r e  as 

above is determined by  its top row, and so there is a bijection between C2(Q, G, B) and the  

set of (isomorphism classes of) relative Q - G - B - c o r e s ,  in which the cores with a solution 

correspond to null sequences. This gives rise to a map of the set of relative Q - G -  B-cores 

onto Q2(G, B) in which the cores with a solution are those tha t  map to 0. l~Ioreover the map  

is natural  in Q, G and B. Finally it  can be shown, as in [11], tha t  if a relative Q - G - B .  

core has a solution, QI(G, B) acts naturally, faithfully, and transit ively on the set of 

solutions. I f  I ~ B - ~ T ~ G o l  corresponds to an element of QI(G, B), i t  acts by  sending 

1-->K-~E--~G-~I to I ~ K ~ E  x T~G-+I.  
G 

w 3. An exact sequence 

The object of this paragraph is to establish, for any var ie ty  Q, group G, and QG- 

module B, an exact sequence 

O~QI(G/V(G), B ) - ~ I ( G ,  B)~Homa(QM(G),  B)~Q~(G/V(G), B ) ~ ( G ,  B). 
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Since B is a ~G-module, it may also be regarded as a !8(G/V(G))-module by Lemma I. 1.13. 

I t  will be shown in the next  paragraph that  this exact sequence coincides with the coho- 

mology sequence in (xi) provided that  G E !8. The proof will depend entirely on the inter- 

pretations of the groups in the sequence in terms of extensions. I t  is easy to construct 

a long exact sequence connecting ~n(G/V(G), B), Hn(G, B), and a 'mystery '  term in 

each dimension, by  mapping a simplicial resolution of G in H onto a simplicial resolution 

of G~ V(G) in ~,  applying D e r ( - ,  B), and forming the long exact cohomology sequence 

of the resulting short exact sequence of complexes. However, the proof tha t  the long exact 

sequence extends the above sequence would not be instructive. An interesting homological 

approach requires a homological interpretation of ~M(G); for GE!~ there is a simple 

interpretation in terms of triple homology, see w 4. For arbitrary G it might be possible, 

following FrShlich [10], to regard ! ~ M ( - )  as the first derived functor of the functor from 

H to ~ taking G to G/V(G), and then to use, for example, the homotopical theory of Keune 

[21]. This certainly gives the correct answer if ~ is an abelian variety. The paragraph 

ends with a discussion of the significance of the exact sequence in the classification of the 

groups in an isologism class. If  ~ =9~, this gives a simple algorithm for constructing all 

p-groups. Finally, Lue in [27] constructs, by homological means, a long exact sequence 

that  agrees with the above as far as the term ~(G] V(G), B). 

T~V, OR~M 3.1. I /  ~ is a variety, G a group, and B a ~G-module, there is an exact 

sequence 

0 ~ !81(G/V(G), B)-~ HI(G, B)-~Itom, (iBM(G), B)-~ !82(G/V(G), B)-~ H2(G, B). 

Here ~(G/V(G), B)~H~(G, B) is the composite o/ the change of variety homomorphism 

~f(G/V(G), B)~H~(G/V(G), B) o/(viii) with the canonical map H~(G/V(G), B)~H~(G, B). 

Proo/. Let I ~ B ~  EI-~G/V(G)-~ I correspond to an element of ker(~l(G/V(G), B )~  

Hi(G, B)). This gives rise to a commutative diagram 

I ~ B ~ E ~  , G ----*1 

1 t, 1 
1 ~ B - +  E 1-+ O/F(G)  ~ 1 

with E l e ! ~  whose top row splits. If fl: G-+E 2 splits the top row, then since E l e ~ ,  f17 

splits the bottom row. This gives exactness at ~I(G/V(G), B). 
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To define ~I(G, B)-->Homa(~M(G), B), identify Home(~M(G),  B) with I(~, G, B), 
as in w 1.2. If 1-->B--->E-->G~I, 1B:B~B defines an element of 1(~,  G, B), and this gives 

the required map; it is clearly a homomorphism. Now it is easy to see that  the image of 

~I(G/V(G), B) in ~I(G, B) consists of those elements that  are represented by extensions 

I~B-~E-+G~I such that  V(E) NB=I, and this is the kernel of ~I(G,B)-+ 
Homa(~M(G ), B). 

To define Hom~(~M(G),B)~(G]V(G),B), equating Hom~(~M(G),B) with 

I ( ~ ,  G, B) as above, and ~(G/V(G), B) with Ext~(~,  G/V(G), B) as in w start by 

defining ~F fl'om the se~ E (~ ,  G, B) of ~ - G - B - e x t e n s i o n s  to Ext~(~,  G/V(G), B) as 

follows. If ~ ~ 1 -+ K -~ E-~ G-~ 1, e: B-+ ~(K) is a ~ - G - B-extension, let ~ F  be the similarity 

class containing I~B~K~D/V(D)-+G/V(G)~I, where D=E/B. Note that,  since K 

is a ~E-group centralized by  B, K is a ~D-group, and hence a ~(D]V(D))-group; see 

Lemmas I. 1.11 and I. 1.13. Regarding E(~ ,  G, B) as a monoid, as in w 1.2, ~F is clearly a 

homomorphism, and if V(E) ~ K = 1, the commutative diagram 

1:1 1: 
1 ~ B-+ K-+ D/V(D) -+ G/V(G)-~ 1 

shows that  E~t z is a null sequence. Thus ~ induces a homomorphism of I (~ ,  G, B) into 

Ext~(~,  G/V(G), B) and hence of Homo(~M(G), B) into ~2(G/V(G), B). 
I t  is clear tha t  the composite ~I(G, B)~Homo(~M(G), B)~9"(G]V(G), B) is zero, 

but  the exactness at this point is harder. If  1--->R~E~G~I is a presentation of G, and 

aEtIoma(!~M(G), B), it follows from the proof of Theorem 1.2.1 that  a corresponds to 

an element of I(~,G,B) containing a ~ - G - B - e x t e n s i o n  ,~a--1--*K~E~G-~I, ~: 
B~$(K) where E is obtained from (F][RV*F]) [B by amalgamating R N V(F)/[RV*(F)] 
with its image under ~ in B. Then ~ fits into the commutative diagram 

1 1 1 

1 - - , .  B --~ K ~ R / R  N V(G) ~ 1 

1 - - ~ X ~ E  , F /V(F) - - , -1  

l ~ V ( ~ ) - ~ a  ,a/v(a)---~l 

1 1 1 

(4) 

with exact rows and columns, and the image of [Ea] in Ext2(~,  G/V(G), B) is 1-+)3-~K-~ 
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F/V(F)  ~ G/V(G)-~ 1. I t  is clear tha t  if the image of [~a] is 0, a commutat ive diagram 

1 1 

I 1 
1 ~ B ~ K ~  R / R  fl V(.F) ~ 1 

1 - - 1 1  
I ~ B - - ~ T  ,F/V(_~) ~ 1 (5) 

I 1 
1 1 

with exact rows and columns and with T E ~ can be constructed. (This is just a rearrange- 

ment  of the diagram used to define a null sequence in C~(~, G, B).) The actions of F[V(_F) 

on K defined via E ~ F [ V ( F )  and T---,F/V(F) are required to agree. We now construct 

a ~ - G - B - e x t e n s i o n  ~ such tha t  ~ is in the image of ~I(G, B) and [ ~ ]  = [~]. Since 

T E ~ the middle row of (5) splits; and hence the top row splits, and K ~ S  x B for some 

subgroup S of K, since B is eentrM in K.  Regarding S as a subgroup of E, since X centralizes 

K, S is normal in E. Thus there is an exact sequence 1--~B-~-E]S-~G-,-1 which defines 

an element of ~I(G, B). Then the ~3 - G -  B-extension ~ -~ 1 ~ B ~  E / S ~  G ~ 1, 1B B-+ B is 

its image in I(f~, G, B), and dear ly  [ ~ ] @ = ~  (in the notat ion of Theorem 1.2.1), and so 

[E] = [E~] as required. 

Let I ~ B ~ K ~ D I ~ G / V ( G ) ~ I  represent an element of Ext2(~ ,  G]V(G), B), with a 

suitable action of D 1 on K. I t s  image in Ext~(~,  G, B) is represented by  I ~ B ~ K ~ D 2 ~ G  

1, where there is a commutat ive diagram 

I '~B~K--*-D2---~ G , 1 

l-l [ [ ,o, 

Clearly D 1 "D2/V(D~). The top row is a null sequence if and only if (6) can be extended 

to form a commutat ive diagram 
I~K--~E------~G , 1 

l-J 
I ~ B ~ K ~ D ~  ~ G " 1 

l l--I 1 
I ~ B - - , . K ~ D I ~ G / V ( G ) ~ I  



BAER-INVARIANTS, ISOLOGISM, VARIETAL LAWS AND HOMOLOGY 139 

where E acts in the appropriate way on K. But  this is just the condition that  the given 

element of Ext~(~,  G/V(G), B) be the imago of the element of I ( ~ ,  G, B) defined by  

1-~K-~E-*G-~I ,  B-+~(K). This gives exactness at ~(G/V(G), B), and completes the 

proof of the theorem. 

Remark. The exact sequence of the theorem is natural in ~,  G and B. Moreover, if 

is any variety containing ~ and G, the proof of the theorem gives, without significant 

adjustment, an exact sequence 

1-~ ~I(G]V(G), B)-~I(G, B)-~tIoma(~!~M(G), B)-> !~2(G/V(G), B)-~!lg~(G, B) 

where ~ M ( G )  is the relative Baer-invariant defined after Lemma 1.1.8. 

We return to the problem of isologism classes, as in w 1.2; or more precisely, the con- 

struction of groups within an isologism class, aiming at  Theorem 3.2 below. 

Consider first the case ~-~9~. Then, as in (vii), ~(G/V(G), B)=Ext2(G/G ', B)=0. 
Thus the exact sequence becomes, in the classical notation, 

O-~ Ext(G/G', B)-~ H~(G, B)-+Hom(M, B)-~0 

where M is the Sehur multiplier of G, and G acts trivially on B (and on M). This sequence 

is well known. If  B=M, and 1-~M-~E-~G-~I represents an element of H2(G, B) tha t  

maps to 1M, E is a covering group of G. The sequence gives the familiar fact tha t  G has 

at most 1Ext (GIG', B) I non-isomorphic covering groups. (At most, since non-isomorphic 

extensions may have isomorphic terms.) 

Returning to an arbitrary variety, if ~EHoma(~M(G), B), the corresponding weak 

~-G-B-isologism class has a representative of the form 1-~B-~E-~G-~I, 1B, if and 

only if its image in ~(G/V(G), B) is zero. If this is not the case, consider a representative 

1->K-~E-~G-~I, t: B-~$(K). Regarding B as a subgroup of E, put  D=E/B, so that  G 

is a quotient of D. 

The kernel of the natural surjeetion of D onto D/V(D)a/~(a)G is V(D) N K/B, which 

is trivial since B~_ V(E) N K by  assumption; thus D ~- D/V(D)a/~(a)G. Using the fact tha t  

the exact sequence is natural in the group, let fl be the image of a under the natural map 

Homa(!~M(G), B)-->HOmD(~M(D), B). I t  is easy to see that/~ is the image of the element 

of ~I(D, B) defined by the extension 1->~--> E-~D-+ 1, and so maps to 0 in ~2(D/V(D), .B). 
Conversely, if ~e~*(G/V(G), B) is the image of a, let S~G/V(G) be a surjection, 

with S E ~ such that  the image of ~ in ~*(S, B) is 0. Such a surjection always exists; for 

example S may be taken to be a ~-free group. 

Pu t  D = S  • G: then if L is the kernel of S~G/V(G), D is an extension of L by  G; ~lV(~) 
L:__ V*(D), regarding L as a subgroup of D; and D/V(D) ~=S. Let fl be the image of 

under the natural map Homa(~M(G),  B)->IIomD(!~M(D), B). Then the image of # in 
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~2(D/V(D), B )"~2(S ,  B) is zero. Hence fl is the image of some element of ~I(D, B), 

represented by  I~B~E-+D-->I ,  say. I f  K is the kernel of the composite E->D-~G, this 

gives rise to an extension I~K->E-~G-~I ,  and an injection t: B-~(K) .  We claim tha t  

this is a ~ - G - B - e x t e n s i o n  corresponding to ~. Since the image of K in D is clearly 

contained in V*(D), K /B  is ~-marginal  in E/B. The fact  tha t  1-+B~E-->D-->I gives 

rise to fl now shows, after an easy argument,  t ha t  K is marginal in E. Since V(E) n K 

is clearly mapped to 1 in D, it follows tha t  B~_ V(E)N K. Thus E=-I~K~E-->G-~I,  

t: B - ~ ( K ) i s  a ~ -  G-B-ex tens ion .  Let  a '  6I-Ioma (~M(G), B) be the corresponding homo- 

morphism. I t  remains to check tha t  ~' = ~. Since ~ and ~' are both mapped to fl under the 

natural  map Homa(~M(G) ,  B)-->HOmD(~M(D), B), it is enough to show tha t  this map  

is an injection, or tha t  ~M(D)--> ~M(G) is a surjection. Now by  Theorem 3.2 of Fr6hlich 

[10], if 1-->L~D-->G-+I is an extension with Lc_ V*(D), there is an exact sequence 

~M(D)--> ~M(G) ~L-+ D/V(D)-~ G/V(G)-~ 1, where the maps are the natural  ones. These 

conditions are satisfied here, and L-+D/V(D) is an injection, so ~ M ( D ) ~ M ( G )  is a 

surjection, as required. Thus we have arrived at  an element ~ of the weak ~ -  G - B -  

isologism class corresponding to ~ and every element of the class arises in this way. Note 

tha t  the number  of isomorphism classes of E corresponding to a given S is a t  most  

] ~1(S, B)]. In  the special case in which a corresponds to a ~-isologism class, we have 

TH~ORV.M 3.2. Given any ~-isologism class with marginal/actor G, let o~: ~ M  ( G) ~ B 

be the corresponding sur]ection. Let ~ E !~( G / V ( G), B) be the image o/a under the homomorphism 

HomG(~M(G),  B ) ~ ( G / V ( G ) ,  B) o/ Theorem 3.1. Let S-~G/V(G) be a sur]ection, with 

S 6 ~ such that the image o/T in ~2(S, B) is O. Put D = S • G, and let fl 6 H o m D ( ~ M ( D  ), B) ql V(G) 
correspond to a. Let I ~ B ~ E - ~ D ~ I  correspond to an element o/ ~I(D, B) that maps to fl 

under the homomorphism ~I(D, B)~HomD(~M(D),  B) el Theorem 3.1. Then E belongs 

to the given ~-isologism class, every group in the ~-isologism class arises in this way, and/or 

a given choice o / S  there are at least one and at most ] ~I(G, B)] possible isomorphism classe~ 

/or E. 

Sometimes a weak ~ - G - B-isologism class will contain extensions 1 -~ K-~ E-+ G-~ 1, 

t: B-+ ~(K), in which K is abelian, even if the ease K ---- B does not arise. I t  is easy to construct 

examples when this does and when it  does not happen. In  this case, K is a ~G-module,  

and if ~:e~(G]V(G), B) is the image of a, the image of ~ in ~(G]V(G), K) is 0. The above 

discussion, in which the group was lifted to 'kill '  an element of ~2(G] V(G), B) has a simpler 

analogue in the case of embedding the module, except tha t  K is restricted to being abelian. 

The fact tha t  such a K does not always exist reflects the fact tha t  varietal cohomology 

does not in general vanish on injective ~G-modules. 
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The explicit calculation of the groups ~*(G] V(G), B) using Andrd's 'construction pus 

pas '  in [1], or the construction of Tierney and Vogel in [36], is generally a practical if 

tedious business if !~ is a small var iety such as ~ , ,  and G is a well-behaved group; e.f. 

[20]. However, if G/V(G) is a ~-spli t t ing group, then ~I(G/V(G), B) and ~2(G/V(G), B) 

are always trivial. For  a discussion of varieties whose finitely generated groups have this 

property,  see w 4. Here we consider the case !3 =9~, p a prime, so tha t  every group in the 

var ie ty  is ~-free. 

THEO~]~M 3.3. Let ~ = ~ ,  G be a group o/order pn, and ~: ~M(G)---> B be a sur~ection 

corresponding to a ~-isologism class, where B is of order p'~. Then there is exactly one group 

o/ order p,n§ in the isologism crass corresponding to ~, and this is obtained as ]ollows. I t  

a 1 . . . . .  a r E G define a Z~-basis ]or G~ V(G), so that a 1 .. . .  , ar generate G, and i] F is ]reely gene- 

rated by {Yl ..... yr}, let I - + R ~ F - ~ G - > I  be the presentation de]ined by yt~-->a~, i=  l ..... r. 

Equating R N V(F)/[RV*F]=R/[RV*F] with ~M(G), the quotient E, say, el F/[RV*F] 

by ker a is the required group. 

Moreover, there is exactly one group o] order p~ in the isologism class whenever t >~ m + n, 

namely E • C, where C is elementary abelian o] rank t -  (m + n). 

Proo]. The construction and uniqueness of E follow easily from Theorems 1.2.3 and 

II .3 .2 .  Note that ,  since R E  V(F), the subgroup T as in Theorem 1.2.3, must  be trivial. 

I t  is clear that ,  if C is an elementary abelian p-group, then E and E • C ~re !3-isologic, 

and the  uniqueness of E • C again follows easily from the uniqueness s tatement  of Theorem 

3.2. 

Remarks. 1. I t  follows from Theorem 3.3 tha t  every genus, in the terminology of Hall  

and Senior [13], is a union of 9~-isologism classes. 

2. Theorem 3.3 gives a recursive procedure for constructing all finite p-groups, which 

produces each p-group once and only once (c.f. Evens [40]). The amount  of computat ion 

required to construct all groups of order 128 by  hand using this method would be unbear- 

able. 

Per]ect groups. Define a ~-stem-extension of a group G to be an extension 1-+ B-~E-~ 

G-~I  such tha t  B E  V(E) n V*(E). The subgroup K of the group M is small if M has no 

proper subgroup L such tha t  K L = M .  I f  M, or the Frat t ini  subgroup of M, is finitely 

generated this is equivalent to the condition tha t  K lie in the Frat t ini  subgroup of M, 

and is in general a stronger condition. I f  1-~B~E-+G-+I is a ~-stem-extension of G, B 

is embedded in E as a small subgroup. For /~  is a subgroup of E such tha t  BL = E, then 

since B E  V*(E) it follows tha t  V(L) = F(E); thus B E  V(E)EL,  so L = E .  
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If the group G and variety Q are such tha t  the image of the identi ty map under the 

homomorphism Homa(~M(G), !~M(G))-~!~2(G/V(G), !~M(G)) is zero, then !~M(G) is 

characterised as a G-module by  the following property: given any !~-stem-extension 

1-+B~D-~G~ 1, there exists a ~-stem-extension 1-> !~M(G)-+ E~G~I  and a commuta- 

tive diagram 

[ II= 
1 , B  , D ~ G ~ I  

where the vertical arrows represent surjections. This observation follows easily from the 

earlier par t  of this section. A ~-stem-extension I~QM(G)~J~G~ 1 is called a !~-stem- 
cover of G and E a Q.covering group of G. The existence of a ~-stem-cover of G is clearly 

equivalent to the above assumption on the vanishing of the image of the identity. I t  also 

follows from the exact sequence of Theorem 3.1 that  if one Q-stem-cover of G exists, 

then there are precisely ~t(G/V(G), ~M(G)) equivalence classes of such ~-stem-covcrs 

under the usual equivalence relation for extensions. A sufficient condition for the existence 

of ~-stem-covers of G is tha t  G/V(G) should be a ~-splitting group, for then ~(G/V(G), B) 
(and ~I(G/V(G), B)) vanishes for any G]V(G)-module B, see w 1, (ii). 

We wish to consider briefly what happens under the stronger assumption that  G~ V(G) 
is trivial, or, as we shall say, tha t  G is ~-per[ect. (If ~ is a soluble variety of exponent zero, 

as is the case with the great majori ty of varieties mentioned in this paper, then a group 

G is ~-perfect if and only if it  is perfect.) If  ~ is any variety and G is !~-perfeet then 

V*(G)~$(G), since [V*(G), V(G)]=I,  with equality if Q has exponent zero. Also, if G is 

~-perfeet and 1 -> B-~ E-~ G-~ 1 is an extension in which B is embedded as a small subgroup 

of E, then since V(E) maps onto V(G) = G it follows that  E is also ~-perfect. In  particular, 

this holds if 1-~B~E->G-~I is a g - s t e m  extension of G for any variety ~ ,  or if B is 

in the Frat t ini  subgroup of E and B or E is finitely generated. 

Now let Q be a variety of exponent zero, G be a ~-perfeet group and 1 ~ B-~ E-~ G-+ 1 

be an extension in which B is embedded as small subgroup of E, then V(E) =E' =E and 

V*(E) =~(E). I t  follows that  1->B-+E~G~I is a Q-stem extension of G if and only if i t  

is an 9~-stem-extension of G. Thus if ~ is a variety of exponent zero and G is a Q-perfect 

group, QM(G) is the Schur multiplier 9J~/(G) of G; and a slight goneralisation of the above 

argument shows tha t  if ~ is of exponent n, and G is a Q-perfect group, then ~M(G)= 
~M(G)| Since the Schur multiplier of every known finite simple group has been 

calculated (at the moment of writing the latest is 0 'Nan 's  putat ive group) this gives 

many more situations in which !~M(G) is known. 
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Finally, let G be a perfect group, and I~B-~E-~G-~I  be an ~-stem-extension. 

Then ~(E)-~N~(E)=~(E) since E is ~2-perfect. I t  follows, as observed by  Schur, tha t  

every 9~-stem-extension 1 ~ C-~ D-~ E-~ 1 gives rise to an 9~-stem-extension 1 -+A-~ D-+ G-~ 1 

where D-~G is the composite D ~ E ~ G .  Hence 9~M(E) is isomorphic to the kernel of the 

surjection ~ ( G ) - > B  arising from the 'universal covering property'  of 9~M(G). These 

results can be translated at once to the case of ~-perfect groups if ~ is of exponent 0. 

For a somewhat different t reatment of the results in the case of algebras, see Lue 

[42]. 

w 4. The structure of varietal (co-)homology groups 

An interpretation of ~M(G) in terms of varietal homology is given when G E~ .  

This is most successful under the stronger hypothesis that  9I var G~_ ~ ,  in which case the 

second varietal (co-)homology groups can be calculated in terms of ~M(G). In  particular, 

if ~ is as in w 1.4, ~2(C~ • C 2 • C2, Z~) is of uncountable rank. This reflects the fact tha t  

uncountably many varieties may  be obtained by  deleting arbitrary sets of laws from those 

used to define ~.  

Balanced varieties are discussed; the search for balanced varieties in universal algebra 

seems an important  problem. 

If  G is a finite group of order m, the classical (co-)homology groups in positive 

dimension with coefficients in any module have exponent dividing ~n. Results in this 

direction are produced for other varieties, giving a characterization of Schur-Baer varieties. 

LEMMA 4.1..Let GE~, A and B be le]t and right ~G-~nodules res2ectively , and F-~G 

be a sur]ection, with F ]ree. Then F--->G ]actors through F/V(F)=P say, and the induced 

homomorphisms D0(F, A) ~ Do(P, A) and D~ B) ~ D~ _B) are isomorphisms. 

Proo]. By (vi) D0(F, .4) = I F |  ~= ( I F |  ~G) | Also, 
P 2~ G 

Do(P, A) ~- I P |  ~-(IP|174 
P P G 

But  by (iv) the natural  homomorphism of I F  | ~G  onto 1P| ~G is an isomorphism; and 
F P 

since the identification of ~0(G, .4) with IG|  in (vi) is natural in G, the result for 

homology follows. The proof for cohomology is similar. 

PROPOSITION 4.2. With the assumptions o~ Lemma 4.1, let R = k e r  I ~ G .  Then 

~ ( P ,  A)= (V(F)/[F(F), R]) |  and ~ ( P ,  B)=Homo(V(F)/[V(F ), R], B). 
G 

Proo]. By (iii) and Lemma 4.1, there is an exact sequence ~I (F ,  A ) - ~ I ( P ,  .4)-~ 

~0(F-~P,  A)->0. But  ~ ( F ,  A)=O by (ii), and ~o(F-+P, A)=(V(F)/[V(F), R])| by 

(vi). The proof for cohomology is similar. 
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Note. The isomorphisms in Lemma 4.1 and Proposition 4.2 are natural in the group 

and module. Varying the group requires that F and P be considered as elements of (�9 G). 

Also, the results remain true if ~ is replaced by any variety ~ containing ~, and F by 

~/W(F). 

T ~ O ~ E M  4.3. I /  ~ is a variety containing G, and A and B are le# and right 

~G-moduIes respectively, then ~o(G, �9 A)) ~=~M(G)| and ~0(G, ~1( - ,  B)) 
& 

I-Iom~(!~M(G), B). In particular, ~o(G, ~ ( - ,  ~G)) ~- ~M(G). 

Proo/. We first show that ~0(G, ~1 ( - ,  ~ G ) ) ~ M ( G )  when ~ v a r G ,  so that 

~G~ZG, as in (iv). Take a presentation 1-->R--->_~G~I, and let Po=F/V(F), so that P0 

is mapped onto G with kernel R/V(F). Let Q be a ~-free group, and Q-+R]V(F) be a 

surjection. If P1 is the verbal product of P0 and Q, homomorphisms d o and d 1 of/)1 onto P~ 

are defined as in (xii). Let e~: ~1(P1, ~ G ) ~ I ( P o ,  ~G) be the homomorphism inducedby 

d,, i---0,1. Then ~0( G, ~1 ( - ,  ~G))=e~ as in (xii). By Proposition 4.2, 

~l(P0, ~G)~V(F)/[V(F), R], and by Proposition L1.3 (i), [RV*F]~[V(F), R]. But 

clearly im (%-el) consists of all elements represented by terms of the form 

V(glh~ .... , g~h~)v(g~ ..... g~)-~: vE V(X~), gl ..... g~ePo, h~ ..... h~eR/V(F). 

Thus coker (%-el) = V(F)/[RV*F] ~ ~P(G) ~ ~M(G), since Ge ~. 

Now consider the case when ~ is an arbitrary variety containing G. Since ~l(Po, ~G) = 

(V(E)/[V(F), R])| and tensoring is right exact (i.e. cokernel preserving), it follows 
(7 

from the first part of the proof that !~0(G, ~ ( - ,  ~G))~=~M(G)| But ~M(G) is 
(7 

already a ~G-module by Proposition 1.1.15, so ~M(G)| ~G :~ ~M(G). A repetition of this 
(7 

argument gives ~0(G, ~ ( - ,  A ) ) ~ M ( G ) |  for an arbitrary left ~G-module A, and a 
(7 

similar argument gives the corresponding result for cohomology. 

Note. The isomorphisms of the theorem are natural in the variety, group and module. 

Varying the variety and the group requires the introduction of ~ base variety 1I and a 

base group II as in (xiii). Also, the theorem may be generalized by replacing ~ by any 

variety ~ containing ~, provided that ~M(G) is replaced by the relative Baer-invariant 

~ M ( G )  defined after Lemma L1.8. 

As a rule, the smaller the variety ~ the easier it is to deal with the ring ~G; thus the 

following result is sometimes of use. 

T~wo~w~ 4.4. I] ~ ~ ~ the ]ollowi ng are equivalent: 

(a) /or all G61I, ~M(G) is naturally isomorphic to ~o(G, ~ ( - ,  IlG)); 

(b) lI!~*~ !~lI*. 
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Proo/. By Theorem 4.3, (a) is equivalent to the statement tha t  ~M(G) is naturally 

isomorphic to ~M(G)| i.e. that  ~M(G) is a llG-module. This is equivalent to (b) 
G 

by Proposition 1.1.14. 

COROLLARY 4.5. I] ~ is a variety o/exponent 0, and G is an abelian group in ~, then 

~M(G) =~ ~0(G, �9 - ,  Z)). 

Proo/. Put  1I =9A, so that  llII = Z. The result then follows by  Proposition 1.1.6 (ii). 

.Note. In [25], ~0(G, ~ 1 ( - ,  Z)), which is now seen to be ~M(G), is calculated for G 

a finitely generated abelian group, and ~ the varieties ~c N | | and [~, ~2]; the case 

of G3 is covered in w 1.3 in the more general setting of polynilpotent varieties, at least if 

G is a free abelian group. The generalization to an arbitrary finitely generated abelian 

group is easy. 

The next  result gives a more striking connection between Baer-invariants and homo- 

logy for 'large' varieties. 

T ~ O R r ,  M 4.6. I] ~ _ ~  var G, and A and B are felt and right G-modules respectively, 

then ~2(G, A) ~= ~M(G)| | ~3(G, A), and ~e(G, B) ~Hom+(!~M(G), B) | ~3(G, B). In 
G 

particular, ~2(G, ZG) ~ ~M(G). 

Proof. Immediate from Theorem 4.3 and the splitting of the short exact sequence in 

(xi). 

Note. The isomorphisms of the theorem are natural in the variety, group and module, 

as in the note to Theorem 4.3. However, the variety ~ plays a crucial role here and cannot 

be replaced by  another variety ~ as in the note to Theorem 4.3. The reason is tha t  the 

short exact sequences in (xi) depend on the fact tha t  ~ is balanced, see below. 

COROLLARY 4.7. I f  the variety O is as in w 1.4, and E=Cp(pl) • C~(p~) • Cp(P~) is an 

elementary abelian group o] order 8, then 02(E, Zp) and 02(E, Z~) are vector spaces over Z3 

o] countably in]inite dimension and dimension the continuum respectively. 

Proo/. Since ~3(E, Z3)=Ha(E , Zp) and ~ ( E ,  Z3)=Ha(E, Z3) are finite, and OM(E) 

is clearly at most countable, both statements of the theorem will follow easily from the 

fact tha t  HomE(0M(E), Zp) is infinite. For n a power of 2 greater than 1, the group Gn 

of w 1.4 has the property that  the subgroup H~ generated by  G~ and the squares in G~ is 

0-marginal in Gn. Take the presentation 1-~ R-~ F-~ E-~ 1, where F is freely generated by 

{Yl, Y3, Y3}, and y,~-+p, for all i. Define fl~: _F-~G~ by ylfl~=(bal, 1), ypfl,=t, y3fl,=s. 
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This gives rise to a commutative diagram 

1 - - ->R' -~F , E , 1  

I~Hn'-->G~->GJHn~I. 

Since H~_ Y*(G~), by Proposition 1.1.2 (ii) ~ induces a homomorphism of R/[RY*FJ into 

Hn, and hence a homomorphism y* of :Y(F)/[RY*F]=OM(E) into Y(Gn). Now win, as 

in the definition of ~,  defines an element of ker ~* if and only if wm((bal, 1), t, s )=  1, and 

this happens if and only if m 4n .  I t  follows that  the homomorphisms ~* are distinct, and 

so Homs(OM(E), Z2) is infinite as required. 

Note. 1. I t  is clear tha t  O~(E, Z) is not finitely generated, and that  O2(E, Z) is of 

cardinal the continuum. Also, the choice of E is not critical in that  it may  be replaced by  

any group T having E as a homomorphic image, provided that  9~ var T _  ~.  

_Note 2. If S is any subset of (win} it follows that  there is a homomorphism of OM(E) 
into Z 2 whose kernel contains the element defined by  wm if and only if winES. Thus un- 

countably many homomorphisms of OM(E) into Z 2 arise from the uncountably many 

varieties tha t  may  be obtained from ~ by omitting an arbitrary set of laws from (w~}. 

An alternative way of looking at the situation is as follows. The homomorphism y* gives 

rise to an element of ~ ( E ,  Z2), and hence, in the terminology of w II.2, to a class of relative 

- E - Z 2 - c o r e s .  Let  G~ be the subgroup of G, generated by  (ba 1, 1), s and t, and Hn 

be the subgroup of Gn generated by G~ and the squares in Gn, so that  Gn/Hn"~ E. Then 

G~, or more strictly the exact sequence 1-~Hn-~ Gn -+ E-~ 1, is a solution to one of the above 

cores, but  a solution that  does not lie in ~.  Thus, loosely speaking, a variety is not finitely 

based if there are infinitely many groups lying 'just outside' it. These groups differentiate 

the laws of the variety, but, subject to suitable conditions on the marginal factors, they 

may also be thought of as solving varietal obstruction problems that  cannot be solved 

within the variety. 

A variety !~ for which ~ ( G ,  A)=~(G, B)=O for all G e ~ ,  all n > 0 ,  and all pro- 

jective left ~G-modules A and injective right ~G-modules B will be called balanced. If  

is balanced then 

~ ( G ,  A)= Tor~a(IG| A) and ~n(G, B) = Ext~a(IG| B) 
(7 (7 

for all left ~G-modules A, right ~G-modules B, and n~>0; for it is easy to see, using (vi), 

tha t  this is true for n =0,  and this together with the exact sequence in (v) and the property 

of being balanced, characterises the above Tor and Ext.  I t  is easy to see that  a (necessary 

and) sufficient condition for ~ to be balanced is tha t  ~n(G, A) =0  for all G E ~  and all 
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n > 0, where A is a free ~G-module of rank 1. The case of an arbitrary free module follows 

by taking direct limits, and of an arbitrary projective module by additivity. The resulb for 

cohomology then follows from the spectral sequence Ext~a(~a(G, ~G), B) ~ ~n(G, B), c.f. 

[24.II], or more simply from any construction of varietal (co-)homology. The definition 

of 'balanced' readily extends to any variety in the sense of universal algebra; see [24, I] w 3 

for a general discussion of the problem. Known examples of balanced varieties include all 

abelian varieties; the varieties of all associative algebras, Lie algebras, and restricted Lie 

algebras, over a field; and, of course, the variety of all groups. See, for example, [33]. 

We now consider the problem of determining which varieties of groups are balanced. 

THv.OR~M 4.7. I /  ~ :1 I ,  and ~ l I ~ _ ~ c ~ ,  there is a lI-/ree group G o//inite rank, a 

projective le/t G-module A, and an injective right G-module B, such that ~ ( G ,  A)=~0 and 

~2(G, B) -~=O. In  particular, ~ is not balanced. 

Proo/. Note that,  since !~_21I, for any GEU, all G-modules are !~G-modules. Dealing 

first with homology, let A be a free G-module of rank 1. Then by Theorem 4.6, !~(G, A) 

BM(G)=V/U-~ ,  the l I -~-pandee t  of ~ ,  where ~ is the rank of G, e.f. w 1.3. But  if 

is a large enough integer V~ U - ~ is non-trivial, see example 3 after Corollary 1.3.2. Turning 

to cohomology, Theorem 4.6 reduces the problem to finding a H-free group G and an in- 

jective G-module B such that  Hom~(~M(G), B)=~0. With the same choice of G as before 

such a B exists; for example ~M(G) can be embedded in an injective G-module. 

We now consider varieties !~ whose finitely generated groups are !~-splitting groups. 

Peter 1~I. Neumann shows in [31] that  every locally finite variety, of square-free exponent, 

whose nilpotent subvarieties are abelian, has this property; and that  the last two conditions 

are necessary. The set of varieties satisfying all three conditions is closed under products, 

provided the factors have co-prime exponents, under finite joins and under the formation 

of subvarieties. Also, it includes the varieties ~ for all primes p, and, as is shown in [31], 

var(As), where A s is the alternating group on 5 symbols. 

T ~ o ~ M  4.8. 1] ~ is a variety whose/initely generated groups are ~.splitting groups, 
then ~ is balanced. 

Proo/. I t  will be shown that  !~n(G, A ) = 0  for n>0 ,  GE!~, and any !~G-module A; 

this gives the result by the remarks before Theorem 4.7. If G is finitely generated, then 

!~n(G, A)=O for n > 0  by (ii); the result for arbitrary G follows by taking direct limits. 

In more detail, if H is a subgroup of G, so tha t  A is a !~tt-module, let C(H) denote the 

complex of abelian groups used to calculate ~ . (H ,  A) using the Barr-Beck resolution. 

I t  is easy to see that  C(G) is the set-theoretic union of (G(H): H is a finitely generated 
9t  - 752909 Acta mathematica 137. Imprim6 Ir 22 Scptembre 1975 
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subgroup of G). (This is false in general for cohomology.) Since C(H) is aeyclie for all 

finitely generated H, so is C(G), and the result follows. 

Examples. 1, If  p and q are distinct primes, it follows from Theorem 4.8 and the pre- 

ceding remarks that  ~9~q is balanced, whereas, by  Theorem 4.7, 9~q is not. 

2. In  [23] a group in 9~a~ ~ is produced which does not split over its Sylow 3-subgroup. 

I t  follows that ,  in this variety, the one-dimensional eohomology groups are not all trivial. 

If  !~ is a variety, G a finite group in ~ of order m, and A and B are left and right 

~G-modnles respectively, does it  follow that  ~n(G, A) and !~n(G, B) are of exponent 

dividing m for all n >07 The answer is almost certainly 'no', though we know of no counter- 

example. On the other hand, we have very little positive information; see, however, 

K. W. Johnson [20]. The result is well known for the variety of all groups, and since !~i(G,A ) 

is a quotient group of ~i(G, A) and !~i(G, B) is a subgroup of ~i(G, B), it follows in 

dimension one for an arbitrary variety. If ~ is a balanced variety, it  follows by  the usual 

dimension-shift argument for any positive dimension; though this gives no new information 

in the known balanced varieties. 

TH~O~V.M 4.9. The/ollowing conditions on the variety ~ are equivalent. 

(a) ~ i s  a Schur-Baer variety (see the end o/w 1.1); 

(b) /or every finite group G in ~ and every le/t ~G-module A, ~ ( G  A) is o/exponent 

dividing a power o/ ]G[; and i / A  is finitely generated, ~2(G, A) is finite; 

(c) is obtained ]rom (b) by replacing 'le]t' by 'right', 'A' by 'B', and ' !~(G, A)' by 

'~(G, B)'. 

Proo/. By Theorem 1.1.17, (a) is equivalent to the statement tha t  ~M(G) is of finite 

order dividing a power of [G[ whenever G is finite. Since ~M(G) is a !~G-module by  Bro- 

pSsition 1.1.15, it  follows at once from the exact sequence of Theorem 3.1 that  (a) is equi- 

valent to (c). The corresponding exact sequence in homology has only been established for 

GE~,  see (xi) and Theorem 4.3; but  this is clearly enough to establish the equivalence 

between (b) and (c). 
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