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Introduction

This paper is mainly concerned with the classification of groups and the independence
of laws in varieties of groups. However, the basic ideas go over to other varieties in the
sense of universal algebra, especially varieties of associative and Lie algebras. We also deal
with various problems outlined below whose proper context is the theory of triple homology.
In view of the somewhat unusual mixture of disciplines, we have been at pains to make as
few demands on the reader as possible; in particular, for most of the paper, we do not
assume any knowledge of homology.

Central to the whole paper are the groups BM(G) and BP(GF), defined in § 1.1 for any
variety of groups 8 and any group G. These are the Baer-invariants; the first modern
treatment is due to Froéhlich [10], who considered associative algebras, and named the
invariants after Baer’s group-theoretical papers {2]. Further work on the Baer-invariants
of associative algebras appears in Lue [26] and [27]. For a recent discussion that reverts
to group theory and is more in the spirit of Baer’s paper, see J. L. MacDonald [28]. The
group BM(G) is always abelian, and is the Schur multiplier of G if LB is the variety of
abelian groups; BP(F) is a central extension of B (G) by the verbal subgroup of G, and so
coincides with BM(G) if GER. In § 1.2 we consider the classification of groups into B-
igologism classes after P. Hall. The larger the variety 8 the cruder the classification, all
groups in P falling into the same class. The problem of constructing the groups in an
isologism eclass is postponed to § I1.3, and the reader who wishes to get to this quickly
should skip §§ 1.3—4. In § I.3 we show how a slightly stronger property than independence
of the laws of a variety 8 can be dealt with in terms of LP(G) for suitable G, and we
caleulate BP(G) in certain cases. In § L4 the non-finitely based variety of Vaughan-Lee’s
in [38] is used to construct non-finitely generated groups BP(GF). The calculations are
rather involved, and the results are not used except to construct a counter-example in
§11.4.

If G is a group in the variety 8B, and 4 and B are left and right BLG-modules respectively,
where BG is a certain quotient ring of Z@, various well known theories, which here coincide,
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define homology and cohomology groups B,(¢, 4) and B*(G, B) for all n=0. § IL.1 gives
a summary of the results on varietal homology that are needed in the sequel. In §II1.2
an interpretation of B*(G, B) is given after Gerstenhaber [11], and in § I1.3 this is used to
construct an exact sequence, c.f. Lue [27]. If B is the variety of abelian groups, the minimal
(or stem) groups in a B-isologism (or isoclinism) class may be constructed by using Schur’s
theory of covering groups. § I1.3 ends by using the above exact sequence to give a quantative
account of the failure of the theory of covering groups for an arbitrary variety, and gives
a theoretical procedure for constructing the groups in a B-isologism class. The recursive
procedure given in Evens [40] for constructing all finite p-groups is obtained by a suitable
choice of B. The reader who is not interested in homology may take the interpretation of
BYEG, B) in §11.1 (ix), and of B, B) in § I1.2, as definitions, and read § I1.3 without
further reference to §§ I1.1-2.

In § IT.4, various results of purely homological interest are given. A simple formula for
B,(G, A) and B, B) in terms of BM(G) is given which is valid if B is ‘big enough’.
Thus a variety constructed in § 1.4 gives rise to a finite abelian group whose second integral
homology and cohomology groups are not finitely generated. On a more theoretical level
we call a variety B balanced if LB,(G, A)=0 whenever 4 is a projective BGF-module and
7>0. This is equivalent to the condition that the groups B,(G, 4) and B*(G, B), which
are defined by fixing the module and varying the group, agree with the appropriate Tor
and Ext defined by fixing the group and varying the module. The variety of all groups is
known to be balanced, and here the Tor and Ext give rise, after a dimension shift, to the
classical (co-)homology of groups. General theory also shows that abelian varieties, and
varieties whose finitely generated groups are splitting groups (i.e. projectives relative to
the surjections in the variety), are balanced. We conjecture that this exhausts the class
of balanced varieties of groups, and produce evidence to support the conjecture. Finally,
a characterization of Schur-Baer varieties, as defined by P. Hall, (see the end of § I.1),
is given in terms of the exponents of (co-)homology groups.

Our thanks are due to Grace Orzech whose help with varietal obstruction was crucial
to the early stages of the work, and to T. C. Hurley for showing us how to calculate the
pandects of the polynilpotent varieties. We also had helpful conversations with A. S.-T.
Lue, Peter M. Neumann, G. 8. Rinehart and J. C. Wilson.

Preliminaries
Our notation is based on that of Hanna Neumann [30]. A variely is a class of groups
closed under the formation of subgroups, quotient groups and Cartesian produects. X
denotes the group freely generated by {z,, ,, ...}. If L is a variety, V(X,) denotes the
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intersection of the kernels of all homomorphisms of X, into all groups in 8. It turns out
that GED if and only if V(X,) is in the kernel of every homomorphism of X, into G.
Also, a subgroup of X, is of the form V(X)) for some variety B if and only if it is a fully
invariant subgroup. Thus R-V(X,,) it an order reversing bijection between the set of
varieties and the set of fully invariant subgroups of X,,. If G is any group, V(G) denotes
the union of all images of V(X)) under all homomorphisms of X, into ¢. It is clear that
V(G), the B-verbal subgroup of @, is a fully invariant subgroup, and that G € if and only
if V(@)=1. If n>1, the subgroup of X, generated by {x,, ..., z,} is denoted by X,; any
element of X, is a word, and an element of X, is an n-lefter word. Any element of V(X))
is a law of B, and a law which is also an n-letter word is an n-leiter law of L.

Tf v is an n-letter word, and G denotes the Cartesian product of n copies of &, v
defines, in a natural way, a map, also denoted by v, from G to V(G). The largest normal
subgroup N of @ such that » factors through the natural map G™ —(G/N) is denoted by
v¥{@). Other descriptions of v*(@) appear at the beginning of §1.1. The intersection of the
subgroups v*(G) for all laws v of B is the B-marginal subgroup V*(G) of @, and G{V¥(G)
is the marginal factor of G.

IfvEX, and Y= X, v is a consequence of v, or v implies v, if v is a law of every variety
for which p is a set of laws. This is equivalent to the condition that v be in the least fully
invariant subgroup of X, containing . If this is not the case there is a group @ such that
b is a set of laws of G (that is, if w€p then w is in the kernel of every homomorphism of
X, into @), but v is not a law of @. Then G is said to differentiate v from v. If v= V(X,),
and every law of B is a consequence of v, v is a defining set of laws of B, or v defines B.
A set of groups generates the least variety containing it (such a variety always exists);
the variety generated by the group @ is denoted by var(G).

A B-splitting group is a group G € B that is projective relative to the class of surjections
in 8. Equivalently, every extension 1->K~E—G—1 with E in 8 splits. For example, a
LB-free group of rank « (that is a group isomorphic to F/V(F) where F is free of rank «)
is a B-splitting group for any cardinal «.

The variety whose groups are all trivial will be denoted by €, the variety of all groups
by O, the variety of all abelian groups by %, the variety of all abelian groups of exponent
n by 2, the variety of all nilpotent groups of class at most ¢ by R,, and the variety of all
soluble groups of length at most I by &,. The set of all varieties forms a complete lattice
under V and A, join and (set theoretic) infersection respectively. Also, if 1 and % are
varieties one may form the product Il 8, namely the class of all groups @ such that V(G) €.
Multiplication of varieties is associative, and so the usual convention for exponentiation

may be used, and &,=%". For g,, g,€G, [g,, g»] denotes g7lgz'g,g,; and for subgroups
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H, K of G, [H, K] denotes the subgroup generated by {[%, k]: € H, k€ K}. Commutators
will be written with the left-normed convention, that is [z, %s, ..., #,] denotes [[...[{[z,,
Za), 3], Z4ls -1, 2,]- If U and B are varieties, [, B] denotes the variety of all groups G
such that [U(®), V(G)]=1. Thus, [B, §] is the variety ‘centre-by-B’ of all groups ¢ in
which V(@) is central, and, in particular, %, can be defined inductively by Ny=E and
N, =[N._1, €. If G is any group y,(GF) denotes the c-th term of the lower central series of G
and (@) the c-th term of the upper central series of &, so that y,(G) =@, y,(@)=G and
£,(@) =L(@), the centre of G. Thusif B=RN,, V(G) =y.,1(G) and, as is easy to prove, V*(G) =
Le(G).

If G acts on a group K as a group of automorphisms in a given way K is a G-group
(or a G-module if K is abelian) and G[K denotes the split extension of K by G, given by
G[K ={g{k: geq, kEK} with multiplication (g,[%,)(gs[ks) =g19a[k{ks. Usually G and K
will be regarded as subgroups of G{K in the obvious way, so that g[% is written as g¥k;
however, in the case when K <1 G, and so K is a G-group under the action of G by conjugation
(that is, £7=g~1 kg), every element of K is also an element of ¢, and the more precise
notation will be needed.

The eyclic group of order » generated by « is denoted by C,(e) in multiplicative notation
and by Z,(a) in additive notation. If M is a monoid, ZM denotes the corresponding integral
monoid ring, and Z, M the monoid ring with coefficients in the ring of integers mod =.
The augmentation ideal IM is the kernel of the ring homomorphism from ZM to Z (or
Z. M to Z,) that maps each element of M to 1.

If o BE,—~G, i=1, 2 are surjections, the fibre product, E, X E, is the subgroup {(e,, e,):
e 0, =ey0ty} of B x B, Similarly if ¢;; B—~{(E,), =1, 2, are injections, E, X H,denotes the
quotient group of F, x B, obtained by amalgamating the images of B; that is, (B, x E;)/N
where N is the normal subgroup {(bt;, —bt,): b€ B}. (Abelian groups will often be written
additively in a context in which multiplicative notation is more common to avoid viclating
homological conventions.) Let K, be an extension of K; by ¢ giving rise to an exact sequence
1-K,— F,—~G—1, and let t; B—+{(KX,) be an injection whose image is a normal subgroup
of K;, for t=1,2. The B becomes an K, -module by conjugation, centralized by K,, and
hence a G-module. Suppose that the same G-module structure is induced on B in either
case. Then {(b;, —bt,): b€ B} is a normal subgroup of E, % E,, and the resulting quotient

B B
group is denoted by E; % EB,. Note that &, X E, and E, % E, have natural surjections onto
B B
G, and that B has a natural injection into ¥, X E, and E, X EB,.If K,= Band ;istheidentity

B
for ¢=1, 2, this gives rise to an extension 1-B—E, % E,—~@G~1, the classical Baer sum

of the given extensions.
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If B is a variety and G, G, €D, the verbal product of G, and G, is the group G obtained
by taking the free product Gy % G, and dividing out V(G, % @,). There are natural embeddings
of Gy and G, in G; and G has the property that given homomorphisms o;: G;—~H, HEDB,
¢=1, 2, there exists a unique homomorphism «: ¢'~H which agrees with «; on G, i=1, 2.

CHAPTER 1

Group theory
§1. Basic Concepts

We start with a discussion of the basic properties of marginal subgroups, as introduced
by P. Hall in [15]. This leads to a new construction of a variety from given varieties 1 and R,
namely the variety of all groups & such that U(G)< V*(@). The Baer-invariants are then
defined, as in Frohlich [10], and their basic properties are discussed. We have regretfully
abandoned Frohlich’s notation as it clashes oceasionally with group-theoretic practice.

Lemwma 1.1. If G is a group, v is an s-letter word, and B is a variety, then
(i) vM(G)={9€G: v(ay, ..., By, @1 G, Gyy1y ooy &) =0(ay, ... @) for all 1 and all ay, ...,
a;€G}
={gEG: (@, oy By_y, sy Qyyay oy Bg) = Uty one, )

for all © and all ay, ..., 0, €G}.

(ii) If0: G~ H is a surjection, then v*(GY§ < v*(H). It follows that V*(G) is a characteristic
subgroup of G.

(iii) If v is a consequence of the set of words v, then

Nuw* ()< v*(G); and, in particular, if 0 defines B then

wWE

Nw (@)= T*Q).

WED

{iv) The following are equivalent: GED; V(G)=1; V¥G)=G.

Proof. Straightforward.

Examples. 1. If B=9Y, V¥G)={(G); more generally, if B=R,, V*(G)=C,.(G). (See P.
Hall [15].)

2. If L=, V(@) is the set of elements in {(G) of order dividing m.

If NG and B is a variety, define [NV*G] to be the subgroup of & generated by

{v(gl, veos Jim1 FiTs Fit1s ooy gs) ('U(g]_, avey gs))—l:
1<i<s<oo,v€V(XY), ¢y, ..., §s EG, nENT.

If E=1-N—-G—>G/N—>1, [NV*G] corresponds to V,(E) in the notation of [10].

Our notation is motivated by example 1 below.
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ProrosiTIiON 1.2. If NG and B is a variety, then
(i) [NV*G s the least normal subgroup T of G, contained in N, suchthat N|T < V¥(G|T);
(ii) [NV*G] is the largest normal subgroup T of G such that for every homomorphism
0: G->H with NO< V*(H), T'< ker 0;
(iii) If N is fully invariant subgroup of G, then so is [NV*G].

Proof. Easy.

PropositioN 1.3. If N<1 @ and B, B are varieties such that B [T, €], then
(i) N0 V(@) 2ANV*F 2N, W@

(i) [VX(@), W(3]=1.

Proof. (See P. Hall [15]).

(i) Clearly N N V(@)= [NV*G]. If we W(X,) is a law of %8B, then [w, #;,,]is a law of &,
and hence [N V*Gf] contains [w(gy, ..., g;), n] for all g,, ..., ,€G, n€EN.

(ii) This follows from (i), since if N = V*(@), [NV*@]=1.

Examples. 1. If B=9Y, [NV*G]=[N, G]. More generally, if 8=%,, [NV*¢]=[N, G, ...,
(], with ¢ repetitions of G.

2. If B=U,, [NV*G] is generated by [N, G]U {n™: n€N}.

CorOLLARY 14. If B is any variety other than O, and F is a free group of rank >1
then V¥(F)=1.

Proof. A subgroup of a free group has a non-trivial centralizer only if it is cyclic. A free
group has a non-trivial normal eyclic subgroup only if it is itself cyclic. If F is a free group
of rank >1, and B =D, then B(F) +1. These well known facts, with Proposition 1.3 (ii),
establish the result. Note that the corollary generalises the fact that a free group of rank
>1 has trivial centre.

Define UB* to be the class of all groups G such that U(G)< V*(G). Note that this is

unrelated to the product of two classes.

ProrosirIoN 1.5. (i) UB* is a variety. If, for any group G, UV*(G) denotes the cor-
responding verbal subgroup, then (UV*)(G)=[U(A)V*G].
(i) If u(zy, ..., %), (2, ..., x,) are words, then define, for 1 <i<s,
VY = U(xly seey Xy, xiu(xs+1, see xr-i—s), Tig1s oo 3’/'_,) (U (xla it xs))_li

VU = 0(%g, oy Ty_gy WEgi1y ooy Tras)s Tigay oo Be) (U(Fgy ooey Tygy 1, Tigg, weey )7L
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Let 1 and v be defining sets of laws for N and B respectively. Then UB* is defined
by each of the following sets:
0 = {wgyu: v(®y, ..., 2,) €Y, u€u, 1 <4< s < o0}
' = P v(@y, ..., 2) EV(X ), w€U, 1 <i < g < o0}
Proof. (i) By Proposition 1.2 (iii), [U(X ) V*X ] is fully invariant in X, and by (ii)
of that proposition it is in the kernel of every homomorphism of X into a group in

UB*. To complete the proof it is enough to check that every homomorphic image of
X JIU(X ) V*X ] is in NB*, and this follows from (i) of the same proposition.

(ii) UB* is defined by {vuyu: v(@y, ..., 2,) € V(X ), € U(X ), 1 <4< s< oo}, bydefinition
of (UV*)(X ). It is easy to check that, for 7€ U(X ), v, % is a consequence of {v,u:u€u}.
The proof that it is sufficient to take v€p only is in three parts.

(A) (v Vwyu=((veyu)™)’, and hence vy implies (v—1)u.

(B) (v8)yu=(vsu) (Fuu)>~", and hence {vyu, ;,u} implies (v7),u.

(C) Let v€ V(X,) and let wy, ..., w, be any words; for some ¢, they are all i-letter words.
Pick some fixed 7, 1 <i<t. If w(wy, ..., ,) €Enand 1 <k <sg, then

Wt W (15 eer Bim 1y ByU(Bp s ooes Tppr)s Tigts wees Tp) = Uges
say, is clearly a law of W. Then v(wy, ..., w,) is a #-letter word, and
VW, ooy We)iy ¥ =0(Wy Uy, ..., W) (V(Wy, ..., we)) T
=Wy Uy, ey Welks) (V(Wy, Woly, ..., Weth)) L V{Wy, Wo U, oo Wtks) «oo (W(Wy, ooey wy)) L

Hence v(wy, ..., wg)syu is a consequence of {vyuy, ..., Vs Us}-

It follows that v defines UIB*. To check that v’ defines UB*, note that

—_ (8+1)
VeiyU = (V( Xy, «eos Ti_qy L3549, Liggs ooy Ts) u.

Sometimes v’ can be reduced by replacing V(X ) by b, and even this set can be re-
dundant, as is shown by the following

Examples. Let 11 be a defining set of laws for 11.

1. If v=[x,, ..., %oy,], so that v defines N,, then UN*, is defined by {[u, 2y, ..., Zciq]:
u€u}={vPu: w€u}. This follows by induction on ¢, recalling that N§(@) ={(&). In parti-
cular, N . NE=N.. 4

2. Let v=[x,, x,] and w=2x7’, so that %, is defined by {v, w}. Then NI}, is defined by
{vPu: weu} U {w®u: w€u}, as is easily seen.

3. Let v=[[zy, o], [23, #,]], so that v defines &,; then UES] is defined by {vPu: w€u}.
This can be proved by an easy commutator calculation.
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4. On the other hand, in example 2, if m =2, so that U, is defined by w and U is defined
by v, then AW is not defined by wv=[z,, 2,]2. For the (restricted) wreath product
C, wr C, satisfies this law, but is not nilpotent. However [z, @y, 23] is clearly a law in

ProrositioN 1.6. If U= ll;, and BB, are varieties then:

(i) UB*<U,Bi;

(ii) of U< L, €], then UB*<[W, B], and BU*< [T, V). In particular, IB/*<[U, B],

and YB*< BP*=[B, €].

Proof. (i) If GEUB* then U ()< U(G)<= VHG)< Vi(G), so GEU, B

(ii) From Proposition 1.3 (i) it follows that [V(Q)U*G]=[W(G), V(G)] and hence
BU*< [W, B]. The other result follows from the fact that v(wy, ..., 2,)* =v(x 2, w], ...,

xz [z, w]) and hence [v(z, ..., x,), w] is & law in UBV* whenever v(x;, ..., 2,) and w are laws
in B and 2B respectively, and U< [2B, €]

Examples. 1. The inequality AB*<= VU* cannot in general be replaced by equality.
For example, AS; is defined by the law [[x;, 25, 23], [%4, #5]] and hence lies in the variety
AN, which contains only countably many non-isomorphic finitely generated groups.
However &, U* is the variety of all centre-by-metabelian groups which contains uncountably
many non-isomorphic finitely generated groups, and so is much larger than US3. (See
P. Hall [16]).

2. Tt is not true in general, even if U= B, that UB* < BU*. For example, N, S5 & S, N5
In this case 9,3 is defined by the law [[x;, 25, %5, 2,1, [@5, %1], and S, N5 is defined by the
law [[2;, 2], [g, 2], %5, 7). Now working inside p¢(X)/77(X), and using basic com-
mutators, it is straightforward to check that the verbal subgroup corresponding to &,

contains elements which are not in the verbal subgroup corresponding to %, S5 mod y(X ).

Prorosition 1.7. If U and B are varieties, then B BU* and B ULB*; and the
inclusions are strict if and only if U +E and B +D.

Proof. The inclusions, and equality if =€ or BL=9, are clear. Now assume that
U =€, and so U 29, for some prime p. Define varieties BM Il and UMY inductively as
follows: BM N =UMB=2RB; and for n>1, BM, N =(BVBM,,_, ) 1* UMY =NUM"-1B)*
If B=LBU*, then B=[|Y,U2EM, Y, for all »>0; and if B=UYB*, then B=UM"B>
U, M€ for all n=>0. Now if UPEM, A, and UFU, M€ each generate O, it follows that
B=9 if either BL=NL* or B =Ll*, as required.

First consider €M, U, =%, say. From Example 2 after Proposition 1.5, W (X ) =X,
for n=0, and W, (X,)=<l[g, h], ¥*:9g€X, hEW,_(X,)> for n>0. But now Theorem
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6.3 of Stallings [35] states that N§ W,(X) is trivial, and this gives that N7 W, gene-
rates © as required.

We complete the proof by showing that 38, = 9, M€ for all »>0. This is clearly true
for n=0, 1. Assume that the result is true for n — 2 and » —1, where n >1; we need to prove
that 9, W5, =28, , A For each w(zy, ..., 2,) €W, o(X,), r>0, let u'(p)={u(@y, ..., z;y,
E20 i1, Trpals Tigts voos Br)y Wy, ooy Bigs 4P 11, Ty, oo, %,): 1 <é<r}. Then using Proposition
1.5. and the subsequent examples:

(i) BW,_, is defined by v ={[u, z,,,], u?: r>0, u€ W,_»(X,)};

(i) W,_; is defined by v’ ={w'u™":r>0, u €W, 4(X,), v EW'(p)};

(i) it follows from (i) that 9, %% _, is defined by v ={[u/, z,,;] [, %, 4],

[, 1 2] [0, 2 g 17 (0 Pu P r >0, u€ W, o(X,), w' €W (D), 2=[Zrr0 T,rya] OF 710};

(iv) it follows from (ii) that %, , A} is defined by W' = {[u'u"?, x,,1], (Wu )P r>0,

wE€W,_o(X,), u €' (p)}.

Now U, Wh-1 and W,_, A, are contained in [, W,_,] by Proposition 1.6, so using (i)

and (ii), each variety satisfies the laws
W’ ={{u, 2,4, Xryo), (W7, 2], (@, u]: >0, €W, _(X,), w' €u'(P)}.

Hence, in proving that each of tv and 1’ implies the other, the laws iv” may be
used, and the result is then immediate.

We now introduce the Baer-invariants BM(G) and BP(G). Let 1-> R—>F—>G—>1 be
a free presentation of G and B be a variety. Consider the group (R N V(F))/[RV*F]; it is
abelian since [RV*F]2[R, V(F)] by Proposition 1.3 (i). If «: G—H is a homomorphism,
and H has the presentation 1R -~ F—H -1, then there exists a homomorphism g: F->F
(not unique) which induces o. Clearly 8 also gives rise to a homomorphism g*: (R n V(F))/
[RV*F]—(R 0 V(F)/[RV*F).

Lemma 1.8. (i) §* is independent of the choice of B; denote it by o*.

(i) If y: H~K, and K is supplied with a presentation, then (ay)* =o*p*.

(iii) (RN V(I)/[RV*F] is independent of the presentation G.

Proof. (i) Let B’ be a second homomorphism inducing «. Then for any g€F, gf=

gp’ modulo R; and so, if v€V(X,), then v(g,B, ..., g.,8)=v(g: 8, ..., g,f’) modulo [RV*F]
for all ¢,, ..., g, € F. Hence f*=(§")*.

(ii) is clear. Hence, taking =H and « the identity, it is easy to check that «* is an
isomorphism, which proves (iii).

In view of the lemma, we denote (R0 V(F))/[RV*F] by BM(G) (M for ‘multiplier’).
It is clearly functorial in @, and if B =% it is the Schur multiplier of G.
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In exactly the same way it may be shown that V(F)/[RV*F] is independent of the
presentation, and is functorial in &; we denote this group by BP(G) (P for ‘pandect’).
Equating V(@) with V(F)/Rn V(F) gives rise to a central extension 1> BM(G)—BP(G)—~
V(G)—1, natural in @. Of course, if GE€LB then BM(G)=BP(G).

If B is a variety containing G, these definitions may be adjusted by requiring F
to be a W-free group; this gives rise to relative Baer-invariants VM (G) and WBP(GF).
If Gell, then clearly WBM(Q)=BM(G) and WBP(G)=LBP(G) whenever W2UB*. The
relative Baer-invariant BUM(G) is discussed in [24.1] in the case BL2Y, and in [19] in the
case BDU. It turns out that BVUM(Q) is the first homology group of G with integral
coefficients, in the homology relative to LB; whereas, provided L2 var G, BLM(G)
is the second B-homology group of G with coefficients in Z(@), as proved in § I1.4.

If 1-R—-F-+-G—~1 is a presentation of @, F acts by conjugation on (RN V(F))/
[RV*F]; and since [RV*F]2[R, V(F)], this induces an action of G. This action is clearly
compatible with the isomorphism 1* used in Lemma 1.8 to establish that (RN V{F})/
[RV*F] is independent of the presentation. Thus BM(G) is a G-module; in fact the action
of g€ G on BM(G) corresponds under the functoriality of LM (F) to the inner automorphism
of G induced by g. Similarly BP(G) is a G-group, and the natural embedding of BM(G)
in BP(QF) is a G-homomorphism. We now examine some simple properties of this G-action.

LemMma 1.9. If K is a G-group and B is a variety, the following are equivalent:
(i) V(CIK)=G;
(ii) K< V¥GLK).

Proof. (ii)= (i) is immediate, so assume (i). For any v(z,, ..., ;) €V(X,) and any
gil ke, o, g [ K, €EGLK, v(gy[ Ry, oo gs[s) =2(gy5 .-vs ¢,) [k for some EEK, and (i) implies that
k=1. It follows immediately that K< V¥{G[K).

If the conditions of Lemma 1.9 are satisfied we say that K is a BG-group (or a BG-
module if K is abelian). This clearly implies that K (as a group) is in 8 and that V(G[K)=
V(&). An 9G-group, for example, is an abelian group on which @ acts trivially.

Lemma 1.10. If NG, N is a BG-group (with G acting via conjugation) if and only
if N VX(6).

Proof. There is an injection §: G[N—G x @ given by (g[n)6=(gn, g) forallg€Q, n€N.
If v(zy, ..., ) EV(X) and ¢, [ny, ..., g [, EG[N, then v(g,[ny, ..., g.[7,)0 = (¥{g1 71, -, Fss),
(g5 «vs 9s)) and this is in G0 if and only if v(g,ny, ..., %) =v(9y, --., §5). The result now
follow easily using the fact that 6 is an injection.
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LemmAa 1.11. Let K be a G-group and 0: H—G be a homomorphism; regard K as an
H-group via 0. If K is a BG-group then K is a BH-group; and conversely, provided 6 is o
surjection, if K is a LH-group then K is a BG-group.

Proof. Routine.

In particular, if K is a G-group and N <1 G such that N centralizes K, then, regarding
K as a G/N-group, the above result can be applied with : G—G/N the natural surjection.

CoroLLARY 1.12. If B is a G-module, and 1-> B> E—QG~>1 is an extension of B by G,
then B is a BG-module if and only if B< V*(E).

Proof. BS V*(E) if and only if B is a BE-module (with K acting via conjugation)
by Lemma 1.10. But G = E/B and B as normal subgroup of E centralizes the E-module B.

Lemma 1.11 now gives the result.

Lemwma 1.13. Let K be a G-group. Then K is a BG-group if and only if V(G) centralizes
K and K is a B(G|V(G))-group.

Proof. If K is a BG-group K< V*(G[K); so by Proposition 1.3 (ii) K is centralized
by V(G[K)=V({). The result and its converse now follow immediately from Lemma 1.11.

ProrositioN 1.14. If U, B are varieties, the following are equivalent:
(i) for oll GEW, BP(G) is a UG-group;
(i) NB*< BU*.

Proof. Assume (ii) and let G€1l have the presentation 1-R—~F—~G—1, Put H=
F/[RV*F]; then by (ii) V(H)< U*(H). Hence (by Lemma 1.10) V(H) is a LH-group, and is
centralized by R/[RV*F]. Lemma 1.11 gives immediately that V(H) is a 1G-group, and
of course V(H)=BP(G).

Now assume (i), and take HEUB*. Then for any presentation 1-R—->F->H-—1
of H, UV*(F)< R. Put G=F|U(F) and E=F(UV*F)). BP(Q)=V(E) is a 11G-group by
assumption, and hence a U E-group, (by Lemma 1.11). Let 6: E—~ H be the natural surjec-
tion. Then V(H)=(V(E))0< (U*(E))0< U*(H). So H€RU* as required.

In particular, if G €%, BP(G)=BM(G) is a BG-group; and since the property of being
a WG-group is clearly inherited by sub-G-groups, BM(G) is a UG-group whenever BP(G)
is, for any G. However, for BM(G) we have a result, valid for all G, which is in general
false for BP(G).

ProrositioN 1.15. For any group G and variety B, VM (G) is a BG-group.
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Proof. Lét 1-- R~ F—~G—1 be a presentation of G. Then RN V(F)[[RV*F] is B-
marginal in F/[RV*F], and so is a B(F/[RV*F))-group annihilated by R/[RV*F]. Hence
BMU(G) is a BG-group.

We end this paragraph with a discussion of the order of BM(G) and BP(F). Following
P. Hall [17}, if v is & word and E a group, v is a Schur- Baer word on E if either v*(E) is of
infinite index, or v*(E) is of finite index m, and the verbal subgroup »(E) is of order dividing
a power of m. If v is a Schur-Baer word on every group, v is a Schur- Baer word. Similarly,
8 is a Schur-Baer variety on B, or is a Schur- Baer variety, if the corresponding statements
hold with v*(E) and v(E) replaced by V*(&) and V(E) respectively. Clearly v is a Schur-
Baer word if and only if the variety defined by v is a Schur-Baer variety.

P. Hall conjectures in [17] that every word is a Schur-Baer word; this conjecture
remains open. Schur proved in [34] that [x, y] is a Schur-Baer word, and this was extended
by Baer in [3] to outer commutators, as defined before Theorem 3.6. In fact, it is shown
in [17] that if » and w are Schur-Baer words on disjoint sets of letters, then [w, v] is a
Schur-Baer word; also, that the intersection of 2 Schur-Baer varieties is a Schur-Baer
variety. Turner-Smith proved in [37] that, if E and all its quotient groups are residually
finite, then every word is a Schur-Baer word on E; and Merzljakov proved in [29] the
corresponding result for ¥ a linear group over a field, and for E almost a residually finite
p-group for infinitely many primes p.

The variety B is finitely based if it can be defined by a finite set of laws, and hence by
one law. The n-letter laws of L are finitely based if they are a consequence of a finite set
of laws of ¥B.

TrrorEM 1.16. Every locally abelian-by-nilpotent variety B is a Schur-Baer variety.

Proof. It B is finitely based, then sinee, by P. Hall [18], a finitely generated abelian-
by-nilpotent group is residually finite, the theorem follows in this case from the result of
Turner-Smith’s quoted above, and appears in [17]. But since, by P. Hall [16], a finitely
generated abelian-by-nilpotent group has the maximum condition on normal subgroups,
it follows that the n-letter laws of any locally abelian-by-nilpotent variety are finitely
based for any fixed n, and this is clearly enough to reduce the problem to the case in which
B is finitely based.

The next results explain our interest in Schur-Baer varieties.

THEOREM 1.17. The following conditions on the variety B are equivalent:

(i} B is a Schur- Baer variety;
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(ii) for every finite group G, BP(Q) is of order dividing a power of |G|;
(iii) for every finite group G, BM(G) is of order dividing a power of |G|.

Proof. Let B be a Schur-Baer variety, and 1-R—+F—G—1 be a presentation of G,
where @ is of finite order m. Then since V¥(F/[BRV*F])= R/[[RV*F], the marginal factor
of F|[[RV*F]is of order dividing m, and hence V(F)/[RV*F]=BP(G) is of order dividing
a power of m. Thus (i)= (ii). Conversely, with the same notation, if ¥ is a group with
marginal factor isomorphic to @, it is easy to see that V(Z) is a homomorphic image of
BP(G), so (ii) = (i). Finally (ii)<>(iii) since BP(F) is an extension of BM(G) by V(G).

TrrEOREM 1.18. If B is defined by a set of Schur- Baer words, then for all finite groups G,
every element of BP(G) and of LM (G) is of order dividing a power of |G|.

Proof. It §§ is defined by the set of words {v;}, and E is any group, then V*(E)=
N;vi(E) and V(E)=]],v;(E). The result follows at once.

§2. Isologism
In [15] P. Hall introduced the concept of B-isologism, for any variety B, and in {14]

showed how 9-isologisms (or isoclinisms) ecan be used in the classification of p-groups;
see also [13]. The connection between Baer-invariants and isologism, which we establish
in this paragraph, is hinted at in the works of P. Hall quoted above.

If 1-K—~E—+G—1 is an extension, {(K) becomes, by conjugation, an E-module
centralized by K, and hence a G-module. If 8 is a variety, G a group, and B a G-module,
define a B —G— B-extension to be an extension 1-K—E—~>G-1, and an inclusion
t: B={(K) of G-modules, such that, regarding K and B as subgroups of E, K< V*(E)
and B2 V(E)n K. Note that V(E) N K<={(K) since, by Proposition 1.3, [V*(E), V(E)]=1.
Also, for B ~—G — B-extensions to exist it is necessary and sufficient that B be a BG-
module. Necessity follows from Lemmas 1.10 and 1.11, and sufficiency from Corollary 1.12.

If £=1-K,~E—~G~1, : Bi—~{(K,) is a B—G,— B -extension, i=1, 2, then a
weak B-homologism (0, p): €~ E; is a homomorphism 6: G;—G,, and a homomorphism
¢: B,—~ B, compatible with 0 (i.e. such that (b%)p) = (bp)?? for all b € B, and g € G,), satisfying
the following eondition. Let y: B, —~ B, be any map (not necessarily a homomorphism) lifting
; then vr>0, Yo€V(X,), and Vi, ..., {,€E; such that, v, ..., t,)EBy, v(ty, ..., t,)p=
v(t, ..., L), Since K,= V¥(H,), v(tyy, ..., {) is independent of y, and ¢ is determined by
6 if B,=K,NV(E,); however, it is easy to see that, in general, a homomorphism
0:G4—~ @G, will not induce a weak homologism; since different expressions for an element b of B,
as the value of a law of 8 may lead to different values for bp. If (0, ¢) is a weak B-homo-

logism, and 6 and ¢ are isomorphisms, then (0, ¢) is a weak B-isologism. For fixed & and B,
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a weak B—G— B-isologism is a weak DB-isologism (0, p) such that =1, and ¢=1;.
I(%, G, B) denotes the set of weak LB —G— B-isologism classes and [£] denotes the class

containing the  —G — B-extension £.

TarorREM 2.1. For any BG-module B, there is a natural bijection between Homq (BM(G),
B) and I(QB, G, B).

Proof. Let a: BM(G)~> B be a G-homomorphism and 1-> B~ F5G->1bea presentation
of G. Denote F/[RV*F] and R/[RV*F] by F and R respectively. Then « can be regarded
as a G-homomorphism from BN V(F) to B, and F can be given an action on B via that of
G=F|R. Now let E denote the group obtained from F[B by amalgamating BN V(F)
with its image under « in B; it is easy to check that this does not lead to collapse. Define
a map 0: E—G by (f[b)0=fr where fE€F, b€ B and f[b is the corresponding element of E.
Then it is easy to check that § is a surjection with kernel K = {f[—bl JE€R, bEB}. Also the
obvious embedding ¢: B—~K maps B into {(K) since E centralizes B. The extension £,=
1—>K—>E—¥G—>1, i: B+{(K), is a B — @ — B-extension; for, using the facts that B< V*(F)
and B is a BG-module, if follows that K< V*(E). It is also straightforward to check that
[E,] is independent of the presentation of G. Define ®: Hom (BM(G), B)—~I(B, G, B)
by a®=[E,]. Then @ is well-defined from above. It remains to construct an inverse @
for @, Let £=1->K—~E—~+G—1,1: B>{(K), be a B —G— B-extension, and 1-R->F—+G~>1

be a presentation of ¢. This gives rise to commutative diagram
1-R/[RV*F]- F[[RV*F]-G—1
SN
1—-K E G—-1

with exact rows, and 6 induces a G-homomorphism «, say, of RN V(F)/[[RV*F]=BM(G)
into B. It is easy to verify that « depends only on [ £], so that ©: I(%, G, B)~Hom;(BM(G),
B) defined by [£] ® =«, is well defined. It is straightforward to check that @ and ©

are inverse maps.

It remains to connect weak isologisms with isologisms in the sense of P. Hall. Let
E, be a group, X;=V(E)), K;=V*E), and G;=E /K, for i=1, 2. Then a B-homologism,
0, w): B;—~ B, is a homomorphism 6: G;—G, and a homomorphism «: X, X, satisfying
the following condition. Let y: E,—~E, be any map lifting 0, then for all >0, and all
vEV(X,), and all ¢y, ..., ;,EHy, v(ty, ..., t,) w=v(yy, ..., t,y). If 6, ® are isomorphisms, (8, w)
is a B-isologism. Thus two groups are B-isologic whenever evaluating the laws of 8 in
either group gives rise to essentially the same maps. If (0, w) is a B-homologism, w is

determined by 0 and  is & G-homomorphism.
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TaroreM 2.2. Let £,=1+K,~>E—>G,~1, ¢ B,~{(K),), be B—G;— B -extensions
such that K;=V*(E,) and B;1;=V(E)NK,, for i=1, 2. Then &, and &, are weakly B-
1sologic if and only if E, and E, are B-isologic.

Proof. If E, and E, are LB-isologic, it follows a fortiori that &£, and &, are weakly
B-isologic. For the converse, let £ and &, be weakly B-isologic. It is enough to assume
that G, =G@,=G say, B,=B,=B say, and that & and &, are weakly B —G — B-isologic.
Then with the notation of the proof of Theorem 2.1, [£,]10 =[£,]0 =« say, and « is a
surjection. If 1-- R F--G—1 is a presentation of G, there are commutative diagrams

1> R/[RV*F]~ F|[RV*F]~G~1

9, Vi =
1— K, E, G-+1

with exact rows, such that §;induces a, for ¢=1, 2. Let v, induce §;: V(F)/[RV*F]—~V(E);

then there are commutative diagrams

1+ BM(G)—>BP(G) -~ V(@)1

ANNE

1—> B—V(E)— V(@) =1

with exact rows which are central extensions, The bottom rows of the diagrams are deter-
mined by the top row and «, up to an automorphism of V(E,) that fixes B and V()
elementwise. It follows that there is an isomorphism w: V(E,)— V(E,) such that 8,=4, o,
fixing B and the factor group V(G). Then (g, w) is a B-isologism: E,-E, as required.

Theorem 2.2 gives a correspondence between B-isologism classes with B-marginal
factor G and certain weak B-isologism classes, and hence, by Theorem 2.1, with certain
G-homomorphisms «: BLM(F)—B. We now consider the problems of ascertaining which
groups G can appear as B-marginal factors and which «€Homg (LM (F), B) then give
rise to B-isologism classes with this B-marginal factor.

For any ¢y, ..., 9.€G and v€ V(X,) such that v(g,, ..., g,) =1 let &(g,, .., ¢,) denote the
corresponding element of BM(GF), and let wy(zy, ..., z,,;) denote vy u Where u=uz,, see
Proposition 1.5. For any g1, ge V¥, let

S(g) = {wi(gls vy gr’ g): 7’?7:21, vE V(Xr)’ gl’ seey grEG}'

TaEOREM 2.3. x €Hom(BM(G), B) defines a B-isologism class, with G as B-marginal
factor, if and only if « is onto, and for each g€ V@), g1, S(g) L ker «. If these condi-
tions are satisfied, and 1—>R—~F—~G—1 is a presentation of G with F=F|[RV*F], then
8 —762909 Acta mathematica 137. Imprimé le 22 Septembre 1976
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F,=Flker « is a representative of this B-isologism class, and so is Fy|T for any T <\ Fy
such that T N V(F,)=1. Moreover, every representative of this class arises in this way from

some presentation of G and some T.

Proof. I «is onto, and 1+ R—+F—-G->1 is a presentation of G, then the corresponding
weak B-isologism class is represented by &,, as constructed in Theorem 2.1, and &, is
1-R;~>F,~>G-1 where F, is as above, and B;=R/ker «, R=R/[RV*F]. Then B is
embedded in B, with image R, N V(F,), and if f€ V*(F,) and f maps to g in G, g€ V¥(Q);
and the condition that if g1, S{g)d:ker o ensures that g=1. Hence B, = V*(F,), and F,/
VHF)=2G I T<t Fy,and TN V(F,)=1, then for any t€7T, f,, ..., ,€F, v€V(X,), r=i>1,
Wilf1s o fr HET N V(Fy)=1. Hence T< V¥ F;)=R,. It follows that F,/T is B-isologic
to Fy.

Conversely, if E safisfies E/V*(E)=G and V*E)N V(E)=B, then let F be a free
group with E as an epimorphic image, and R be the kernel of the composite F—+E (.
Tt is straightforward to check that F is an epimorphic image of the corresponding group
F,, that the corresponding a€Homg(BM(R), B) is onto, and that if g1, geV*(&),
then since any ¢ € F which maps to ¢ is not in V*(E), S(g)E ker a.

Theorem 2.3 provides a procedure for constructing all B-isologism classes with G
as marginal factor. Consider first the identity map 1 =1guq); this will give rise to such a
B-isologism class if and only if S(g)==1 for each g€ V*(F), g==1. Also, if 1 does not give
rise to such an isologism class, then neither will any «€Homg(LBM(G), B) for any B.
For example, if =Y and @ is a finite abelian group, then G can be the B-marginal (or
central) factor of a group if and only if the two largest invariants of & coincide (see [14]).
If 1 does give such a LB-isologism class, one then investigates for each surjection
a€Homg (VM (G), B) whether S(g)dEker o. There are some short cuts which can be used
in testing the properties of S(g); for example it is sufficient to consider just those v€ V(X )
which lie in some defining set for B. Notice too that

S(9) = {8(9, 92, ++r ) — 01, gy oy @r): 721, 95, ..o, $,€Q, vEV(X,) and o(1,g,, ..., g,)=1}.

Finally, if «; and o, are surjections satisfying this condition, they determine the same
%B-isologism class if and only if there is an automorphism of @, such that the corresponding
automorphism of BM(R) induces a bijection between ker «; and ker «,.

In the case B =, this procedure was used in [13] in the calculation of all B-isologism
classes (or families) represented by groups of order dividing 64. Again, if L=, every weak
B — G — B-isologism class contains an element 1 - K— E—G-+1, i: B~{(K), in which K= B
and ¢=15. (If the class corresponds to the identity map on BM (G)—the Schur multiplier
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of G—then F is a ‘covering group’ of G). In particular, every $-isologism class contains
a group F such that V*(E)< V(E). The classical proof depends on the fact that, when
B =9, subgroups of B-free groups are B-splitting groups, and subgroups of B-marginal
subgroups are normal. Clearly the only varieties with these properties are U, U, for m
a positive square free integer, and €. We shall return to this point in § IL.3.

Examples 1. Let B=N,, E be nilpotent of class exactly 3, K=V*(E)=(,(E),
and B=V(H)=y,(E). Then V¥ E)={,(E)2y,(E)=V(E). Moreover, any group D which
is B-isologic to E is of class exactly 3, and so V¥(D)2 V(D).

2. Let B=N, and G=0Cye,) X Cy(cts). Take a presentation 1-R—F—+G—1, where
F is freely generated by {y;, .}, and y;—~>«,, ¢=1, 2. It is easy to see that BM(G)=
V(F)[RV*F]=Zy(z) @ Zy(z,), where z; is represented by [y, ¥, ¥, ¢=1, 2. Clearly, ¥ g€
G\{1}, 8(g) =BM(G); soif o: BM(G)~ Bis any surjection with B=0, S(g)d ker «. Such an «
is either an isomorphism or has kernel of order 2. (This latter is a possibility since &, being
abelian, acts trivially on BM(G).) But the group of automorphisms of G acts transitively
on the set of subgroups of BM(G) of order 2, so there are exactly 2 B-isologism classes
with marginal factor isomorphic to G. The first of these is represented by F/[RV*F]=
Flyyy3, where p,=y,(F), and 33 is the subgroup of F generated by the squares of the ele-
ments of y4(F). To find a smaller representative of the class, a normal subgroup 7' of F
is needed such that R2 T 2y,y3, and T Ny;Sy,ys; then FIT is B-isologic to F/y,ys.
It is easy to see that 7' must be of index at least 64 in F'. The -isologism class (or family)
I'); in the Hall-Senior tables [13] is the only family of rank 6 (i.e. whose minimal representa-
tives are of order 29) to lie in this ,-isologism class. The other N,-isologism class with
marginal factor isomorphic to @ clearly contains every group of order 16 and class 3;
these all lie in I'y. The families I'; and I'; of rank 5, and I'y;, I'yg and T’} of rank 6, also
lie in this class.

3. Let B=N,, and G=Dy={(ay, ay: at =a3=[a,, a,]*=1>. Take a presentation with
Yi>a;, t=1, 2 as in Example 2. In this case BM(Q)=(Z,(z,) ® Ls(25))/(2(2, +2)), Wherez;
is represented by [y, ¥4, ¥:), 4=1, 2. In this case there are two new features. Firstly, G
acts non-trivially on 8BM(G), a, and a, each sending every element to minus itself; and
secondly, S([a,, a,]) =2BM(G), so only surjections x whose kernel does not contain this

subgroup give rise to B-isologism classes.

If G is a finite group of order m, does it follow that every isologism class with marginal
factor isomorphic to G has a representative of order dividing a power of m or at least of
finite order? For an arbitrary variety these questions remain open. Clearly a necessary
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condition for an affirmative answer to the first question (assuming such isologism classes
exist) is that BM(G) or equivalently BP(G) be of finite order dividing a power of m;
for example if B is a Schur-Baer variety (see Theorem 1.17). If LM G has this property
then it remains to decide whether ¥ has a normal subgroup 7' of index a power of m such
that 7N V(F)<[RV*F] and T< R. Now suppose that R, or equivalently F, is residually
finite. Then, since V(F) is finite, F has a normal subgroup 7' of finite index such that 7’ n
V(F)=1, and if B is locally nilpotent, T can clearly be chosen to have index a power of .

Using Theorem 1.16, we have proved

THROREM 2.4. If B is a locally abelian-by-nilpotent variety, and G is a finite group
of order m, then every B-isologism class with marginal factor isomorphic to G has a finite
representative, and, if B is locally nilpotent, has a representative of order dividing a power of m.

We now investigate the abelian group structure on I(%, ¢, B) induced by the natural
bijection between Homg(BM G, B) and I(8, @, B) in Theorem 2.1. Let E(B, G, B) denote
the class of B —G — B-extensions, and let &=1-+>K,~E,~G—~1, 1; B~{(K,), £,€E(T,
G, B), i=1,2. Put &+ E,=1-K; X Ky By % By>G—1, & B>L(Ky x Ky); see the pre-
liminaries for the notation. It is easy to check that & + E,E€H(B, G, B). It V(E)N K,;=1,
call €; a null extension. Clearly the sum of two null extensions is again null. Now the map
© constructed in the proof of Theorem 2.1 is defined in terms of a map ¥ say of E(, G, B)
into Homg (BM (@), B), and it is easy to see that E¥ =0 if and only if £ is a null extension.
The proof of the following theorem is now straightforward, and we omit it.

TreoREM 2.5. The above addition on E(B, &, B) induces the structure of an abelian
group on I(B, G, B) in such a way that the natural bijection between I(B, G, B) and
Hom(BMEG, B) of Theorem 2.1 becomes an isomorphism. Two elements of E(B, G, B) belong
to the same element of 1(B, G, B) if and only if they become isomorphic in the obvious sense
on the addition to each of a (possibly different) null extension. If 1 - K- E->G-1, 1: B—>{(K),
represents an element of I(B, G, B), then 1-K-—>E~G-1, —u: B—{(K) represents the

mwerse element.

§3. Pandects

In this paragraph and the next we consider the ‘pandects’ of the variety B, namely
the groups BP(R), where G is a free abelian group, or more generally any relatively free
group. If G=X_ /X, and v is a law of B, then » determines an element ¥ of BP(F); and
we consider the connection between the condition that a set of laws p should define L,
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and the condition that LP(G) should be generated as End(G)-group, by {5: v€p}. The
paragraph ends with the explicit calculation of the pandects of a class of varieties.

Throughout this paragraph, & denotes a positive integer or oo,

If U and B are varieties, then the U-a-pandect of B is the group BP(X,/U(X,)) =
V(X,)/UV*X,), see Proposition 1.5; it will be denoted by V/U — . In particular, if 1=,
this will be abbreviated to the a-pandect of B; this is a central factor of X, by Proposition
1.6.

Examples. 1. If B=N,, then V/4— o is the Schur multiplier of the Bfree group of
rank o; and this a free-abelian group, freely generated by the basic commutators of weight

¢+1 on at most « letters.

2. It will be proved in Chapter IT that V/4 —« is the group denoted in [24. III] by
Bol I, Ho(—; Z)), where ] is a free abelian group of rank c. This was calculated for finite
« in [25] for the cases B=N.NS,, S,, and S, A*=[E, &,]. Taking direct limits gives
Vi4—oo,

Clearly the N —«-pandect of 8 depends functorially on the ll-free groups F (1)
of rank «. In particular, if E(x, 1) denotes the semigroup of endomorphisms of F,(I1),
then V/U —ais an E(a, )-group. Notice, however, that H(ex, A) has a natural ring structure
but V/A — «is not an E(«, A)-module. For example, if B =W =, then V/W —2 is generated
freely by (an element represented by) [w,, #,1, and twice the identity of E(«, ¥) induces
four times the identity on V/W —2 (as [x,, #,]+>[3, 23] =[x,, 2, ]¢ in V/W —2).

If a<B< oo, the natural injection of X, in X, has a right inverse, and gives rise to
an embedding of V/U —ain V/U —f as a direct summand. We identify V/U -« with this
subgroup of V/U~—f, and for any v€V(X,), § will denote the element (UV*(X;))v of
V|U —B, for all 8> o, with a similar convention for subsets; the value of 8, when significant,
will be clear from the context.

The next two results are easy.

Prorosrtron 3.1. If I and B are varieties, v= V(X,), and v is a consequence of v,

then © is in the E{(o, W)-closure of v.

CoROLLARY 3.2. In particular, if B is defined by o set of n-letter laws, and if n <o < oo,
then V|U —« is the E(a, N)-closure of V/U —n. Thus n defines a ‘stable range’ for the groups
ViU~a.

Our next aim is to consider a weak converse to Proposition 3.1; for example,if v= V(X,)
and b generates V/U —a as E(x, l1)-group, in what sense does v define the «-letter laws

of B
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Examples 1. Clearly, the larger U is, the more information V/U — « contains about the
o-letter laws of B. In particular if U=, V/U—« is V(X,); whereas if U=C, V/U~«
is trivial for all « and all 8.

2. If B=G8,, the 2-pandect is trivial, but V{X,) is not trivial.

3. The U-pandect of B+, for large enough (finite) « and N +E, is powerful enough
to distinguish B from O; for if U+E and B+=L, then UB*+B (by Proposition 1.7),
and so, for some finite , V/U —« is not trivial.

4. If T and B are varieties such that T N UB* =B, then V/U —« is generated by the
image of W(X,). If =9 this can only happen if BL=L or U =E (by Proposition 1.7).
Suppose that 3§ is an non-nilpotent variety which contains a maximal nilpotent proper
subvariety. Then if Il is any nilpotent variety 11* is also nilpotent and hence L5 N NB*=B.
The same remarks remain valid if “nilpotent” is replaced by ‘“‘soluble” throughout.
Clearly any non-nilpotent (non-soluble) variety which satisties the ascending chain con-
dition on nilpotent (soluble) subvarieties has a maximal nilpotent (soluble) subvariety.
Examples are given by var(S;) in the nilpotent case, and var(4;) in the soluble case;
for in both these cases the variety in question is a Cross variety, and has only a finite
number of subvarieties (see [30] ch. 5).

The following definitions strengthen the concept of independence of laws, so that
Proposition 3.1 can be stated in a form in which the converse is also true. If Il and &8
are varieties, b is a set of laws of B, and v is a law of B, a group G NB*-differentiates v from
p if GEUB* and G differentiates v from p. If no such group @ exists, then » is a UB*-
consequence of v. Finally, B is UB*-defined by v, and v is a UB*-basis for B, if every law
of B is a UB* consequence of p.

TarorzruM 3.3. With the above notation, the following are equivalent:
(i) v s & UB*-consequence of v;
(ii) v is o consequence of v together with the laws of UB*;
(iii) for any « such that v and v are contained in X,, & is in the E(ex, N)-closure of
n ViU—a;
(iv) there exists an o such that v and v are contained in X, and @ is in the E(o, U)-
closure of ¥ in V|U —a.

Proof. Clearly (i) is equivalent to (ii).

Now assume that (ii) holds, and that » and p lie in X, for some e. Then, by Proposition
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3.1, 7 is in the E(a, N)-closure of b U UV*(X,), which is just the E(«, l1)-closure of b as
required for (iii).

Clearly (iii) implies (iv). Now assume that (iv) holds, where v=uv(z, ..., @,) for m<q,
and that there exists a group @ such that GEUL*, b is a set of laws for G, and there exist
915 +vs §m €G such that v(g,, ..., g,,) =1. Now choose a homomorphism §: X,—@& such that
x,0 =g, for =1, ..., m. Then 0 induces a homomorphism 0’: V/U ~«—@ since UV*(G)=1.
Clearly the E(«, I)-closure of v in V/U —« is in the kernel of ¢, whereas v(z, ..., ,,)0’ =
(gy, +e-s Im) ==1. Hence no such group @ exists, and so (iv) implies (i).

CoROLLARY 3.4. The -letter laws of B have a finite UB*-basis if and only if V]U — o
is fimitely generated as E(x, 1)-group.

CorOLLARY 3.5. L is UB*-defined by n-letter laws if and only if V]U —co is the
E(oo, M)-closure of V|U —n.

We look now at the structure of the pandects of B when B is defined by outer com-
mutator words. We know of no finitely based variety whose c-pandects, for finite «, are
not finitely generated as abelian groups. The next result shows that no such variety can
be defined by outer commutator words. Finally we caleulate precisely the pandects of
of the variety of all polynilpotent groups of fixed class row.

If 1<a,f<co, let E(x,f) denote the set of maps from {z,, ..., z,} into {z,, ..., 25}
(with the obvious interpretation for « or § infinite). Let E(x) denote E(«, ) regarded as a
monoid. There is an obvious embedding of E{«) in E(«, o), and hence of ZE(e) in ZE(e, A);
thus V/4 —a« may be regarded as a ZE(x)-module. Now, if « is finite, ZE(x) is finitely
generated as an abelian group; and so is any finitely generated ZF(«)-module. Recall
that outer commutators are defined inductively as follows: z, is an outer commutator; and
if u(wy, ..., 2,) and v(zy, ..., 2,) are outer commutators, then so is [u(y, ..., Zp)s V(Tpins

o Tpin))-

THEOREM 3.6. Let  be a set of outer commutators on at most o letters defining the variety
8. Then the §-pandect of B is generated as abelian group by the tmage of v under E(wx, f).

Proof. Let v(zy, ..., %,)€Y; then in V/A—pB, (g1, ..., g77) =0(g1[g1, Brls - - [0 1) =
g5 «» 9y), for all g, B, €Xp, ¢=1, ..., r. From the construction of outer commutators and
the commutator relations it isnow straightfoward to check that,in /4 —8, forallg,, ..., g,,
g in Xz, and for all ¢, 5(gy, ... §1-1, 195 Fus1 -3 §7) =0(G1, ooy 8 TG0, oo 1ots > Jiz1s 5 G7)
and %(gy, o Gty 7 Firts or Jr) = —B(gy, --r» ). 1t follows immediately that the f-pandect
of B is generated by {v(z,, ..., x,): 1 <4, <B, v(zy, ..., ,) ED}.
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COROLLARY 3.7. In the above situation, V|A — o is generated as Z(E,)-module by .

Under more restrictive hypotheses, the pandects of & may be calculated precisely.
We shall take the basic commutators in {z,, @,, ... } to be defined and ordered as follows.
The basic commutators of weight 1 are x;, x,, ... ordered by z, <, <.... If basic commu-
tators of all weights less than n have been defined and ordered, then the basic commu-
tators of weight = are all the commutators of the form [c,, ¢,] where ¢; and ¢, are basic
commutators, the sum of whose weights is n, such that ¢,>¢, and, if ¢;=]cs, ¢,] where
¢; and ¢, are basic commutators, then ¢, <c,. For the ordering, basic commutators of weight
n are greater than those of smaller weight and ordered in some arbitrary fixed way amongst
themselves.

If P, ., denotes the polynilpotent variety of class row (cy, ..., ¢,) (that is B, . =
N, Re,, - Na) then P, .
tively as follows. Let w, =wy(zy, ..., #.) =[2y, ..., 2, ]- If wy, ..., w;_; have been defined, such

- D) D) (k)
that w;=w,(®y, ..., Zc,,,.o;) then w; =[wi2y, w2y, ..., w ], where wi®s =w;_y(Tk_1)ccr..ci_petseees

, is defined by the law w,=w,(z,, ..., z,,....,) defined indue-

xkcl... i1 )

TrrorEM 3.8. (T. C. Hurley). The §-pandect of the polynilpotent variety B, .. ., of
class row (cy, ..., ;) 18 freely generated as abelian group by the set of elements represented by

basic commutators of weight ¢, ... ¢, in P, (X ).

Proof. Let Ry, denoted P, . Since Puy(Xp) Sye,..(Xp), and (4AP5) (X, <
Ver...en+1(X g), it is clear that the elements represented by the basic commutators of
weight ¢, ... ¢, in P(,(X ) freely generate (as abelian group) a subgroup of the f-pandect
of Py It is therefore sufficient to show that these elements generate the S-pandect, that
is, by Theorem 3.7, that each image of w, under H(c, ... ¢,, §) can be written as a product
of such elements and their inverses mod (AP¢;)(X ). The argument will be by induction
on r. The case r =1 gives the well-known result that y,,/y.,41 is freely generated, as abelian
grdup, by the basic commutators of weight ¢;. Assume now that the result is true for
B, Y y€EB(e, ... ¢, B) then wyy =[wN;y, ..., wi)y]l. Now each ui?; is the image of wi?,
under an element of E(c; ...c,_;, f), and hence, by the inductive hypothesis, can be expressed
mod (APf;_1,)(X4) as a product of basic commutators of weight ¢; ... ¢, ; in Pg_1,(Xp)
and their inverses. Hence w,y can be expressed mod (4P,)(X ;) as a product of commu-
tators of the form [w,, ..., w,] and their inverses, where each u, is a basic commutator of
weight ¢, ... ¢,y in P,_1(X4). Now [uy, ..., %,] is not necessarily a basic commutator,
but it can be expressed as a product of basic commutators of weight ¢, in {u, ..., u,}.

Now, since u; and v, have the same weights, if u,=[v,, v,] then v, has smaller weight than
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. It follows immediately that a basic commutator in {u,, ..., %} is also a basic commu-
tator in {®,, , ... }. Since u;, ..., 4, are in P,_1,(X,), any commutator of weight ¢, in
Uy ooy Ygp 18I0 Y, (Pro1y(X ) =Pry(X ). This completes the inductive step.

§4. Infinitely generated examples

The problem of deciding which varieties are not finitely based has recently received
much attention. In this paragraph, which is based on the work of Vaughan-Lee, we exhibit
various varieties 8 which have the stronger property of having (in the notation of §3)
no finite Y, B*-basis. This is equivalent to a non-finite-generation property of the pandects
of B (see § 3); a homological interpretation will be given in Chapter II. In [38], Vaughan-
Lee finds a variety 8 with an infinite set of independent laws, and we shall show that these
laws are in fact ¥, B*-independent. This set of laws requires infinitely many letters, and by
a further refinement of Vaughan-Lee’s argument we shall find a variety ) with infinitely
many A;J*-independent 3-letter laws. Bounding the number of letters will give rise to a

striking counter-example in homology.

TrEOREM 4.1. (Vaughan-Lee [38]). For each n=>1, let v, denote the word [[xy, x5, 24],
[0, 51, -5 [onsa Zonysls [%1s %9y 25]). Let B be the variety defined by

{”h Vg, V3, } U {x%e, [y, %g, 3], (24, 25, 2], [%4, xs]]}=
and let B, be the variety defined by leaving out the law v, from this set. Then B is a proper
subvariety of B, for each n=1,2, ....

The proof of this result is given in [38], and we shall reproduce just enough of the
details to enable us to prove our stronger result.

Let A4, be the group generated by elements ay, ..., a4,, subject to the relations aj =
[y, a5, ]1=1, 1 <4, j, k<2n. Thus 4,/4, and A’ are elementary abelian 2-groups. Denote
the coset 47,9 by g for g€ 4, with a similar convention for B, as defined below.

Let B, be generated by {b,: g€A4,} U {c;: EA,/A,} subject to the relations b=
[b,, by, b1=1, 9, k, k€A, and

(i) [bg, bl =1 if g==k;

(i) [by, byl =cy or 1 if g=4h.

In case (ii) the choice of ¢5 or 1 depends on a subtle rule which will not be given here; instead,
the consequences of the rule that will be needed are given.
() [bg, b([al.ag]...[az n_l.azn]g)] =Cg;,

(hence B, is generated by {b,:g€4,}), and B;, as a vector space over Z,, has a basis
{cs:G€A4,[4%}.
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(f) Every permutation of the generating set {b,: € 4,} given by right multiplication
by any fixed element of 4, induces an automorphism of B,, so that B, is an 4,-group.
Hence there is an A,-isomorphism between B,/B, and Z,4, in which, Yg€4,, b,—g
and an A4,/4}-isomorphism between Bj and Z,(4,/A4%) in which, YG€A4,/4}, c;o§. Tt
will be econvenient to denote b; and ¢; by b and ¢ respectively, so that, Vg€4,, b,=b% and
cz=c’.

(y) Every permutation of the generating set {b,: g€ 4,} given by an automorphism
of A4, obtained from a permutation of {,;} induces an automorphism of B,.

Using (8), put D,=A4,[B,; then

(5) VdEBm Ym #:n: a’nd Vgl, A g2m€-Dm [d’ [911 92]: seey [g2m—1s g2m]& d] =1
(¢) The map 6: B, x DE™— B, defined by (2,91, «+s 920) 0 =14, [91, g2, - > [F20-1: F2u)s €1,

Yd€B, and VYgy, ..., 9. €D,, factors as B,x DE™—(B,/B,)QA*"(4,/4,)—~>B,, where
the first map is the natural surjection, and the second is the homomorphism induced by
by®Fy A -.c A Gon—>C5, where A=0if g, ..., §a, are linearly dependent, i.e.if Gy A ... A Fay, =0,
and is 1 otherwise. Here g; denotes g, mod B, 47,

It is clear from these results, in particular from () and (g), that D, satisfies all thelaws
used in the definition of B, with the exception of v,, and so the theorem follows.

It is also clear from (¢) that By, is B-marginal in D, and our next aim is to replace D,
by & quotient group whose derived group will be B-marginal.

LeMMaA 4.2, Let r>2, and let by, ..., h,€D,, by=f.d;, {,€B,, d,€A4,. Then, equating
B,|B, with LA, as in (B), [hy, ... 1By =fydy([dy, dg] ~da) (1 —dy) .. (1 —dy) + ol —dy) X
dy{1—ds) ... (1 —d,) +f3(1 —[dy, do)ds(1 —dy) ... (1 —d,).

Proof. A straightforward commutator calculation.

Using (B) to equate B, with Z,(4,/4%), let 1< B, be the augmentation ideal. Since
A,/4", is elementary abelian of rank 2n, it is easy to see that I> 2> ... D I**> [***1=(
is a properly descending sequence of subgroups, with 12" of order 2, the non-zero element
being (1 —a,)...(1 —as,).

LemMa 4.3. With 0 as in (¢), (y(Dy) x DE™)0=1""1, for r>2.

Proof. This follows at once from Lemma 4.2. Applying the lemma to the law v, gives
o(Dy) = V(D,)=1I?, so that D,/I® satisfies all the laws used to define L with the exception
of v,. Now consider v,(d,, g, ds, g4, .., J2n)> di» :€ D, It follows from (g) that multiplying
g 1=1, ..., 2n, by any element of D), does not affect the value of v,. Also, multiplying
d;, i=1, 2, 3, by any element of D7, multiplies [d;, d,, d;] by an element of y,(D,), and so,
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by (¢) and Lemma 4.3, changes the value of v, by an element of I3. Hence D,/I?
ABV*-differentiates v, from the otherlawsused in the definition of B. Infactsince D,/ D}, €U,,
D, | I3, B*-differentiates the laws. This proves:

THEOREM 4.4. With the above notation, v, is Uy B*-independent of {v;: i%n} U {21°
[[xp x2> xs]a [x4, .’.U5, xs]: [xb ws]]}'
CoROLLARY 4.5. The A,-oo-pandect of B is not finitely generated as E(oo, W)-group.

In [8], Bryant proves that the variety 1=3,B, is not finitely based, where B,
is the variety of all groups of exponent dividing n. He constructs groups which differentiate
between laws of the form (27 ... 22), and it is straightforward to check that these groups
do in fact AU*-differentiate between the laws. This gives rise to analogues for Theorem
4.4 and Corollary 4.5 for the variety B, B, and its co.pandect.

We now construct a variety J) whose 3-pandect is not finitely generated as E(3, U,)-
group and, hence, as abelian group. It is easy to construct infinitely many independent
2-letter laws by replacing the letters «; in v; by independent generators of F,, but it is
not easy to decide whether these give a non-finitely generated 2-pandect. As a preliminary
step we revert to the case of infinitely many generators.

LEMMA 4.6. Let v, =0(Ty, oo Tonyas Tanios oves Tangr) b€ the law [[#y, oo Tonsa]s Fanses
Tonigls «ovs [Bans Tansads By ooor Bonyq]1] and B be the variety defined by {vin: n=1, 2, ...}. Then
with the above notation, V'(Dy) =vy(D,)=1?", and D, Wy B'*-differentiates vy, from {v: i +n}.

Proof. The proof of Theorem 4.4 needs only the slightest adjustment to give this

result.

We use Lemma 4.6 and the laws v, as the basis for our construction of the variety
%), rather than Theorem 4.4 and the laws v,, only because our attempts to use the latter
(and simpler) situation failed. To use the groups D, to differentiate 3-letter laws they must
each be embedded in a 3-generator group. In view of (p), D, is a C,,(s)-group, where s
acts on 4, by aj=a,,;, 1<i{<2r—1, and a3,=a,; on B, by b,+>by; and hence on D,
Then Cy,(s)[ D, is generated by {s, a,, b}. Unfortunately, to get the construction to work,
a slightly more complicated group is needed, namely (Cy,(s) X Cy(t)) [(D, X D,), where s
acts on each copy of D, as above, and ¢ interchanges the copies of D,. Call this group
G,; Gy, is generated by {s, t, (a,, 1), (b, 1)}, and only the subgroup generated by {s, ¢, (ba,, 1)}
is needed. It remains to define ). Put

Wy, = wn{Zy, Tg, X3)

= ooy, @), [, @™, oo [, @l F5 [, @), [, 2™, o [, 205,

and let §) be the variety defined by {w,: n=2,4,8, ...}.
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THEOREM 4.7. With the above notation, the laws w,, n=2, 4, 8, ... are Uy P*-independent.

CoroLLARY 4.8. The U, —3-pandect of §) is not finitely generated as abelion group.

In particular, §) is not a Schur- Baer variety.

Proof of Theorem 4.7. It will be shown that G, U, YP*-differentiates w, from {w,: i =+n,
=2, 4,8, ..}. Since [, #,] and its conjugates take values in D, x D,, and D, satisfies
the laws v; for i =n, it follows that G, satisfies the laws w; for i=n. By the same token,
if e is the non-zero element of I?", Y(G,) =w,(G,)<<(e, 1), (1, €)>. In fact w, is not a law
in @, for w,((bay, 1), ¢, s) has each component in D, x D, equal to v}, (bay, ba,, ..., by, bay;
bas, ..., bag,) =e, by a simple application of Lemma 4.2 and {g). It remains to check that
G, and ¢? are w,-marginal. This will imply that Y(G,) is central in @,, so Y (G,) ={(e, e)) is

of order 2.

Say that g€@, is marginal in the first place if w(g, 9, ¢2, §3) =w{g1, Ja> 93)s ¥ 91> 925 3 € Gy
with similar conventions for the second and third places. Say that S< G, is marginal in the
1th place if all its elements are.

Since D7, is vy-marginal in D,, D}, x D, is marginal in G,, and D, x D, (and a fortiori
() is marginal in the third place. Let ¢, ¢, 9:€G, and put [g;, g2]g§=(dl,1 115 G, 1,4) for
i=0, 1, ..., 2n. The image of d;; in 4,/4’, will be denoted by d;; observe that d, 5,., =dj,.
Let d; =f,d;, j=1, 2, {,€B,, d,€4,. Then [,€ B,/ B, 2%Z, 4, as in (8). Let f, be the image of
fiin Zy(A,/A%) and ;= o(f;) be the image of f,under the augmentation Zy(4,,/4) - Z,. Then

Wn(G1s Ga» 93) = (01 Ay, €ty Ay) 1)
where A;=0 if d,, ..., d; o, are linearly independent and is 1 otherwise.
For

Wa(g1> 92 93) = (([d11, duas oo By, 0, gl gy oovs By, 90) 05 ([Dag, Ao, oy Do, 00y Ay ],
d2l7 b dl. 2n) 0)7
and hence this formula is certainly correct in the j-th place if A;=0, so suppose d, ...,
d;, o are linearly independent. Then Lemma 4.2, together with (¢), gives the jth component
of w,(g1, g2, ¢5) as the sum of 3 terms. The third term vanishes trivially; the second vanishes
since (1—d;)(1—d; 3p1)=(1—d;)2=0 in B, =%y(4,/4,); and the first gives ex;, for
(A—dp)..(1=dy0) (1 —dp)=¢ as {ds, ..., &jom din}

is a basis for 4,/4,.

The next step is to prove that s?is marginal in the third place. Since it has already been
shown that D, x D, is marginal in the third place it is enough to prove that w,(gy, ¢s, ¢5) =

Wy(g1s ¥a2r 935%) Whenever g;=s7". Consider first the case when r is even. Then

d a3 Sl .
et =0 =dn =dy; so A;=0,
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and w,(g1, g2, 9a) =Wn(g1> 92, 9552) =0. Assume now that r is odd. Since «; is independent
of gs, the linear independence of {d,,, ..., d;, 5,} is the only problem. Clearly

“ 2 - .
d;1.1=d5, ife=0 or iiseven

ot

=d3 ;4 ife=1 and 1isodd. (2)
If £=0, letting ¢ go from 0 to 2n—1, s™'=(s")! goes through all elements of Cy,(s). If £=1,
letting ¢ go from 0 to 2n—2 through even values, s™ goes through all non-generators of
Oy(s), and letting ¢ go from 1 to 2% —1 through odd values, s™ goes through all generators
of C,,(s). Thus in either case replacing r by another odd integer permutes the elements
{ds1, - d;, 0n} among themselves, and does not affect the linear independence of {d;}.
Hence s? is marginal in the third place.

The final step is to check that

V91, o Js€G, and VYg€G,, andfor g=s?
W91, 99> Ga) =wn(G1> G29> J3) =Wa(d1, 9a, 95)- By the above caleulation it is enough to consider
gs=st°, =0 or 1; also it is enough to prove that w,(g:9, g, 93) =wn{gy, Jo, gs). An easy

calculation shows that

Gn={d )L, &V, N, 1):d,d’€A,, |, [ €B,,
2n
d'=>ka where Dk iseven, «(f)=0}(D,x D).
1 i
It follows that multiplying g, by an element of G, multiplies [g;, g,] by an element of the
form (d’, &) (1, d")(f, ') mod D7, x D5, where, if
2n n n
d=2kia, and d"=2kd,2ki= k= > ks_1=0mod?2
i i 1 1 1

and o(f) =a(f")=0. It follows from (1) that the term (f', /) can be ignored. With d;; as

above, let
dn = ‘2 L,a, and ‘Zm = ;mzéz-

(It is clear from (2) that A, depends only on dy; and dy,.) Then it follows from (2) that
either 6=0 and m,;=1,_, for all ¢ (suffices mod 2n) or =1 and d,,=d,,. Thus, multiplying
g, by (@', d'd") replaces I, by I, +ki, and replaces m, by m;+k;_, if 6=0, or by m;+ki_,+
ki_y if e=1. It will be shown in Proposition 4.11 that

A1 = A(‘le, sy dv 2n) = (; lzz) (% mg;) + (z:: l2i—l) (; mm_l) mod 2.

It is clear from the conditions on {k;} and {k7} that of the four factors in this expression,

either all or none is changed mod 2, so that A; remains unchanged. Similarly for A,.
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The effect of multiplying g, by s will be to replace (g4, g5] bY [g1, 921" [s%, g51. Let

2n 2n
8%, 9.1= (; lia, gmﬁ ai) (h, h’) mod D, x D7, h, k' €B,,.

Then
n n n n
D=2 my =Dl = ;%1—150 mod 2
1 1 1

and ofh) =a(h’)=0. It is clear that in (1) «; and o, are unaltered. To evaluate the effect
on A,, notice that I, is replaced by 1,_o-+1; and m; by m;_,+li_; if £=0 and m,_y+mi_;
if =1 for each 7. Hence none of

n n n n
Z 321-1, Z {21, Z Mai, Z Migi—1
1 1 1 1

is altered mod 2, and so A, is unchanged. Similarly for A,, and, subject to Proposition 4.11
the theorem is proved.

The problem has been reduced to a question about determinants. Put r=2n and let
2 Y3 =1, ..., ¢ be indeterminates over the field of € complex numbers. The assumption
that n is a power of 2 will be held in abeyance. Let A{x, y) denote the determinant of

X Ty Ty ... X,
Tr1%y, Ty vee Xypog
Ly g%y o%r1 ... Tr_g
Ty Xy Xy ... Ty

Y Y1 Y2 - Y

Yr—2Yr-1Yr oo Yr-s
Yr—-aYr3Yr-2 <« Yros

Ys Y3 Y .- %

Rearranging the rows so that x and y rows alternate it can be seen that this is equal (up
to sign) to the block circulant

X, X, ... X,

XXy oo Xasy

Xsz L X Xl

Ty Xy XTr_1 Xy
£im (57, ()
! Y% T Yr—2Yr—1

where
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Let « be a primitive n-th root of unity, then it follows from T. Muir [41] Chapter 12, § 514
that this can be expressed as

(= )b ﬁlle + o Xyt ..+ VEX |
k=0
Let @ be an r-th root of unity, and let
Lumuma 4.9, Let & be a primitive r-th root of unity, then
A@.g)= H1 ).

Proof. Tt is clear that the product has the same coefficient of z7y{ as A(g, Y), so it
remains to check that this product is equal to

n—-1
+ IT| X, + X+ ... +a™ DX, | where a=£%,
k=0
Now

n-1

ITIX, +&%X,+ ... + V8K, |
0

n-1

& -+ Ezkx:; + ...+ Ez(n-l)er_l, Zy + Ezkx4 + .+ §2(n—1)er }

Yo+ Eyy + L EEDRy oy + Eyy L+ DRy !

n—-1 n n n n
=-—I1 ’51‘2[(2 Ty; Em) (2 Yu 52”‘) - (Z Tajm1 f(Zt_l)k) (z Yai-1 5(2i_1)k):|
0 1 1 1 1

n-1

= I;I fsk(g"’:_y)‘

ProPOSITION 4.10. If  is a power of 2,
A@,y)= (g xzi-l) (% y21-1) + (g wg,) (? y2,)mod 2.

Proof. In the cyclotomic field Q(£), the prime ideal (2) ramifies and is the n-th power
of the prime ideal (1 —£). Hence A is even if and only if 1 —¢ divides fg(z, y) for some 3,
and this is true if and only if fy(z, y) is even. But

= () ) () )

and so the result follows.
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CHAPTER 1I

§1. Homological machinery

The homology we shall employ is a special case of a number of theories described by
various authors. Theories of Barr and Beck [6], and of Rinehart [33], are most suited to
our needs; for a brief account of how these and other theories are to be adapted to the
varietal situation, see [24, I] § 2.

If B is a variety, and I1 €%, (B, II) denotes a category whose objects are the groups
in B supplied with a fixed surjection (usually suppressed) onte II. In particular II, as an
object of (B, I1), will be assumed to be supplied with the identity map. The morphisms
of {8, II) are the group homomorphisms for which the obviocus triangle commutes; two
of these homomorphisms are already required to be surjections, if the third is as well,
the morphism is a surjection in (B, II). A reason for using (B, II) rather than B is that if
B is a II-module we wish to have a functor that takes ¢ in B to Der (@, B); but this is
possible only if there is a fixed homomorphism of G into II, so that B becomes a G--module.
It is possible, and usual, to take the objects of (B, TI) to be groups in B with any fixed
homomorphism into IT. The restriction to surjections produces occasional slight simpli-
fications. Throughout this section, @ will denote an object in (L, II).

(i) I A4 is an abelian category with enough projectives, and 7 (3, II)—~> A4 is any
functor, then for every integer n =0 there is a functor B, (—, T') from (B, II) to A, the n-th
derived functor of T'. The image of a morphism « under L,(—, 7') will be denoted by «,,
and not by 8B,(«, T; see (iii).

(ii) If G is a B-free group (or more generally a B-splitting group) then B, (G, T)=0
for n>0, and By(G, T)=T(G). (see [6], 4.4 and §5 or [33], Proposition 2.7, Definition
2.6 and Proposition 2.4).

(iii) If a: -G is a surjection in (B, II) there are objects B, (¢, T"), and morphisms, in

A that make a long exact sequence

> B(ct, T) > BuE, T)— s B, (G,T) > B (0t, T) > ... — 2 By (G, T) 0.

A commutative square
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in (B, II), with « and § surjections, gives rise to a commutative diagram
o> B 11(Gh, T) > B (0, T) > B (B, T~ ...

VYn+1 O,
ceo > B, 11(Go, T)— B8, T) — B (B, T)~ ... .

In particular, the commutative square being a morphism of « into §, LB,(—, T') defines
a functor on the appropriate morphism category (see [6], Proposition 2.2, in which «
is not required to be a surjection, thus introducing an extra term on the right; or [33],
Theorem 2.18. That the exact sequences in these theories agree when « is a surjection is
proved in [24, II] Remark 1.3).

(iv) The right II-modules B for which II[B lies in &8 are precisely the right BII-
modules, where B II is a certain quotient ring of ZI1. (See Knopfmacher [22], or [24, I]§ 1.)
This is consistent with the terminology of § I.1. If P in (%, II) is B-freely generated by
y, then IP®BII is freely generated, as right BII-module, by {(1—y)®1; y€y}, ([24, I],
Lemma, 1.2)}j If B containg A var I1, then clearly BII=ZII. Similar results hold for left
modules; the same quotient ring BII oceurs.

If A is a left Bll-module, and T: (B, I1)>Ab is defined by T(G)=IG® A4, then
B,(G, T) and B, («, T') will be denoted by B,(G, 4) and B,,(e, 4) respectively. IfGA =11,
regarded as a left BIT-module, then 7" and its derived functors will be taken to have values
in the category of right BII-modules. If B is a right BII-module, and S: (B, II)—~ A6
is defined by S(G@)=Der (@G, B), then L,(A, 8) and B, (e, S} will be denoted by B*, B)
and B"(«, B) respectively. These functors are all additive in the module.

The group II is suppressed in the notation as it plays only a minor role. If I'->II
is a fixed surjection, G€(R, I'), and T (B, II)—~ A, then G defines an object G* of (B, I1),
T defines a functor T™*: (B, ')~ A, and B,(G*, T') is naturally isomorphic to B,(¢, T%)
for all #>0. For example, writing ¢ for G*, B,,(A, A4) takes the same values if & is regarded
as an object of (B, II) or of (B, I'). In particular, if G is fixed, we may take I =G.

(v) A short exact sequence of left (right) BII-modules gives rise to a long exact
sequence in homology or cohomology as in the classical theory; however, since varietal
homology does not in general vanish in positive dimensions on projective modules, and
similarly for cohomology and injective modules, these exact sequences are of little use,
beyond the simple fact that the (co-)homology groups are functorial in the module.

(vi) By(@, 4)=IG® 4 and BLYG, B) =Der (G, B). If a: E—+Q is a surjectionin (B, II),
then By(e, 4)=(R/[R, §])®A and B%x, By=Homp(R[[R, 8], B), where R=Lker 2, and
8 =ker (E—II); here E actsH on the right on R/[R, 8] by conjugation, and this induces an
81— 762909 Acta mathematica 137. Imprimé le 22 Septembre 1976
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action of II via £—TI. (The evaluation of 8,(G, 4) and BYQ, B) is easy in any appropriate
theory; for a discussion of LBy{«, 4) and BY(«, B), see the remarks before [24, I]Theorem 2.1).

(vii) If B=9, the universal variety, then for all n>0, O,(G, 4)=H, (G, 4) and
oG, B)=H"*(G, B); see [5] or [33]. H,(G, A) is defined as Tor%%(Z, 4), and so, using
the exact sequence 0-IG—>ZG@->Z—0, TorZ%(IG, Ay=H,, (G, A) for n>0; thus
D,(G, 4)=Torz¢(IG, A) for n>0, by (vi). Similarly O, B) =Ext}+(IG, B) for n>0.

It is a basie fact of the homology theories in question that they give rise to the usual
Tor and Ext if ¥ is an abelian variety. For example, if L=U, B,(G, 4) =Tor, (G, 4)and
BG, B)=Ext"(G, B); these vanish for n>1. If B =, then G, 4 and B must be of expo-
nent dividing m, and B,(G, 4)=Tori™(@G, 4), BG, B)=Extz (G, B). These vanish if n>0
and m is square free.

(viii) If 2B is a variety containing B there are “change of variety” homomorphisms
2.8, B, G, 4): B,(G, 4)~B,(G, A) and ¢p™(B, B, G, B): VG, B)—-BW"(G, B). They are
isomorphisms for =0, and if »=1 they are surjections in homology and injections in
cohomology; see {24, ITI], § 1 and Corollary 2.2. They are isomorphisms if #=1 and 8
contains Y var @; see [25). Similar results hold if G is replaced by a surjection, except that
there is no analogue for the isomorphism obtained if n=1 and B contains Y var G.

(ix) BYG, B) classifies extensions 1 B—+ E—G—1 such that conjugation in ¥ induces
the given G-module structure on B, as in the classical theory, with the additional condition
that Z lies in 8. If 1-- B~ E,—~G—1, 1=1, 2, are extensions as above, so is their Baer
sum 1-B-—E,; g E,—~G@—1. With this addition, the isomorphism classes of extensions
form a group, with identity represented by the extension 1--B—G[B-»G~-1; and the
correspondence between the set of isomorphism classes of extensions and BYG, B) is a
group isomorphism; see [7] or [33], § 3. This interpretation is easily seen to be respected
by change of variety homomorphisms in the obvious sense; which explains why (53, 8, G, B)
is an injection, and is an isomorphism if B2 var G. The interpretation is also natural
in G and B.

(x) If oo DG is a surjection in (B, I1) with kernel R, BY(«, B) classifies extensions
1-B—K—R~-1 where K iz a B8D-group as in § 1.1, B~ K and K-~ R are D-homomor-
phisms, and the action of K on itself by conjugation agrees with the action defined via
K~ R—D. Here D acts on B via DG, and on R by conjugation; note that B and R are
both BD-groups, and that B is mapped into {(K). If 1-~B—L~R->1 is another such
extension it is equivalent to 1+ B— K-> B—1 if there is a D-isomorphism between K and L
inducing the identity on B and R. The set of equivalence classes forms a group under Baer
sum (with the obvious action of D on the middle term) isomorphic to B(«, B); the isomor-

phism is natural in B, « and B.



BAER-INVARIANTS, ISOLOGISM, VARIETAL LAWS AND HOMOLOGY 131

The homomorphism BY D, B)—B«, B) of (iii) corresponds to sending the extension
1-B—E—D-1 to the extension 1+ B-> K-+ E—1, where K is the kernel of the composite
E~-D-@. The action of D on K is induced by the action of E on K by conjugation; this
is well defined since B centralizes K. See {33] § 4.

(xi) If W2 B there is an exact sequence
TBy(G, 4) 2> By, 4)>Bo(6, Oyl —, 4)~By(6, 4)—TL-B,(G, 4)~0

where @, and g, are the change of variety homomorphisms of (viii); see [24, I11]. If B=29.
var G and W=9, ¢, is an isomorphism, ¢, is an injection, and the resulting short exact
sequence 0—Dy(G, 4)—>By(G, 4)—> By (G, O,(—, 4))—~0 splits; see [25]. Similar results,
with the arrows reversed, hold in cohomology. In § IL.3 we shall obtain a generalization
of the cohomology exact sequence in which @ is not required to lie in B.

The next result is needed to calculate a term in these exact sequences.

(xii} With 7" as in (i), B,{G, T) may be calculated as follows. Take a B-free {or
B-splitting) group P, and a surjection Py—>G with kernel R. This supplies P, with a surjec-
tion onto II. Take another B-free (or B-splitting) group @, with a homomorphism into B
whose image generates R as normal subgroup of P,. Let P; be the verbal product of P,
and . There are two surjections, d, and d;, of P, onto P, defined as follows. Each maps
Py, as a verbal factor of Py, identically onto Py; d, maps @ into R by the given homomorphism
and d; maps ¢ to the identity. The composites of d, and of d, with Py— G give coincident
surjections of P; onto @, and so, after a further composition, of P, onto II; thus P, may be
regarded as an element of (B, I1). Then By(@, T') =coker (dy T —d, T). This is the beginning
of the ‘construction pas & pas’ of André [1]; a slightly more general construction is given
in the proof of [33], Proposition 2.4, see [ibid], Definition 2.6., which also arises from the
construction of Tierney and Vogel [36).

(xiii) In conclusion, there is a number of obvious commutative diagrams, too large
to enumerate. For example let (U, 11) be the category of varieties containing U, with
morphisms the inclusions, and let 71 be the category of left 1II-modules. Then for every
integer n>0, B,(GF, 4) defines a functor from (¥, 1) x (I, IT) x M to Ab. The homo-

morphism corresponding to a change of variety appears in (viii).

§2. An interpretation of %*(G, B)

Let o: D—G be a surjection in B, and let B be a right BG-module. By splicing two
short exact sequences, one sees from (x) that B(«, B) classifies exact sequences 1 - B—~ K —
D361 of BD-groups, as defined after Lemma I. 1.9, where D acts on itself and on &

via conjugation, the homomorphisms are all homomorphisms of D-groups, the action of
9762909 Acra mathematica 137. Imprimé le 22 Septembre 1976
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D on B isinduced by the action of @ on B via «, and the action of K on itself by conjuga-
tion agrees with the action defined via K— D. This implies that B is embedded in {(X).
1f 1- B~ K,~ D->@~1,i=1, 2, are two such sequences they are equivalent, and correspond
to the same element of B («, B), if and only if there is a D-isomorphism of K, onto K,

giving rise to a commutative diagram,

1 B K, p—2.¢ 1
1 B K, D—2.¢ L

The equivalence class containing a sequence § will be denoted by [$]. Let Ext(B, «, B) be
the set of equivalence classes of such sequences, so that there is anatural bijection between
Ext' (8B, «, B) and BYe, B). This becomes an isomorphism when the obvious addition is
defined in Ext'(%, «, B), see (x). Information on the naturality of this isomorphism
in o will be needed. If §;=1-B—>K,~D;—>G~1 defines an element of Ext'(DB, o, B),
and if 0: Dy~ D, is a homomorphism, with D,€ %, such that fx=p, say, is a surjection,
then put SZEI—>B—>K2—>D2—ﬂ>G’—> 1, where K2=K11>)<1D2. The homomorphisms are the
natural ones, and with the natural action of D, on K,, §, clearly defines an element of
Ext1 (%5, 8, B). Thus 0 defines a map 0*: Ext' (B, o, B)~>Ext1 (B, 5, B) sending §; to §,.
Also 6 defines a morphism of § to « (put y =0 and §=14 in (iii), the roles of « and § are
reversed), and hence 0 induces a homomorphism 6: B(x, B)— BB, B); and if s, € B, B),
5, €BYP, B) correspond to §, and §, respectively, then s,6'=s,. The more general case in
which ¢ is allowed to vary is similar, but will not be needed.

Put C*(, G, B)=U, Ext}(®B, «, B), the union being taken over all surjections « in
% with image G. Working within a Grothendieck universe, C3(B, G, B) becomes a set. If

§,=1-B-=K,~D,~G-1,[§]€C*(B, G, B),i=1, 2,

let 1[351] +[8;1=1§], where §=1-B~K, >lz Ky~ D, X D,—~G—1; the action of D, X D, on
K, x K, is the natural one. It is easy to see that addition is well defined, and makes
C¥B, &, B) a commutative monoid, with identity the sequence 1-~B—> B—~G—G-1,
where B—@ is the trivial map. This addition will become compatible with the addition
already defined in Ext'(, &, B) on the introduction of the equivalence relation of similarity
below. (The proof of this statement is contained in the proof of Theorem 2.1.).

If §=1-B~K-D->G~>1 defines an element of C}(B, G, B), say that § and [S§]

are null if the commutative diagram
1-K-H-G-1

1-B-K—->D-G—~1
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with exact rows can be completed, with E €8, in such a way that the action of ¥ on K by
conjugation agrees with the action via E—D. It is easy to see that the null elements of
0B, G, B) form a submonoid. Say that two elements of C¥(RB, @, B) are similar if they
become equal on adding to each a (possibly different) null element. This is clearly an
equivalence relation that respects addition. Let Ext?(®B, G, B) denote the resulting quotient

monoid.

TreEorEM 2.1. Ext?({, G, B) is an abelian group, naturally isomorphic to B2(G, B).

Proof. Define O: C¥(B, G, B)~>B2({, B) as follows. If [ ] € Ext' (B, «, B) corresponds to
s€EBY«, B), let [S10 be the image of s under Bl(x, B)—B(G, B) as in (iii). Then, in
particular, for a homomorphism « with domain a B-free group P (and such an « always
exists), since B2(P, B)=0, the exactness of B(x, B)—->B2(G, B)—B2(P, B) shows that O
is onto. If the domain of « is an arbitrary group D in B, the exactness of RYD, B)—~
B e, B)—>B@G, B), together with the last part of (x), shows that [§]® =0 if and only
if § is null. It remains to check that © is additive. Let §;,=1->B—-K,—~D, g1 define
an element of Ext' (%, «;, B), s; be the corresponding element of B(«;, B), and #; be the
image of s; in B(e, B), :=1, 2; here o: D, X D,—@ is the canonical surjection, and the
morphism of « to «; is given by the projection 6,: D, X Dy~ D;. Let t € BY«, B) correspond
to [§;]1+[S,]. Since the composite B(x,;, B)— B, B)—>BG, B) coincides with the
homomorphism B(e;, B)—>BAEG, B), see (iii), it is enough to check that ¢, +#,=t. Now,
if B;=ker a;,t; corresponds to J;=1—-B—+K,x E,~D, % Dy—>G—1, §=3—1, where the
homomorphisms and the action of D, % D, on K; x R, are the obvious ones; see the discussion
of the functoriality of Ext'(, «, B) in « before the statement of the theorem. So ¢, i,
corresponds to J, where J is obtained by adding J, and T, as elements of Ext' (8, «, B);
see (x). It is easy to see that J=1-+B->K, >l<?K2—>D1 % Dy—~G—1, again with the obvious
maps and action; but [J]={S,]+[S.]. This completes the proof that @ induces an isomor-
phism between Ext?(%, @, B) and B(G, B). It is easy to see how Ext?(8, ¢, B) becomes
a functor of B, & and B (varying G requires the introduction of a ‘base’ group II), and the

naturality of the isomorphism is then routine.

Note. 1 §;=1-+B~K,~D;—~G-1 defines an element of C¥(NB, G, B), i=1,2, {§]

is related to [S,] if there is a commutative diagram

l-B-K,~D,~G~>1

-]

1-B—-> Ky~ Dy~ G—1,

where K;—~K, is a. Dj-homomorphism, D, acting on K, via D,— D,. It is easy to see,
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as in Gerstenhaber [11], that similarity is the finest equivalence relation on C%*(%B, ¢, B)
with the property that related elements are equivalent.

The second cohomology group can also be interpreted in terms of obstructions. This
was first done for the variety of all groups by Eilenberg and MacLane in [9]; for a treatment
based on the Gruenberg resolution, see [12]. A triple-theoretic technique dealing with
commutative algebras was produced by Barr in [4], and generalized by Grace Orzech in
[32]. Her results include the case of varieties of groups.

Let 1->K—+E—->G~1 be exact and let B=[(K). Then E acts by conjugation on K,
and this gives rise to a homomorphism §: G—Ount K, the group of outer automorphisms
of K. A (-module structure is induced on B by 0. Conversely, given 6: G—>Out K, § makes
B=[(K) into a G-module, and obstruction theory asks whether 0 arises as above from
an extension, and if so, in how many ways. The solution is obtained by associating with
every such § an element of H3(@, B)=02%@, B) in such a way that those arising from
extensions correspond to 0. If § does arise from such an extension, then (G, B) acts
naturally, faithfully, and transitively on the set of all such extensions. Moreover, every
element of %, B) does arise from some 6.

Suppose that in the above situation F€B, B some variety. Let N=im 0, and M
be the inverse image of N in Aut K. It is easy to see that K is a LM -group, and this makes
B a BG-module. If §: G-»Out K satisfies this condition, and G€R, call § a B — G — B-core.
Orzech’s obstruction theory then associates with every 8 — G — B-core an element of B3(G, B),
those that arise from extensions are those that are associated with 0, and given a fixed
B —G— B-core associated with 0, VY, B) acts naturally, faithfully and transitively
on the set of extensions giving rise to the given core. Introducing an equivalence relation
on the set of B—G — B-cores they can be made into a group Obs(*B, G, B), after the style
of [9], so that the above theory gives rise to an injection of Obs (B, G, B) into BLE, B),
natural in 8 and @; this injection is an isomorphism if the B-free groups of large enough
rank have trivial centres. This condition on the centres cannot be dispensed with; for
example it is clear that Obs (B, G, B) is trivial if B is an abelian variety, whereas the only
abelian varieties B for which L@, B) is always trivial are those of exponent m, where
m is O or a positive square-free integer.

The requirement that B be the whole of the centre of K has two disadvantages.
Firstly, it means that Obs {5, G, B) is not functorial in B, and secondly that some elements
of B2(G, B) may not arise as ‘obstructions’. We now indicate how a theory without these
drawbacks can be constructed, see Gerstenhaber [11].

Givenf, G€QB, B, K, M and N as above, there is an exact sequenceSg=1->B->K—~> D~
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G—1, where D=M X @, K- D is induced by the homomorphism K—M given by the
action of K on itself by conjugation, and D@ is the canonical projection. If D acts on
K via the projection D—>M, §, defines an element of C%(B, G, B). The B—G ~ B-core
defined by 0 arises from the extension 1-»K-E—-@—1 if and only if the commutative
diagram
1-K—+E->G@—>1
= l J= @)
1-B+K—-+D-»G~>1

can be completed in such a way that the action of F on K by conjugation agrees with the
action via £~ D.

Now call a commutative diagram

1—-B—K->L-G->1

L = =
1-{(K)>K—-D->G~1,

where B is now just a G-submodule of {(K), the rows define elements of C%B, G, B),
¢ is the inclusion, and the given action of L on K agrees with the action via L— D, a relative
B —G — B-core. Thus a relative 8 —G — B-core may be throught of as a partially solved
extension problem. Call an exact sequence 1K~ E->G—1 that fits into the commutative
diagram (3), with D replaced by L, and the same condition on the action of E on K, a
solution to the above relative B —G — B-core.

The connection with cohomology is now immediate. A relative B —G - B-core as
above is determined by its top row, and so there is a bijection between C2(5, G, B) and the
set of (isomorphism classes of) relative 8B —@ — B-cores, in which the cores with a solution
correspond to null sequences. This gives rise to a map of the set of relative LB —G — B-cores
onto VG, B) in which the cores with a solution are those that map to 0. Moreover the map
is natural in B, @ and B. Finally it can be shown, as in [11], that if a relative £ —G — B-
core has a solution, BYG, B) acts naturally, faithfully, and transitively on the set of
solutions. If 1+ B—7T-@G~1 corresponds to an element of BYG, B), it acts by sending
1>K—B~>G-1 to 1-K—~E X T-G-1.

§3. An exact sequence

The object of this paragraph is to establish, for any variety 8B, group G, and BG-
module B, an exact sequence

0-BYG/V(Q), B)~ONG, B)~Hom,(BM(G), B)~BG|V(G), B)~O%G, B).
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Since B is a BG-module, it may also be regarded as a B(G/V(G))-module by Lemma I. 1.13.
It will be shown in the next paragraph that this exact sequence coincides with the coho-
mology sequence in (xi) provided that G'€ 8. The proof will depend entirely on the inter-
pretations of the groups in the sequence in terms of extensions. It is easy to construct
a long exact sequence connecting LYG/V(Q), B), O™, B), and a ‘mystery’ term in
each dimension, by mapping a simplicial resolution of ¢ in £ onto a simplicial resolution
of G/V(G) in B, applying Der(—, B), and forming the long exact cohomology sequence
of the resulting short exact sequence of complexes. However, the proof that the long exact
sequence extends the above sequence would not be instructive. An interesting homological
approach requires a homological interpretation of BM(G); for GELB there is a simple
interpretation in terms of triple homology, see § 4. For arbitrary ¢ it might be possible,
following Frohlich [10], to regard BM(—) as the first derived functor of the functor from
D to B taking G to G/V(G), and then to use, for example, the homotopical theory of Keune
[21]. This certainly gives the correct answer if 8 is an abelian variety. The paragraph
ends with a discussion of the significance of the exact sequence in the classification of the
groups in an isologism class. If B=9,, this gives a simple algorithm for constructing all
p-groups. Finally, Lue in [27] constructs, by homological means, a long exact sequence
that agrees with the above as far as the term R3(G/V(®), B).

TrEorEM 3.1. If B is a variety, G a group, and B a LG-module, there is an exact
sequence
0->BYG/V(G), B)—>DOYEG, B)->Hom(BM(F), B)~LB¥G/V(G), B)- LG, B).

Here BYG/V(G), B)»DYG, B) is the composite of the change of wvariety homomorphism
BHGV(G), B)~OHG|V(@), B) of (viii) with the canonical map OHG|V(G), B)~ DG, B).

Proof. Let 1—>B—~>E,—G|V(G)—>1 correspond to an element of ker (B*(G/V(G), B)—>
Y@, B)). This gives rise to a commutative diagram

l1-B+Ey,— G —1
-]
1-B-E,—~QV(@)—~1

with E, €8 whose top row splits. If : G— B, splits the top row, then since E,€%, By
splits the bottom row. This gives exactness at LYG/V(R), B).
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To define OYG, B)—~Homg(BM(G), B), identify Hom(BM(G), B) with I(B, G, B),
agin § 1.2. If 1-B—~E—->G—1, 13:B—~> B defines an element of I(B, G, B), and this gives
the required map; it is clearly a homomorphism. Now it is easy to see that the image of
TG V(G), B) in OYG, B) consists of those elements that are represented by extensions
1+B—>E—+G@->1 such that V(E)NB=1, and this is the kernel of DG, B)—
Hom,(BM(Q), B).

To define Homg(BM(G), B)—BXG/V(G), B), equating Hom;(BM(G), B) with
I(B, G, B) as above, and B(G/V(G), B) with Ext2(B, G/V(G), B) as in §2, start by
defining ¥ from the set E(8, G, B) of ¥ —G~— B-extensions to Ext2(8B, G/V(G), B) as
follows. If £=1-K—~E->G—~1,1: B>{(K)isa B — G — B-extension,let £¥"be the similarity
class containing 1-—->B—-K-—>D/V(D)=>G[V(G)~1, where D=E|B. Note that, since K
is a BE-group centralized by B, K is a 8D-group, and hence a B(D/V(D))-group; see
Lemmas I. 1.11 and I. 1.13. Regarding E(8, G, B) as a monoid, as in § 1.2, ¥ is clearly a
homomorphism, and if V(E) N K =1, the commutative diagram

1-K->EB/V(E)->G/IV(@d)—+1

1-B->K-D[V(D)~G[V(G)~1

shows that £¥ is a null sequence. Thus ¥ induces a homomorphism of I(%, @, B) into
Ext? (8B, G/V(G), B) and hence of Hom.(BM(R), B) into LG/ V(G), B).

It is clear that the composite DY@, B)—Homg(BM(G), B)—~BXG/V(G), B) is zero,
but the exactness at this point is harder. If 1> R-> F—G—1 is a presentation of &, and
o« €Hom, (BM(Q), B), it follows from the proof of Theorem I.2.1 that « corresponds to
an element of I(%B, G, B) containing a L -~G— B-extension £,=1-K—>E->G-1, «
B—{(K) where K is obtained from (F/[RV*F]) [ B by amalgamating RN V(F)/[RV*(F)]
with its image under o in B. Then &, fits into the commutative diagram

1 1 1

o !
1——»?—>K—>R/ROV(G)—>1
1—-X—>E— F[V(F)—1 @)
1-V(@)»G@—Q/V(G) — 1

I |

1 1 1

with exact rows and columns, and the image of [£,] in Ext?(%B, G/V(®), B) is 1+-B—>K-—
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F|V(F)—~G[V(G)—>1. It is clear that if the image of [£,] is 0, a commutative diagram
1 1

1-B->K->R/BN V(F)>1

1-+B—T—F|V(F)—1 )

GV(6)> GV (@)

1 1

with exact rows and columns and with 7'€$8 can be constructed. (This is just a rearrange-
ment of the diagram used to define a null sequence in C¥(B, G, B).) The actions of F/V(F)
on K defined via E—F|V(F) and T-F[V(F) are required to agree. We now construct
a B—G— B-extension £ such that &£ is in the image of £Y(G, B) and [£,]=[&£]. Since
T€B the middle row of (5) splits; and hence the top row splits, and K =8 x B for some
subgroup S of K, since B is central in K. Regarding § as a subgroup of B, since X centralizes
K, 8 is normal in E. Thus there is an exact sequence 1-~B—E/S—G->1 which defines
an element of DY@, B). Then the B — G — B-extension £=1-> B~ E/S—+G-+1, 1 B>Bis
its image in I(8B, G, B), and clearly [£]® =« (in the notation of Theorem 1.2.1), and so
[E]1=[E,] as required.

Let 1-B—K-D;~G|V(G)—~1 represent an element of Ext?(%B, G/V(G), B), with a
suitable action of D, on K. Its image in Ext?(D, G, B) is represented by 1->B—> K- Dy~
~1, where there is a commutative diagram

1-B+>K—+>D,—> G@— 1

- - o
1-B+>EK~D,~>GQ/V(®)~1.

Clearly D, 2 D,/V(D,). The top row is a null sequence if and only if (6) can be extended

to form a commutative diagram
1-K-E——G@—1

1-B+>K—+Dy — G—1

1-B->K->D,-»>G/V(G)~1
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where E acts in the appropriate way on K. But this is just the condition that the given
element of Ext*(%B, G/V(G), B) be the image of the element of I(%B, G, B) defined by
1-K—E~G—1, B->{(K). This gives exactness at LB2(G/V(G), B), and completes the
proof of the theorem.

Remark. The exact sequence of the theorem is natural in B, G and B. Moreover, if
I8 is any variety containing B and @, the proof of the theorem gives, without significant
adjustment, an exact sequence

1-8YG/V(G), B)~BYEG, B)~>Hom (BBM(G), B)—~BHG/V(S), B)—~T*@4, B)
where BM (@) is the relative Baer-invariant defined after Lemma I.1.8.

We return to the problem of isologism classes, as in § I.2; or more precisely, the con-
struction of groups within an isologism class, aiming at Theorem 3.2 below.

Consider first the case B=U. Then, as in (vii), BG/V(G), B)=Ext?(G/F, B)=0.
Thus the exact sequence becomes, in the classical notation,

0—-Ext(G/¢’, B)—~H*@, B)-~Hom (M, B)—~0
where M is the Schur multiplier of @, and G acts trivially on B (and on M). This sequence
is well known. If B=M, and 1M - E—~G@—1 represents an element of H¥(G, B) that
maps to 1y, E is a covering group of G. The sequence gives the familiar fact that G has
at most |Ext(G/G, B)| non-isomorphic covering groups. (At most, since non-isomorphic
extensions may have isomorphic terms.)

Returning to an arbitrary variety, if «€Homg(BM(G), B), the corresponding weak
B-G-B-isologism class has a representative of the form 1->B—E—G-1, 1, if and
only if its image in BHG/V(G), B) is zero. If this is not the case, consider a representative
1-K—E~G~1, ¢: B~{(K). Regarding B as a subgroup of E, put D= E/B, so that ¢
is a quotient of D.

The kernel of the natural surjection of D onto D/V(D) X @G is V(D)n K/[B, which

V(&)
is trivial since B2 V(E) N K by assumption; thus D= D/V(D) x )G. Using the fact that

the exact sequence is natural in the group, let § be the image g/fyfunder the natural map
Homg(BM(G), B)—~Hom,(BM (D), B). It is easy to see that 8 is the image of the element
of OYD, B) defined by the extension 1+ B— E—D—1, and so maps to 0in LD/ V(D), B).

Conversely, if T€B%G/V(G), B) is the image of «, let S—G/V(G) be a surjection,
with S€% such that the image of 7 in B%(8, B) is 0. Such a surjection always exists; for
example § may be taken to be a B-free group.

Put D=;S'Gn>7<( Q)Gr’: then if L is the kernel of S—G/V(&), D is an extension of L by G;
L< V*(D), regarding L as a subgroup of D; and D/V(D)=S. Let § be the image of «
under the natural map Homg(BM(F), B)->Hom,(BM(D), B). Then the image of § in
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R2(D|V(D), B)y=B*S, B) is zero. Hence f is the image of some element of OY(D, B),
represented by 1—+B->E—D—1, say. If K is the kernel of the composite £—~ D@, this
gives rise to an extension 1-K-E—G@—1, and an injection ¢: B—~{(K). We claim that
this is a B —G — B-extension corresponding to «. Since the image of K in D is clearly
contained in V*(D), K/B is B-marginal in E/B. The fact that 1-B-~E—~D—1 gives
rise to § now shows, after an easy argument, that K is marginal in E. Since V(E)N K
is clearly mapped to 1 in D, it follows that B2 V(E)N K. Thus £=1-K—E—~>G—~1,
1: B~>{(K)is a B —G — B-extension. Let «' €Hom, (LM (G), B) be the corresponding homo-
morphism. It remains to check that o’ =e«. Since « and « are both mapped to # under the
natural map Homg(BM(G), B)—>Hom, (BM(D), B), it is enough to show that this map
is an injection, or that LM (D)—BM(G) is a surjection. Now by Theorem 3.2 of Frohlich
[10}], if 1-L—-D->G—>1 is an extension with L< V*D), there is an exact sequence
RM (D)~ BM(G)—>L—D|V(D)~G/V(F)—1, where the maps are the natural ones. These
conditions are satisfied here, and L—D/V(D) is an injection, so BM(D)—~BM(G) is a
surjection, as required. Thus we have arrived at an element £ of the weak B—G—B-
isologism class corresponding to « and every element of the class arises in this way. Note
that the number of isomorphism classes of E corresponding to a given S is at most

| BL(S, B)|. In the special case in which « corresponds to a B-isologism class, we have

TaroREM 3.2. Given any B-isologism class with marginal factor G, let oo: BM(G)—~ B
be the corresponding surjection. Let v € BXG|V(G), B) be the image of o under the homomorphism
Homg(BM(F), B)~>B2(G/V(F), B) of Theorem 3.1. Let S—~G|V(GQ) be a surjection, with
S €8 such that the tmage of T in B8, B) 15 0. Put D= SG/;;(G)G, and let € Hom p (B M(D), B)
correspond to «. Let 1—B—E—~D—1 correspond to an element of YD, B) that maps to
under the homomorphism OYD, B)—>Hom,(BM (D), B) of Theorem 3.1. Then E belongs
to the given B-isologism class, every group in the B-isologism class arises in this way, and for
a given choice of S there are at least one and at most | BY(G, B)| possible isomorphism classes
for E.

Sometimes a weak 8 — @ — B-isologism class will contain extensions 1--K—~>E—~G~1,
t: B—{(K),in which K ig abelian, even if the case K = B does not arise. It is easy to construct
examples when this does and when it does not happen. In this case, K is a BG-module,
and if 7€ BG/V(G), B) is the image of «, the image of 7 in B G/ V((), K) is 0. The above
discussion, in which the group was lifted to ‘kill’ an element of LB*(G/V(G), B) has a simpler
analogue in the case of embedding the module, except that K is restricted to being abelian.
The fact that such a K does not always exist reflects the fact that varietal cohomology

does not in general vanish on injective BG-modules.
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The explicit calculation of the groups B*G/V(G), B) using André’s ‘construction pas
3 pas’ in [1], or the construction of Tierney and Vogel in [36], is generally a practical if
tedious business if B is a small variety such as f,, and @ is a well-behaved group; c.f.
{20]. However, if G/V(G) is a B-splitting group, then LUG/V(GF), B) and BHG/V(G), B)
are always trivial. For a discussion of varieties whose finitely generated groups have this
property, see § 4. Here we consider the case 8=, p a prime, so that every group in the
variety is B-free.

THEOREM 3.3. Let =Y, G be a group of order p*, and x: BM(G)-> B be a surjection
corresponding to a B-isologism class, where B is of order p™. Then there is exactly one group
of order p™*" in the isologism class corresponding to «, and this is obtained as follows. If
ay, ..., @, €EG define a Z,-basis for G|V (G), so that ay, ..., a, generate G, and if F is freely gene-
rated by {yy, ..., ¥,}, let 1->R—>F—~>QG~1 be the presentation defined by yr>a;i=1, .., 7.
Equating RNV (F)/[RV*F]=R|/[RV*F] with BM(R), the quotient E, say, of F|[RV*F]
by ker « is the required group.

Moreover, there is exactly one group of order p* in the isologism class whenever t =m +n,
namely E x C, where C is elementary abelian of rank t —(m +n).

Proof. The construction and uniqueness of E follow easily from Theorems 1.2.3 and
I1.3.2. Note that, since R< V(F), the subgroup 7' as in Theorem 1.2.3, must be trivial.

It is clear that, if C is an elementary abelian p-group, then E and E x C are B-isologic,
and the uniqueness of £ x € again follows easily from the uniqueness statement of Theorem
3.2.

Remarks. 1. 1t follows from Theorem 3.3 that every genus, in the terminology of Hall
and Senior [13], is a union of Ys-isologism classes.

2. Theorem 3.3 gives a recursive procedure for constructing all finite p-groups, which
produces each p-group once and only once (c.f. Evens [40]). The amount of computation
required to construct all groups of order 128 by hand using this method would be unbear-
able.

Perfect groups. Define a B-stem-extension of a group @ to be an extension 1> B—>F —
G—1 such that B< V(E)n V*(E). The subgroup K of the group M is small if M has no
proper subgroup L such that KL=M. If M, or the Frattini subgroup of M, is finitely
generated this is equivalent to the condition that K lie in the Frattini subgroup of M,
and is in general a stronger condition. If 1-+B—>E~G->1 is a B-stem-extension of G, B
is embedded in E as a small subgroup. For L is a subgroup of E such that BL=E, then
since B< V*(E) it follows that V(L)=V(E); thus B V(E)<L,so L=E.
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It the group ¢ and variety B are such that the image of the identity map under the
homomorphism Homg(BM(G), BM(G))~>BGQ/V(@), BM(G)) is zero, then BM(G) is
characterised as a G-module by the following property: given any 2B-stem-extension
1+ B-> DG~ 1, there exists a B-stem-extension 1->BM (G)— E-~>G—1 and a commuta-
tive diagram

1-BM(F)~E~G~>1

|k

l—B—D-»G-1

where the vertical arrows represent surjections. This observation follows eagily from the
earlier part of this section. A B-stem-extension 1-+BVM(F)~E -G ->1 is called a B-stem-
cover of G and E a B-covering group of G. The existence of a B-stem-cover of G'is clearly
equivalent to the above assumption on the vanishing of the image of the identity. It also
follows from the exact sequence of Theorem 3.1 that if one B-stem-cover of G exists,
then there are precisely BUG/V(G), BM(F)) equivalence classes of such B-stem-covers
under the usual equivalence relation for extensions. A sufficient condition for the existence
of B-stem-covers of G is that G/ V() should be a B-splitting group, for then VGV (H), B)
(and BYG/V(G), B)) vanisbes for any G/V(GF)-module B, see § 1, (ii).

We wish to consider briefly what happens under the stronger assumption that G/ V(&)
is trivial, or, as we shall say, that G is B-perfect. (If LB is a soluble variety of exponent zero,
as is the case with the great majority of varieties mentioned in this paper, then a group
@ is B-perfect if and only if it is perfect.) If B is any variety and @ is B-perfect then
VX@) S L), since [VHG), V(G)]=1, with equality if ¥ has exponent zero. Also, if ¢ is
B-perfect and 1 - B—>E—~G-+1 is an extension in which B isembedded as a small subgroup
of E, then since V(E) maps onto V(G)=@ it follows that E isalso B-perfect. In particular,
this holds if 1--B—+~E—->G-+1 is a TW-stem extension of G for any variety I8, or if B is
in the Frattini subgroup of E and B or Z is finitely generated.

Now let 8 be a variety of exponent zero, & be a B-perfect group and 1> B+ E—~G->1
be an extension in which B is embedded as small subgroup of E, then V(E)=E'=E and
V¥(E)={(E). It follows that 1>B->E—>G->1 is a B-stem extension of G if and only if it
is an Y-stem-extension of G. Thus if B is a variety of exponent zero and G is a B-perfect
group, BM(G) is the Schur multiplier YM(GF) of G; and a slight generalisation of the above
argument shows that if 8 is of exponent », and G is a B-perfect group, then BMU(G)=
UM(G)@Z[nZ. Since the Schur multiplier of every known finite simple group has been
calculated (at the moment of writing the latest is O’Nan’s putative group) this gives
many more situations in which BM(G) is known.
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Finally, let G be a perfect group, and 1-B-> E—>G—1 be an YU-stem-extension.
Then {y(E)=N5(E)=((E) since E is RNy-perfect. It follows, as observed by Schur, that
every -stem-extension 1-+C— D— E -1 gives rise to an Y-stem-extension 1-> 4+ D—-G—1
where D->@ is the composite D> E—G. Hence Y M (E) is isomorphic to the kernel of the
surjection YM(G)— B arising from the ‘universal covering property’ of UM(G). These
results can be translated at once to the case of B-perfect groups if B is of exponent 0.

For a somewhat different treatment of the results in the case of algebras, see Lue
[42].

§4. The structure of varietal (co-)homology groups

An interpretation of BM(G) in terms of varietal homology is given when G€%B.
This is most successful under the stronger hypothesis that U var G= B, in which case the
second varietal (co-)homology groups can be calculated in terms of LM (G). In particular,
if 9)is as in § 1.4, Y20y x Oy x Cy, Z,) is of uncountable rank. This reflects the fact that
uncountably many varieties may be obtained by deleting arbitrary sets of laws from those
used to define ).

Balanced varieties are discussed; the search for balanced varieties in universal algebra
seems an important problem.

If G is a finite group of order m, the classical (co-)homology groups in positive
dimension with coefficients in any module have exponent dividing m. Results in this

direction are produced for other varieties, giving a characterization of Schur—Baer varieties.

Lremuma 4.1. Let GERB, A and B be left and right LA-modules respectively, and F—>G
be a surjection, with F free. Then F—@Q factors through F|V(F)=P say, and the induced
homomorphisms Dg(F, A)—>Oo(P, 4) and 0P, B)—LF, B) are isomorphisms.

Proof. By (vi) Oy(F, )=IFRA=(IFRBF)®A. Also,
F F G
Oy(P, A) =IPRA=(IPRBG)RA.
P P G
But by (iv) the natural homomorphism of IF®BEG onto IP® BG is an isomorphism; and
F P

since the identification of Ly(G, 4) with IG®A in (vi) is natural in G, the result for
homology follows. The proof for cohomology isasimilar.

ProrosiTionN 4.2. With the assumptions of Lemma 4.1, le¢ R=ker F—~@G. Then
O,(P, A)=(V(F)][V(F), R])%}A, and OV P, B)=Hom(V(F)/[V(F), R], B).

Proof. By (iii) and Lemma 4.1, there is an exact sequence ,(F, A)—D,(P, 4}~
Oo(F—>P, A)~0. But O,(F, 4)=0 by (ii), and O, (F—~P, A)=(V(F)/[V(F), R])%A by

(vi). The proof for cohomology is similar.
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Note. The isomorphisms in Lemma 4.1 and Proposition 4.2 are natural in the group
and module. Varying the group requires that F and P be considered as elements of (O, G).
Also, the results remain true if O is replaced by any variety 3 containing %8, and F by
FIW(F).

TaroreEM 4.3. If B is a variety containing G, and A and B are left and right
BG-modules respectively, then By(G, O.(—, A)=BVM (G)%A, and By(G, OY—, B)) =
Hom(BM(G), B). In particular, By(G, O(—, V) =BM(Q).

Proof. We first show that By(@, Oi(—, BA)=BM(G) when B2 var G, so that
BGE =170, as in (iv). Take a presentation 1 > R—>F->G—1, and let Py=F/V(F), so that P,
is mapped onto G' with kernel R/V(F). Let @ be a B-free group, and Q> R/V(F) be a
surjection. If P, is the verbal product of Py and @, homomorphisms d, and d, of P, onto P,
are defined as in (xii). Let e;: ©,(Py, BG)—0y(Py, BEG) be the homomorphism induced by
d;, 1=0,1. Then By(G, O,(—, BG))=coker(e,—e,), as in (xii). By Proposition 4.2,
D1(Py, BOY=V(F)[[V(F), R], and by Proposition I.1.3 (i), [RV*F|2[V(F), R]. But
clearly im (e, —e,) consists of all elements represented by terms of the form

(g1hy, oo R V(Gy oo @R VEV(XY), g4y oo §-€Pg, By, oo, B, ER[V(F).
Thus coker (eq—e,)=V(F)/[RV*F1=BP(G)=VM(G), since GEDB.

Now consider the case when £ is an arbitrary variety containing G. Since ,(P,, LG =
(V(F)/[V(F), R])®BG, and tensoring is right exact (i.e. cokernel preserving), it follows
from the first pag‘t of the proof that By(F, O;(—, BA) 2 BM (G)@BE. But BM(G) is
already a BG-module by Proposition 1.1.15, so BM(G)@ VG =BVM (G(;;. A repetition of this
argument gives B(G, O,(—, 4))=BM (G)%)A for an ai‘bitrary left BG-module 4, and a

similar argument gives the corresponding result for cohomology.

Note. The isomorphisms of the theorem are natural in the variety, group and module.
Varying the variety and the group fequires the introduction of a base variety Il and a
base group II as in (xiii). Also, the theorem may be generalized by replacing by any
variety % containing B, provided that BM(Q) is replaced by the relative Baer-invariant
WBVM(Q) defined after Lemma I.1.8.

As a rule, the smaller the variety & the easier it is to deal with the ring BG; thus the

following result is sometimes of use.
TarorEM 4.4. If U= B the following are equivalent:
(a) for all @€, BM(G) is naturally tsomorphic to By(G, O.(—, UD);
(b) UB*< BU*.
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Proof. By Theorem 4.3, (a) is equivalent to the statement that BLM(G) is naturally
isomorphic to BM(F)®NG, i.e. that BM(Q) is a UG-module. This is equivalent to (b)
@

by Proposition 1.1.14.

CoROLLARY 4.5. If B is a variety of exponent 0, and @ is an abelian group in B, then

Proof. Put =%, so that LlI[ =Z. The result then follows by Proposition I.1.6 (ii).

Note. In [25], Ry(@, O1(—, Z)), which is now seen to be BLM(G), is caleulated for G
a finitely generated abelian group, and B the varieties N, N S,, S,, and [, &,]; the case
of &, is covered in § 1.3 in the more general setting of polynilpotent varieties, at least if
G is a free abelian group. The generalization to an arbitrary finitely generated abelian
group is easy.

The next result gives a more striking connection between Baer-invariants and homo-

logy for ‘large’ varieties.

TarorREM 4.6. If B2 U var G, and A and B are left and right G-modules respectively,
then By(G, A)=BVBM(G)RA@ DG, 4), and BAEG, By=Hom(BM(F), B)® V¥R, B). In
7
particular, By(GF, LG) = BLM(G).

Proof. Immediate from Theorem 4.3 and the splitting of the short exact sequence in
(xi).

Note. The isomorphisms of the theorem are natural in the variety, group and module,
as in the note to Theorem 4.3. However, the variety £ plays a crucial role here and cannot
be replaced by another variety 2% as in the note to Theorem 4.3. The reason is that the

short exact sequences in (xi) depend on the fact that O is balanced, see below.

CoROLLARY 4.7. If the variety 9) is as in § 1.4, and E=C,(p,) x Oa(py) x Copy) is an
elementary abelian group of order 8, then No(E, Ly) and D2 E, ZLy) are vector spaces over Z,

of countably infinite dimension and dimension the continuum respectively.

Proof. Since Do E, Ty)=Hy(E, Ly) and O E, Z,)=H3(E, Z,) are finite, and YM(E)
is clearly at most countable, both statements of the theorem will follow easily from the
fact that Homg(Y) M (E), Z,) is infinite. For n a power of 2 greater than 1, the group G,
of § 1.4 has the property that the subgroup H, generated by @, and the squares in G, is
9)-marginal in &,. Take the presentation 1-»R—F—E—1, where F is frecly generated by

{Y1, Y2, ¥3}, and y;>p, for all i. Define B,: F—>G, by y,f,=(bay, 1), y2f,=t, YsPr=3.
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This gives rise to a commutative diagram
1-R—F—E—1
l?n Jﬁn l“n
1-H,~G,~>G,/H,~1.
Since H,< Y*(G,,), by Proposition I.1.2 (ii) 9, induces a homomorphism of RB/[EY*F] into
H,, and hence a homomorphism ¢, of Y(F)/[[RY*F]|=9)M(E) into Y(G,). Now w,, as
in the definition of ¥), defines an element of ker y7, if and only if w,((bay, 1),f,8)=1, and

this happens if and only if m +n. It follows that the homomorphisms y7, are distinct, and
s0 Homg(YM (E), Z,) is infinite as required.

Note. 1. It is clear that 9,(X, Z) is not finitely generated, and that )*(E, Z) is of
cardinal the continuum. Also, the choice of E is not critical in that it may be replaced by
any group 7' having E as a homomorphic image, provided that 9 var T< 9).

Note 2. If S is any subset of {w,,} it follows that there is a homomorphism of YM(E)
into Z, whose kernel contains the element defined by w,, if and only if w,, €S. Thus un-
countably many homomorphisms of $)M(E) into Z, arise from the uncountably many
varieties that may be obtained from §) by omitting an arbitrary set of laws from {w,,}.
An alternative way of looking at the situation is as follows. The homomorphism y7 gives
rise to an element of Y*(E, Z,), and hence, in the terminology of § I1.2, to a class of relative
9) — E —Zy-cores. Let G, be the subgroup of G, generated by (bay, 1), s and ¢, and H,
be the subgroup of @, generated by G, and the squares in G,, so that G,/H,~E. Then
G.,, or more strictly the exact sequence 1-+H,~G,—~ E—1, is a solution to one of the above
cores, but a solution that does not lie in §). Thus, loosely speaking, a variety is not finitely
based if there are infinitely many groups lying ‘just outside’ it. These groups differentiate
the laws of the variety, but, subject to suitable conditions on the marginal factors, they
may also be thought of as solving varietal obstruction problems that cannot be solved
within the variety.

A variety B for which 8,(G, 4)=8G, B)=0 for all GEYB, all >0, and all pro-
jective left LEG-modules 4 and injective right BG-modules B will be called balanced. 1f
R is balanced then

B(G, 4)=Tor%(IGRBEG, 4) and BYG, B) = Extie(IGO VG, B)
(& [

for all left BG-modules 4, right BGE-modules B, and n >0; for it is easy to see, using (vi),
that this is true for n =0, and this together with the exact sequence in (v) and the property
of being balanced, characterises the above Tor and Ext. It is easy to see that a (necessary
and) sufficient condition for 8 to be balanced is that B,(G, 4)=0 for all GEY and all
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n>0, where 4 is a free BG-module of rank 1. The case of an arbitrary free module follows
by taking direct limits, and of an arbitrary projective module by additivity. The result for
cohomology then follows from the spectral sequence Extfe(By(¢, BE), B)3 B"(G, B), c.f.
[24.1IT], or more simply from any construction of varietal (co-)homology. The definition
of ‘balanced’ readily extends to any variety in the sense of universal algebra; see [24, 1] § 3
for a general discussion of the problem. Known examples of balanced varieties include all
abelian varieties; the varieties of all associative algebras, Lie algebras, and restricted Lie
algebras, over a field; and, of course, the variety of all groups. See, for example, [33].
We now consider the problem of determining which varieties of groups are balanced.

TerEorEM 4.7. If €+, and AN B < D, there is a U-free group G of finite rank, a
projective left G-module A, and an injective right G-module B, such that By(G, A)+0 and
BG, B) 0. In particular, B is not balanced.

Proof. Note that, since B2U, for any G €1, all @-modules are LEGE-modules. Dealing
first with homology, let 4 be a free @-module of rank 1. Then by Theorem 4.6, B,(G, 4) =
BM(&)=V|U —a, the 1 —«-pandect of B, where o is the rank of G, c¢.f. § 1.3. But if «
is a large enough integer V/U —a is non-trivial, see example 3 after Corollary 1.3.2. Turning
to cohomology, Theorem 4.6 reduces the problem to finding a ll-free group @ and an in-
jective G-module B such that Homg (BM(G), B)+0. With the same choice of & as before
such a B exists; for example BM(G) can be embedded in an injective G-module,

We now consider varieties 5 whose finitely generated groups are 8-splitting groups.
Peter M. Neumann shows in [31] that every locally finite variety, of square-free exponent,
whose nilpotent subvarieties are abelian, has this property; and that the last two conditions
are necessary. The set of varieties satisfying all three conditions is closed under products,
provided the factors have co-prime exponents, under finite joins and under the formation
of subvarieties. Also, it includes the varieties %, for all primes p, and, as is shown in [31],
var(Ag), where A4, is the alternating group on 5 symbols.

THEOREM 4.8. If B is a variety whose finitely generated groups are B-splitling groups,
then B is balanced.

Proof. 1t will be shown that B,(G@, 4)=0 for n>0, GEPB, and any BG-module 4;
this gives the result by the remarks before Theorem 4.7. If G is finitely generated, then
B,(G, 4)=0 for n>0 by (ii); the result for arbitrary @ follows by taking direct limits.
In more detail, if H is a subgroup of G, so that 4 is a BLH-module, let C(H) denote the
complex of abelian groups used to calculate B(H, A) using the Barr-Beck resolution.
It is easy to see that C(Q) is the set-theoretic union of {C(H): H is a finitely generated
9t~ 762909 Acta mathematica 137. Imprimé le 22 Septembre 1976
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subgroup of G}. (This is false in general for cohomology.) Since C(H) is acyclic for all
finitely generated H, so is C(@), and the result follows.

Ezxamples. 1. If p and ¢ are distinct primes, it follows from Theorem 4.8 and the pre-
ceding remarks that 9,9, is balanced, whereas, by Theorem 4.7, AY, is not.

2. In [23] a group in A, is produced which does not split over its Sylow 3-subgroup.
It follows that, in this variety, the one-dimensional cohomology groups are not all trivial.

If B is a variety, G a finite group in B of order m, and 4 and B are left and right
LG-modules respectively, does it follow that L,(@, 4) and B"(G, B) are of exponent
dividing m for all n>0? The answer is almost certainly ‘no’, though we know of no counter-
example. On the other hand, we have very little positive information; see, however,
K. W. Johnson [20]. The result is well known for the variety of all groups, and since 5,(&, 4)
is a quotient group of ,(G, 4) and BYEG, B) is a subgroup of DY, B), it follows in
dimension one for an arbitrary variety. If 8 is a balanced variety, it follows by the usual
dimension-shift argument for any positive dimension; though this gives no new information
in the known balanced varieties.

TrEOREM 4.9. The following conditions on the variety B are equivalent.

(a) B is a Schur-Baer variety (see the end of § 1.1);

(b) for every finite group @ in B and every left BG-module A, B,(G A) is of exponent

diwviding a power of |G|; and if A is finitely generated, By(G, A) is finite;

{c) is obtained from (b) by replacing ‘left’ by ‘right’, ‘A’ by ‘B’, and ‘B,(G, 4)’ by

‘BG, B).

Proof. By Theorem 1.1.17, (a) is equivalent to the statement that BM(G) is of finite
order dividing a power of |G| whenever G is finite. Since BM(Q) is a BG-module by Pro-
position 1.1.15, it follows at once from the exact sequence of Theorem 3.1 that (a) is equi-
valent to (c). The corresponding exact sequence in homology has only been established for
GEL, see (xi) and Theorem 4.3; but this is clearly enough to establish the equivalence
between (b) and (c).
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