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1. Introduction 

Let  H ~176 be the algebra of bounded analytic functions on D={z:  Iz] <1} and let L ~176 

be the Banach algebra of bounded measurable functions on T =  {z: ]z] =1} with the uni- 

form norm. Then H ~176 can be regarded as a uniformly closed subalgebra of L ~176 by identifying 

each /E H ~176 with its boundary function. 

I f  A is a closed subalgebra of L r176 let ~ [ A ]  denote its maximal-ideal space. K. Hoff- 

man [13] has shown tha t  each TE 7~t~[H ~176 has a unique norm-preserving extension to a 

bounded linear functional on L% For example, if z E D then evaluation a t  z is an element 

of 7tl[H ~176 and its extension is given simply by  the Poisson kernel. Now if A is a closed 

subalgebra of L ~ containing H ~176 then the usual Gelfand topology on 7iliA] agrees with 

the weak-* topology tha t  ~ [ A ]  inherits as a compact subset of the dual space of L% 

Consequently, each ] EL ~176 is continuous on ~ [ H  ~176 and harmonic on D. Moreover, if A 

and B are closed algebras such tha t  H ~ 1 7 6  ~176 then ~ [ H ~ ] ~ [ A ] ~  ~ [ B ] ~  

~[L~176 Our main result is the following theorem: 

TI~EOREM 1. Let A be a closed subalgebra o/JL ~176 containing H~ Let A t  be the closed 

subalgebra o / A  generated by H ~~ and { l - l e A : / e H ~ } .  Then ~[Az]  = ~ [ A ] .  

When combined with a recent result of S. u  Chang [7], Theorem 1 proves a conjec- 

ture of R. Douglas [9]. To state Douglas'  conjecture, we let Q be a subset of L ~ and write 

[H ~ Q] for the uniformly closed subalgebra of L ~176 generated by  H ~176 and Q. An algebra of 

the form [H ~176 Q], where Q~  {u: [ul =1  a.e. on T and ~ e H  ~176 is called a Douglas algebra. 

Since each positive function in (L~) -1 is the modulus of a function in (He~ -1, we see tha t  

Az is a Douglas algebra whenever H ~ 1 7 6  ~176 and we see tha t  if A is a Douglas algebra, 

then A =Az. Douglas' conjecture was tha t  every uniformly closed subalgebra A of L ~~ 

containing H ~ is a Douglas algebra, or, equivalently, tha t  every such algebra A satisfies 

A = A  t. Now S. Y. Chang has proved tha t  if A is a closed algebra lying between H ~176 and 
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L ~ and if B is a Douglas algebra with ~?/[B] = 7//[A], then A = B. In  light of this result, 

Theorem 1 has the following consequence. 

TaEOREM 2. Every closed algebra A ,  such that H ~ 1 7 6  A c L r176 is generated by H ~176 and 

{aeA:  u is an inner /unct ion  in H~176 

Douglas' conjecture arose from the s tudy of operator algebras generated by  Toeplitz 

operators. I t  has been discussed by  several authors: S. Axler [1], [2], S. u  Chang [6], 

A. M. Davie, T. W. Gamelin, and J.  Garnett  [8], R. Douglas [9], R. Douglas and W. l~u- 

din [10], D. Sarason [15], [16], [17], T. Weight [18]. I would like to thank  J.  Garnett  f o r  

invaluable discussions. 

2. Interpolating Blaschke products 

Z oo We call a sequence { n}n=l in D an interpolating sequence if for every bounded sequence 

{wn}~=l, there is an / in H ~ such that/(zn) =wn for all n. Every  interpolating sequence must  

satisfy Z ( 1 - [ z ~ [ ) < 0 %  and so is the zero sequence of a Blaschke product. We call a 

Blaschke product whose zeros form an interpolating sequence, an interpolating Blaschke 

produc~. 

A finite measure ~ on the upper half-plane, H +, is called a Carleson measure if there 

is a constant C for which # (S )<  C~, whenever S is a square of the form S = {x + iy: x o <~ 

x ~< x 0 + 6, 0 < y < ~}. The analogous definition is made for D, where squares are replaced 

by  sectors of the form S = { r e %  1 - ( ~ < r < l  and 00~<0<00+~ }. Any rectifiable curve F in 

H + or D induces a measure on H+ or D, respectively, by  defining the measure of a Borel 

set S to be the length of F • S. The hyperbolic distance between two points is defined by  

z - w  H+ V ~ ]  on 
O(z, w) = Z--'W I 

o n  D .  

Interpolating sequences can be characterized in the following way [12]. On H +, a sequence 
Z r { ~} ~-1 is an interpolating sequence if and only if there exists an e > 0 such tha t  0(z~, z~) ~> 

for n=~m and the measure E ( Im z~)~z~ is a Carleson measure. Here ~ denotes the point 

mass at  zn. On D, we replace the measure with Z(1 - I z n  I)6z~. 

3. Proof of Theorem 1 

We claim tha t  i t  suffices to prove the theorem for algebras of the form A u = [H ~, u, ~] 

where u is a unimodular function in L% To see this, note tha t  any  algebra A containing 
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H ~ is generated by  its invertible elements. Now, if lEA -1, there exists g 6 (Ho~ -1 such 

tha t  Ill = Igl a.e. Then u=]g-land ~t=9] -1 are unimodular, and we see tha t  A is ge- 

nerated by  H ~ and G={uEA: u is unimodular and ~EA}. I t  is easy to see tha t  ]/[[Au] = 

{ ~ e ~ [ H ~ ] :  I~(u)] =1} and ~ [ A ] = { q 0 e ~ [ H ~ ] :  I~(u)] =1  for all u in G}. Now (An)it 
A I c A  for all u in G, so tha t  ~ [ A ] c  ~ [ A ~ ] ~  N uEa ~[(Au)z]. I f  ][/l[(Au)t] = :ff/[Au] for all 

u in G, we have ~ [ A ] ~  ~ [ A 1 ] c  f l  uEa]l'l[Au] = ~ [ A ] .  Thus ~ [ A ]  = ~ [AI ] .  This proves 

the claim. 

For the remainder of this discussion, let u be a fixed, nonconstant, unimodular func- 

tion in L ~ and let Au = [H ~, u, ~]. For each ~, 0 < ~ < 1, we wish to find an interpolating 

Blaschke product  B~, such tha t  

There exists ~ < 1 such tha t  if B~(z)= 0, then -<8. (3.1) 

1 
I f  < then I < 10" (3.2) 

Assuming we can do this for the moment ,  we prove our theorem as follows. Let  B = 

[H% {/~} 0 < ~ <  1}. Suppose ~E ~[A=],  and suppose q (B~)=0  for some ~. K. Hoffman 

[13, p. 206] has shown tha t  since B~ is interpolating, ~v is in the closure of the zeros {z.} 

of B~. By (3.1) above, ] u(z~) ] ~<fl < 1, so tha t  IF(u) I ~<fl < 1, contradicting the assumption 

tha t  ~E ~[A~].  So q (B~)40  for each qE 7~/[A=] and each B~. Thus each B~ is invertible 

in A=. We see now, tha t  B c  (A=)z, so tha t  711[B]~ ://I[(A=)i]~ 7/l[A=]. For the opposite in- 

clusions, note tha t  ~ [ B ]  ={FE ~[H~~ I (B )I = 1 for each ~}. Suppose ~vE ~ [ B ]  and 

By the corona theorem [4], there exists a net {z~} in DI such tha t  zv con- 

verges to q0. There exists a $0, such tha t  if ? >Y0, then I < ~. By (3.2) above, I B~(%,)I <~ 
1/10 for y >~0, and we see tha t  I (B )I ~< 1/10. This contradiction implies tha t  I (u) l = l ,  

so tha t  ~v E ~ [ A j .  We have now shown tha t  ~ [ B ]  = ~[(Au)z] = ://I[A=]. 

I t  remains to find B~, given u and ~. We will surround the places where [u] < ~ by  

contours F which induce a Carleson measure. This construction comes from the proof of 

the corona theorem [4], by  L. Carleson. We will then uniformly distribute, in the ~-metric, 

a sequence {z~} on the contours. Our interpolating Blaschke product will have {z~} as its 

zeros. Our method is very similar to S. Ziskind's [19], except tha t  we work with a bounded 

harmonic function with unimodular boundary values and we give several technical simpli- 

fications. 

4. Preliminaries to the construction 

The construction is best explained in the upper half-plane H +. So suppose u is a 

bounded harmonic function on H + with unimodular boundary values, and fix ~, 0 < ~ < 1. 
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L ~ M A  1. There exists an ~ '<1,  such that i / infa lu(z)l < ~ / o r  some rectangle o/the 

form R~-{x+iy: xo <~x<xo+(~, ~12 ~<y <(~}, then sup~ lu(z)l <o:'. 

Proof. By a translation and a dilation, we can assume x 0 -=0 and (~ = 1. The result now 

follows by a normal families argument. 

Let  B be a square of the form {x+iy: xo<~x<<.xo+(~ , 0<y~<(~]. Find f l < l  such that  

(1 -fl)](1 - a ' ) < 1 0  -a. For  a set U c R ,  let I U] denote its measure. 

LEMMA 2. Suppose xo<~Rea<xo+(~ and ~/2<Ima~<~ and lu(a)[ >/9. Let E= 

{x+iyeS:  ]u(x+iy)] <~'}. Let E* be the vertical projection o/ E on {x+iy: y=0} .  Then 

I E*I <a/2. 
This lemma is essentially proved in [12] and in [4]. 

Proof. By a translation and a dilation, again, we can assume x0=0 and (~ =zr/2. Let  $ 

be the strip {x + iy: 0 <y <xt} and let ~(z)= e z. Now r maps $ one-to-one and eonformally 

onto the upper half-plane H+. First we assume E is bounded by a finite number of Jordan 

curves. Let  m and to 1 be the harmonic measures for E relative to S \E  and ~(E) relative to 

H+k~(E), respectively. Let  w* and to~ be the harmonic measures for E* relative to 5 and 

~(E)* relative to H +, respeotively. Here ~(E)* is the circular (clockwise) projection of~(E) 

on {[m z=O}. Hall's lemma [11, p. 208] and an elementary estimate show that  

w(a) = eox(~(a)) >~ 2/3(o*(~(5 +xi)) >~ 2 x 10-'[ E*[. 

Notice that  on the boundary of $\E, lu(z)] ~<l-(o(z)+ako(z). By the maximum 

principle, the inequality persists on S\E. So fl <1-o~(a)  +a'eo(a) and we conclude that  

IE*I 
Now for an arbitrary E, we can cover the compact set {zCE: [u(z)l ~:r  

Imz  >~ l/n} by a finite number of halls contained in E. Let E~ be the complement of the 

unbounded component of the union of these balls. Apply the above reasoning to each 

E n and E*. 

5. The construction of F 

Let S(~ 0<y~<l}.  Parti t ion the bottom half of S (~ into two 

squares with sides of length 1/2. Parti t ion the bottom half of each of these squares into 

two more squares with sides of length 1/4. Continue the process indefinitely. We wish to 

describe two procedures which we will apply to a subcollection of the squares in S (~ For 

S a square in S (~ let Tz be the top half of S. 
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C a s e  1. 

I f  S is a square contained in S and  [u(z)[ < a for some z in T~, shade S unless it is 

a l ready shaded.  Note  t h a t  b y  L e m m a  1, supr~ [u[ < a '  <f l  and  b y  L e m m a  2, 

:~ IOl~<~ls*l. t5.1) 
shaded 

Case 2. SUpTs ]U] </~. 

I f  ~ is a square contained in S and  suprz lul >fl, shade S unless it  is a l ready shaded.  

Le t  Rs = S \  U ~ shaded S and  note  t h a t  

I~R~l <6Is*t. (5.2) 

Proceed as follows. Apply  the  appropr ia te  case to S (~ obta ining shaded squares 

S(~ 1), S(~ '), S(31) . . . . .  On each S~ '), app ly  the  appropr ia te  case, obta ining doubly  shaded 

squares S(12), -~2), S(e)8, .... Repea t  this process indefinitely.  Observe t h a t  we a l te rna te  cases 

in passing f rom one shaded square  to  a shaded descendant .  Define F as the  union of the  

boundar ies  of the  Rs obta ined  f rom appl icat ions of Case 2. To see t h a t  F induces a Carle- 

son measure,  i t  suffices to check I F N S] ~< C IS* [ where S is a square in the  grid on S (~ 

B y  (5.1) and  (5.2), we see t h a t  

Ir n sl  ~< ~ 6 • 2-~ls*l = 121s*l. 
n=0 
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F 

k\\xtx\\ ~\,b,\x~ \ , , \~ _A ~,~Xl_ \ ~ ' ~ , \  ~Nxx~ x\x~ A X-x,xkx,\~ 

C a s e  2. 

F 

Note  t h a t  a ny  poin t  in S (~ for which [u(z) [ < e will be in some Rs. Also, [ OR s f) 

{ I m z  =0}1 =0 .  This follows since u has unimodular  vertical limits a.e. and anyi 'point  

in ORs ~ {Im z = 0}  is a point  where lim~_~o sup [u(x + iy) l <<.fl < 1. 

6. The  cons t ruc t ion  0[ B~ 

I n  this section, we will first consider the behavior  of a Blaschke produc t  whose zeros 

are located on F ~ S  (~ Choose e < l / 1 0  and place points  an on P so tha t  each z in I" satisfies 

Q(z, an) <2e  for some n and so t h a t  ~(%, am) ~>e if n4=m. I t  is shown in [19] tha t  {an} is an  

interpolat ing sequence. Let  B be the  Blaschke produc t  whose zero sequence is (an}. We  

wish to  verify (3.1) and (3.2) on S (~ B y  construct ion (3.1) holds. H z E S  ~~ and [u(z)[ <~ ,  

then  z is in some R s. But  [ B[ < s on 0Rs \{ Im z = 0} and OR s Cl {Im z = 0} has harmonic  meas- 

ure zero as a subset of ORs, since it has length zero. We conclude tha t  IBI ~<e<l/10 on 

Rs b y  Theorem 1.63 of [14], and (3.2) holds. 

We now wish to construct  B~. Le t  u be a unimodular  funct ion in L~176 For  k =  

0, 1 . . . .  , 7 ,  let 



SUBALGEBRAS OF LeO CONTAINII~G H ~ 97 

and let {an.k} be the  zeros obta ined b y  applying the  procedure described above to  the 

funct ion u o v ~  1. We  can find a subset {zm} of [Jk.n V~l(a~.~) such t h a t  @(z m, zz) >~, for m # l ,  

and such t h a t  for each m, there is an  l for which O(zm, z~) <3e.  Le t  B a be the  Blaschke pro- 

duct  whose zero sequence is (zm}. Then  B a is an  interpolat ing Blaschke product ,  and we 

have t h a t  (3.1) and  (3.2) hold in  Iz] >~1]2. I f  ]u(z0) ] < g  for  some z 0 with ]%] <1/2,  

increase the  zero sequence of B a with a finite number  of dist inct  zeros in a neighborhood 

of z0, so tha t l  B~(z)[ <1 /10  for all lzl <1/2.  This proves the theorem. 

7.  F u r t h e r  r e s u l t s  

I n  view of S. Y. Chang's  result, we have shown tha t  every  subalgebra of L ~176 contain- 

ing H ~ is generated b y  H ~ and ( /~EA:  B is an  interpolat ing Blaschke product) .  Which  

algebras are of the  form [H ~, B], where B is an  interpolat ing Blaschke product?  I f  / is a 

simple function,  i t  is possible to  see t h a t  [H ~ , / ]  = [H ~, B] for some interpolat ing Blaschke 

produc t  B. I f  A i s  generated b y  H ~ and a countable collection of L ~ functions,  then  

A = [H ~ UI2], where U and  V are inner  funct ions a n d / ) V  CA. Such an algebra is contained 

in some algebra of the  form [H ~,/~],  bu t  i t  is no t  clear whether  A = [H ~, B] or not .  
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