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1. Introduction

Let H® be the algebra of bounded analytic functions on D={z: |2] <1} and let L*
be the Banach algebra of bounded measurable functions on T'={z: |z| =1} with the uni-
form norm. Then H® can be regarded as a uniformly closed subalgebra of L® by identifying
each f€ H® with its boundary function.

1f A is a closed subalgebra of L®, let [ 4] denote its maximal-ideal space. K. Hoff-
man [13] has shown that each ¢ € JN[H*] has a unique norm-preserving extension to a
bounded linear functional on L®, For exarple, if z€ D then evaluation at z is an element
of M[H*] and its extension is given simply by the Poisson kernel. Now if 4 is a closed
subalgebra of L® containing H®, then the usual Gelfand topology on F[A] agrees with
the weak-* topology that MM[A4] inherits as a compact subset of the dual space of L®.
Consequently, each f€EL*® is continuous on M[H®] and harmonic on D. Moreover, if 4
and B are closed algebras such that H*c A< B<L®, then MM[H*]> M[A]> M[B]>

M{L*]. Our main result is the following theorem:

THEOREM 1. Let A be a closed subalgebra of L® containing H®. Let A; be the closed
subalgebra of A generated by H® and {f*€A: f€ H®}. Then M[A,]=M[A].

When combined with a recent result of S. Y. Chang [7], Theorem 1 proves a conjec-
ture of R. Douglas [9]. To state Douglas’ conjecture, we let @ be a subset of L® and write
[H®, @] for the uniformly closed subalgebra of L® generated by H® and @. An algebra of
the form [H®, @], where @< {u: [u| =1 a.e. on T and %€ H*} is called a Douglas algebra.
Since each positive function in (Z®)-1 is the modulus of a function in (H*®)~, we see that
A;is a Douglas algebra whenever H*< 4 < L*® and we see that if A is a Douglas algebra,
then 4 =A4,. Douglas’ conjecture was that every uniformly closed subalgebra 4 of L®
containing H® is a Douglas algebra, or, equivalently, that every such algebra 4 satisfies
A=A4; Now S. Y. Chang has proved that if 4 is a closed algebra lying between H® and
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L®, and if B is a Douglas algebra with M[B]=M[A4], then 4 = B. In light of this result,

Theorem 1 has the following consequence.

THEOREM 2. Every closed algebra A, such that H®< A< L>, is generated by H® and
{a€A: u is an inner function in H®}.

Douglas’ conjecture arose from the study of operator algebras generated by Toeplitz
operators. It has been discussed by several authors: 8. Axler [1], [2], S. Y. Chang [6],
A. M. Davie, T. W. Gamelin, and J. Garnett [8], R. Douglas [9], R. Douglas and W. Ru--
din [10], D. Sarason [15], [16], [17], T. Weight [18]. T would like to thank J. Garnett for

invaluable discussions.

2. Interpolating Blaschke products

We call a sequence {z,}5_; in D an inferpolating sequence if for every bounded sequence
{w,}%-1, there is an f in H*® such that f(z,) =w, for all n. Every interpolating sequence must
satisfy X(1—[z,]|) <o, and so is the zero sequence of a Blaschke product. We call a
Blaschke product whose zeros form an interpolating sequence, an interpolating Blaschke
product.

A finite measure u# on the upper half-plane, H*, is called a Carleson measure if there
is a constant C for which u(S)< (8, whenever § is a square of the form §={r+dy: z,<
x<wy+0, 0 <y<d}. The analogous definition is made for D, where squares are replaced
by sectors of the form §={re®:1-3<r<1 and 6,<0<0,+0}. Any rectifiable curve I" in
H+ or D induces a measure on H* or D, respectively, by defining the measure of a Borel

set § to be the length of " N 8. The hyperbolic distance between two points is defined by

ETwl on H*

z2— W

ewuw=y, "
— on D.

1 -4z

Interpolating sequences can be characterized in the following way [12]. On H*, a sequence
{2.}%-1 is an interpolating sequence if and only if there exists an &> 0 such that o(z,, 2,) >¢
for n+m and the measure X(Im z,)d., is a Carleson measure. Here J,, denotes the point

mass at z,. On D, we replace the measure with 3(1 —|2,|)dz,.

3. Proof of Theorem 1

We claim that it suffices to prove the theorem for algebras of the form 4,=[H®, u, @]

where u is a unimodular function in Z®. To see this, note that any algebra 4 containing
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H= is generated by its invertible elements. Now, if €41, there exists g€(H®)~1 such
that |f| =|g| a.e. Then w=fg~! and @=gf~! are unimodular, and we see that 4 is ge-
nerated by H® and G ={u€A: u is unimodular and @€ 4}. It is easy to see that M[A4,]=
{p € MH=T: |p(u)| =1} and M[A]={p€ MH=]: |p(u)| =1 for all » in G}. Now (4,),<
A,= A4 for all u in G, so that M[AJ< MLAI< M wee MI(4.,),]. IE M[(A,)]="M[4,] for all
u in G, we have M[A]= M[A,]1< N yee MIA,]=M[A4]. Thus M[A]="M[A4;]. This proves
the claim.

For the remainder of this discussion, let % be a fixed, nonconstant, unimodular func-
tion in L=* and let 4,=[H®, u, @]. For each a, 0 <« <1, we wish to find an interpolating
Blaschke product B,, such that

There exists <1 such that if B,(z)=0, then |u(z)| <p. (3.1)
If |u(z)] <, then |B,(z)|< %. (3.2)

Assuming we can do this for the moment, we prove our theorem as follows. Let B=
[H®, {B,} 0<a<1}. Suppose ¢ € M[4,], and suppose ¢(B,)=0 for some «. K. Hoffman
[13, p. 206] has shown that since B, is interpolating, ¢ is in the closure of the zeros {z,}
of B,. By (3.1) above, |u(z,)] <B<1, so that |gp(u)| <B<1, contradicting the assumption
that ¢ € M[4,]. So ¢(B,)=+0 for each € M[4,] and each B,. Thus each B, is invertible
in 4,. We see now, that B< (4,);, so that M[B]=> M[(4.,);]> M[4,]. For the opposite in-
clusions, note that M[B]={p€ M[H>]: |p(B,)| =1 for each «}. Suppose ¢ € M[B] and
|p(u)| <a<1. By the corona theorem [4], there exists a net {z,} in D, such that z, con-
verges to ¢. There exists a y,, such that if y >y,, then |u(z,)| <o. By (3.2) above, | By(z,)| <
1/10 for  >y,, and we see that |@(B,)| <1/10. This contradiction implies that |g(u)| =1,
so that ¢ € M[4,]. We have now shown that [ B]=M[(4,),]1=M[4.].

Tt remains to find B,, given u and «. We will surround the places where |u| <a by
contours I which induce a Carleson measure. This construction comes from the proof of
the corona theorem [4], by L. Carleson. We will then uniformly distribute, in the g-metric,
a sequence {z,} on the contours. Our interpolating Blaschke product will have {z,} as its
zeros. Our method is very similar to 8. Ziskind’s [19], except that we work with a bounded
harmonic function with unimodular boundary values and we give several technical simpli-

fications.

4. Preliminaries to the construction

The construction is best explained in the upper half-plane H+. So suppose % is a

bounded harmonic function on H+ with unimodular boundary values, and fix «, 0 < <1.



94 DONALD E. MARSHALL

Lumma 1. There ewxists an of <1, such that if inf, |u(z)| <« for some rectangle of the
form R={x+iy: z,<w<xy+8, 6/2<y <4}, then sups |u(z)| <o’

Proof. By a translation and a dilation, we can assume ,=0 and d =1. The result now
follows by a normal families argument.

Let S be a square of the form {x+y: xy<zx<2y-+d, 0<y<d}. Find f<1 such that
(1—-F)/(1 —«') <10~ For a set U<R, let |U| denote its measure.

Lemma 2. Suppose zy<Rea<zy+d and 6/2<Ima<{ and |u(a)|>p. Let E=
{x+iy€S: |ux+iy)| <o'}. Let E* be the vertical projection of E on {z-+iy: y=0}. Then
| B*| <82

This lemma is essentially proved in [12] and in [4].

Proof. By a translation and a dilation, again, we can assume x,=0 and 6 =nr/2. Let §
be the strip {x+1iy: 0 <y <} and let @(z) =¢?. Now ¢ maps § one-to-one and conformally
onto the upper half-plane H+. First we assume # is bounded by a finite number of Jordan
curves. Let w and w, be the harmonic measures for F relative to S\# and ¢(£) relative to
HH\@(E), respectively. Let w* and ] be the harmonic measures for E* relative to § and
@(E)* relative to H+, respectively. Here p(&)* is the circular (clockwise) projection of ¢(E)
on {Im 2=0}. Hall’s lemma [11, p. 208] and an elementary estimate show that

(@) = wy(p(@)) > 2/3wl(p@+mri)) =2 x10-4| B*|.

Notice that on the boundary of S\E, |u(z)| <1-w(2) +&'w(z). By the maximum
principle, the inequality persists on S\E. So f<1—~w(e)+«'w(a) and we conclude that
| B*| <m/4.

Now for an arbitrary £, we can cover the compact set {z€E: |u(z)| <o’ —1/n,
Imz>1/n} by a finite number of balls contained in E. Let E, be the complement of the
unbounded component of the union of these balls. Apply the above reasoning to each
E, and E%.

5. The construction of I

Let S©={x+iy:0<z<1, 0<y<1}. Partition the bottom half of S into two
squares with sides of length 1/2. Partition the bottom half of each of these squares into
two more squares with sides of length 1/4. Continue the process indefinitely. We wish to
describe two procedures which we will apply to a subcollection of the squares in $'9. For
8 a square in 89, let T's be the top half of .

Case 1. suprs|u] >p.
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If Sisa square contained in § and |u(z)| <a for some z in T3, shade S unless it is
already shaded. Note that by Lemma 1, suprs |u| <a'<f and by Lemma 2,
S |S*<3]sH|. (5.1)

§ shaded
Case 2. suprg |u| <f.
If S is a square contained in S and suprs |#| > B, shade S unless it is already shaded.
Let Ry=8\U 5 snodea S and note that

|oR,| <6]5%]. (5.2)

Proceed as follows. Apply the appropriate case to S, obtaining shaded squares
8P, 8P, 8P, ... On each S, apply the appropriate case, obtaining doubly shaded
squares S, S5, 89, .... Repeat this process indefinitely. Observe that we alternate cases
in passing from one shaded square to a shaded descendant. Define I' as the union of the
boundaries of the B obtained from applications of Case 2. To see that I" induces a Carle-
son measure, it suffices to check |I'N.S| <C|8*| where § is a square in the grid on S©.

By (5.1) and {5.2), we see that

ITns|< 306 x 27| §*| = 12| 8%|.
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Case 2.

Note that any point in S for which |u(z)| <« will be in some Rj. Also, |oRgN
{Imz=0}| =0. This follows since u has unimodular vertical limits a.e. and any,point

in 9RsN {Im =0} is a point where lim, ., sup |u(z +iy)| < <1.

6. The construction of B,

In this section, we will first consider the behavior of a Blaschke product whose zeros
are located on I"< 8. Choose £<1/10 and place points a, on I' so that each z in I satisfies
0(2, a,) <2¢ for some » and so that g(a,, @,) > ¢ if n=m. It is shown in [19] that {a,} is an
interpolating sequence. Let B be the Blaschke product whose zero sequence is {a,}. We
wish to verify (3.1) and (3.2) on 8. By construction (3.1) holds. If z€S® and |u(z)| <a,
then z is in some Ry. But | B| <¢ onoRs\{Imz=0}and 9R; N {Im z=0} has harmonic meas-
ure zero as a subset of dRj, since it has length zero. We conclude that | B] <e<1/10 on
Rs by Theorem 1.63 of [14], and (3.2) holds.

We now wish to construet B,. Let u be a unimodular funetion in L®(T). For k=
0,1,..,7 let

I8 ] [y — gl
Plz) = ] (m)
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and let {a, ,} be the zeros obtained by applying the procedure described above to the
function uoyy'. We can find a subset {z,,} of Uy, , ¥% (a@n,x) such that p(z,, z;) =&, for m +1,
and such that for each m, there is an I for which g(z,, 2;) <3¢. Let B, be the Blaschke pro-
duct whose zero sequence is {z,}. Then B, is an interpolating Blaschke product, and we
have that (3.1) and (3.2) hold in |z|>1/2. T |u(z,)]| <« for some z, with |z,| <1/2,
increase the zero sequence of B, with a finite number of distinet zeros in a neighborhood
of z;, so that| B,(z)| <1/10 for all |z| <1/2. This proves the theorem.

7. Further results

In view of S. Y. Chang’s result, we have shown that every subalgebra of L® contain-
ing H® is generated by H® and {B€A: B is an interpolating Blaschke product}. Which
algebras are of the form [H®, B], where B is an interpolating Blaschke product? If f is a
simple function, it is possible to see that [H®, f]=[II*, B] for some interpolating Blaschke
product B. If A is generated by H® and a countable collection of L® functions, then
A={H®, UV], where U and V are inner functions and UV € 4. Such an algebra is contained
in some algebra of the form [H®, B], but it is not clear whether 4 =[H®, B] or not.
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