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0. Introduction

G. W. Mackey developed a general method for analyzing the dual of a locally compact
group G (always second countable) in terms of the dual of a closed normal subgroup N
and the cocycle duals of subgroups of G/N, provided that the action of & on the dual of N
is sufficiently regular [9]. In this case regularity means that every ergodic quasi-invariant
measure under the action of @ is concentrated on an orbit, which means that the associated
quasi-orbit is transitive. The theory of virtual groups was introduced by Mackey for the
purpose of dealing with the less regular case [1.1, 12]. Section 9 of this paper gives proofs
that the theorems of section 8 of [9] remain valid in the more general setting. It should be
remarked that this leaves work yet to be done before a complete understanding of the
general case is achieved. For instance, one of the theorems establishes a one—one corre-
spondence between part of the dual of & and the w-dual of a certain virtual group for a
certain cocycle w, but an example due to C. C. Moore shows that the latter can be empty
[1]. This example is discussed in section 10 of this paper, and shows that representations
of virtual groups need not decompose into primary representations.

The organization of the paper is as follows. The first six sections deal with the machinery
of inducing representations from one group action to another. More particularly, sections
1 and 2 give preliminary material on Hilbert bundles and bundle representations of group-
oids. In section 3 this is used to define induced representations, and it is proved that the
definition given is an extension of the definition for subgroups. One novelty here is the
proof of Proposition 3.4, which uses no special choice of Radon-Nikodym derivatives. In

section 4 a lemma needed in later sections is proved, concerning intertwining operators.
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Then sections 5 and 6 deal with virtual group versions of inducing in stages and the sub-
group theorem. Next, section 7 shows that cocycle representations of a groupoid can be
connected with ordinary representations of another groupoid, just as for groups except
more easily done. Section 8 deals with material related to section 7 of [9] as well as a lemma,
which allows us to deal only with invariant analytic sets even when N is not completely
smooth. Then section 9 deals with the extensions of results of section 8 of [9], and section
10 has examples and applications.

We give here some notation and terminology which will be used throughout the paper:
If @ is a groupoid [15, section 1] then G*9 will denote the set of units of G and @ ={(z, y} €
G x G- xy is defined}. The functions r, d: G—G® are defined by r(z) =2z, d(zx) =2~z [15,
section 1]. If ¢ is a groupoid homomorphism, ¢ =(p x¢)|@®. If ¥ and X are Hilbert
spaces, L(H, X) is the space of bounded linear operators from H to J. The letter R will
be used for commuting rings or sets of intertwining operators, such as R(L, M)=
{T: T: GO — L(HL), H(M)) with T(r(x))L(x)=M(z) T(d(x)) for all 2}. If 1 is a measure
and f is Borel, f.(A)(E)=A(f"1(E)). Also [A] is the measure class of 1. The term measurable
will be used for functions measurable relative to the completion of a given Borel measure.
Measures are Borel and spaces are Borel spaces, i.e. with an assumed or given g-algebra of
subsets. The material on analytic and standard Borel spaces in [1, 8]is assumed, as is every-
thing in [9, 15]. Note: Use the definition of groupoid in [15] rather than the one in [16].

1. Operations on Hilbert bundles

Let 8 be an analytic Borel space and lett H be a function assigning to each s€S a
Hilbert space denoted either J(s) or H,. Form Sx W ={(s,x2): s€S and z€H}. (If U
happens to be constant, taking the value J everywhere, then S% H=8x X.) Let » be
the natural projection of S 3 onto S. Then a section of 8§ ¥ is a function from § to
Sx H with ;o f equal to the identity on 8. If f is a function from § to U{H(s): s€S} such
that for each s€8, f(s) € H#(s), i.e. fE€II,.s H(s), then we can define a section f+ by f+(s)=
(s, f(s)), i.e. fr=¢xf. Conversely if fis a section of S W, and f~ is defined by (s, f~(s)) =
f(s), then f~€II;.s H(s). There is also an obvious Hilbert space structure on each {s} x F(s)
making (s, )=z an isomorphism with J(s), and then (f+(s): (s, )) =(f(s): =) holds identi-
cally. Thus while sections of 8§ % 3 and elements of IT, .5 3(s) are not really the same, they
are tied so closely that there should be no confusion if we treat them as if they were the
same. We shall thus refer to elements of I, .5 (s) as sections of 8§ H unless there is a
real need to be careful. After the definition of induced representation, Definition 3.5, we
shall return to this point again, for clarification. A Hilbert bundle over § is such a funetion
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H on 8 together with an analytic Borel structure on 8§ I satisfying these two conditions
[13]:
For E< 8, n-1(E) is Borel iff ¥ is Borel.

There i8 a sequence fi, f,, ... of sections such that

(a) for each n, (s, )= (f.(s): &) =Fu(s, x) is Borel,
(b) for each m and n, s—>(f,(s): f.(s)) is Borel,
(c) w and the functions f; separate points.

We may also refer to S 3 as the bundle, with the Borel structure implicit. Notice that
multiplying the sections f, by non-vanishing scalar valued Borel functions does no harm,
so that the functions s—||f,(s)|| can be taken as small as may be convenient. We say two
bundles over § with functions H;, H, are equivalent if there is a Borel isomorphism « of
S N, onto Sx Y, such that for each s€S, (s, )—>afs, z) is a unitary isomorphism of
{s} x y(s) onto {s} x Hy(s). Here we don’t want to go from one fiber to another, though
later we will. The function taking s€S to dim (F(s)) is Borel and § is partitioned by {S,,
Sy, 8y, 8y, ...} where S, ={s€S: dim (F(s)) =n}. If X, has dimension » for n=10,0, 1, 2, ...
we can define '(s)=XK, if s€8, and give Sx W the Borel structure B’ of S, x K, U
Sgx KU S8, x H, U ..., a disjoint union. This is easily shown to be a Hilbert bundle, and it is
in fact isomorphic to the given bundle (U, B): since S J is analytic, countably many
Borel functions which separate points determine the Borel structure, so a function into
S83¢ H is Borel iff its compositions with zz and the functions f, are Borel. Hence a section g
is Borel iff s—(f,(s): g(s)) is Borel for n=1, 2, .... Therefore a sum of two Borel sections is a
Borel section and a multiple of a Borel section by a scalar valued Borel function is a Borel
section. The Gram-Schmidt process applied to the sections f4, fs, ... in & pointwise manner
yields a sequence of sections ¢y, ¢, ... for which properties (a), (b) and (c) hold, and for
each s the non-zero elements of {g,(s): =1,2, ..} form an orthonormal basis of F(s).
Let h,{s) be the first non-zero g,(s), hs(s) the second, etc. Then for s€S,, k(s), ..., h,(s) is
an orthonormal basis of F(s), and (s, (Cy; «-rr €)= (S, €1R4(8) 4 ... +-€,P,(s)) is an equi-
valence of S, x K, with §,% (#|S,). It follows that S H is standard if S is standard.

If X is another analytic space with p: X—8 a quotient map and s—1, is a Borel func-
tion from 8§ to finite measures on X such that A is concentrated on p~—(s) for s€8, then
we can define J#(s) =L%A,) and make this into a Hilbert bundle by giving S 3 the smallest
Borel structure for which sz is Borel along with all the functions (s, z)—(f: z), for bounded
Borel f, where (f: z), is the inner product in L3(4,) [15, p. 265].

There are many ways to build new bundles out of old ones. The condition required
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on the projection is usually trivial to verify. If S;% ,, S;% H,, ... are bundles and the
base sets S;, S, ... are pairwise dispoint, then 8; H, U Sy% U ... is a bundle under the
disjoint union Borel structure. If 8% H is a Hilbert bundle and 7' is a Borel set in S, then
a~YT) is a Hilbert bundle over 7' under the relative Borel structure. If 7' is any analytic
space and g: T8 is Borel we can pull  back to a Hilbert bundle over 7' by using Hog:
let {H;, E,, ...} be a countable generating family of Borel sets in T which includes the
inverse images of a generating family for S, let f;, f,, ... be the appropriate sections of
8x N, and form the sections b, , =@z,(f,09) of T (Hog). Take the smallest Borel struc-
ture on 7' % (Jog) for which the projection is Borel and (2, ) (h,, ,(t): x) is always Borel.

The direct sum of Hilbert bundlesis defined as follows: suppose F(s) = 2,(s) ® Ha(s) D ...
for s€8 and let S+ H have the smallest Borel structure for which (s, )—(s, #,) is always
Borel, where z,, denotes the component of # in },(s). The necessary sections may be gotten
as follows: choose sections [, fn2, ... for 8 3, so that for each s and k the sequence A, =
(F1x(8); forl(s), ...) is in F(s) (by making them small enough, say [|f..(s)|| <1/n everywhere).
Then Ay, k,, ... will be what we need.

If S is a bundle and % is a Borel set in S, define (pz)(s) to be (s) for s€F and
{0} otherwise. The Borel structure is taken to be that of 7—1(#) U (S\E). This is a disjoint
union of two previous constructions, and we mentioned earlier that any  is isomorphic
to a direct sum of bundles ¢s, X, where X, is constant. If B, = U ycrcoo Sy #=1,2, ..., we
also have ¥ isomorphic to @¢z, €. Notice finally that if E,, F,, ... are disjoint Borel sets
with union ¥, then gz~ @ nui(ps, H)-

Now let 8% H;, 8% N, be bundles and define F(s) = 1, (s)® Hy(s) for s€S. If Wy, Ko
are constant and E,, E, are Borel, then for I, =@z K;, Ho=0¢z Ko, we have U=
Crng, K1® Ky Thus in this case Sx H has a good Borel structure. In general we can
reduce to a direct sum of such tensor products by distributing products over sums, so we
can give Sx H a good Borel structure.

Let §x I be a Hilbert bundle and let A be a o-finite Borel measure on 8. We will
denote by L*(4; H) the Hilbert space of sections f of S H such that []|f(s)||2duls) <o,
with the natural inner product. These are the L2.sections of H, and L*(4; H) is what i
called the direct integral. For a constant bundle the notation is compatible.

Now to form direct images of Hilbert bundles, suppose p: §— T is Borel, where § and
T are analytic, and suppose ¢4, is a Borel function to finite measures on § with 4, con-
centrated on p~i(t). Then if Sx  is a Hilbert bundle we can define () =L2Ays )
for t€T. The notation p.(H)(f) suppresses the measures 4, but should cause no confusion
in our use of this construction. If H is a constant K, p.(H)(f) =2 L*(A,) ® X, and we know
this has a good Borel structure. In general, let B be the smallest Borel structure on 7' % p, ()
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for which the projection is Borel and (£, x)—~>y,(t, «) = (x: f); (the inner product in L2(1,; ))
is Borel whenever f is a bounded Borel section of 8§ 3. Notice that the function f is al-
ways in L¥(4,; H) because bounded functions are in L? for finite measures. To show that this
renders T % p.(H) a Hilbert bundle, we begin with the case that ¥ =¢zC. Then we have
the bundle of Hilbert spaces L(pgd,) over T. This is okay because it is gotten from a
Borel family of measures. Now suppose H= @ n1 H,. Then p, (H)(£) = @ nza 2 (H,)(¢) for
each £. The natural projection from 1'% p.(H) to T % p.(H,) is Borel, since if f, is a bounded
section of S H, then (0,0, ..., f,, 0, ...) is a bounded section of Sx I, so that the projec-
tion followed by one of the determining functions on 7' % p.(3},) is a determining function
on Txp,(H). On the other hand, if f is a bounded section of S H, then f=(fy, fo, ...)
whers for each 7 f,, is a bounded section of Sx H,,. Now for 1€ T, if w=(y, ®,, -..) EB{ H)1).
{f: %)y =2 o1 (fo: %,)s It follows that B is the smallest g-algebra for which each projection
T %0 W)= T % p(H,) is Borel. Hence if =@ 51 ¢£,C, we see that 1'% p.(H) is a Hilbert
bundle. Since isomorphisms preserve what is needed, we see that T % p.(H) is always a
Hilbert bundle.

To conclude this section, we prove a fact about double applications of the direct
image process which will be useful in proving the theorem on inducing in stages. Since the
fibers in a direct image bundle are direct integrals, the result can be seen as a slight addi-

tion to the theorem on refinements of direct integral decompositions [6 Theorem 2.11].

TEEOREM 1.1, Suppose S, T, U are analytic Borel spaces and p: S—~T, q: T—U are
Borel surjections, and set r=qop. Let t->u, be a Borel function from T to the finite measures
on 8 such that u,(S\p~'(t)) =0 for t€T and let u—v, be a similar function for U, T and q.
For w€U define A,= [ p;dv,(t). Then u->A, is Borel from U to the finite measures on S and
A (S\rY(u)) =0 for u€U. Let S W be a Hilbert bundle over S and form p () using the
measures i, and then @ (p(H)) using the measures v,. Form ry(H) using the measures .
Then Ut () and U % q.(p(H)} are equivalent.

Proof. The statement about the measures 2, is proved in a straightforward manner.
Recall that if 4 is a countable algebra of sets generating the Borel g-algebra of subsets of
8, then the smallest set of functions containing {p,: 4 € 4} which closed under addition
and multiplication by numbers a-+b¢ where ¢ and b are rational is countable and is L?-
dense relative to every finite Borel measure on . Every Hilbert bundle over § is equivalent
to a countable direct sum of bundles of the form 8 (pzC(), so this density property genera-
lizes easily: If Sx # is a Hilbert bundle there is one countable family F of bounded sec-
tions of S H which gives a dense set in L2(A’; W) for every finite Borel measure A’ on 8.
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LeEMMA. If 7 is the projection of Uxr (H) onto U and ylu, x)=(x: f), for (u,z)€
U r4(H) and f a bounded section of Sx J, then {n} U {y,: f€ F} determines the Borel struc-
ture on Uxry (H).

Proof of Lemma. Let (uy, 2,), (4, ;) be distinet. If u, ==u,, there is no difficulty, so
suppose U, =u,=u bub x, =x,. Since y; is linear in its second variable, we may suppose
2, =0 and z, =% +0. Now 1, is a finite measure on S, so F gives a total set in r,(H)(u) and
hence there is an f€F such that y,(u, #) +=0. The result now follows from a general fact
about analytic Borel spaces.

Now define a mapping V from sections of S I to sections of 7' p.(}) as follows:
for t€T and f a section let (Vf)(t) be the class of f in L2(u,; H)=p.(H)(t) if f is square
integrable and let (Vf)(f) =0 otherwise. If f is bounded then f is always square integrable,
so Vf has no artificial zeros. For any section f, [ [||f(s)]|2du(s)dv.(t) = [[[f(s)]|>dA.(s) soif
is square integrable relative to 4, it is also square integrable for almost all y, and Vf has
at most a null set of artificial zeros. Also, V defines an isometry V, of r.(#)(u) into
q+(P+(F))(w). To prove that V, is unitary, suppose g is orthogonal to its range. Let F be the
set of bounded sections determined above, and let f€ F. Then let ( : ), denote the inner prod-
uct of sections of Sx I relative to u; and notice that the orthogonality condition is just
[(f: g(t)).dv,(t) =0 (this makes sense because g is a Borel section of 7' % p.(H)). Choose h to be
a Borel function on T with values in the unit circle, such that A(t)(f: g(t)), >0 for all ¢ If
F1(8) =h(p(s))f(s) for sE€S, then f, is a bounded section of S H and [(fy: g(£)):dv,(f) =0.
The integrand is non-negative, so (f,: g(£));=0 for almost all ¢ and hence (f: g(t)),=0 for
almost all £. Since F is total in each p,()(f), we see that g vanishes a.e.

Now define a(u, x) =(u, V,z) for (w, z) €U %, (}#). Then « is one—one and onto, it is
unitary on each fiber and its domain and range are analytic, so to prove « is a bundle iso-
morphism we only need to prove « is a Borel function. First, define 9} on Ux g.(p+(H))
for bounded sections f of 7% p.(H) and notice that for fEF, py,oax=y, and hence is a
Borel function. Now if we choose F to be closed under multiplication by characteristic
functions of sets of the form p=1(4) for 4 in some countable generating family of Borel
sets in 7', as well as rational complex linear combinations, it is not difficult to see that the
set {Vf: f€F} is dense in every L¥(u'; p,(H)) for finite measures u’. In that case the projec-
tion and the functions 7, determine the Borel structure on U % g,(p.(H)), which is all we
needed.
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2. Representations and bundle representations

Let G be an analytic Borel groupoid, let ¢ be a 2-cocycle on Gand let L be a o-representa-
tion of @ on a Hilbert space K. Then @ has a ‘bundle o-representation’ on G x ), where

G is the set of units of @, defined as follows:

g-(d(g), 2) = (r(g), L,2).
If ¢, 9, is defined then
4(9192) = d(92), 7(9192) =7(g1)
and

(9192)* (d(g2); ) = (r(91), Lo,0,%) = (r(g1)s 0(g1» 92) Lo, Lo, %) = 91(92° (d(g2), 6(91: 92) %))

Conversely, suppose we are given a ‘bundle cocycle representation’, i.e. for each g€@, a
mapping of {d(g)} x X to {r(g)} x X which gives a unitary operator L, on X and (g,9,)
(d(gs); %) =g1(92(d(g,), T) for some v. Then if L is a Borel function, i.e. the mapping of
G x'(GO x )G x X is Borel, L must be a cocycle representation. In fact, L will be a
o-representation if we started with a ‘bundle o-representation’ of G.

If GO x 3 is a bundle over G'9 for which the spaces H(u) all have the same dimen-
sion, then G® x J{ is equivalent to G x J{ for some Hilbert space X, and we get a corre-
spondence between bundle o-representations of G on ‘% H and o-representations of G
on X. If «is an equivalence of G x 3, with G‘@ x Y, carrying one bundle g-representation
to another and «,, &, are equivalences of G'® x H, with G© x X, and G® x Y, with G x X,
respectively, then ay,oxo0;” induces a similarity between the corresponding o-representa.-
tions on J{; and J{,. Thus we really have a one-one correspondence between classes of
‘bundle o-representations’, and classes of ¢-representations,

For measurable groupoids, we often must restrict to an inessential contraction to get
a strict representation, but then we simply consider bundle representations for the contrac-
tion. If (@, [u]) is an ergodic groupoid, and @ has a bundle representation (or bundle co-
cycle representation) on G x ¥, it follows that dim (F(w)) is constant on some saturated
Borel conull set of units. Thus for the ergodic case we can achieve the situation discussed

above by passing to an i.c.

3. Inducing from one group action to another

It is possible to study groupoid homomorphisms and their ‘kernels’ and characterize
those homomorphisms one would want to regard as injections or inclusions, and a paper
giving the details is intended for publication elsewhere [17]. Here we simply start with an
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equivalent formulation of the notion of subobject and develop the notion of inducing from
one subobject of a group to a larger one. This definition is the one suggested by Mackey in
[14]. We show in this section that the definition extends the definition for subgroups and
is independent of the measures in the given measure class.

A virtual subgroup of a group @ is a virtual group given by an ergodic action of @ on
an analytic Borel measure space (8, u) [12, 17]. Strictly speaking, we want to work with
an equivalence class of G-spaces, where 8, and S, are equivalent if they contain invariant
conull analytic sets Si, Sz such that S and S; are strictly isomorphic as G-spaces, under an
isomorphism which preserves measure classes. We shall make such changes in § only if they
simplify matters.

If S and T are G-spaces and f: S—T is a Borel function, then f is equivariant iff
fxi: 8§ xG@—>T x @ is a homomorphism. If 2 and u are quasi-invariant measures on 8 and
7 respectively, and m is finite and equivalent to Haar measure on @, we will say that an
equivariant Borel f: §— 1" represents 8 x G as a subobject of T’ x G or that f x4 is an im-
bedding of 8 x @ into T' x @, provided that f,(1) ~u. Given an imbedding, we may as well
suppose f,(4) =u, since only the measure class of x is really important. We also may suppose
f(8)=T, by replacing T by f(8). This is acceptable since f(S) is analytic.

We shall do inducing even for the non-ergodic case for two reasons: It goes exactly
the same way, and in the end we see that ‘inducing in stages’ includes ‘inducing a direct
integral’ as a special case.

We need to use Proposition 2.6, page 72 of [1]. We give here a slightly different proof.
Recall that if A is a finite measure on a G-space and 2 €@ then (Az)(4) =A(4x1) for Borel
sets A.

Lemma 3.1. Let 8 and T be analytic G spaces, let p: S—T be Borel, equivariant and
onto. Let y be a quasi-invariant finite measure on S and define v =py(u). Then there is a de-
composition p= [p,dv(t) relative to p such that p,x ~ u,, for t in T and x in G.

Proof. Let u= fu,dv(t) be any decomposition and let K={(t, ) €T X G: s ~ t,}.
Then K is Borel, because (¢, )~ (u;, )~>u;x and (¢, ) ~>tx—>u,, are Borel and ~ is deter-
mined by a Borel set of pairs of measures (Lemma 1.1 of [16]). Also K is ¥ xm-conull in
T x @ by Proposition 2.5 on Iiage 72 of [1], where m is a finite measure in the class of Haar
measure. Let Ty be the set of €7 for which the ¢-section of K is m-conull in @ Then T,
is Borel and conull, by the Fubini Theorem. Now if {€ T and y €, then u, ~u,* (yx) for
almost all z. For the same ¢ and almost all y €G we have p,y ~ 4, so for almost all y (ty, at) €
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K for almost all z. Thus ¢ € T, implies ty € T'y for almost all y €G. By the proof of Lemma 6.3
of [15], the saturation 7'y of T is a Borel set.

Define A,= ¢ us,x"dm(x) for t€T, and A,=0 for t¢T;; and let A= [ A,dv(f). Now
t€T, implies A,~u,, so A~u. Let o =du/dA be a Radon-Nikodym derivative which is posi-
tive and finite everywhere and redefine u,=pl, for ¢€7T. Then y,~A; for tET so it will
suffice to show that A, x~A,, for (¢, z) €T x G. This is clear if t¢7T',. Now let t€ Tyand y €G.
The discussion above showed that 21~ u.y for almost all z, so Ay~ u,;y. Hence A, ~
pi(yx) ~ Ay x. Now T G =T, so this proves the result for t€ 7.

Remark: In applications of this lemma it will often be necessary to replace T by T,
for instance if we want all the measures u, to be probability measures. It should be remarked
that if T' is standard then 7, is also standard, so nothing essential ordinarily is lost by this

change.

LEMMA 3.2. Let (X, 1) and (Y, u) be analytic Borel spaces with finite measures and let
T: XY be a Borel isomorphism such that T'.(A)~u. Let P and Q be the canonical projection
valued measures on LXA) and L*(u) respectvely. Then there is a Borel function ¢ from X to €
such that the operator U taking g to pgo T is unitary from L(u) to L*(A). Of all such operators,
there is only one with ¢ >0, namely the one with 0 = (du/dT ,(A))o T'. Let E be o countable algebra
generating the Borel sets in Y. Then U is the only unitary operator from L¥(u) to L2() such that

(a;) fOT E 'l;n 8, PT'l(E)= UQE U_]‘
(b) fOT E in 8, (Ul, (’JT—I(E))>O.

Proof. It is well known, and easy to verify, that if p(x) =[du/dT (A)}(T(x)) for x€X
then the formula defines a unitary operator U from L*(u) onto L*(1). The inverse is deter-
mined in the same way by 71 Suppose U g=p,g0T and U, is unitary. Then U, U
is a multiplication operator on L2*(1), namely U, U-'f=p,flo. (We may assume ¢ never
vanishes; then U~1f=(f/o)o T-1). The only positive function whose multiplication operator
is unitary is the function identically 1, up to null sets.

It is easy to see that U satisfies conditions (a) and (b), so to complete the proof we
suppose U, is unitary and satisfies those conditions. Let g, =U;1. Then for each E€E,
U, g vanishes off 7-*(£) and so must be a multiple /5 of @ -1z =@gzo T. The same holds for
Y\E, and since U, is linear, we have fzpz0 T +fy\z¢y\z0 T =g;. Then f; agrees with g, a.e.
on T-YE), so U pr=p,¢z0T. Since U, is linear and continuous, U,g=g,goT for g in
L2(y). Condition (b) implies that g, >0 a.e.

Let 8, T be analytic Borel G-spaces and suppose p: §— T is an equivariant Borel surjec-

tion. Let {—>pu, be a Borel function from 7' to the finite measures on 8, such that y; is con-
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centrated on p—(t) for each ¢ € T'. Suppose that u;x ~ p,, for t€T and z €Q. Let H(t) =L(u,)
for t€T and form the Hilbert bundle 7% . Then F(¢) and F(tx) are isomorphic for t€T
and 2 €@, so the Borel set where dim J(¢) takes a given value is invariant, and we may as
well suppose that all the (¢) are isomorphic, since we can deal with the various subsets
one at a time. Then we have an equivalence of 7% H with T x JX. Denote the corresponding
unitary operators from (i) onto X by V,.

For t€T and E €Bor (8) define PY(E) on (t) by (PHE)[)(s) =pz(s)f(s). The dependence
on ¢ oceurs because equivalence of functions f depends on the measure y;.

Lremma 3.3. For each Borel set E<S, t—~PE) is a Borel function in the weak (or

strong) operator sense.

Proof. The meaning of this statement is as follows: the space U{{t} x CH(t)): t€ T} is
given the smallest Borel structure for which the projection onto 7' is Borel together with
all the functions v, for bounded f, g, where y, ,(f, 4)=(A[f1; [91:)([f]; is the equivalence
class of f in LZ*u,)). The equivalence of 7% } with 7' x X carries this space isomorphically
to I'x £L(XK). The strong operator version uses (¢, 4)=A[f]; and the weak and strong
Borel structures are the same, just as they are on £(X). Now P! E)[f]=[@zf];, and since
@xf is also a bounded Borel function, the truth of the Lemma is clear.

Now if we define QY E) =V ,PYE) V;* for each Borel set F< .S, we get a Borel function
from T to L(XK). We want to know that (¢, x)—~@*(E=z) is also Borel. To show that, we
look at another bundle equivalent to 7'% }. Project § x G onto T by taking (s, z) to
P4(8, ) =p(s). Let A,=u, x &, where ¢, is the unit point mass at e and define H'(t) =L2(4,).
Then T ¥ is clearly equivalent to 7T'x J; in fact s—(s, e) induces the equivalence. De-
fine 7(s, ) =(sz, ™) for (s, ) €S x G and notice that 7 is a Borel automorphism of period 2.
Let Pi(E) be the projection in L*},) corresponding to a Borel set E<S x G, as above.
Since ¢z ¢(s, ) =@g(s) and @y zxe)(S, ) =@z, (s) for E a Borel set in S, we see that Pi(E x Q)
corresponds to P¥E) and Pi*(z(E x @)) corresponds to P¥*(Ex) under the equivalence of
the two bundles. Now (¢, x)~>tx is Borel, so we see that (¢, x)—> P**(Ex) is Borel, by applying

the above lemma to P,.

PrOPOSITION 3.4. Let S and T be analytic Borel G-spaces for a locally compact group @,
and suppose p: 8—T is equivariant, Borel and onto. Let t—>u, be a Borel function from T
to the finite measures on S, such that u, is always concentrated on p=L(t), and suppose that
X~y for €T and x€G. Let H(t) =L*(u,) for t€T and form the Hilbert bundle T % .
Define W(t, ): H(tx)—F(t) by (W, x)9)(s) =[(dpee/d(p:x))(s2)]g(s). Then W is a bundle
representation of T x G on Tx .
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Proof. Tt is convenient to work both with 7% N and with 7' x X, where all the 2{(t)
are isomorphic to X, and we will in fact construct W as a representation on J. Recall the
unitary operators V, which establish the equivalence. The only thing that remains to be
proved is that W is a Borel function. Let £ be a countable algebra which generates the
Borel sets in S. Then the intersections with p~(¢) generate the Borel sets in p~1(t) for t€ 7',
For each EE€E let Wz={(t » U)ET x@x W(K): UQ*(Bx)U-=@Q"(E) and (UV,1,
Vipz) >0}. The functions involved in defining Y95 are Borel on T’ x G x U(K), so Wy is
Borel. Now let W= N{Ws E€E}. By Lemma 3.2, we see that U# projects one—one onto
T x G and that for each (f, x) €T x G the corresponding unitary operator is the W (i, z) de-
fined in the statement of the theorem. Thus W is the graph of W. Since T x G is analytic
and Y9 is Borel, W is Borel, as desired.

Remark. Notice that there is no need to choose Radon-Nikodym derivatives in a
smooth way. Since the operator does not depend on the choice, the Borel character of the
function can be made global rather than simply on a conull set, as would be the case if
we were forced to prove the Borel character by making a smooth choice of derivatives as
in [5, 8, 15].

The representation W is the simplest induced representation and it is an ingredient
in the general inducing process. The same construction and formulas apply equally well to
give a representation on the bundle of Hilbert spaces L?*(u; JX) whenever X is a Hilbert
space. This is simply a multiple of the W constructed above.

Two more facts need to be mentioned before the actual definition of inducing in
general. If S % 3 is a Hilbert bundle and y is a finite measure on S we can define L*(u; £(H))
to be the algebra of functions 4 on s such that: for each s A(s) isin L(H(s)), if fis a Borel
section of §x H so is s—>A4(s) f(s), and s~ ||A(s)]] is bounded. For such an 4 we define
A~[f] be the class of s—>A(s)f(s) when [f]€L*(u; ), i.e. the direct integral operator; e.g.
see [7]. Now consider the case of constant U, say Sx H=8x X, and if 4 €L®(u,,; L(X))
define 4%?(s)=A(sx) for s€p=1(f). Let H(t)=L*(us; X) for t€T. For each (¢, «) choose a
Radon-Nikodym derivative as used in Proposition 3.4 and let (s, i, z) = ((du:,/d(u. ) (sx))E.
Then we calculate, for f€ H(ix), A €L®(u;,; L(X)), that for u,-almost all s,

(W(t, 2) A~ W, 2)7Y)(s) = o(s; & &) (A~ W, 2)7Y)(s2) = o(s; £, @) A(s2)(W (t, 2)7f)(s%)
=o(s; t, %) A(sw)o(s; tx, x71) f(8) = A2 s) () = (A4~ f)(s)

Continuing ag in [9, 15] we let ¢ be a strict 2-cocycle on T' x @ and define o(s, z; sz, y) =
a(p(s), ; p(s)z, y) for s€S, x, y€G, s0 we think of ¢ as a cocycle on S x & as well as T x G.
This corresponds to the restriction of ¢ in the case of subgroups, as 8 x ¢ is regarded as a
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subobject of 7' x G. Now if R is a strict g-representation of S x @, let R’(f, x) be the function
on p~1(¢) whose value at a point s is B(s, x). Then R'(f, ) €L*(u; L(X)) and we can form
R'{t, z)~, which will be a unitary operator on L*(u; X)= ). Now for s€p~(¢), and
%, y€E, we have sx€p-i(iz) and R(sz, y)=R'(tx, y)*™(s). Thus B'(t, zy) =o(t, ; tz, y) X
R'(t, ) B (tx, y) ®, where equality means actual equality as functions from p=2(£) to U(X).
If B were not strict, but became strict on the contraction to a set S,, then the functions

would agree a.e. on p~i(f) if S, were conull for both u, and ;.

Definition 3.5. The bundle o-representation U of 7'x @ induced by R, denoted
Ind (T'x @, 8 xG; R) is defined by

Ult, x) = R'(t, z)"W({, x).

The corresponding ¢-representation will be denoted by ind (7 x @, S x &; R).

That we actually have a o-representation follows from the calculations made above.
We do not give an imprimitivity theorem for this generality here. We only need that
characterization for representations of groups.

Suppose R is a strict o-representation of 8 x G on X and let L be the corresponding
bundle o-representation: L(s, x)(sx, v)=(s, R(s, )v). Then the formula for the induced
bundle representation in terms of L and sections of 8 x X is the same as the formula in
terms of R and J{ valued functions on 8. Since we have systematically blurred the distine-
tion between the two classes of functions, it seems good to take note of this equivalence.
What it means is this: let o be a function on 8 x T x G whose square gives the relevant
Radon-Nikodym derivatives as in Proposition 3.4. If we let () be the Borel K-valued
functions on § square integrable relative to u, and let J+(t) be the Borel sections of S x X
square integrable relative to y,, then 2¢(#) is isomorphic to H* () under f—f* where f*(s)=
(s,f(s)) for s €8. Also, L(s,x) f* (sx) = (s, R(s,x)f(sx)),s0 (Ind (R)(t, ) ) * (s) =o(s;t, 2) L(s, x)f * (sx).

To see that ind (R) depends only on the measure classes and not the measure, first
notice that it was defined without using any measures on 7', so it does not depend on any
measure on 7'. Whenever a measure class on T is relevant we must assume that it is the
image of the class on S, but otherwise it has no effect. We then ask what happens if we
pass to a function ¢4, from T to finite measures on § for which 4, ~ y; for all ¢. Then using
Lemma 3.2 as in the proof of Proposition 3.4 we see that there is a Borel family V', of uni-
tary operators from L3(u; X) onto L*(A; X). In this case, for each ¢ we have V,f=p,f
where g, is a non-negative Borel function. By the unigueness of such operators as proved
in Lemma 3.2, the operators W(t, z): L¥uy; K)>L¥uy; K) and W(t, x): LA, X)—
L2 X) match up under the Vis. Also R'(¢, z)~ is defined by the same formula in either

case, so the two versions of inducing give equivalent representations.
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Let us show that this definition of inducing produces equivalent results in case § and
T are transitive (-spaces, in which case they correspond to subgroups of G, say H and K,
Let us be more precise. This definition gives a representation of T x G. If ¢, is the point of
T stabilized by K, then k—(f), k) =¢@(k) is a homomorphism of K into T’ x @ which is one
component of a similarity. If the induced respresentation as defined above is composed
with ¢, we should get a representation equivalent to the usual induced representation of K.

We know that representations of H and those of 8§ x G correspond, so we can start
with a representation of H, say L. Let y: S x G—H be the homomorphism which is part of
a similarity, of the form y(s, #) =y{(s)xy(sx)~! where y: §—>@ is a cross section, thinking of
8 as the right coset space for H. We induce using R =fLoy, where § makes R a g-representa-
tion [15, p. 314]. The usual definition for inducing from H to K involves K/H rather than
G/H. To help keep this straight, let y, be a cross section of K over K/H and let y, be a
cross section of G over G/K =T'. Then we can define y by p(s) =p1(sys(p(s)) V) ps(p(s)). This
makes sense since K/H < G/H and y, is defined on that subset, while s->sy,(p(s))~ maps S
into K/H. Also y is in fact a section.

Now all the Hilbert spaces in the bundle over 7' used to define the induced representa-
tion U are equivalent to H,, =L K/H; X), and we can let the induced representation act
on . Also translation by y,(f)~1 combined with a Radon-Nikodym derivative can be
used as the unitary equivalence of H; onto H;, if t€T. We may as well assume the induced
representation is strict, and then for k€K and f€H,, (U(, k)f)(s) =o(s, k) B(s, k) L(y(s)
Ey(sk)=) f(sk) for almost all s in p~1(f)=K/H. For s€p~1(t,), y.(p(s))=¢ 50 p(s)=y1(s).
Then the formula clearly agrees with the usual formula for inducing [15]. At points other
than ), we simply get equivalent representations. Thus we get agreemént with the previous

definition when it applies.

4. Intertwining operators

Suppose (S, u) is an analytic G-space with finite quasi-invariant measure and let
X,, X, be Hilbert spaces. Set H;=L*(u; X;) i=1, 2. Then for T €L*(u; L(XK;, X,)) we can
define 7'~: J,—~ U, by (T~f)(s) =T(s){(s). If P, is the canonical projection valued measure
on H; (¢=1,2), then T'—~T" is a Banach space isomorphism of L®(u; £(X;, X,)) onto
R(P;, P,), by direct integral theory. It is a s -algebra isomorphism if 3, = X,. The follow-

ing lemma is a convenient variation on Theorem 10.8 of [15].

Lemma 4.1. Let o -be a 2-cocycle on G and let Ly, L, be o-representations of 8 x G on Xy,
X, respectively. Let U,=ind (@; L,) and U,=ind (&; L,), Then T—~T"~ is a Banach space
tsomorphism of R(Ly, L,) onto R(Py, Py)N R(U;, U,), taking equivalences to equivalences.
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Proof. If T' € R(Ly, Ly), by definition we have T'(s}L(s, ) =Ly(s, ) T'(sx) for almost all
(s, z). The set of pairs for which equality holds is closed under multiplication and hence
contains an inessential contraction, say to the conull Borel set Sy. Let Fo=(S x G)|8y=
{(s, ): s and sx€8,}. Then for any x in G, (s, x) is in F, whenever s€8,N Sz~ which is
almost all s. Let g: 8 x G@—(0, o) be Borel for fixed x and give the factor needed to make
unitary operators out of translations. Then if 2€G and f€H, we have, for almost all s,

(T~ U2} f)(s) = T(sHUL(=)))(s)
=0(s, #) T(s) Ly(s, ) [(s) = 0(s, 2) Lin(s, %) T'(s%) f(s2) = (Uy() T~ [)(s)-

Conversely, if T~ U,(z)=Uy(z) T~ for all 2 in @, then for each x, T(s)Ly(s, ) =Ly(s, x) T(sz)
for almost all s, so T'€ R(Ly, L,). Now T~ is unitary iff 7'(s) is unitary for almost all s, so
all that was claimed is true.

5. Inducing in stages

Here we prove that induced representations can be formed in several steps or in one,
with equivalent results. This will be useful in section 10, and also has a corollary on in-

ducing direct integrals. This generalizes Theorem 4.1 of [5].

TeEOREM 5.1. Let 8, T, U be analytic Borel G-spaces for a locally compact group @,
with quass invariant measures A, u, v respectively and suppose p: 8—~1T and q: T~ U are equi-
variant, Borel, and onto, with py(A)~u and q.(u)~v. Then r=qop is equivariant from S
onto U and re(A)~v. If ¢ is a cocycle on U x @ and R is a c-representation of S x @, then
ind (Ux@G, §xG; By=ind (UxG, TxG;ind (T'xG; SxG; R)).

Proof. We may as well suppose py(A) =y and q.(u) =v. Let A= [ A(p, t)du(t) and pu=
| pelg, u}dv(u) be decompositions of 4 relative to p and y relative to g, respectively, such
Alp, t)x~Ap, tx) for (t, )€T xG and u(g, )z~ u(g, ur) for (u, x)€EU xG. Also suppose
that all the measures are probabilities (discard invariant null set if necessary). Then define
Alr, )= J A(p, t)d(ul(g, w))(¢) for w€U. This gives a decomposition of A relative to r. The
quasi-invariance of the A(p, f)’s and the u(g, »)’s combines to quarantee that A(r, u)z~
Ar, uz) always holds, by applying Lemma 1.2 of [16].

Let M,=Ind (Ux@, Sx@G; R),let M =Ind (T x@G, 8 xG; R)and let M,=Ind (U x G,
Tx@; M). Then M; acts in Uxry,(K) and M, acts in U%qu(p(XK)). According to
Theorem 1.1, these bundles are equivalent. The equivalence arises from the mapping V
taking a bounded section f of 8% H =8 x X to the bounded section Vf of 7' % p,(H), where
(VH)(¢) is the class of f in () () =L¥A(p, t); X).
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Now if f is a bounded section of S M, (M,(u, z)f)(s) is a positive multiple of
R(s, z) f(sx), since it is B(s, x)(W(u, x)f)(s). Let o,(s; w, x) be the positive multiplier. Like-
wise for some g(s; £, x) we have (M(t, z)f)(s) =0(s; ¢, ) R(s, ) f(sx) and for some g,(¢; u, )
we have (My(u, 2)9)(t) =p0s(t; w, ¥) M(t, x)g(tx). If g=Vf for a bounded section f of
8% H, (M, 2) VAE)s) =0ult; w, 2)ols; &, ) R(s, 2)f(sz), while (VM (u, ©)/)(0)(s)=0y(s:
u, ) R(s, ) f(sx). Since V1M,(u, )V and M,(u, z) are both unitary from r.(})(uz) to
r.(H)(u), each obtained by composing with translation by x, and multiplying by R(s, x)
and then by a positive function, the positive functions must agree a.e. relative to A(r, u).
and hence M,(u, )=V My(u, x) V.

CoroLLARY 5.2. Let (S, A) and (T, u) be analytic G-spaces with quasi-invariant finite
measures and suppose p: S—T is Borel onto and equivariant with py(l)~u. Let o be a 2-
cocycle on T x Q. Suppose U is an analytic space and L is a Borel function from U xS x @
to U(K) for some Hilbert space K, such that L{u; +, *) is a o-representation of S x G for each
w€U. Let v be a finite measure on U and define (Ly(s, ) f)(w) =L(u, s, x)f(u) for f €L (v; X).
Let M be defined on UxT xG by M(u; t, z)=ind (T'x G, S xG; L{u; -, *)) and define
M,=ind (T %G, 8xG; L,). If (Mi{t, z)f)(u)=M(u; t, x)f(u) for fELXv; H) where
H(M(u; +, -)) for u€U, then M, and M; are equivalent.

Proof. We let @ act trivially on U. Then U x § and U x T are G-spaces. The projection of
U x 8 onto 8 is equivariant, L is a representation of U x 8 x G, Ly =ind (S x &, U xS x & L),
and M, is the representation of 7' x @ induced in stages U x S—S and §— 7. But M is
induced via U xS8—+U x T and then U xT—~1T'.

It should be mentioned that the transitivity of inducing seems not to imply that the
representation of G induced by the regular representation of a virtual subgroup is the
regular representation. Of course there may be a question about what the regular representa-
tion of a virtual subgroup S x @ should be. One natural possibility is to take the bundle over
8 which is 8 x L?(@). This is the same as the bundle induced over § by the decomposition
of the measure on S x G relative to the ‘range’ mapping, since 7(s, ) =(s, €). Now § x G has
a left action on § x L&), and that bundle representation is a candidate for the regular
representation. If S has only one element, it is the regular representation of ¢. However,
if we induce this representation the result is a multiple of the regular representation,
I®L, acting on L2(8) ® L3} G). Now the measure on § x @ can also be decomposed relative
to the mapping (s, z)— (s, sz) of S x G onto E< 8 x 8, and a bundle representation of § x &
can be given on a bundle over E. However if @ acts freely then the corresponding representa-
tion is trivial because the measures in the decomposition are point masses and the only

translation-generated unitary between such L2 spaces is the trivial one taking 1 to 1. Thus
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the induced representation is just the representation on L2(S) given by the action of @
on 8. If § is the circle and Z acts on § by an irrational rotation, the result is not the regular
representation of Z. It is not clear what other spaces might be tried. Perhaps one should
always deal with an infinite multiple of the regular representation. Then the first attempt

behaves well.
6. The subgroup theorem

Although we will not be using the information in the rest of the paper, we want to
include a discussion of the subgroup theorem for virtual subgroups because it is a useful
part of the apparatus for dealing with induced representations. If H and K are closed sub-
groups of @, L is a representation of H, and U=ind (G, H; L)| K, the theorem gives a
decomposition of U over the H: K double coset space, assuming that the image of the Haar
measure class is standard [5, Theorem 12.1]. The integrands are induced from subgroups of
K conjugate to subgroups of H. We shall see that the assumption that the image of the
Haar measure class be standard is not necessary if virtual subgroups are allowed into the
process [11, page 62], though it may happen that no decomposition of the representation
occurs. On the other hand the theorem does not always even have meaning in its usual
form when applied to virtual subgroups, because it can happen that no subobject of H
can be imbedded in K. We can think of several special cases: two subgroups not necessarily
regularly related, inducing from a virtual subgroup and restricting to a subgroup, inducing
from a subgroup and restricting to a virtual subgroup, and two virtual subgroups arising
from ergodic actions with finite invariant measures. The first two can be handled together,
but some remarks on the first case are in order to begin with.

Let 8 and T be the right coset spaces of H and K respectively. Then §x T is also a
G-space and the function taking (Ha, Kb) to Hab—'K induces a Borel isomorphism of the
orbit space (§x 7')/@ onto the double coset space. Of course the double coset space is
naturally taken to be the orbit space of § under the action of K, i.e. S/K. If {,€T is the
identity coset of K, § x {#,} meets each G-orbit in 8 x T, and the orbit (s, {,) @ intersects
8 % {t,} in (sK) x {t,}. This is another way to see that (S x T)/G and S/K are the same.
The space (8 x 7')/G is what we must consider in general, but for purposes of indueing from
an ordinary or virtual subgtoup and restricting to a subgroup, the space S/K is very con-
venient. Notice that the following theorem generalizes Theorem 12.1 of [5] by allowing
subgroups which are not regularly related, through the use of virtual subgroups of K. We

let m be a finite measure in the class of Haar measure on G.

TrEOREM 6.1. Let (S, 1) be an analytic G-space with finite quasi-invariant measure,
and let L be a o-representation of (Sx G, [Axm]) for some 2-cocycle ¢ on G. Set M=
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ind (@, 8 x G; L). Suppose K is a closed subgroup of G and let M =M, | K. Then there is an ana-
lytic Borel space Z and a projection q of 8 onto Z such that g=1(z) is tnvariant under K for each 2
n Z and if A= [ A,dq.(A)(z) is the decomposition of A relative to q, then almost every A, is ergodic
under K. Furthermore, L|q~Y(z) x K is a o-representation of (q7(z) x K, [A,xm']) for almost
every z (m' ~ Haar measure on K), which we denote by L?. Then M = [® ind (K, (¢ (2) x K,
[, xm']); 7) dgy(A)(2).

Proof. The existence of Z and ¢ can be gotten from Theorem 4.3 of [4]. If L is strict
on (8 x Q)| 8, for some conull Borel set, then S, is conull for almost every 4,, say for z in the
conull Borel set Z,, and then L is a g-representation on (¢~(z) x K, [A, x m’]) for z€Z,. Let
X be the Hilbert space of L, and set M*=ind (K; L?). Then H(M?)=L3(,; X)and H(M)=
LA, )~ [® L34, X)dq.(A)z). Now M(t, k) and the M?(L, k) are all given by composing
with translation by % and multiplying by a scalar to get unitarity and then multiplying
by L(-, k). The positive multiplier needed for M will suffice for almost every M? Hence
M= [° Medg,()(2).

Remarks. (a) This gives M as a direct integral of representations induced from virtual
subgroups of K. Examples such as compact K show that these need not be virtual sub-
groups of (Sx @, [Axm]) if (8, 1) is a properly ergodic G-space. Thus part of the effect of
the original theorem is lost, but it does not seem to be an essential part.

(b) If S is a coset space and S/K is analytic (or even standard for the quotient measure
class) then almost every 4, is carried on an orbit: a cross-section of S over a conull standard
set allows one to prove that such is the case, by a standard argument. In that case g~1(z) x K
is similar to the stabilizer in K of any point of ¢g—1(z). If the orbit is the orbit of Ha, one
such subgroup will be K N ¢~ Ha. This returns us to the same conclusion as in Theorem 12.1
of [5].

For the remainder of this section we let (S, 1) and (7', u) be analytic G-spaces with
ergodic probability measures and let m be a finite element of the Haar measure class on
G. Let m: § xG-~@G and w: T xG—~G be the projections, i.e. inclusion homomorphisms,
thinking of (S x @, [y xm]) and (T x@, [u xm]) as subobjects of G. Let U=8xT, v=
Axpandlet p: U~S8, q: U->T be the projections. Then ¢ =p x4 and 9 =g x ¢ are ‘inclusion
homomorphisms’ of (U x @, [v xm]) into (S x &, [A x m]) and (T' x G, [u x m]), though v need
not be ergodic. Suppose ¢ is a 2-cocycle on G and let L be a o-representation of 8§ x & on
the Hilbert space K. Lot M, =ind (G, S x G; L) and M =M,|T x G=M,ow. Then W(M)=
H(M,)=L2(A; K). Our goal is to find a decomposition of & x T which generalizes the de-
composition into orbits corresponding to double cosets, and which also gives rise to a de-

composition of M. The most natural decomposition of § x T is the one into ergodic parts.
3 — 762909 Acta mathematica 137. Imprimé le 22 Septembre 1976
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First, let L'=Log and consider M’ =Ind (T x G, U x @; L’), the induced bundle o-
representation. Now » = [ 4 x ¢,du(t) is a decomposition of ¥ relative to ¢, where ¢, represents
the unit point mass at ¢ for t€ 7. Also, (A xg)x=Axr x ¢, always and s> (s, {) induces an
isomorphism of L¥A x &, X) onto L2(4; X). It follows that the non-bundle version of M’
can be taken to be ind (T x G, U x G; L') as acting on L3(4; X). If o(s, ) = ((dA/dAx)(sx))""?
then for f€LXA; X), (M'{t, ) f){s) =pfs, ) L'(s, t, x)f(sx) =p(s, 2} L{s, «) f(sx) for almost all s.
This is the same formula as for M, so M’ =~ M. Thus we have M a representation induced
from the common subobject U x @ of § x @ and T x G, which is close to the spirit of the
original subgroup theorem.

It is not difficult to show that if 4 and U\A are invariant Borel sets of positive »
measure then M is a direct sum of representations induced from 4 x@ and (U\4) xG.
The difficulty is in passing to the continuous version of this. For example, let §=Z =
G, T =the unit circle and let G act on T by anirrational rotation. Then each orbitin § x 7
meets {0} x 7' exactly once, so §x T has T as its orbit space, and this is its ergodic de-
composition. Now the fiber measures are carried on orbits and hence are discrete. Thus the
projection of a fiber measure onto 7 is not equivalent to the measure on 7, and we cannot
induce from (fiber) x @ to T x G. This example illustrates the need for the hypothesis in

the following theorem.

TueEorREM 6.2. Suppose r: U—Z, {=r, (v}, v= | »,dl(z) is the ergodic decomposition of
v under the action of G, and suppose that q.(v,)~u for L-almost all z. Then for z in a conull
Borel set Zy< Z, I? =(Log)|r(z) x G is o-representation. If we set M*=ind (T x @, r=1(z) x
Q; I7?) for 2€Z,, then M = [© M3d((z).

Remarks. This gives M as a direct integral of representations obtained by inducing
from virtual subgroups of 7' x . These would be similar to virtual subgroups of 8 if the
measures P, (»,) were not carried by negligible sets in S (ones whose saturation is A-null).
However, interchanging S and 7' in the example preceding the theorem shows this need
not be the case. Just the same, this seems to be a reasonable generalization of the subgroup
theorem, so we shall say the subgroup theorem holds for § x & and T x G if the hypotheses
of Theorem 6.2 are satisfied. Notice that if 4 is not ergodic it could never hold; even the
discrete summand result for an invariant set A< U would fail. Also, notice that this proof

works for any decomposition of » into quasi invariant measures.

Proof of theorem. Form Z x T and let p,, p, be the coordinate projections onto Z and
T respectively. Let v =(r, g),(»). Then p (') = and p,.(v') =p. Let v= [, ,dv'(z, ¢) be

a decomposition of » relative to (r, ¢), and suppose v, ;x~v, ., for all z, t, x. Now (7, ¢)(v,) =
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£, X q4(v,) ~ &, X u for almost all z, so (r, ¢)4(v) ~{ x u. By replacing » by an equivalent mea-
sure we may arrange (7, q).(»)=Cxu. Let M,=Ind (ZxT x@G, Ux@G; Lop). Then
(My(z, ¢, ) f)(w) =0(u; 2, t, ) L(p(w), ) f(ux) for fEL3(v, ,.; K), where p isa positive function.
Thus My(z, -, *)=Ind (T x G, U x G; L*) =~ M? Also, it is clear that ind (T xG,Zx T x G,
M,)= [® My(z, -, -)d{(z) since the action of @ on Z is trivial. By the theorem on inducing

in stages the proof is complete.
CoroLLARY 6.3. If T is transitive then the subgroup theorem holds for (S, 1) and (T, ).

Proof. The measures ¢,(v,) are quasi-invariant and 7' has only one class of quasi-in-

variant measures so g.(v,) ~u.

CoROLLARY 6.4. Suppose (S, 2) and (T', u) are analytic G-spaces with invariant ergodic
probability measures. Then the subgroup theorem holds for (8 X G, [A xm]) and (T x G, [ x m]).

Proof. Return to v =4 xu, v= [ v,d((z) as before. Then for E Borel in Z, [ q.(v,)d{(z)
is a measure whose value at a Borel set A< T is »(r—1(B)N g1 (A4)). This is an invariant
measure of total measure {(£) and is <p so it is {(E)u. Thus the function z—>q,(»,)(4)
has the value u(4) almost everywhere on Z. Letting A vary over a countable generating

algebra we see that ¢,(v,) =u for almost all z.

7. Connecting cocycle representations with ordinary ones

The method used to reduce some guestions about cocycle representations of groups to
questions about ordinary representations [9, section 2] also is helpful in treating cocycle
representations of groupoids. Let (@, [1]) be a measurable groupoid and let U be its set of
units, with i the measure induced on U. Suppose ¢ is a strict cocycle with values in the
circle, 7', and set G= =G x T'. Let Go® ={((w, s), (y, t)): (x, y)€G® and (s, t) €T?} and for a
pair in G2 define the product to be (xy, o(x, y)~1st). The cocycle condition enables the
associative law to hold, the units in G¢ are the elements of U x {1}, (z, s)?*=(z%, o(z~L, )
s71) and the set d~'(u, 1) of elements of Go with unit (u, 1) is d-Y(u) x 7. Let v be Haar
measure on T and let p = [ u,dfi{u) be a decomposition of y relative to d. Then u xv=
J (uy xv)dfi(u) can be identified with the decomposition of u x v relative to d, by noticing
that u, x v is concentrated on d—'(u, 1)=d-1(u) x T'. By working with rectangles it is not
hard to see that for (z, £) €G7, (s X ¥)* (@, §) = (s @) X v. I G, is an inessential contrac-
tion (i.c.) of @ such that u,q, &~ g, for x€G,, then G3=G, x T is an i.c. of Go such that
(Mriy X ) (@, t) ~ phaggy X v for (x,1)€G5. Hence uxy is right quasi-invariant. Suppose pg

is symmetric, i.e. u({x~1: x€A}) is always u(A4), which we may do if [u] is symmetric. Then
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since v is both symmetric and invariant under either right or left translations we can look
at rectangles to see that u x v is also symmetric. Hence (G, [ x v]) is a measurable groupoid.
Now @ and G induce the same equivalence relation on U, so if (&, [u]) is ergodic so is
(@7, [ x v]). For groupoids we do not require a locally compact topology, so the construc-
tion of G7 is easier than for groups.

The relationship of o-representations of G with some of the ordinary representations
of G goes as for groups [9, section 2]. If R is a g-representation of @ define R° on G¢ by
RO(x, t) =t R(x). Then R®is an ordinary representation of G¢ on X, R%u, t)=tI for units u
in @ and elements €7 and R+ R is one-one from the set of g-representations of G on X
onto the set of ordinary representations S of G on J such that S(u, ¢) =¢I for units » in @
and elements ¢ € 7'. This map preserves equivalence and multiplicity theory.

To see that there always are o-representations, we imitate the o-regular representation
for groups. For each y in G choose a positive Borel function g, such that (W,(y)f)(x) =
0,(%) f(xy) defines a unitary operator from L?(yac,,) to L*(tr ). As in the proof of Proposi-
tion 3.4 we see that W, is a bundle representation of G' on G'9 % Y where H(u) =L*u,) for
u€QY. Now define Wy(y) by (Wy(y)f)(x)=a(z, y)~2(W,(y){)(x). This is still a Borel func-
function and W,(yz) =0(y, z) Wy(y) Wy(z) for all (y, 2) in G®, by a straightforward calcula-
tion. Next choose a Hilbert space X of the dimension of all the L*(u,)’s and unitary opera-
tors V(u): L2(u,)—> X so that V is a Borel function making our bundle isomorphie to U x X.
Define W(y)=V(r(y)) Wyly) V(d(y))~L. W is a o-representation W of G (see section 5 and
Lemma 10.9 of [15]).

The cases of interest to us in this paper concern groupoids (8 x &, [u x v]) where (S, u)
is an ergodic analytic G-space. In that case it may be done more simply as follows. Let
X =L*@) with left Haar measure on G and define (W (s, ) /)(y) =0o{(s, ¥)1, (s, 2))"f(z—ly)
for (s, ) €8 x ¢ and y€G. Notice that (s, y)~1(s, z) is defined, so the formula is meaningful.
We have the left regular representation of G followed by a multiplication operator (de-
pending on s), so it is a unitary operator. Clearly, W is a Borel function, and again a straight-

forward calculation shows W is a ¢-representation, using the cocycle property of o.

8. Measures on N* and the action of G

Let G be a (second countable) locally compact group and let ¢ be a 2-cocycle on G.
If N is a normal subgroup of @, we also refer to o-representations of N, when we actually
mean o|N x N representations. Choosing one concrete Hilbert space of each dimension
<Ry, we form the space N®® of concrete o-representations of N, with its usual Borel

structure [9, section 3]. We let N*° denote the subspace of irreducible o-representations,
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and No(N™°) denotes the quotient space of N*°(N°°) modulo unitary equivalence, with p
the canonical projection.

For L in N®° and z in G, define the g-representation L* by L*(y) =p(x, y)L{zxyz1),
where f(x, y) =o(z?, z)o(xy, 1) o(z, y)~. This defines a Borel action of G on N°? which
preserves N*° and also preserves equivalence, so there is an induced Borel action on N™°
and on N¢ which we denote the same way [9; sections 4 and 7], and p is then equivariant.
If L=M|N where M is a o-representation of @, then for each = in @ the operator M, is
an equivalence of L with L*. The equivalence class of L is then invariant under ¢ as a point
of N™°. In the same way, the action of N on N"° and N is trivial, so these are in fact also
G|N spaces.

The method for analyzing G in terms of N and the action of G on Nv as developed
by Mackey in [9] depended on N¢ being both smooth and of type I. It is known that these
conditions are equivalent [2, 3], and we still need that condition eventually. Mackey’s
results also depended on another assumption, which his theory of virtual groups was in-
tended to remove. It comes about as follows: If U is a primary o-representation of G then
U|N is a multiple of a representation of the form | Ldu(L), and the measure y is quasi-
invariant and ergodic for the action of @ on Nv [9, Theorem 7.6]. The results of section 8
of Mackey’s paper deal with the case that u is carried by a single orbit of the action of @
(the transitive quasi-orbit case), and makes use of the closed subgroup consisting of the
elements of G which fix a particular point in that orbit. Qur purpose is to show how these
results extend if nontransitive quasi-orbits are allowed.

Because no extra effort is required and in fact the proof of Theorem 9.2 is simplified,
we will not use the full strength of the type I assumption at first. Instead we shall work
with type I measure clagses as we now define them, noting that all measure classes on a

smooth dual are type I.

Definition 8.1. If ¢ is a cocycle on a locally compact group K, a measure g (or the
measure class [y]) on K will be called type I if it is standard and | Ldu(L) is type I.

Recall that [u] is standard if there is a standard set B= B[u] whose complement is of
measure zero. In that case p|p~1(B) has a measurable cross section by the von Neumann
selection lemma, and there is a conull Borel set B,< B on which y is Borel. Then [ Ldu(L)
is defined to be the equivalence class of [z, y(L)du(L), which depends only on [u]. If this
is type I it is automatically multiplicity free, and the direct integral is its central decomposi-
tion [7, chapter 2].

Here is a general fact which will help us:
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LemwmaA 8.2. Let S be a Borel space and suppose a locally compact group G has a Borel
action, a, on 8 (a: 8 X G—~8 is Borel; we write sz for a(s, x)). Let u be a finite quasi-invariant
Borel measure on S and suppose there is a conull Borel subset S, which is analytic as a Borel

space. Then there vs a conull invariant subset S, which is analytic as a Borel space.

Proof. First of all, notice that the set S, may be assumed to be standard since an ana-
lytic space is metrically standard. Next, let » be a probability measure in the class of Haar
measure on G. Then a~1(S,) is Borel in § x @ so the measure v{g~1(S,),) of the s-section of
a~1(8,) is a Borel function of s. Thus the set, S5, of s in 8, for which »(a=1(S,),) =1, is a Borel
set. For each 2 in @, the a-section of a~1(S,} is Syz—! which is p-conull since x is quasi-
invariant. Thus a-(8,) is conull, and hence 85 is conull. For each s in S, a,: «—sz is a Borel
map of @ into § and Sy ={s€8,: a;(8,) is »-conull}. If yEG then a,,(z) €S, iff syz€S, iff
a(yz) €Sy, 80 a5} (o) =y~1a;1(S,). Hence if s€S; and sy€§,, then sy€S;. It follows that
if we apply the same procedure to S; we find that (S5)* =Ss. By replacing S, by Sg, we
may suppose Sy =8;.

Now let 8; =a(S, x ). Since 8, is the Borel image of a standard space, it will be ana-
lytic if it is countably separated. Let « be a Borel isomorphism of S, with a Borel subset in
[0, 1] and extend « to have the value 0 on §;\S,. Then « is Borel from §; to [0, 1]. Then
as in the proof of Lemma 2 of [10] or Lemma 3.2 of [15], we can define y: 8;~Li,.(G) by
letting 4(s) be the equivalence class of the function whose value at x is «(sz). y is Borel,
and if s; s, in 8}, then «(s, ) Fa(s,x) whenever s, and s,z are in 8, which happens for
v-almost all z. Thus y is one~one and since L%,o(G) is standard, we see that S, is countably

separated, as desired.

CoROLLARY 3.3. If an invariant measure class C on N is carried by a standard Borel
subset (C is a standard measure class), then C s carried by an analytic tnvariant set in
K.

Now let us reformulate two theorems from [9] to suit our purposes. The first is Mackey’s
Theorem 7.4.

THEOREM 8.4. Let N be a closed normal subgroup of the locally compact group G and
let o be a 2-cocycle on G. Let [u] be a type 1 measure class in No. Then [ Ldu(L) is an in-
variant o-representation of N iff [u] is invariant under the canonical action of G on No. If

[] 1s invariant, | Ldu(L) is ergodic iff [u] is ergodic.

Proof. Let B be a standard set in No which supports u. Then Bz supports the trans-
formed measure g-x, and if y is a cross-section over B then L—>yp(L*")=y/(L) is a

cross-section over Bx. Now for L€ B, y(Ly =y (L), so ([ y(L)du(L))* is equivalent to
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8z Vo(L) dlpx)(L), i.e. (| Ldu(L)Y = § Ld(g-2)(L). Hence [u-x]~=[u]" is also type I, and so is
[ge+p-x]. Except for this obvious point, Mackey’s proof also proves our formulation.

TaEoREM 8.5. (Theorem 7.6 of [9]) Let M be a o-representation of the locally compact
group G and let N be a closed normal subgroup of G. Suppose the restriction of M to N, M| N,
s equivalent to ( [z y(L)du(L)) ® Iy, where 1, is the identity on a Hilbert space Ko, u is a type I
measure carried on the standard set B, and y is a cross-section over B. Let P be the canonical
projection valued measure on | Pp(L)) ® Kodu(L). Then P is a system of imprimitivity
for M based on N and is ergodic if M is primary.

Proof. We may assume B< X where X is analytic and invariant, and regard P as based

on X. Using the fact that [u] is type I, Mackey’s proof works.

9. The g-representations associated with quasiorbits

The purpose of this section is to extend the results of section 8 of [9] to nontransitive
quasi-orbits. Throughout this section we fix a locally compact group G, a 2-cocycle ¢ on
@, a probability measure » on G equivalent to Haar measure and a closed normal subgroup
N of G. If a representation M satisfies the hypotheses of Theorem 8.5 and u is ergodie,
we say M is associated with the quasi-orbit [u]. Before getting into the theorems and their
proofs, notice that Theorem 7.6 of [9] shows that if N is type I then every primary o-
representation of @ is associated with some quasi-orbit. Also when Nvis type I, every meas-

ure class on N is type L.

TueEOREM 9.1. (cf. Theorem 8.1 of [9]) Let [u] be a type I quasi-orbit in No. Then [u]
is carried by an analytic invariant set X< N7 over which there is & measurable cross-section y
and the function taking M to ind (G; M) maps those c-representations M of (X x G, [p xv])
for which M(L, -)| N is almost always (equivalent to) a multiple of (L) to a-representations of
G associated with the quasi-orbit {u]. This mapping induces a bijection of equivalence classes
and preserves multiplicity, i.e. R(M, M)= R (ind (G, M), ind (G, M)).

Proof. The existence of X is given by Corollary 3.3. Let us show that the map is onto
at the equivalence class level.

Suppose U is a o-representation of G whose restriction to N has the quasi-orbit {u].
If V=U|N, this means V is equivalent to a multiple of [®y(L)du(L) [9, Theorem 7.6].
Now (L) and y(L)* always have the same Hilbert space, and the latter is that of y(L*).
Thus L-H(y(L)) is a measurable function from N¢ to a discrete set, which is constant on

@ orbits, so it is eonstant on some G-invariant Borel set < X which is conull relative o
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M. Thus, we may as well suppose that F(y(L)) is constant on X. Then taking X = H(y(L))
and J, to be a space whose dimension is the same as the multiplicity of [® y(L)du(L)
in ¥V, we may replace U by a unitarily equivalent representation so that H(U)=
HV) [= L (p; K)® Kol =L*p; K& K,)- This can be done in such a way thatif x€ N and
1 € H(V),then for y-almost all LEX,

(V@) L) = (L)) ® Lo) (L),

where I is the identity operator on JX,. Then the canonical projection valued measure on
LA(X, u; X® K,), P, is a system of imprimitivity for U. It follows from the imprimitivity
theorem for virtual subgroups that there is a ¢-representation of H on K ® XK, say M,
such that U=ind (G, M), i.e. such that (U(z)){(L)=o(L, x)"*M(L, ) {(L*) for u-almost all
L (section 1). Now if €N, then L€ No implies L* =L, so (V(x) f)(L) =o(L, v)"*M (L, z) f(L).
Since N acts trivially on N7, we may assume that o(L, x)=1 for x€N. Hence if zEN we
have for almost all L, M(L, x) =y(L)(z) ® I,. Now M (L, -)and y(L)(*)® I, are g-representa-
tions of &, and hence determined by their values on any countable dense set, so there is
one conull Borel set B X such that for (L, 2) B x N, M(L, ) =y(L}z) ® I;. This shows
that every U associated with the quasiorbit [u] is induced by a representation of the type
indicated.

Conversely, suppose M is a o-representation of H and m is a cardinal number <R,
such that for almost all L, M(L, -)| N is equivalent to my(L). Taking J, of dimension m,
we may suppose F(M)=K® K, with X as above. Then our assumption is that for al-
most every L€X there is a unitary V on X ® X, such that for all x€N, VM(L, z) V1=
(L)) ® Iy Let U= U(K® K,) and notice that for x€N, {(N, L)E U x Xo: VM (L, x) V1=
Y(L)(x)®1,} is a Borel set, if X is conull and Borel and y | X is Borel. If D is countable and
dense in N, {(V, L)e U x X,: x€ D implies VM(L, ) V' =p(L)(x) @ Lo} ={(V, L} € U x X;:
ZEN implies VM(L, ) V-'=p(L)(x) @Iy}, so the latter set is Borel. It projects onto a
conull set in X, by assumption, so there is a Borel function ¥ on X such that for almost
all L we have V(L) M(L, x) V(L)™' =y(L)(x) ® I, for all € N. Now define M, by M(L, z) =
VIL)M(L, z) V(L") for (L,x)€XxG@=H. Then M,=~M, so U,=ind (@, M,)=ind (G,
M)=U.Also My(L, x) =y(L)(x) ® I,if t €N, soif €N and f ELA( B, u; X ® Ky), (Us(®)) f(L) =
M(L, ) (L*) = My(L, z) (L) = (p(L)(z) ® I,) {L). Thus U, is associated with the quasi-
orbit [4] and hence sois U.

From Lemma 4.1 weknow thatif M,, M,areo-representationsof X x &, U, =ind (G, M),
U,=ind (G, M,), and P;, P, are the associated systems of imprimitivity, then R(M,, M)
is isomorphic to R(Py, Py)N R(U,, U,). If TE€R(U,, U,), then TER(U,|N, U,|N).
Let T'=WH be the polar decompoisition of 7': W is a partial isometry and H =(T™T)"2.
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Then HER(U,, U,) and W is an equivalence of V,=U®% with V,=U* where @, projects
onto W(T)* and @, projects onto R(T). If HER(P,, P,) and WE R(P,, P,) the proof is
complete. We have HE R(U,|N, U,|N) and the range of P, is contained in the center of
this ring so H€ R(P,, P,). We know that V,|N, V,|N are equivalent subrepresentations
of type I representations based on u. (In fact each “is” a multiple of [ Ldu(L).) Now
for Borel EcX, (U|N)™® is the largest subrepresentation of U,|N disjoint from
1%-2 y(L)du(L) and P;(E) commutes with @, so (U,| N)@"® igthelargest subrepresentation
of V,| N disjoint from [R_z p(L)du(L). It follows that W carries Q,P,(E) X, to Qs Py(E) K,.
Since W is an isometry of @, X; onto @, X,, and (1 —@Q,) W=W(1—@,)=0, this implies
that W€ R(P,, P,).

TurorEM 9.2. (cf. Theorem 8.2 of [9]) Let u and X be as in Theorem 9.1, let y be a
measurable section over X, and set H=(X x @G, [y xv]). Then there is a cocycle v on H and a
T-representation M of H such that for u-almost all L we have M(L, )| N =y(L). T may be
chosen of the form gjwo F® where w is a cocycle on HIN =(X x (G[N), [u xv']) and F is the
quotient homomorphism of H onto H|N. (Here f: G—G|N is the quotient homomorphism,
v =f«(v) and F(L, x)=(L, f(x)).) In that case, the cohomology class of w is determined by o
and [p].

Proof. First suppose ¢=1 and consider the question of existence. Following a line of
reasoning pointed out privately by L. W. Baggett in the transitive case, we write M (L, x)
as a product of y(L)(n{x)) (n(x) is the N-component of %) and an operator determined by
L and f(z), i.e. by F(L, z). Explicitly, let ¢: G/N—@G be a cross section and for z€G let
n(x) =xc(f(x))™! so that z=n(x)c(f(x)). We find a unitary operator valued function 4 on
H|N such that for (L, y) EH/N and x €N, A(L, y)p(L*) () A(L, y)~* =p(L)*¥’(u), proceeding
as follows (see the proof of Theorem 8.2 of [9]):

Let E={(L,y, V)EX xG/N x U: w€N implies Vy(L¥)(w)V1=p(L)*“(u)}, where
U=UK)=UH(y(L))). Let p denote the projection of X x G/N x Y onto X x G/N, and
let B be a conull Borel set in X such that y| B is Borel. Let (H/N),={(L, y)€H|N: L and
L€ B}, which is an inessential contraction of H/N. Then the two functions involved in
defining £ are Borel on p=((H/N),) for each #€N. As functions of » each is determined
by its values on a countable dense set in N. Hence £ p~Y(H/N),) is a Borel set.

Now for LEX and y€G/N, the equivalence class of p(L)*® is L* (a similar formula
holds for y €@ also). Hence y(L¥) and p(L)*?’ are equivalent. Thus p(€)=H/N. and p(EN
P7Y(H[N)y)=(H|N),. If S is a Borel set in U meeting each coset of the scalars exactly
once then p maps the Borel set £Np~YH/N),) N (X x G/N x 8) one-one onto (H[N),.
Define 4 to be the inverse of the latter function on (H/N)y, and define A(L, y) =1 if (L, y) ¢
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(H]N)g. Then A is a Borel function on H/N, and for (L, y)€(H|N),, and v€N, we have
A(L, y)yp(L¥)(u) A(L, y)~ =p(L)**(u).

Now set Hy=F-Y(H|N),), define M on H, by M(L, x)=y(L)(n(x)) A(L, {(z)), and let
M(L, z)=1 if (L, ) ¢ Hy. Then for (L, x)EH, and u€N, using the fact that L* =L@ for
LeN, we have

M(L, z)yp(L*)(u) = p(L)(n(x)) A(L, f(@)p(L"®) ()
= Y(L)(n(@))p(L)° " (w) A(L, f(x))
=p(L)(n(x))y(L)(cof(x)uco f(x)™) A(L, f(x))
=p(L)"cof(xyuco f{x))y(L)(n(2) AL, {))
= p(L) (u)p(L)(n(x)) A(L, f(x)) = p(L)* () M(L, x).

Now if (L, x) and (L7, y)EHy, M(L, x) M(L*, y) and M{L, zy) both intertwine y(L*™) and
P(L)¥. Since these are irreducible, there is a scalar t(L, z; L*, y) of modulus 1 such that
(L, x; LF, y) M(L, ) M(L?, y) =M(L, zy). Thus M is a strict v-representation of H,,.

To see that 7 really depends only on L, f(x) and f{y), compute as follows, with 7;=
(L, x; L*, y), using the fact that (L) is a representation:

Ty (L) () p (L) " (n(y)) A(L, f(x)) AL, f(y))
=7, 7(L)(n(2)) AL, (@) p(LA)n(y)) AL, f(y))
=1, M(L, x) M(L*, y) = M(L, xy)
= M(L, n(z)cof(z)n(y)cof(x)Tcof(x)cofly)coflzy)cof(xy))
=P(L)(n(@)) (L) P (n(y))y(L)(cof(x) cof(y) co flay) ) A(L, f(xy)).
Solving this equation for 7, gives the desired result.

Still considering the question of existence, let ¢ be any 2-cocycle now. Then form G
and notice that N¢ is normal in Ge. If L is in the set N of concrete o-representations of
N and we define L%z, s} =sL{x) for (2, s)€EN x T'=N7, then L® is an ordinary representa-
tion of Ne, If L;, L,€N®°, then R(Li, L3) = R(L,, L,), so equivalence and multiplicity are
preserved. Now if (z, s), (y, t) EG@,

(@, 8)(y, t)(@, s)~* = (2, s)(y, )@, (e, 271)s7)
= (y, o(@,y) )@, ofw, 271)s7Y) = (vya~, (@, y)to(2y, 27 o (@, 27H)1),

so L*®9=[%¢ In particular L% =L*P which must hold, because 7 is contained in

the center of Go. In other words, G acts on both N®° and (N°)° and the action of G on
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(V)¢ is via the homomorphism of G¢ onto @. Also, the map L—L?° is equivariant. The ac-
tion of @ preserves irreducibility, so we also have an equivariant restriction of this map,
N“?—(Nv)* and hence an equivariant imbedding No->(N)"". Let f,;: Ge—~G7/N¢ be the
quotient homomorphism, and Fy(L, (x, t})) =(L, f,(, t)). Also, let y,(L8)=y(L)° for LEX,
80 9, is a cross-section over X°.

The assumption on [u] carries over to the image of the measure class on (N?) ™, so there
is a cocycle, w,, on X° x G7/Nv and an (w,0 F{®)-L-representation of X°® x G, M,, such that
M(LO, )| No=yp,(L°) for almost all L® in X° Then for almost all LEX and (€7,
M (LP, (e, t)) =tI. Define M(L, x) for (L, x) €H by M(L, x) =M (L°, (x, 1)). Tosee that M isa
o/wo F®.representation of H, where w(L, f(x); L?, {(y)) =wy(L9, f,(z, 1); L*™P, f,(y, 1)), note
first that M is a Borel function because L—L® and z—(x, 1) are. Next, we have M, and
w,0 F® strict on {(L, (=, 5)): L and L>® are in B,}, where B, is a conull Borel set in X°. Let
B={L€X: [°¢B,}. If L, L* and L™ are in B, then

M(L, zy) = M(L, (zy, 1)) = M,(LO, (2, 1)(y, o(2, ¥))
=wy(LO, fi(@, 1); L* @D, fi(y, o(ey)) 2 My(LP, (x, 1) ML, (y, o(x, y))

Now No2T, so f,(y, t)=f(y, 1) for t €T, so this equals
olz, y)ol(L, f(z); L7, {y)) M (L, ) M(L7 y),
as desired. Furthermore, if L, L*€ B and €N,

M(L, 2)yp(L)(w) = My(L°, (2, 1))yy(L* V) (w, 1)
=72(L P, 1) My(LO, (w, 1)) = p(L)*(u) M(L, @),

and if w€N, M(L, w)=M(L°, (u, 1)) =p,(L°)(u, 1) =p(L)%w, 1) =p(L)(x).

Now suppose w’ is a cocycle on H/N and M’ is a g/ew’ o F®.representation of H such
that M'(L, -)/N =y(L) for LEC, where C is y-conull. We want to show that o’ and o are
cohomologous. Using the form of the cocycle for M’ and the restriction property we see
that M'(L, x)p(L*)(u) M'(L, )yt =p(Ly*(u) for L, L*€C and »w€N. Hence there is a Borel
function «: H—T such that M'(L, ) =a(L, ) M(L, x) for L, L*€¢ BN C. Then L, L*€ BN ¢
and w €N implies M'(L, ux) = c(L, ux) M(L, uz). Hence

olu, z)w'(L, f(u); L, f(2))p(L)(w) M'(L, x)
= (L, uz)a(u, 2)o(L, f(u); L, f(2))-y(L)w) M(L, =),
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80 oL, ux) = (L, x), and « “determines’ a Borel function ¢«; on H/N. Now
o(L, f(x); L7, {(y)) =o' (L, f(x); L7, {(y)) L, zy) (L, 2) (L7, y)~

80 w =w'de; on an inessential contraction.

TuarorEM 9.3. (Cf. Theorem 8.3 [9]) Let u, X, F, w, M be as tn Theorem 9.2. The
mapping S—M ® (So F) takes w-representations of H|N to o-representations R of H such
that R(L, -)| N is a multiple of y(L) for u-almost all L. It preserves equivalence and multipl:-

city, and is one—one onto at the equivalence class level.

Proof. If 8 is an w-representation of H/N and R=M ® (So F') then R is a o-representa-
tion of H. Take J{ = (M) HK,=H(S), so H(R)= KR K, The units of H/N can beidenti-
fied with the analytic space X< Ne , as can those of H, and the measure classes are both
[#]. If 8, and S, are w-representation of H/N and A €R(S,, S,), define A" (L)=I® A(L)
for LEX. Then taking B, =M ®(8,0F), B,=M ®(S,0 F), we have

A (L) R\(L, ) = (1@ A(L)(M(L, x) ® 84(L, (x))
= (M(L, 2) @ Sy(L; fle)(I @ A(L'™))

for (L, z) in some i.c. of H, and since L*=L"?, 4’ € R(R,, R,) follows. Now if BE R(R;, R,),
B(L) commutes with y(L)(u) ® I, for all w €N, for almost all L. Since (L) is irreducible, we
can write B(L)=1® A(L), by absorbing a scalar into A(L). Thus B=A4',ie. A—+A' isan
isomorphism of R(S;, S;) onto R(R;, R,).

It remains only to show that the mapping is onto at the equivalence class level, so
suppose R is a g-representation of H such that R(L, -)| N is almost always equivalent to
a multiple of y(L). Let H, be an i.c. of H on which R is strict. Then for (L, z)€H, and
€N, R(L, x) R(LF, u) R(L, x)~* is a scalar multiple of R(L, xuxz—1). It follows that the
multiple for (L) is the same as for (L"), and by ergodicity that the multiple is independent
of L. Hence we may choose a Hilbert space X, whose dimension is that multiple. Then the
von Neumann selection lemma gives the existence of a Borel function ¥ from X to unitary
operators from H(R) to X ® X, such that for almost all L in X,

V(L) R(L, ) V(L) | N =p(L)(-) ® L.

If R, is defined by R,(L, x)= V(L) R(L, x) V(L*)7, then Ry(L, )| N =p(L)(-) ® I, for almost
all L. Thus by passing to an equivalent representation we may suppose R has that property.
Now M is a 7-representation and R is a o-representation. Taking H,=H|C, to be an
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i.c. on which they are both strict, we compute for (L, x) € H, and €N, since then (L, zu)
and (L, zux—1) € H,, that

R(L, zux1) = o(x, w)ya(ru, v ) o(x, x72) B(1, =) B(L*, u) R(L, z)~!

and

R(L, zux) = M(L, zur)® I,
=L, z; L, wyr(L, wu; L7, xYo(L, 73 L7, e~ YA M(L, %) M(LF, w) M(L, %) ® I,.

The expressions in ¢ and v are the same because of the form of 7, so we see that
R(L, z)*M(L, ) ® I, is in the commuting ring of y(L%)(-)® I,. Hence there is a unique
unitary W(L, ) on X, such that R(L, x)=M(L, x)® W(L, ). Clearly W is a Borel func-
tion on H,and we can extend it by the constant identity operator off H,. Now if (L, z) and
{(L*, y)€H,, using the fact that R is a g-representation and that M is a 7-representation,

M(L, zy) @ W(L, zy) = o(x, y)(M(L, z) M(L*, y) ® W(L, z) W(L*, y))
= M(L, zy) ® (o(2, y)v(L, 2; L7, y)W(L, 2) W(L", y))

Thus W is a o/t-representation, but o/t =wo F®, and W(L, u)=1I, for w€N and LEX,,
so0 it follows that W is of the form So F, for some w-representation S on H/N. Hence R =
M ®(So F), as desired.

Remark. Theorem 8.3 of [8] establishes a one-one correspondence of the same kind,
but in that case one knows that there do exist primary -representations of H/N. In the
present case, there are w-representations, as we saw in section 2, but there may be no
primary w-representations, which is related to the breakdown of direct integral theory for

virtual groups.

10. Applications and examples

Consider a loeally compact group G with a closed normal abelian subgroup N. Then
N may be identified with the character group of ¥, i.e. with a subset of the concrete dual,
s0 the cross-sections p used in section 4 can be replaced by the identity funetion. Thus the
function 4 on X xG/N in Theorem 9.2, which must satisfy A(y, z)y(x") () =p(x)“"(«)
A(y, x), can take the value I everywhere. Then M(y, x)=y(n(x)) for (y, x)€X x G, where
n(x) =zcof(x)~! as in section 4. Since N is abelian we have y°=y"® =4°*'® for z€G.

Hence we compute the cocycle for M as follows
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(M(y, x) M(x%, ) M (y, y)
= (g(n(x)) x*(n(y))) 1y (n(zy))
= x((n(z) cof(z)n(y) cof(x)Y)n(zy)) = yl(cof(x)cof(y)cof(zy)).

Thus we have an explicit formula for a t-representation of N x G, where 7 is lifted from
N x(Q/N), i.e. 1(y, x; 3% y) really depends only on y and the cosets of = and y. We can
define w(y, ; x°, ¥) =y(c(@) c(y) c{xy)—1)~ for €N, x, y€G/N. Let F be the quotient homo-
morphism of N x@ onto N x(@/N) as in section 4. Then 1/t=woF®. The formula
(S(x, 2)p)(y) = ylc(@) c(y) c(@y))yp(x—ty) defines an c-representation S of N < (G/N) on
L*@|N) (using left Haar measure). Both M and S are Borel functions and are algebraically
cocycle representations, so if [u] is any quasiorbit in N they give strict cocycle represen-
tations of the corresponding virtual groups.

Let [u] be a quasi-orbit and let g: N x G—(0, o) be the Radon-Nikodym derivative
needed to form the induced representation U =ind (G, M ®(So F)), acting on H(U)=
IA(N, u; LA(Q[N)) (Section 1). Since N acts trivially on N, we may assume oly, x)=1
for z€N. Then for x€N, w€ H(U), xEN and y€G/N, we have

(T @) (x))y) = ol )M (g, 2)8(x, )2 (@) ™y)) = x(@)p(0)(y)-

Thus U|N is a multiple of | ydu(y). At this point, one might hope that the central de-
composition of U would yield primary representations of G whose restriction to N are
multiples of [ ydu(y). The following example due to Calvin Moore shows that this need
not happen [1, Chapter II, Section 4].

Let Z act on R? by means of the powers of the matrix

2 1
= [1 1] ’
and form G =R?®Z. Since « is unimodular, « preserves Z? as a subgroup of R? and hence
it may be taken as a normal subgroup N of G. The action of Z induced on the torns 7'2= VA
is ergodic for Haar measure (and the action of G factors through Z), but the action on R?
has a Borel cross-section of the orbits. Now if V is a primary representation of @, V|R?
decomposes as a multiple of the direct sum of all the characters in an orbit. Further restric-
tion to N =Z2 simply gives the same multiple of the direct sum of the characters obtained
by restricting those characters of R? to Z2. This is again a multiple of the sum of the charac-
ters in an orbit, while Haar measure gives measure zero to that set, so V| N is not a multiple

of | ydu(y) if 4 is Haar measure on 72,
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The other example in section 4 of chapter 2 of [1] also gives negative results because of
an intermediate normal subgroup which forces primary representations of ¢ to be as-

sociated only with transitive quasi-orbits even though non-transitive quasiorbits are present.

TaeorEeEM 10.1. If G is a semidirect product of an abelian normal subgroup N and a
subgroup K, then every quasi-orbit in N is associated with at least one primary representation
of G.

Proof. Let [u] be a quasi-orbit and define M(y, ) = y{n(x)) as before. If we let cbe the
natural isomorphism of G/N with K, then c¢(xy) =c(x)c(y) for  and y in G/N, so the cocycle
w is trivial. Thus M is an ordinary representation, and is irreducible because it is one-

dimensional. Hence U =ind (G, M) is irreducible and it is associated with [u].

Remark. The formula for U is

(U@)p)(x) = x(nx))o(x, {(2)) Pp(x ),

so R(U|N, U|N) is clearly the multiplication operators and ergodicity of the action of K
makes the functions constant.

In many cases there are irreducible representations of N x K of all dimensions obtain-
able by mapping N x K to various groups by homomorphisms ¢ with dense range. If (S, u)
is an ergodic G space and H is locally compact, we say ¢: § x G—H has dense range if the
action of G on S x H defined by (s, )z = (sz, xg(s, z)) is ergodic. If ¢ is any homomorphism
and L is any representation of H, then Log is a representation of S x@. If A€ R(L, L)
then A4’(s)=4 defines a function from § to B(H(L)) and clearly A’ € R(Log, Lop). Now
suppose 7€ R(Logp, Logp) and define a function g(s, )} =L{x) T(s) L(x) on 8 x H. From
Log(y) T(sy) = T(s) Log(y) it follows that g is constant on orbits in § x H. Since g is clearly
Borel and the operators form a standard space, we see that ¢ is essentially constant if ¢
has dense range. Let C, be conull and suppose g(s, -) is constant a.e. on H for s€C}. Since
g(s, -) is weakly continuous, it is constant if constant a.e. Now choose y, such that g(-, y,)
is constant on some conull set €, in S. Then ¢ is constant on C x H, where C=0C;n C,.
Thus T is constant a.e. and on C the value is in R(L, L), so T =A4’ for some 4. Now if we
assume L is irreducible, so is Log.

Since many virtual groups of the form N x K have homomorphisms with dense range
into any (separable) compact group H [18], we can get many irreducible representations §
of N x K and form ind (G, M ®(So F)) to get more representations associated with the given
quasi-orbit.
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Work is under way, but much remains to be done to gain a thorough understanding of

what goes wrong in the other cases, namely what the intermediate normal subgroup and

the non-trivial cocycle really involve.

also

Remark added in proof. For the decomrposition of an action into ergodic parts, see
the paper by Dang-Ngoc Nghiem, Decomposition et classification des systemes dy-

namiques, Bull. Soc. Math. France, 103 (1975), 149-175.
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