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1. Introduction

In their celebrated paper “Some problems of partitio numerorum: ITI” [6] Hardy
and Littlewood state an asymptotic formula, suggested by a purely formal applica-
tion of their circle method, for the number of representations of a number n as the
sum of two squares and a prime number. The truth of this formula would imply
that every sufficiently large number is the sum of two squares and a prime. No
proof, even on the extended Riemann hypothesis (which we hereafter refer to as
Hypothesis R), has hitherto been found. However, in another paper [7] they suggest
that on Hypothesis R it should be possible to prove that almost all numbers can be
50 represented. This proof was effected by Miss Stanley [11], as were proofs (also on
Hypothesis R) of asymptotic formulae for the number of representations of a number
as sums of greafer numbers of squares and primes. The dependence of her results on
the unproved hypothesis was gradually removed by later writers, in particular by
Chowla [2], Walfisz [13], Estermann [4] and Halberstam [5].

Tt is the purpose of this paper to shew that the original formula of Hardy and
Littlewood is true on Hypothesis B. Our method depends on the fact that, as is

easily seen, the number of representations of » in the required form is equal to the sum

z T(n—p)’

p<n

where r(v) denotes the number of representations of » as the sum of two integral
squares. On noting that r(v) may be expressed as a sum over the divisors of », we
see that our problem is related in character to the problem of determining the asymp-

totic behaviour of the sum
2 dpta),

O<p+a<r
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where @ is a fixed non-zero integer and d(v) denotes the number of divisors of ».
The latter problem is due to Titchmarsh [12] and was solved by him on Hypothesis E.
Let 7 (m; b, k) denote the number of primes not exceeding m which belong to the
arithmetical progression b (mod k). Then the two problems are similar in that each
sum can be expressed as a combination of terms of the type z(m; b, k), where k
belongs to a certain range that depends on a parameter m. In each ease the strength
of Hypothesis R is sufficient to estimate m (m; b, k) over nearly all the required range
of k, while elementary methods will suffice to estimate the contributions to the sums
due to the exceptional values of k. In our problem, however, this elementary estima-
tion presents a more fundamental difficulty and requires a different method, since it
is necessary to take into account the changes of sign due to the presence of the
quadratic character in the expression for r(»). In fact the major part of this paper
is devoted to this estimation. We shall require repeatedly, here, the ideas of Brun’s
modification of the Eratosthenian sieve. An important feature of our method is the
application we make of asymptotic formulae, and not merely upper bounds, for sums
depending on an invariant sieve.

It is natural to ask whether it would not now be possible to prove this result
independently of Hypothesis R. It seems unlikely, however, that such a proof can
be achieved at present. The main difficulty with this problem, as with the much
harder Goldbach problem (concerning numbers as sums of two primes), is that the
number of representations of a large number is too small for the circle method in
its present form to be effective, whether or not Hypothesis R be assumed. Moreover,
our result must probably depend in some essential manner on properties of either
exponential sums or primes in arithmetical progression that can only be proved at
this time on the full strength of Hypothesis R.

We may consider the conjugafe sum

2 r(pta)

O0<p+a<z

in a similar way. The details are a little simpler, since the term a in the summand
is independent of the limit of summation, . The asymptotic formula, which is stated
without proof in the final section, shews that there are infinitely many primes of
the form u®+v*-+a, where » and v are integers.

I am very much indebted to Mr Ingham for reading a preliminary draft of

this paper.
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Notation and terminology

A; is a positive absolute constant; the equation f=0 (|g|) denotes an inequality
of the type |f|<4;|g|, true for all values of the variables consistent with stated
conditions. 4;(a) is a constant depending at most on the parameter a.

n 1s a positive integer exceeding e°; p is a prime number; d, k, I, m, ¢, 7, s, ¢,
n and v are positive integers; u and v are integers, except in Section 4; y is a real
number not less than 1; z is a complex variable.

[l, m] and (I, m) denote respectively the least common multiple and the highest
common factor of ! and m.  (v) is the number of different prime factors of »; Q (»)

is the total number of prime factors of v (counted according to their multiplicity).

2. Decomposition of sum

Let v(n) denote the number of representations of the integer n in the form

n=p+u®+ 0%
Then yin)= > 1= > 1=3rm-p+0(1). (1)
n=p+ut+o? p<n u4+vi=n-p p<n
Using the fact that r(») =4 ¢ (),
I'iy

where y(I) is the non-principal character (mod 4), we have

Sriv-p)=4 3 z0)

p<n m=n—-p
p<n
:4< E + Z + 2> ):4(2A+EB+EC)’ say. (2)
1=ntlog *n n} 10g"n<l<n’} logsn 1zndlogin

We have thus reduced our problem to that of the estimation of three different
sums. Each sum is considered separately, X, and X in Section 3 and X in Section 4.
It will appear that X, gives rise to the dominant term of the final asymptotic formula,

Yp and X; being of a lower order of magnitude.

3. Estimation of X, and X,

In order to estimate X, and X, we shall assume the extended Riemann hy-
pothesis, which we state explicitly as follows:

Every zero of every Dirichlet’s function
L — z ZG (m) R
(2) mZ:I e

where x,(m) is a character (mod q), has a real part which does not exceed L for all ¢

and all y,.
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It should be noted that Lemma 1 depends on this hypothesis; but that the

remainder of the paper does not, except indirectly through this lemma.

Preliminary lemmata

Lemma 1 is due to Titchmarsh [12].

Lemma 1. If (@, k)=1, then on ithe exiended Riemann hypothesis

1
1=——-Liy+0 (ytlog2y).
3 - gt routiey

p=a (mod k)

LeMmaA 2. For any m, we have

> 20 7 (l —}%)4-0(§d(m;y))+0{04(m;y)},

i<y T 4p|m
d,my=1
where d (m; y) = 3:1 and 0.1 (m;y)= d§|: c}i
d<y a>y
We have
v il {
s 20 s IS - 3 pay 32
i<y 1=y aj Im I=dt
dmy-1 dim d<y <
pd) g @) < 2)

d%. d vt

d<y d

-z o)
2 d atoly

d<y

TS uda® (1)) (z3)
4:% i yduzm o dEI:md

d<y a>y

T 2.(p) 1

:Zﬂn(l )+0(;d(m y))+0{071(m§y)}~

Lemma 3. For any m, we have

C B (m)+ O(E)g;/ﬂd (m)) ,

~

x(
i<y ‘P(

(,my=1

[ x(p) )
her ¢=T1 {1+ 22—
where EA( p(p—1)

|

pid
4

S~

)
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— 1) 21
and Bm)= 1 2= I ik
pim P =P+l pm P —p—1
p=1(mod 4) p=3(mod 4)

Also, there exist positive absolute constants A, and A, such that

4,
log log 10m

< E (m) < A, log log 10 m.

Let I’ denote a general square-free number. Then

1\ ! 1 1
<z> 1}( p) ‘“E(”ﬁ)—%m'

x () x @) 1 2 () x{r)
So = I T s
z‘gzy U] zzj I v zg’y Vo) . SGuw r
d.m=1 d,my=1 ¢rmy=1 r,m)=1
1
~d(m:
Hence, since ;d(m) > {?/ (m: 9)
-1 (m! y);

we have, by Lemma 2,

1) = ( @» x () 0({@@ 1)
z;¢® 4ﬂ; P z% MMU+ y:é¢¢)
@, m=1 m=1 (3)

_Z p)) 20 0{ (1 1) _1_}_0{‘1(_7") Al
4@1( p Jesatee) T OV D) S 0w Oy mw)}

Now, since! I/p()=0{o_1(})} and

l204m=owx (4)
we have, by partial summation, -
(1 <
2,150 O(y) wd 25 <Z) 0 dlog 2y). )
Also II(1+%)=0@wm»:0§um». (6)
pim
We deduce from (3), (5) and (6)
r®_= (1 w<p)) @) o (leg2y, ) .
f§1¢0) 451 P <z%1l¢d)+ ( y (m) @
{d,m)=

Furthermore, by Euler’s theorem on the factorisation of infinite series,

1 For the proof, see, for example, HArRDY and WrieHT, The T'heory of Numbers, Chapter XVIII.
13 — 573804. Acta mathematica. 97. Imprimé le 17 juin 1957
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- x@) ( x(p)) pip—1)

A 1 N=c1] 28—

BT T R L Gy 1) R ¥ ey ®)
P>2 p>2
and

Nx_(r;)) pp-1) e H@—20)_,

}‘1"1(1 y4 H.pz—pﬂw(p) i P’ —p-+x(p) (m). @)
P>2 D>

The first part of the lemma follows from (7), (8) and (9).
The second part of the lemma is an easy deduction from the relation

-1
Il (1 - l) =0 (log log 10 »).
ply P

Estimation of X,

By (2), we have
S-S o0 3 1= 3 g0 3 o1wo( s 3 ).

lgn%log'ﬁn p=n (mod I) lgn%log an p=n (mod!) lgn%log-ﬂn p=n(modl)
p<n d,n)=1 p<n (,n)>1 p<n

Since the arithmetical progression 7»(modl) contains at most one prime if (I,n)>1,

we have

nt

P NP 1+0( )

4 lgn‘}%g-’nx p=n{modl) ]‘Og3 n
d,n)=1 p<n

Hence, by Lemma 1,
nt

. D
Y,=Lin 40} +O( nt lo n)+0(—)
4 1<n i%:g—“n @ 0 i<n i%og-* n & 10g3 n
d,n)=1 d,n)=1

. x(® ( n )
=Lin 21+ 0|l— 1
lSn‘}%g-’n @ ) 10g2 n
€ ny=1

and so, by Lemma 3,

4
ZA=ZOE(7L) Lin+o(Lm1°fﬁ”d(n))+o( - )

log®n

(4 . n
—ZOE('}'L) L1n+0(m)

T n n
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Estimation of X.

In X;, the condition I>ntlog®n implies m <nt log™® n. Therefore

Te= 2 2 x (@) (11)

m<n‘hog*=n Im=n-p
mnf}logsnglm<n

We denote the inner sum in (11) by X,. The summand in %, is 1 if I=1 (mod 4),

is —1 if =3 (mod 4), and is 0 otherwise. Therefore

Zn= 1-— > 1.
p=n+3m(mod4m) p=n-+m(mod 4 m)
pgn—mnélog’n pgnomnélogﬁn

Also the conditions (n+m,4m)=1 and (n+3m,4m)=1 are equivalent. Hence, if

(n+m,4m)=1, we have, by Lemma 1,
Tn=0 (ntlogmn); (12)
whereas, if (n+m, 4m)>1, then trivially
Zn=0(1). (13)

We thus have, by (11), (12) and (13),

ZC=O< > n*logn):O( L ) (14)

——
m<n¥log-in IOg n

4. Estimation of X,

Our estimation of X; depends basically on the sieve method. The virtue of the
sieve method from our point of view is that we are able to prove by its means re-
sults that embody information about the distribution of primes belonging to sequences
of low density. The conventional result of this type, usually proved by either Brun’s
method [1] or Selberg’s method [10], is an upper or lower bound for the number of
primes in a sequence of a given class, and for the proof it is found convenient to
choose a sieve that depends on the particular sequence in question. Lemma 4
is in these respects rather different. It is required for a part of our investiga-
tion (the estimation of X;), where it is necessary to work in terms of asymptotic
equalities that relate throughout to the same sieve. We use here a weak variant of
the Brun sieve, in order to minimize the complications caused by our special require-

ments. Lemma 4 is thus imperfect in that it does not imply the best possible upper
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bounds; it is, however, quite adequate for our purposes, and any improvement would
have a negligible effect on the error term in our final result. Lemma 5 belongs to

the more conventional category of results.

Lemmata on sieve method

We commence by defining a sieve and then develop briefly its analytical for-

mulation,
1

Let x = nloglog ny, P= :I P;
Py

and d, a typical divisor of P. Also for any positive integer represented by an arbi-
trary letter ¢, let
t(l) — H pa. t(2): H prx,
plt; p<w ’ ol >

where t=T1p*

We use the familiar relation

S i {l, if v=1, 15
d|ulu()_ 0, if y>1. (15)

We define the function f(¥)=f, () by the equation

) =g @) +h (),

1, if » is a prime not exceeding z,
where glv) = .
0, otherwise,
1, if » is prime to P,
and h(v) = .
0, otherwise.

Clearly f(v) is a non-negative function which equals 1 when » is a prime number.
In virtue of (15),

h()= 2 u(d)= 2> p(dy). (16)

dpD dilv
To use this formula, however, would involve considerable complications. Instead we
shall approximate to h(v) by a formula similar to (16) but much easier to apply to
our problem,
For any r, let s,(v) be given by
ss(w)= 2> u(d).

div
w(d)<r
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Then we can shew that

=1, if =1,

8, (p){ >0, if »>1 and r even, } (17)
<0, if »>1 and » odd.

This special case of Brun’s basic formula admits of a particularly simple proof. The

case v=1 ig trivial. For the case »>1, we are content to give the proof for r even,

as the proof for r odd is similar. Let then r be even. If w (»)=t>2r, then

s)=3 (1) -1r>0,

8=0

since (:) is an increasing function of s for s<r. If w(¥)=¢t<2r, then, by (15),

s;(»)=— > u(d) (where the sum is possibly empty)
dly
w(d)>r

t t .
- —s=§+1 (3) (=1

¢
H s
- 2=

. AN . .
since ( is a decreasing function of s for s>7r.
s

We now have for any r

dz‘,u(d): gvu(d)w( gy 1), (18)
w((d<r w(d)=r+1

since, by (17), the left-hand side of the above equation lies betweeen s, (v) and s, (v).
We deduce from (16) and (18)

h(y)= g ﬂ(dl)+0( dz’ 1). (19)
m(d‘x)sr m(d,;=r+1

LEMMA 4. Let y<n and k=0, where 0 is a positive absolute constant less
than 1. Then

L

(k)

3 om=1{" .

vza(;xod k) 0( ) N 7:)‘ (a‘l), k) > 1,

n ) Ly
By+0(ps) i @B

klogtn
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where B(n) depends only on n and satisfies

(log log n)z) )

B(n):O( log »n

In the above conditions (a®, k) may be replaced by (a, k).

Firstly, we have

3, 161-0(31)-0w -0 ) =0
r=a (mod k)

Secondly, suppose (a®, k)=1. Then, by (19),

s b= 3 | 3 wayro( 3 )= s saziio( 3 1)
v<y v<y a,|v d,|v < » w@)=r+1 v
r=a (mod k) v=a (mod k) w(d)r w(d)=r+1

(21)
where, in the inner summations on the right-hand side, » satisfies the conditions
y<y, v=a (mod k), =0 (mod d,).
Now the simultaneous congruence y=a (mod k), »=0 (mod d;) has a solution, if
and only if (d;, k)|a, in which case the solutions form a residue class mod ([d,, ]).

This condition is equivalent to (d,, k)|a®, which in turn is equivalent to (dy, k) =1,
since (@, k)=1. Hence the right-hand side of (21) becomes

v v
RARCY (kd1+0(1)) *0{ e (k dl+0(1’)}

w(d)<r o d)=r+1
~Y s ‘i@Jro(g S i)+0( S 1) =321+0(322)+0(23), say. (22)
k@w-1 dy k w@isr dy o(d)<r+1 k ks,
We now choose r=[10 log log n] + 1.
We have
1 1 1\ 7! 1
= I ()=l 0-) )
! pl;lx p prslx p H P };I[c P
(p,k)=1 P>z
k 1
=——B(n 1——}, say, 23
st g) e
P>z
where, by Mertens’ formula,
e? _{(loglog n)2)
B(w) log m_O( log n (24)
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1 [ 1) ( 1) (log n)
N 1 1—>=}=>log{l1—=}=0 =1=0 )
o ngﬂ ( p) pzlk g( D P% p x
p>r P>z P>
since k has at most log, k prime factors; and so
1 log » 1
—Z)=1 = L 25
1 (1-5)=100(%5) -0 i) ®
>z
We deduce from (23), (24) and (25)
k k  (log log n)z) k ( 1 )
=—— . = B O|l——1- 26
5 B0 ) @ O e )
We have
1 1 1\¢ 1 |
2= —=0 f< —>}=0{ — (log1 + A0
2 sg’r m(dzl:)=s dl {szr s! pgn P szr s! ( g log ™ 3) J
e s 1 (1 (e}’
By Stirling’s formula i { Vs (s) },

and so, if s>v,

1 e s 1 s
st 0 {(10 log log n) }=0 {(e (log log n+A3) } ’

Hence =012 lS}—O{(—l- r}—O( . )*0( : ) (27)
¢ 2=0 S\e) | e) ] “\log®n) "~ \log’n
1 11
In 2;, we have d, = (n(_1°g log ")’)w(d') < ploglogn
1 n
Hence 2,=0 (n‘°gl°g ") =0 (k Tog® n) : (28)
From (22), (26), (27) and (28), we deduce the first part of
1 n
——B(n +0( ), if (@@, k)=1,
N G RARARR T A (29)
vse e 0, if (@®, k)>1.

The second part is trivial, since (a, k)>1 implies (v, P)>1.
The first part of the lemma follows from (20) and (29); the second part from
(@®, k)= (a, &V).
LeEMMA 5. For any r<}n, the number of solutions of the equation
n—p=p'r; p<n;

(n log logn)'

n primes p,p’ 18 ;-W
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This lemma is analogous to a result of Erdds [3], and the proof almost identical.

If (n,r)=1, an immediate application of Brun’s method gives the number of
solutions as

o (-t weo

ot 2nr P/ pinr A
4
peqnimAs p<(nir)

n 1\? 1\ n loglogn
- 0 r 1 B —_) (1 B —) } - 0 {—. .
{T p<(]7;{~)a44 ( P pgr 4 p r 10g2 (n/T)
p<(nms

If (n,7)>1, the lemma is trivial, since then the number of solutions is at

most 1.

Further lemmata

We require a lemma concerning the distribution of numbers m, for which the
value of ((m) is restricted by certain conditions. A method of Hardy and Ra-
manujan [8) is applicable to problems of this nature. We prefer, however, to use
another method which, though non-elementary, has the advantage of requiring less
computation. Also, for problems concerning €2 (m) our method appears to yield more
accurate estimations, although for those concerning w (m) the two methods are

equivalent in power.

Lemma 6. If }<a<i, then
mzyam”‘) =0(y log®'2y).

We merely indicate the proof, as it follows very closely that of a theorem

due to Ramanujan and Wilson [14]. For R (z)>1,

since the infinite product is absolutely convergent if @ < 2. This product equals [{ (2)]° f (2),
where f(z) is given by a Dirichlet series that converges absolutely for R (z)>1—0,

where § is a positive absolute constant. Hence

2 a¥™M=4, (@)ylog*ty+0(ylog*?y) (asy—>oo),

m<y

from which the lemma follows.
Lemma 7. If i<a<l<fB<iand y>¢, then
(a) S L _ogogetyloglogy),

vhilogsy<m<yllopy
Q(m)<aloglogy
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1
(b) 2. — = 0 (log"y),
m<y m
Q(m)>Bloglogy—~1

where ye=c—cloge.

If 1 <a<1, then by Lemma 6 and partial summation,

QQ(m)
=0 (log” 'y log log y).
vdlogsy<m<y?log®y
Hence
Q(my
L\/ —axloglog ¥ a?™ =0 (log”% e 4 log 1 30
<a =0 (log’=«"* y log log ), (30)
ytlogsy<m<ytlogey M vilogsy<meyilop y
Q(m)<aloglog ¥
where Yea=a—cloga.
Similarly, if 1<a<3,
1 < gl-Ploelogy a®™ = 0 (log”s-2 ) (31)
m<y m m<y M

Q(m)>floglogy-1

Now for c fixed, y,, attains its minimum ¢—clogc¢ when a=¢. The lemma is thus

true, since we may legitimately set a=« and a=p§ in (30) and (31) respectively.

LeMMa 8. If (rs,m)=1and r,s,m<n, then

0 oy ‘B, (r;s; ( o1 (8) : )
2, sy O loglogn: Bu(r5y)}+0loglogn™ "o (m;y))+0

d, ms)=1

(_@ggﬁz?)
rs y

log 2y d (s
R (r; 59) = —2=0 ygd(
Yy rs

where

m; Y).

The proof is similar to that of Lemma 3. We use the relation

valid for (I, s)=1. This gives rise to the identity

1 _ 1 1 » 1
prsl) @(rs) 1 it (g

@ r)=1

b

where ¢ denotes a general square-free number. Therefore

JAU x(q?)
P (re) zgy p(rsl) o=y qtelg)
dim8)=1 (g, Tsm)=1

(¢, sm)=1
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% (q) 2.8 % () x(g) .
= L2 LA LaAMA REZR> LA
qu q@(q) tz%q ¢ <t,s%>=1 t v qo(Q
(@, rsm)=1 (t,sm)=1 @rsmy=1

and this, by Lemma 2, is equal to

s v (ms )| w0l e (ma)| o {2
0 Aalms; Y} +0 A AN -
{q‘quqv(q) A ququ(tz)(r St y

_plleg2y AMiols L Y {loglogn}. ‘
Ol v d(s)d(m,y)j+0ll§yl g,l(ms, )}+0 ” (32)

e L,
Now
1 *® 1 1 1 1 12 1
Ey Lo (’“’ Z) "0(21 Lo () ,%s 3) Zo(d%sﬁwml (l)) +0(d.§s E,Z Lo ( ))

I

O(Ed(ms; y))+0{0-1 (ms;y)}

0 (1 d6)dm )+ 0 (s mu )} (3
Yy

We transform o_i(ms;y). If u|ms, then u=puu,, where u;|m and u,|s. Hence

1 1 1 1 1 1
oa(ms;y) < > — —=3 = 3 —+ 2 =2
mim Uy pls Ma o omlm M1 omgs B2 wim H1mls Ya

Ha>Y 11 Wh=y He> Y11y >y

-5 1o (’ﬂ d(s)) + o1 (my) o1 (8)
ml(ﬂ; My Yy

=0(d (5)d (m; )
y
The lemma follows from (32), (33), (34) and the relation rs/g (rs)=0 (log log n).

) F0{oa@)oamy).  (34)

LemMA 9. I O<u<n; v =u;, and m<n, then we have
3 2

(@) S oos  R(an))  =0{leglogmt,
d<u ujd<l<(u log®n)/d d
(o Zl o (ms %) 0 (tog10g Y,
d<u u/d<l<(ulog®n)/d
d 1
(c) il =0 {log log n}.

d<u ufd<l<(ulog®n)/d

. . . . . » 7 . .
1 Here, in accordance with the notation introduced in Section 1, #, % are not necessarily integral.
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The first sum is equal to

d . 2u R d(l)

d<u u/d<l<(ulog®n)/d dl

1 2 u' ulog“n)
=0{= -2 ) [log | ——2-Z
O{u,dgulog ¥ d(m, d) [og( 4 loglogn]}

Now for k=1 or 2, we have

’ ’ [ ' k
> log"2ud(m;—u— 3 S 10 2 o 3 Yot 21 :o(u'ng 2;)_ (36)
d<u’ d \ d Iim u d lm l Iim l
I<u’ ST I<u’
Also, as we shall shew below,
log® 21
”zm o8 ;= = 0{(log log 10m)**}. (37)

The first part of the lemma follows from (35), (36) and (37).
We are content to sketch the proof of (37), as it depends essentially on a

method due to Ingham [9]. Let
1 -1
G(z)= (1 — —Z) .
(@)= 11 .

plm
k
Then clearly > log® 21 <1+4;> log"! <S1+A,(—1)FG®(1).
im Itm

An easy calculation shews that

R T

plm p|m P 4
I\t 1\ 7! log p]? 1\ 2 log®p
and Gy = (1_~) {[ (1_,) ~_] + S (1_~) ﬂ_)}
) I}I_L Y4 p%n P P oim ? P
log* 1
But DT logp S logt p

plm P psiogbom P logk‘ 10 m g
logk p 1 ( )"
+ log »
p<ioghlom P log* 10 m plzm

= 0 {(log log 10 m)*}.

IA
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Therefore (— 1) G (1) = 0 {(log log 10 m)**1},
and so (37) is established.

The second sum is equal to

1 w ( oa ) | - u);
70 \m > —L2 = 0log oy (m 2
dg“ d ! (m d) ufd-<l= Jlog‘n)/d l l o8 Og " dgu d 7 (m d

by (4) and partial summation. It is therefore equal to

-1 1
0 (log logn >+ 2> ~) .
l|ml u/l<d§ud
If I<wu, the inner sum is O (log 21); if I>wu, it is O (log 2 u)= O (log 21). Hence the

double sum is
log 21
0 (log logn > ,%’li) = 0 {(log log n)%},

lim

by (37).

The third part of the lemma is almost immediate.

Inequality for Xp

We are now in a position to commence our assessment of Xp.

Let D (m)= > 1 and F (m)= > x (D).
IIm IIm
n510g3n<l<n}10g“n n&log“n<l<n§10g’n
Then Yp= > Fn—p)= > Fin—p).
rer D(:—\;L)*r()

Therefore, by the Cauchy—Schwarz inequality,

\ b 3
S50 {( 3 ) (S re-p)| 00z, my. (38)
D(n-p)+0

Estimation of 2,

Let o satisfy the inequality 1 <a<3%. We have

Xp = > Dn—p) + > 1=3,1+2p2, say. (39)
p<n p<n
Qn -p)<ologlogn Qn-p)>aloglogn

We estimate Xp, first. Since here, and also later, sums over complicated ranges
of the variables will occur, we shall adopt an abbreviated notation for some of the
more lengthy conditions of summation. When possible, a capital letter will be used

to denote a condition satisfied by the corresponding small letter. We now define



A NUMBER AS THE SUM OF TWO SQUARES AND A PRIME 205

(L), (M), (P) to be the conditions n*log™®*n<l<n*log’n, n*log™®n <m<n?log’n,
Im=mn—p, respectively. If (P) holds, the conditions of summation in X,; imply

that at least one of Q(I) and  (m) does not exceed } o loglogn. Therefore

Zp1 < > 1+ > 1.
(L) (P) (L), (P)
Qhsialoglogn Q(m<t aloglogn

In the second sum the conditions of summation imply m <n!log®n. Therefore

Ypa < > 1+ > 1+ > 1 =% +3%,4+3,, say. (40)
(D) (P) (M), (P) I<n¥ login
Q)<paloglogn Q(m)<} aloglog n m=<ndlogsn
Clearly T, =0(Z,)
n
d Y= 05 ) 1
o 3 (log2 n) (41)
n (log log n)2)
Now 2= 1= 0( TXEs T MY,
: (g) p=n (‘xznod m) (1‘% @ (m) log n
Q@n)<ixloglogn p<n Q(m)y<ialoglogn

be Lemma 4. Hence

_ o (7 lloglog n)® 1) _ ( N ogriacl ‘ >
2y = ( logn (% )= 0 log 7 log”ta™* n (log log n)t} » (42)
Q(my<italoglogn

by Lemma 7, since $ <}{a<%. Because y,,>0, we deduce from (40), (41) and (42)

n

Yp1=0 ( log”s«~ ! n (log log n)4) . (43)

log »n

Our estimation of Y., with its dependence on Lemma 5, is due essentially to

Erdos [3].

Zp2 = m}(:n 1+ pgn 1 =3%,+%;, say. (44)
Q(m)>101log log n xloglogn<Q(n—-p)<10loglogn
y 1 AQem r
We have ¥, < S (V&)™ =0 (n log) #n),

4
log®n n<h

by Lemma 6, since 4 < l/e<%; 80

z4=0( < ) (45)

log®n

Let R, be the set of numbers m which are less than n and which are such that

1
they have no prime factor exceeding n?0loglesn,  Then



206 C. HOOLEY

3 < > 1+ > 1=3,+%,, say. (46)
meR, n—-p¢ Ry
Q(m)<10loglogn Q(n-p)>aloglogn

Now if Q(m)<10 loglogn and m € R,, then m <n!. Therefore
e =0 (nt). 47)

If n—p¢ R, and Q (n—p)>aloglogn, then »—p has at least one representation in

the form rp’, where p’>nV01818 ™) and QO (r) >« loglogn—1; in such a representa-

tion r < pl-1/(E01081E ) Pherefore \
n (log log n)3
s, < S 1-0 n (loglog n))
renl-1/2010g log n p<n r<nl—1/20108 log n r IOg n
QM>aloglogn —1 n—-p=rp’ Qr>aloglognn ~1

by Lemma 5; so

n (log log n)3 1 n _
Q(r)>a1;glog n-1

by Lemma 7. Since y,>0, (44), (45), (46), (47) and (48) imply

n
ogn

2p2=0 (1 log”="'n (log log n)") . (49)

If we choose « so that y,=y;,, then
a—aloga=3%a—4alog(}a),
giving loga=1—log 2; a=1%e,
and the condition 1<« =<} is satisfied. Also
Y«= % elog 2.
We now deduce from (39), (43) and (49)

- " -7 al,
Xp=0 (log - log™? n (log log n) ) (50)
where y=1—-3elog2 (>0).
Estimation of Xg
We have
S=SPe-p<IP@-Nie= 5 y@rE )

nd log—3 n<l,’,l.’<n§ log* n
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Now, for given I, Iy, the values of n—» in the above sum are equivalent to 0
(mod [l;, 13]). Furthermore, if (I;,l)=d, then I;=dl, ly=dl, and [I, ls]=dl, I,,
where (I;,1,) =1. We now define (L;), (H), (K), (K;) by (L)) = {(nt log®n)/d<l;<
(nt log®n)/d}, (H)={(l,,1L) =1}, (K)={@dL1,, n)=1}, (K,;) = {(d],, n) = 1}. Hence

Tp= 2 Z@xl)xl)fe) = 2 + 3 =X+, say. (1)

LW, dm=n—v d>n'ls d<n'l
(L) (Ly), (H)

In X;, we have [, [, d<(n log*n)/d<n"*log® n. Hence, using Lemma 4,

2= E Zz @) x &) x 1) Z f)

(Lx).(Lx);/(H) v=n(mod dl,1,)
a>n’is r<n
) x () x () n 1
~B S @)y, ( )
() " Lo i, p(dl 1) logs n Ly, To.cm d 1,
azn'lh dzn'ls
2 I
—B@n)n X (d)X(1)X(lz)_|_

(Lo (L)) (B) p(dlly)
nle<d<n¥ log?t n

2@ x ) x (L) ( n 1 )
+B AR ALY -
(n)n L (LD, (K | pdlly) logd 7 4, l‘,z,,q dil,
n}log® n<d<n¥login
n
=Bn)nX;+Bn)ynZ,+ O (@2—”), say. (52)
Ly)
N o= 2 (1 1 x @y .
oW 3 <L,>§K,> x )y ) (Lzo pdhly)
n'scd<ntiogen Uy 1, nDy=1

Substituting for the inner sum by Lemma 8, and then deleting the conditions (K,)

and d>n'" from the outer summation, we obtain

H -8 H 3
Zy=0 { 2 (108' log n [Rnw (d; L 7225__7&) + R (d; L n————l(;g ")] +

dgn% log3n

: g-1(h) [ w.ntlog’n w. "t log®n
+log log n al, [0_1(% ; d to_i{n; d +

d 1 )
2 —— . e -
+ (log log n)* 3 log 5 dL. } (53)

@

If we set successively m=n®, u=n} log™®n, v'=u and m=n®, u=nt log™®n,

u' =ntlogdn, the conditions of Lemma 9 are satisfied. Therefore, by (53),

Ts =0 {(log log n)3} + O {(log log n)3} -+ O {(log log )3} =0 {(loglog n)}.  (54)
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- i [ 1
Also 2,=0 ( > ——A~) =0 (lo logn > )
* m’!log"n<d<n’ilog‘n(p(dll l2) 808 n%10g=n<d<nilog3ndll l2
1, l,<logtn 1. l,<logtn
=0 {(log log n)4}. (55)
We deduce from (52), (54) and (55)

$,=0 (—’L (log lo n)7)- (56)

1 \10g n g g ' «

To estimate X, we use the fact that, for given [, [,

it (1,,0)=1,

L,
1) =
2,10 :0, if (1, 1,)> 1.

T t=1,
s t=1,

We define (R), (S8), (D), (DT) by (R)={(ntlog™® n)/dt<r<(n?log’n)/dt},
(8) = {(ntlog *n)/dt<s<(n*log’n)/dt}, (D)={d<n"}, (DT)={d<a" t<n’}.
We thus have

e Tse a%=n~v’u (®) Z2 () }:2 () g (r)x () f(¥) = Z., + \z,/ =25+ g, say. (57)
(R) (8), (D) ten'is ten'ls

Now in X, the conditions of summation imply

n n : g
rtzdm<; < ST T g O =ntdtlog®n<ntlog’ n. (58)
So
Z; = 2 pOLFOEDrr 2 x@f0) -
redm<nilogn v=n-rSitdm
(B (D T) (€]
=0{ X | 2 x@fml} (59
ritdm<nilog’n v=n-7rsidm
(B, (D T) YiSv<y,

where 4, max (n—nirtmlog ®n, 1) and y, = max ([n—nt rtmlog®n]+1,1). I we
set A=ri2dm, we have that v=n—1s. Also y(s) is 1 if s=1 (mod 4), is —1 if

5==3 (mod 4), and is 0 otherwise. Hence the inner sum in (59) is

() — 2, f @), (60)
v=n-2(mod4 A) v=n—31(mod4 )
¥, <<y, Y. Sv <Y,

where v is the variable of summation. The conditions (n— 4, 4 A7) =1 and (n— 34, 4A)
are equivalent, hecause each is equivalent to (n—AM AP, 2AM)=1. Also, by (58),
44=0(n? log? n). Therefore, by Lemma 4, the right-hand side of (60) is equal to

Y2% Y2 ol Neol—"—V, if (n— Wy
o (32) B (n) (p(42)B(n) 1 0(1 log5n) O(l log5n) if (n—2,4A)=1,

LA T a
0(110g5 n) if (n--4, 4A0)>1.
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Hence, by this and (59),

Z- 0|

n n
r.d, gt?srz rd mt? log? n) =0 (10g2 m) )

Also Y, =0 (TW;’K” 1) = 0( > 2>, (y))
>n'ls

t>n'ls H<n] £

1 n
= 3 | = hlogd3 )= O [ ——— | -
0 (n log? n g'/. tz) O (n"log®n)=0 (10g2 n)

We deduce from (57), (61) and (62)
n
Zz*O(Ing n)

Therefore, finally, by (51), (56) and (63),

2g=0 (l (log log n)7) .

log n

Estimation of X5

We deduce from (38), (50} and (64)

§ n 11

ST, Y BERLSES POSSY 2],

pays 0(log . log n (log log n) )
where d=3(1—-3%elog2) (>0).

5. The final sum

209

(62)

(63)

(64)

The first part of our final result is now immediate from (1), (2), (10), (14)

and (65).

THEOREM 1. On the extended Riemann hypothesis, the number of representations

of the integer n in the form

n=p+u2+ov?
s equal to
nn x2(p) (p— 1) p2-1
I+ 2 1 2 |
log n 552 plp—1) pin PP—p+1 o pP-p—1
p=1 (mod 4) p=3 (mod 4)

n §
+0( log”’n(loglogn)z) .

log n

Every sufficiently large number n is the sum of a prime and two integral squares.

14 — 563804. Acta mathematica. 97. Tmprimé le 30 juillet 1957
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The second part of the theorem follows at once from the first part, since by
Lemma 3 the explicit term in the formula for the number of representations is
greater than A4gn/log n loglog n.

As stated in the introduction, the conjugate theorem may be proved by a

similar method.

THEOREM 2. On the extended Riemann hypothesis, we have

T % (p) ) (p—1)* p*—1
r(p+a)=—- 1+ 2 T =t
porrae PO logxp>2( p-1) e Pp+l Su p—p-1
p=1 (mod 4) p=3 (mod 4)

+0 (lo%c log™® z (log log x)5) s
where a 18 a fived non-zero integer.
There exist infinitely many primes of the form wu?+v?2+a.
Finally, it may be of interest to note that the numerical value of the constant

d is given approximately by 6=10.0280... > L,
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