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1. Introduction 

In  their celebrated paper "Some problems of parti t io numerorum:  I I I "  [6] H a r d y  

and Li t t lewood state an asymptot ic  formula, suggested by  a purely formal applica- 

t ion of their circle method,  for the number  of representat ions of a number  n as the 

sum of two squares and  a prime number.  The t ru th  of this formula would imply 

tha t  every sufficiently large number  is the sum of two squares and a prime. No  

proof, even on the extended Riemann  hypothesis  (which we hereafter  refer to as 

Hypothesis  R), has hi ther to  been found.  However,  in another  paper [7] they  suggest 

t ha t  on Hypothes is  R it should be possible to prove tha t  almost all numbers  can be 

so represented. This proof was effeeted by  Miss Stanley [11], as were proofs (also on 

Hypothes is  R) of asymptot ic  formulae for the number  of representat ions of a number  

as sums of greater numbers  of squares and primes. The dependence of her results on 

the unproved  hypothesis  was gradual ly  removed  by later writers, in part icular  by  

Chowla [2], Wa]fisz [13], Es t e rmann  [4] and Halbers tam [5]. 

I t  is the purpose of this paper  to shew tha t  the original formula  of H a r d y  and 

Lit t lewood is t rue on Hypothesis  R. Our me thod  depends on the  fact  tha t ,  as is 

easily seen, the number  of representat ions of n in the required form is equal to the sum 

X r(n-p), 
p<:n 

where r(v) denotes the number  of representat ions of v as the sum of two integral 

squares. On noting t h a t  r (v) m a y  be expressed as a sum over the divisors of ~, we 

see tha t  our problem is related in character  to the problem of determining the asymp-  

totic behaviour  of the sum 
5 d(p§ 

O<p+a_~x 
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where a is a fixed non-zero integer and d(v) denotes the number  of divisors of v. 

The lat ter  problem is due to Ti tchmarsh  [12] and was solved by  him on Hypothes is  R. 

Let  ;r (m; b, k) denote the number  of primes not  exceeding m which belong to the 

ari thmetical  progression b (mod k). Then the  two problems are similar in t h a t  each 

sum can be expressed as a combinat ion of terms of the type  zr (m; b, k), where k 

belongs to a certain range t h a t  depends on a parameter  m. I n  each case the s t rength  

of Hypothes is  R is sufficient to est imate ;r (m; b, k) over nearly all the required range 

of k, while e lementary methods  will suffice to est imate the contr ibutions to the sums 

due to the exceptional values of k. I n  our problem, however,  this e lementary  estima- 

t ion presents a more fundamenta l  difficulty and requires a different method,  since it 

is necessary to take into account  the changes of sign due  to the  presence of the 

quadrat ic  character  in the expression for r (v). I n  fact  the  major  pa r t  of this paper  

is devoted to this estimation. We shall require repeatedly,  here, the ideas of Brun ' s  

modification of the Era tos thenian  sieve. An impor tan t  feature of our method  is the 

application we make  of asympto t ic  formulae,  and no t  merely upper  bounds,  for sums 

depending on an invar iant  sieve. 

I t  is na tura l  to ask whether  it would no t  now be possible to prove this result  

independent ly  of Hypothes is  R. I t  seems unlikely, however,  t h a t  such a proof can 

be achieved at  present. The main  difficulty with this problem, as with the  much  

harder  Goldbach problem (concerning numbers  as sums of two primes), is t h a t  the 

number  of representations of a large number  is too small for the  circle me thod  in 

its present form to be effective, whether  or not  Hypothes is  R be assumed. Moreover, 

our result  mus t  p robably  depend in some essential manner  on properties of either 

exponential  sums or primes in ar i thmetical  progression t h a t  can only be proved  at  

this t ime on the full s t rength  of Hypothes is  R. 

We m a y  consider the conjugate sum 

r ( p §  
O < p + a < x  

in a similar way. The details are a little simpler, since the term a in the summand  

is independent  of the limit of summation,  x. The asympto t i c  formula,  which is s ta ted  

wi thout  proof in the final section, shews tha t  there are infinitely m a n y  primes of 

the  form u S + v ~ + a ,  where u and  v are integers. 

I am very  much indebted to Mr Ingham for reading a prel iminary draf t  of 

this paper. 
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N o t a t i o n  a n d  t e r m i n o l o g y  

A~ is a positive absolute cons tant ;  the equat ion / = O ( ] g l )  denotes an inequali ty 

of the type  I/] < A ~ / g  I, t rue for all values of the variables consistent with s ta ted 

conditions. A~ (a) is a constant  depending at  most  on the parameter  a. 

n is a positive integer exceeding e~; p is a prime number ;  d, k, l, m, q, r, s, t, 

/~ and v are positive integers; u and v are integers, except in Section 4; y is a real 

number  not  less than  1; z is a complex variable. 

[1, m] and (l, m) denote respectively the least common multiple and the highest 

common factor  of l and  m. co (v) is the number  of different prime factors of v; s (v) 

is the to ta l  number  of prime factors of v (counted according to their multiplicity).  

2. Decomposition of  s u m  

Let  v(n) denote the number  of representat ions of the  integer n in the form 

Then 

n = p + u 2 + v  2. 

v(n) = ~ 1 = Z Z 1 = ~ r ( n - p ) + O ( 1 ) .  (1) 
n = p + I L 2 + V 2  ~0~rt  ?A~+V~= ~ --10 : 0 < n  

Using the fact  t h a t  r (v) = 4 ~" Z (1), 

where Z (1) is the non-principal  character  (mod 4), we have 

Y r ( n - p ) = 4  Y z(1) 
lJ<n l rn=n-p  

p < n  

l ~n�89 log 3n n�89 / ~ , �89  log3 n 

We have thus reduced our  problem to t h a t  of the est imation of three different 

sums. Each  sum is considered separately,  Y~A and Nc in Section 3 and NB in Section 4. 

I t  will appear  t ha t  ~ gives rise to the dominan t  term of the final asymptot ic  formula,  

Y~B and Nc being of a lower order  of magni tude.  

3. Estimation of ZA and Yv 

I n  order to est imate Y'A and Yv we shall assume the  extended Riemann  hy-  

pothesis, which we state explicitly as follows: 

Every zero o/ every Dirichlet's /unction 

L (z) = 
(m) 

m=l m ~ -  ' 

where Zq (m) is a character (mod q), has a real part which does not exceed �89 /or all q 

and all •q. 
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I t  should be noted that  Lemma 1 depends on this hypothesis; but  that  the 

remainder of the paper does not., except indirectly through this lemma. 

P r e l i m i n a r y  l e m m a t a  

Lemma 1 is due to Titchmarsh [12]. 

LEMMA l. I]  (a, k ) = l ,  then on the extended Riemann hypothesis 

1 
~. 1 = ~-~-~ Li y + O (y�89 log 2 y). 

P<Y 
~ a  (rood k) 

L E  M M A 2. For any m, we have 

where 

(l, m) = 1 

1 
d ( m ; y ) =  ~ l  and a - l ( m ; y ) =  ~ d. 

aim aim 
d<y d>y 

We have 

z (1) 
all dim I=a* 1 l<y 

(l ,m)=l dim d<y l<y 

y. ~ (d) z (d) ~ z (t) 
dim d t <~ t 
d ~  d 

=Y~'~(a)z(d)( : ~ ~  a ~+0 (~)} 
d<y 

~ # (d) Z (d) 

d<y d>y 

+ 0  ( ~ d ( m ; y ) ) + O { a  l ( m ; y ) } .  

where 

L E M M A 3.  F o r  a n y  m ,  w e  h a v e  

~<~ ~( l )  . U E ( m ) + O  

( l , m ) = l  

~>'z p 1) 
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and ( p -  1) ~ p~-  1 
E(m)= pi~l~ p~ - p + l p~ p~ - p -  ] " 

~ 1  (mod 4) p~3  (rood 4) 

Also, there exist positive absolute constants A 1 and A 2 such that 

A1 < E (m) < A~ log log 10 m. 
log log 10 m 

So 

Let l' denote a general square-free number. Then 

l (1 - (1_1_1 1 . (l~= ~ --~1~) 1= ~ ~1-~ 1)= l,~ll (p (l ') 

Z (1) ~ 1 Z (l') Z (r) 
x(l~= ~ ~ , , = ,  (l') ~ ,~  l, ,~,~ ; l<~ (p(1) z_<u 99 �9 q~ (l ')  �9 

(Lm)~l  ( I ,m)=l  (I 'm)=1 ( r ,m)=l  

a-1 (m; y), 
Hence, since 

we have, by Lemma 2, 

(l, m)=l 
l ' ,p(r) 

( l ' ,m)=l  

p /w,m)=, l '~( l ' )  § 0 ( , l I ~ ( i ' § 2 4 7  

N o w ,  s i n c e  I I/9~ (1) = 0 (O'- 1 (1)} and 

Y ~-~ (l) = 0 (x), 
I<_x 

we have, by partial summation, 

1 0 (~ )  and ~ 1 Z iqJ(1)= ,<~ ~/~  = 0 (log 2 y). 
l>y 

(3) 

d (m) 1 } 
y , ~ "  

(4) 

(5) 

Also ]-[ ( l  § 
vim 

(6) 

We deduce from (3) ,  (5)  a n d  (6)  

~ Z(1) :~ ( Z-7! ) -z~(l'- ) (l~ d ) 
,<._ ~(l-~= i ,~  1 -  <,. ~, l'~(l') + o  (m) �9 

( , ,m)=l  

Furthermore, by Euler's theorem oR the factorisation of infinite series, 

(7) 

1 F o r  t h e  p r o o f ,  see,  f o r  e x a m p l e ,  HARDY a n d  WI~IGHT, The Theory o] Numbers,  C h a p t e r  X V I I I .  

1 3 -  573804.  Acta mathematica. 97. Impr ina6  lo 17 ju in  1957 
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and 

(i',,~)~1 (p - 1)] = - P + Z (P) 
P>2 p>2  

p (p - 1) 1-[ (p - 1) (p - Z (P)) 

p > 2  p > 2  

(8) 

(9) 

The first par t  of the lemma follows f rom (7), (8) and (9). 

The second par t  of the  lemma is an easy deduct ion from the relat ion 

( 1)-1 
1-I 1 - = 0 (log log 10 v). 
Ply 

Estimation of ~ 

By (2), we have 

E A =  : Z ( / ) :  1 =  : x ( l ) :  1 + 0 (  : (~od,)l)" 
l<n~log-an p=--n(modl) l~n�89 3n p-:n(modl)  l<_n�89 p~_n 

p<n ( l ,n )~ l  p<n ( / , n )> l  p<n 

Since the ar i thmetical  progression n (mod l) contains a t  most  one prime if (/, n ) >  1, 

we have 

~ =  ~ z(1) ~ 1 + o  
l<n~log-3n p~_n(modl) 

( l ,n )= l  p<n 

Hence,  by  L e m m a  1, 

( / ,n )= l  (/,n)ffil 

zzn~o~-,, q (1) 
(/,n)ffil 

and so, by  Lemma 3, 

+o(+) 

= ~ C E (n + 0 log log n �9 (10) 
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Estimation of Ec 

In  lee, the condition l>_n�89 logan implies m<n�89 log-3n.  Therefore 

2~  = Y~ ~ Z r 
m<n�89 3n l m = n - p  

m n � 8 9  

We denote the inner sum in (11) by Zm. 

195 

(11) 

The summand in Zm is 1 if l l ( m o d 4 ) ,  

is - 1  if l ~ 3  (mod4),  and is 0 otherwise. Therefore 

z m =  Y 1 -  Z: 1. 
p ~ n + 3  m(mod 4 m) p - : n + m ( m o d 4 m )  

~ < n -  m n  �89 3 n p<_n-  m n  �89 log s n 

Also the conditions (n + m, 4 m) - 1 and (n + 3 m, 4 m) = 1 are equivalent. Hence, if 

( n + m ,  4 m ) = l ,  we have, by Lemma l, 

Em= 0 (n�89 log n); (12) 

whereas, if (n + m, 4 m) > 1, then trivially 

Era= 0(1). (]3) 

We thus have, by  (11), (12) and (13), 

 m< �89 

4. Estimation of  EB 

Our estimation of F~B depends basically on the sieve method. The virtue of the 

sieve method from our point of view is tha t  we are able to prove by  its means re- 

sults tha t  embody information about  the distribution of primes belonging to sequences 

of low density. The conventional result of this type, usually proved by either Brun's  

method [1] or Selberg's method [10], is an upper or lower bound for the number  of 

primes in a sequence of a given class, and for the proof it is found convenient to 

choose a sieve tha t  depends on the particular sequence in question. Lemma 4 

is in these respects rather  different. I t  is required for a par t  of our investiga- 

tion (the estimation of EEL where it is necessary to work in terms of asymptotic 

equalities tha t  relate throughout to the same sieve. We use here a weak variant  of 

the Brun sieve, in order to minimize the complications caused by our special require- 

ments. Lemma 4 is thus imperfect in tha t  it does not imply the best possible upper 
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bounds;  it is, however, quite adequate  for our purposes, and any  improvement  would 

have a negligible effect on the error term in our  final result. L e m m a  5 belongs to 

the more conventional  category of results. 

L e m m a t a  o n  s i e v e  m e t h o d  

We commence by  defining a sieve and then  develop briefly its analyt ical  for- 

mulation.  
1 

Let  x - n(l~176 n)'; P =  I'-[P; 
p~_x 

and d I a typical  divisor of P .  Also for any  positive integer represented by  an arbi- 

t r a ry  letter t, let 
t (1)= 1-I p~; t (2)= ~ p~, 

pit; p ~ x  pit; p>x 

where t = 1-I p~. 

We use the familiar relation 

if v = l ,  
if v > 1. (15) 

We define the funct ion / ( , , ) ~ / , ( r )  by  the equat ion 

/ (~) = g (v) + h (v), 

where 
1, if v is a prime not  exceeding x, 

g(v) = 0, otherwise, 

and 
1, if ~ is prime to P, 

h (v) = 0, otherwise. 

Clearly ] (~) is a non-negat ive funct ion which equals 1 when ~ is a prime number .  

I n  vi r tue  of (15), 

h ( u ) =  Z # ( d ) =  ~ t t ( d l ) .  (16) 
d]v(1) d~]v 

To use this formula,  however, would involve considerable complications. Ins t ead  we 

shall approximate  to  h(v) by  a formula similar to (16) bu t  much easier to apply  to 

our  problem. 

For  any  r, let s~ (v) be given by  

sr (v) = V ~ (d). 

eo(d)_<r 
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Then we can shew that  

=1 ,  if ~=1 ,  } 

st(v) _>0, if v > l  and r even, (17) 

_<0, if v > l  a n d r  odd. 

This special case of Brun's basic formula admits of a particularly simple proof. The 

case v = l  is trivial. For  the case v > l ,  we are content to give the proof for r even, 

as the proof for r odd is similar. Let  then r be even. If  eo(u)=t_>2r,  then 

since ( ~ ) i s  an increasing function of s for s < r .  If o J ( v ) = t < 2 r ,  then, by (15), 

s t ( , )= -  Z ~(a) 
oJ(d)>r 

(where the sum is possibly empty) 

s~r+l  

~ ( t l  ( - -  1)S-1)"  0 , 
S=r+I \S ]  

since (~) is a decreasing function of s for s > r. 

We now have for any r 

ta(d)_<r 

z 1), 
r 

(18) 

since, by (17), the left-hand side of the above equation lies betweeen sr (v) and Sr+ 1 (~)). 
We deduce from (16) and (18) 

h ( v ) =  ~/~(di)+O(a,,~ a,I, ~ 1) .  (19) 
ea(d~)<r ~ (dl)=r+l 

L E ~ ~ A 4. Let y <_ n and k = 0 (no), where 0 is a positive absolute constant less 

~han 1. Then 

B n) y + O  , i/ (a (1) ,k)=l ,  

�9 ~aCmodk) 0 , i I (a (1), k)> 1, 
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where B(n) depends only on n and satis[ies 

(!lo  log_ n)2]" 
B ( n ) = O \  logn ] 

In  the above conditions (a (1), k) may be replaced by (a, k(1)). 

Firstly, we have 

~_<y v 
v ~ a  (rood k) 

=o(x) 

Secondly, suppose (a (1), k)= 1. Then, by (19), 

v<y v<y dll~ 
,,~a (mod k) u~a (rood k) o)(dO<r oJ(d0=r+l 

(20) 

oa(d , )<_r  , \oJ (a~)=r  +1 

where, in the inner summations on the right-hand side, v satisfies the conditions 

(21) 

v<y ,  v~--a (mod k), v------0 (mod dl). 

Now the simultaneous congruence v ~ a  (mod k), v ~ 0  (mod d,) has a solution, if 

and only if (d 1, k) la, in which case the solutions form a residue class mod ([d,, k]). 

This condition is equivalent to (dl, k)]a (1), which in turn is equivalent to (d,, k)= 1, 

since (a (1), k)= 1. Hence the right-hand side of (21) becomes 

(dz,~k)=l#(dl)(~dl-~O(1))~-O((d~,~k)=l (~da + O (1))} 
oJ(dl)<r a)(d,)=r+l 

= + o  2 = + Yk (d~,2 /~ (dl)+ 0 k ) = l  dl (~ oJ(d~D>r ~1) (to(d,)<r+l 1 _  ) ]r y 0 (~ ~]2) + 0 (Za), say. (22) 

We now choose r - [10 log log n] + 1. 

We have 

~ 1 :  p~z (1 1 ) =  fi< x ( 1 - ~ )  ~ (1--~)-lp~k (1 _ 1 )  

(p, k) = 1 p > x 

= ~ (k) B (n) ~ - 
10:>X 

where, by" Mertens' formula, 

o((loglog 
B ( n ) ~ l o g x =  ~ i o ~ n  ] 

, say, (23) 

(24) 
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(1 
plk 

N o w  

p>x iO>X 

since k has a t  most  log 2 k prime factors;  and so 

1-I 1 - =  = 1 + 0  = 

p>X 

We deduce from (23), (24) and (25) 

k ( k (log log n)2~ k 

We have 

~ = 2  y 1 
s > r  t~(a,)=s d l  

By Stirling's formula 

and so, if s > r ,  

~ l ~  1 ) = 0 ( ~ )  ' 

p>X 

1 + o  ~ �9 

O 1 

s~. = 0  

(25) 

(26) 

1 (( )s} (( 1 )s} 
s-i = ~  i51og]ogn  = o  e (log log n + A a 

= 0  0 1 = O  0 1 

/ -~\m(dD 11 
In  Za, we have dl < ~n(log log n) ) < nlOg log ~. 

11 ( ~ )  
Hence Z 3 = 0 (n ~) = 0 �9 (28) 

F rom (22), (26), (27) and (28), we deduce the  first par t  of 

v-----a (rood k) ~_<y 0, if (a (1), ]r > 1. 

The second par t  is trivial,  since (a (1), k) > 1 implies (v, P)  > 1. 

The first par t  of the  lemma follows from (20) and (29); the  second par t  f rom 

(a (1), k) = (a, k(1)). 

L EMMA 5. For any r < �89 n, the number el solutions o/ the equation 

n - p = p '  r; p < n ;  

(~ lo~ ~o~ ~_~ 
in primes p, p' is 0 "log ~ (n/r)] 
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This lemma is analogous to a result of Erd6s [3], and the proof almost identical. 

If (n, r )=  l, an immediate application of Brun's method gives the number of 

solutions as 

0 

p<(nlr) A~ P<( n/r)AI 

= {r,<(~/~)A, - l )  2 ~lI~ -- 1)-~} = O  {n.llo~ (n/r)] 
p<  (n / r )  A4 

If ( n , r )>  1, the lemma is trivial, since then the number of solutions is at  

most 1. 

Further lemrnata 

We require a lemma concerning the distribution of numbers m, for which the 

value of ~ (m) is restricted by certain conditions. A method of Hardy  and Ra- 

manujan [8] is applicable to problems of this nature. We prefer, however, to use 

another method which, though non-elementary, has the advantage of requiring less 

computation. Also, for problems concerning ~)(m) our method appears to yield more 

accurate estimations, although for those concerning o~ (m) the two methods are 

equivalent in power. 

LEMMA 6. I /  l<_a<_~, then 

a a('~ = 0 (y log a-1 2 y). 
m~y 

We merely indicate the proof, as it follows very closely that  of a theorem 

due to Ramanujan and Wilson [14]. For R (z)> 1, 

a 

since the infinite product is absolutely convergent if a < 2. This product equals [~ (z)] a / (z), 

where /(z) is given by a Dirichlet series tha t  converges absolutely for R (z)> 1 -  0, 

where 0 is a positive absolute constant. Hence 

aa(m)=A 1 (a)y log a-1 y+O(y  log ~-z y) (as y - , o o ) ,  
m<y 

from which the lemma follows. 

L~.M~tA 7. I /  ~ a  < l  <fl<_~ and y>e  e, then 

1 
(a) ~ - -  = 0 (log ~-1 y log log y), 

Y~log_6y<ra<Y~log~ y m 
~(m)_<~log log y 
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1 
(b) ~ . . . .  O (logV~ y), 

m~y m 
~(m)>f l log logy-1  

where  y~ = c - c log c. 

I f  �89 < a <  1, t hen  by  L e m m a  6 and  pa r t i a l  summat ion ,  

agt(m) 

- - -  = 0 (log ~ 1 y log log y). 
y ~ l o g S y < m < y l l o g 3 y  m 

Hence  

1 ~.~ (m) 
- -  ~ a - ~ l o g l o g  Y 

y~logSy<m<y�89 y~iogSy<m<y~log3y m 
~(m)_<ct log log y 

- -  = 0 ( log  7 ~ , " 1  y log  l o g  y) ,  (30)  

where y c , ~  = a - c log a.  

S imi lar ly ,  if 1 _< a _< 3 
1 a ~ (m) 

m<_y m m<y m 
~ ( m ) ~ f l l o g l o g y  1 

0 (log~r ,~ y). (31) 

:Now for c f ixed,  Yc, a a t t a in s  i ts  m i n i m u m  c - c l o g  c when a = c .  The  l emma is thus  

t rue ,  since we m a y  l eg i t ima te ly  set  a - - : r  and  a = f l  in (30) and  (31) respec t ive ly .  

L E M M A  8 .  

z (z) 
l>j  q~ ( r s l )  

(l, m s)= 1 

where  

I /  (r s, m)  - 1 a n d  r, s, m <_ n,  then  

r s  \ r s y  / 

Rm (r; s; y) = log 2 y d (~,s, d (m; y). 
y r s  

The  proof  is s imi lar  to  t h a t  of L e m m a  3. W e  use the  re la t ion  

q ~ ( r s l )  l ~ ( r s )  1 - 

p~r  

va l id  for (l, s ) =  1. This  gives rise to  the  i d e n t i t y  

I I 1 1 

(q, r)~ 1 

where  q denotes  a genera l  square-f ree  number .  Therefore  

Z q) X (q t) 
(r s) ,~y ~0 (r s l) _ ~>_y q t q0 (q) 

(l, m 8)=1 (q, r s m)= l  
(t, s m)= l  
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Z (t) Z (t) Z (q) 
z (q) - i -  + 5 ; q<_u q ~(q) t>_y/q (t,,.,)=l t q>v q~ (q) 

(q, r s m ) = l  (t,  s m ) = l  (q, r s m ) = l  

and this, by Lemma 2, is equal to 

l q d ( m s ; Y ) } + O { q ~ < u l ( m s ; ~ ) } + O { ] ~ 1 7 6  } 

l log2Yd(s)  d(m;y)  + 0  ~u / ~ a  1 ms; + 0  log logn 
= 0 t  y l Y 

Now 

1 (ms;Y) O(t= ~ 1 1 5 1 ~ 1 ~176 

d > y l l  d < y  d > Y  

We 

(1 ) 
= 0 y d ( m s ; y )  +0{a_x(ms ;y )}  

- - O ( ~ d ( s ) d ( m ; y ) ) + O { ( r _ l  (ms;y)}. 

transform ff 1 (m a; V)- If /21 m s, then /~ =/~x/~2, where /~11 m and #21 s. 

(T- I ( m S ; y ) ~_ ~ __1 5 __1 = E __1 5 __1 + 5 __1 5 1  
~,lm~/Zl tql s f12 /zl[m ~ 1  tqls f12 I~ , lm/21 t t ,  ls/Lt$ 

I~>YIII I ~l <_Y Ilz> y/l~l I~t> Y 

5 1--o(#ld(s))  +a  l(m;Y )(r-l(8) 
u~l,~ /21 \ Y 

Y 

The lemma follows from 

(33) 

Hence 

(34) 

(32), (33), (34) and the relation r s/qJ (r s) = 0 (log log n). 

(a) 

(b) 

Lv. MMA 9. I / 1 0 < u < n ; u ' > _ u ;  and m <_n, then we have 

d < u  u / d < l < ( u  log s n)/d 

a-1 (1) 
5 5 

d<_u u / d < l < ( u l o g ~ n ) l d  d ~  
- -  o'-1 (m; ~ )  = 0 {(log log n)3}, 

(c) ~ d.  1_ = 0 {log log n}. 
d < u  u l d < l < ( u l o g 6 n ) l d  u d 1 

1 Here, in accordance with the notation introduced in Section 1, u, u ~ are not necessarily integral. 
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The first sum is equal to 

E -d (1) 
u/cl<l<(u log' n)/d d 1 

2 u' log log = O {~a~ulOg ~ - d  (m; U~j) [log (U l~ n ) n]} 

log- -d (u' d log log hi} 

t log logn 22u '  ( u')} {(loglogn) = 2u '  / ~ ) }  = 0 [ u' a<_u'~ log ~ -  d m; ~ + 0 u' a<_u,~ log ~ -  d (m; �9 (35) 

Now for k = l  or 2, we have 

2 l~ k d - d  m; = 2 E l~ k 2 u '  ~ - = 0  log k21 = 0  u' z �9 
d<lt'_ \ It' 1 d < l<_u" -- 1 l<_u" 

Also, as we shall shew below, 

log k 2 l m)k+l}" llm 1 O {(log Iog 10 (37) 

The first part of the lemma follows from (35), (36) and (37). 

We are content to sketch the proof of (37), as it depends essentially on a 

method due to Ingham [9]. Let 

a (z)  = I-i 1 - �9 
pim 

Then clearly ~ l~ 21 log k l - -  < I + A  5 ~  - < I + A  5 ( - 1 )  kG (k)(1). 
llm 1 llm l -- 

An easy calculation shews that  

--G' (1)= Plm~I ( 1 -  ~ ) - l p ~  m ( 1 -  ~)" 1 lOgp~) 

GH = - __1 -1  ~ p) 2 ~ ) } .  and (l) ,~-Im(1- ~) 1 { [p~m ( I  ~) ~ ] 2  _ (1- -  

But 
1 2 l~ p-< 2 l~ p+ 2 mlog ~v 

p] m P p~ log k 10m P log k 10 m .  

(a ; < ~ logkp + I log p 
p__~ log k 10 m ~0 log ~ 1O m 

= 0 {(log log 10 re)k). 
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Therefore ( 1) k G (~) (1) = 0 {(log log 10 m)" ~1}, 

and so (37) is established. 

The second sum is equal to 

~, d o' 1 m ;  ">' - . . . . . .  0 
d<u u/d<l< ('~logSn)/d l 

{l~176 I ' 

by (4) and partial summation. I t  is therefore equal to 

1 ~ 1 
O( log logn l~ ,~-  z . d ~  ) -  

If l~u, the inner sum is 0 (log 2/); if l >  u, it is 0 (log 2 u )=  O (log 2 l). 

double sum is 

0 (log log n z~  1-~ = 0 {(log log n)a}, 

by (37). 

The third part of the lemma is ahnost immediate. 

Hence the 

Inequality for EB 
~re are now in a position to commence our assessment of EB. 

Let  D ( m ) =  ~ 1 and F ( m ) =  ~ z(l)" 
l I m l I m 

n } I o g  ~ n < l < n ~ l o g  ~ n n ~ l o g  s n < l < n ~ l o g  ~ n 

Then Ez= ~ F(n-p)= ~ F(n-p). 
p<n  p < n  

D ( n t - p )  ~ 0  

Therefore, by the Cauehy-Schwarz inequality, 

D(n  p) t 0 

O{(E~) �89 (EE)~}, say. (38) 

Estimation of ED 
Let  ~ satisfy the inequality 1 <~_<~. We have 

ED~ ~. D(n-p) 4- ~ l --2D, 1 ~-ED, 2, say. (39) 
p < •  p < r t  

f 2 ( n  p)_<~ l o g  l o g  n ~ ( n - p ) > o : I o g l o g n  

Wc estimate ED.1 first. Since here, and also later, sums over complicated ranges 

of the variahles will occur, we shall adopt an abbreviated notation for some of the 

more lengthy conditions of summation. When possible, a capital letter will be used 

to denote a condition satisfied by the corresponding small letter. We now define 
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(L), <M), (P) to be the conditions n ~log-3n<l<n'~log:~n, n�89 <m<n�89 

l m = n - p ,  respectively. If (P) holds, the conditions of summation in No.1 imply 

that  at least one of f2 (1) and s (m) does not exceed �89 ~ log log n. Therefore 

~2( l )~  ~ ~ l o g  l og  n ~'] ( m ) ~  �89 ~ l o g  l o g  n 

In the second sum the conditions of summation imply m<n'-' log 3 n. Therefore 

ED.t ~< ~ 1 + ~ 1 + ~ 1 = ~ + E2 + Y~3, say. (40) 
( L), (P) (M), (P) l <n�89 l o g  ~ n 

(1)< �89 a l o g  l o g  n ~ ( m ) <  �89 r log. l o g  n m ~ n �89 l o g  ~ n 

Clearly 

and 

Z 1 = 0 ( 2 . 2 )  

Now 
n (log log n)~  

l ~ ( m ) ~ � 8 9  ~ l o g  l o g  n p<n  D ( m ) ~  a l o g  l og  n 

be Lemma 4. Hence 

Y~2 = O ( n (l~ l~ n)3 n (M) 1 )  = O (l~g n l~189 a- l n (l~ l~ n)4) ' (42) 

~ ( m ) < � 8 9  a l o g  l o g  n 

by Lemma 7, since �89189 Because y i ~ > 0 ,  we deduce from (40), (41) and (42) 

ED, I =  0 ( lo~n  log~ a-1 n (log log n)4) �9 (43) 

Our estimation of ED.~, with its dependence oil Lemma 5, is due essentially to 

Erd6s [3]. 

ED,2 --< ~ 1 + ~ 1 = E 4 + Zs, say. (44) 
m < r t  p < ? t  

f~ (m)  > 10 l o g  l o g  n ~ log" l o g  n < ~'~ (n  - p )  < I0  l o g  log" n 

1 ~ (Ve)n(,,)=O(nlog,~_~n) ' We have )24 < logS~- ~ m<n 

by Lemma 6, since �89 < ]/e < ~ ; so 

(45) 

Let Rn be the set of numbers m which are less than n and which are such that 
1 

they have no prime factor exceeding n ~ ? = ' ~ .  Then 
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m e t ~  n n - p e R  n 
~ ( m ) < l O  loft log  n ~ ) ( n - p ) > ~  l o g  l o g  n 

1 = E  8+ET, say. 

Now if ~) (m) ~< 10 log log n and m ERn, then m<_ni. Therefore 

(46) 

where 

Estimation of Z~ 

We have 

Xs= ~ F  2 ( n - p ) ~  X - ~ ( n - v ) / ( r )  = 

X 1}=O(lo~l~ 
r<_n 

~ ( r ) > a  log  log  n - 1  

by Lemma 7. Since ~ > 0 ,  (44), (45), (46), (47) and (48) imply 

ED, 2= O(lo~logr~'-ln (log log n)3) �9 

If we choose cr so that  ~.=~�89 then 

~ -  ~log r162 �89 cx- �89 r162 (�89 ~), 

giving log cr = 1 - log 2; ~r = �89 e, 

and the condition 1 < ~-<3 is satisfied. Also 

y~ = �89 e log 2. 

We now deduce from (39), (43) and (49) 

0 ( n (log log n)4), ]~D = \log-n l~ n 

~ = l - � 8 9  (>0) .  

by Lemma 5; so 

0 (n (log log n) a 
E7 \ 

If n - p r R= and ~ (n - p) > ~ log log n, then n -  p has at least one representation in 

the form r p', where p ' >  n 11(2~176176 n) and ~2 ( r )>  ~ log log n - 1 ;  in such a representa- 

tion r < Tb 1-1/(201~176 n). T h e r e f o r e  i 

_ 0 ( ~ n (log log n)3] 
~ , <  X Z 1 =  -" , 

r < n l - l / 2 O l o g l o g  n p < n  r < n l - 1 / 2 O l o g l o g  n r log 2 n ] 
~) ( r ) > u l o g  log  n - 1 n - p = r p "  Ft ( r ) > a  l o g  log  rt - 1 

X 
n�89 log  -s n<l~ ' , l , '<n~  l og  ~ n 

(log log n)a),  (48) 

z q;) z (t~) / (v). 

(49) 

(50) 

Z 6 = 0 (n~). (47) 
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Now, for given l~, l' ~, the values of n - v  in the  above sum are equivalent  to 0 

(mod[/ ; , /~]) .  Fur thermore ,  if ( l ; , l ; )=d ,  then  1;=dl~, l~=dl~ and [l;, l~]=dl~ la, 

where (/~, l~) = 1. We now define (L~), (H), (K), (Ka) by  (L,) =- {(n �89 log - ~ n ) / d < l * <  

(n ~ logan)/d},  ( H ) - { ( / 1 ,  l z )=  1}, (K)={(dla l~ ,  na))= 1}, ( g ~ ) -  {(dll ,  n u)) = 1}. Hence 

x ~ =  ~ z*(d) z (q )Z( t , ) / ( v )=  ~ + 
l~ It d m = n - v  d>n~l, 

(LD. (L,), (H) 

In  El ,  we have 11 l 2 d < (n log 6 n) /d  <_ n '1' log 8 n. 

X 1 --  (LD,(~L.,,(H)~ 2 (d)  X ( l l )  Z (/2) ~ / (?)) 
v~n (rood d l~ l,) 

d~_nll8 v<~ 

Z ~ (d) Z (11) Z (12) ( 
= B (n) n ~ ~ (d l~ l,) + 0 log s (LD. (L,). (H), (K) 

d>n ~I~ 

= B (n) n ~ X ~ (d) Z (lO X (l~) + 
(~,).(~,). (n). (K) q) (d l~ l~) 

n ~/* <d'<ri. �89 log art 

+ B (~) n 
(L1),( Ls),(H). (K) 

n�89 log 3 n<d<n~ log ~ rt 

= Z I + Z ~ ,  say. (51) 
cl<n~l* 

Hence,  using L emma  4, 

1) 
n (z,), (L,), (H) dt  I l~ 

: B ( n ) ~ a + B ( n ) ~ 4 +  0 ( l o ~ n )  , say. 

N O W  ~ 3  z "~ (d) Z (l~) Z Z (I,) . (L,). (K~) (L,) ~ (d l 1 l~) 
nt/8<d<_n�89 log ~ n (lv l~ n(1))=1 

(52) 

Subst i tu t ing for the inner sum by Lemma  8, and then  deleting the  conditions (K1) 

and d_> n 'I' f rom the outer  summation,  we obtain 

I 
d~n : log a n 

+ 

+ log log - ~ 1 -  [a_i  

L)} + (log log n)2n�89 log_3 n 

set successively m = n  (1), u = n  ~ log - an ,  u ' = u  and m = n  a), I f  we 

u ' = n  �89 log a n, the  conditions of L emma  fl are satisfied. Therefore,  by  (53), 

~3 = o {(log log ~)~} + o {(log log n)*} + o {(log log ~)~} = o {(log log @ ) .  

(nO) n �89 a n ) ] +  
+ a - t  d 

(53) 

u = n �89 log -3 n, 

(54) 
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Also E~= O( 
,n~  log -~ n < d ~ n � 8 9  log :~ n 

l~,/z<log s rt 

= 0 {(log log n)4}. 
We deduce from (52), (54) and (55) 

E l = O ( ~ n  (log log n ) ' )  �9 
log  n 

O ( l o g l o g n  ~ 1 ) 
n�89 log~n<a<n�89 d l 112 

It, lz<log 6 n 

(55) 

To est imate E2 we use the fact that ,  for given 1 a, l~, 

1, if (ll, lz) = 1, 

~ l / z  (t) = 0, if (ll, 12) > 1. 
s t=I: 

(56) 

We define (R), (S), (D), ( D T )  by (R) =- {(n�89 ~ n ) / d t  <r  <(n�89 

(S) ~ {(n ~ log "~ n) /d  t < s < (n"- log '~ n ) / d  t}, (D) - {d < n'/~}, (D T) ~ {d < n '/', t < n'/'}. 

We thus  have 

Z2::  ~ #( t )  z 'z(t) 7~ 2(d) y~(r)z(s)/( .v) = ~ + ~ = E  5 + E 6 ,  say. 
r s t * - c l r n - n - v  t~-nff* t > n  ~1. 

(R), (s), (D) 

Now in E 5 the  conditions of summat ion  imply 

(57) 

n n = n ~ d t log s n < n ~ log '~ n. (58) r t ~ d m < -  < n~d 1 t x 3 s - log n 
So 

25 -- ~ /t (t) Z ~ (t) Z 2 (d) Z (r) ~ Z (s) / (v) 
r t e d m < n ~ l o g ~ n  w : n - - r s t e d m  

(R) , (D T) (S) 

= o { ~ I ~ z (8)/(~) I}, (59) 
r t ~ d m < n ~ l o g ~ n  v ~ n - r s t ~ d m  

(R) , (D T) y j < ~ < y ,  

where Y2 =max ( n - n ~ r t m l o g - : ~ n ,  1) and yx= m a x ( [ n - n ~ r t m l o g a n ] + l ,  1). If  we 

set 2 = r t  ~dm,  we have tha t  v - n - 2 s .  Also Z(8) is 1 if 8~-1  {mod4),  is - 1  if 

s - - 3  (mod 4), and is 0 otherwise. Hence the inner sum in (59) is 

/ (r) - ~ / (~), (60) 
v=-n --2 (rood 4 ~) v - n - 3 ) .  (rood 4 )*) 

where v is the variable of summation.  The conditions (n - 2, 4 2(1)) = 1 and (n 3 ,t, 4 ~t r 

are equivalent,  because each is equivalent  to ( n - , 1  (~))(e), 2,1(1))= 1. Also, by  (58), 

4 2 - 0 ( n  ~ log a n ) .  Therefore,  by Lemma 4, the r ight-hand side of (60) is equal to 

Y~_--Yx~i,__2i B (n )  Yz Y ' B ( n ) ~ - O ( n T ( 4 , 1 )  2 - 1 ~ g K n ) = O ( f o ~ S n ) ,  if (n - '1, 4 2(1)) = 1 ,  ~ n 

0 ( ~ - ~ - - ~ , ,  l O g "  n ]  i~ ( n - - - , 1 ,  4 2 ( 1 ) ) ~ ' .  
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Hence, by this and (59), 

E s =  0 2 rdmt~-log~n = 0  r, d, m, t~<n 

\ t > n  /s It<--nl t 
t>_nU8 

= 0  nlog an ~ ~ = 0  log a n ) = O  
t>n q8 

We deduce from (57), (61) and (62) 

Therefore, finally, by (51), (56) and (63), 

Estimation of EB 

We deduce from (38), (50) and (64) 

O(,o  1) EB = n log  ~ n (log log n) -~ , 

where 5 = �89 (1 - �89 e log 2) ( > 0). 
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(61) 

(62) 

(63) 

(64) 

(65) 

5. The  f inal  s u m  

The first part of our final result is now immediate from (1), (2), (1O), (14) 

and (65). 

T ~ E O R E ~  1. On the extended Riemann hypothesis, the number o/representations 

o/ the integer n in the ]orm 
n p + u ~ + v  ~ 

is equal to 

7~n ( ~p( /~]~)  (p - - l )  2 p ~ - I  
1Yggn  2 1+ rI p2_p+  rI 1 + P pin v,n P -  

p 1 (mod 4) p-~3 (rood 4) 

n _~ ~a\ 
+ 0  ~ l o g  n( loglogn)  ~) .  

Every su/[iciently large number n is the sum o/ a prime and two integral squares. 

1 4 - 5 6 3 8 0 4 .  Ac ta  mathemat ica .  97. I m p r l m 6  le 30 jttillct 1957 
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The second par t  of the theorem follows at  once from the  first part ,  since by  

Lemma  3 the  explicit  t e rm in  the formula for the n u m b e r  of representa t ions  is 

greater  t h a n  A6 n / l o g  n log log n. 

As s ta ted in  the in t roduct ion,  the  conjugate  theorem m a y  be proved by  a 

similar  method.  

T HEO~]~M 2. On the extended R i e m ann  hypothesis, we have 

p--1 (rood 4) p ~ 3  (rood 4) 

where a is a / ixed non-zero integer. 

There exist in / in i te ly  many  primes o/ the /orm uP+ v 2 + a. 

Final ly ,  i t  m a y  be of in teres t  to note  t ha t  the numer ica l  value of the cons t an t  

is g iven approx imate ly  by  (~ = 0 .0289. . .  > ~ ,  
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