THE TRIANGULATION OF LOCALLY TRIANGULABLE SPACES®

BY

JAMES MUNKRES
in Ann Arbor, Michigan

We shall be concerned with the following triangulation problem: “May a space which
can be triangulated locally be triangulated in the large?” A locally triangulable space is a
separable metric space every point of which has a neighborhood which is homeomorphic
to an open subset of some finite polyhedron. Special cases of this problem include the
triangulation problems for manifolds, for manifolds with boundary, and for differentiable
manifolds; these problems have been attacked in the past, with varying degrees of success.
In 1935, G. Nébeling published an argument for the triangulation theorem for manifolds
[71, but it contained an essential error [9]. Subsequently, S, S. Cairns proved triangulability
for differentiable manifolds [3], [4], and T. Radé triangulated the general manifold of
dimension two [8]. More recently, E. E. Moise proved that three-dimensional manifolds are
triangulable [5], and both Moise and R. H. Bing extended this to three-dimensional manifolds
with boundary [6], {2]. In the present paper, the author uses some of these results to prove
triangulability for locally triangulable spaces of dimension three or less.

We attack the general triangulation problem by attempting to reduce it to the trian-
gulation problem for n-manifolds with boundary. This approach proves successful for »
not greater than three. The proofs, while complicated, are elementary in the sense that
they involve no algebraic topology.

In Chapter I certain basic definitions and lemmas are given. A new definition of locally
polyhedral space is introduced in Chapter I1, and some of the implications of this definition
are studied. In Chapter IIT a space X*, called the composition space of X, is defined; it is
in some respects the opposite of a decomposition space. The technical device of passing
from a space to its composition space enables us, in Chapter IV, to treat the general tri-

angulation problem.

1 This paper is part of a thesis submitted to the Graduate School of the University of Michigan
in partial fulfillment of the requirements for the degree Doctor of Philosophy. The thesis was written
under the direction of Prof. E. E. Moise; the author was a National Science Foundation fellow at the
time. Presented to the American Mathematical Society November 12, 1955. The author wishes to thank
the referee for his comments.
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CuAPTER 1
Introduction

1. Throughout this paper, every space is Hausdorff and every map is continuous,
unless specifically stated otherwise. The closure of a subset A of X is denoted by either
A or C1(A4). The frontier of A4 is the set Cl(4) N CL(X — A); it is denoted by Fr(4).

The word simplex means “‘open simplex’, and complex means ‘“‘locally finite simplicial
complex”. The boundary of a simplex s is the set § — s; it is denoted by Bd(s). The polyfope
| K| of a complex K is the space which is the union of the simplices of K; where no confusion
will result we do not distinguish between K and |K|. The k-skeleton of K is the complex
consisting of all simplices of K having dimension k or less; it is denoted by K®. A subdivision
of K is a complex L such that |L| =|K| and

position that two subdivisions of the same complex have a common subdivision. A poly-

K®| < |L¥| for every k. It is a basic pro-

hedron in K is a set which is the polytope |L| of a subcomplex L of some subdivision of K.
It 4 is a subset of | K

that sonie face of s is contained in A; it is denoted by St(A4).

, then the star of A in K is the union of those simplices s of K such

A linear map of one complex K into another L is a map f of | K| into [L| which maps
each simplex s of K into a simplex ¢ of L in such a fashion that the map is linear with
respect to the barycentric coordinates of s and ¢. If f is a homeomorphism of |K| onto
|L| and both f and f-! are linear maps, then f is a linear isomorphism.

An n-cell is a homeomorph of an n-simplex s; a closed n-cell is a homeomorph of §.
An n-manifold is a separable metric space M such that each point of M has a neighborhood
which is an n-cell. An n-manifold with boundary is a separable metric space M such that
each point of M has a neighborhood whose closure is a closed n-cell. The boundary of an
n-manifold with boundary consists of those points « of M such that 2 has no neighborhood
which is an n-cell; it is denoted by Bd(M). (Do not confuse Bd (M) with Bd(s), where s
is a simplex.) The set M — Bd (M) is called the inierior of M and is denoted by Int(M).

1.1. LEMMA. Let K be a complex and let L be a subcomplex of K. Let L' be a subdivision
of L. This subdivision may be extended fo a subdivision of K without affecting any simplex
of K outside St|L]|.

Proof. Let K™V be so subdivided that L' U K is a complex. Lat s be an m-simplex
of K — L. If Bds has been subdivided, we may extend this subdivision to s by means of
radial lines from the barycenter of s; otherwise, we need not subdivide s. The subdivision

of K defined in this manner satisfies the demands of the lemma.
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2. Triangulations. A triangulation of a space X is a complex K along with a homeo-
morphism % carrying | K| onto X. We sometimes refer to “‘simplices of X”’; by this we
mean those subsets of X which are carried into simplices of K by A-1. A subdivision of the
triangulation (K, k) is a triangulation (L, k) of X such that 2~k is a linear map of L onto
K. 1f J is a subcomplex of X, let 4 =h(|J|), and let g =h|J (the restriction of & to |J]).
Then (J, ¢) is the triangulation of A induced by (K, ).

Two triangulations (K, k) and (L, k) of the space X are said to be equivalent if h-1k
is a linear isomorphism of L onto K. They are said to be compatible if they have a common
subdivision.

If (K, ) and (L, k) are triangulations of the subsets 4 and B of X, respectively, such
that (K, k) and (L, k) induce triangulations of Y < A4 N B which are compatible, then
(K, k) and (L, k) are said to be compatible on Y. It is clear (using 1.1) that there are sub-
divisions K" and L’ of K and L, respectively, such that the triangulations of ¥ induced
by (K', k) and (I, k) are equivalent,

2.1. DEFINITION. Let f be a mapping of 4 onto B. fis strongly continuous if it satisfies
the following condition: If U < Band f~1(U) is open in A4, then U Is open in B. A continuous
map f induces (1) a decomposition space € whose points are the sets f~1(y), and (2) a map
F of ¢ onto B which is continuous and 1 — 1; if { is strongly continuous, F is a homeomor-
phism ({1}, p. 65).

Let f be a linear map of the complex L into the complex K. Then f is strongly linear

if it maps each simplex onto one of the same dimension.

2.2. LemwmA. Let L be a complex and let f be a strongly continuous map of |L| onto X
satisfying the following conditions:

(1) fis 1—1 on each closed simplex of L.

(2) For each  in |L|, {~(f (2)) 1s finite.

(3) Let s, and s, be any two simplices of L, and let f, = f|5,. (a) If the sets f(s,) and f(s,)
intersect, then fs'f; maps 3, linearly onto 3,. (b) If | maps the vertices of s, and those of s,
onto the same set, then f;'f, maps 8, linearly onto 3,.

Then there is a triangulation (K, k) of X and a strongly linear map p of L onto K, such
that hp = {.

Proof. We define an abstract complex J. If v and w are vertices of K, let v be defined
to be equivalent to w if f(v) = f(w). If v is a vertex of K, let " denote its equivalence class.
The set of vertices of J will consist of these equivalence classes.

Let s =wv,...v, be a simplex of L. Since f is a homeomorphism on 3, the classes

Vg, ..., vy are distinct. We define the set {vq, ..., vy} to be a simplex of J. Because of (2), J
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is a locally finite abstract complex. Let K denote a geometric realization of J; if ¢ is a
vertex of J, let v* denote the corresponding vertex of K. There is a natural linear map p
of L onto K, defined by mapping the vertex v into v* and extending linearly; p is strongly
linear.

It follows that p is strongly continuous. We observe first that a subset U of |L] is
open if for every simplex s of I, U3 is open in §. (Then § - U is closed, so that for every
vertex v of L, Cl(Stv) — U is closed. Hence U N Stv is open for each v, so that U is open.)
Then strong continuity follows from strong linearity, since each closed simplex of L is the
homeomorphic image of a closed simplex of K.

Now p(x) = p(y) if and only if f(z) = f(y): Let « and y be points of |L| contained in
the simplices s, and s,, respectively. Let p, = p|s;. If f(x) = f(y), it follows from condition
(3a) that f3'f, = p2'p, on s; (so that p(x) = p(y)); if p(x) = p(y), the same result follows
from (3b) (so that f(x) =/(y)). Hence the decomposition space C of |L| induced by f is
the same as that induced by p. Since f and p are strongly continuous, they induce homeo-
morphisms ¥ and P, respectively, of C onto X and | K|, respectively. FP1is the desired

homeomorphism A.

2.3. LEMMA. Let L and f be as in 2.2, except that condition (3b) may fail. Let L, be the
first barycentric subdivision of L; then the pair (Ly, f) satisfies all the hypotheses of 2.2.

2.4. PrRopOSITION. Let A and B be closed subsets of the space X; let X =AU B. Let
(K, h) and (L, k) be triangulations of A and B, respectively, which are compatible on A N B.
Then there is a triangulation of X which induces triangulations of A and B which are sub-

divisions of the given ones.

Proof. Let K’ and L’ be subdivisions such that the triangulations (K, ) and (L', k)
induce equivalent triangulations of 4 N B. Let J denote the complex which is the disjoint
union of K’ and L’; let f be the map of [J| onto X which equals 2 on |K| and equals &
on |L|. Then f is strongly continuous: Let U be a subset of X such that f-*(U) is open in
|J|. Then f-1(U) 0 | K| is openin | K|, so that U N A is open in 4 (k is a homeomorphism).
Similarly, U n B is open in B. Then A — U and B — U are closed, so that X — U is closed
and U is open.

It is easy to check that (J, f) satisfies conditions (1), (2), and (3a) of 2.2. Let J; denote
the first barycentric subdivision of JJ. Then there is a triangulation (K, h) of X and a strongly
linear map p of J; onto K such hp =f. It follows from this equation that (K, h) induces
triangulations of 4 and B which are subdivisions of (K, k) and (L, k), respectively.



THE TRIANGULATION OF LOCALLY TRIANGULABLE SPACES 71

CmapTER II
Locally Polyhedral Spaces

3. Locally polyhedral structures. In this section we define the concept of locally
polyhedral space. The reasons for introducing this notion are utilitarian; it is essential to

our approach to the general triangulation theorem.

3.1. DerinNiTIiON. Let U be an open subset of X, let L be a finite complex, and let
h be a homeomorphism of U into |L| such that |L| =Cl(k(U)) and |L| —k(U) is the
polytope of a subcomplex of L. Then the triple (U, k, L) is said to be a polyhedral neighborhood
on X. We sometimes refer to a “simplex of U”, meaning a subset s of U such that k(%)

is a simplex of L.

3.2. DEFINITION. Let 4 be a covering of X by polyhedral neighborhoods. If ze X,

the index of x relative to 4, denoted by I 4 (x),is the maximum of the following set of integers:
{dim s|(U, h, L)€ A, s is a simplex of L, and h(z)€s}.

For example, let X consist of the coordinate planes in E,, and let 4 be the collection of
all polyhedral neighborhoods on X. Then for the origin, I, =0, for each point of the

coordinate axes, I, =1, and for every other point, I, =2,

3.3. DEFINITION. Let B be a covering of X by polyhedral neighborhoods satisfying
the following condition: 1f (U, k, L) € B, and z and y belong to the same simplex of U, then
Ig(x)=Ig(y). Given B, let 4 denote the collection of all polyhedral neighborhoods (U, &, L)
on X which satisfy the following condition: If z and y are two points of the simplex s of
U, then I;(x) =1Iz(y) =dims. Then 4 is a locally polyhedral structure on X, and B is a
basts for this structure. Note that B< A4, and that I, = 1,.

A locally polyhedral space is a separable metric space X, provided with a fixed locally
polyhedral structure 4. If X is a locally polyhedral space (the structure 4, although fixed,
is not usually mentioned), a polyhedral neighborhood on X will always mean an element of

the structure 4, and the index I (x) of x€ X will mean I, (z).

3.4. LeMMA. Let A be a locally polyhedral structure on X; let (U, h, LYEA. Let V be
open in U, and let J be a subcomplex of some subdivision of L such that CL(k(V)) =|J| and
|J| —h(V) is a subcomplex of J. Then (V,h|V,J)€A.

3.5. LEMMA. Let K be a finite complex; let s be an m-simplex of K; let x€s. Let A(K)
denote the maximum diameler of a simplex of K. Given & > 0, there is o subdivision K' of K
such that x lies in an m-simplex of K' and A(K’') <e.
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Proof. The first barycentric subdivision K, of K is defined inductively, extending to
K™ the subdivison of K”~» by means of radial lines from the barycenters of the n-sim-
plices of K. We modify this subdivision slightly. First subdivide K™ " barycentrically.
Let ye€s; consider the ray beginning at y and going through z. This ray intersects Bds in
a point belonging to some simplex of the subdivision of Bds; let the dimension of this
simplex be denoted by f(y, z). Let z denote the barycenter of s; if §(z, ) = m~1, subdivide
s barycentrically. Otherwise, choose a point y close to z such that f(y, ) =m-1, and
use radial lines from y instead of from z to subdivide s.

Subdivide the rest of K barycentrically; let this subdivision be denoted by K”. Then
« lies in an m-simplex of K”; by choosing y close enough to z, we may make A(K") as close
to A(K,) as we wish. Hence repeated applications of this method of subdivision will give
us the desired subdivision K’ of K.

3.6. CorOLLARY. Let X be a locally polyhedral space. If x€X and I(x) =m, there
are arbitrarily small polyhedral neighborhoods of x (i.e., elements of the structure A) in which

z lies in an m-simplex.

3.7. LeMMa. Let 2 and y be two points of the simplex s of the complex K. There is a

homeomorphism of St s onto wtself which carries x into y.

Proof. Let f be the map of CI(Sts) onto itself defined as follows: (1) f is the identity
on Fr(Sts), (2) f maps z into ¥, and (3) f is extended to Sts by means of radial lines from

x and y, respectively. Then h = f|Sts is the required homeomorphism.

3.8. PrRoroSITION. Let X be o metric space. If X may be covered by polyhedral neigh-
borhoods, and A is the collection of oll polyhedral meighborhoods on X, then A is a locally
polyhedral structure on X.

Proof. We need only to show that 4 is a basis for a structure. Given £ >0, let 4 (¢)
be the subset of A consisting of polyhedral neighborhoods (U, %, L) such that U has
diameter less than . It follows from 3.5 that I, = I 4. Let 2 and y belong to the simplex
s of U, where (U, b, L)eA. By 3.7, there are neighborhoods of 2 and y which are homeo-
morphie, the homeomorphism g carrying x into y. Then I4,(x) < I,{y), for some &, and

the proposition follows, by symmetry.

3.9. DErFiviTION. If X and A are defined as in 3.8, 4 is called the trivial locally
polyhedral structure on X. There are structures which are not trivial. Let K be a finite
complex and let ¢ be the identity map of |K| onto itself. The covering consisting of the
single polyhedral neighborhood (|K|, 4, K) is a basis for a locally polyhedral structure.
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If, for example, K consists of an n-simplex and its faces (n > 1), this structure is not the

trivial one.

3.10. DEFINITION. A map f of one locally polyhedral space X into another Y is
said to preserve index if for each x€ X, I(x) = I(f(x)).

3.11. DEFINITION. A subspace ¥ of X is said to be admissible if for each polyhedral
neighborhood (U, &, L) on X, Y contains every simplex of U which it intersects.

3.12. Prorositrow. Let X be a locally polyhedral space. Let Y be a closed admissible
subspace of X. Then Y has a naturally induced locally polyhedral structure relative to which

the inclusion map of Y into X preserves index.

Proof. Let A be the structure on X. We define a basis B for a structure on ¥. Let
(U, h,LYeA. k(U n Y) contains every simplex of L which it intersects, so that its closure is
the polytope of a subcomplex J of L. We show that |J| —A(U n Y) is the polytope of a
subcomplex of J. Let s be a simplex of J contained in [J| — (U n Y); let s” be a face of s.
Suppose s’ < (U N Y). Then since 2(U) is open in [L|, s<h(U). By definition of J, s
is a face of some simplex of L contained in A{U N Y), and since k(U N Y} is closed in A (U),
s< k(U n Y). This is a contradiction. Hence s’ < |J| — (U 0 ¥).

Then (U 0 Y, k| Y, J) is a polyhedral neighborhood on Y; let this neighborhood belong
to B. It is clear that if xe Y, Iz(x) = I, (). If z and y belong to the same simplexof U N ¥,
they belong to the same simplex of U, so that I,(x) =1I4(y). Then Iy(x) = I(y). Since
B obviously covers ¥, B is a basis for a locally polyhedral structure on Y. Relative to

this structure, the inclusion map preserves index.

4. The pseudo skeleton. The pseudo skeletons of a locally polyhedral space X are
closed subsets of X which break X up into pieces which are manifolds in much the same

way as the skeletons of a complex K break | K| up into cells.

4.1, DeFiniTioN. If X is a locally polyhedral space, the pseudo k-skeleton of X is
the subset of X consisting of all points « such that I(x) <k. It will be denoted by X*
(see (1], p. 400); we show in 4.2 that it is a closed subset of X. In general, X* depends on
the particular structure 4; only when A4 is the trivial structure is X* topologically deter-
mined. Le., in the example of 3.9, the k-skeleton and pseudo k-skeleton of | K| coincide.
Note that X* is an admissible subspace of X, by 3.3, so that by 3.12, X* has a naturally
induced locally polyhedral structure, relative to which the inclusion map preserves index.
Whenever we consider X* as a locally polyhedral space, we will suppose it is provided with

this structure.
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A word about dimension is in order. The dimension of X is well-defined, since X is
separable and metric. One shows easily that the locally polyhedral space X has dimension
n if and only if (1) for every polyhedral neighborhood (U, &, L) on X, dim L <n, and (2)

for some such neighborhood, dim L = n. It follows that X* has dimension not greater than k.

4.2. ProPoSITION. Let X be a locally polyhedral space. Then the set X™ is closed, and
X™ — X" is an m-manifold.

Proof. Let xe X — X™; then I(x) =k >m. Let (U, h, L) be a polyhedral neighborhood
such that z lies in a k-simplex s of U. Now 8¢ s contains no simplices of dimension less than
k, so that St s< X — X™. Since St s is open in X, X™ is closed.

Let zeX™ —X""'. Let (U, %, L) be a polyhedral neighborhood such that z lies
in the m-simplex t of U. Now St ¢ is open in X, so that (S¢¢) n X™ is open in X™ But
(Stty n X™ =t, by 3.3, and t is an m-cell neighborhood of xin X™ — X7, Hence X™ — X" !

is an m-manifold.

4.3. LemMA. Let X be a locally polyhedral space, let B a basis for the structure on X,
and let o(x) be any function on X such that o is constant on every simplex of every polyhedral
neighborhood of B. If I(x) = j, then there is a neighborhood V of x in X' such that « is constant
on V.

Proof. Let (U, b, L) be an element of B such that z lies in the j-simplex s of U. Let
V =s; then « is constant on V. Since ¥V = 8ts N X', V is open in X’.

4.4. COROLLARY. Assume the hypotheses of 4.3. Let Y < X be a connected set on which

I(z) ts constant. Then «(z) is also constant on Y.

Proof. Let 1(Y)=4. Then Y < X’. The subsets of ¥ on which «(x) is constant are

open in Y, by 4.3. Since Y is connected, there is only one such subset.

4.5. DEFINITION. Let X be a locally polyhedral space. A triangulation (K, A) of X
is said to be a proper triangulation if (K, h) induces a triangulation of X*, for each k. This
is equivalent to the requirement that I (z) should be constant on each simplex of X under
this triangulation. If the structure on X is not the trivial one, there may exist non-proper
triangulations. Consider the example of 3.9. Any homeomorphism g of |K| onto itself
defines a triangulation (K, g) of | K|; but g must map each simplex onto one of the same
dimension if (K, g) is to be proper.

4.6. ProrositroN. Let X be a locally polyhedral space of dimension n; let M =
X — X" Then

(1) M is a locally polyhedral space; it has a naturally induced locally polyhedral structure

relative to which the inclusion map of M into X preserves index.
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Q) M"*=M—-M=FrM.

(3) If X" is properly triangulated, this triangulation induces proper triangulation
of M.

Proof. Let a(x) denote the largest integer m such that x€Cl(X™ — X" '). Then a(x)
is constant on every simplex of every polyhedral neighborhood on X. M consists precisely
of those points of X for which «(x) =n. Hence M is an admissible subspace of X, and (1)
follows from 3.12. Tt is clear that (2) holds. To prove (3), let X"~' be properly triangulated.
By 4.4 and 4.5, each simplex of X"~ which intersects Fr M must lie in Fr M. Since Fr M
is closed, it is the polytope of a subcomplex of X", This induced triangulation of Fr M

is proper, since the inclusion map of Fr M into X"~ preserves index.

4.7. RemarK. The hypothesis that the triangulation of X"~ is proper is needed in
the preceding proposition. Consider the following example: Take two copies of £, and
identify them along the closed half-line x >0, y = 0. Then take another closed half-line
and identify its end point with the end point of the previous half-line. Consider the resulting
space X as a locally polyhedral space under the trivial structure. X! is the homeomorph
of a straight line, and X° is a single point dividing the line into two parts, one of which is
Fr M. Obviously, if a triangulation of X* is to induce a triangulation of Fr M, the point
X% must be a vertex in this triangulation. Hence the triangulation of X* must be proper.

Less trivial is the following example: Take two copies of E, and identify them on the
closed half-plane o >0, z = 0. Take another copy of this closed half-plane and identify it
with the previous half-plane along their y-axes. Take the trivial locally polyhedral structure
for this space X. X2 is a plane, and X' is a line running across this plane, dividing it into
two half-planes. Fr M is one of these closed half-planes. In the previous example, Fr M
was always a polyhedron in ¥ = X", whether the triangulation of ¥ was proper or not.
In the prefent example, this is not the case; there are clearly triangulations of Y relative
to which Fr M is not a polyhedron.

Our approach to the triangulation problem will be by induction on the dimension of
the space. We first choose a triangulation of Y and seek to extend this triangulation to
a triangulation of X. If we should happen to choose a triangulation of Y relative to which
Fr M is not a polyhedron, this would not be possible. Hence we shall require that the

triangulation of ¥ be a proper one.

5. Singularity of a point. The preceding proposition reduces our problem to that of
“‘extending” a proper triangulation of Fr M to M; the advantage is that M is a manifold
with boundary except possibly at points of Fr M. Let us study these points more

closely.
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5.1. DEFINITION. Let X be a locally polyhedral space; let x€X. Then x is said to
have singularity k with respect to X™ and X if k is the smallest number such that z has
arbitrarily small neighborhoods U such that U — X™ has k¥ components. We obtain in 5.5
an equivalent definition which is more usable. It will follow that every point of X has
finite singularity.

Let X have dimension ». Usually we are concerned with the singularity of a point with
respect to X"~ ' and X. If we say “z has singularity k”, the phrase “with respect to X"~*
and X will be understood. Further, x will be said to be non-singular if its singularity is
less than 2; otherwise it is singular.

Let M = X — X" '. The singular points x of X lie in Fr M: If z is in M, then z has a
connected neighborhood which does not intersect X" ', so that its singularity is 1. If

x is not in M, it has a neighborhood which does not intersect M, so that z has singularity 0.

5.2. LEmMA. Let K be a complex in E,, let L be a subcomplex of K, and let x be a point
of the simplex s of K. Let S be a spherical neighborhood of x in | K |, lying in St s. Then each

component of St s — |L| contains exactly one component of S — |L|.

Proof. Project Sts onto S by means of rays from x. This homeomorphism carries

each simplex into itself, so that it maps St s — |L| onto S — | L|. The lemma follows.

5.3. COROLLARY. Assume the hypotheses of the preceding lemma. If U is any neigh-
borhood of x in | K| which lies in Sts, then U —|L| has at least as many components as
Sts—|L].

54. REMARK. Let X be a locally polyhedral space; let (U, h, L) be a polyhedral
neighborhood on X and let « belong to the simplex s of U. 8¢ s is open in U, and CI(h(Sts))

is the polytope of a subcomplex J of L. Moreover, |J| —h(Sts) is a subcomplex of J.
By 3.4, (Sts, h [ St s, J) is a polyhedral neighborhood on X. The statement “Let (Sts, &, J)

be a polyhedral neighborhood of #”” means that it is derived in this way and that z is in s.

5.5. PrRoPOSITION. Let X be a locally polyhedral space; let (Sts, k, J) be a polyhedral
neighborkood of x € X. Let Sts — X™ have k components. Then x has singularity k with respect
to X™ and X.

Proof. Given ¢ > 0, let S be a spherical neighborhood of % (x) having diameter less than
¢ and lying in St (k(s)). Then S — A (X™) has k components, by 5.2, and so does 271(S) — X™.
By definition, the singularity of x with respect to X™ and X is not greater than £.

On the other hand, if U is any neighborhood of 2 which is small enough to lie in Sts,
then by 5.3, U — X™ must have at least k components. Hence the singularity of « with
respect to X™ and X is not less than k.
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5.6. CoroLLARY. Let X be a locally polyhedral space, and let o (x) equal the singularity
of x with respect to X™ and X. Then « is constant on every simplex of every polyhedral neigh-
borhood on X.

5.7. LeEMMA. Let X be a locally polyhedral space of dimension n such that X =
OU(X —X™Y). Let § <n—1, and suppose X has no singular points of index greater than j. If
2€X has singularity k (with respect to X" and X), then i has singularity k with respect to
X7 and X.

Proof. Let (Sts, h, L) be a polyhedral neighborhood of z (5.4). Then Sts — X" ' has k
components; we show that Sts — X/ also has £ components. Note that Sts consists entirely
of n-simplices and their faces, since X =Cl(X — X" ). Let yeSts n (X" ' — X). Theny
lies in some proper face ¢ of an n-simplex of St s. Since y has index greater than j, y is
non-singular, so that St ¢ — X”~! has exactly one component, which must be contained in
some component of Sts — X"~ '. Since St ¢ is open in X, y is a limit point of only one com-
ponent of Sts — X1,

Let the components of Sts—X""! be denoted by C;(¢=1, ..., k). Let D;=
C; N (Sts —X7%). Each set D, is connected, consisting of C; plus some of its limit points. As
just shown, the sets D, are disjoint and their union is Sts — X’. Hence they are the

components of Sts — X?, and there are exactly & of them.

5.8. PRoPOSITION. Let X be a locally polyhedral space of dimension n such that X =
CUX — X" Y); suppose X has no singular points. If x€X has index n—1 or n—2,it has a

neighborhood whose closure is a closed n-cell, while if x has index n — 1, it has no neighborhood

which is an n-cell.

Proof. Let (Sts, k, L) be a polyhedral neighborhood of x such that dim s= I(x).
Let ¢ denote the simplex k(s) of L; then L = CI(St t), and L consists entirely of n-simplices
and their faces.

Suppose z has index n — 1. L contains only one n-simplex, since otherwise St¢{ —¢ =
8tt—k(X"') would not be connected. Then |L| is a closed n-simplex and k(z) lies on the
boundary of this closed n-simplex.

Suppose x has index n — 2. Consider, for each n-simplex ¢, of L, the face e, of ¢; opposite
¢. Let N denote the collection of these 1-simplices e, and their vertices. Then |N| is a con-
nected 1-manifold with boundary: If |N| were not connected, then the n-simplices of L
could be divided into two disjoint sets such that no simplex of the first set has an (n — 1)-
dimensional face in common with a simplex of the second set. Then St ¢ —t = St ¢ — k(X" %)
would not be connected, contradicting 5.7. If |N ] is not a 1-manifold with boundary, then

three l-simplices of N meet at a vertex v. If e, and e, meet at v, then ¢, and ¢, have an
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(n — 1)-dimensional face r in common; 7 is the face spanned by v and ¢. If the third n-
simplex ¢, has r as a face, then the points of #-1(r) have index n — 1, so that St r — r equals
Str— k(X" ). But Str — r is not connected, contradicting the fact that X has no singular
points.

Then | N| is a homeomorph of a closed line segment or a circle. From this, it is readily
shown by combinatorial means that |L| is a closed n-cell. In the former case, z lies on its

boundary; in the latter case, x lies in its interior.

Caarrer III
The Composition Space

The preceding proposition indicates that M would be more like a manifold with
boundary if one could dispose of the singular points of Fr M. The accomplishment of
this task occupies the present chapter. We form a new space by “pulling M apart’” along
the singular parts of its frontier. The new space has fewer singular points than M (7.9),
but it is equivalent to M as far as triangulability is concerned (8.5).

The following assumption holds throughout the chapter: X is a locally polyhedral space
of dimension » such that (1) X = Cl(X — X"™1), and (2) X has no singular points of index

greater than the fixed number § (j <n —1).

6. Defining the space. Let A4, denote the set of all points of X having index § and
singularity k£, £ > 1. Let 4 = U, 4,. We note certain important facts:

(1) If (U, h, L) is a polyhedral neighborhood on X, then A, contains every simplex
of U which it intersects, by 5.6.

(2) The sets 4, are disjoint open subsets of X/, by 4.3.

(3) A=UA4,. If xis a limit point of 4, each polyhedral neighborhood of x intersects
only a finite number of the sets 4,, by (1). Then z is a limit point of some A,.

(4) Let zed,, and let (Sis, h,J) be a polyhedral neighborhood of x such that
dim s =4. Then Sts— X""! has k components, by 5.5, and so does Sts — X’, by 5.7.
Also, Sts — X?=8ts —s =Sts — A,.

6.1. LEMMA. Let €4, Let (Sts,, k;, J;) be polyhedral neighborhoods of x (i =1, 2, 3).
If C, is a component of Sts, — X7, there is exactly one component Cy of Sts, — X7 such that
C, 0 C, has x as a limit point. If C, is the component of Stsy — X’ such that C, N C, has

as a limit point, then so does Cy, N C.

Proof. This follows immediately from 5.2.
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6.2. DeFINITION. We define the composition space X*. Its points consist of one copy
of each point of X — 4, along with % copies of each point of 4, (k=2,3,...).

We define a function w. Choose for each point x of 4, a fixed polyhedral neighborhood
(Stsy, kg, J;) of x. For each distinct component €% of Sts, — X7, let w(C%, x) denote a dif-
ferent one of the copies of z in X* (there are k such components, and k copies of z). Then
if (Sts, k, J) is any polyhedral neighborhood of x and (' is any component of Sts — X7,
there is exactly one component O, of Sts, — X7 such that C'n C% has z as a limit point.
Define o (C, z) = o (C%, ). By 6.1, w has the following important property: If (Sts,, k;, J;)
is a polyhedral neighborhood of x€A4 and C, is a component of Sts; — X’ (i =1, 2), then
w (04, ®) = w (Cy, ) if and only if C; N C, has x as a limit point.

Let 7 be the natural projection of X* onto X. We define a basis for open sets in X*:

(4) If U is open in X, n~1(U) 18 a basis element. (Hence m is continuous.)

(B) Let x€A4 and let (Sts, k, J) be any polyhedral neighborhood of z such that
dim s =4. Let ¢ be any component of Sts —s. Since sc Ay, w(C, 2) is defined for each
point z of s. Let the set
W(0) =n-1(C) U {w(C, z)|z€s}
be a basis element.
These neighborhoods will be referred to as neighborhoods of type (4) and of type (B),

respectively.

6.3. PROPOSITION. X* is a Hausdorff space.

Proof. We must show that if y is contained in the intersection of two basis elements,
50 is a basis element containing y. Suppose the basis elements are of type (B), say W (C))
(¢ =1, 2), where O, is a component of Sts; — s,. (Similar arguments apply in the other cases.)
If yen-1(C,), then yex-1(C,) as well. O, is open in X, since X is locally connected and C;
is a component of the open set Sis; —s,. Then -1 (0, N 0,) is the required basis element.

Otherwise, y = w (Cy, ) = w(Cy, 2), for some z in s, N s,. Let (Sts;, kg, J3) be a poly-
hedral neighborhood of x such that Sts,< Sts; N Sts, and dim s; =4 (by 3.6). Let C; be
the component of Sts; — sy such that w(C,, x) =y. Then W(Cy)< W (Cy) N W(0,).

Hence X* is a topological space. To show it is Hausdorff, let z, y € X* and let 7 (z) =
7t(y} =z (the other case is trivial). Let (Sts, k, J) be a polyhedral neighborhood of z such
that dim s =j. Then 2 = w (C}, 2z) and y = w (C,, z), where C, and C, are distinct components

of Sts —s. W(C,) and W (C,) are disjoint neighborhoods of = and y, respectively.

6.4. LEMMA. Let ye X*, and let U be a neighborhood of y. If n(y)eX — A, U contains
a neighborhood of y of type (A); ¢f 7 (y) € A, one of type (B).
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Proof. Let n(y)eX — A. If U contains no neighborhood of y of type (4), there is a
neighborhood W (C) of y contained in U. Then yen—1(C), since z(y) is not in A, so that
7~1(C) < U is a neighborhood of y of type (4), contrary to hypothesis.

Let 7 (y) € Ay. If U contains no neighborhood of y of type (B), there is a neighborhood
a1(V) of y of type (4) contained in U. There is a polyhedral neighborhood (Sts, k, J) of
7 (y) such that dim s =4 and Sts< V. For some component D of Sts —s, w(D,z(y)) =y.
Then W (D)< U is a neighborhood of y of type-(B), contrary to hypothesis.

6.5. ProPosiTION. X* has a countable basis.

Proof. Let U,, U,, ... be a countable basis for X. Then the collection {n-1(U,)} contains
arbitrarily small neighborhoods of every point in z—1(X — A4), by 6.4. On the other hand,
there is a countable collection {(Stsy, ¢, Jix)} of polyhedral neighborhoods on X such
that (1) dim s, =14, (2) sg< 4, and (3) the collection contains arbitrarily small neighbor-
hoods of each point of 4. This collection is defined by choosing a polyhedral neighborhood
(St S, Gixs J ) satisfying (1) and (2) such that U, = Stsy < U,, for each pair of indices ¢, k&
for which such a polyhedral neighborhood exists. From each polyhedral neighborhood in
this collection may be derived a finite number of neighborhoods in X* of type (B); the
resulting derived collection will still be countable. Using 6.4, one may prove that this derived
collection contains arbitrarily small neighborhoods of each point of 7~1(4). The union of

these two collections of open sets is a countable basis for X*.

6.6. PROPOSITION. The map 7 is strongly continuous.

Proof. Let U be a subset of X such that 7-1(U) is open in X*. Let ze U. If x€X — A4,
7~ (x) has a neighborhood 7z-1 (V) of type (A4) contained in 5z~ (U). Then V is a neighborhood
of x contained in U.

If xeA;, let yy, ..., ¥, be the points of m~1(x). There is a neighborhood W(C,) of y;
of type (B) contained in 71 (U), derived from the polyhedral neighborhood (Sts;, k;, J ;) of z.
There is a polyhedral neighborhood (Sts, %, J) of = such that dim s=4 and Sts< N 8ts;.
Let D; be the component of Sts—s such that e (D, z)=v;. Then W(D)c W(C)<
a=1(U). The set z-1(Sts) = U W (D,) is contained in ~1(U), so that Sts is a neighborhood
of « contained in U.

Hence U is open, and 7 is strongly continuous.

7. Imposing a locally polyhedral structure. We recall some facts about covering
maps. If p maps E into B and f maps Y into B, then a map f* of the subset Z of Y into E is
said to be a lifting of f over Z if for every 2€Z, pf*(2) = f(2). A map p of E onto B is said

to be a covering map if each point x of B has a neighborhood V such that p maps each of
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the components of p~1(¥V) homeomorphically onto V. It is a basic proposition on covering
maps that if p is a covering map and f is a map of the simply connected, arcwise connected,
locally arcwise connected space Y into B, then a lifting of f over a single point of ¥ may

be uniquely extended to a lifting of f over all of Y.

7.1. LeMMA. Let f map Z into X and let f* be a (not necessarily continuous) map of Z

into X* which is a lifting of f over Z. Then f* is continuous at each point of f1(X — A).

Proof. This follows immediately from 6.4.

7.2. Lemma. Let W (C) be a neighborhood on X* of type (B), derived from (Sis, h, L).
Then 7t maps W (C) homeomorphically onto C U s.

Proof. Clearly st| W(C) is continuous and 1 —1; let g denote the inverse map. By
7.1, g is continuous at each point of C. Let x€s. Let U be a neighborhood of g{z) =y =
(C, z) in W (C). Then U is open in X* and contains a neighborhood W (D) of ¥ of type (B),
derived from (Stt, k, J). Let V=D Ut then V< C Us, since Dc C and t< s. Each com-
ponent of St ¢ — ¢ is contained in a different component of Sts — s, so that V =(C U s) N (St ¢).

Hence V is open in C U s. Since g(V) < U, g is continuous at x.

7.3. LEMMA. Let s be a simplex; let h map 3§ homeomorphically into X, mapping s
into Ay. Let ' denote 30 h~1(A4,). Then n1h(s’) has k components, each of whose closures is

mapped homeomorphically onto h(5) by .

Proof. We show that 7 is a covering map of the space 7-1(A4) onto 4. Let x€ 4, and
let (St ¢, k, J) be a polyhedral neighborhood of « such that dim ¢ =. Then ¢ is a neighbor-
hood of x in 4. Let C; be a component of St ¢ — ¢, and let s, denote W(C)) N w1 (A4). Thenn
maps s; homeomorphically onto ¢, by 7.2, and the sets s; are merely the components of
m1(2).

Let z be a fixed point of s', and let ¥, ..., y; be the points of 71k (z). Define ,(z) = y,;
then %, is a lifting of h over z, so that it may be uniquely extended to a lifting &, of b over
all of §’. The sets k;(s") are disjoint, for if A,(s’) and k,,(s’) had the point ¢ in common, then
both %, and &, would be the unique extension to s’ of that lifting of - over A~17(q) which
carries this point into ¢. But they disagree at 2. Since the sets k;(s") are k in number, their
union is 1A (s").

Now b, is defined on ¢'; if wes — ¢, define A, (w) =n1h(w). By 7.1, k; is continuous
at, each point of § —&’; since s’ is open in 3, h, is still continuous at each point of s’. The
components of n-1h(s") are the sets h;(s'); since 8 is compact, their closures are the sets
k,(3). Finally, = is a homeomorphism of %,(8) onto 4 (), since k,(3) is compact.

6 ~ 563804, Acta mathematica. 97. Imprims lo 11 avril 1957.
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7.4. LEMMA. Let s be a simplex; let b map § homeomorphically into X, mapping s into
X — A. Then there is a unique lifting of k to a homeomorphism h* of § into X*.

Proof. Let s’ denote the set § — h~1(A4). If z€s’, we must define A* () =7-1h(z).

Let z€5 — ¢’, and let = h(2). Choose a polyhedral neighborhood (St ¢, k, J) of « such
that dim ¢ = 4. There is one and only one component C of St ¢ — ¢ such that C N A(s') has
as a limit point: Since z is alimit point of (St ¢ N A{s")) = (St ¢ —t), there is at least one such
component C. On the other hand, if U, is the g-neighborhood of z in § (where ¢ is small
enough that k(U,) < St ¢), then 2 (U, n s’), being connected, is contained in some component
C of St ¢ —t. Hence there is only one such component C.

Define b*(z) = w(C, z). If * is to be continuous, A% (z) must be so defined. For 2*(2)
must be a limit point of A*(U, Ns")c w1(0)c W(C), and w(C, z) is only the point of
7~ (x) which can be a limit point of W(C).

This definition of A*(z) is independent of the choice of (St¢, k, J). Let (St¢', ¥, J')
be a polyhedral neighborhood of x such that dim ¢ = 4. z is alimit point of (St ) N (St ¢') N
k(s"), so that z is a limit point of C' N €' N A(s'), for some component ¢’ of Stt' —¢'. If
(Stt', k', J’) were used to define h*(z), we would define 2*(z) = w(C’, z). But o (¢, x) =
w (0, 2).

Finally, we show that A* is continuous at z. Let W (D) be a neighborhood of A*(z)
of type (B), derived from (Str, g, L). Then w (D, ) = k*(2). Let ¢ be small enough that
h(U,)< Str. We show that A*(U,)< W(D). First let 2’eU,—s". Now h(U,ns")< D,
so that D is the only component of Str —r such that 2z’ could be a limit point of
DN k(s’). By the preceding paragraph, we must have 1*(2') = w (D, k(z)) = W (D). Hence
(U, —s')c W(D).Sincealso * (U, N §') = w1 (D) = W(D),it follows that 2* (U,) = W (D).

1* is automatically continuous at each point of s’, so that it is continuous on §. It is
1 —1, since 4 is, so that it is a homeomorphism on 5. We have already shown that R* is

unique.

7.5. DEFINITION. Let K’ be a subdivision of K such that for each simplex s of K,
the simplex of K containing s contains a vertex of s. Then K’ is called an admissible sub-
division. Examples of such subdivisions include the barycentric subdivisions of K and the

“modified” barycentric subdivisions defined in 3.5.

7.6. LEMmMA. Let f be a map of the complex K into X; consider the following conditions
on the pair (K, f):

(1) Both f1(4,) and f~1(A,) contain every simplex of K which they intersect, for each k.

(2) If the vertices of a simplex of K lie in f~1(4,), so does the simplez.

(3) If a simplex lies in f-1(A4,), so does at least one of its vertices.
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Let (K, f) satisfy condition (1), and let K’ be an admissible subdivision of K. Then

(K', ) satisfies all three conditions.

7.7. LEMMA. Let b be a homeomorphism of K into X such that (K, h) satisfies conditions
(1) to (3) of 7.6. Then there is a triangulation (L, g) of x~1h(| K |) and a strongly linear map
p of L onto K such that hp =ng (see 2.1).

Proof. We define an abstract complex J as follows: Let V denote the set of vertices
of K. Let W be a set which is in one-to-one correspondence with the set m~1A(V); if
yen-1h(V), let 4 denote the corresponding point of W. The vertices of J are the points
of W. The simplices of J are defined as follows:

(a) Let s =v,...v, be a simplex of K lying in A1(4,). Then n—1h(s) consists of &k
disjoint homeomorphs of s, by 7.3. Let { be one of the components of 71 (s); then f contains
precisely one point y, of the set z~1h(v,) for each i. Let {yo, ..., yn} be a simplex of J.
There are k such distinet simplices, by condition (3).

(b) Let s =9, ..., be a simplex of K lying in A~1(X — A). There is a unique lifting of
the map % of 5 into X into a map »* of § into X*. A*(5) contains exactly one point y; of
the set w15 (v,), for each 4. Let {yg, ..., ym} be a simplex in J. Each such simplex is distinct
from one of the previous type (if the vertices of a simplex s lie in A-1(4,) and some vertex
lies in h~1(Ay), then s < h™1(4,)).

Each face of a simplex of J is also a simplex of J (the fact that 2* is unique is essential
here). There is a natural projection of J onto K which carries 3’ into A~z (y); it is strongly
linear and maps at most a finite number of simplices of J onto any one simplex of K.
Hence J is a locally finite abstract complex.

Let L be a geometric realization of J; let ¥* denote the vertex of L corresponding to
the vertex y’ of J. Let p be the linear extension to L of the map which carries the vertex
y* into k17 (y). We define the homeomorphism g. Let s =4 ... ym be a simplex of L.
If p(s) Hes in h1(4,), then m2hp(s) consists of k components, to one of whose closures
Yo> ---» Y belong. 7 is a homeomorphism of this closure onto hp(3), so that n-*thp =g
maps § homeomorphically onto this closure. On the other hand, if p(s) lies in A~1(X — 4),
there is a unique lifting of the map A of p(3) into X to a map &* of p(3) into X*. Let g =A*p
on 8.

The map g is defined on each closed simplex of L; it is readily verified that these defini-
tions agree on common faces, so that g is continuous. It is also readily verified that g is
1 — 1, that it is a lifting of kp, and that it maps |L| onto n—*h(|K|).

1t follows that g is a homeomorphism: Let v be a vertex of K. The map g is a homeo-

morphism on CI(St(p~1(v))), since this closure is compact. Hence it suffices to show that
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g(St(p~*(v))) is open in g (| L|). But this set equals 7~1% (Stv), which is open in z—1h(|K|) =
g(|L]).
7.8. PrROPOSITION. X* is a locally polyhedral space of dimension n; it has a

naturally induced locally polyhedral structure relative to which m preserves index and X* =
ClX* —(X™*)" 1.

Proof. We define a basis B for a locally polyhedral structure on X*. Let (U, k, J)
be a polyhedral neighborhood on X; let ¥ be an open set such that ¥ < U and |J| — k(V)
is a polyhedron in J. Consider a subdivision J’ of J in which |J| —k(V) is a subcomplex;
then k(V) is a subcomplex H of J’. The pair (H, k| H) satisfies condition (1) of 7.6. Let
H'’ be any admissible subdivision of H. Then there is a triangulation (L, g) of z-1(V) and
a strongly linear map p of L onto H’ such that k1p =mg. The set x~1(V) is open in X*,
and Cl(g*n~1(V)) = |L|. Moreover, |L| —g-'n-1(V) is a subcomplex of L, because
|H'| —k(V) is a subcomplex of H’. Define

(@1(V), 97 L)

to be an element of B. This polyhedral neighborhood on X* is said to be derived from
(U, k, J). Obviously, B covers X*.

Let yeX*; let x =n(y). Then I,(y) < I(x), since each element of B is derived from
a polyhedral neighborhood on X. Let (U, k, J) be a polyhedral neighborhood of z. If
k(x) lies in an m-simplex of J, there is a complex H’ defined as in the preceding paragraph
such that k(x) lies in an m-simplex of H’ (by 3.5). Then y lies in an m-simplex of the derived
neighborhood (n~1(V), g2, L). Hence I(y) > I(x).

Since Ig(y) = I(x), Iy is constant on each simplex of an element of B. Hence B is
a basis for a structure, and relative to this structure, 7w preserves index.

To show that X™* is metrizable, note that it is a Hausdorff space with a countable basis;
being locally compact, it is also regular. Every regular space with a countable basis is
metrizable ([1], p.81). Hence X* is a locally polyhedral space. X* = Cl(X* — (X*)*"1),
since every neighborhood of type (4) or (B) (see 6.2) must intersect 7~ (X — X" 1),

7.9. PROPOSITION. X* has no singular points of index greater than j — 1.

Proof. Let y be a point of X* having index greater than j — 1; let « = (y). First,
suppose € X — A. Then z is non-singular. Let ¥ be a neighborhood of y such that ¥ is
compact and does not intersect 7—1(4). Then x is a homeomorphism on V. Since V =
=1 (n(V)) and 7 is strongly continuous, (V) is open in X. Now x maps ¥ homeomorphically
onto (V) and carries (X*)" ! onto X", so that x and y have the same singularity (by

5.1). Hence y is non-singular.
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Second, suppose x€A. Then x€ A, for some k, since 4 =U4,;; and I(x) =4. Some
neighborhood U of z in X’ consists entirely of points having the same singularity and
index as z (4.3); since U intersects 4;, x € A,. Let W (C) be a neighborhood of y of type
(B), derived from the polyhedral neighborhood (Sts, %, L) of x. Now # maps W (C) homeo-
morphically onto €' U s, mapping W (C) — (X*)’ onto (C Us) — X’ = C, which is connected.
In the preceding paragraph, we showed that X* has no singular points of index greater

than § (since 4 < X’). Then by 5.7 and 6.4, y is non-singular.

8. Triangulating the space. The following two definitions hold for any locally poly-
hedral space X, without the assumption stated at the beginning of this chapter.

8.1. DeFiNiTION. Let (K, k) be a triangulation of some subset of X, and let (U, &, J)
be a polyhedral neighborhood of x. Then (K, &) and (U, &, J) are said to be locally compatible
at x if there is a neighborhood V of A=!(x) in | K| such that (1) h(V)<= U, and (2) there is
a subcomplex H of some subdivision of K such that |H| =V and kk is a linear map of
H into J. The set kh (V) is clearly a polyhedron in J; it follows from 1.1 that there are sub-
divisions H' and J’ of H and J respectively, such that kk a linear isomorphism of H' onto

a subcomplex of J'.

8.2. DErINITION. The locally polyhedral space X is said to possess property T' if
the following holds:

Let the points of X° be denoted by x;, z,, ... Given a polyhedral neighborhood
(U, ks, J ;) of z;, for each x, and a proper triangulation of X" ! which is locally compatible
with (U, k;, J,) at x;, there exists a proper triangulation of X which is compatible with
the given triangulation of X"~ and locally compatible with (U, k;, J;) at x;, for each 1.
(The purpose of the “local compatibility” part of this definition will become clear later—
9.11.)

8.3. LEMMA. Let p be a strongly linear map of the complex L onto K; let p~1(x) be finite
for each z. If L' is a subdivision of L, there are subdivisions L” and K" of L' and K respectively,

such that p is a strongly linear map of L" onto K".

Proof. It K" is any subdivision of K, then K" naturally induces a subdivision L” of L
such that p is a strongly linear map of L” onto K”. We must so choose the subdivision K"
that the induced subdivision L” is a subdivision of L'. We proceed as follows: For each
simplex s of K, there are a finite number of simplices ¢, ..., ¢ of L which p maps homeo-
morphically onto s. L’ induces a subdivision of each set {;; then L’ induces several subdivi-
sions of 5. Order the simplices of K: s,, s,, ... Let K, = K; suppose a subdivision K,,_; of

K is given. Now L’ induces several subdivisions of §,, and K,_, induces another sub-
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division of §,,. Take a subdivision of §,, which is a common subdivision of all these; it may
be extended to a subdivision K, of K,_, without affecting any simplex outside the star
of §, in K,_;. If K is not finite, the sequence K;, K, ... is infinite. But each simplex of

K is subdivided only a finite number of times, so that a limiting complex K" is obtained.

8.4. LEmMMA. Let (K, k) be a triangulation of ¥ < X, and let (L, g) be a triangulation
of w1(Y)c X*. Let p be a strongly linear map of L onto K, such that hp = mg (see 7.7).
Let (U, k, J) be a polyhedral neighborhood of x€Y. Then (U, k,J) and (K, k) are locally
compatible at x if and only if there is a polyhedral neighborhood on X* derived from (U, k, J)
which is locally compatible with (L, g) at each point of 1 (x).

Proof. Let us recall how a polyhedral neighborhood on X* is derived from (U, k, J)
{7.8). Let V be a suitable open set in X and A’ a suitable subcomplex of a subdivision of J.
There is a triangulation (I, g) of z~1(V), and a strongly linear map p of L onto H’ such
that k-1p =z g. Then (m~1(V), g1, L) is a polyhedral neighborhood on X*.

Suppose that (U, k, J) and (K, k) are locally compatible at . Then V and H' may
so be chosen that there is a neighborhood W of h=2(z) in | K| such that W is the polytope
of a subecomplex of a subdivision K’ of K and kk is a linear isomorphism of this subcomplex
into H'. Let L’ be the subdivision of L induced by K.

r——9 L xx._ 8
! |

§ " ’)
, h 1 ,

K — X H

Now p~1(W) is a subcomplex of L', and p~1(W) is a neighborhood of g~ (z~1(x)) in |L|.
It is easily seen that g-lg is linear on p~1(W), since it equals p~1khp on each simplex of
p~1(W). Then the derived neighborhood (z~1(V), g-1, L) and (L, g) are locally compatible
at each point of 7#~1(x).

Conversely, suppose that (n~1(V), g%, L) and (L, g) are locally compatible at each point
#; of w~1(z). Then there is a neighborhood U, of g~ (y,) in |L| such that (1) g(U,) cz1(V),
and (2) there is a subdivision L, of L such that U, is the polytope of a subcomplex of L,
and g-1g is a linear map of this subcomplex into L. Let L’ be a common subdivision of
the L;; in addition, let g~1(y,) be a vertex of L’. By 8.3, there are subdivisions L” and K"
of I’ and K respectively such that p is a strongly linear map of L” onto K”. Now A~1(x)
is a vertex in K"; let V denote the star of A~*(x) in K. Then kh is linear on every simplex
s of K” contained in V, since it equals pg—1gp~! on s. Hence (K, k) and (U, k, J) are locally

compatible at .
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8.5. ProrostTioN. If X* has property T, so does X.

Proof. Let the points of X® be denoted by =, x,, .... Let (U,, k;, J;) be a polyhedral
neighborhood of w,, for each 7, and let (K, k) be a proper triangulation of X"~! which is
locally compatible with (U, k,, J;) at x,, for each i. By 4.4 and 4.5, h1(A,) contains each
simplex of K which it intersects. Then 2-1(d,) does as well, so that (K, k) satisfies condition
(1) of 7.6. Let K; be the first barycentric subdivision of K. By 7.7, there is a triangulation
(L, g) of w2h(|K|) = (X*)" ', and a strongly linear map p of L onto K, such that hp =ng.
The triangulation (L, g) is proper, since p is strongly linear and ; preserves index. By
8.4, for each ¢ there is a polyhedral neighborhood of z—1(x,) derived from (U, k;, J,) such
that (L, g) is locally compatible with this derived neighborhood at each point of 7w—1(z;).
Since X* has property 7', by hypothesis, there is a triangulation (L, g) of X* which is
compatible with (L, g} on (X*)*~' and locally compatible with this derived polyhedral
neighborhood at each point of #—(x,).

Let L, and L, be subdivisions of L and L respectively which induce equivalent triangula-
tions of (X*)*"!. Then « =g-'g is a linear isomorphism of L, onto a subcomplex of L;.
By 8.3, there are subdivisions L, and K, of L, and K, respectively, such that p is a strongly
linear map of L, onto K,. Now (L,, &) induces a subdivision of a subcomplex of L, which
may be extended to a subdivision L, of L;, by 1.1. Then « is a linear isomorphism of L,
into L,. If we replace K,, L,, and L, by their barycentric subdivisions of order m — 2,

K., L,, and L, respectively, then o is still a linear isomorphism and p is still strongly linear.

I‘m g — X*
:
oc\\ 1
Lm g — (X*)ﬂ«l f
, bl
\ ¥
K, h - Xxn-1 ‘
\ |
N
N v
N

Let f denote the map =g of L, onto X. Then (L,, f) satisfies condition (1) of 7.6; this
follows from the fact that (K,, &) satisfies this condition, so that (L,, 7¢) does as well. Then
(Ly, f) satisfies all three conditions of the lemma. Using this fact, we show that (L, f)
satisfies all the conditions of 2.2, except (3b). First, f is strongly continuous, because g
is a homeomorphism and x is strongly continuous. Second, if s is a simplex of Ly, then f

is1 —1 on§: If sin «(L,), f restricted to § equals ¢Apa—1 restricted to 3. If s is not in a (L),
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and f(x) = f(y) for x =y, then f(x)€ A4, for some k. Now 5N f~1(4,) consists of some of the
faces s, ..., s,, of s. All vertices of sy, ..., s, lie in f1(4}), and some vertex of one of them
lies in f~1(A,). Let ¢ be the face spanned by all the vertices of the s;; then t < f~1(4,) and
x, y €f. This contradicts the fact that ¢ is in «(L,), so that fis 1 — 1 on £,

Condition (2) is clearly satisfied. Finally, let s; and s, be two simplices of Ly such
that f(s;) and f(s,) intersect. s; and s, must lie in «(L;}; and pa-! maps them linearly
onto the same simplex of K. Condition (3a) follows at once.

By 2.2 and 2.3, there is a triangulation (K, h) of X and a strongly linear map p of L,
onto K such that hp = f =ng. Note that p maps two points of L, into the same point if
and only if they are in «(L,) and pa~! maps them into the same point. Hence a induces
a linear isomorphism § of K, into K such that pa =gp. (Then K, h, p, and g “fill in”’ the
missing corner of the preceding diagram.) It follows that hf =4k, so that (K, h) and
(K4, }) induce equivalent triangulations of X"~'. Then (K, h) is compatible with (K, A)
on X" '; and (K, h) is proper. Finally, it follows from 8.4 that (K, h) and (U, k,, J,) are

locally compatible at x,, for each 4.

CHAPTER IV
The General Triangulation Theorem

9. The following proposition summarizes the results of the preceding chapters.

9.1. PROPOSITION. In order to prove that every locally polyhedral space of dimension
n has property T, it is sufficient to prove that property T is possessed by those spaces X of
dimension n such that (1) X has no singular points, and (2) X = CI{X — X" ).

Proof. Let X be any locally polyhedral space of dimension n. Let M =X — X1,
M is a locally polyhedral space of dimension n; if M has property 7', so does X: Let the
points of X° be denoted by xy, x,, ...; let (U, k;, J;) be a polyhedral neighborhood of z;;
and let (K, k) be a proper triangulation of X"~ * which is locally compatible with (U, k;, J ;)
at z;, for each . Now (K, k) induces a proper triangulation of Fr M = M"~ (by 4.6). If
z;is in M, then (U, N M, k, L,) is a polyhedral neighborhood of x; in M, where L, is a sub-
complex of J,. If M has property 7, there is a triangulation (L, g) of /7 which is compatible
with (K, h) on Fr M and locally compatible with (U, N M, k,, L,) at z,. By 2.4, there is a
triangulation (K, h) of X such that the induced triangulations of X" ! and M are sub-
divisions of (K, 2) and (L, g), respectively. Hence (K, h) is proper, and it is easily shown
that (K, h) is locally compatible with (U, k,, J,) at ;.
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Let M be denoted by Y,; Y, is a locally polyhedral space satisfying the hypotheses
of Chapter III, for j =n — 1. Let Y,_, denote the composition space (¥,)*; then Y,_, is
a locally polyhedral space which also satisfies the hypotheses of Chapter 111, for j =n —2
(by 7.8 and 7.9). In general, let Y, = (Y .1)*; Y, has no singular points of index greater
than k — 1. Consider the space Y; it satisfies (1) and (2) of the present proposition. If ¥,
has property 7T, it follows from a finite number of applications of 8.5 that Y, =M has
property T’ also. Then X has property 7' as well.

9.2. THEOREM. Let M be a 2-manifold with boundary. Given a triangulation of Bd M,

there is a triangulation of M which is compatible with the given triangulation of Bd M.

Proof. Let (L, g) be a triangulation of Bd M. There exists a triangulation (K, h) of
M ([6], p. 167). Clearly there are subdivisions L', K’ of L, K respectively, such that A-1g
carries each simplex of L' onto a simplex of K’ (not necessarily linearly). Let & be the
linear map of L’ into K’ which agrees with 2~1¢g on the vertices of L', and let f = kg-1h
on Bd|K|. Define f as the identity on the remainder of the 1-skeleton of K, and extend
f to | K| by means of radial lines from the barycenters of the 2-simplices of K’. Let h = Af-1.
Then (K', h) is a triangulation of M which is compatible with (L, g) on Bd M.

9.3. DeriniTION. If X is a space, a subset 4 of X is said to be weakly locally tame
in X if for each point €4, there is a neighborhood U of z, a complex K, and a homeo-
morphism % of U onto a polyhedron in K, such that (U N 4) is also a polyhedron in K,.
If it is required that X = | K| for some complex K and K,= K, then 4 is said to be locally
tame in K ([2], p. 146).

9.4. TaeorEM. If M is a 3-manifold with boundary, then M may be triangulated.
If M is triangulated and A is a locally tame closed subset of M, let there be given a triangulation
of AU Bd M in which A is a polyhedron. Then there is a triangulation of M which is compa-
tible on A U Bd M with the given one.

Proof. This is a theorem of Bing ([2], p. 156).

9.5. LEMMA. Let X be a locally polyhedral space of dimension n (n < 3), such that X
has no singular points and X = CL(X — X"71). Let x€X0, let (Stx, h, L) be a polyhedral
neighborhood on X, and let v ="h(x). Then Fr(Stv) is a connected (n — 1)-manifold with
boundary.

Proof. Fr(Stv) is a complex J consisting entirely of (n — 1)-simplices and their faces.
Every (n —1)-simplex ¢ of St v is a face of exactly one or two n-simplices of St v, since
otherwise its points would have index » —1 and St¢ —¢ would not be connected. As a

result, every (n — 2)-simplex of J is a face of exactly one or two (n — 1)-simplices of J.
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[J| is obviously connected, since otherwise St » —» would not be connected and z would
be a singular point of X (by 5.7). These facts are sufficient, for n <2, to ensure that |J|
is a connected (7 — 1)-manifold with boundary.

If n =3, we must also show that if w is a vertex of J and St w denotes its star in .J,
then St w — w is connected. This is equivalent to the statement that for every 1-simplex
s of Stwv, St s —s is connected. If the points of s have index 1, this follows from 5.7. If
they have index 2, St s — s consists of the connected set St s — & (X?) plus some of its limit
points, so that St s — s is connected. If the points of s have index 3, so does every point
of Sts, so that every 2-simplex of Sis is a face of exactly two 3-simplices of Sts. Ac-
cordingly, those closed edges of the 3-simplices of St s which are opposite to s form a finite
number of homeomorphs of a circle. Since each point of s has a*3-cell neighborhood, there

is only one such circle. Then St s — s is connected.

9.6. THEOREM. Let X be a locally polyhedral space of dimension n (n <3). Then X
has property T.

Proof. By 9.1, we may assume that X has no singular points and that X = (X — X"1).
Let xy, x,, ... denote the points of X° and let (U, k;, J,) be a polyhedral neighborhood of
x;. Let (K, k) be a proper triangulation of X" ! which is locally compatible with (U, &, J,)
at z;, for each ¢. We assume that the sets U, are disjoint. We also assume that for each ¢,
there is a neighborhood V, of k=1(z;) in |K| such that ¥V, is a subcomplex of K and the
map k;k is a linear isomorphism of this subcomplex into J ;. This involves no loss of generality,
since we may obtain this situation by passing to appropriate subdivisions of the complexes
K, J,Jdg ...

Let y, denote the vertex k,(x;) of J, and let L; denote the subcomplex CI(Sty;)
of J;. Let L denote the complex which is the disjoint union of the complexes L;, and
let g be the map of |L| into X defined by setting g equal to ki * on [L;|. Then (L,g) is
a triangulation of a subset of X. It induces a triangulation on g(L)N X™~! which is
equivalent to the one induced by (K, k). By 2.4, there is a triangulation (K, h) of g(L) U X" "
which induces subdivisions of (L, g) and (K, k) on g(L) and X" ! respectively.

Let z; denote the vertex h—1(x,) of K, let K’ denote the first barycentric subdivision
of K, and let St z, and St’ z; denote the stars of z; in K and K’ respectively. Let L denote
the subcomplex

h™H (X 1) U (U OL(SE 2)
of K'. Let Y =h(L). Let N = X —U,h (St z,). Then N and Y are closed subsets of X, and
NnY=Z=Y—U;h(8z)=EnX""YHU (U; Frh(St'z))).

Now (I, h) induces a triangulation of Z; we seek a triangulation of N which is compatible
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with (I, h) on Z. These triangulations of N and Y will fit together (by 2.4) to give a triangula-
tion of X, which is then antomatically compatible with (K, %) on X' and locally compatible
with (U, k;, J ;) at x;, for each 7. Our theorem will then be proved.

The crucial fact here is that for n < 3, N is an n-manifold with boundary, and BdN < Z.
It is clear that each point of N which is not in any set Fr(h(St’ z,)) has a neighborhood
whose closure is a closed n-cell, by 5.8 (using the fact that no point of N belongs to X¢).
Points of N in Fr(h(St’ z;)) require special consideration. The set Fr(h(St' z;)) is entirely
contained in h(Stz;), so that the problem is reduced to considering neighborhoods of
points of Fr(St z;) in Stz; — St z;. (This is the reason we “deleted” the neighborhoods
h(8¢ z;) from X to form N rather than the neighborhoods h(St z;).) But by 9.5, C1(S¢ 2))
is merely the cone over an (rn — 1)-manifold with boundary. It is easy to show by direct
combinatorial means that each point of Fr(St z;,) has a neighborhood in 8tz — St 2,
whose closure is a closed n-cell, and that it has no neighborhood which is itself an n-cell.
Hence N is an n-manifold with boundary, and Fr(h(St' z,))< BdN. If x€ BdN —
U, Fr(h(St z,)), then x€ X" '. Hence B N< Z.

For » =1 and » =2, it is also true that Bd N =Z. (This follows from the fact that
NN X" lies in Bd N, by 5.8.) Then by 9.2, there is a triangulation of N which is com-
patible with the given triangulation of Bd N =Y, and our theorem follows. (If » =1,
9.2 does not apply, but this case is trivial.)

If n =3, there is more work to do. The difficulty here is that it need not be true that
Z=Bd N, for N n X"~' may contain points of Int N. The points of (Int N) n X" ! have
index 1, by 5.8. Let A denote the set X1 N; then Z = 4 U Bd N. There is a triangulation
of N, by 9.4; we shall prove that 4 is a locally tame subset of N. Every point of 4 has
index 1, for it cannot have index 0 and lie in N. Let « be in 4, and let x not be in any set
Fr(h(S8t' z;)). Let (Sts, k, H) be a polyhedral neighborhood of z such that dim s=1.
By the argument used in 5.8, the closed edges of H opposite % (s) must form a homeomorph
of a line segment or a circle, and 4 n 8¢ s is merely the set s. Tt is easy to see that Stsis
a neighborhood of x satisfying the hypotheses for 4 to be locally tame at x. On the other
hand, suppose z is in F7(h(St’ z;)). Then h-'(z) is a point of some 1-simplex of 8t z,, and
h-1(X1) n St 2, consists of some of the 1-simplices of St z;. Using these facts, one may readily
show by combinatorial means that there is a neighborhood of h-1(z) in 8t z; — St’ z; which
satisfies the hypotheses for local tameness of 4 at .

A is a subcomplex in the triangulation of Z induced by (L, h), since the original
triangulation (K, k) of X2 was proper. Then by 9.4, there is a triangulation of N which is
compatible with the triangulation of 4 U Bd N =Z induced by (L, h). This completes the
proof of the theorem for » =3.
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9.7. CorOLLARY. Let X be a locally polyhedral space of dimension n (n <3). Given
polyhedral neighborhoods (U, k;, J,) of each x,€ X, there is a proper triangulation of X
which is locally compatible with (U, k;, J,) at x,, for each 1.

Proof. We proceed by induction on n. X"~ ! is a locally polyhedral space of dimension
less than #, so by the induction hypothesis there is a proper triangulation (K, &) of X!
which is locally compatible with the polyhedral neighborhood (U,n X", k;, L,) at x;,
for each z;€(X" )0 = X° (L, is a subcomplex of J,). Then (K, &) is also locally compatible
with (U, k;, J;) at z;, so that 9.6 applies.

9.8. THEOREM. If X is a locally polyhedral space of dimension n (n <3), X may be

triangulated.

9.9. LEMMA. Let X be a locally polyhedral space, and let Y be a closed admissible sub-

space of X. Any proper triangulation of X induces a triangulation of Y.

Proof. Let a{x) =1 if € Y, and «(z) = 0 otherwise. Since Y is admissible, « is constant
on each simplex of every polyhedral neighborhood on X. By 4.4 and 4.5, given a proper
triangulation of X, « is constant on each simplex of X under this triangulation. Since Y

is closed, it is the polytope of a subcomplex of X.

9.10. TEEOoREM. Let X be a locally triangulable space of dimension n (n <3), and let
Y be a weakly locally tame closed subset of X. Then there is a triangulation of X under which

Y s a polyhedron.

Proof. This generalizes Theorem 8 of [2]. Let B be the collection of all polyhedral
neighborhoods (U, k, L) on X such that ¥ contains every simplex of U which it intersects.
From the definition of weak local tameness, it is clear that B covers X. To show that Ip
is constant on every simplex of an element of B, one uses the argument of 3.8 (with the
additional fact that the homeomorphism g there defined maps Y into itself). Then B is
a basis for a structure. Let a(x) =1 if z€ Y, otherwise let «(x) =0. Then o satisfies the
hypotheses of 4.3, so that by 4.4, « is constant on every simplex of each polyhedral neigh-

borhood of the structure on X. Hence Y is an admissible subspace of X, and 9.9 applies.

9.11. REMARK. These results do not imply that the triangulability of the general
locally polyhedral space of dimension #» would follow from a triangulation theorem for the
general n-manifold with boundary, or from a stronger theorem involving local tameness,
like 9.4. Removing the singular points from X makes X locally a manifold with boundary
only at points of index n, n — 1, and n — 2. If n =3, the points at which X fails to be a

manifold with boundary are isolated, and one can use polyhedral neighborhoods to trian-
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gulate a neighborhood of this set. After deleting these neighborhoods, one has left a manifold
with boundary to triangulate. If # > 3, the set of points where X fails to be a manifold
with boundary has positive dimension, and it is not clear how one could proceed in this

case.
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