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We shall be concerned with the following triangulation problem: "May a space which 

can be triangulated locally be triangulated in the large?" A locally triangulable space is a 

separable metric space every point of which has a neighborhood which is homeomorphic 

to an open subset of some finite polyhedron. Special cases of this problem include the 

triangulation problems for manifolds, for manifolds with boundary, and for differentiable 

manifolds; these problems have been attacked in the past, with varying degrees of success. 

In  1935, G. NSbeling published an argument for the triangulation theorem for manifolds 

[7], but it contained an essential error [9]. Subsequently, S, S. Cairns proved triangulability 

for differentiable manifolds [3], [4], and T. Rad6 triangulated the general manifold of 

dimension two [8]. More recently, E. E. Moise proved that  three-dimensional manifolds are 

triangulable [5], and both Moise and R. H. Bing extended this to three-dimensional manifolds 

with boundary [6], [2]. In  the present paper, the author uses some of these results to prove 

triangulability for locally triangulable spaces of dimension three or less. 

We attack the general triangulation problem by attempting to reduce it to the trian- 

gulation problem for n-manifolds with boundary. This approach proves successful for n 

not greater than three. The proofs, while complicated, are elementary in the sense that  

they involve no algebraic topology. 

In  Chapter I certain basic definitions and lemmas are given. A new definition of locally 

polyhedral space is introduced in Chapter I I ,  and some of the implications of this definition 

are studied. In  Chapter I I I a  space X*, called the composition space of X, is defined; it is 

in some respects the opposite of a decomposition space. The technical device of passing 

from a space to its composition space enables us, in Chapter IV, to treat the general tri- 

angulation problem. 

1 This paper is part of a thesis submitted to the Graduate School of the University of Michigan 
in partial fulfillment of the requirements for the degree Doctor of Philosophy. The thesis was written 
under the direction of Prof. E.'E. Molse; the author was a National Science Foundation fellow at the 
time. Presented to the American Mathematical Society November 12, 1955. The author wishes to thank 
the referee for his comments. 
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CHAPTER I 

I n t r o d u c t i o n  

t .  Throughou t  this  paper ,  every  space is Hausdor f f  and  eve ry  map  is cont inuous,  

unless specif ical ly s t a t ed  otherwise.  The closure of a subse t  A of X is de no t e d  b y  e i ther  

~i or CI(A) .  The frontier of A is the  set  CI(A) ~ C l (X  - A ) ;  i t  is deno ted  b y  Fr(A) .  

The word  simplex means "open  s implex" ,  and  complex means  " loca l ly  f ini te  s impl ie ia l  

complex" .  The boundaryof a s implex  s is the  set  g s; i t  is deno ted  b y  Bd(s). The polytope 

I K / o f  a complex  K is the  space which is the  union of the  s impliees of K;  where no confusion 

will resul t  we do no t  d is t inguish  be tween  K and  I K I .  The k-skeleton of K is the  complex  

consis t ing of all s implices of K having  d imens ion  k or less; i t  is de no t e d  by  K (kl. A subdivision 

of K is a complex L such t h a t  ILl = [K 1 and  ]K (k' I c IL (k)] for eve ry  k. I t  is a basic pro-  

posi t ion t h a t  two subdivis ions  of the  same complex have  a common subdivis ion.  A poly- 

hedron in K is a set which is the  po ly tope  ILl of a subcomplex  L of some subdiv is ion  of K.  

I f  A is a subset  of I K I ,  t hen  the  star of A in K is the  union of those  simplices s of K such 

t ha t  some face of s is conta ined  in A; i t  is deno ted  b y  St(A).  

A l inear  m a p  of one complex  K into  ano the r  L is a m a p / o f  [K[ into ILl which maps  

each s implex s of K into a s implex t of L in such a fashion t h a t  the  m a p  is l inear  wi th  

respect  to the  ba rycen t r i e  coordinates  of s and  t. I f  [ is a homeomorph i sm of I KI  onto 

ILl and  bo th  ] and  [ 1 are l inear  maps ,  then  ] is a linear isomorphism. 

A n  n-cell is a homeomorp h  of an n -s implex  s; a closed n-cell is a h o m e o m o r p h  of g. 

An  n-mani/old is a separable  met r ic  space M such t h a t  each po in t  of M has a ne ighborhood  

which is an n-cell.  An  n-mani/old with boundary is a separab le  metr ic  space M such t h a t  

each  po in t  of M has a ne ighborhood  whose closure is a closed n-ceil .  The  boundary of an  

n-mani fo ld  wi th  b o u n d a r y  consists of those po in ts  x of M such t h a t  x has no ne ighborhood  

which is an n-cell; i t  is deno ted  b y  Bd(M).  (Do not  confuse Bd(M) with  Bd(s), where s 

is a s implex.)  The set M Bd(M) is called the  interior of M and  is deno ted  b y  Int(M).  

1.1. L E M M A. Let K be a complex and let L be a subcomplex o~ K. Let L' be a subdivision 

v / L .  This subdivision may be extended to a subdivision o[ K without a[]ecting any simplex 

o / K  outside St lL I" 

Pro@ Let  K (m i) be so subd iv ided  t h a t  L '  U K (m 1) is a complex.  Le t  s be an  m-s implex  

of  K L. I f  Bds has been subdiv ided ,  we m a y  ex tend  this  subdiv is ion  to  s b y  means  of 

r ad ia l  lines f rom the  ba rycen te r  of s; otherwise,  we need no t  subdiv ide  s. The subdiv i s ion  

of  K def ined in th is  manner  satisfies the  demands  of the  lemma.  
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2. T r i a n g u l a t i o n s .  A triangulation of a space X is a complex K along with a homeo- 

morphism h carrying I KI  onto X. We sometimes refer to "simplices of X " ;  by  this we 

mean those subsets of X which are carried into simpliees of K by  h -1. A subdivision of the 

t r iangulat ion (K, h) is a t r iangulat ion (L, k) of X such tha t  h -1 k is a linear map of L onto 

K. If  J is a subcomplex of K, let A = h([ J}),  and let g = h, IJ  (the restriction of h to 1J I). 

Then (J, g) is the t r iangulat ion of A induced by (K, h). 

Two tr iangulations (K, h) and (L, k) of the space X are said to be equivalent if h -1 k 

is a linear isomorphism of L onto K. They are said to be compatible if they  have a common 

subdivision. 

If  (K, h) ,%rid (L, k) are tr iangulat ions of the subsets A and B of X, respectively, such 

tha t  (K, h) and (L, k) induce tr iangulations of Y c  A N B which are compatible,  then 

(K, h) and (L, k) are said to  be compatible on Y. I t  is clear (using 1.1) tha t  there are sub- 

divisions K '  and L '  of K and L, respectively, such tha t  the tr iangulations of Y induced 

by  (K', h) and (L', k) are equivalent.  

2.1. DE FINIT ION.  Let  [ be a mapping  of A onto B. [ is strongly continuous if it satisfies 

the following condition: If  U c B and / i (U) is open in A, then U is open in B. A continuous 

map / induces (1) a decomposit ion space C whose points are the sets [-1 (y), and (2) a map 

F of C onto B which is continuous and 1 - 1; if [ is strongly continuous, F is a homeomor-  

phism ([l], p. 65). 

Let  / be a linear map of the complex L into the complex K. Then / is strongly linear 

if it maps each simplex onto one of the same dimension. 

2.2. LEMMA. Let L be a complex and let [ be a strongly continuous map o/ [L' onto X 

satis/ying the [ollowing conditions: 

(l)  [ is 1 - 1 on each closed simplex o[L .  

(2) For each x in I L l , / - l ( / ( x ) )  i s / in i te .  

(3) Let s I and s 2 be any two simplices o / L ,  and let [i /1~. (a) I] the sets f (81) and [(s2) 

intersect, then / 2 1 / 1  maps Sx linearly onto ~2. (b) 1 / / m a p s  the vertices o/s~ and those o /8  z 

onto the same set, then [:zt[~ maps 81 linearly onto 82. 

Then there is a triangulation (K, h) o] X and a strongly linear map p o / L  onto K,  such 

that  hp  = [. 

Proo[. We define an abstract  complex J .  I f  v and w are vertices of K, let, v be defined 

to be equivalent  to w if ] (v) = ] (w). If  v is a ver tex of K, let v' denote its equivalence class. 

The set of vertices of J will consist of these equivalence classes. 

Let  s v0. . .  v~ be a simplex of L. Since [ is a homeomorphism on ~, the classes 
t ! i r 

v0, .. . ,  vn are distinct. We define the set {v0 . . . . .  v,j  to be a simplex of J .  Because of (2), J 
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is a locally finite abstract  complex. Let  K denote a geometric realization of J ;  if v' is a 

vertex of J ,  let v* denote the corresponding vertex of K. There is a natural  linear map p 

of L onto K, defined by  mapping the vertex v into v* and extending linearly; p is strongly 

linear. 

I t  follows tha t  p is strongly continuous. We observe first tha t  a subset U of [L I is 

open if for every simplex s of L, U N ~ is open in ~. (Then ~ - U is closed, so tha t  for every 

vertex v of L, Cl(Stv) - U is closed. Hence U fl Sty is open for each v, so tha t  U is open.) 

Then strong continuity follows from strong linearity, since each closed simplex of L is the 

homeomorphic image of a closed simplex of K. 

Now p(x) = p(y) if and only i f / (x )  = / (y ) :  Let  x and y be points of ILl contained in 

the simplices s 1 and s2, respectively. Let  Pt = P] st. I f  / (x) = / (y), it follows from condition 

(3a) that /~1/1 = p~lpl on s 1 (so tha t  p(x) = p(y)); if p(x) = p(y), the same result follows 

from (3b) (so tha t  /(x) =/(y)) .  Hence the decomposition space C of ILl induced by  / is 

the same as tha t  induced by p. Since / and p are strongly continuous, they induce homeo- 

morphisms F and P, respectively, of C onto X and [ K I, respectively. F P  -1 is the desired 

homeomorphism h. 

2.3. LEMMA. Let L and / be as in 2.2, except that condition (3b) may/ai l .  Let, L 1 be the 

/irst barycentric subdivision o/ L; then the pair (LI, /) satis/ies all the hypotheses o/ 2.2. 

2.4. PROPOSITION..Let A and B be closed subsets o/ the space X; let X = A  U B. Let 

(K, h) and (L, lc) be triangulations o~ A and B, respectively, which are compatible on A N B. 

Then there is a triangulation o~ X which induces triangulations o/ A and B which are sub- 

divisions o/ the given ones. 

Proo/. Let  K'  and L'  be subdivisions such tha t  the triangulations (K', h) and (L', k) 

induce equivalent triangulations of A ~ B. Let  J denote the complex which is the disjoint 

union of K '  and L';  let / be the map of [JI  onto Z which equals h on I g ]  and equals k 

on ILl.  Then / is strongly continuous: Let  U be a subset of X such t h a t / - I ( U )  is open in 

I J [ .  T h e n / - I ( U )  • [ g t is open in ] K t, so tha t  U N A is open in A (h is a homeomorphism). 

Similarly, U N B is open in B. Then A - U and B - U are closed, so tha t  X - U is closed 

and U is open. 

I t  is easy to check tha t  ( J , / )  satisfies conditions (1), (2), and (3a) of 2.2. Let  J1 denote 

the first barycentric subdivision of J .  Then there is a triangulation (K, h) of X and a strongly 

linear map p of J1 onto K such h p  = / .  I t  follows from this equation tha t  (K, h) induces 

triangulations of A and B which are subdivisions of (K, h) and (L, k), respectively. 
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C H A P T E R  I I  

Locally Polyhedral Spaces 

3. Loca l ly  p o l y h e d r a l  s t r u c t u r e s .  In  this section we define the concept of locally 

polyhedral space. The reasons for introducing this notion are utilitarian; it is essential to 

our approach to the general triangulation theorem. 

3.1. D~FINITION.  Let  U be an open subset of X, let L be a finite complex, and let 

h be a homeomorphism of V into ILl such tha t  [L] =Cl(h(U)) and ]L[ - h ( V )  is the 

polytope of a subcomplex of L. Then the triple (U, h, L) is said to be a polyhedral neighborhood 

on X. We sometimes refer to a "simplex of U", meaning a subset s of U such tha t  h($) 

is a simplex of L. 

3.2. DEFINITION.  Let  A be a covering of X by  polyhedral neighborhoods. If  x cX,  

the index o/x  relative to A, denoted by  IA (x), is the max imum of the following set of integers: 

(dim s I(U, h, L) EA, s is a simplex of L, and h(x) Es}. 

For example, let X consist of the coordinate planes in E3, and let A be the collection uf 

all polyhedral neighborhoods on X. Then for the origin, IA = 0, for each point of the 

coordinate axes, IA = 1, and for every other point, IA = 2. 

3.3. DEFINITION.  Let  B be a covering of X by  polyhedral neighborhoods satisfying 

the following condition: I f  (U, h, L) E B, and x and y belong to the same simplex of U, then 

IB (x) = Is  (y). Given B, let A denote the collection of all polyhedral neighborhoods (U, h, L) 

on X which satisfy the following condition: I f  x and y are two points of the simplex s of 

U, then IB(x) = I~(y) > dim s. Then A is a locally polyhedral structure on X, and B is a 

basis for this structure. Note tha t  B ~ A, and tha t  I8  = IA. 

A locally polyhedral space is a separable metric space X, provided with a fixed locally 

polyhedral structure A. If  X is a locally polyhedral space (the structure A, although fixed, 

is not usually mentioned), a polyhedral neighborhood on X will always mean an element of 

the structure A, and the index I(x)  of x E X  will mean IA(x). 

3.4. LEMMA. Let A be a locally polyhedral structure on X;  let (U, h, L)EA.  Let V be 

open in U, and let J be a subcomplex o/some subdivision of L such that C1 (h (V)) =IJI  and 

] J [  - h (V) is a subcomplex o / J .  Then ( V, h l V, J) e A. 

3.5. LEMMA. Let K be a/ ini te  complex; let s be an m-simplex o /K;  let xEs. Let ~(K) 

denote the maximum diameter o /a  simplex of K.  Given ~ �9 O, there is a subdivision K' o / K  

such that x lies in an m-simplex o / K '  and 2(K') < ~. 
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Pro@ The first barycentric subdivision K1 of K is defined inductively, extending to 

K (n) the subdivison of K (~-1) by means of radial lines from the barycenters of the n-sim- 

plices of K. We modify this subdivision slightly. First subdivide K (m-l) barycentrically. 

Let yCs; consider the ray beginning at y and going through x. This ray intersects Bds in 

a point belonging to some simplex of the subdivision of Bds; let the dimension of this 

simplex be denoted by/5(y, x). Let z denote the barycenter of s; if/~(z, x) = m- l ,  subdivide 

s baryeentrieally. Otherwise, choose a point y close to z such that  /~(y, x ) =  m- l ,  and 

use radial lines from y instead of from z to subdivide s. 

Subdivide the rest of K barycentrieally; let this subdivision be denoted by K". Then 

x lies in an m-simplex of K"; by choosing y close enough to z, we may make 2(K") as close 

to ~(K1) as we wish. Hence repeated applications of this method of subdivision will give 

us the desired subdivision K'  of K. 

3.6. COROLLARY. Let X be a locally polyhedral space. I /  x E X  and I ( x ) = m ,  there 

are arbitrarily small polyhedral neighborhoods o] x (i.e., elements o/the structure A) in which 

x lies in an m-simplex. 

3.7. LEMMA. Let x and y be two points o/ the simplex s o] the complex K. There is a 

homeomorphism of St s onto itsel/ which carries x into y. 

Pro@ Let / be the map of Cl(Sts) onto itself defined as follows: (1) / is the identity 

on Fr(Sts) ,  (2) [ maps x into y, and (3) / is extended to Sts  by means of radial lines from 

x and y, respectively. Then h = / ]  Sts is the required homeomorphism. 

3.8. PROPOSITIOn. Let X be a metric space. I] X may be covered by polyhedral neigh- 

borhoods, and A is the collection o/ all polyhedral neighborhoods on X ,  then A is a locally 

polyhedral structure on X .  

Pro@ We need only to show that  A is a basis for a structure. Given e > 0, let A (e) 

be the subset of A consisting of polyhedral neighborhoods (U, h, L) such that  U has 

diameter less than e. I t  follows from 3.5 that  IA = IA(~). Let x and y belong to the simplex 

s of U, where (U, h, L )EA.  By 3.7, there are neighborhoods of x and y which are homeo- 

morphic, the homeomorphism g carrying x into y. Then 1A (~)(X) < IA (y), for some e, and 

the proposition follows, by symmetry. 

3.9. DEFIn ITIOn .  If  X and A are defined as in 3.8, A is called the trivial locally 

polyhedral structure on X. There are structures which are not trivial. Let K be a finite 

complex and let i be the identity map of ]K I onto itself. The covering consisting of the 

single polyhedral neighborhood ( IKI ,  i, K) is a basis for a locally polyhedral structure. 
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If, for example, K consists of an n-simplex and its faces (n > 1), this s t ructure  is not  the 

tr ivial  one. 

3.10. DE FINIT ION.  A map / of one locally polyhedral  space X into another  Y is 

said to preserve index if for each x E X, I (x) = I (] (x)). 

3.1l. D E F I N I T I O N .  A subspace Y of X is said to be admissible if for each polyhedral  

neighborhood (U, h, L) on X, Y contains every simplex of U which it intersects. 

3.12. PROPOSITION. Let X be a locally polyhedral space. Let Y be a closed admissible 

subspace o / X .  Then Y has a naturally induced locally polyhedral structure relative to which 

the inclusion map o/ Y into X preserves index. 

Proo]. Let  A be the s t ructure  on X. We define a basis B for a s t ructure  on Y. Let  

(U, h, L) EA. h (U N Y) contains every simplex of L which it intersects, so tha t  its closure is 

the polytope of a subcomplex J of L. We show tha t  ] J ]  - h ( U  N Y) is the polytope of a 

subcomplex of J .  Let  s be a simplex of J contained in [J] h(U N Y); let s '  be a face of s. 

Suppose s ' c  h (UN Y). Then since h(U) is open in ILl ,  s ~ h ( U ) .  By definition of J ,  s 

is a face of some simplex of L contained in h(U n Y), and since h(U N Y) is closedin h(U),  

s ~  h(U N Y). This is a contradict ion.  Hence s' c IJf - h(U N Y). 

Then (U N Y, h I Y, J)  is a polyhedral  neighborhood on Y; let this neighborhood belong 

to B. I t  is clear tha t  if x E Y, IB(x) - IA (x). I f  x and y belong to the same simplex of U N Y, 

t hey  belong to the same simplex of U, so tha t  In(X) - - I  A(y). Then IB(x ) = I B(y). Since 

B obviously covers Y, B is a basis for a locally polyhedral  s t ructure  on Y. Relat ive to 

this structure,  the inclusion map preserves index. 

4. T h e  p s e u d o  s k e l e t o n .  The pseudo skeletons of a locally polyhedral  space X are 

closed subsets of X which break X up into pieces which are manifolds in much the same 

way  as the skeletons of a complex K break i K[ up into cells. 

4.1. DI~r INITION.  I f  X is a locally polyhedral  space, the pseudo k-skeleton of X is 

the subset of X consisting of all points  x such tha t  I (x) < k. I t  will be denoted by  X ~ 

(see [1], p. 400); we show in 4.2 t h a t  i t  is a closed subset of X. In  general, X ~ depends on 

the part icular  s t ructure A; only when A is the tr ivial  s t ructure is X k topologically deter- 

mined. I.e., in the example of 3.9, the Z-skeleton and pseudo Z-skeleton of 1K] coincide. 

Note  tha t  X ~ is an admissible subspace of X, b y  3.3, so tha t  by  3.12, X ~ has a na tura l ly  

induced locally polyhedral  structure,  relative to which the inclusion map preserves index. 

Whenever  we consider X ~ as a locally polyhedral  space, we will suppose it is provided with 

this structure.  
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A word about  dimension is in order. The dimension of X is well-defined, since X is 

separable and metric. One shows easily t h a t  the locally polyhedral  space X has dimension 

n if and only if (1) for every polyhedra l  neighborhood (U, h, L) on X, dim L < n, and (2) 

for some such neighborhood,  dim L = n. I t  follows t h a t  X k has dimension not  greater  than  k, 

4.2. PRo]~osiwio~r Let X be a locally polyhedral space. Then the set X "~ is closed, and 

X "~ - X m-1 is an m-mani/old. 

Proo/. Let  x c X  - x m ;  then  I (x )  = k > m. Let  (U, h, L) be a polyhedral  neighborhood 

such tha t  x lies in a k-simplex s of U. Now St s contains no simplices of dimension less than  

k, so tha t  St s ~ X - X m. Since St s is open in X,  X m is closed. 

Let  x E X  ~ -  X ~-1. Le t  (U, h , L )  be a polyhedral  neighborhood such tha t  x lies 

in the m - s i m p l e x t o f  U. Now S t t  is open in X, so t h a t  (St t )  N X  z i s  open i n X  ~. Bu t  

(St t) N X "~ = t, by 3.3, and t is an  m-cell neighborhood of x in X ~ - X e  -1. Hence X ~ - X ~-1 

is an m-manifold. 

4.3. LEMMA. Let X be a locaIly polyhedral space, let B a basis /or the structure on X ,  

and let ~ (x) be any /unc t ion  on X such that :r is constant on every simplex o/every polyhedral 

neighborhood o / B .  I / I  (x) = ], then there is a neighborhood V o / x  in X j such that :r is constant 

Olt V. 

Proo/. Let  (U, h, L) be an element of B such tha t  x lies in the j-simplex s of U. Let  

V = s; then :r is constant  on V. Since V = Sts  (~ X ~, V is open in X j. 

4.4. COROLLARY. Assume the hypotheses of 4.3. Let Y c X be a connected set on which 

I (x) is constant. Then ~ (x) is also constant on Y.  

Proo/. Let  I ( Y )  = j. Then Y c X j. The subsets of Y on which ~r (x) is constant  are 

open in Y, by  4.3. Since Y is connected,  there is only one such subset. 

4.5. DE FINIT ION.  Let  X be a locally polyhedral  space. A t r iangulat ion (K, h) of X 

is said to be a proper triangulation if (K, h) induces a t r iangulat ion of X k, for each k. This 

is equivalent  to the requirement  t ha t  I (x) should be constant  on each simplex of X under  

this tr iangulation.  If  the s t ructure  on X is not  the trivial one, there m a y  exist non-proper  

tr iangulations.  Consider the example of 3.9. Any  homeomorphism g of t KI onto itself 

defines a t r iangulat ion (K, g) of [ K I; bu t  g mus t  map  each simplex onto one of the same 

dimension if (K, g) is to be proper. 

4.6. PROPOSlTIO~r Let X be a locally polyhedral space o/ dimension n; let M = 

X - X n- 1. Then 

(1) M is a locally polyhedral space; it has a naturally induced locally polyhedral structure 

relative to which the inclusion map o/ . l~  into X preserves index. 
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(2) 3~ ~-1 = 3~ - M = F r M .  

(3) I] X ~-1 is properly triangulated, this triangulation induces a proper triangulation 

o] M ~-1. 

Proo[. Let  ~(x) denote the largest integer m such tha t  x ECl (X  m -  Xm-1). Then co(x) 

is constant  on every simplex of every polyhedral  neighborhood on X. M consists precisely 

of those points of X for which ~(x) = n. Hence M is an admissible subspace of X, and (1) 

follows from 3.12. I t  is clear t ha t  (2) holds. To prove (3), let X ~-1 be properly tr iangulated.  

By  4.4 and 4.5, each simplex of X ~-1 which intersects Fr M must  lie in Fr M. Since Fr M 

is closed, it is the polytope of a subcomplex of X n-1. This induced t r iangulat ion of Fr M 

is proper, since the inclusion map  of Fr M into X ~-1 preserves index. 

4.7. REMARK. The hypothesis  t ha t  the t r iangulat ion of X ~-1 is proper is needed in 

the preceding proposition. Consider the following example: Take two copies of E 2 and 

ident i fy  them along the closed half-line x > 0, y = 0. Then take another  closed half-line 

and identify its end point  with the end point  of the previous half-line. Consider the resulting 

space X as a locally polyhedral  space under  the trivial structure.  X 1 is the homeomorph  

of a s t ra ight  line, and X ~ is a single point  dividing the line into two parts, one of which is 

Fr M. Obviously, if a t r iangulat ion of X 1 is to induce a t r iangulat ion of Fr M,  the point  

X ~ must  be a ver tex in this tr iangulation.  Hence the t r iangulat ion of X 1 mus t  be proper. 

Less trivial  is the  following example:  Take two copies of E 3 and identify them on the 

closed half-plane x > 0, z = 0. Take another  copy of this closed half-plane and identify it 

with the previous half-plane along their  y-axes. Take the trivial locally polyhedral  s t ructure  

for this space X. X ~ is a plane, and X 1 is a line running across this plane, dividing it into 

two half-planes. Fr M is one of these closed half-planes. I n  the previous example, Fr M 

was always a polyhedron in Y = X n-l, whether  the t r iangulat ion of Y was proper  or not.  

I n  the pre~ent example, this is no t  the case; there are clearly tr iangulat ions of Y relative 

to which Fr M is not  a polyhedron.  

Our approach to the t r iangulat ion problem will be by  induct ion on the dimension of 

the space. We first choose a t r iangulat ion of Y and seek to extend this t r iangulat ion to 

a t r iangulat ion of X.  I f  we should happen to choose a t r iangulat ion of Y relative to which 

F r  M is not  a polyhedron,  this would not  be possible. Hence we shall require t ha t  the 

t r iangulat ion of Y be a proper  one. 

5. S i n g u l a r i t y  of a po in t .  The preceding proposi t ion reduces our problem to tha t  of 

"ex tend ing"  a proper t r iangulat ion of F r  M to  M ;  the advantage  is t ha t  3~ is a manifold 

with boundary  except  possibly at  points  of Fr M. Let  us s tudy  these points  more 

closely. 
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5.1. D E F I N I T I O N .  Le t  X be a local ly  po lyhed ra l  space; le t  x 6 X .  Then x is said t o  

have  singularity ]~ with respect to X m and X if k is the  smal les t  n u m b e r  such t h a t  x has  

a rb i t r a r i l y  smal l  ne ighborhoods  U such t h a t  U - X m has  ]c components .  W e  ob ta in  in  5.5 

an  equiva len t  def in i t ion  which is more  usable.  I t  will  follow t h a t  every  po in t  of X has  

f in i te  s ingula r i ty .  

Le t  X have  d imens ion  n. Usua l ly  we are  concerned wi th  the  s ingu la r i ty  of a po in t  w i th  

respec t  to  X ~-1 and  X.  If  we say  "x  has s i n g u l a r i t y / c " ,  the  phrase  "wi th  respect  to X ~-1 

and  X "  will be unders tood .  F u r t h e r ,  x will be sa id  to be non-singular if i ts  s ingu la r i ty  is 

less t han  2; o therwise  i t  is singular. 

Let  M = X - X n 1. The s ingular  po in ts  x of X lie in Fr  M: If  x is in M,  then  x has  a 

connected  ne ighborhood  which does no t  in tersec t  X ~ 1, so t h a t  i ts  s ingu la r i ty  is 1. I f  

x is no t  in M ,  i t  has a ne ighborhood  which does no t  in te rsec t  M,  so t h a t  x has s ingu la r i ty  0. 

5.2. LEMMA. Let K be a complex in E~, let L be a subcomplex o/ K ,  and let x be a point: 

o/ the simplex s of K .  Let S be a spherical neighborhood o/ x in i K I ,  lying in St s. Then each 

component o/ St s - [L I contains exactly one component o/ S - I L l .  

Proof. Pro jec t  St  s onto S b y  means  of rays  f rom x. This  home omorph i sm  carr ies  

each s implex  in to  itself,  so t h a t  i t  maps  St  s - ILl onto S - ILl .  The l emma follows. 

5.3. COROLLARY. Assume the hypotheses o/ the preceding lemma. I /  U is any neigh- 

borhood o/ x in [K [ which lies in St s, then U - ILl has at least as many  components as 

 ts-ILl. 

5.4. REMARK. Le t  X be a loca l ly  po lyhedra l  space; le t  (U, h , L )  be a po lyhe d ra l  

ne ighborhood  on X and  le t  x belong to the  s implex  s of U. St s is open in U, and  C1 (h (Sts)) 

is the  po ly tope  of a subcomplex  J of L. Moreover,  ]JI - h ( S t s )  is a subcomplex  of J .  

B y  3.4, (St s, h[St  s, J)  is a po lyhed ra l  ne ighborhood  on X. The s t a t e m e n t  " L e t  (Sts, ]~, J}  

be a po lyhed ra l  ne ighborhood  of x"  means  t h a t  i t  is de r ived  in th is  w a y  and  t h a t  x is in s. 

5.5. PROPOSITION.  Let X be a locally polyhedral space; let (Sts, ]c, J)  be a polyhedral 

neighborhood o/ x E X .  Let S ts  - X "~ have k components. Then x has singularity ]c with respect 

to X m and X .  

Proof. Given v > 0, let  S be a spher ica l  ne ighborhood  of h (x) hav ing  d i ame te r  less t h a n  

e and  ly ing  in St(h(s)).  Then S - h ( X  m) has ]c components ,  b y  5.2, and  so does h- l (S )  - X ~. 

B y  defini t ion,  the  s ingu la r i ty  of x wi th  respect  to  X m and  X is not  g rea te r  t h a n  ]c. 

On the  o ther  hand ,  if U is any  ne ighborhood  of x which is smal l  enough to lie in Sts ,  

t hen  b y  5.3, U -  X m mus t  have  a t  leas t  ]c components .  Hence  the  s ingu la r i ty  of x wi th  

respect  to  X ~ and  X is not  less than /c .  
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5.6. COROLLARY. Let X be a locally polyhedral space, and let :r (x) equal the singularity 

of x with respect to X m and X .  Then cr is constant on every simplex o/every polyhedral neigh- 

borhood on X .  

5.7. L],]MMA. Let X be a locally polyhedral space of dimension n such that X = 

C1 (X  - x n - 1 ) .  Let ] <_ n - 1, and suppose X has no singular points o / index  greater than ]. I /  

x c X  has singularity k (with respect to X ~ 1 and X), then it has singularity k with respect to 

X ~ and X .  

Proof. Let  (Sts, h, L) be a polyhedral  neighborhood of x (5.4). Then Sts  - X ~-1 has k 

components;  we show tha t  Sts  - X j also has k components.  Note  tha t  Sts  consists entirely 

of n-simplices and their faces, since X = CI (X  - X  ~ 1). Let  y E S t s  N (X  ~-1 - X J ) .  Then y 

lies in some proper face t of an n-simplex of St s. Since y has index greater than  ], y is 

non-singular,  so tha t  St t - X ~-1 has exact ly  one component ,  which mus t  be contained in 

some component  of S t s -  X ~-1. Since St t is open in X, y is a limit point  of only one com- 

ponent  of Sts  - X  n-1. 

Let  the components  of S t s - X  ~-1 be denoted by  Ci (i = 1 , . . . ,  k). Let  Di = 

C~ N (Sts - X J ) .  Each  set D~ is connected, consisting of Ci plus some of its limit points. As 

just  shown, the sets D~ are disjoint and their union is S t s -  X j. Hence they  are the 

components  of Sts  - X -~, and there are exac t ly  k of them. 

5.8. PROPOSITIOZr Let X be a locally polyhedral space of dimension n such that X = 

C l ( X -  X=-I);  suppose X has no singular points. I f  x E X  has index n - 1  or n -  2, it has a 

neighborhood whose closure is a closed n-cell, while i / x  has index n - 1, it has no neighborhood 

which is an n-cell. 

Proof. Let  (Sts, k, L) be a polyhedral  neighborhood of x such t h a t  dim s = I (x) .  

Let  t denote the simplex k (s) of L; then  L = Cl (St t), and L consists entirely of n-simplices 

and  their faces. 

Suppose x has index n - 1. L contains only one n-simplex, since otherwise St t - t = 

St  t - k ( X  n-l) would no t  be connected. Then [L] is a closed n-simplex and k(x) lies on the 

bounda ry  of this closed n-simplex. 

Suppose x has index n - 2. Consider, for each n-simplex t t of L, the face e t of t t opposite 

t. Le t  ~Y denote the collection of these 1-simplices e~ and  their vertices. Then  ] N I is a con- 

nected  1-manifold with boundary :  I f  ]N[ were no t  connected, then  the n-simplices of L 

could be divided into two disjoint sets such tha t  no simplex of the first set has an  (n - 1)- 

dimensional face in common  with a simplex of the second set. Then St t - t = St  t - k (X n-e) 

would not  be connected, contradict ing 5.7. If  [N] is no t  a 1-manifold with boundary ,  then 

three 1-simplices of N meet  at  a ver tex v. I f  et and ej meet  at  v, then tt and tj have an 
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(n - 1)-dimensional face r in common; r is the face spanned by  v and t. I f  the third  n- 

simplex t~ has r as a face, then the points of h -1 (r) have index n - 1, so tha t  St  r - r equals 

St  r - k ( X ~ - l ) .  But  St  r - r  is not  connected, contradict ing the fact  t ha t  X has no singular 

points.  

Then I N] is a homeomorph  of a closed line segment or a circle. F rom this, it is readily 

shown by combinatorial  means tha t  [LI is a closed n-cell. I n  the former  case, x lies on its 

boundary;  in the lat ter  case, x lies in its interior. 

C H A P T E R  I I I  

The Composition Space 

The preceding proposit ion indicates tha t  M would be more like a manifold with 

boundary  if one could dispose of the singular points of F r  M .  The accomplishment  of 

this task occupies the present chapter. We form a new space by  "pull ing 217 apa r t "  along 

the singular par ts  of its frontier. The new space has fewer singular points than  217 (7.9), 

but  it is equivalent  to 2~ as far as t r iangulabi l i ty  is concerned (8.5). 

The following assumption holds th roughout  the chapter:  X is a locally polyhedral  space 

of dimension n such tha t  (1) X = Cl ( X  - X ~ - I ) ,  and (2) X has.no singular points of index 

greater than  the fixed number  ] (] _< n - 1). 

6. D e f i n i n g  the  space .  Let  Ak denote the set of all points of X having index ] and 

singularity k, k > 1. Let  A = [.JkAk. We note certain impor tan t  facts: 

(1) If  (U, h, L) is a polyhedral  neighborhood on X, then Ak contains every  simplex 

of U which it intersects, by  5.6. 

(2) The sets Ak are disjoint open subsets of X s, by  4.3. 

(3) A = [3Ak. I f  x is a limit point  of A, each polyhedral  neighborhood of x intersects 

only a finite number  of the sets Ak, by  (1). Then x is a l imit point  of some Ak. 

(4) Let  x E A k ,  and let (Sts ,  h, J )  be a polyhedral  neighborhood of x such tha t  

dim s = ]. Then S t s -  X ~-1 has k components ,  by  5.5, and so does S t s -  X s, by  5.7. 

Also, S t s  - X s = S t s -  s = S t s  - Ak.  

6.1. LEMMA. Let  x E A  k. Le t  (Sts , ,  ki, J i )  be polyhedral neighborhoods o / x  (i = 1, 2, 3). 

I /  C 1 is a component  o] S t s  1 - X s, there is exactly one component  C 2 o / S t s  2 - X s such that 

C 1 N C 2 has x as a l imi t  point.  I /  C a is the component  o / S t s  a - X s such that C I N C a has x 

as a l imi t  point,  then so does C~ N C a. 

Proo/.  This follows immediately  f rom 5.2. 
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6.2. DEFII~ITION.  W e  define the  composition space X*. I t s  po in ts  consist  of one copy 

of each po in t  of X - A,  a long wi th  k copies of each po in t  of Ak (/c = 2, 3 . . . .  ). 

W e  define a funct ion  ~o. Choose for each po in t  x of A,  a f ixed  po lyhedra l  ne ighborhood  

(Stsx, lcx, Jx) of x. F o r  each d i s t inc t  componen t  C~x of Stsx - X j, le t  eo (C~, x) denote  a dif- 

ferent  one of the  copies of x in X* (there a re /c  such components ,  and  ]c copies of x). Then  

if (Sts, k, J)  is a n y  po lyhedra l  ne ighborhood  of x and  C is a n y  componen t  of S t s -  X j, 

there  is exac t l y  one componen t  Cix of Stsx - X j such t h a t  C N C~ has x as a l imi t  point .  

Define r (C, x) = co (C~, x). By  6.1, ~o has  the  following i m p o r t a n t  p rope r ty :  I f  (Sts~, lc~, J~) 

is a po lyhedra l  ne ighborhood  of x E A  and  Ct is a componen t  of S t s ~ -  X j (i = 1, 2), then  

o~ (C1, x) = o) (C2, x) if and  only  if C 1 ~ C 2 has  x as a l imi t  point .  

Le t  H be the  n a t u r a l  p ro jec t ion  of X* onto X.  W e  define a basis for open sets in X*: 

(A) I f  U is open in X,  ~ - I ( U )  is a basis  e lement .  (Hence H is cont inuous.)  

(B) Le t  x E A  and  le t  (Sts, k, J)  be a n y  po lyhed ra l  ne ighborhood  of x such that 

dim s = ] .  Le t  C be a n y  componen t  of S t s - s .  Since s ~  Ak, w(C, z) is def ined for each 

po in t  z of s. Le t  the  set 

W(C) = ~ - ~ ( C )  U {~(C,  z ) lz~s}  

be a basis e lement .  

These ne ighborhoods  will  be referred to  as ne ighborhoods  of t y p e  (A) and  of t y p e  (B), 

respect ive ly .  

6.3. PI~OPOSITION. X* is a Hausdor//  space. 

Proo/. W e  mus t  show t h a t  if y is con ta ined  in the  in tersec t ion  of two basis elements ,  

so is a basis e lement  conta in ing  y. Suppose  the  basis e lements  are  of t y p e  (B), say  W(C~) 

(i = 1, 2), where C~ is a componen t  of Sts~ - s~. (Similar  a rguments  a p p l y  in the  o the r  cases.) 

I f  y EH -1 (C1) , then  y ET~ -1 (C2) as well. Ci is open in X,  since X is local ly  connected  a n d  C~ 

is a componen t  of the  open set  Stst  - st. Then  g-1  (C 1 ~ C~) is the  requ i red  basis  e lement .  

Otherwise,  y = eo (C1, x) = w (C2, x), for some x in s 1 N s~. Le t  (Sts3,/ca, J3) be a poly-  

hedra l  ne ighborhood  of x such t h a t  S t s a =  S t s  1 N S ts  2 and  d im s 3 = ?" (by  3.6). Le t  C 3 be 

the  componen t  of Sts  a - s  a such t h a t  co(Ca, x) = y. Then  W ( C a ) ~  W(C1) N W(C2). 

Hence  X* is a topologica l  space. To show i t  is Hausdorf f ,  le t  x, y E X *  and  le t  ~(x)  = 

H (y) = z (the o ther  case is t r iv ia l ) .  L e t  (Sts, ]c, J)  be a po lyhedra l  ne ighborhood  of z such 

t h a t  d im s = }. Then x = co (C1, z) a n d  y = co (C~, z), where  C 1 and  C~ are  d i s t inc t  components  

of Sts  - s. W(C1) and  W(C2) are  d i s jo in t  ne ighborhoods  of x and  y, respect ively .  

6.4. LEMMA. Let y E X * ,  and let U be a neighborhood o / y .  I / x e ( y ) E X  - A ,  U contains 

a neighborhood o / y  o / t ype  (A); i /H(y )  e A ,  one o / t ype  (B). 
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Proof. Let z e ( y ) E X -  A. If U contains no neighborhood of y of type (A), there is a 

neighborhood W(C) of y contained in U. Then yC~-I(C), since ~(y) is not in A, so that  

~-1(C) c U is a neighborhood of y of type (A), contrary to hypothesis. 

Let ~ (y) EAk. If  U contains no neighborhood of y of type (B), there is a neighborhood 

~-I(V) of y of type (A) contained in U. There is a polyhedral neighborhood (Sts, k, J) of 

~(y) such that  dim s = ?" and S t s c  V. For some component D of Sts - s ,  ~o(D, ~(y)) = y. 

Then W ( D ) c  U is a neighborhood of y of type.(B), contrary to hypothesis. 

6.5. PROPOSITION. X* has a countable basis. 

Proof. Let U1, U 2 . . . .  be a countable basis for X. Then the collection {~-1 (U~)} contains 

arbitrarily small neighborhoods of every point in ~ I ( X  - A ) ,  by 6.4. On the other hand, 

there is a countable collection {(Stsik, g~s, J,s)} of polyhedral neighborhoods on X such 

that  (1) dim sis = ], (2) s i sc  A, and (3) the collection contains arbitrarily small neighbor- 

hoods of each point of A. This collection is defined by choosing a polyhedral neighborhood 

(Stsis, gis, Jis) satisfying (1) and (2) such that  U , c  S ts i sc  Us, for each pair of indices i, k 

for which such a polyhedral neighborhood exists. From each polyhedral neighborhood in 

this collection may be derived a finite number of neighborhoods in X* of type (B); the 

resulting derived collection will still be countable. Using 6.4, one may prove that  this derived 

collection contains arbitrarily small neighborhoods of each point of ~ 1 (A). The union of 

these two collections of open sets is a countable basis for X*. 

6.6. PROPOSITIOn. The map ~ is strongly continuous. 

Proof. Let U be a subset of X such that  ~-I(U) is open in X*. Let xE U. If  x E X  - A, 

~-1 (x) has a neighborhood ~-1 (V) of type (A) contained in ~-1 (U). Then V is a neighborhood 

of x contained in U. 

If  xEAk, let Yl . . . .  , y~ be the points of ~-l(x). There is a neighborhood W(C,) of y, 

of type (B) contained in ~-I  (U), derived from the polyhedral neighborhood (Sts~, k,, J,) of x. 

There is a polyhedral neighborhood (Sts, k, J) of x such that dim s = ]  and S t s ~  NSts, .  

Let D, be the component of St s - s  such that  eo (D,, x )=y i .  Then W(D,)~  W(Ci) 

~-I(U).  The set ~-1 (Sts) = U W (D,) is contained in ~-I(U),  so that  Sts is a neighborhood 

of x contained in U. 

Hence U is open, and ~ is strongly continuous. 

7. I m p o s i n g  a local ly  po lyhedra l  s tructure.  We recall some facts about covering 

maps. If  p maps E into B and / maps Y into B, then a map/* of the subset Z of Y into E is 

said to be a lilting of / over Z if for every z EZ, p/* (z) = / (z). A map p of E onto B is said 

to be a covering map if each point x of B has a neighborhood V such that  p maps each of 
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the components  of p - l (V)  homeomorphical ly  onto V. I t  is a basic proposi t ion on covering 

maps  tha t  if p is a covering map and / is a map of the simply connected, arcwise connected, 

locally arcwise connected space Y into B, then a lifting of f over a single point  of Y m a y  

be uniquely extended to a lifting of f over all of Y. 

7.1. LEMMA. Let f map  Z into X and let f* be a (not necessarily continuous) map o / Z  

into X*  which is a lifting of f over Z. T h e n / *  is continuous at each point o/ f-1 ( X -  A).  

Proof. This follows immediate ly  f rom 6.4. 

7.2. LEMMA. Let W(C) be a neighborhood on X* of type (B), derived from (Sts, h, L). 

Then ~ maps W (C) homeomorphically onto C U s. 

Proof. Clearly ~1W(C) is continuous and 1 - ! ;  let g denote the inverse map.  By  

7.1, g is continuous at each point  of C. Let  x E s. Let  U be a neighborhood of g (x) = y  = 

co (C, x) in W (C). Then U is open in X* and contains a neighborhood W (D) of y of type  (B), 

derived f rom (St t, k, J). Let  V = D U t; then V ~ C U s, since D ~ C and t ~ s. Each  com- 

ponent  of St t - t is contained in a different component  of S t s -  s, so tha t  V = (C (J s) ~ (St t). 

Hence V is open in C U s. Since g (V) ~ U, g is continuous at x. 

7.3. LEMMA. Let s be a simplex; let h map -~ homeomorphically into X ,  mapping s 

into A k. Let s' denote -~ ~ h- l  (Ak). Then ~- lh ( s ' )  has lc components, each o/whose closures is 

mapped homeomorphically onto h (~) by ze. 

Proof. We show tha t  7e is a covering map of the space z - l ( A )  onto A. Let  xEAk,  and 

let (St t, ]c, J)  be a polyhedral  neighborhood of x such tha t  dim t = j. Then t is a neighbor- 

hood of x in A. Let  C i be a component  of St t - t, and let s i denote W(Ct) N ~- I (A) .  Then 7~ 

maps si homeomorphical ly  onto t, by  7.2, and the sets st are merely the components  of 

~-l(t). 
Let  z be a fixed point  of s' ,  and let Yl . . . . .  y~ be the points of g- lh(z ) .  Define hi (z) = Yt; 

then h~ is a lifting of h over z, so t h a t  i t  m a y  be uniquely extended to a lifting hi of h over 

all of s'. The sets h i (s') are disjoint, for if hi (s') and hm (s') had  the point  q in common,  then  

both  hi and  hm would be the unique extension to  s' of tha t  lifting of h over h - l ~  (q) which 

carries this point  into q. Bu t  they  disagree at  z. Since the sets h i (s') are k in number ,  their 

union is ~-lh(s ' ) .  

Now hi is defined on s'; if w E - 5 -  s', define ht(w ) = ~ - l h ( w ) .  By 7.1, hi is continuous 

a t  each point  of ~ - s ' ;  since s' is open in ~, h~ is still continuous at  each point  of s'. The 

components  of ~- lh(s ' )  are the sets h~(s'); since ~ is compact ,  their  closures are the  sets 

h~ (~). Finally,  g is a homeomorphism of hi (~) onto h (~), since hi (s) is compact .  

6 - 563804. Acta mathematica. 97. I m p r i m 6  le 11 avr i l  1957. 
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7.4. LEMMA. Let s be a simplex; let h map ~ homeomorphieally into X ,  mapping s into 

X - A. Then there is a unique lilting o / h  to a homcomorphism h* o/~ into X*. 

Proo/. Let  s' denote the set ~ - h  -1 (A). I f  z Es', we must  define h* (z) = :~-lh (Z). 
Let  zE~ - s', and let x = h(z). Choose a polyhedral  neighborhood (St t, k, J) of x such 

tha t  d i m  t = ]. There is one and only one component  C of St t - t such tha t  C N h(s') has x 

as a l imit point:  Since x is a l imi t  point  of (St t N h(s')) c (St t - t), there is at  least one such 

component  C. On the other  hand, if U~ is the e-neighborhood of z in ~ (where e is small 

enough tha t  h(U~) c St t), then  h(U~ N s'), being connected, is contained in some component  

C of St t - t. Hence there is only one such component  C. 

Define h*(z) = w(C, x). I f  h* is to be continuous,  h*(z) must  be so defined. For  h*(z) 

must  be a limit point  of h*(U~ N s ' ) ~  7~-1(C)c W(C), and co(C, x) is only the point  of 

~-1(x) which can be a limit point  of W(C). 

This definition of h* (z) is independent  of the choice of (St t, k, J). Let  (St t', k', J ')  

be a polyhedral  neighborhood of x such tha t  dim t' = ?'. x is a limit point  of (St t) N (St t') N 

h(s'), so tha t  x is a limit point  of C N C' N h(s'), for some component  C' of St t' - t'. I f  

(St t', k', J ' )  were used to define h* (z), we would define h*(z) = eo(C', x). Bu t  o~ (C', x) = 

o~ (C, x). 

Finally,  we show tha t  h* is continuous at  z. Let  W(D)  be a neighborhood of h*(z) 

of type  (B), derived from (Str, g, L). Then ~o (D, x) = h* (z). Let  e be small enough tha t  

h(U~)c  Str. We show tha t  h*(U~)a W(D).  First  let z ' E U ~ - s ' .  Now h ( U ~ N s ' ) c  D, 

so tha t  D is the only component  of S t r - r  such tha t  z' could be a l imit point  of 

D N h (s'). By  the preceding paragraph,  we must  have h* (z') = co (D, h (z)) ~ W (D). Hence 

h* (U, - s') ~ W (D). Since also h* ( Us N s') c g-1 (D) a W (D), it follows tha t  h* (U~) ~ W (D). 

h* is au tomat ica l ly  continuous at  each point  of s', so tha t  it is continuous on ~. I t  is 

1 - 1, since h is, so tha t  it is a homeomorphism on ~. We have a l ready shown tha t  h* is 

unique. 

7.5. DEI~II~ITION. Le t  K '  be a subdivision of K such t h a t  for each simplex s of K ' ,  

the simplex of K containing s contains a ver tex of s. Then K'  is called an admissible sub- 

division. Examples  of such subdivisions include the barycentr ic  subdivisions of K and the 

"modif ied" baryeentr ic  subdivisions defined in 3.5. 

7.6. LEMMA. Let / be a map o/ the complex K into X; consider the/ollowing conditions 

on the pair (K, /): 

(1) Both/-1 (-~k) and / -x  (Ak) contain every simplex o / K  which they intersect,/or each k. 

(2) I / t h e  vertices o / a  simplex o / K  lie i n / - 1  (~k), so does the simplex. 

(3) I / a  simplex lies i n / -1  (Ae), so does at least one o / i t s  vertices. 
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Let ( K , / )  satis/y condition (1), and let K'  be an admissible subdivision o/ K. Then 

(K', /) satis/ies all three conditions. 

7.7. LEMMA. Let h be a homeomorphism o I K into X such that (K, h) satis/ies conditions 

(1) to (3) o I 7.6. Then there is a triangulation ( L, g) o I 7~-lh ( I K I ) and a strongly linear map 

p o /L  onto K such that hp =7~g (see 2.1). 

Proo/. W e  define an  a b s t r a c t  complex  J as follows: Le t  V denote  the  set  of ver t ices  

of K.  Le t  W be a set  which is in one-to-one correspondence wi th  the  set  g - l h ( V ) ;  if 

y Ez- lh(V) ,  le t  y' deno te  the  corresponding p o i n t  of W. The  ver t ices  of J are  the  po in t s  

of W. The  s implices  of J are  def ined as follows: 

(a) Le t  s = v  0 . . .  vm be a s implex  of K ly ing  in h- l (Ak) .  Then  ~-lh(s) consists of /r 

d i s jo in t  homeomorphs  of s, b y  7.3. Le t  t be one of the  components  of ~ - l h  (s); t hen  i conta ins  
! ! 

precisely  one po in t  y~ of the  set ze-lh(v~) for each i. Le t  {Y0 . . . . .  ym} be a s implex  of J .  

There  are  k such d i s t inc t  s implices,  b y  condi t ion  (3). 

(b) Le t  s = v 0 . . .  vm be a s implex  of K ly ing  in h -1 (X - A). There  is a un ique  l i f t ing of  

the  m a p  h of ~ in to  X into  a m a p  h* of ~ in to  X*. h* (~) conta ins  e xa c t l y  one po in t  y~ of  
! ! 

the  set 7e-lh(v~), for each i. Le t  {Y0 . . . .  , Ym} be a s implex  in J .  Each  such s implex  is d i s t i nc t  

f rom one of the  previous  t y p e  (if the  ver t ices  of a s implex  s l ie in h -1 (Ak) and  some v e r t e x  

lies in h -1 (Ak), t hen  s c h -~ (Ak)). 

Each  face of a s implex  of J is also a s implex  of J (the fac t  t h a t  h* is un ique  is essent ia l  

here). There  is a n a t u r a l  p ro jec t ion  of J onto  K which carries y' in to  h-17e(y); i t  is s t rong ly  

l inear  and  maps  a t  mos t  a f ini te  n u m b e r  of s implices of J onto  a n y  one s implex  of K .  

Hence  J is a loca l ly  f ini te  a b s t r a c t  complex.  

Le t  L be a geometr ic  rea l iza t ion  of J ;  le t  y* denote  the  ve r t ex  of L corresponding t o  

the  ve r t ex  y '  of J .  Le t  p be the  l inear  ex tens ion  to  L of the  m a p  which carries the  v e r t e x  

y* into  h-lg(y).  W e  define the  homeomorph i sm g. Le t  s = y ~ . . .  y* be a s implex  of L .  

I f  p(s) lies in h- l (Ak) ,  t hen  ~-lhp(s) consists of /r components ,  to  one of whose closures 

Y0 . . . . .  y~ belong.  ~ is a homeomorph i sm of th is  closure onto  hp(~),  so t h a t  z - l h p  = g  

maps  ~ homeomorph ica l l y  onto  th is  closure. On the  o ther  hand ,  if p(s) lies in  h -1 (X - A ) ,  

there  is a un ique  l i f t ing of the  m a p  h of p (~) in to  X to  a m a p  h* of p (~) in to  X*. Le t  g = h* p 

o n  8 .  

The m a p  g is def ined on each closed s implex  of L; i t  is r ead i ly  ver i f ied t h a t  these  defini-  

t ions agree on common faces, so t h a t  g is cont inuous.  I t  is also r ead i ly  ver i f ied t h a t  g i s  

1 - 1, t h a t  i t  is a l i f t ing  of hp, a n d  t h a t  i t  maps  [L] onto ~ - l h ( ] g [ ) .  

I t  follows t h a t  g is a homeomorphism:  Le t  v be a v e r t e x  of K.  The  m a p  g is a homeo-  

morph i sm on Cl (St (p-1 (v))), since th is  closure is compact .  Hence  i t  suffices to  show t h a t  
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g (St (p-1 (v))) is open in g ( [L t )" But  this set equals 7t; - lh  (St v), which is open in ~-~ h ( [ K ] ) = 

g([L]).  

7.8. PROrOSITION. X* is a locally polyhedral space o/ dimension n; it has a 

naturally induced locally polyhedral structure relative to which z preserves index and X* = 

Cl (X* - (X*) n-~). 

Proo/. We define a basis B for a locally polyhedral structure on X*. Let  (U, k, J )  

be a polyhedral neighborhood on X; let V be an open set such tha t  V c U and ] J [ - k (V) 

is a polyhedron in J .  Consider a subdivision J'  of J in which I J I  - k  (V) is a subcomplex; 

then k(V) is a subcomplex H of J ' .  The pair (H, k - l t H  ) satisfies condition (1) of 7.6. Let 

H' be any admissible subdivision of H. Then there is a triangulation (L, g) of ~-1(~)  and 

a strongly linear map p of L onto H '  such tha t  k - l p  =~g. The set z - l (V)  is open in X*, 

and Cl(g- l~-~(V) )=ILl .  Moreover, I n [ - g - l ~ - l ( V )  is a subcomplex of L, because 

l H '  [ - k (V) is a subcomplex of H ' .  Define 

(:Tg -1 (V),  g - l ,  L) 

to be an element of B. This polyhedral neighborhood on X* is said to be derived [rom 

(U, k, J) .  Obviously, B covers X*. 

Let  yEX*; let x -7r(y).  Then I s ( y  ) < I(x) ,  since each element of B is derived from 

a polyhedral neighborhood on X. Let  (U, k, J )  be a polyhedral neighborhood of x. I f  

k(x) lies in an m-simplex of J ,  there is a complex H '  defined as in the preceding paragraph 

such tha t  k(x) lies in an m-simplex of H '  (by3.5). Then y lies in an m-simplex of the derived 

neighborhood (~z -1 (V), g-i, L). Hence I s  (y) > I (x). 

Since I B (y) = I(x),  I B is constant on each simplex of an element of B. Hence B is 

a basis for a structure, and relative to this structure, 7r preserves index. 

To show tha t  X* is metrizable, note tha t  it is a Hausdorff  space with a countable basis; 

being locally compact, it is also regular. Every  regular space with a countable basis is 

metrizable ([1], p. 81). Hence X* is a locally polyhedral space. X * =  Cl (X*- (X*)n -1 ) ,  

since every neighborhood of type (A) or (B) (see 6.2) must  intersect ~ - I ( X  - X n - 1 ) .  

7.9. PROPOSITION. X* has no singular points o/ index greater than j -- 1. 

Proo[. Let y be a point of X* having index greater than  j -  1; let x =~(y) .  First, 

suppose x E X - ~ .  Then x is non-singular. Let  V be a neighborhood of y such tha t  V is 

compact and does not intersect rr -1 (~). Then Jr is a homeomorphism on V. Since V = 

7r -1 (~r (V)) and ~r is strongly continuous, rr (V) is open in X. Now rr maps V homeomorphically 

onto 7r(V) and carries (X*) n-1 onto X n-l,  so tha t  x and y have the same singularity (by 

5.1). Hence y is non-singular. 
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Second, suppose x C-~. Then x E Ak for some k, since A - 13 Ak; and I(x)  - ] .  Some 

neighborhood U of x in X j consists entirely of points  having the same singulari ty and 

index as x (4.3); since U intersects Ak, xEAk.  Let  W(C) be a neighborhood of y of type  

(B), derived from the polyhedral  neighborhood (Sts, h, L) of x. Now z maps W(C) homeo- 

morphical ly  onto C tJ s, mapping  W(C) - (X*) j onto (C U s) - X s = C, which is connected. 

I n  the preceding paragraph,  we showed tha t  X* has no singular points  of index greater 

than  ?" (since A c XJ). Then by  5.7 and 6.4, y is non-singular.  

8. T r i a n g u l a t i n g  t he  space .  The following two definitions hold for any  locally poly- 

hedral space X, wi thout  the assumption s tated at the beginning of this chapter.  

8.1. DEFINITIOr Let  (K, h) be a t r iangulat ion of some subset of X, and let (U, k, J)  

be a polyhedral  neighborhood of x. Then (K, h) and ( U, k, J)  are said to be locally compatible 

at x if there is a neighborhood V of h -1 (x) in I K[ such tha t  (1) h ( V ) c  U, and (2)there is 

a subcomplex H of some subdivision of K such t h a t  I HI - V  and kh is a linear map of 

H into J .  The set kh(V) is clearly a polyhedron in J ;  it follows from 1.1 tha t  there are sub- 

divisions H '  and J '  of H and J respectively, such tha t  kh a linear isomorphism of H '  onto 

a subcomplex of J ' .  

8.2. DEFINITION.  The locally polyhedral  space X is said to possess property T if 

the following holds: 

Let  the points of X ~ be denoted by  Xl, x2, . . .  Given a polyhedral  neighborhood 

(Ui, k~, J~) of x~, for each xi, and a proper t r iangulat ion of X ~ 1 which is locally compatible 

with (Us, ]c~, J~) at  xi, there exists a proper t r iangulat ion of X which is compatible with 

the given tr iangulat ion of X ~ 1 and locally compatible with (U~,/c~, J~) at  x~, for each i. 

(The purpose of the "local compat ibi l i ty"  par t  of this definition will become clear l a t e r - -  

9.11.) 

8.3. LEMMA. Let p be a strongly linear map o/the complex L onto K; let p-1 (x) be/inite 

/or each x. I / L '  is a subdivision o/ L, there are subdivisions L" and K" o/ L' and K respectively, 

such that p is a strongly linear map o /L"  onto K". 

Proo/. If  K" is any  subdivision of K,  then K" natura l ly  induces a subdivision L" of L 

such t h a t  p is a s trongly linear map of L" onto K". We must  so choose the subdivision K" 

t ha t  the induced subdivision L" is a subdivision of L'. We proceed as follows: For  each 

simplex s of K,  there are a finite number  of simplices t 1 . . . . .  t k of L which p maps homeo- 

morphical ly  onto s. L'  induces a subdivision of each set ti; then L' induces several subdivi- 

sions of ~. Order the simplices of K: el, s2, . . .  Le t  K 0 = K; suppose a subdivision Kin_ 1 of 

K is given. Now L '  induces several subdivisions of sin, and Kin_ 1 induces another  sub- 
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division of sin- Take a subdivision of Sm which is a common  subdivision of all these; it m a y  

be extended to a subdivision K~ of Kin_ 1 wi thout  affecting ~ny simplex outside the star 

of ~ in K~_ 1. I f  K is no t  finite, the  sequence K1, K2, . . .  is infinite. Bu t  each simplex of 

K is subdivided only a finite number  of times, so tha t  a limiting complex K" is obtained. 

8.4. LnMMA. Let (K, h) be a triangulation o/ Y c X ,  and let (L, g) be a triangulation 

o/ 7e -1 (Y) c X*. Let p be a strongly linear map o / L  onto K, such that hp = ~g (see 7.7). 

Let (U, k, J) be a polyhedral neighborhood o/ x E Y. Then (U, lc, J) and (K, h) are locally 

compatible at x i /and  only i/ there is a polyhedral neighborhood on X* derived/rom ( U, It, J) 

which is locally compatible with (L, g) at each point o/ ~-1 (x). 

Proo/. Let  us recall how a polyhedral  neighborhood on X* is derived f rom (U, k, J)  

(7.8). Let  V be a suitable open set in X and H '  a suitable subcomplex of a subdivision of J .  

There is a t r iangulat ion (L, g) of ~ - i ( ~ ) ,  and a s t rongly linear map p of L onto H '  such 

tha t  k-ip = z g .  Then (~-I(V),  g-i ,  L) is a polyhedral  neighborhood on X*. 

Suppose tha t  (U, k, J )  and (K, h) are locally compatible at  x. Then V and H '  m a y  

so be chosen tha t  there is a neighborhood W of h -~ (x) in ] K] such t h a t  W is the polytope 

of a subcomplex of a subdivision K '  of K and kh is a linear isomorphism of this subcomplex 

into H ' .  Let  L '  be the subdivision of L induced by K' .  

L' g ~ X* * g L 

Pl x~[ p 

K" X § H" 

N o w  p- l (W)  is a subcomplex of L ' ,  and p- l (W)  is a neighborhood of g-l(7/:-l(x)) in [L i . 

I t  is easily seen tha t  g - l g  is linear on p-a(W),  since it equals p-lkhp on each simplex of 

p-1 (W). Then the derived neighborhood (~-I(V),  g-l ,  L) and (L, g) are locally compatible 

a t  each point  of ~-1 (x). 

Conversely, suppose tha t  (~-1 (V), g-l ,  L) and (L, g) are locally compatible at  each point  

Ys of 7~ -1 (x). Then Chere is a neighborhood Us of g-1 (y,) in ]L [ such tha t  (1) g (Us) c g-1 (V), 

and  (2) there is a subdivision Ls of L such t h a t  Us is the  polytope of a subconlplex of L s 

and g - l g  is a linear map  of this subcomplex into L. Let  L '  be a common subdivision of 

the Ls; in addition, let g-l(yl) be a ver tex of L ' .  B y  8.3, there are subdivisions L" and K" 

of L '  and K respectively such tha t  p is a s t rongly linear map of L" onto K". Now h -1 (x) 

is a vertex in K"; let V denote the star of h -1 (x) in K". Then kh is linear on every  simplex 

s of K" contained in V, since it equals pg-lgp-1 on s. Hence (K, h) and (U, k, J )  are locally 

compatible at  x. 
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8.5. PROPOSITION.  "1 X* has property T, so does X.  

Proo 1. Let  the  poin ts  of X ~ be denoted by  xl, x e . . . . .  Le t  (U,, k~, J i )  be a polyhedra l  

neighborhood of xi, for each i, and  let (K, h) be a proper  t r iangula t ion  of X n-1 which is 

locally compat ib le  wi th  ( U ,  k~, J~) a t  x~, for each i. B y  4.4 and 4.5, h l(Ak) contains each 

s implex of K which it intersects.  Then h -1 (Ak) does as well, so t h a t  (K, h) satisfies condition 

(I) of 7.6. Le t  K~ be the  first  barycent r ie  subdivision of K. B y  7.7, there  is a t r iangula t ion  

(L, g) of ~r -1 h(I K I) = (X*)n-1, and a s t rongly  linear m a p  p of L onto K1, such t h a t  h p = Jr g. 

The t r iangula t ion (L, g) is proper ,  since p is s t rongly  linear and  ~r preserves  index. B y  

8.4, for each i there  is a po lyhedra l  neighborhood of ~r -~ (x~) der ived f rom (U,/c~, J i)  such 

t h a t  (L, g) is locally compat ib le  wi th  this derived neighborhood at  each point  of ~r -1 (x~). 

Since X* has p rope r ty  T, b y  hypothesis ,  there  is a t r iangula t ion (L, g) of X* which is 

compat ib le  wi th  (L, g) on (X*) ~- l  and  locally compat ib le  with this der ived polyhedra l  

neighborhood at  each point  of ~r -1 (x,). 

Le t  L 1 and  L 1 be subdivisions of L and  L respect ively  which induce equivalent  t r iangula-  

t ions of (X*) ~-1. Then  0r  g - l g  is a linear i somorphism of L 1 onto a subcomplex  of L 1. 

B y  8.3, there  are subdivisions L2 and K~ of L~ and Kz respectively,  such t h a t  p is a s t rongly  

linear m a p  of L 2 onto K 2. Now (L2, ~) induces a subdivision of a subcomplex  of L 1, which 

m a y  be extended to  a subdivis ion L~ of L~, b y  1.1. Then  ~ is a l inear i somorphism of Le 

into L~. I f  we replace K2, L~, and  L~ b y  their  barycent r ic  subdivisions of order m -  2, 

Km, Lm, and Lm respect ively,  then  ~r is still a l inear i somorphism and p is still s t rongly  linear. 

Lrn g § X *  

S.  

Lm § (i ~ i 

h 
K i n _ _  ~ X n - 1  

\ 
"-a x 

Let  ] denote  the  m a p  ~rg of L 2 onto X. Then  (L2, ]) satisfies condit ion (1) of 7.6; this  

follows f rom the fact  t h a t  (K2, h) satisfies this condition, so t h a t  (L2, ~rg) does as well. Then  

(L3, ]) satisfies all three  conditions of the l emma.  Using this fact ,  we show t h a t  (L~, [) 

satisfies all the  conditions of 2.2, except  (3b). First ,  I is s t rongly  continuous,  because g 

is a h o m e o m o r p h i s m  and ~r is s t rongly continuous.  Second, if s is a s implex of L~, then  ] 

is 1 - 1 on ~: I f  s in r162 , f res t r ic ted to 5 equals i hp~  -1 res t r ic ted to ~. I f  s is not  in ~r 
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a n d / ( x )  - / ( y )  for z ~= y, t h e n / ( x )  EAk for some k. Now ~ (?/-~ (Ak) consists of some of the 

faces s 1 . . . .  , s m of s. All vertices of s 1 . . . .  , s m lie in [ l(Ak) , and some vertex of one of them 

lies in [-l(Ak). Let  t be the face spanned by  all the vertices of the s~; then t c / - 1  (Ak) and 

x, y E [. This contradicts the fact  tha t  t is in ~ (La), so tha t  / is 1 - 1 on i. 

Condition (2) is clearly satisfied. Finally,  let s 1 and s 2 be two simplices of L a such 

tha t  ](sl) and  ](sz) intersect, s 1 and s z mus t  lie in cr and  p~r maps them linearly 

onto the same simplex of K a. Condition (3a) follows at once. 

By  2.2 and 2.3, there is a t r iangulat ion (K, h) of X and a s t rongly linear map p of L 4 

onto K such tha t  hi) = / - a g .  Note  tha t  p maps two points  of Lt into the same point  if 

and only if they  are in :r (L4) and pcr -1 maps them into the same point. Hence ~ induces 

a linear isomorphism fl of Ka into K such tha t  pa  =tip .  (Then K, h, p, and fi "fill in"  the 

missing corner of the preceding diagram.) I t  follows t h a t  hfl = ih,  so t h a t  (K, h) and 

(K4, h) induce equivalent  tr iangulations of X ~-~. Then (K, h) is compatible with (K, h) 

on X ~ 1; and (K, h) is proper. Finally,  it follows f rom 8.4 tha t  (K, h) and (U~, k~, Ji)  are 

locally compatible at  x~, for each i. 

C H A P T E R  I V  

The General Triangulation Theorem 

9. The following proposit ion summarizes the results of the preceding chapters.  

9.1. PROPOSITION. I n  order to prove that every locally polyhedral space o/ dimension 

n has property T, it is su//icient to prove that property T is possessed by those spaces X of 

dimension n such that (I) X has no singular points, and (2) X = C I ( X  - X ' - I ) .  

Proo[. Let  X be any  locally polyhedral  space of dimension n. Let  M = X -  X "-1. 

M is a locally polyhedral  space of dimension n; if 2~ r has proper ty  T, so does X:  Let  the 

points of X ~ be denoted by  xl, x 2 . . . .  ; let (Ui, k,, J ,)  be a polyhedral  neighborhood of xi; 

and let (K, h) be a proper t r iangulat ion of X "-1 which is locally compatible with (Ui, ki, Ji)  

a t  x~, for each i. Now (K,h)  induces a proper t r iangulat ion of Fr M =217 "-1 (by 4.6). I f  

x, is in 2]I, then  (U~ • M,  ks, L~) is a polyhedral  neighborhood of x i in 211, where L,  is a sub- 

complex of Jt .  I f  M has p roper ty  T, there is a t r iangulat ion (L, g) of M which is compatible 

with (K, h) on Fr  M and locally compatible with (U i N 2~,/c,, L~) at  x ,  By  2.4, there is a 

t r iangulat ion (K, h) of X such tha t  the induced tr iangulat ions of X "-1 and M are sub- 

divisions of (K, h) and (L, g), respectively. Hence (K, h) is proper, and it is easily shown 

tha t  (K, h) is locally compatible with (U~, k~, J~) at  x~. 



T H E  T R I A N G U L A T I O N  O F  L O C A L L Y  T R I A N G U L A B L E  S P A C E S  8 9  

Let ~]I be denoted by Yn; Yn is a locally polyhedral space satisfying the hypotheses 

of Chapter I I I ,  for j = n - 1. Let Y~-I denote the composition space ( Y~)*; then Y~-I is 

a locally polyhedral space which also satisfies the hypotheses of Chapter I I I ,  for j = n - 2 

(by 7.8 and 7.9). In  general, let Yk = (Yk*,)*; Yk has no singular points of index greater 

than k - 1. Consider the space Yo; it satisfies (1) and (2) of the present proposition. If Y0 

has property T, it follows from a finite number of applications of 8.5 that  Y~ = M  has 

property T also. Then X has property T as well. 

9.2. THEOREI~. Let M be a 2-manifold with boundary. Given a triangulation of Bd M, 

there is a triangulation o / M  which is compatible with the given triangulation o/ Bd M. 

Proof. Let iL, g) be a triangulation of Bd M. There exists a triangulation (K, h) of 

M ([6], p. 167). Clearly there are subdivisions L', K '  of L, K respectively, such that  h-lg 

carries each simplex of L '  onto a simplex of K '  (not necessarily linearly). Let k be the 

linear map of L'  into K '  which agrees with h lg on the vertices of L', and let / = kg-lh 

on B d I K  ] . Define / as the identity on the remainder of the 1-skeleton of K, and extend 

/ to I KI by means of radial lines from the barycenters of the 2-simplices of K' .  Let h = h/-1. 

Then (K', h) is a triangulation of M which is compatible with (L, g) on Bd M. 

9.3. DEFINITION. If X is a space, a subset A of X is said to be weakly locally tame 

in X if for each point xEA,  there is a neighborhood U of x, a complex Kx and a homeo- 

morphism h of U onto a polyhedron in Kx such that  h(U N A) is also a polyhedron in Kx. 

If  it is required that  X ~ I K1 for some complex K and Kx~  K, then A is said to be locally 

tame in K ([2], p. 146). 

9.4. THEOREM. 1/ M is a 3-manifold with boundary, then M may be triangulated. 

I f  M is triangulated and 2t is a locally tame closed subset o /M,  let there be given a triangulation 

of A U Bd M in which A is a polyhedron. Then there is a triangulation o / M  which is compa- 

tible on A [J Bd M with the given one. 

Proof. This is a theorem of Bing ([2], p. 156). 

9.5. LEMMA. Let X be a locally polyhedral space of dimension n (n S 3), such that X 

has no singular points and X = C l ( X - X n - 1 ) .  Let x E X  ~ let (St x, h, L) be a polyhedral 

neighborhood on X,  and let v =h(x).  Then Fr(St  v) is a connected ( n -  1)-manifold with 

boundary. 

Proof. Fr(St  v) is a complex J consisting entirely of (n - 1)-simplices and their faces. 

Every (n - 1)-simplex t of St v is a face of exactly one or two n-simplices of St v, since 

otherwise its points would have index n -  1 and St t -  t would not be connected. As a 

result, every (n - 2)-simplex of J is a face of exactly one or two (n - 1)-simplices of J .  
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l J ]  is obviously connected, since otherwise S t  v - v would not  be connected and x would 

be a singular point  of X (by 5.7). These facts are sufficient, for n _< 2, to ensure tha t  IJ]  

is a connected (n - 1)-manifold with boundary.  

If  n = 3, we must  also show tha t  if w is a vertex of J and S t  w denotes its star in J ,  

then S t  w - w is connected. This is equivalent  to t h e  s ta tement  t ha t  for every 1-simplex 

s of S t  v, S t  s - s  is connected. If  the points of s have index 1, this follows from 5.7. If  

they  have index 2, S t  s - s consists of the connected set S t  s - h ( X  2) plus some of its limit 

points, so tha t  S t  s - s  is connected. I f  the points of s have index 3, so does every point  

of S t  s, so tha t  every 2-simplex of S t  s is a face of exact ly  two 3-simplices of S t  s. Ac- 

cordingly, those closed edges of the 3-simplices of S t  s which are opposite to s form a finite 

number  of homeomorphs  of a circle. Since each point  of s has a'3-cell neighborhood, there 

is only one such circle. Then S t  s - s is connected. 

9.6. THEOREM. Le t  X be a locally  po lyhedra l  space o / d i m e n s i o n  n (n < 3). T h e n  X 

has  p roper t y  T .  

Proo/ .  By 9.1, we m a y  assume tha t  X has no singular points and tha t  X = Cl ( X  - X ~-1). 

Let  x 1, x e . . . .  denote the points of X ~ and let (Us, k~, Js) be a polyhedral  neighborhood of 

x i. Let  (K, h) be a proper t r iangulat ion of X ~-1 which is locally compatible with (Ui, ks, Js) 

at  xi, for each i. We assume tha t  the sets U s are disjoint. We also assume t h a t  for each i, 

there is a neighborhood V~ of h -1 (x~) in I K ] such tha t  V~ is a subcomplex of K and the 

map  k ih  is a linear isomorphism of this subcomplex into Js. This involves no loss of generality, 

since we m a y  obtain this si tuation by  passing to appropria te  subdivisions of the complexes 

K, J i ,  J2 . . . . .  

Let  Ys denote the ver tex ki(xs)  of Js, and let L~ denote the subcomplex C l ( S t  Ys) 

of J~. Let  L denote the complex which is the disjoint union of the complexes Ls, and 

let g be the map of ILl into X defined by  sett ing g equal to kV 1 on [L~]. Then (L, g) is 

a t r iangulat ion of a subset of X. I t  induces a t r iangulat ion on g(L)(~ X n-1 which is 

equivalent  to the one induced by  (K, h). By  2.4, there is a t r iangulat ion (K, h) of g (L) U X ~-1 

which induces subdivisions of (L, g) and (K, h) on g (L) and X n 1 respectively. 

Let  z i denote the ver tex h -1 (x~) of K', let K '  denote the first barycentr ic  subdivision 

of K, and let S t  z s and S t '  z~ denote the stars of z~ in K and K '  respectively. Let  L denote 

the subcomplex 
h -1 ( X  n - l )  U ( U~ e l  ( s t '  zi) ) 

of K' .  Let  Y = h(L). Let  N = X - U ~h(St '  zs). Then N and Y are closed subsets of X,  and 

N fl Y = Z =  Y -  U ~ h ( S t ' z , ) = ( N  fl X ~-1) U ( ( J s F r ( h ( S t ' z s ) ) ) .  

Now (L, h) induces a t r iangulat ion of Z; we seek a t r iangulat ion of N which is compatible 
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with (L, h) on Z. These tr iangulations of N and Y will fit together  (by 2.4) to give a triangula- 

t ion of X, which is then automat ica l ly  compatible with (K, h) on ) ~ - 1  and locally compatible 

with (Ui, k~, J~) at  x~, for each i. OUT theorem will then  be proved. 

The crucial fact here is tha t  for n < 3, N is an n-manifold with boundary,  and B d N  c Z .  

I t  is clear tha t  each point  of N which is not  in any  set Fr(h (S t '  z~)) has a neighborhood 

whose closure is a closed n-cell, by  5.8 (using the  fact  t h a t  no point  of N belongs to X~ 

Points  of iV in Fr  (h (St' z~)) require special consideration. The set Fr (h (St' zi) ) is entirely 

contained in h(S t  z~), so tha t  the problem is reduced to considering neighborhoods of 

points of Fr(S t '  zi) in St z i -  St' z~. (This is the reason we "deleted" the neighborhoods 

h(St '  z~) from X to form N rather  t han  the neighborhoods h(S t  zJ.) But  by  9.5, Cl(St z~) 

is merely the cone over an  (n - 1)-manifold with boundary .  I t  is easy to show by  direct 

combinatorial  means t h a t  each point  of Fr(S t '  z~) has a neighborhood in St  z ~ -  St' z~ 

whose closure is a closed n-cell, and  tha t  it has no neighborhood which is itself an n-cell. 

Hence N is an n-manifold with boundary ,  and F r ( h ( S t ' z ~ ) ) c  B d N .  I f  x E B d N -  

[.J i Fr  (h ( St' zi)), then x E X ~-1. Hence Bd N c Z. 

For  n = 1 and n = 2, it is also t rue tha t  Bd N = Z. (This follows from the fact  tha t  

N n X "-1 lies in Bd N,  by  5.8.) Then by  9.2, there is a t r iangulat ion of N which is com- 

patible with the given tr iangulat ion of Bd N = Y,  and our  theorem follows. (If n = 1, 

9.2 does not  apply,  but  this case is trivial.) 

I f  n = 3, there is more work to do. The difficulty here is tha t  it need not  be t rue tha t  

Z = Bd  N,  for N fl X n-1 m a y  contain points of l n t  N.  The points of (Int  N)  0 X n-1 have 

index 1, by  5.8. Let  A denote the set X 1 fl N; then  Z = A U Bd N.  There is a t r iangulat ion 

of N,  by  9.4; we shall prove tha t  A is a locally t ame  subset of N. E v e r y  point  of A has 

index l ,  for it cannot  have index 0 and  lie in N.  Le t  x be in A,  and  let x no t  be in any  set 

Fr(h (S t '  z~)). Let  (St s, Ic, H) be a polyhedral  neighborhood of x such t h a t  dim s = 1. 

By  the a rgument  used in 5.8, the closed edges of H opposite/~ (s) mus t  form a homeomorph  

of a line segment or a circle, and A N St s is merely the set s. I t  is easy to see tha t  St s is 

a neighborhood of x satisfying the hypotheses  for A to be locally tame at x. On the other  

hand,  suppose x is in Fr(h(St"  zi) ). Then h- l (x)  is a point  of some 1-simplex of St z~, and 

h -1 (X  1) N St zi consists of some of the  1-simplices of St  ze Using these facts, one m a y  readily 

show by  combinatorial  means tha t  there is a neighborhood of h -1 (x) in St zi - St' zi which 

satisfies the hypotheses for local tameness of A at  x. 

A is a subcomplex in the t r iangulat ion of Z induced by  (L, h), since the original 

t r iangulat ion (K, h) of X ~ was proper. Then by  9.4, there is a t r iangulat ion of N which is 

compatible with the t r iangulat ion of A U Bd N = Z induced by  (L, h). This completes the 

proof  of the theorem for n = 3. 
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9.7. COROLLARY. Let X be a locally polyhedral space o/ dimension n (n < 3). Given 

polyhedral neighborhoods (U~, k~, Ji) o/ each x i E X  ~ there is a proper triangulation o/ X 

which is locally compatible with ( U ,  ki, J~) at xi, /or each i. 

Proo/. W e  proceed  b y  induc t ion  on n. X n-1 is a local ly  po lyhe d ra l  space of d imension  

less t h a n  n, so b y  the  induc t ion  hypo thes i s  there  is a p rope r  t r i angu l a t i on  (K, h) of X n-1 

which is local ly  compat ib le  wi th  the  po lyhedra l  ne ighborhood  (U~ N X n 1, k~, Li) a t  x~, 

for each x~ E (X~-I)  ~ = X ~ (L~ is a subcomplex  of J i ) .  Then  (K, h) is also local ly  compa t ib l e  

wi th  (Ui, k~, J~) a t  x~, so t h a t  9.6 applies.  

9.8. THEOREM. I /  X is a locally polyhedral space o/ dimension n (n < 3), X may  be 

triangulated. 

9.9. LEMMA. Let X be a locally polyhedral space, and let Y be a closed admissible sub- 

space o / X .  A n y  proper triangulation o/ X induces a triangulation o/ Y.  

Proo/. Le t  ~ (x) - 1 if x E Y, and  :r (x) = 0 otherwise.  Since Y is admissible ,  ~ is cons tan t  

on each s implex  of every  po lyhedra l  ne ighborhood  on X.  By  4.4 and  4.5, g iven a p roper  

t r i angu la t ion  of X,  ~ is cons tan t  on each s implex  of X under  this  t r i angu la t ion .  Since Y 

is closed, i t  is the  po ly tope  of a subcomplex  of X. 

9.10. THEOREM. Let X be a locally triangulable space o /d imens ion  n (n ~ 3), and let 

Y be a weakly locally tame closed subset o / X .  Then there is a triangulation o / X  under which 

Y is a polyhedron. 

Proo/. This general izes Theorem 8 of [2]. Le t  B be the  col lect ion of all  po lyhed ra l  

ne ighborhoods  ( U, h, L) on X such t h a t  Y contains  eve ry  s implex  of U which  i t  intersects .  

F r o m  the  def in i t ion  of weak  local  tameness ,  i t  is clear t h a t  B covers X.  To show t h a t  IB 

is cons tan t  on eve ry  s implex  of an  e lement  of B, one uses t he  a r g u m e n t  of 3.8 (with t he  

add i t iona l  fac t  t h a t  the  homeomorph i sm  g there  def ined maps  Y into  itself). Then  B is 

a basis for a s t ruc ture .  Le t  ~ (x) = 1 if x E Y, otherwise  le t  cr (x) = 0. Then ~ satisfies the  

hypo theses  of 4.3, so t h a t  b y  4.4, :r is cons tan t  on eve ry  s implex  of each po lyhed ra l  neigh- 

borhood  of the  s t ruc tu re  on X.  Hence  Y is an  admiss ib le  subspace  of X,  and  9.9 applies .  

9.11. REMARK. These resul ts  do no t  i m p l y  t h a t  the  t r i a ngu l a b i l i t y  of the  genera l  

local ly  po lyhedra l  space of d imens ion  n would  follow f rom a t r i angu la t ion  theo rem for the  

general  n -mani fo ld  wi th  bounda ry ,  or f rom a s t ronger  t he o re m involv ing  local  tameness~ 

l ike 9.4. Remov ing  the  s ingular  po in ts  f rom X makes  X local ly  a man i fo ld  wi th  b o u n d a r y  

only  a t  po in t s  of index  n, n - 1, and  n - 2. I f  n = 3, the  po in t s  a t  which X fails to  be a 

mani fo ld  wi th  b o u n d a r y  are  isolated,  and  one can use po lyhed ra l  ne ighborhoods  to  t r i an-  
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gulate  a neighborhood of this set. After  delet ing these neighborhoods,  one has left a manifold  

with b o u n d a r y  to t r iangulate .  If  n > 3, the set of points  where X fails to be a manifold  

with b o u n d a r y  has posit ive dimension,  and  it  is no t  clear how one could proceed in  this 

case. 
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