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w 1. I n t r o d u c t i o n  a n d  s u m m a r y  

l . l .  We shall be concerned with the analyt ical  ra ther  t han  with the probabilistic 

side of the theory  of Markov processes. I t  will therefore be appropriate  to define a 

process as a set ~ { p ~ , }  of real-valued functions defined on (0, co>, where i and j 

range over some fixed denumerable set E, and 

I : p~ (t) _> 0 (t >_ 0) ; 

I I  : ~ p~ (t) ~< 1 (t _> 0) ; 
~ e E  

I I I :  p ~ j ( u + v ) =  ~ p~(u)  p~(v)  (u>_0, v ~ 0 ) ;  
cteE 

IV : p~j (0) = 6~j - lim Pij (t). 
t r  

The cont inui ty  condition IV is designed to exclude excessively irregular behaviour  

(such as non-measurabil i ty)  of the P~s; it implies the continuity,  uniform for t ~0 ,  of 

each pij (Kendall [16], Th. 3.3). 

I n  the probabilistic theory  ~ I I  is s t rengthened to 

I I*  : ~ pi~ (t) - 1. 
~ E  

The pij( t)  are then transit ion probabilities for a t ime-homogeneous Markov process 

with E as its set of states. When  the sign of inequali ty is allowed in I I ,  a prob- 

abilistic interpretat ion is still possible if we suppose tha t  E does not  exhaust  the set 

x See DOOB [4], [5], Ch, VI. 
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Of states and t h a t  the system is such t h a t  no re turn  to E is allowed f rom states 

outside E.  The difference, 

1 - ~ p,a (t) (i G E) ,  
~ E E  

is then interpreted as the probabi l i ty  t h a t  the system, initially in state i, will be in 

a s tate  outside E at  t ime t. Such an interpreta t ion is a lways possible (e.g. b y  adjoining 

a single fur ther  state, as in w and is often useful, and the set 0~{p~j}  is then 

sometimes called a quasi-process (Jensen [13]). Ins tead  of adopt ing this practice we 

shall always call 0 a process, bu t  quahfy  it as "hones t "  when I I*  is satisfied. 

1.2. One of the aims of the analyt ical  theory  is to describe the process com- 

pletely in terms of its in[initesimal properties as t ~ 0. I t  is known (Doob [4], Kol- 

mogorov  [19], Kendal l  [16]) t ha t  the r ight -hand derivatives 

q~j-----p~'j (0) = lira (p~j (t) - ~,) / t  (1.1) 
t~0 

exist, 1 t h a t  0 _< q~j < ~ when i ~: ], and t h a t  

q~ _< - q,  -< ~ .  (1.2) 

All four combinat ions of < and = envisaged in (1.2) can actual ly  occur for honest  

processes (Kolmogorov [19], Kendal l  & R e u t e r  [18], Kendal l  [17]). However,  a know- 

ledge of the coefficients q~j alone does no t  in general determine the process uniquely 

(Doob [4]), so t h a t  the q~i do no t  describe the infinitesimal properties of ~0 in sufficient 

detail. A bet ter  description can be given by  introducing an operator  Pt on the 

Banach  space /, defined by  

(Pt x ) j~  ~ x~ Paj (t) 

Properties I - I V  of ~) imply  (see Hille [10], 

contraction semigroup, i.e. t h a t  

A :  Ptx>_O when x>_O; 

IIP xll-<ll ll when x_>O, 

C: P o = I ,  Pu+~=PuP~;  

as tr for each xE1. 

(x E l). (1.3) 

Th. 21.9.2) t h a t  ~ - - ~ { P t : t > 0 }  is a 

t 

1 Unless otherwise stated p~j (t) will denote the right-hand derivative when t = O, and the two- 
sided derivative when t > O. 
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B can be replaced by 

B*: IIP, xll llxll when x O, 

so that  ~ is a transition semigroup, if and only if ~ is honest. Conversely every 

contraction [transition] semigroup ~ has a unique representation (1.3) in terms of a 

process [an honest process] ~,  so that  in analytical contexts we may identify a process 

with the associated semigrouP ~ .  

Now ~ is uniquely determined by its in/initesimal generator E2. This linear 

operator is defined by 

E~x~ lim ( P t x - x ) / t ;  (1.4) 
t40  

its domain ~ (E~) consists precisely of those elements for which the (strong) limit in 

(1.4) exists. Thus ~, and therefore ~ also, can in principle be characterised by its 

infinitesimal properties, but  we are now faced with a new problem: how to recognise 

and describe in simple terms those operators ~ which generate a contraction or 

transition semigroup on l. 

t .3.  S u m m a r y .  We shall mainly deal with processes for which 

q~ = -qi~ < co (i E E) (1.5) 

and which satisfy one or other of the differential equations 

p~j(t) = ~ q~p~j(t), (1.6) 
r 

p:j (t) = ~ p,a (t) q~j (1.7) 
r 

(the celebrated "backward" and "forward" equations of Kolmogorov). The assumption 

(1.5) has recently been shown (Austin [1]) to imply the existence of continuous 

derivatives p~j(t). I t  will be convenient to use this fact, and we therefore begin by 

proving a somewhat stronger form of this result in w (Theorem 1). In w analytical 

conditions (involving either the q~j or the generator ~)  will be given for the validity 

of the Kolmogorov equations (1.6) and (1.7). Our remaining results will depend on 

the existence theorem of Feller [6] for processes with pre-assigned values of the q~j; 

Feller's proof and some of its corollaries will be discussed in w In w167 the 

uniqueness of processes satisfying (1.6) or (1.7) with given q~i will be discussed, and 

simple uniqueness criteria obtained (Theorems 8 and 10). When there is more than 

one process with given q~j we are far from having a complete description of all such 

processes; some minor results in this direction will be given in w Finally w 
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contains several examples, including a complete t r ea tmen t  of uniqueness problems for 

the general b i r th-and-death  process. 

Ev iden t ly  the problems formulated in w i .2  will receive only a partial  solution 

in the present paper  and several impor tan t  questions, s tated in w remain open. 

We should also refer here to two for thcoming papers by  Feller [8], [9]; the second of 

these contains constructions which are considerably more general than  those which 

we use in w167 and 6.2. 

1.4. A c k n o w l e d g e m e n t .  I am great ly indebted to David  G. Kendal l  for allowing 

me to incorporate several of his own results in this paper,  and for numerous  sugges- 

tions and comments  during its preparation.  

1.5. Notation and terminology 

The symbols pij(t) ,  q~j, q ~ ( ~ - q i i ) ,  P t  and ~ have already been defined. 

Bauach spaces 1 and m consist respectively of real sequences 

The 

and real sequences 

and we shall write 

Also 

with Ilxll  Ix l< 

with IlYll sup lY l< , 

( y , x ) ~  ~ y ~ x ~  when y E m  and xE l .  

u * is the i th  "un i t  vec tor"  in l :  (u i ) j~b i j ;  

v j is the j th  "un i t  vec tor"  in m:  (v]),~bij;  

e E m  is defined by  ( e ) i = l  (all i). 

Observe tha t  

(v j, x) = (x)j, the j th  coordinate of x E l ; 

(Y, u ~) = (y)i, the i th  coordinate of y 6 m;  

Pij (t) = (Pt uS)j = (v j, P t  u ~) ; 

(e, x ) = ] l / ] ]  when x_>0 (xe / ) .  1 

The "dishonesty  funct ion"  d~ (t) is given by  

d , ( t ) = l -  ~ p,~,(t)=l-IlPtu'll. (1.8) 

x We write x>_0 whenx~_>0 (all ~EE),  a n d x > 0  when x>_0 and x~=0. 
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I t  is continuous, and is non-decreasing because 

The derivative 
died[ (0)= lim d~ (t)/t 

t4o 

for s > 0 .  

exists and is finite (Kendall [16], Th. 7.1), d i>0 ,  and 

Finally, we write 

q,~+di-<q~ for each i. 

~ j  (~) - -  f e ~t p .  (t) d t (~ > 0) 
0 

for the Laplace transform of Pu, and define the resolvent operator uF~ by 

(q?a x) j~  ~ x~ ~f~i (~) (x C 1). 
c~ 

Then ~Fx is the inverse of ~ I -  s 

(1.9) 

(1.10) 

(1 .11 )  

(1.1._)) 

(2 I -~)XF~x=x  (xC1), (1.13) 

uFa(,~I-~)x=x (x E D(s (1.14) 

In particular the range R(~Fa) of ~Fa coincides with the domain D (fl) of t~, and 

D(f2)=  R(~F~) is dense in I. Also 2~Fa is a contraction operator 1 (for each 2 > 0 ) :  

I I ~ % x l l ~ l l x l l  when x>O. (1.15) 

If {Pt} is a transition semigroup then 2UFa is a transition operator: 

conversely 

semigroup. 

II~xll=llxll when x_>0; (1.16) 

if ~ is a transition operator for one ~.>0 then {Pt} is a transition 

We shall also use the facts (see [17], [22]) that  

(e, f2x)~O when x~O, x E D ( ~ ) ,  (1.17) 

and that  equality holds in (1.17) for all such x if and only if {Pt} is a transition 

semigroup. 

1 See HILLE [11], YOSIDA [24], [25]. 
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w 2. Differentiability properties 

[Throughout w 2 we consider a /ixed i E E /or which q~ < ~ . ]  

2.1. I n  order to s tudy  the  connexions between different iabi l i ty  propert ies  of 

the p~j and propert ies  of the  infinitesimal genera tor  ~ ,  i t  is useful first  to obta in  

some es t imates  1 for the  difference quot ients  

A,j (t, t + 8) ~- (p~j (t + 8) - p,j (t)) / 8 

A ~ ( t , t + s ) ~ ( d ~ ( t + s ) - d ~ ( t ) ) / 8  t(t>-O' s>O)" 

Because X p ~  (t) + d~ (t) = 1, we have  

A~ (t, t + 8) + A~ (t, t + 8) = 0, (2.1) 
ct 

and also A~ (t, t + 8) _> 0, (2.2) 

because d~(t) is non-decreasing. Fu r the r  (cf. Kendal l  [16], Th. 4.1) 

(1 -p~ ( s ) ) / s~q~  (8>0) .  (2.3) 

Now P~i (t + ~) = ~ p ~  (s) p~j (t) _> p ,  (8) p~j (t) 

so t h a t  b y  (2.3) 

A~j (t, t + 8) >_ 1 - p~ (s) P~J (t) _> - q~ p~j (t). (2.4) 
8 

B y  summing  (2.4) wi th  respect  to ], over  any  set  A _~E, we obta in  

A~j (t, t + s) _> - q~ y~A p~j (t) _> - q~ ; (2.5) 

on the  other  hand,  using (2.1) and  (2.2), we find t h a t  

A~j (t, t + s) _< - ~ A~j (t, t + e) ~< q,. (2.6) 
J~A j c A  

I n  par t icular ,  taking A = {j} in (2.5! and  (2.6), 

I ,a,~ (t, t + ~) I -< ~, ; (2.7) 

also 0 ~< Af (t, t + 8) = - ~ A~j (t, t + 8) _< q~. (2.8) 
J 

Due essentially to AvsTI~ [1]. 
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From (2.7) and (2.8), p,j and d, satisfy a Lipschitz condition so that  they are 

t 

pij (t) = ~j  § f p[j (u) du,  (2.9) 
0 

t 

d~ (t) = f d; (u) du ,  (2.10) 
0 

absolutely continuous and 

the derivatives existing almost everywhere. Now take A in (2.5) and (2.6) to .be the 

set of suffixes j for which A~j(t, t § s)_> 0. We obtain 

�9 l e A  

from which it follows easily that  

E ]P;J(t) ] -< 2q, (2.11) 
J 

at any point where all the derivatives exist. Summing (2.9) over ?'E E, 

t 

E p,,(t) = 1 + E f p;,(u) du 
J ) 0 

t 

= 1 §  f ( 2  p; j (u) )du ,  
0 

the interchange of summation and integration being permissible because of (2.11). 

On combining this result with (2.10), we obtain 

t 

o=  f ( E  p;j(u)+d;(n))du (t>_O), 
0 

a n d  therefore the integrand must vanish almost everywhere. This establishes 

L ~ M M A  1. 

and satis/y 

For almost all t >  0, the derivatives p~j(t) and d' (t) exist (/or all j E E) 

]p[j(t) [_< 2qt, (2.11) 
i 

p(.j(t) + d; (t) =0.  (2.12) 
J 

To link differentiability properties with properties of ~,  we now prove 

L ~ ~ M X 2. I1 3 > 0 is given, then P~u ~ E • (~)  i/ and only i /p~j (v) (/or all j E E) 

and d' ~ (3) exist as right-hand derivatives and satis]y 

E p5(3) + d; (3) = o. (2.13) 
J 
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Pro@ I f  P~:u ~ C D(f~), then 

(" P~P~u~- P~u ~) 
A~j (r, r + s) -- v j, s 

and similarly 

-~(v j ,~P~u i) as s 4 0 ,  

Ai(r ,  r + s)-+-(e,  ~P~ui). 

Hence p~j(r) and d~ (r) exist as r ight -hand derivatives, and 

p[j (r) = ~ ([~P~u~)j = (e, f~P~u ~) = - d[ (v). 
: J 

! 
Conversely, suppose tha t  the r ight -hand derivatives p[j(v) and di (r) exist, and 

tha t  (2.13) holds. As at (2.11) we have ~ [p[j(r)[<2q,<~ so tha t  the vector  p/.(r) 
J 

is in 1 and it will suffice to prove tha t  

( s )~  ~ [ A ,  (r, T + ~) p;, (T) I - ~  o as  s ~ 0. 
J 

Given e>O,  choose the finite set A Z E so tha t  

Then 

q, E p,~(r)q- E [p[,('r)l<e. (2.14) 
] c A  ] c A  

YeA 

and if z_ w' indicates summat ion  over suffixes j such tha t  A~j<O then 1 

Z r A,,I = I[A a , -  2 A,, 
: c A  " J c A  

_< ~ A , + 2 q ,  ~ '  pij(r) by (2.5), 
j q A  j c A  

Hence 

< ~ A,j-~-2e by  (2.14). 
j c A  

(.2.) < >2 [ A , : -  p;j (~) [ ~- E a ,  + 3 
j ~ A  j q A  

= E I a , -  7,;, (~)1 E A , , -  a,  ~- a 
j E A  j e A  

This device is borrowed from AUSTIN [1]. 
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by  (2.1), and so 
t ! 

lira sup ~ (s) ~ 0 - ~ p~j (T) - d, (~) + 3 e 
S ~ 0  j e A  

= EP;~(T)+3e  by (2.13), 
JcA 

< 4 c ,  by  (2.14). 

Because e >  0 was a rb i t ra ry ,  it follows t h a t  ~ (s)-+0 as required. 

I t  is clear f rom the proof t h a t  ~ P ~ u  ~ is given b y  

(~p~u~)j = p~j (~) (2.15) 

where p ' j@) denotes the  r ight -hand der ivat ive.  

2.2. L e m m a s  1 and 2, when combined with a simple semigroup argument ,  give 

T ~ O ~ E M  1. Suppose that q~<c~. Then Ptu~EO(f~)  /or each 

d~(.), Pi j ( ' )  (/or all j E E )  have continuous derivatives /or t>O. Also 

E [p~(t) l <- 2 q~ (t > o), 
J 

p~ (t) + d~ (t) = 0 (t > 0), 
J 

t ! 

Pij (tl + t2) = ~ P~ (tl) (P~j (t2) ( t l > O ,  t2 ~ 0). 

t>O, and 

(2.11) 

(2.12) 

(2.16) 

Proo/. B y  L e m m a s  1 and 2, P ~ u i E D ( ~ )  for a lmost  all T > 0  and hence for 

some arb i t ra r i ly  small  z. Fixing a n y  such z, i t  follows t h a t  Ptu~=Pt_ , (P~u  ~) has  

the s t rongly  continuous strong der iva t ive  P , _ , ( f ~ P , u  i) for t > z ,  so t h a t  

p[j (t) = (v j, Pt ~ s P~u ~) 

exists and is cont inuous for t >  T. Similarly d[ (t) = - (e, P t _ ~ P ~ : u  i) exists and  is 

continuous for t > ~:, and 

d~ (t) = - ~ (P~ ~ ~ P~ u %  = - E p,'J (t). 
J J 

Because r can be a rb i t ra r i ly  small,  i t  follows t h a t  p[j (t) and  d'~ (t) exist, are continuous,  

and  sat isfy (2.12), for all t > 0 ;  also (2.11) is a l ready known to hold wherever  all 

the der iva t ives  involved exist. Hence  Ptu~E ~ ( ~ )  when t >  0, f rom Lamina  2 (or hy  

observing t h a t  Pt u i = Pt  �9 (P~u ~) E D (~) if T is so chosen t h a t  0 _< z < t and  P~ u ~ C ~ (f~)) 

Also, if t 1> 0 and tz_>0, 
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P[] (tl -~ t2) = (Pt~ ~ Pt, ui)j 

= ~ (~Pt,  u~)~ p~/(t2)= ~ p,'~(t~)p~s(t~), 

which proves (2.16). 

We have now proved all the ass.e~tions of the theorem, except  for the existence ~ 

and cont inui ty  of Pi~(t) and d[(t) at t = 0 :  thus  we must  still prove t h a t  p~(t) and 

d~(t) have finite limits as t ~ 0 .  Let  0 < 3 < t  and 8 > 0 .  Then 

A~j(t, t+s)= ~ Aid(v, T+s)p~j(t-v) 

_> A .  (3, T + 8) Pz (t - 3) - q~ ~ p~: (3) p ~  ( t -  3) 

= A~j (3, 3 + 8) P z  (t - 3) - q~ [p~j (t) - p~j (3) p j j  (t - 3)]. 

I f  we let s ~ 0 and then,  keeping t fixed, let z ~ 0, we obtain 

p[j (t) _> (lim sup p;j (3)) Pz (t) - q~ [p~j (t) - (~j Pz (t)], 
v~,0 

and because pz(t)> 0 (Kendall  [16], Th. 3.2) the limit superior is finite. We now 
! t ! 

let t ~ 0 and obtain lira inf p~s(t)_>lim sup p~s(3), so t h a t  p~j(t) has a (finite) limit as 
t ~ 0  ~ , o  

t ~ 0. A similar argument ,  s tar t ing from 

A ~ ( t , t + 8 ) = A ~ ( 3 , 3 + 8 ) +  ~ h ~ ( 3 , 3 + 8 ) d ~ ( t - ~ )  

> A~ (3, 3 + 8) - q~ ~ p ~  (3) d~ ( t -  3) 

= A~ (v, 3 + 8) -- qi [d~ (t) - d~ (3)], 

shows tha t  d~ (t) has a finite limit, and this concludes the proof of Theorem 1. 

Remarks. (1) The existence and cont inui ty  of p[j(t) for t>O, when q~< ~ ,  was 

first proved for honest  processes by  Aust in  [1]; his a rgument  as it s tands does not  

appear  to prove cont inui ty  at  t =  0. A second proof by  Chung [2] establishes con- 

t inui ty  for t_> 0. 

(2) The new par t  of Theorem 1, t h a t  P t u i E D ( ~ )  for t > 0 ,  will be needed in 

the proof of Theorem 4 and is also of independent  interest~ 

! ! 
1 The existence of p~j(0) and d~ (0) is of course known already (KoLMoGoRov [19], KENDALL 

[16J), but it will follow independently from our proof in the present special case. 
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(3) There  exist  hones t  processes for which q~ < oo (all i) bu t  ~ qia < 0 for some 

i (Kolmogorov  [19], Kendal l  & Reu t e r  [18]). This shows t h a t  ( 2 . 1 2 ) m a y  fail a t  

t = 0 ,  and  also t h a t  u s need not  belong to D(~2) (by L e m m a  2 it  does so if and  only 

if ~ q~ + d, = 0). Thus  Theorem 1 is in a sense best  possible. On the  other  hand,  there  

also exist  processes for which q i=  oo for some i and ye t  PtuiE D(Y2) for all t > 0  

(Kendall  & Reu te r  [18]). 

w 3. The Kolmogorov differential equations 

3.1. I t  is easy to show, b y  let t ing s ~ 0 in the  identi t ies 

A~j- (t, t + s) = ~ A~ (0, s) p~j. (t) 
(Z 

t h a t  the  inequalities 

~p,~(t) A~j(0, s), 

p[j (t) _> • q,~ p~j (t), (3.1) 

p;j (t) ~ Z p,~ (t) q~j (3.2) 

hold whenever  p~j (t) exists (see Doob [4]). In  general,  these can be str ict  inequalities, 1 

bu t  it  is desirable to find conditions under  which the differential  equations, a l ready 

quoted in 0 .6)  and (1.7) 

(B,j) : p~'j (t) = ~ q,~ P~i (t), (3.3) 

(F~i) : p;j (t) = Z P~ (t) q~j, (3.4) 

will hold. Conditions of a probabil is t ic  nature ,  involving the  cont inui ty  propert ies  of 

sample  functions of the  Markov  process, have  been given b y  Doob [4]. We shall 

give some different conditions, of an  analyt ical  nature ,  involving the  infinitesimal 

genera tor  fs and  its re lat ion to  the  coefficients q~j. 

I t  will be convenient  f rom now on to  view the  constants  q~j in a sl ightly different  

' 0 light, and  t h e y  will no longer be de/ined b y  qij~p~j(). We now s ta r t  with a given 
set  Q--{gtj} of (finite) real numbers  gij such t h a t  

q. ~_ o ( i .  j), E q,~-< o (all i), (3.5) 

x See the examples in w167 8A-8.3. 
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and then consider processes for which either (3.3) or (3.4)holds.  I t  will also be 

necessary to interpret (3.3) [or (3.4)] either in the strict sense tha t  p~'j is continuous 

and (3.3) [or (3.4)] holds for all t > 0 ,  or in the wide sense that  Pij is absolutely 

continuous for t > 0, and (3.3) [or (3.4)] holds for almost all t _> 0. I t  will, however, 

be shown tha t  the two interpretations are equivalent;  this implies tha t  even when 

(3.3) [or (3.4)] is merely known to hold in the wide sense, then p[j(0)=q~i. Thus 

there will be no conflict with the definition q~j~-p[j(O) which has been used so far. 

To formulate our conditions for the validity of (3.3) or (3.4) we define operators 

Q and Q0 as follows: ~ (Q)  is the set of xE1 such tha t  

(i) ~ x~ q~j converges absolutely for each j, and 

J c~ 

Q is given by 

(Qx)i ~ ~ x~q~i ( x E ~ ( Q ) ) .  (3.6) 
o: 

D(Qo)--~0,  the set of "finite '~ vectors in 1 (vectors x El with only finitely many  

non-zero components); note tha t  ~0-- -~(Q) .  Qo is the restriction of Q to ~(Qo). 

Both Q0 and Q have domains dense in l, because ~0 is dense. 

3.2. The  b a c k w a r d  equations. The strict and wide interpretations of 

f 
(13~j) : p .  (t) = ~ q,~ p~j (t) 

c~ 

are easily seen to be equivalent. If  (B,i) holds in the wide sense, then 

t 

Here the integrand is continuous, the series defining it being uniformly convergent, 

and by differentiating we see tha t  (B~j) holds in the strict sense. We may  therefore 
t 

a[ways use the strict interpretation; putt ing t = 0 ,  we see tha t  p~j(0)=q~s. We now 

p i ' o v e  

LF. MMA "~. Let .,O--f a :  ~ t~J~) satis/y (3.5) and suppose that ~ { p ~ j ( t ) }  is a process 

with generator ~). For any given i C E ,  (Bij) will hold /or all l E E  i/ and only i /  

u ~ E D (~)) and (~)u~)j = qii. 
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Proo/. If u i E ~ ( ~ )  and ( ~ u i ) = q u  then Ptu ~ has the strong derivative P t ~ u  i 

for t > 0 .  Hence pu(t)=(v j, Ptu  ~) has a continuous derivative for t > 0 ,  given by 

p[j(t) = (v j, Pt f2u ~) ~ ~ (f2u~)~ p~i(t) = ~ q~p~s(t), 

so that  (Bu) holds for all j E E .  

Conversely if (Bu) holds for all j E E, then by taking Laplace transforms on both 

sides we obtain 

~ v u ( 2 ) = O u +  ~ q~v~j(~) (2>0),  (3.7) 

where ~fu denotes the Laplace transform of Pu (cf. (1.11)). In terms of the resolvent 

operator ~F~ (cf. (1.12)), (3.7) can be written as 

~F~ (~ u ~ - ~) = u ~, ( 3 . 8 )  

where ($)~qi~.  But ~F~ is 1 - 1  and inverse to ~ I - f 2 ,  whence (3.8) implies that 
u i E D ( ~ )  and ~ u ~ - ~ = 2 u ~ - ~ u  i, i.e. (~ui) j=(~)s=qu.  

THnOREM 2. Let Q~-{qu} satis/y (3.5) and let O~{pu(t )}  be a process with 

generator ~.  Then (Bu) holds /or all i, j in E i [  and only i/ ~ is an extension o/ Qo. 

Proo/. This follows at once from Lemma 3, because uiCD(Qo) and (Qoui)j=qu. 

T , E O ~ M  3. Let 0--{Pu( t )}  be any process, and de/ine qu~p~j(O), dt~d[ (O). 

Then /or any one l E E ,  (Bu) holds/or all j E E i/ and only i/ qi~ is /inite and 

q~ + d~ = 0. (3.9) 

Proo/. If q, is finite and (3.9) holds, Lemma 2 (applied at r = 0 )  shows that  

u~fiD(f2) and that  (f~u~)r (cf. (2.15)). Hence (Bu) holds by Lemma 3. 

Conversely, if (Bu) holds, ~ then u~EO(f~) and (f~ui)r by Lemma 3. Lemma 2 

now shows that  (3.9) must hold. 

C o R o L L a ~ Y. (Bu) always holds (/or all ~ ~ E) when ~ qi: = O. 
(X 

Remarks. Theorem 3 shows in particular that  for honest processes (Bu)holds for 

all i and ?" if and only if q~ is finite and 

qi~=0 for all i. (3.10) 

1 Of course, this is understood to imply that qii is finite. 
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This result is due to Doob [4]. The first example of an honest process for which 

(Bi~) does not hold was given by  Kolmogorov [19]; see also Kendall  & Reuter  [18]. 

In  future we shall call the set O~--(q~j} conservative if it satisfies (3.10). 

3~3. The  f o r w a r d  equa t ions .  These read 

t 
( F , )  : p ,  (t) = Y~ p,~ (t) q~j. 

They will require more delicate handling than (Bis), since we can no longer assert 

a priori tha t  the series on the right converges uniformly. We shall prove a result 

(Theorem 4) analogous to Theorem 2, but  there will be no counterpart  to Theorem 3. 

This is hardly surprising because the forward equations (F~j)may fail even for honest 

processes for which O~{p[ j (0) )  is conservative (Doob [4]; see also the remarks at 

the end of w 

TH]~OREM 4. Let O--{q~j) satis[y (3.5) and let 0~{p~j ( t ) )  be generated by ~.  

Then the /ollowing three statements are equivalent: 

(1) (F~j) holds in the wide sense /or all i, j in E; 

(2) (Fij) holds in the strict sense /or all i, j in E; 

(3) s is a restriction o/ Q. 
t 

Any one o/ these statements implies that p~j(O)= qi]. 

Proo/. Suppose tha t  (1) holds. Because Pis is absolutely continuous and bounded, 

the Laplace transform of p~j exists for 4 > 0 and equals 2 Vii ( 2 ) -  (~ij, so tha t  from (Fij) 

we obtain 
2~v~j(4)=~j+ ~ ~v~(X)q~j (i, j E E ;  4 > 0 ) ;  (3.11) 

the termwise integration required for this is justified because the terms of the series 

pt~(t)q~j are non-negative except perhaps when ~ = ] .  We shall deduce from (3.11) 

tha t  ~F~x E ~ (Q) and 

( 4 I - Q ) ~ F ~ x = x  (4>0)  (3.12) 

for all x E I. By linearity it suffices to prove this when x _> 0. I f  we write y~-F~x  

then 

= ~ xz()tv?~s(2)-6zs-~zj(2)qz),  by (3.11), 
fl 

= (4 y - x)j - yj qjs, 
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the inversion of summations being justified because x~a~(2)q~j_>0. Hence E y~ q~j is 

absolutely convergent, and its sum is ( 2 y - x ) s .  This shows tha t  y E ~ ( Q )  and 

Q y = 2 y - x ,  i.e. tha t  ~FzxED(Q)  and tha t  (3.12) holds. Now ~Fz is 1 - 1  and inverse 

to 2 I - ~ ,  so tha t  (3.12) implies tha t  ~ is a restriction of Q, and we have therefore 

proved tha t  (1) implies (3). 

Now assume tha t  (3) holds. Then (3.12) will hold because ~ Q ;  if we put  

x = u  ~ and take the j th components in (3.12), we obtain (3.11). From (3.11) it follows 

tha t  the Laplace transform of ~ Pi~ q~,j exists for 2 > 0, so tha t  ~ pi~, q~j is summable 

over any finite interval (0, T) .  

Dividing both sides of (3.11) by  2, we now have 

~/)ij (~) = ~-1 (~iJ + ~-1 ~ ~)i~x (~) q~xj. (3.13) 
~x 

The two sides of (3.13) are the Laplace transforms of the continuous functions pq (t) and 

t 

~ij + f (~  P~ (u) ql~J) d u, 
0 a 

so tha t  by  Lerch's theorem these two functions coincide for t_> 0. This shows (by 

differentiating) tha t  (F~j) holds in the wide sense, and we have therefore proved tha t  

(3) implies (1). 

(1) and (3) are now known to be equivalent, and we shall show next  tha t  they 

imply tha t  p~'j (0) = qij. 

First (1) gives 
t 

p ,  (t) ~ ~,s + f (~ p~, (u) ~,~) d u 
0 ct 

and hence 

t t 

>- ~ij + q~j f P,, (u) d u § (1 - 5,j) qjj f p,j (u) d u, 
0 0 

- ' 0 qij--pij ( ) >- q~j + (1 - (~ij) qz (~J = qij ; 

this shows tha t  ~ii->q~i > - o o ,  so tha t  all ~ij are finite. Next  (cf. (3.2)) 

' t whenever Pij()  exists, and by combining this with (F~j) we find tha t  

p~ (t) ( ~ j -  q~t) -< 0 (all i, j in E) 

(3.14) 
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for almost  all t ~  0. Bu t  here each term in the series is non-negative,  so tha t  each 

term is zero for almost  all t and in part icular  P,i ( t ) ( q - - q u ) = 0  p.p.  This gives q u = q u  

(because Pi, ( t )> 0 for all t >  0), i.e. p[ i (0)= qu as asserted. 

I t  remains only to show tha t  (1) (or {3)) implies (2). Since we now know tha t  

p [ j (0 )=qu  when (1) holds, it follows t h a t  p[,(0) is finite. By  Theorem 1, pu(t )  has 

a continuous derivative for t >  0, and because P t u i E  ~ ( ~ )  for t > 0  we have 

p[j (t) = (v j, f~ Pt  Ui) 

=(V j, QPtu i) because f2_cQ (by (3)), 

= ~ (Ptui)~q~j = ~ pi~(t)q~j; 
o~ o~ 

this also holds at, t = 0 because P~'3 (0) = qu and therefore (Fu) holds in the strict  sense. 

This completes the proof of Theorem 4. 

Remark.  Theorem 4 shows tha t  the sum of the series ~ Pi~(t) q~J is continuous 

whenever (Fu) is known to hold in the wide sense. I t  then follows from Dini 's  theo- 

rein tha t  the series converges uniformly in any  finite interval  0 _< t _< T. 

3.4. Theorems 2 and 4 indicate a close connexion between f~ and the qu when 

either the backward  or the forward equations hold. No  equally simple connexion 

seems to be known when neither set of equations holds (for a non-trivial  case of this 

phenomenon,  see w 8.3). However,  it is always possible, in principle, to calculate the 

qu when s is known (even when the assumption, t ha t  qi < oo for all i, is dropped). 

The calculation is based on a simple Abelian a rgument  (Kendall [17]): because 

p u ( t ) - d u ~ q u t  for small t, it follows tha t  

o~ 

qu = lira 2 2 f (Pij (t) - cSu) e -at d t  

= lira (2 2 ~0u (2) - 2 du) 

= lim 2 (v j, ( 2~Fa- I )u i ) .  (3.15) 

Similarly we find tha t  

d~= lim 2(e, ( I - 2 ~ a ) u i ) .  (3.16) 

Because ~Fa is the inverse of 2 I -  f2, it m a y  be regarded as known when f2 is given, 

and thus (3.15) and (3.16) will enable us to calculate qu and d~ when ~2 is known.  



DENUMERABLE MARKOV PROCESSES 17 

w 4. Feller's existence theorem 

4.1. F e l l e r ' s  c o n s t r u c t i o n .  The  infinitesimal propert ies  of a process may ,  as 

we have  seen, be specified roughly  by  means  of the qu ( -p~ j (0 ) )  and precisely by  

means  of the infinitesimal genera tor  [~. In  any  a t t e m p t  to construct  all possible 

processes one m a y  therefore well use the q~j for a pre l iminary  classification. I f  this 

is done, the  first  p rob lem is: given a set Q={q, j}  of finite constants  such t h a t  

qu>_0 (i ~-}) ,  ~ q ~ < 0  (all i), (4.1) 

do there  exist processes such t h a t  p~j(0)-q~j? This question, fo rnmla ted  for a nmch 

more  general  class of processes, was answered in the fundamenta l  pape r  of Feller [6], 

who const ructed one such process. Feller 's  result  will be repeatedly  used, and we 

shall also need to refer explicit ly to his construction,  1 which we now describe. 

:Define the  funct ions ]~. recursively by  

l~ 

t 

q~l~s( )) du,  (4.2) 
0 c r  

where as usual q ~ : - - q ,  ( > 0 ) .  The /~ increase with n and tend to finite limits 

/u (t) ~ lira [i'~ (t), 
n ---)or 

and they  also sat isfy the  recurrence relat ions 

t 

./~+1 (t) ~ du e:q/  + e %t f ( ~ f~ (u) q~i) eqJ ~ du.  (4.3) 
0 a + J  

The limit  functions [u define a process : ~ { / u ( t ) }  such t h a t  /[ j(0)-q~j,  and both  the 

backward  and forward  equat ions hold for J .  (These results are proved  in [6] only 

when ~ q ~ - 0  for all i, bu t  the proofs are still val id when ~ q~<_-0: cf. also 

Hille [12]. I n  [6], the  forward equat ions are only shown to hold in the wide sense; 

Theorem 4 shows t h a t  they  mus t  then  hold in the  str ict  sense.) 

I f  {pu(t)} is any  process such t ha t  p [ j (0 )=qu ,  we shall call it a Q-process and 

1 A l t e r n a t i v e  cons t ruc t ions ,  l e ad i ng  to  the  same process  as does Fe l le r ' s  cons t ruc t ion ,  have  been 

g iven  b y  I~EUTEI~ & LEDERMANN [23] and  KATO [15]. 

2--563804. Acta mathematlca. 97. Imprim6 le 18 f6vricr I957. 
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the associated semigroup {Pt} a O-semigroup. I t  will then be appropriate to call 

the minimal 0-process, because /ij (t) <- pij (t) for any 0-process {p,j-(t)). This can be 

proved (cf. Doob [4]) by writing the inequality (3.1) as 

d 
(p~](t) e~ ~) >_ ( E q,~ p~J (t)) e~ ~, 

a 4 i  

and integrating which gives 
t 

p~s (t) > ~ j  e - ~  ~ + e - ~  ~ f ( y.. q~ p~j (u) ) e~J ~ d u. 
0 a4:~ 

On comparing this inequality with (4.2), an easy induction argument yields 

p,j(t)>_/~(t) (n=O, 1, 2 . . . .  ), 

and hence pij (t) >_/ij (t) = l im/~ (t) 
n --)oo 

as asserted. 

4.2. M i n i m a l  proper t ies .  There are two further "minimal" properties of ~, 

or rather of the resolvent operator (P~ of the associated semigroup, which may con- 

veniently be established now. (I)~ is given (cf. (1.11) and (1.12)) by 

((P~ x),--- ~. x,  r (2) (x 61), (4.4) 

where 

If  we similarly write 

oo 
dpij(,~)~ f l, i ( t )e-~tdt  (2>0).  (4.5) 

0 

r (2)~ f / ~  (t) e -~~ d t, (4.6) 
0 

then 4 ~ 4 ~ j  as n-+oo 

r176 (2) ~ 0 and tha t  

because ]~ ~']~j. Also from (4.2) and (4.3) we find that  

(2 + qi) r (2) = (~tJ + ~ qfa CanJ (2), (4.7) 

(2 + qj) 4~+1 (2) = ($~j + ~_ 4~ (2) q~. (4.8) 

Hence if we write ~--(I)~x and define ~ 6 1  by 
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~~ then ~:s= lim ~ (for each j). Now and 
n-.~ oo 

Thus 

~;+~ = E x .  ~.., = ~ .  ( a . ; +  
o~ 

1 
(x~ + E (E x~ r q~D 

1 
= i + q ~  (xj + ~ s  ~; qzD ; 

(i + m) ~+~ = xs + E ~; q~. 

(d)~X)s= lim ~ ,  
n -->oo 

(4.9) 

(4.10) 

where ~e0 = 0 and ~ is defined by the recurrence relations (4.9). 

Similarly, if q)~' is the adjoint of (I)x, we can calculate y (Dr from 

(y qP~)~ = lim ~ ,  (4.11) 
n-->oo 

where 7~ and ~ff is defined by the recurrence relations 

(i + q~) ~+1  = y, + ~ q~ ~ .  (4.12) 
c e ~ i  

[Here y E m and the adjoint operator q)~ is written on the right, so that  

(y, (I)~ x )=  (yqb~, x) 

for all y E m  and xEl . ]  

Finally we observe that  Feller's process ~ satisfies the backward and forward 

equations, so that  by Theorems 2 and 4 its infinitesimal generator ~y  satisfies 

Qo-  ~ r  ~- Q. (4.13) 

By taking adjoints in (4.13), we obtain 

Q ~- ~F--- Q~. (4.14) 

I t  seems difficult to give an explicit description of the operator Q*, but  fortunately 

we shall only have to deal with Q~. Now y(Em)  is in D(Q~) if and only if there 

exists zero such tha t  (y, Qox)= (z, x) for all x E D(Qo), and then y Q '~z .  From this 

definition it follows almost immediately that  

(y Q~)~- ~ q~,yr (4.15) 
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the domain D (Q~) consisting precisely of those elements y E m for which (4.15) defines 

a bounded sequence (y Q'~)i. 

Because q)~ is inverse to 2 I - D F ,  (I)~ will 1)e inverse to ;L I - f2* .  In  particular, 

from (4.13) and (4.14), we shall have 

O . I -  Q) (lh x = x (x E l), 

y q ) ~ ( 2 I - Q ~ ) = y  (yEm).  

This means that  ~ ' =  ~- (1) ;x  and ~?'= ~7=yCI)~ are solutions of the respective equations 

( ~ I - Q ) ~ ' = x ,  

~' (21 - Q~) = y, 

and of course ~=~0 when x_>0 and ~]~0 when y ~ 0 .  

(4.16) 

(4.17) 

The following theorem states 

tha t  they are the least positive solutions of these equations. 

T H E O R E M  5.  

(i) I /  x ~ O  is in l, and ~ ' > 0  in D(Q) satis/ies (4.16), then ~ ' ~ - - r  

(ii) I[ y ~ O  is in m, and ~ ' ~ 0  in D(Q~) satis/ies (4.17), then ~ '~=:yOp~.  

Proo]. (i) We can write (4.16) as 

(~ + q~) ~5 = ~j-4- ~ ~ q~. 

e' ~ 0 - e.9 On comparing this with (4.9), and using the fact that  si -.~j, we find (by indue- 

tion) tha t  ~ for each n and hence by (4.10) tha t  

t 

n-->~ 

(ii) This is proved similar]y by writing (4.17) as 

~nd using (4.11) ~nd (4.12). 

w 5. Uniqueness theorems: the backward equations 

5.i .  Uniqueness and the honesty of :~. Now let a set Q--{qij} satisfying (4.1) 

be given, let the operator Q0 be defined as in w let the Feller process (semigroup) 

he constructed as in w let (z-p ocess (semlgroup) denote any system for which 
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p~j(0)-q , j ,  and let " t he  backward  equat ions"  mean  the  set of equat ions 

(B~s) : p~j (t) = ~ q~: p~j (t) (i, j E E ; t_> 0) 

( interpreted in the  s t r ic t  sence of w 3.1), where a lways the  given qij are to be under-  

stood. We m a y  then  ask:  

is ~ the only process /or which the backward equations hold, with the given 

coe//icients q~ ? 

By Theorem 2, an equivalent  form of this question is: 

is :~ the only contraction semigroup wt~ose in]initesimal generator ~ is an 

extension o/ the given operator Qo ? 

The s i tuat ion is par t icu lar ly  simple when the  set Q is conservative, i.e. when 

q~ = 0 (all i), (5.1) 

and we assume unti l  fur ther  notice t h a t  (5.1) holds. By  Theorem 3, every Q-process 

will then  satisfy the  backward  equations,  and our question now becomes:  

is :7 the only Q-process ? 

T H E O R E ~ r  6. Let Q=-{q,j} satis/y (4.1) and (5.1), and let :~={/~j(t)} be the 

minimal Q-process. 

(i) I /  :~ is honest, then it is the only Q-process. 

(ii) I/  :$ is dishonest, then there exist in/initely many O-processes, including in- 

finitely many honest O-pvocesscs. 

Proo/. (i) I f  ~ is honest,  and  0 is ano ther  Q-process,  then  p~/(t)~ ]~/(t)by the  

min imal i ty  of 5. Bu t  also ~ p ~ ( t ) ~  1 -  ~ /i~(t), so t h a t  p~j(t)=/~j(t). 

(ii) I f  :~ is dishonest,  let ~ s  denote  its infinitesimal generator .  We then  define 

an opera tor  ~ . ,  wi th  domain  ~ ( ~ F ) ,  as follows. 

Choose any  e e l  such t h a t  e >  0 and O< Ilcil ~ 1, and ]imt 

~x~z~x-(e ,~sx)c  (xeD(~) ) .  (5.2) 

Now ~ (Qo) -~ ~ (~P) - ~ (~)  

(cf. (4.13)), and if x E ~(Qo)  

then  ~]r  x = Qo x,  
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and ~ c  x = Qo x -  (e, G ~) c = Qo x 

because (5.1) implies t h a t  (e, Q 0 x ) = 0 .  Thus  ~c is an extension of Q0- I t  has been 

shown elsewhere (Reuter  [22]) t h a t  ~c generates  a contract ion semigroup,  ~c. Thus  

for each choice of c we obta in  a Q-process Pc ; moreover  (cf. [22]) dis t inct  choices 

of c lead to dis t inct  processes, and  the  process will be honest  when  Hell= 1. 

5.2. D o o b ' s  c o n s t r u c t i o n .  The  construct ion in (ii) of the  proof  of Theorem 6 

is an analyt ica l  vers ion of a well known probabi l is t ic  const ruct ion of Doob [4]. This 

m a y  be seen as follows. I n  [22] it  was shown t h a t  the  t ransi t ion semigroup Oc 

genera ted  b y  ~c when I[cl[ = 1 has a resolvent  ~F~, given in t e rms  of the  resolvent  

qb~. for :7 b y  
(z (2), x) 

tF~ x = r x + 1 - (z (2), c) O;. c, (5.3) 

where 

so t h a t  

Now f rom (5.3), 

and  so 

z(2)==-e-e2O~ 

1 -(z (2), c ) =  112o~cll > 0. 

W~ c = [1 - (z (2), c)] - 1 %  c 

~F~z = O ~ x +  (z (2), x) ~F~c. 

Pu t t i ng  x = u * in this equat ion  and tak ing  the  j th  componen t  on each side, we obta in  

Y~i (2) = ~b,j (2) + [1 - ~ 2 ~,~ (2)] ~ c~ V~J (2) (5.4) 
0t 

for all 2 > 0. Now 1 -  ~ 2c, bia (2) is the  Laplace  t r ans fo rm of d~ (t), where 

d, (t) ~ 1 - ~ [,~ (t), 
r 

and so Lerch ' s  t heorem leads f rom (5.4) to the  integral  equat ion  

t 

p .  (t) = 1, (t) + f d~ (s) (~ c~ p~j ( t -  s)) ds (5.5) 
0 

for the  t rans i t ion probabil i t ies  p~j(t)of Pc. The a rgumen t  is clearly reversible,  so 

t h a t  Pc is the  only process whose t rans i t ion probabi l i t ies  sat isfy (5.5), and  this pro- 

vides a convenient  w a y  of ident ifying Doob ' s  construct ion wi th  ours. 

Doob ' s  construct ion s tar ts  f rom the fact  t h a t  ]~j(t) can be identified wi th  the  

p r o b a b i l i t y  t h a t  a certain s tochast ic  sys tem (initially in s ta te  i) will be in s ta te  j a t  

t ime  t, hav ing  pe r fo rmed  a t  mos t  a finite n u m b e r  of jumps.  Thus  d~ (t) is the  prob-  
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abili ty t h a t  an infinite number  of jumps will have occurred in (0, t) and if 8 ~  lira s~, 

where sn is the  epoch of the n th  jump,  then 

d~ (s) d s (0 < s < ~ ) 

will be the distr ibution of the r andom variable s. Now in Doob 's  construct ion i the 

system is assigned a t  the  epoch s to  one of the states 1, 2, 3, ... of E,  wi th  respective 

probabilities cl, c~, c 3 . . . . .  and it then starts its career all over again. I t  will readily 

be seen tha t  the transi t ion probabilities p,s(t) for the resulting process will satisfy 

(5.5), so t h a t  the positive uni t  vector  c which occurs in our construct ion corresponds 

to  the probabi l i ty  dis tr ibut ion [c l, c2, c3, ...] which controls the assignment of the system 

to a fresh star t ing-point  after it has " run  out  of instructions".  

I t  is also interesting to observe (following Doob [4]) t h a t  the process generated 

by  ~c does not  satisfy the forward equations when Y is dishonest. A probabilistie 

deduct ion of this fact  has been given by  Doob : for an analyt ical  deduction,  we have 

only to observe t h a t  because :~ is dishonest, there exists an x E ~ (~F) for which 

(e,~x)=~O (See [22]). Bu t  FtFx=Qx, and so we shall have ~ox~:Qx for this x, 

which shows t h a t  ~ is no t  a restriction of Q and (by Theorem 4) t h a t  the forward 

equations do no t  hold. We can go fur ther  t han  this and find a correct subst i tute  

for the forward equations. Because uSE ~ ( ~ )  we have 

P[s (t) = (v j, ~c Pt u s) 

= ( v  j, QPtu i-(e, QPtd)c) 

= ( Q P t u ~ ) j -  (e, Q P t u  ~) cj 

= E p,~ (t) q~j- cj 2 (Z p,~ (t) q~). (5.6) 

Observe t h a t  - (e, Q P~ u ~) = - (e, ~ r  Pt u ~) >- 0, because 0 _< Pt  uS e D (~c) - D (~F) (cf. 

(1.17)) SO tha t  the ex t ra  term 

- cs Z (E p~  (t) q~z) 
t~ a 

in (5.6) is non-negative,  and thus the old forward equat ion now holds as an inequality,  

as already noted at  (3.2). 

6.3. A u n i q u e n e s s  c r i t e r i on .  I t  is desirable to  have a direct test, involving 

Q alone, for uniqueness of Q-semigroups. Theorem 6 as it s tands does not  fulfil 

this requi rement :  we need a criterion in terms of the q~i for the hones ty  of :~. 

i The state space E will temporarily be labelled 1, 2, 3, . . . .  
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To o b t a i n  such a cr i te r ion ,  we i n t r o d u c e  the  vec to r  z (2) r m def ined  as in  w 5.2 b y  

z (Z) = e - e ). ~ .  (5.7) 

W e  have  z~ (~) - (z (~), u i) = (e, u i - 2(P~u ~) 

oo 

= 2 f  d~ (t) e -)'t dt, (5.8) 
0 

where  d~ (t) 1 - ~ /~  (t). 

W e  can  re la te  z()~) to the  qij b y  obse rv ing  t h a t  e Q~ = 0 (because 0 is conserva-  

t ive)  a n d  t h a t  e ~ ( 2 I - Q ~ ) = e  (by (4.17)). I t  follows t h a t  

z ( ~ ) ( ) . I - Q ~ ) = e ( ~ I - Q 3 ) -  )LeCp~()~I Q{)) 

= ~ e -  0 - ~ e - 0 ,  

so t h a t  z(~) belongs to the n~dlspaee ~ ( ~ I - Q ~ )  o/ ~ I  Q~. 

The  f ina l  s tep  towards  a n  h o n e s t y  c r i te r ion  for ~ is p r o v i d e d  b y  

L E M M A  4. I /  ~ > 0 ,  ~C~( ; r  and ] l ~ l l < l ,  then 

z (~) < ~ ~ z (~). (5.,9) 

Proo/. F r o m  (5.8) we havc  

~ (~) = 1 - ~ E r  (~) 

-- lira ( 1 - - 2  E r  (2)) 
n - - > ~  r162 

- l i r a  z ~ ,  

say.  F r o m  the  r ecu r r ence  r e l a t ions  (4.7), we see t h a t  

c t ~ i  

a n d  t h a t  z [ ~  z~ as n - - > ~ .  

s t a t ed  as 

(5.10) 

On the  o the r  hand ,  the  fac t  t h a t  ~E ~l (~ I -Q~)  can  be 

B u t  ~, ~ 1 = z  0 (because II ~ If ~ 1), so t h a t  a n  easy  i n d u c t i o n  based  on  (5.10) a n d  (5.11) 

gives ~ _- ( z~n (n = 0, l ,  _'), . . .  ), whence  ~ ~ zi = l im z~. S imi l a r ly  - ~i <- z a n d  so - z _< ~ _< z 

as asser ted .  

We  can  n o w der ive  the  des i red u n i q u e n e s s  cr i ter ion.  

( ~ + q ~ ) ~ =  E g ~ .  (5.11)  



D E N U M E R A B L E  M A R K O V  P R O C E S S E S  25 

T HEOllEM 7. Let Q be co~servative, and consider the set o/ eq~atio~s 

Each o/ the /ollowin~t condition, s is necessary and su//icient in order that there be o~ly 

one Q-process. 

(1~) For some one 2~>0, (Uz) has no bounded solution other than ~ = 0  (all i). 

(2~) For some one ) ,>0 ,  (Ux) has no bounded non-negative solution other than 

~ - 0  (all i). 

Pro@ (i) i f  there is only one {)-process, then (by Theorem 6) J it honest and 

d~(t) ~ 0. Hence, from (5.10), z(2) 0 for every ) t>0 .  L c m m a  4: now shows that ,  for 

every  )~> 0, (U~) can have no bounded solution other  than 4~-  0. 

(ii) I t  is now enough to show tha t  (2),), which is weaker than  (b.), implies t ha t  

there is only one Q-process. Now ~i z~ (2) defines a bounded non-negat ive solution 

of (uz), so tha t  if (2~.) is satisfied (for some one 2 >  0), then zL(2)--0, or 

oc 

fd~(t) e "~dt=O 
0 

for this 2. Since d~(t) is continuous and non-negative,  this implies t ha t  di(t) O. 

Thus :~ is honest, and by Theorem 6 there is only one Q-process. 

The equations (U~) and the nullspace 7 ~ ( 2 I - Q ~ )  have previously oecmTed in 

the work of K a t o  [15], who proved tha t  conditions (la) or (2a) of Theorem 7 were 

equivalent  to the hones ty  of a certain process ~ { k ~ j ( t ) }  associated with a given 

conservative set Q. He also showed tha t  :K, like 2~, has a certain minimal p rope r ty :  

it is the minimal process whose generator  is an extension of Q0- Our result goes 

fur ther  than  Ka to ' s  in two respects:  he does not  prove tha t  the generator  of every 

{)-process is an extension of Q0, nor tha t  hones ty  of ~ is equivalent  to uniqueness 

of I)-semigroups, when Q is conservative. Also the exact  relation between ~K and :~ 

is left in doubt  in [15]. They  are in fact  identical, because on the one hand  :K is 

a Q-process so tha t  k~s(t)>_/~j(t) (by the minimal i ty  of ~7), and on the other  hand  

~s---Q0 so tha t  /~j(t)~ kij(t) (by Ka to ' s  minimal i ty  theorem for ~ ) .  

5 . 4 .  T h e  n o n - c o n s e r v a t i v e  c a s e .  The uniqueness criterion in Theorem 7 can 

be extended to the general case when Q is no t  necessarily conservative, but  we must  

then restrict  ourselves to processes for which the backward equations hold (equiva- 

lently, for which f2_~ Q0). Let  us define D, by  
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q,~ + D, = 0, (5.12) 

so that  0_<_D,<~,  and Di>O for at least one i when Q is not conservative. Now 

for any process satisfying the backward equations, Theorem 3 shows that  the "de- 

ficiencies" diode(O) must satisfy di=D,, so that  such a process cannot be honest if 

Q is non-conservative. In particular, this applies to 9:, and so the honesty of :~ can 

no longer be relevant to the uniqueness problem when Q is non-conservative. We will 

therefore use a device for reducing the uniqueness problem for Q to the uniqueness 

problem for a certain related conservative set (~, defined below. 

We enlarge the set of states E to ~, by adjoining an extra state, labelled 0, 

and then define an enlarged set (~--{~,j :i, j E E} by  

~o=-- Di (i E E), 

~o =-  - ~oo = o ,  ~oJ = o ( j  e E ) .  ] 
By (5.12), the set 0 will be conservative. 

(5.13) 

Now suppose that  O~{p~j(t):i, jEE} is a process, generated by the operator 

(on 1), such that  ~_DQ0; as at (1.8) and (1.9), define 

d , ( t ) ~ l -  ~ p~(t), d~d~(O). (5.14) 

Then (by Theorem 3) we must have d~=D~. If we enlarge p to ~--{~i(t):i, jEE} 

p~j(t)=-p~j(t) (i, jeE), ] 
~o (t) ~ dt (t) (i e E), 

~oo (t) =- 1, Pos (t)-- o (j ~ E), ] 

(5.15) 

by defining i 

it  can be verified without difficulty that  ~ is an honest process, and (because d, = D,) 

tha t  p~j(0)= ~,j. In other words ~ is an honest O-process. 

Conversely, suppose that  ~ - { ~ , j ( t ) : i ,  j e ~ }  is any honest (~-process. Because 

is conservative, ~ will satisfy' the backward equations and in particular the equations 

These at once give 13a0(t)-= 1 and ?30i(t)= 0 (j E E), and it now follows easily tha t  

p = {p,j (t) : i, j e E} ,  

1 As in KENDALL [16]. 
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where p~j ( t )~ , j ( t ) ,  is a O-process. Moreover, because ~ is honest 

d~ (t) ~ 1 - ~ p~ (t) = ~0 (t), 
ctEE 

so tha t  d~ = ~0 = D~ and therefore the generator ~ of ~ is an extension of Q0. Thus 

we have set up a 1 -  1 correspondence between O-processes with ~ Qo on the one 

hand, and honest O-processes on the other. By  Theorem 6, either there is only one 

honest O-process or there are infinitely many,  and the two cases can be distinguished 

as in Theorem 7 by  considering the set of equations 

(Ux): ( ) , §  ~ ~ ( lEE).  (5.16) 

But  if ~ is a solution of (U~), then ~0=0 (because ~0~=0) and so if we define 

~i--~ ( lEE)  we obtain a solution ~ of (U~) (cf. (5.13)). Conversely, from a solution 

of (U~) we can obtain a solution ~ of ( 0 ~ ) b y  defining ~ ( iCE),  ~0=0 .  Thus 

there is a 1 - 1 correspondence between solutions o/ (0~) and o/ (U~), in particular (0a) 

has non-zero bounded solutions if and only if (Ux) does. We have therefore established 

the desired uniqueness criterion: 

T ~ E O ~ E ~ [  8. Let O~{q~j} satis/y (4.1) (but not necessarily (5.1)) and let 2 > 0 .  

Then the equivalent conditions (1~) and (2~) o/ Theorem 7 are necessary and su//icient 

in order that there be exactly one process satis/ying the backward equations. 

I] the conditions do not hold, then there exist in/initely many such processes. 

I t  should be stressed once again tha t  the processes covered by Theorem 8 are 

always O-processes, i.e. have p~j(0)= qij, but  tha t  when 0 is non-conservative there 

may  exist O-processes which do not satisfy the backward equations (Kolmogorov [19]) 

and so are not covered by  Theorem 8. 

w 6. Uniqueness theorems: the forward equations 

6A. We now take an arbitrary,  not necessarily conservative, set 0~{q~j} satis- 

fying (4.1), and consider processes which satisfy the forward equations 

(F,s) : p~i(t) = ~ p,~ (t) q~j (i, J ~ E ; t >_ O) 

in the strict sense; equivalently (by Theorem 4), processes whose generators ~ are 

restrictions of the operator Q defined in w These are always O-processes 1 (satisfy 

1 They will therefore automatically sat, isfy the backward equations when a is conservative, but 
they may fail to do so otherwise. See w 8.1. 
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p [ j ( 0 ) -  q~j), and  there is a lways one such process:  the minimal  {)-process 2~. Necessary 

conditions for the existence of more than  one such process are easily found. 

L EMMA 5. I f  there exist two distinct processes sneh that ~ _  Q, the~ 

(i) the min imal  Q-process ~ is disho~est, and 

(ii) the nullspace 7~l(2I Q), /or eack ,7.>0, co)ztaiJ, s a positive element o/ l. 

Pro@ Let  ~ be a process, dis t inct  f rom ~, such t ha t  g ) _ Q ,  and let *Fa denote 

its resolvent  operator .  

I f  ~ were honest  then (as r emarked  in w Q mus t  be conservat ive,  and the 

Q-process 0 mus t  (by Theorem 6) coincide with ~, con t ra ry  to assumpt ion.  This 

proves  (i). 

Now let x-~O. Then qS')x>(l)2.x, and also ( 2 I - Q ) ( q ; ' a x - C b z x )  0 because both  

[2 and ()F are restr ict ions of Q. But  ~ * : / ,  so t ha t  qex#qba and therefore q Z a z * ~ a x  

for some x > O .  For  this x, qeax-CI)2z is a posit ive clement  in T / ( 2 I  Q), and this 

proves  (ii). 

We shall see later t h a t  these conditions are also sufficient. The proof  of this 

will require some proper t ies  of g l ( 2 I - Q )  and of gl ~ (2 I  Q), the sol; of non-negat, ive 

vectors in T / ( 2 I  Q). 

LI, :~MA 6. Let 2 > 0 ,  i t~.(t, and 

A(I , ,2 )  =I i (y -2) d)~. (6.1) 

Then A (ix, 2) has the (bounded) inverse A (2, ,a), maps 7'1 (# I - Q) on to ~1 ( 2 I -  Q), 

a#~d maps ~+(i.~I Q) on to 74 ~ (2I  Q). 

Proo/. Because (21 _(t~,)O;. ==I, we have 

( y I  .QF)q);, 

Hence 
A(.g, lx) A ( y , X  ) : ( 2 I  ~2s,,)(b~,(/~I ~2~,)dh - : I ;  

int(:r(JhanKi/lg 2 and M, A (1 s, 2) A (2, y) -<: I .  
Next ,  i f  x E 7//(ix I - Q) ,  then 

A(II.,2)x X i( l , ,  2)qb. x E D ( ? , )  

because (I)z x E ~) (.(2;,) S L) (Q), a, nd 

Thus A (i,, 2) has inw~i'se A (2,/Q. 

(6.2) 
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Q A ( # , ~ ) x  :Qx +(/t 2) QOp~x 

- !~x + ( ~ -  !~) ( x -  ), (P~x)- ~A(/~, ~)x;  

thus A ( / l , , ~ ) x 6 ~ ( , ~ I - Q ) ,  and A(/t ,)O maps ~ ( ! t I - Q )  into ~l ( ,~I-Q) .  But  the 

inverse A(~ , l t  ) maps ~ ( ) . I  Q) into ~ l ( , a I -Q) ,  so tha t  A ( # , ~ )  in fact  maps  

(,aI Q) on to ~ ( ~ I - Q ) .  

I t  will now be enough to prove tha t  A (/~, 2 ) m a p s  7/~ ( # I - Q ) i n t o  ~ ( ~ I - Q ) .  

Let  x ~ 0 and x ~ ~ ( # I -  Q) ; we need only check tha t  y - - A  (,a, ~) x >_ 0. This is trivial 

if )~ ~_/t, because then d)~ x > 0 and 

y -  x i ( / t -  2)O~,x>O; 

on the other hand, if )~>/+, we note tha t  

( , ~ I - Q ) x - - ( ~ -  t Q x > 0  

and so by the minimal proper ty  (Theorem 5) of (l);, 

x >_ qb, ((~ - ,a) x), 

i.e. y-~x+(/~ ).)(P~.x~0, as required. 

The isomorphism between T / ( + l l -  Q) and ~ / ( t e l -  Q), described above, will be 

exhibited again (in a slightly different way) in w The lemma shows t h a t  if 

TI+(,~I-Q) is non-trivial  for one ~ > 0 ,  then it is non-trivial  for all ~ > 0 .  

6.2. We now give a construct ion which will show tha t  the necessary conditions 

s tated in Lemma 5 are also sufficient. 

T H E O R E M  9. Suppose that :~ is dishonest and that ~+ ( 2 I - Q ) ~ - { 0 } / o r  one )~>0 

(equivalently, by Lemma 6, /or all ~ > 0). Then there exist infinitely many processes, 

including at least one honest process, such that ~2 ~_ Q. 

Proo]. Define an operator  s as follows. Fix tt > 0, choose a non-zero clement 

y in ~ + ( # I - Q )  such tha t  (e, /~ y) _< l, and let D(s be the set of $ C l w h i c h  can be 

wri t ten in the form 
~ - ~ -  (e, Q~.~)y (6.3) 

for some ~1 in ~(~2~). [For a given $ in D(Q) there is at  most  one such ~1, namely  

= ( I ) , ( # I - Q ) ~ . ]  Clearly ~ (g2)c ~ (Q), so tha t  we m a y  define ~ as the restriction 

of Q to O ( ~ ) :  
~ - Q $ ,  ~ c ~(g2). (6.4) 
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We now show by  using the Hil le-Yosida theorem 1 t h a t  ~ generates a contract ion 

semigroup. We must  verify t h a t :  

(i) ~ ( ~ )  is dense in l ;  

(ii) for each : t>  0 and x E l, the  equat ion 

~ - ~ = x  (6.5) 

has a unique solution ~--xF~x in ~ ( ~ ) ,  and ~F~x_>0 when x_>0;  

(iii) (e, ~ ~) _< 0 w h e n  ~ >_ 0, ~ E O (~). (6.6) 

I f  0 ( ~ )  were no t  dense we could find z~ :0  in m such tha t  (z, ~ ) = 0  for all 

~ E O ( ~ ) .  The general element ~ of O ( ~ )  is given by  (6.3), where ~ varies over 

O ( ~ F ) =  ~(di),) and so has the form ~] = di)~x for some x E 1. Thus  we should have 

(z, dP~,x) - (e, ~F dl),x) (z, y) = 0 (6.7) 

for all x~ l .  Using - ~ F ( I ) ~ , = I - # ( I ) / ~  we write (6.7) as 

(zdP*§ all xEl ,  
and deduce t h a t  

z (I)~ § (z, y )  (e - e #  r  = O. (6.8) 

I f  (z, y) = 0, then  (6.8) gives z (I)~ = 0, whence z = 0 con t ra ry  to assumption ; if (z, y) ~ 0, 

(I)* (6.8) shows t h a t  e e l (  .)=~(~*) and by  operat ing on (6.8) with # I - ~ *  we get  

z - ( z , y ) e ~ * = O ,  

(z, y) (1 - (e ~ * ,  y)} = 0. (6.9) 

But  * * * (e Q0)~ ~ qi~, and  so y) _< 0 1 - e ~ F =  eQo <_0 because = (e~*)  and  (e, ~* ,  y ) ~ 0 ,  
c~ 

whence (6.9) gives (z, y ) =  0 cont ra ry  to assumption.  We have now shown t h a t  no 

z~ :0  can annihilate O ( ~ ) ,  which proves (i). 

Now consider the equat ion (6.5). F r o m  the definitions (6.3) and  (6 .4)of  ~ ,  and 

the  fact  t h a t  the  representat ion (6.3) of ~ E O ( ~ )  is unique, we see tha t  (6 .6 ) i s  

equivalent  to  

or to ( h i - ~ F ) ~  =X +'(2--~U) (e, ~ r~ )y .  (6.10) 

F rom (6.10), ~7 necessarily has the  form 

v = r  ) (6.11) 

1 In a form which differs slightly from the usual one: see [17], [22]. 
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for some ~, and this ~ will satisfy (6.10) if and only if 

x + ~ y =  x + ( ~ -  #) (e, ~ r  (x + Qy))y  

or (because s (I)h = :t r -- I)  

e{1 + (~ --/~) (e, y - -  ~ gP.~y)} = (~t--k) (e, x -- ~ r (6.12) 

In (6.12), the coefficient of Q is positive because 

1 + (~ - # )  (e, y - 2 Oh y) >- 1 - / ~  (e, y - 2 Oh y) 

> 1 - / t  (e, y)_>0. 

Thus there is exactly one solution ~ to (6.12), and hence exactly one solution ~ to 

(6.5), given by (6.3), (6.11) and (6.12). A simple calculation gives 

~ F h  x = Ohx + a (e, x - ~tOh x) A (/~, 2) y, (6.13) 

where a -1=  1 + ( ~ - # )  (e, y - ~  Ohy)> 0 (6.14) 

and A (#, 2) is defined by (6.1). When x _  0, then (e, x -  2 r 0 and also A (/u, 2)y _> 0 

(by Lemma 6), so that  
W'~x>_r O. 

This concludes the proof of (ii). 

To prove (iii), suppose that  

~= ~l-  (e, s 0, 

where ~E~)(~F).  If  (e ,s  then we should have ~_>0 and so (e,~p~)_<0 

contrary to assumption. Therefore (e, ~2F ~)_< 0. Now 

(e, s = (e, ~F~) {1 - (e, #y)}, (6.15) 

and so (e, s which proves (iii). 

We have now shown that  s generates a contraction semigroup whose resolvent 

~Fh is given by  (6.13); in particular 

~F~ x = r + (e, x - # C p / , x ) y .  

Because 9: is dishonest, (e, x - # O r ,  x)~: 0 for at  least one x, and therefore distinct 

choices of y E ~+ ( # I - Q )  lead to distinct resolvents W', and so to distinct semigroups. 

Finally, :~ is dishonest and therefore (e, s  for some ~ in ~ 0 ( ~ ) .  On the 

other hand s generates a transition semigroup if and only if (e, g2 ~)= 0 for all $ in 
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~(s and from (6.15) this is so if and only if (e ,#y)  1. We can always choose 

such y in ? l ( l t I - ( 2 )  ~= {0}, and therefore our construct ion can be made to yield at  

least one transi t ion semigroup. This concludes the proof of Theorem 9. 

I t  would be interesting to have a probabilistic in terpreta t ion for the above con- 

struction (when ( e , / ~ y ) - 1 ) ;  I have not  succeeded in finding one. 

6.3. I t  is now possible to describe the amount  of non-uniqueness which prevails 

amongst  processes such tha t  ~2~ Q. Denote  by  n ~ the maximum number of linearly 

independent elements of ~l + ( )~I-Q) .  As the notat ion implies, n ~ does not  depend on 

(by L e m m a  6) ; by  the s ta tement  "n + = ~ "  we unders tand simply tha t  T/+ ( X I -  Q) 

contains finite linearly independent  sets with arbitrari ly m a n y  members.  

T H E O R E M  10. 

(i) I /  ~t is honest, or i/ ~ is dishonest but n ~ O, there is exactly one process 

such that ~1 ~_ Q, namely 5. 

(ii) I /  ~ is dishonest and n ~ - ] ,  there are in/initely many processes with f l ~  Q, 

and exactly one o/ them is honest. 

(iii) I /  ~ is dishonest and n ~ > l, there are in/initely many processes, including 

inlinitely many honest ones, such that ~ ~_ Q. 

Proo[. Sta tement  (i) follows from Lemma 5; s ta tements  ( i i )and  (iii)follow from 

the construct ion used in the proof of Theorem 9, except for the fact t ha t  there is 

exact ly  one honest process with f~_~ Q in case (ii). We already know from Theorem 9 

tha t  there is at  least one:  to see tha t  it is unique, denote its resolvent by  ~Fx and 

let y(2) be the unique element of ~ l + ( 2 I - Q )  with (e, 2 y ( 2 ) ) - - 1 .  When  x_>0, then 

(ef. Lemma 5) ~F;,x (l)~x is in 7//+ (2 I  Q) and is therefore a non-negat ive multiple 

of y(k),  say 
~F~x O & x - o y ( )  d (O-~(x ,  2)~O). 

But  2~F~ is a transit ion operator,  so tha t  

(e,x) (e ,~%x)-(e , , iq)~.x)  ~ e(e, iy(,t)) 

- ( e , ) ~ d h x )  t O. 

Thus 

when x > 0, 

process.  

T~x - ( L x  i (e ,x -2(P~x)y(2)  (6.16) 

and hence for all x ;  tF~, is unique, and hence so is the corresponding 

I t  should be noted for applications of Theorem 10 tha t  ~/~ (;~I Q) consists of 

the non-negat ive solutions y {y~} of 
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(V~): (2+q~)y~= ~ y~q~ (6.17) 
a4=) 

with ~ y ~ < ~ ,  and tha t  n + can be found by  looking at (V~) for any one 2>0. 

Compare this with the way in which t h e  equations (U~), (5.13), occur in Theorems 

7 and 8. 

w 7. Some further results 

7A. R e s t r i c t i o n s  ot Q. In  w 6.2 we constructed some operators g2_ ~ Q which 

generate contraction semigroups. No description of all such operators seems to be 

known, but  every such ~Q must  satisfy certain conditions, closely connected with the 

fact (see Lemma 6) tha t  ~ ( 2 I - Q )  and H( .u I -Q)  are isomorphic whenever ~t, ~ > 0 .  

If  q:~ is the resolvent operator for such an ~ ,  then the operator 

C(,~ )=-- q2"~ ()~ I -  Q), (7.1) 

defined on ~ (Q), maps D (Q) into D (f2) ~ D (Q), leaves D (f2) elementwise fixed, and 

has nullspace TI(2I -Q) .  Thus C(2) projects D(Q) on to D(s and D(Q) can be 

writ ten as a direct sum 
D(Q) =~(~)  | ~ (2 I -  Q), (7.2) 

the canonical decomposition of y E ~ (Q) being y = C (~t) y + ( I -  C (2)) y. From (7.2) we 

see that ,  for each 2 > 0 ,  ~ ( 2 I - Q )  is isomorphic with D(Q)/~(~) .  I t  follows tha t  

7 4 ( # I - Q )  and ~ ( ~ t I - Q )  are also isomorphic, and the isomorphism can be obtained 

by mapping y E N (/~ I - Q) on the coset y + ~ (f2) of ~ (Q) /~  (~) and then applying 

I -C( )O  to this coset. The resulting mapping from T I ( p I - Q )  to N ( 2 I - Q )  is 

y - ~ y -  C(2)y=y-~.F~(2I - Q)y 

= y + ( # -  ~) ~F~.y 

because Q y = # y .  When g2--~F, so tha t  q~; -O~,  this is precisely the mapping 

A (#, 2) in (6.1). 

The fact tha t  N(2I-Q)~=D(Q)/O(~)  has two consequences. First, fixing a 

particular ~2 (say ~p),  we see tha t  the structure of N ( 2 1 - Q ) ,  and in particular its 

dimension n, is independent of 2. Secondly, ~(Q)/~(s does not depend on the 

particular s considered, in particular it must always have the same dimension n. 

Thus the extent  to which Q must  be restricted to obtain an ~ is in a sense fixed, 

once for all: what  we lack at  present is a general description of the form which the 

restriction must  take. For the special ~ constructed in w 6.2, whose domain is de- 

scribed at  (6.3), it is not hard to show tha t  ~ E O ( ~ )  if and only if ~ E ~ ( Q )  and 

3- -563804 .  Acta mathernatica. 97. I m p r i m g  le l l  avri l  1957. 
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- (I), (p I -  Q) ~ = (e, ( I -  fl (I),) (/~ I -  Q) ~) y ; (7.3) 

thus s is obtained from Q by imposing the "lateral condition" (7.3)(in Feller's 

terminology). I t  would be interesting to have a probabilistic interpretation of this 

condition. 

7.2. Ex tens ions  of Qo- Now suppose tha t  ~ ~ Qo generates a contraction semi- 

group, with resolvent ~Fa. Then ~*___ Q~, the mapping 

E (4)---- (41 - Q~) W~ (7.4) 

(analogous to C(2) in (7.1)) projects O(Q~) into ~0(g2*), and ~0(0~). can be written 

as a direct sum 

~0 (Q~) = ~ (s @ 7~ ( 4 1 -  Q~). (7.5) 

Hence ~(4I-Q~)~I)(Q~)/O(~*), and also there is a 1-1 mapping 

z-+z + z (g - ,l) ~ 

from ~(/xI-Q~) on to ~l(2I-Q~). (For the particular choice ~ = ~ F ,  ~Fa----O~, this 

mapping is simply the adjoint A* (~u, 2) of .4 (/~, 2) (see (6.3)); one can show just as 

in Lemma 6 tha t  A* (/~, 2) also maps 7/+ ( F t I -  Q~) on to )1 + ( 2 1 -  Q~).) I t  follows 

(as in w tha t  the dimension n* of }I(2I-Q~) is independent of 2, and tha t  

D(Q~)/D(~*) must have dimension n* for every ~ considered here. 

There are also relations between ~ and Q0 ; these are most conveniently expressed 

in terms of Q0, the least closed extension of Q0- The existence of Qo is guaranteed 

because Qo-----~F and ~ r  is closed; its definition, we recall, is tha t  xE~)(Qo) and 

Qox=y whenever there exist xnE~)(Qo) such tha t  xn-+x and Qox--->y (strongly). 

Here y is uniquely defined, indeed y = ~ p x = Q x  because ~ is closed. I t  is easily 

shown that  

~(~X-Oo)  = R(4Z-Qo) ,  

tha t  Q~=Q~, and tha t  4 I - ~ 0  is 1 - 1  from ~)(Qo) on to ~ ( 4 1 - ~ 0 ) ,  with inverse 

(I)a; proofs of these facts are left to the reader. Also if ~_~ Q0 generates a contrac- 

tion semigroup then ~2___Q0, because ~ is closed. Now 2I-~-2 is 1 -  1 and maps 

~(~o) and ~0(f2) on to ~ ( 4 I - Q o )  and l, so that  ~O(~)/~0(Qo) and l /R(4I -Oo ) are 

(algebraically) isomorphic. On the other hand, the ndjoint space of l/~(4I--Qo) is 

precisely the annihilator in l* ( = m) of R ( 2 I -  ~o) = ~ (2I  - Qo), which is ~ / ( 2 I -  Q~) ; 

hence 1/R(4I--Qo) and ~I(4I-Q~) have the same dimension n*, provided tha t  we 

equate all infinite dimensions. Thus the spaces 
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7O(Q~)/TO(g2*), ~ (~)/]0 (Qo) , ~(] t I -Q~)  

all have the same dimension n*. In  particular, the amount  by  which Qo must be 

extended to obtain an ~ is in a sense fixed, once for all, but  once again a de- 

scription of the most general method of obtaining such extensions is not  known. 

7.3. I t  will be clear tha t  many questions have been left unanswered in this 

paper. For  a conservative set O~{q~,.} satisfying ~ q~=O for all i, we at  least have 

necessary and sufficient conditions for uniqueness of Q-processes (processes with 

p~s(0)=qii); for a non-conservative 0 we have uniqueness criteria for two special 

kinds of processes, those whose generators satisfy either ~ _  Q0 or ~ ~ Q, but  there 

may exist 0-processes belonging to neither class (see w A general uniqueness 

criterion for 0-processes when 0 is non-conservative has still to be found. 

Also when 0 is conservative there always exists an honest 0-process. When 0 

is non-conservative, no process with ~ _  Qo can be honest;  also we know that  either 

there is only one (dishonest) process with ~_~ Q, or there are infinitely many such 

processes including at  least one honest one. I t  would be desirable to find under what 

conditions on 0 there exists at  least one honest 0-process. 

Of course, a solution to the main outstanding problem of finding all 0-processes 

would answer the two more special questions posed above. 

w 8. Examples 

8.t. Non-uniqueness for the Kolmogorov equations.  Two problems were 

treated in w167 5 and 6:  given 0--~{q~j}, 

(B) find a process satisfying the backward equations 

(equivalently, such tha t  f2 ~_ Qo) ; 

(F) find a process satisfying the forward equations 

(equivalently, such tha t  f2___ Q). 

We remind the reader tha t  a solution to both problems is always provided by  the 

minimal 0-process :7, tha t  necessary and sufficient conditions for :~ to be the only 

solution to (B) or to (F) are given in Theorems 8 and 10, and that  when O is 

conservative every 0-process (in particular every solution to (F)) is a solution to (B). 

In  many cases the soldtion to both problems is unique. For  example, if the 

q~j are bounded so tha t  
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qi~ -< q~ -< A (all i), 
i-~r162 

let 2 > 0 and let ~ E m and ~ E 1 be non-negative solutions to 

(u~) : (~ + q~) ~, = Y~ q~ ~ ,  

(V~): (2+q~)~]~= ~. ~,q~. 
r162 

Then 

so that  ~ = 0 .  Also, summing over j in (V~), 

j a ~ j  ~ J ~  a 

whence ~ ~]j~<0 and ~/=0. Thus (U~) and (V~) have only trivial solutions: both (B) 

and (F) have 3~ as their only solution. 

A familiar example in which (B) does not have a unique solution whilst (F) 

does is the birth process (Feller [7], p. 392-3). Label E as l, 2, 3 . . . . .  let bn > 0 (n > l) 

and ~ b;~l< oo, and define the conservative set Q by  
1 

qii = - b i ,  q~,i~l = +hi, 

Then (U~) becomes 

which has the solution 

q~j = 0 otherwise. 

( i = 1 ,  2 . . . .  ), 

r ~=I-I  1+ (i>1); 
n = l  

(8.1) 

is posi iv  is boun od boc uso (1+ 1 ~ < cr Hence the solution to (B) is  

not unique. On the other hand (V~) becomes 

(2 + bz) ~]1 = 0, (2+bj)~]j=bj_lz]j 1 ( j>  1), 

so tha t  ~ = 0 and the solution to (F) is unique. 

Next  we illustrate the possibility tha t  (B) may  have a unique solution when (F) 

does not. This can happen only when Q is non-conservative, because if Q is con- 

servative and (B) has a unique solution then :~ is the only Q-process and in particular 

the only solution to (F). We give a slightly simplified form of an example due to 



DERUMEI~ABLE MARKOV PROCESSES 37 

Kohnogorov  [19] (and t reated by  semigroup methods  in [18]). Label E as 1, 2 . . . . .  

let a ~ > 0  (n>l)_ and ~.~ a ; l < ~ , ,  and define Q by  
1 

q~i = - ai (i > 1), q~,i 1 = + a~ (i > 1), gig-- 0 otherwise ; (8.2) 

note thai, Q is non-conservat ive because ~ ql~= - a l < 0 .  Now (U~) becomes 

(~ + al) _~1 = O, (~,+a~)~i=ai-l~i-1 ( i >  l ) ,  

so tha t  ~ = 0  and the solution to (B) is unique;  bu t  (Va) becvmes 

(2 + aj) ~]j = ajt.1 r/j+1 (j>_l) 

which has the solution (unique to within a constant  factor) 

]-1 

~OW ~N'. a) l and  I-i (1-t  - ~ )  a~ both  converge, so tha t  ~ ~j converges, ~] is in /, and 

~/~ ( 2 I -  Q) consists of positive multiples of ~] ; also J is dishonest because Q is non- 

conservative. By  Theorem 10, there are infinitely m a n y  solutions to (F), and exactly 

one of them is hones t :  its generator  f~ can be shown to  be the restriction of Q to 

the subset of D(Q) on which (e, Q x ) = 0 .  A probabilistic description of a very  similar 

process (in which the state 2 is made absorbing by  put t ing  a., = 0) can be found in [18]. 

8.2. There ren~tains the possibility, even when Q is conservative, tha t  neither 

(B) nor (F) has a unique solution. To illustrate this, we take an example due to 

L4vy [21] and discussed in more detail by  Kendall  ([17], w We now label E as 

. . . ,  1, 0, 1 . . . . .  let b , > 0  and ~ b ~ < ~ ,  and define the conservative set (~ exact ly 

as at  (8.1) (but i and ?" now range over all integers, not  merely integers > 1). Then 

(Ua) and (V~) ba re  positive solutions ~ C m and r]C l, given by  

r  1 +  , 

~]~ - b; 1 1-[ 1 +  2 '  . 
j + l  

Thus 9 r is dishonest and ~ / + ( 2 I - Q ) ~ -  {0}, so tha t  there are infinitely many  solutions 

to (F) (and these are at  the same time solutions to (B), since Q is conservative). 

As in the preceding example, there is exact ly one hones t  process which solves (F), 

and its generator  ~ is Q restrieted by  the side-condition (e, Q x ) = 0 .  I t  is this pat'- 
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ticular process which is t reated in [17] and there called " the  f lash":  informally, this 

may  be described as a birth process in which the system runs through the states 

in the order . . . .  - 1 ,  0, 1, 2 . . . . .  the mean t ime spent in state ] being b;  1. The 

system will run out of instructions after a finite t ime (having "reached + ~ " )  and 

then "returns to - ~ "  and resumes its journey. 

I t  is now easy to make up a conservative set (2 for which there are infinitely 

many  honest processes satisfying the forward equations x (and so also the backward 

equations). By  Theorem 10, ~ ( I I - Q )  must  contain at  least two independent posi- 

t ive vectors, and also ~ must  be dishonest. I t  is almost obvious tha t  we can achieve 

this simply by  combining two sets Q of the type just considered. To be specific, 

let us now assign labels (s, n) to the states, where s =  1, 2 and n = . . . ,  - 1 ,  0, 1 . . . .  ; 

denote the (s, n)th coordinate of x 61 by  x~, let b~ > 0 and ~ 1/b~ < ~ ,  and define Q by  
n 

+b~  if r = s  and n = m + l ,  

q(r.~)(8,=) =-  - b ~  if r = s  and n = m ,  (8.3) 

0 otherwise. 

Then the operator Q is given by  

( Q x ) ~  = 8 �9 ~ 8 bn-1 x n - 1 -  bn Xn 

and its domain O (Q) consists of all x with 

8 8 8 

8,  n 

(such x being automatically in 1). We note tha t  when x 6 O (Q) the limits 

exist, and tha t  

L S x ~  lim 8 , USx = l i m b  8x  s bnxn,  n n ( s = l ,  2) 
n - - > -  oo n - - ~ +  oo 

2 
(e, Q x )  = ~ ( L  8 x - U 8 x ) .  

S = I  

The reader will easily verify tha t  both (Uz) and (V~) have two independent positive 

solutions :~ for instance one solution ~ to (Uz) is given by  

1 The existence of such sets Q was discovered by KEh~DALL [17]. The present example, also 
due to KENDALL (unpublished), is simpler but  less drastic. 

In  KENDALL'S example [17], both equations have countably many independent positive 
solutions. 
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Thus there must  (by Theorem 10) be infinitely m a n y  honest processes satisfying the 

forward equations, and so also the backward equations; the construction of w 

gives one such process for each element of norm ~-1 in ~+ ()tI - Q), and hence gives a 

one-parameter  family of such honest processes. However,  we will now show tha t  

there exists a family of such honest processes specified by  two parameters  01 and ~2, 

each lying between 0 and 1 (inclusive). The generator ~ of the typical process of 

this family is the restriction of Q to the subset of D (Q) on which 

L 1 x = 01 v l  x -t- (1 - ~3) U2x, 

L 2 x = (1 - ~1) U1 x + 02 U3 x. 

I t  can be verified (by using the Hille-Yosida theorem, following the pat tern  laid down 

in [18] and [17]) tha t  Y2, for each choice of 01 and 03, generates an honest process 

such tha t  Q 0 - ~ - - - Q .  I t  can also be shown tha t  the construction of w 6.2 leads only 

to those processes of the above type for which 01 +02 ~ 1. 

An informal description of these processes can be obtained by  calculating the 

resolvent operator and thus the Laplace transforms ~ij of the transition probabil i ty 

functions p,j (cf. [17]). The states of the system are of two types, (1, n) and (2, n), 

belonging to "flashes" of the kind described a t  the beginning of this paragraph;  the 

mean times spent in (1, n) and (2, n) are 1/b~ and 1/b2n. The system, initially in 

some state  (1, n) or (2, n), runs through flash 1 or flash 2. The constants 01 and 03 

specify the bchaviour of the system when it has come to the end of a flash ("ar- 

rived at  + oo"):  from " +  oo" in flash 1 it goes immediately 

I t o  " - o o "  in flash 1 with probabil i ty 01 }, 

to " oo" in flash 2 with probabil i ty 1 - ~ 1  

and similarly it goes f rom the end of flash 2 to the beginning of flash 2 or flash 1 

with probabilities 03 and 1 -02 .  In  the special case when 01 + 0 3 =  1, the behaviour 

of the system after it has run out of instructions does not depend on whether it was 

previously in flash 1 or flash 2: i t  then begins flash 1 or flash 2 with probabilities 

01 and 0,. This indicates why the construction of w 6.2 does not in general yield all 

processes sat isfying the  forward equations: i t  fails to distinguish between different 

ways  of "escaping to infinity" or "running out of instructions".  

8.3.  F a i l u r e  of t h e  K o l m o g o r o v  e q u a t i o n s .  W h e n  Q is conservative,  the  

backward equations hold for every Q-process; the forward equations will fail when- 

ever :~ is dishonest and we apply  the construction of w 5.1 to :~. 
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When O is non-conservative,  the backward  equations cannot  hold for an honest  

(2-process. The last example in w illustrates this possibility, and indeed there the 

forward equat ions do hold. 

Processes for which the backward  and forward equations both fail can of course 

be constructed i n  a trivial manner  by  combining two independent  processes of the 

two kinds jusg mentioned.  A simpler and perhaps more interesting example is the 

following. The states are labelled o~ and . . . ,  - 1 ,  0, 1 . . . .  ; we then take bn>O with 

\~ 1/b~<oo and define O by  

q. = -b~, q~,~+l= +b~ (i . . . .  , 1, 0, 1 . . . .  ) ' t  (8.4) 

q ~  = - 1, q~j = 0 otherwise, j 

Then O is non-conservative,  because ~ q ~ o ~ = - 1 ,  and (U;.), ( V a ) h a v e  non-tr ivial  

positive solutions given by  

~].)=0, ~]j=b/1 [ I  1 +  2 . 
]+1 

Thus there will be (as before) exact ly  one honest  R-process satisfying the forward 

equations, bu t  we will now show tha t  there is also an honest  O-process which does 

not  satisfy the forward equations (nor, of course, the backward  equations, O being 

non-conservative).  I t s  generator  ~ has domain D(~2) consisting of all 

x - = { x o , ;  . . . .  x _ l ,  x0, x l  . . . .  } 
such tha t  

l x s  1 -   ,jxjf < (8 .5)  
oo 

and L x ~  lira b,~x,~=x,~ (8.6) 

((8.5) implies t ha t  this limit, exists, and therefore tha t  x C 1). 

is defined by  

(~x)o,=~Ux-x~, } (8.7) 
( ~  X)j  ~ b]_ 1 x] 1 --  b] x j ,  

where U x ~  lim b~x,. I t  can be shown tha t  ~2 generates a transit ion semigroup (an 

honest  process);  the necessary calculations are again similar to those in [17], and will 

be om~,ed.  Now ~ is not a restriction of Q, because the vector  x given by 

xo~= 1, xj=b/1, 
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is in ~ ( ~ ) ,  but (Qx)o= 1 whilst (~2x)o=0. Thus the process generated by ~2 does 

not satisfy the forward equations; on the other hand it is a {)-process, as may be 

verified by calculating the resolvent operator ~F~ and then using (3.15) and (3.16). 

Once again it is possible to describe the above process ~, and also the (unique) 

honest Q-process ~ '  which satisfies the forward equations, in an informal manner. 

For both processes, we have a flash (with states . . . .  - 1 ,  0, 1, ... and mean time 

bi 1 in state ?') "coupled" to an extra state o~. For the process ~,  the system runs 

through the flash and then jumps at once to state ~ ;  it remains at o~ for a mean 

time 1, and then jumps back to the beginning of the flash and repeats its previous 

performance. For ~ ' ,  the system remains in the "flash" states once it reaches them, 

i.e. as in w it jumps from the end of the flash to the beginning; if it is in state 

e), it remains there for a mean time 1, then jumps to the flash and never returns 

to co. The reader who is familiar with Doob's analysis [4] of the backward and for- 

ward equations in terms of sample function discontinuities will note that  the sample 

functions for D have a right-hand discontinuity which is not a jump when the system 

leaves w, and a similar lef~-hand discontinuity when it reaches co; this explains the 

simultaneous failure of the forward and backward equations in probabilistie terms. 

8 .4 .  T h e  b i r t h - m a d - d e a t h  p r o c e s s .  This, our final example, can be made to 

exhibit each of the three combinations of  uniqueness and non-uniqueness for problems 

(B) and (F) which were illustrated by the examples in w A further reason for 

discussing it here is that  much attention has already been devoted to uniqueness pro- 

blems for the birth-and-death process the most complete results being those recently 

announced by Karlin & McGregor [14]. We shall show that  the uniqueness criteria 

of Theorems 7 and 10 can be applied to give a very simple alternative derivation of 

these results. 

Let E be labelled as 0, l, 2 . . . . .  and let 

b0_>0, b~>O, a ~ > 0  (n_>l); 

we do not require that  b0>0. (The bn and an will be "birth rates" and "death 

rates", the state label n is the size of the "populat ion";  when bo=O, the state 0 

will be absorbing so that  population cannot recover once it has become extinct; 

when b0>0, the population may "revive" through "immigration" at a rate b 0. See 

Feller ([7], pp. 371-3) for an explicit description of the system.)The conservative set 

Q is now defined by 
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qo0 = - b0, qt, = - (a~ + b,) 

q~.i+l = A- b, (i > 0), q*,*-I = + a, 

q,j = 0 otherwise.  

The  equat ions (U~) and  (V~) are 

(2 + bo) ~o = bo ~1, 

(2 + an + bn) $n = an $n-1 + b,~ $n+l 

(2 + bo) r/o = air/l ,  

(2 + an + bn ) tin = b n - 1  Tin-1 -~ an + l T~n+l 

We  rewri te  (8.9) (for n > l )  as 

(i> 1), ] 
(i_> 1), 

(n_> 1) ;}  

(n_> 1). } 

bn (Cn+l - ~ )  = 2 Sn + an ($~ - Sn-1). 

(8.8) 

(8.9) 

(8.10) 

(n>_ 1). } (8.12) 

Taking  a 0 = 1, we see b y  induct ion t h a t  an+l > an [(n > 0). We  have  to  decide whether  

(8.10) has a non-negat ive  solution] wi th  ~ / j < o o  i.e. whe the r  a n = ~ 0 + ' " + ~ / n  is 

bounded ;  if i t  is, t hen  (V~) has  a non- t r iv ia l  solution. 

I t  is now clear t h a t  (8.11) and  (8.12) can be t r ea t ed  toge ther  b y  means  of 

L E M M A  7. 

Zn+l - z,, = / n  Z,, + gn (Z,, -- Zn-1) 

/or n >_ 1. Then zn is bounded i f  and only i /  

(In + gn f,,-~ + " "  +'gn gn-1 . . .  g J 1  + gn . . .  g2 gl) < ~" 
n--1 

Suppose that / ,  > O, gn > 0 /or n >_ 1, that 0 <_ z o < z x < z,  < . . . ,  and that 

(8.13)  

w r i t e  a ~ / o +  "'" +~/n.  T h i s  l eads  to  

(2 + a x + bo) ao = a l  al ,  

a . + 1  (an+l  - an)  = 2 an + bn ( a .  - a . _  1) 

When  b o = 0, ~o = 0 and  C1 is a rb i t ra ry ,  and  ~9., Ca . . . .  are then  uniquely  de t e rmined ;  

when b o > 0, C0 is a rb i t r a ry  and  C1, ~9. . . . .  are then  determined.  We take  ~1 = 1 when 

bo=O and ~o=1 (hence  ~ l = l + b ~ )  w h e n b 0 > 0 ; i n e i t h e r c a s e , ~ l > ~ 0 > 0 a n d a n e a s y  

induct ion f rom (8.11) shows t h a t  Cn+l>~n ( n > l ) .  We have  then  to decide whether  

Cn is bounded ;  if i t  is, t hen  (U~) has  a non- t r iv ia l  solution. 

For  the  second set  of equat ions,  (8.10), we sum the  first  ( n + l )  equat ions  and  

(8.11) 
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Proof. 

Hence 

Repeated applications of (8.13) give 

zn+ , -  zn = [n z, + g , / , _ ,  zn-1 + ' "  + 

+ g~ g~-i ... g~ [, z~ + gn ... gft g, (z, - z0). 

Zn +, -- Zn ~ (/n -~ gn fn-,  -~' '" "~ g . . . .  gft/, "~- g . . . .  gft gl) Zn 

= F ,  z, say ; 

on the other hand, 

Z n +  , - -  Z n ~ F n (Z .  - -  Z0).  

These two inequalities give 
n - 1  n - ,  

zl + ( z , -Zo)  ~ Fk  <--zn <-z. YI ( l + F k )  
k = .  k = l  

(n>  1), 

and this implies tha t  zn is bounded if and only if ~ F~ < ~ ,  as asserted. 
1 

To apply the lemma to (8.11) take zn=~n, ] n = 2 / b , ,  g , = a n / b n .  Then 

(~_~ a,~ an ... aft ) + a  . . . .  l" (8.14) 
F ~ = ~  + ~ + ' " + b n . . .  bftbl/ b . . . .  b 1 

The convergence of ~ Fn does not, of course, depend on the choice of 2 >  0, nor is 

it affected by omitting the last term (an ... al) /(b . . . .  b,) in (8.14). Thus ~n in (8.11) 

is bounded if and only if R < oo, where 

R ~ -  _ ~n'k- an an ... aft . 
" ' "  + b:_.: (8.15) 

Similarly we apply the lemma to (8.12) by taking z n = a , ,  ]n=). /an+l and 

gn=bn/an+a. Then 

Fn= ( 1 + bn bn:..b, ]+  bn...b, ; (8.16) 
\ a n + l  a n + .  a n  an+l ...  aft/ a n + . . . ,  aft 

again the convergence of ~ Fn does not  depend on the choice of 2, and also we may 

change the last term in (8.16) to (bn ... bl)/(an+l ... a~a,). Thus an in (8.12) is bounded 

(equivalently, ~/n in (8.10) satisfies ~ ~/n< cr if and only if S <  ~ ,  where 

S ~  ~ (  _1 + b, + . . . ~  bn . . . b  I ;~./ (8.17) 
n - 1  \ a n + l  a n + l  a n  a n + l  �9 �9 aft a 

Finally, we show tha t  R and S are both finite if and only if T is finite, where 

T--~-- -- \ ~. ( a n . . . a f t  -~ b . . . .  bl 1~.] (8.18) 
b , . . .  b~ b 1 ... aft a n - 1  a n + l  
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Certainly T 

ma y  write 

G. E. H. I%EUTEI% 

is finite if R and S are, because T < _ R + S .  On the other  hand, we 

R : "~ abn . . . .  ..�9 b2a2 ( b l  l -~ b l ~  ~ ~1 "'[ b~ 11 
a 2 a 2 . . .  a n  / 

( � 9  a 1 a 1 S =  ~ b~ b z 1 +  + . . . +  
, a +l..a2ai b l . . .  

If  T is finite, then ~ (a . . . .  a2)/(b . . . .  bz) and ~ (b . . . .  bz)/(an+a .. .  az) both  converge, 

and the factors 

1 -~ . . . .  -~ b z  " ' "  b n - 1  1 + ... ~ az "'" a~ 
% ... an b 1 .. .  b~ 

are both  bounded ;  hence R and S are finite. 

A complete classification of b i r th-and-death  processes can now be given. 

T H E O R E M  11. Let the conservative set O be defined by (8.10), and let R ,  S and 

T be defined by (8.16)-(8.18). 

(i) I /  R -  ~ ,  there is exactly one O-process; it is honest and satisfies tl~e forward 

equations. 

(ii) I f  R <  ~ and S - ~ ,  there are inf ini te ly  many  O-processes�9 Only one o / these  

satisfies the ]orward equations, but it is dishonest. 

(iii) I f  R <  ~ and S < ~ ,  equivalently i /  T <  ~ ,  there are inf ini tely  many  O-pro- 

cesses satisfying the forward equations. Exact ly  one of these is honest�9 

Remarks  (1). The backward  equat ions hold in all cases because O is conservative.  

(2). The criteria have been s ta ted  so as no t  to involve b 0. They  can (as should 

be clear f rom their derivation) be modified so as not  to involve any  pre-assigned 

finite subset of the coefficients a~ and b~. 

(3). The criterion " R - ~ "  for uniqueness of O-processes is due to Dobru~in [3], 

who obtained it f rom Feller 's conditions [6] for the hones ty  of the minimal Q-process 

~ ;  the method  by  which we have derived it is due to Kendal l  (unpublished). 

(4)�9 The criterion " T  < ~ "  for the existence of infinitely m a n y  O-processes satis- 

fying the forward equations was found (for b o > 0  ) by  Karl in & McGregor [14]. 

(5). The first example (with b 0 = 0 )  of case (iii) was found by Lede rmann  & 

Reute r  [20]. They  showed, by explicit construct ion of the transi t ion probabilities p,j(t), 

t ha t  for a suitable choice of the an and b~ there can exist an honest O-process satisfying 

the forward equations even when Y is dishonest�9 I t  is clear f rom the definition (8.18) 

of T and f rom (iii) of Theorem 11 t h a t  this is most  likely to occur when both  a~ 
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and  b~ grow rapidly  with n, wi th  b~ slightly larger t h a n  a~. Taking 

b~+l/b = l + e n - l + O ( n  2) (~)>0), 

b~/a~= l + c~n-l + O (n-2), 

as in [20], simple computa t ions  show tha t  ease (iii) occurs if and  only if ~ - 1  > a > 1 

(i.e. for a sl ightly larger range t h a n  t h a t  used in  [20], Th. 10); a sui table choice of 

a~, b~ would be a ~ - n  4, b ~ - n 2 ( n + l )  2 (so t ha t  ~ - 4 ,  a - 2 ) .  
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