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§1. Introduction and summary

1.1. We shall be concerned with the analytical rather than with the probabilistic
side of the theory of Markov processes. It will therefore be appropriate to define a
process as a set P={p;} of real-valued functions defined on <0, oo}, where ¢ and j

range over some fixed denumerable set K, and
I: p;()=0 (£=0);

IT: 3 pa®)=<1 (t=0);

xekE

I11: pi,-(u+v)=“ZEpm(u) Pei(®) (=0, v=>0);
1V: p;;(o) = (Sij: lim Pi; (t)
t40

The continuity condition IV is designed to exclude excessively irregular behaviour
(such as non-measurability) of the p;;; it implies the continuity, uniform for ¢>0, of
each p;; (Kendall {16], Th. 3.3).

In the probabilistic theory! II is strengthened to

T S pi(t) =1
aeE

The pi;(t) are then transition probabilities for a time-homogeneous Markov process
with B as its set of states. When the sign of inequality is allowed in II, a prob-

abilistic interpretation is still possible if we suppose that E does not exhaust the set

1 See Doos [4], [5], Ch. VI.
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of states and that the system is such that no return to E is allowed from states
outside ¥. The difference,

1— 2 pall)  (E€E),

ek

is then interpreted as the probability that the system, initially in state ¢, will be in
a state outside £ at time £. Such an interpretation is always possible {e.g. by adjoining
a single further state, as in §5.4) and is often useful, and the set P={p;} is then
sometimes called a guasi-process (Jensen [13]). Instead of adopting this practice we

shall always call D a process, but qualify it as “honest’” when II* is satisfied.

1.2. One of the aims of the analytical theory is to describe the process com-
pletely in terms of its infinitesimal properties as t| 0. It is known (Doob [4], Kol-
mogorov [19], Kendall [16]) that the right-hand derivatives

3=p:;(0) = ltlﬁ)l (Pis (t)— 8i5) [t (1.1)
exist,! that 0<g¢;;< co when 7=4, and that

2 Gia< — qu< co. (1.2)

i

Al four combinations of < and = envisaged in (1.2) can actually occur for honest
processes (Kolmogorov [19], Kendall & Reuter [18], Kendall [17]). However, a know-
ledge of the coefficients g;; alone does not in general determine the process uniquely
(Doob [4]), so that the ¢i; do not describe the infinitesimal properties of P in sufficient
detail. A better description can be given by introducing an operator P; on the
Banach space I, defined by

(Pyx);= g Ty Pai(t)  (x€D). (1.8)

Properties I-IV of P imply (see Hille [10], Th. 21.9.2) that G={P;:{>0} is a

contraction semigroup, i.e. that

A: P,2>0 when 2>0;

B: ||Piz||<|lx| when x>0;

C: Py=I, Py.,—Pu.Py;

D: [|Piz—=[|>0 as ¢ |0, for each z€l.

1 Unless otherwise stated p,-’,- (t) will denote the right-hand derivative when ¢t =0, and the two-
sided derivative when ¢> 0.
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B can be replaced by
B*: ||P.z|=||z|| when z>0,

so that G is a transition semigroup, if and only if D is honest. Conversely every
contraction [transition] semigroup ¢ has a unique representation (1.3) in terms of a
process [an honest process] ], so that in analytical contexts we may identify a process
P with the associated semigroupxg.
Now @ is uniquely determined by its enfinitesimal generator . This linear
operator is defined by
Qz=lim (P;x—x)/t; (1.4)
£40
its domain D (L) consists precisely of those elements for which the (strong) limit in
(1.4) exists. Thus §. and therefore D also, can in principle be characterised by its
infinitesimal properties, but we are now faced with a new problem: how to recognise
and describe in simple terms those operators Q which generate a contraction or

transition semigroup on /.
1.3. Summary. We shall mainly deal with processes for which
G= — g <> (t€E) (1.5)

and which satisfy one or other of the differential equations

Pii(8)= 2 ia Py V), (1.6)

-4

pis (t) = g Dia (t) Gas (1.7)

(the celebrated “backward” and “forward” equations of Kolmogorov). The assumption
(1.5) has recently been shown (Austin [1]) to imply the existence of continuous
derivatives p;;(f). Tt will be convenient to use this fact, and we therefore begin by
proving a somewhat stronger form of this result in § 2 (Theorem 1). In § 3, analytical
conditions (involving either the ¢;; or the generator Q) will be given for the validity
of the Kolmogorov equations (1.6) and (1.7). Our remaining results will depend on
the existence theorem of Feller [6] for processes with pre-assigned values of the g;;
Feller’s proof and some of its corollaries will be discussed in §4. In §§5-6, the
uniqueness of processes satisfying (1.6) or (1.7) with given ¢; will be discussed, and
simple uniqueness criteria obtained (Theorems 8 and 10). When there is more than
one process with given ¢;; we are far from having a complete description of all such

processes ; some minor results in this direction will be given in §7. Finally §8
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contains several examples, including a complete treatment of uniqueness problems for
the general birth-and-death process.

Evidently the problems formulated in §1.2 will receive only a partial solution
in the present paper and several important questions, stated in §7, remain open.
We should also refer here to two forthcoming papers by Feller [8], [9]; the second of
these contains constructions which are considerably more general than those which

we use in §§5.1 and 6.2.

1.4. Acknowledgement. I am greatly indebted to David G. Kendall for allowing
me to incorporate several of his own results in this paper, and for numerous sugges-

tions and comments during its preparation.

1.5. Notation and terminology

The symbols pi;(t), ¢, ¢ (= —gqu), P, and Q have already been defined. The

Banach spaces [ and m consist respectively of real sequences

r={x,:a €E} with |z|=2 |2 <o
and real sequences :
y=lya:a€H} with [[y[l= sup [ya] < o,
and we shall write
(¥, )= 2 Y.z, Wwhen y€m and z€l.
Also i
u' is the ith “‘unit veetor” in I: (u');=4;;;
v’ is the jth “unit vector” in m: (v/);=4,,;

e€m is defined by (e);=1 (all ).

Observe that

(v/, ) = (x);, the jth coordinate of z€1:
(y, %)= (y)i, the ith coordinate of y € m;
pii ()= (P o)y = (v, Pyudl);

(e, z)=||z|| when 2>=0 (z€1).1
The “dishonesty function” d;(#) is given by

di(t)=1- g Pia () =1~ P w'||. (1.8}

1 We write #>0 when z4 >0 (all « € E), and 2> 0 when >0 and z =+=0.
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It is continuous, and is non-decreasing because

P sl || =] Ps (Peu)|| || Pewt|| for s=0.
The derivative
d;=d; (0)= lim d; (t)/t (L.9)

t}o

exists and is finite (Kendall [16], Th. 7.1), d; =0, and

> qiut+di<q for each i. (1.10)
aFi
Finally, we write
pu()=[e*pymdt  (2>0) (L.11)
0

for the Laplace transform of p;;, and define the resolvent operator ¥'; by
(Vr2)i= 2 @upa(d)  (2€I). (1.12)
Then ¥, is the inverse of 11— Q:

A —QWe=2 (v€D), (1.13)
Yo AI-Qze=a (x€D(Q)). (1.14)

In particular the range R(¥;) of W¥; coincides with the domain D(Q) of Q, and
D(Q)=R(Y,) is dense in I. Also AV, is a contraction operator! (for each A>0):

|2 z||<||=|| when z=>0. (1.15)
It {P;} is a transition semigroup then AW, is a transition operator:
| AW, z||=||x]| when x=0; (1.16)

conversely if AW, is a transition operator for one >0 then {P,} is a transition
semigroup. We shall also use the facts (see [17], [22]) that

(e, Qx) <0 when 2>0, €D (Q), (L.17)

and that equality holds in (1.17) for all such x if and only if {P,} is a transition

semigroup.

1 See HiLLE {11], Yosipa [24], [25].
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§ 2. Differentiability properties

[Throughout §2 we consider o fixed i€ E for which q;<oo.]

2.14. In order to study the conmexions between differentiability properties of

the p; and properties of the infinitesimal generator (), it is useful first to obtain

some estimates! for the difference quotients

Aij (b, t+8)=(pi; (t+8) — iy (8))
At t+8)=(d;(t-+s)~di(t)) /s

s (t=0, s>0).
Because g Dig () +d; () =1, we have
gAmmt+@+AmJ+@=m
and also Aj(t,t+8)=0,
because d; (f) is non-decreasing. Further (cf. Kendall [16], Th. 4.1)

A—pu(s)/s<qg (s>0).

Now i (E+8)= %Pm (8) Pai (&) = i () P15 (2)

so that by (2.3)

1— p(s
Ayt t+s8)= —”“_;:*(‘) Pii{t) = — qi pis (1)-

By summing (2.4) with respect to §, over any set 4 CE, we obtain

2 Ayt t+8)= —q 3 puy(t)= — g
jed jed
on the other hand, using (2.1) and (2.2), we find that

2 Ayt i+8)< — > Ay t+s)<q.
A j¢A

je
In particular, taking 4={j} in (2.5) and (2.6),
'A{j(t, t+8)l§qi;

also 0 A(tt+8)=— 2 Ay(t, t+8)<q.
7

(2.3)

(2.4)

(2.5)

(2.6)

! Due essentially to Austin [1].
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From (2.7) and (2.8), p;; and d; satisfy a Lipschitz condition so that they are
absolutely continuous and

t
P () =0u+ [Pl (w)du, (2.9)
0
t
= [ di (u) du, (2.10)
0

the derivatives existing almost everywhere. Now take 4 in (2.5) and (2.6) to be the
set of suffixes § for which A (¢, ¢+8)>0. We obtain

Z |AWI— Z A+ 2 Aij)=2q,

from which it follows easily that
>lpi]=2q (2.11)

at any point where all the derivatives exist. Summing (2.9) over j€E,

t
>7fp”<t)=1+ ;fp{,«u)du

t

=1+ [ Z pij(w)) du,

0
the interchange of summation and integration being permissible because of (2.11).

On combining this result with (2.10), we obtain

0= (2 pis(w)+di (w)du  (¢20),

o'_*nn

‘and therefore the integrand must vanish almost everywhere. This establishes

LeEMMA 1. For almost all t=>0, the derivatives pi;(t) and d; (t) exist (for all j€ E)

and satisfy
,Z|p{j(t)IS2qi, (2.11)

> ) +di (5)=0. (2.12)
To link differentiability properties with properties of (), we now prove

LemMMa 2. If 720 is given, then P,u' € D(Q) if and only if pij(t) (for all j€E)
and d; (1) exist as right-hand derivatives and satisfy

Zpu )+ di ()= (2.13)
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Proof. If P,u' € D(Q), then

S

, Bkl Put

-, QP.W') as s} 0,
and similarly
Ai (T, T+ 8)—-) - (67 Ql)rui)~

Hence p;;() and d; (r) exist as right-hand derivatives, and

Zp” =2 QP w)=(e, AP %)= —d] (v).

i

Conversely, suppose that the right-hand derivatives p;;(r) and d; (z) exist, and
that (2.13) holds. As at (2.11) we have >, |pi ()| <2¢; < oo so that the vector p;. (1)
j .

is in !/ and it will suffice to prove that

S8)= > |A(v,t+5)—pi;(r)| >0 as s|0.

Given &> 0, choose the finite set 4 = K so that

@ 2 P+ 2 | pis ()| <& (2.14)

j¢d

Then

jed

2(9= 2 IA”(T,er)*p{f(r)lJrNEAIAn(r,rvLs)He,
and if >’ indicates summation over suffixes j such that A;;<0 then!

_ 'Awlz Z u—ZZ Aw
je A j¢ A

< > Au+2q 2 piu(r) by (2.5),
jeA ji¢d

<Z Aij‘+‘2€ by (214).

s,
-
b

Hence

Z( 5 'AU Pw l*‘ Z z]+38

i i¢d

g ‘ T’z] )I - Z Aij*Ai’}‘gff

Je

! This device is horrowed from Austin [1].
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by (2.1), and so
lim sup > (5) <0 — 3 pi;(v) —di (z) + 3¢
540 jeA
= > py(1)+3e by (2.13),
i€
<4e, by (2.14).
Because £>0 was arbitrary, it follows that > (s)->0 as required.

It is clear from the proof that QP.u' is given by

(Q Pou'); = pis (v) (2.

|84
o
%3
~Z

where p;;(r) denotes the right-hand derivative.

2.2. Lemmas 1 and 2, when combined with a simple semigroup argument, give

TarorEM 1. Suppose that ¢ <oo. Then P,u'€D(Q) for each t>0, and

di(+), pi;(+) (for all j€E) have continuous derivatives for £1>0. Also

2lpiml=2¢  (>0), (2.11)
e +di)=0  (£>0), (2.12)
Pt +8) = 2 Pall) Balty) (>0, 5=0). (2.16)

Proof. By Lemmas 1 and 2, P,u'€D(Q) for almost all >0 and hence for
some arbitrarily small 7. Fixing any such 7, it follows that P.y'=P, ,(P.u') has

the strongly continuous strong derivative P, .(QP,u') for t>1, so that
pis ()= (v, Py QP.ud))

exists and is continuous for ¢>t. Similarly d; (t)= — (e, P;_, Q P,u') exists and is

continuous for {>71, and

d;(t)z - 2]: (Pt—zgprui)j: - ;pl’J(t)'

Because 7 can be arbitrarily small, it follows that p;;(¢) and d; (f) exist, are continuous,
and satisfy (2.12), for all ¢>0; also (2.11) is already known to hold wherever all
the derivatives involved exist. Hence P;u' € D(Q) when ¢>0, from Lemma 2 (or by
observing that P,u'=P, . (P,u') € D(Q) if 7 is so chosen that 0 <t <fand P,u' € D(Q))
Also, if £,>0 and ¢,>0,
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i (b + ty) = (P, Q Py u');
= g (QPtI ui)a Paj(ta) = % pi/a (8)) Pai (t3),
which proves (2.16).
We have now proved all the assertions of the theorem, except for the existencel
and continuity of pi;(t) and d; (t) at t=0: thus we must still prove that p;;(f) and
d; (t) have finite limits as t40. Let 0<r<t¢ and s>0. Then

Ayt t+s)= g Aio (7, T+ 8) Do (t— T)
= Aij(r, T+ 8) py(t—7) — (Jiagj Dia (T) Pas (6~ 7)
=A8i(v, T+8) py (t—T) — q: [P () — pis (7) p3i (E— 7))
If we let s} O and then, keeping ¢ fixed, let 7| 0, we obtain
Pi; (6) = (lim sup pi; (1)) P () = 4 [P 8) = 8y py (1))
and because p;;(t)>0 (Kendall [16], Th. 3.2) the limit superior is finite. We now

let ¢ 0 and obtain lim inf p;;(f) >lim sup pi;(t), so that p;;(¢) has a (finite) limit as
t40 740

t4 0. A similar argument, starting from
Ai(t,t4+8)=Ai (1, T+8)+ 2 Aig (1, T+8)dy (t— 1)

ZAi (T, 7+8)—qi 2 Pin(T)da (6 —7)

=Ai(7, t+8)—q: [di (t) — d; (7)],

shows that d; (t) has a finite limit, and this concludes the proof of Theorem 1.

Remarks. (1) The existence and continuity of p;;(f) for £>0, when ¢ < oo, was
first proved for honest processes by Austin [1]; his argument as it stands does not
appear to prove continuity at {=0. A second proof by Chung [2] establishes con-
tinuity for £>0.

(2) The new part of Theorem 1, that P;u'€ D (Q) for £>0, will be needed in

the proof of Theorem 4 and is also of independent interest.

1 The existence of p{j (0) and d; (0) is of course known already (Kormocorov [19], KENDALL
[16]), but it will follow independently from our proof in the present special case.
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(3) There exist honest processes for which ¢; < oo (all ) but > ¢, <0 for some

1 (Kolmogorov [19], Kendall & Reuter [18]). This shows that (2.12) may fail at
t=0, and also that 4’ need not belong to D(Q) (by Lemma 2 it does so if and only
if 3 ¢ix+d;=0). Thus Theorem 1 is in a sense best possible. On the other hand, there
also exist processes for which ¢;=oco for some i and yet P;u'€ D(Q) for all t>0
(Kendall & Reuter [18]).

§3. The Kolmogorov differential equations
3.1. It is easy to show, by letting s| 0 in the identities
Aii (t: i+ S) = Z Aicx (0) 8) DPaj (t)

= g.pia (t) Aai (0, 8)’
that the inequalities
pi,j (t)Z Z Qio Paj (t), (31)

o

pis(t)= g Dia (t) Gus (3.2)

hold whenever p;;(t) exists (see Doob [4]). In general, these can be strict inequalities,
but it is desirable to find conditions under which the differential equations, already
quoted in (1.6) and (1.7)

(By):  pilt)y= g Qia Paj (B), (3.3)

(Fy):  pis(t)= %:pioc ®) gais (3.4)

will hold. Conditions of a probabilistic nature, involving the continuity properties of
sample functions of the Markov process, have been given by Doob [4]. We shall
give some different conditions, of an analytical nature, involving the infinitesimal
generator {2 and its relation to the coefficients g;;.

It will be convenient from now on to view the constants ¢; in a slightly different
light, and they will no longer be defined by ¢;=p;;(0). We now start with a given
set Q={q;;} of (finite) real numbers ¢;; such that

g;=0 (¢=+7), S qie<0 (all 7), (3.5)

1 See the examples in §§ 8.1-8.3.
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and then consider processes for which either (3.3) or (3.4) holds. It will also be
necessary to interpret (3.3) [or (3.4)] either in the strict sense that p;, is continuous
and (3.3) [or (3.4)] holds for all t=0, or in the wide sense that p;; is absolutely
continuous for >0, and (3.3) [or (3.4}] holds for almost all ¢>0. It will, however,
be shown that the two interpretations are equivalent; this implies that even when
(3.3) [or (3.4)] is merely known to hold in the wide sense, then p;;(0)=g¢;. Thus
there will be no conflict with the definition ¢;=p;;(0) which has been used so far.

To formulate our conditions for the validity of (3.3) or (3.4) we define operators
Q@ and @, as follows: D(Q) is the set of €1 such that

(i) > ,q. converges absolutely for each j, and
<3
(1) ; ,% Ty G| < 00

@ is given by
(Qa);= % Lo Gui (x €D (Q)). (3.6)

D (Qy)="D,, the set of “finite” vectors in I (vectors z €l with only finitely many
non-zero components); note that D, S D(Q). @, is the restriction of @ to D ().

Both @, and @ have domains dense in I, because D, is dense.

3.2. The backward equations. The strict and wide interpretations of

(Biy): L) = 2 GiaPoi (t)

[e4
are easily seen to be equivalent. If (Bj;) holds in the wide sense, then

4

Pi®) =05+ [ (Z iapas(w)du  (£=0).
0 @

Here the integrand is continuous, the series defining it being uniformly convergent,
and by differentiating we see that (Bj;) holds in the strict sense. We may therefore
always use the strict interpretation; putting ¢=0, we see that pi;(0)=¢q;;. We now
prove

Lemma 3. Let Q—{qy} satisfy (3.5) and suppose that D=={pi;(t)} 18 a process
with generator ). For any given i€E, (By) will hold for all j€E if and only if
W ED () and (Qu');=qi;.
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Proof. If 4 €D(Q) and (Qu')=g;; then P,u' has the strong derivative P, Q'

for ¢>0. Hence p;;(t)=(v/, P;u') has a continuous derivative for >0, given by
Py &)= (v, PiQu')= 3 (Qu')y pus (1) = 3 Gia Pus (1),

so that (Bj;) holds for all j€E.
Conversely if (B;;) holds for all j€ E, then by taking Laplace transforms on both

sides we obtain
Ay (A)=0i+ 2‘ Qi Yai(A)  (A>0), (3.7)

where y;; denotes the Laplace transform of p;; (ef. (1.11)). In terms of the resolvent
operator W, (cf. (1.12)), (3.7) can be written as

Ya(Aw' — &) =, (3.8)
where (£),=¢;,. But ¥, is 1—1 and inverse to A/—(, whence (3.8) implies that
wWeD(Q) and Au' —E=Au' — Qu, ie. (Qu'),=(&);=q.

TurEoREM 2. Let Q=/{q;} satisfy (3.5) and let D={p,({t)} be a process with
generator ). Then (Bi;) holds for all i, j in E if and only if ) is an extension of @,

Proof. This follows at once from Lemma 3, because ' €D (Q,) and (Q,u'),= g

TrREOREM 3. Let DP={p;(8)} be any process, and define q,;=pi;(0), d;=d; (0).
Then for any one 1€ E, (B;;) holds for all j€E if and only if q; is finite and

> Qiatdi=0. (3.9)

Proof. If ¢ is finite and (3.9) holds, Lemma 2 (applied at 7=0) shows that
w €D(Q) and that (Qu');=g;; (cf. (2.15)). Hence (B;;) holds by Lemma 3.
Conversely, if (Bj;) holds,! then ' €D (Q) and (Qu');=¢; by Lemma 3. Lemma 2
now shows that (3.9) must hold.

CoROLLARY. (By) always holds (for all j€ E) when > g, =0.

e

Remarks. Theorem 3 shows in particular that for fomest processes (B;;) holds for

all ¢+ and 4 if and only if ¢; is finite and

> qie=0 for all ¢. (3.10)

1 Of course, this is understood to imply that g¢;; is finite.
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This result is due to Doob [4]. The first example of an honest process for which
(By;) does not hold was given by Kolmogorov [19]; see also Kendall & Reuter [18].

In future we shall call the set Q={q;;} conservative if it satisfies (3.10).

3:3. The forward equations. These read
(Fu):  pi(t)= gpia. (t) Gos-

They will require more delicate handling than (B;;), since we can no longer assert
a priori that the series on the right converges uniformly. We shall prove a result
(Theorem 4) analogous to Theorem 2, but there will be no counterpart to Theorem 3.
This is hardly surprising because the forward equations (F;;) may fail even for honest
processes for which Q={p;;(0)} is conservative (Doob [4]; see also the remarks at
the end of §5.2).

TueorEM 4. Let Q={q;,} satisfy (3.5) and let D={p;i;(t)} be generated by Q.

Then the following three statements are equivalent:

(1) (&) holds in the wide sense for all v, j in E;
(2) (Fi;) holds in the strict semse for all i, § in E;
(3) Q is a restriction of Q.

Any one of these statements tmplies that Pi1(0) = gi;.

Proof. Suppose that (1) holds. Because p;; is absolutely continuous and bounded,
the Laplace transform of pi; exists for A>0 and equals Aw;; () — &y, so that from (F;))

we obtain
Ay (A) =6+ gfpm(l)qa;‘ (i,j€EE; 1>0); (3.11)

the termwise integration required for this is justified because the terms of the series
> Pix(t) ¢u; are non-negative except perhaps when a=j. We shall deduce from (3.11)

that ¥, z€ D (Q) and
ATI-QV,z==x (A>0) (3.12)

for all x€1. By linearity it suffices to prove this when x>0. If we write y=Y;z

then
2 Yalai= 2 (2 % ysa(A) qus
a+s a+ji B8

= ﬁzxﬁ(l#’ﬁi(l)—aﬂi“wﬁ(ﬂ) gi1), by (3.11),

=(Ay—2x);— Y Qi
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the inversion of summations being justified because z5yg, (A) ¢u;=>0. Hence Xy, g, is
absolutely convergent, and its sum is (Ay—=x);. This shows that y€D(Q) and
Qy=Ay—uz, ie. that ¥;2 € D(Q) and that (3.12) holds. Now ¥, is 1 —1 and inverse
to A1 -1, so that (3.12) implies that Q is a restriction of ¢, and we have therefore
proved that (1) implies (3).

Now assume that (3) holds. Then (3.12) will hold because Q< @; if we put
x=u' and take the jth components in (3.12), we obtain (3.11). From (3.11) it follows
that the Laplace transform of D pi, gy exists for 1>0, so that > piy g,; is summable

over any finite interval (0, T'>.
Dividing both sides of (3.11) by A, we now have
Pii(A) =410+ 471 g Yia (4) Gaj- (3.13)

The two sides of (3.13) are the Laplace transforms of the continuous functions p;; () and

a

t
dis+ f (2 Pia (¥) gy) A,
0

so that by Lerch’s theorem these two functions coincide for t>0. This shows (by
differentiating) that (Fi;) holds in the wide sense, and we have therefore proved that
(3) implies (1).

(1) and (3) are now known to be equivalent, and we shall show next that they
imply that };(0) =gy

First (1) gives
¢

Pis() =0+ [ (3 pia(w) gu) du
0 o

t t
25ij‘"¢]iif2’it (w)du+(1-46y) ql‘ffpii(u)d%
0 0

and hence ,
§i=pi1(0) = qi;+ (1 — 8y5) ¢j; 61 = qu5; (3.14)

this shows that g;>¢u> — oo, so that all gi; are finite. Next (cf. (3.2))
)2 2 Pialt) Qo
whenever p;;(f) exists, and by combining this with (F;;) we find that

3 Pralt) @~ gu) O (all 4, § in B)
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for almost all ¢=0. But here each term in the series is non-negative, so that each
term is zero for almost all ¢ and in particular py (t) (gi;— ¢;;) = 0 p.p. This gives g;;=gi;
(because py (£)>0 for all £0), ie. p;;(0)=q; as asserted.

It remains only to show that (1) (or (3)) implies (2). Since we now know that
pi;(0)=¢q;; when (1) holds, it follows that p;(0) is finite. By Theorem 1, p;;(t) has

a continuous derivative for £>0, and because P,u’€ D(Q) for t>0 we have

P ()= (), QP ')
=, QP;w') because Q=@ (by (3)),

= Z (Ptui)oc Quj = gpioc () Gass

o

this also holds at t=0 because p;;(0)=gq;; and therefore (F;) holds in the strict sense.
This completes the proof of Theorem 4.

Remark. Theorem 4 shows that the sum of the series > i, (f) gy is continuous
o

whenever (F;;) is known to hold in the wide sense. It then follows from Dini’s theo-

rem that the series converges uniformly in any finite interval 0 <¢t<17T.

3.4. Theorems 2 and 4 indicate a close connexion between  and the ¢;; when
either the backward or the forward equations hold. No equally simple connexion
seems to be known when neither set of equations holds (for a non-trivial case of this
phenomenon, see §8.3). However, it is always possible, in principle, to calculate the
g;; when Q is known (even when the assumption, that ¢, < o for all ¢, is dropped).
The calculation is based on a simple Abelian argument (Kendall [17]): because

i (t) — 85~ qi;t for small ¢, it follows that

gy = lim 22 [ (py; (t) — 8) e dt
0

A-»o0

= lim (2.2 1/111(}»)_251'1’)

A0
= lim 1 (¢/, (A, —I)). (3.15)
A0
Similarly we find that
d;= lim A(e, (I —AF,) ). (3.16)
Ao

Because ¥'; is the inverse of A1 — (), it may be regarded as known when Q is given,

and thus (3.15) and (3.16) will enable us to calculate ¢;; and d; when Q is known.
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§ 4. Feller’s existence theorem

4.1. Feller's construction. The infinitesimal properties of a process may, as
we have seen, be specified roughly by means of the ¢, (=p;(0)) and precisely by
means of the infinitesimal generator (). In any attempt to construct all possible
processes one may therefore well use the ¢;; for a preliminary classification. If this

is done, the first problem is: given a set Q={g;;} of finite constants such that

q;=20  (i=79), > i =0 (all 1), (4.1)

do there exist processes such that p;;(0)=g;? This question, formulated for a much
more general class of processes, was answered in the fundamental paper of Feller [6],
who constructed one such process. Feller’s result will be repeatedly used, and we
shall also need to refer explicitly to his construction,? which we now describe.

Define the functions fi; recursively by

f?](t)zoa
¢
L =06 W e [ (D qu () it du, (4.2)
o oaFi
where as usual ¢;= —g¢;; (=0). The [ increase with n and tend to finite limits

fii (6)= lim fij(¢),

n—o0

and they also satisfy the recurrence relations

¢

LA () = §y e’qit+e’qﬁf( > i (1) @) €% du. (4.3)
0 ®FJ

The limit functions f;; define a process F={f;(t)} such that f;;(0)=gy, and both the

backward and forward equations hold for F. (These results are proved in [6] only

when > g, =0 for all ¢, but the proofs are still valid when > ¢, <0: cf. also

Hille [12]. In [6], the forward equations are only shown to hold in the wide sense;
Theorem 4 shows that they must then hold in the strict sense.)
If {p;(t)} is any process such that p;;(0)=gq;, we shall call it a Q-process and

1 Alternative constructions, leading to the same process as does Feller’s construction, have been
given by ReEuTER & LEDERMANN [23] and Karo [15].

2 — 563804. Acta mathematica. 97. Tmprimé le 18 février 1957.



18 G. E. H. REUTER

the associated semigroup {P;} a Q-semigroup. It will then be appropriate to call F
the minimal Q-process, because f;;(t)<pi;(¢) for any Q-process {p;(t)}. This can be
proved (cf. Doob [4]) by writing the inequality (3.1) as

d
dt (ps7 (£) %) = ( Z,qia Do (1)) €%,
a4t

and integrating which gives

t
P (1) =0 €% + €% [ (3 ua Pas (w)) €% d .
0 a*i

On comparing this inequality with (4.2), an easy induction argument yields
pi)Zf(¢) (n=0,1,2,..),

and hence Py (®)= fu (1) = lim (0

as asserted.

4.2, Minimal properties. There are two further “minimal” properties of F,
or rather of the resolvent operator ®; of the associated semigroup, which may con-

veniently be established now. ®; is given (cf. (1.11) and (1.12)) by

(Daz)i= % Tabai(d)  (x€D), (4.4)
where &ii (A)= f fi(tye*di  (A>0). (4.5)
0
If we similarly write
$h)= [ () e at, (4.6)
0

then ¢/ 1 ¢i; as n—>co because f[;4f; Also from (4.2) and (4.3) we find that
%.()=0 and that

(A+g)dit () =6y+ % Gia Pai (A), (4.7)
(A+q) 5+ (D) =0+ % $ix (4) gos- (4.8)

Hence if we write £=®;x and define £" €l by

(&)= 2 za i (A)

o
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then &= lim &7 (for each §). Now &7=0, and

N> O

1
n+l il S I“ - L
j Z Lo Paj 2 Zy UH" @ (600 + ﬁ%j Sl’otﬂ Qﬁl)}

o ox*

- Z%(Z (et 2 (3 @ i) o)
1
T (- fgi &5 g9) 5
(A+g) & =+ ﬁ% &5 9ps- 49
Thus
(@2 tim 57, (4.10)

where £9=0 and &7 is defined by the recurrence relations (4.9).

Similarly, if ®F is the adjoint of ®,, we can calculate y ®; from

(y DF)i = lim o7, (4.11)
where #;=0 and # is defined by the recurrence relations
A+g)nt =y + agi Gia Nz~ (4.12)
[Here y €m and the adjoint operator ®} is written on the right, so that

(Y Daz) = (y OF, 2)
for all y€m and z€l.]
Finally we observe that Feller’s process F satisfies the backward and forward

equations, so that by Theorems 2 and 4 its infinitesimal generator Qj satisfies
QSEQr=qQ. (4.13)
By taking adjoints in (4.13), we obtain
Q =Qr<S Q3. (4.14)

It seems difficult to give an explicit description of the operator @*, but fortunately
we shall only have to deal with @f. Now y(€m) is in D () if and only if there
exists z €m such that (y, @yz) = (2, x) for all x € D(Q,), and then y @f==2. From this

definition it follows almost immediately that

(y Q0)i= g Gia Y (4.15)
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the domain D (Q§) consisting precisely of those elements y € m for which (4.15) defines
a hounded sequence (y QF):.

Because @, is inverse to 11— Qg ®F will be inverse to A — Q% In particular,
from (4.13) and (4.14), we shall have

Al —-Q)Dz=x (x€l),

yOiAI-Q5)=y (yem).
This means that & =£=®,x and # = 5=y O] are solutions of the respective equations
(Al—-Q)E& =a, (4.16)
7' (Al - Q%) =1y, (4.17)

and of course £=0 when =0 and >0 when y>0. The following theorem states

that they are the least positive solutions of these equations.

THEOREM 5.

(i) If =0 ds in l, and £>0 in D(Q) satisfies (4.16), then & = E=D,x.
(i) If y=0 is in m, and n' >0 in D(QF) satisftes (4.17), then n' > n=y ®].

Proof. (i) We can write (4.16) as

(A+q) & =2+ /3;' & qp)-

On comparing this with (4.9), and using the fact that & >0=£), we find (by induc-
tion) that & = &7 for each n and hence by (4.10) that

£ = lim & =,

n—>c0

(ii) This is proved similarly by writing (4.17) as
A a)mi=yit 3 g
and using (4.11) and (4.12),
§5. Uniqueness theorems: the backward equations

5.1. Uniqueness and the honesty of F. Now let a set Q=/{g;;} satisfying (4.1)
be given, let the operator @, he defined as in §3.1, let the Feller process (semigroup)

F be constructed as in §4.1, let “Q-process (semigroup)” denote any system for which
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pi;(0) = ¢, and let “‘the backward equations” mean the set of equations
(By):  pi)= 2 qupu(t) (1,jEE; t=0)
=4

(interpreted in the strict sence of §3.1), where always the given ¢; are to be under-
stood. We may then ask:

is F the only process for which the backward equations hold, with the given

coefficients q;;?
By Theorem 2, an equivalent form of this question is:

w8 F the only contraction semigroup whose infinitestmal generator € is an

extension of the given operator Q,?

The situation is particularly simple when the set @ is conservative, i.e. when
2 q=0 (all 4), (5.1)
oL

and we assume until further notice that (5.1) holds. By Theorem 3, every Q-process

will then satisfy the backward equations, and our question now becomes:
is F the only Q-process?
TrrorREM 6. Let Q={qy} satisfy (4.1) and (5.1), and let F={f;; (1)} De the
manimal @Q-process.

(i) If F is honest, then it is the only Q-process.
(i) If F is dishonest. then there exist infinitely many Q-processes, including in-

finitely many honest QQ-pvocesses.
Proof. (i) If F is honest, and P is another Q-process, then p;;(t)= fi;(t) by the
minimality of F. But also > pi, () <1= D fi,(¢), so that p;{t)=fi; ().

(i) If F is dishonest, let Qr denote its infinitesimal generator. We then define

an operator (., with domain D (Qj), as follows.

Choose any c¢€l such that ¢>0 and 0<|/c||<1, and put

Qox=Qrx~ (e, Qra)c  (x€D(QF)). (5.2)
Now D(Ry)SD(Qr) =D ()
(cf. (4.13)), and if x € D(Q)

then Qrr=0Q,,
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and Qex=0Qux— (e, Qpz) 6= Qyx

because (5.1) implies that (e, Q,z)=0. Thus Q. is an extension of ¢, It has been
shown elsewhere (Reuter [22]) that . generates a contraction semigroup, §.. Thus
for each choice of ¢ we obtain a Q-process D.; moreover (cf. [22]) distinet choices

of ¢ lead to distinct processes, and the process will be honest when ||¢f|=1.

5.2. Doob’s construction. The construction in (ii) of the proof of Theorem 6
is an analytical version of a well known probabilistic construction of Doob [4]. This
may be seen as follows. In [22] it was shown that the transition semigroup .
generated by €. when |c||=1 has a resolvent ¥, given in terms of the resolvent
&, for F by

W,z =0y - 1{3%% ®sc, (5.3)
where 2(A)=e—elid}
so that 1—(z(4), ¢)=||AD;c||>0.
Now from (5.3), Yie=[1—(z(4), ¢)] ' ®;c
and so Viz=@ux+ (2(4), z) ) c.

Putting z=4' in this equation and taking the jth component on each side, we obtain
iy (A) =i (A) +[1— ; Apia(A)] 2 05y (4) (5.4)
for all 1>0. Now 1— > A¢,(A) is the Laplace transform of d; (), where
di(t)=1— g fia (8),

and so Lerch’s theorem leads from (5.4) to the integral equation
¢
Pi;(8)=fi; (&) + fdi (s) (; s pgi (E—8)) ds (5.5)
0

for the transition probabilities pi;(¢) of D.. The argument is clearly reversible, so
that ). is the only process whose transition probabilities satisfy (5.5), and this pro-
vides a convenient way of identifying Doob’s construction with ours.

Doob’s construction starts from the fact that f;(f) can be identified with the
‘probability that a certain stochastic system (initially in state ¢) will be in state j at

time ¢, having performed at most a finite number of jumps. Thus d;(¢) is the prob-
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ability that an infinite number of jumps will have ocecurred in (0, t) and if s= lim s,,

where s, is the epoch of the nth jump, then
di(syds (0<s<oo)

will be the distribution of the random variable s. Now in Dooly’s construction® the
system is assigned at the epoch s to one of the states 1, 2, 3, ... of E, with respective
probabilities c¢,, ¢,, ¢35, ..., and it then starts its career all over again. It will readily
be seen that the transition probabilities p;;(¢) for the resulting process will satisfy
(5.5), so that the positive unit vector ¢ which occurs in our construction corresponds
to the probability distribution [¢,, ¢,, ¢35, ...] Which controls the assignment of the system
to a fresh starting-point after it has “run out of instructions’.

It is also interesting to observe (following Doob [4])} that the process generated
by Q. does not satisfy the forward equations when F is dishonest. A probabilistic
deduction of this fact has been given by Doob: for an analytical deduction, we have
only to observe that because F is dishonest, there exists an €D (Qr) for which
(e, Qrz)+=0 (See [22]). But Qrzx=@z, and so we shall have Q.z+ Q= for this z,
which shows that . is not a restriction of @ and (by Theorem 4) that the forward
equations do mnot hold. We can go further than this and find a correct substitute

for the forward equations. Because ' € D(Q.;) we have
pi () = (v, Q. Piud)
=, QPiu' — (e, Q Pyu)c)
={QP,u');~ (e, QPyu')

= T 20— 3 (S Pt gar): (5.6)

Observe that —(e, Q P,u')= — (e, Qr Piu')=0, because 0<P,u'€D(Q)=D(QF) (cf.
(1.17)) so that the extra term
—¢ ; (g Pia (t) 9up)

in (5.6) is non-negative, and thus the old forward equation now holds as an inequality,

as already noted at (3.2).

5.3. A uniqueness criterion. It is desirable to have a direct test, involving
Q alone, for uniqueness of Q-semigroups. Theorem 6 as it stands does not fulfil

this requirement: we need a eriterion in terms of the ¢; for the honesty of JF.

1 The state space E will temporarily be labelled 1, 2, 3, ....



24 G. E. H. REUTER

To obtain such a criterion, we introduce the vector z (4) € m defined as in §5.2 by

z(A)=e—el®}. (5.7)
We have 2 (A) = (2 (1), W)= (e, v’ — A D))
=A[dit)edt, (5.8)
0
where d;(t)=1— > fi (1)

24

We can relate z(1) to the ¢; by observing that e @i =0 (because Q is conserva-
tive) and that e®f (11— Q5)=e¢ (by (4.17)). It follows that

2(A) (AT —Qg)=e (AL — Qo) — Ae D} (A1 - Qp)
=Ae—0—Ae=0,

so that z(A) belongs to the nullspace NW(AI— Q) of AI— Q5.

The final step towards an honesty criterion for F is provided by
Lemyva 4. If A>0, EEN(AL—Q5), and ||&]| <1, then

—z(A=E=z(A). (5.9)
Proof. Trom (5.8) we have

z(A)=1=1 2 ()

&

= lim (1- 2 D én (1)

n-»00 [+4

= lim 27,
71> 00

say. From the recurrence relations (4.7), we see that

A=1,  (Qt@)d = 2 gz (5.10)
and that 2| 2z as n—>o0. On the other hand, the fact that £€ W (A1 —@Q}) can be

stated as

(/Hqi)&:aii Qioe - (5.11)

But & <1=2) (because ||£]|<1), so that an easy induction based on (5.10) and (5.11)
gives & <z (n=0, 1, 2, ...), whence & <z = lim 2]'. Similarly —&; <z and so —z2<§=<z
N=>»00

as asserted.

We can now derive the desired uniqueness criterion.
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TuroreM 7. Let Q be conservative, and consider the set of equations

Un: A &= 2 quéa (5.11)

Each of the following conditions is necessary and sufficient in order that there be only
one Q-process.
(1) For some one A>0, (U,;) has no bounded solution other than & =0 (all i).
(21) For some one A>0, (U;) has no bounded non-negative solution other than
£ =0 (all 7).

Proof. (i) 1f there is only one Q-process, then (by Theorem 6) F it honest and
d; (t)==0. Hence, from (5.10), z(1)=0 for every A>0. Lemma 4 now shows that, for
every A>0, (U;) can have no bounded solution other than & =0.

(if) It is now enough to show that (2;), which is weaker than (l;), implies that
there is only one Q-process. Now &=z (1) defines a bhounded non-negative solution
of (u;), so that if (2;) is satisfied (for some one 1>0), then 2, (1)=0, or

[ditye *dt=0

0
for this 1. Since d;(¢) is continuous and non-negative, this implies that d;(f)--0.
Thus F is honest, and by Theorem 6 there is only one Q-process.

The equations (U,;) and the nullspace W (11— @) have previously occurred in
the work of Kato [15], who proved that conditions (1;) or (2;) of Theorem 7 were
equivalent to the honesty of a certain process X ={k;(t)} associated with a given
conservative set Q. He also showed that X, like F, has a certain minimal property:
it is the minimal process whose generator is an extension of ¢,. Our result goes
further than Kato’s in two respects: he does not prove that the generator of every
Q-process is an extension of @, nor that honesty of X is equivalent to uniqueness
of Q-semigroups, when Q is conservative. Also the exact relation between X and F
is left in doubt in [15]. They are in fact identical, because on the one hand X is
a Q-process so that k;(t)=f;(t) (by the minimality of F), and on the other hand
Qr26), so that f;(#)=k; () (by Kato’s minimality theorem for X).

5.4. The non-conservative case. The uniqueness criterion in Theorem 7 can
be extended to the general case when Q is not necessarily conservative, but we must
then restrict ourselves to processes for which the backward equations hold (equiva-
lently, for which Q2>¢,). Let us define D; by
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2 it Di=0, (5.12)

so that 0<D,< oo, and D;>0 for at least one + when Q is not conservative. Now
for any process satisfying the backward equations, Theorem 3 shows that the “de-
ficiencies” d;=d; (0) must satisfy d;=D;, so that such a process cannot be honest if
Q is non-conservative. In particular, this applies to F, and so the honesty of F can
no longer be relevant to the uniqueness problem when @ is non-conservative. We will
therefore use a device for reducing the uniqueness problem for Q to the uniqueness
problem for a certain related conservative set Q, defined below.

We enlarge the set of states £ to E by adjoining an extra state, labelled 0,
and then define an enlarged set éz{q”i,»:i, jE€EE} by
Gu=qy (i,j€E), l
fo=D; (1€E),

(5.13)
do = — Joo=0, doi=0 (jEE)-,[

By (5.12), the set Q will be conservative.
Now suppose that D={p;(t):4,j€ E} is a process, generated by the operator
€ (on 1), such that Q=2¢,; as at (1.8) and (1.9), define

d(t)=1— 2 pu(t),  di=d;(0). (5.14)

Then (by Theorem 3) we must have d;=D,. If we enlarge D to D={py(t):4,j€ &}
by defining?!

D) =pyt) (1, jEE), ]
Dio(t)=di(t) (1€EE), (5.15)
Poe (1) =1, Do (1)=0  (jEE), ]

it can be verified without difficulty that f) is an honest process, and (because d; = D))
that $:;(0)=g,. In other words 'b is an honest é-process.

Conversely, suppose that i)z{ﬁ,»j(t) 24, j€E} is any honest é-process. Because
Q is conservative, ﬁ will satisfy ‘the backward equations and in particular the equations

Bu):  fu®)= 3 fuBu(®) (EB).

e E
These at once give Fgo(t)=1 and §e;(t)=0 (j€E), and it now follows easily that

D={py(t):i,jEE},

1 As in Kenparr [16].
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where p;;(£)=7;;(f), is a Q-process. Moreover, because 'i) is honest
dit)=1— 2 P (t)=pilt),
aek

so that d;=gig=D; and therefore the generator Q of P is an extension of ¢,. Thus
we have set up a 1—1 correspondence between Q-processes with Q=0Q, on the one
hand, and hAonest é-processes on the other. By Theorem 6, either there is only one
honest é-process or there are infinitely many, and the two cases can be distinguished

as in Theorem 7 by considering the set of equations
O (A+§) &= 3 jukx (EE). (5.16)

But if é is a solution of (U,;), then ;:-(,:0 (because o, =0) and so if we define
Eizéi (¢ € E) we obtain a solution & of (U;) (cf. (5.13)). Conversely, from a solution
£ of (U,) we can obtain a solution & of (I;) by defining &=¢ (i €E), &= 0. Thus
there is a 1—1 correspondence between solutions of (U;) and of (U;), in particular (U))
has non-zero bounded solutions if and only if (U;) does. We have therefore established

the desired uniqueness criterion :

TueoreMm 8. Let Q={q;} satisfy (4.1) (but not necessarily (5.1)) and let 1> 0.
Then the equivalent conditions (1;) and (2;) of Theorem T are necessary and sufficient
in order that there be exactly one process satisfying the backward equations.

If the conditions do not hold, then there exist infinitely many such processes.

It should be stressed once again that the processes covered by Theorem 8 are
always Q-processes, i.e. have p;;(0)=g¢;, but that when Q is non-conservative there
may exist Q-processes which do not satisfy the backward equations (Kolmogorov [19])

and so are not covered by Theorem 8.

§ 6. Uniqueness theorems: the forward equations

6.1. We now take an arbitrary, not necessarily conservative, set Q={q;;} satis-

fying (4.1), and consider processes which satisfy the forward equations
(Fy): 2= 3 pult)qus (5 GEH; £20)
o

in the strict sense; equivalently (by Theorem 4), processes whose generators ( are

restrictions of the operator ¢ defined in §3.1. These are always Q-processes?! (satisfy

! They will therefore automatically satisfy the backward equations when @ is conservative, but
they may fail to do so otherwise. See §8.1.
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p;,»(()) =¢y), and there is always one such process: the minimal Q-process F. Necessary

conditions for the existence of more than one such process are easily found.

LEvya 5. If there exist two distinct processes such that Q< Q, then

(i) the minimal Q-process F is dishonest, and

(i) the nullspace M{AI —Q), for each A0, conluins « positive element of I.

Proof. Let D be a process, distinct from F, such that Q< @, and let \F'; denote
its resolvent operator.

If F were honest then (as remarked in §5.4) Q must be conservative, and the
Q-process D must (by Theorem 6) coincide with F, contrary to assumption. This
proves (i).

Now let x-0. Then W,x=>®;z, and also (AT —@Q) (1,2 — ®;2) =0 because both
Q and Qy are restrictions of . But P =F, so that V'; +®; and therefore W,z = ®,x
for some z>0. For this z, W2 — @,z is a positive element in N(A]— @), and this
proves (ii).

We shall see later that these conditions are also sufficient. The proof of this
will require some properties of W(AI - @) and of W™ (11— ), the set of non-negative
vectors in (AT - Q).

LeMma 6. Let A=0, n -0, und
A, A== 5 (u—2) D, (6.1)

Then A(u, ) huas the (bounded) inverse A(R, u), maps N(ul — Q) on to N(AL—Q),
and maps NH{pl—¢) on to N (AL - Q).

Proof. Because (A1 ~Qp)D; -1, we have

A, D) =1 =20, 4+ p®;= —Qr®; L 1@

= (ud —QF) D, (6.2)
Hence
Ay Alp, Ay (AL Qpy D, (I - Q) @5 -1

interchanging 4 and g, A(u, A) A(A, ) =1. Thus A (u, 1) has inverse A (4, p).
Next, if €N (ul—Q), then

A, Ve x i A0z €D(Q)

hecause O, x €D () SD(Q), and
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QA(u, Myz=Qx+(u-1) Q0
=puxt(A—p) (—Qr0;x)
=pxt (A—pu)@—AQx)=2 A, ) x;

thus A (u, D2 €N(AI—Q), and A(u, i) maps H(ul—@Q) into N(AI—@). But the
inverse A (A, u) maps N(AI—@Q) into N(ul—Q), so that A(u,4) in fact maps
N(ul—Q) on to N(ALI—Q).

It will now be enough to prove that A (u, ) maps ' (ul—@Q) into N (A1 —Q).
Let =0 and x€ N (ul~Q); we need only check that y=A4 (u, 1)x>=0. This is trivial

if A<y, because then ®;2>0 and
y=x+(n—-AP,x=0;
on the other hand, if 1>y, we note that
Al—-Qzx=(A—u)x>0
and so by the minimal property (Theorem 5) of O,
2@, (A pu)x),

ie. y=x+(u—A)D;x>0, as required.
The isomorphism between MW (AI—@Q) and N (ul-— ), described above, will be
exhibited again (in a slightly different way) in §7.4. The lemma shows that if

N (AI - Q) is non-trivial for one A>0, then it is non-trivial for all 1> 0.

6.2. We now give a construction which will show that the necessary conditions

stated in Lemma 5 are also sufficient.

TueorEM 9. Suppose that F is dishonest and that N* (A1 — Q)= {0} for one 1 >0
(equivalently, by Lemma 6, for all 1>0). Then there exist infinitely many processes,

mcluding at least one honest process, such that Q< Q.

Proof. Define an operator Q as follows. Fix u >0, choose a non-zero element

y in 0¥ (uI—Q) such that (e, uy)<1, and let D(Q) be the set of & €1 which can be
written in the form

E=n—1(e, Qen)y (6.3)

for some # in D (Qp). [For a given & in D(Q) there is at most one such 7, namely
n=0u(ul—-Q)¢&] Clearly D(Q)SD(Q), so that we may define Q) as the restriction
of @ to D(Q):

QE=Q¢, §€D(Q). (6.4)
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We now show by using the Hille-Yosida theorem! that ) generates a contraction
semigroup. We must verify that:

(i) D(Q) is dense in I;

(ii) for each A>0 and x €1, the equation

AE—Qé=x (6.5)

has a unique solution £{=%;z in D(Q), and ¥;2>0 when z>0;

(iii) (e, QEY<0 when £=0, £€D (Q). (6.6)

If D(Q) were not dense we could find z+0 in m such that (z, £)=0 for all

EE€ED(Q). The general element & of D(Q) is given by (6.3), where # varies over
D(Qr)=R(®,) and so has the form n=®,z for some x€l. Thus we should have

(z, D) = (€, Qr Pu2) (2, ) =0 (6.7)
for all z€1. Using —Qr®,=I—p®, we write (6.7) as

@0+ (z, y)(e—eud}),2)=0, all z€l,

and deduce that
2®f + (2, ) (e—eu®;)=0. (6.8)

If (2,y)=0, then (6.8) gives z @} =0, whence z= 0 contrary to assumption; if (z, ) +0,
(6.8) shows that e € R(®})=D(QF) and by operating on (6.8) with yI—QF we get
z—(z,y)eQr=0,

(2 9) {1 - (eQF, )} =0. (6.9)

But ¢eQF=e@Qf <0 because (eQf)i= > ¢irn and so (¢QF) y)<0 and 1— (e, QF, y)+0,

whence (6.9) gives (z,¥)=0 contrary to assumption. We have now shown that no
z=0 can annihilate D(Q), which proves (i).

Now consider the equation (6.5). From the definitions (6.3) and (6.4) of Q, and

the fact that the representation (6.3) of £€D({2) is unique, we see that (6.6) is

equivalent to

Mn—(e, Qen)yt—Q{n—(e, Qen)y} =2, €D Q)
or to A - Q) n=x+(A~—u) (e, Qrn)y. (6.10)
From (6.10), 5 necessarily has the form

n=0z(z+0y) (6.11)

1 In a form which differs slightly from the usual one: see [17], [22].
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for some g, and this » will satisfy (6.10) if and only if
z+oy=x+(A—p)(e, Qr0i(z+oy)y

or (because Qr®;=A10;—1I)

il +(A—p) (e, y—ADuy)} =(u—1) (e, x — A B;2). (6.12)
In (6.12), the coefficient of p is positive because

1+(A—w) (e, y—AQy) =1~ pu(e, y— 10,y
>1-pule, y)=0.

Thus there is exactly one solution g to (6.12), and hence exactly one solution £ to
(6.5), given by (6.3), (6.11) and (6.12). A simple calculation gives

E=Wiz=0x+o(e,x— ADx) A, 1)y, (6.13)
where o l=1+(A—pu)(e,y—ADy)>0 (6.14)

and A4 (u, A) is defined by (6.1). When x>0, then (¢, z— A®;2) >0 and also 4 (u, 1)y =0

(by Lemma 6), so that
Vx> ®;2>0.

This concludes the proof of (ii).
To prove (iii), suppose that

§=7}‘(e’ QFn)yZO’

where 7€D (Qr). If (e, Qrn)>0, then we should have 5>0 and so (e, Qr7) <0
contrary to assumption. Therefore (¢, Qr7)<0. Now

QEZQE:QF"]_ (6, QF”])My,
(e Q&)= (e, Qrm) {1 — (e, um)}, (6.15)
and so (e, &)<0, which proves (iii).

We have now shown that  generates a contraction semigroup whose resolvent

¥, is given by (6.13); in particular
Vx=Quz+(e,z2— ud.x)y.

Because F is dishonest, (¢, z—u®,x)+0 for at least one x, and therefore distinct
choices of y € " (uI— Q) lead to distinet resolvents ¥, and so to distinct semigroups.
Finally, F is dishonest and therefore (e, Qr%)+0 for some 7 in D(Qr). On the
other hand () generates a transition semigroup if and only if (¢, Q2&)=0 for all £ in
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D(Q), and {from (6.15) this is so if and only if (e, uy)=1. We can always choose
such y in M’ (ul—Q)={0}, and therefore our construction can be made to yield at
least one transition semigroup. This concludes the proof of Theorem 9.

It would be interesting to have a probabilistic interpretation for the above con-

struction (when (e, uy)=1); I have not succeeded in finding one.

6.3. It is now possible to describe the amount of non-uniqueness which prevails
amongst processes such that Q< Q. Denote by n* the maximum number of linearly
independent elements of N (A1 —@Q). As the notation implies, n* does not depend on
A (by Lemma 6); by the statement ‘“n*= oo’ we understand simply that 1* (A1 — Q)

contains finite linearly independent sets with arbitrarily many members.

TaeorEM 10.

(i) If F is honest, or if F is dishonest but n' =0, there is exactly one process
such that Q< Q, namely F.

(i) If F is dishonest and n™ =1, there are infinitely many processes with Q< Q,
and exactly one of them is honest.

(i) If F 4s dishonest and n* >1, there are infinitely many processes, including

infinitely many honest ones, such that Q<= Q.

Proof. Statement (i) follows from Lemma 5; statements (ii) and (iii) follow from
the construction used in the proof of Theorem 9, except for the fact that there is
exactly one honest process with Q=@ in case (ii). We already know from Theorem 9
that there is at least one: to see that it is unique, denote its resolvent by ¥, and
let y (%) be the unique element of N (Al —@) with (e, Ay(2))=1. When z>0, then

(cf. Lemma 5) W,z—®,z is in NU* (1] — @) and is therefore a non-negative multiple

of y(4), say
Wiz —®x=0y(d) (0=p(x, 1) =0).

But AW, is a transition operator, so that
(e, )= (e, AW x) = (e, ADyx) + 0 (e, Ay (1))
= (e, LD, ) 1 0.
Thus Wyx=D,x4 (e, x— A D)y (4) (6.16)
when x>0, and hence for all z; W, is unique, and hence so is the corresponding
process.
It should be noted for applications of Theorem 10 that W' (11— Q) consists of

the non-negative solutions y= {y,} of
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(V3): A+ )= 3 Yt (6.17)

with > y,< oo, and that n* can be found by looking at (V;) for any one A>0.
Compare this with the way in which the equations (U;), (5.13), occur in Theorems
7 and 8.

§7. Some further results

7.1. Restrictions of . In §6.2 we constructed some operators Q<@ which
generate contraction semigroups. No description of all such operators seems to be
known, but every such Q must satisfy certain conditions, closely connected with the
fact (see Lemma 6) that N (AI—@Q) and N (uI—Q) are isomorphic whenever 1, 1> 0.

If ¥} is the resolvent operator for such an Q, then the operator
CA=Y1(AI-Q), (7.1)

defined on D(Q), maps D(Q) into D (Q)SD(Q), leaves D (Q) elementwise fixed, and
has nullspace N(AI—@). Thus C (1) projects D(Q) on to D(Q), and D(Q) can be
written as a direct sum

D@Q=DQ)®NAI-Q), (7.2)
the canonical decomposition of y €D(Q) being y=CA)y+ I~ C(A)y. From (7.2) we
see that, for each A>0, N(AI—Q) is isomorphic with D(Q)/D (Q). It follows that
N(uI—Q) and N(AI—Q) are also isomorphic, and the isomorphism can be obtained
by mapping y € N(ul—@Q) on the coset y+D(Q) of D(Q)/D(Q) and then applying
I-C(2) to this coset. The resulting mapping from N (ul—Q) to N(AI—Q) is

y=>y—ChWy=y—V,(A1-Q)y
=y+(u-1)Vy

because Qy=puy. When Q=Qp, so that ¥;=®,, this is precisely the mapping
A (u, ) in (6.1).

The fact that W(AI—-@Q)=D (Q)/D(Q) has two consequences. First, fixing a
particular Q) (say Cy), we see that the structure of M (Al — @), and in particular its
dimension m, is independent of 1. Secondly, D(Q)/D(Q) does not depend on the
particular () considered, in particular it must always have the same dimension n.
Thus the extent to which ¢ must be restricted to obtain an  is in a sense fixed,
once for all: what we lack at present is a general description of the form which the
restriction must take. For the special Q constructed in §6.2, whose domain is de-
scribed at (6.3), it is not hard to show that £€ D(Q) if and only if £€D(Q) and

3 — 583804. Acta mathematica. 97. Imprimé le 11 avril 1957.
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E—Qu(ul—Q)e=(e, [—pu®,)(uI—-Q)E)y; (7.3)

thus € is obtained from @ by imposing the ‘“‘lateral condition” (7.3) (in Feller’s
terminology). It would be interesting to have a probabilistic interpretation of this

condition.

7.2. Extensions of {,. Now suppose that Q=¢), generates a contraction semi-

group, with resolvent ¥;. Then Q*< @j, the mapping
EQN=@AI-Q)V¥Y3: (7.4)

(analogous to C(1) in (7.1)) projects D(Qs) into D (Q*), and D (QF). can be written
as a direct sum

D(XR)=D Q") D NAI-}). (7.5)
Hence H(AI—Q3)=D (QF)/D(Q*), and also there is a 1-1 mapping

z—>z+z(u—A) V3

from N(ul—@;) on to HW(AI—Q;). (For the particular choice Q=QF, ¥;=0;, this
mapping is simply the adjoint A*(u, 1) of 4 (u, 1) (see (6.3)); one can show just as
in Lemma 6 that A*(u,2) also maps H*(uI—@5) on to H*(AI—@s).) It follows
(as in §7.1) that the dimension n* of M(AI—Qg) is independent of 1, and that
D(@3)/ D (Q*) must have dimension »* for every Q considered here.

There are also relations between Q and @, ; these are most conveniently expressed
in terms of @, the least closed extension of Q, The existence of @, is guaranteed
because @Q,<Qr and Qr is closed; its definition, we recall, is that = €D (¢,) and
@Q,x=vy whenever there exist x,€D(Q, such that z,—»>z and @,z—y (strongly).
Here y is uniquely defined, indeed y=Qrxz=Qx because Qj is closed. It is easily
shown that

RMAI-Q)=R(AI-Q,),

that Q3=@Q5, and that AI— @, is 1—-1 from D(Q,) on to R(AI—Q,), with inverse
@, ; proofs of these facts are left to the reader. Also if 2@, generates a contrac-
tion semigroup then Q=¢), because Q is closed. Now AI—Q is 1—1 and maps
D (@) and D(Q) on to R(AI—@Q,) and I, so that D(Q)/D(Q,) and I/R(AI—Q,) are
(algebraically) isomorphic. On the other hand, the adjoint space of !/R(AI—Q,) is
precisely the annihilator in I* (=m) of R(AI—Q,)=R(AI—Q,), which is W(AI~@});
hence !/R(AI—@,) and N (AI—Q}) have the same dimension n*, provided that we
equate all infinite dimensions. Thus the spaces
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DEH/DEQY). DEO)/D@), MNAI-Q)

all have the same dimension n*. In particular, the amount by which @, must be
extended to obtain an € is in a sense fixed, once for all, but once again a de-

seription of the most general method of obtaining such extensions is not known.

7.3. It will be clear that many questions have been left unanswered in this
paper. For a conservative set Q={q;;} satisfying > ¢i,=0 for all i, we at least have
necessary and sufficient conditions for uniquengss of Q-processes (processes with
pij(0)=g;;); for a mnon-conservative  we have uniqueness criteria for two special
kinds of processes, those whose generators satisfy either Q=2@Q, or Q< @, but there
may exist Q-processes belonging to neither class (see §8.3). A general uniqueness
criterion for Q-processes when ( is non-conservative has still to be found.

Also when Q is conservative there always exists an honest Q-process. When Q
is non-conservative, no process with Q2¢, can be honest; also we know that either
there is only one (dishonest) process with Q< @, or there are infinitely many such
processes including at least one honest one. It would be desirable to find under what
conditions on @ there exists at least one honest Q-process.

Of course, a solution to the main outstanding problem of finding all Q-processes

would answer the two more special questions posed above.

§8. Examples
8.1. Non-uniqueness for the Kolmogorov equations. Two problems were
treated in §§5 and 6: given Q={g;;},

(B) find a process satisfying the backward equations
(equivalently, such that Q2¢,);
(F) find a process satisfying the forward equations

(equivalently, such that Q< Q).

We remind the reader that a solution to both problems is always provided by the
minimal Q-process F, that necessary and sufficient conditions for F to be the only
solution to (B) or to (F) are given in Theorems 8 and 10, and that when Q is
conservative every (J-process (in particular every solution to (F)) is a solution to (B).

In many cases the solition to both problems is unique. For example, if the

qi; are bounded so that
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D gu=q=4 (all 3),

i+a

let 1>0 and let {€m and 5 €l be non-negative solutions to
(U3): (l+qi)é°i=aziqia€a,

(Vi):  (A+qg)y= azjﬁa Qs

Then
- ]. qi A
Ogéigﬁ;(agiQi“)llcllsl+qi”C“SA—FA”C“’
A
Ell= 577 11

so that {=0. Also, summing over j in (V}),
A2 m+ 2= 2 (3 Nage)= 2 (2 ) Na= 2 ¢l
7 a7 [« e o

whence > #;<0 and =0. Thus (U;) and (V;) have only trivial solutions: both (B)
and (F) have F as their only solution.

A familiar example in which (B) does not have a unique solution whilst (F)
does is the birth process (Feller [7], p. 392-3). Label E as 1, 2, 3, ..., let ,>0 (n=1)

and > b;' < co, and define the conservative set Q by
1

qii = —bi, di,i.1= +bi, qn':O otherwise. (81)

Then (U;) becomes
A+0) =001 (2=1,2,...),

which has the solution
i-1

L=1L  G=1TI (1+£in} (1>1);

n=1

i is positive, and is bounded because ] (1 +B}i) < oc. Hence the solution to (B) is
1

n

not unique. On the other hand (V;) becomes
(A+b) 9, =0, (A+b)ni=biamr (5>1),

so that #=0 and the solution to (F) is unique.

Next we illustrate the possibility that (B) may have a unique solution when (F)
does not. This can happen only when Q is non-conservative, because if Q is con-
servative and (B) has a unique solution then F is the only Q-process and in particular

the only solution to (¥). We give a slightly simplified form of an example due to



DENUMERABLE MARKOV PROCESSES 37

Kolmogorov [19] (and treated by semigroup methods in [18]). Label £ as 1, 2, ...,

let @a,>0 (n=>1) and 3 a,'< <o, and define Q by
1

= —a; 1=1), ii-1= +ta; (1>1), ¢i;= 0 otherwise; (8.2)
note that ¢ is non-conservative because > ¢, = —a,<0. Now (U,) becomes
(A+a)) =0, (A+a)li=ai1lior (E>1),
so that =0 and the solution to (B) is unique; but (V;) becomes
(A+a)ni=a;ana  (j=1)

which has the solution (unique to within a constant factor)

j-1
7 =a;’ Ul(l +- &) .

an
A .
Now > a;' and [[{1+ -~} both converge, so that > 7; converges, 7 is in [, and
a g 2" ges, n

N (A1~ Q) consists of positive multiples of #; also F is dishonest because Q is non-
conservative. By Theorem 10, there are infinitely many solutions to (F), and exactly
one of them is honest: its generator  can be shown to be the restriction of @ to
the subset of D(Q) on which (¢, @z)=0. A probabilistic description of a very similar

process (in which the state 2 is made absorbing by putting @, =0) can be found in [18].

8.2. There remains the possibility, even when Q is conservative, that neither
(B) nor (F) has a unique solution. To illustrate this, we take an example due to
Lévy [21] and discussed in more detail by Kendall ([17], §3). We now label E as

e., —1,0,1,..., let b,>0 and > b,'< oo, and define the conservative set Q exactly
as at (8.1) (but ¢ and j§ now range over all integers, not merely integers =>1). Then
(Us) and (V;) have positive solutions [ €m and % €[, given by

- 1(e-d)

00

7 =b'T1 (l +£—‘—)-

j+1 n;

Thus F is dishonest and H* (11— @)=+ {0}, so that there are infinitely many solutions
to (F) (and these are at the same time solutions to (B), since (@ is conservative).
As in the preceding example, there is exactly one honest process which solves (F),

and its generator € is @ restricted by the side-condition (e, @x)=0. It is this par-
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ticular process which is treated in [17] and there called “‘the flash”: informally, this
may be described as a birth process in which the system runs through the states
in the order ..., —1, 0, 1, 2, ..., the mean time spent in state j being b;'. The
system will run out of instructions after a finite time (having “reached + o) and
then “returns to — co” and resumes its journey.

It is now easy to make up a conservative set (3 for which there are infinitely
many honest processes satisfying the forward equations! (and so also the backward
equations). By Theorem 10, W (11— @) must contain at least two independent posi-
tive vectors, and also F must be dishonest. It is almost obvious that we can achieve
this simply by combining two sets Q of the type just considered. To be specific,
let us now assign labels (s, n) to the states, where s=1,2 and n=..., —1,0,1,...;
denote the (s, n)th coordinate of 2 €1 by 3, let 83, >0 and > 1/} < oo, and define Q by

7

+b, ifr=sand n=m+1,
Gor.mysny =1 — by if r=8 and n=m, (8.3)

l 0 otherwise.
Then the operator @ is given by

(@) =bn12n-1— by
and its domain D (@) consists of all z with

Z Ib;_lx;_l—b‘;x‘;l< oo
sn

(such z being automatically in I). We note that when z €D (Q) the limits

LPz= lim b}, 2}, Usz= lim b52;, (s=1,2)

n—>-—-© n—>+o00

exist, and that

2
(e, Qx) = s=21 (L2 —U*x).

The reader will easily verify that both (U;) and (V) have two independent positive

solutions : % for instance one solution ¢ to (U,) is given by

1 hat . }‘ ! 2
an H( +-b:1, y Cn:O

x=n

1 The existence of such sets @ was discovered by KENDALL {17]. The present example, also
due to KENDALL (unpublished), is simpler but less drastic.

2 In KENDALL's example [17], both equations have countably many independent positive
solutions.
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Thus there must (by Theorem 10) be infinitely many honest processes satisfying the
forward equations, and so also the backward equations; the construction of §6.2
gives one such process for each element of norm 47! in M* (11— @), and hence gives a
one-parameter family of such honest processes. However, we will now show that
there exists a family of such honest processes specified by two parameters p, and g,,
each lying between 0 and 1 (inclusive). The generator Q of the typical process of
this family is the restriction of @ to the subset of D(Q) on which

L'a=9, Utz + (1 —p,) Uz,
LPx=(1-p,)Ulz+p,U%x.

It can be verified (by using the Hille-Yosida theorem, following the pattern laid down
in [18] and [17]) that Q, for each choice of p, and g,, generates an honest process
such that @, Q< @. It can also be shown that the construction of §6.2 leads only
to those processes of the above type for which g, +0,=1.

An informal description of these processes can be obtained by calculating the
resolvent operator and thus the Laplace transforms y;; of the transition probability
functions p;; (cf. [17]). The states of the system are of two types, (1, =) and (2, n),
belonging to ‘“‘flashes’ of the kind described at the beginning of this paragraph; the
mean times spent in (1,n) and (2,n) are 1/b% and 1/b%. The system, initially in
some state (1,7n) or (2,n), runs through flash 1 or flash 2. The constants ¢, and g,
specify the behaviour of the system when it has come to the end of a flash (“ar-

rived at 4 o0”’): from “+ oo™ in flash 1 it goes immediately

{to #—o0” in flash 1 with probability g,

’

to “—oco” in flash 2 with probability 1—p,

and similarly it goes from the end of flash 2 to the beginning of flash 2 or flash 1
with probabilities g, and 1—g,. In the special case when g, +p,=1, the behaviour
of the system after it has run out of instructions does not depend on whether it was
previously in flash 1 or flash 2: it then begins flash 1 or flash 2 with probabilities
o; and p,. This indicates why the construction of §6.2 does not in general yield all
processes satisfying the forward equations: it fails to distinguish between different

ways of ‘“‘escaping to infinity” or “running out of instructions”.

8.3. Failure of the Kolmogorov equations. When (Q is conservative, the
backward equations hold for every Q-process; the forward equations will fail when-
ever F is dishonest and we apply the construction of §5.1 to F.
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When (@ is non-conservative, the backward equations cannot hold for an honest
Q-process. The last example in §8.1 illustrates this possibility, and indeed there the
forward equations do hold.

Processes for which the backward and forward equations both fail can of course
be constructed ‘in a trivial manner by combining two independent processes of the
two kinds just mentioned. A simpler and perhaps more interesting example is the
following. The states are labelled @ and ..., —1, 0, 1,...; we then take b, >0 with
3 1/b,< o and define Q by

gi = — by, Qi,i+1:+bi '(i:"': -1,0, 19---),] (8.4)
Qo= — 1, q:;=0 otherwise. J
Then QQ is non-conservative, because > q..= —1, and (Uj;), (V1) have non-trivial
*
positive solutions given by
i-1 }’
:w:O> /:l': H(1+g‘>’

nw:O: nJ:b;lH(l+£’—).

j+1 n

Thus there will be (as before) exactly one honest Q-process satisfying the forward
equations, but we will now show that there is also an honest Q-process which does
not satisfy the forward equations (nor, of course, the backward equations, Q being

non-conservative). Its generator () has domain D (Q) consisting of all

x={x,; ..., T_1, Ty, Ty, ...}
such that
2 [bj 1@ 14— bay] < oo (8.5)
and Lx= lim b,zp=2, (8.6)

((8.5) implies that this limit exists, and therefore that z €1).

€ is defined by
(Qa),=Uz— 2,

(8.7)
(Qu);=bj12;_1—b;a;,

where Uz= lim b,x,. It can be shown that () generates a transition semigroup (an

n—>+00

honest process); the necessary calculations are again similar to those in [17], and will
be omitted. Now € is not a restriction of @, because the vector x given by

-1
yw:I’ I;ij H
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is in D(Q), but (Qz),= —1 whilst (Qz),=0. Thus the process generated by  does
not satisfy the forward equations; on the other hand it is a (Q-process, as may be
verified by calculating the resolvent operator ¥, and then using (3.15) and (3.16).

Once again it is possible to describe the above process P, and also the (unique)
honest Q-process P’ which satisfies the forward equations, in an informal manner.
For both processes, we have a flash (with states ..., —1, 0, 1, ... and mean time
b;! in state §) “coupled” to an extra state w. For the process P, the system runs
through the flash and then jumps at once to state w; it remains at w for a mean
time 1, and then jumps back to the beginning of the flash and repeats its previous
performance. For D’, the system remains in the “flash” states once it reaches them,
i.e. as in §8.2 it jumps from the end of the flash to the beginning; if it is in state
e, it remains there for a mean time 1, then jumps to the flash and never returns
to w. The reader who is familiar with Doob’s analysis [4] of the backward and for-
ward equations in terms of sample function discontinuities will note that the sample
functions for D have a right-hand discontinuity which is not a jump when the system
leaves , and a similar left-hand discontinuity when it reaches w; this explains the

simultaneous failure of the forward and backward equations in probabilistic terms.

8.4. The birth-and-death process. This, our final example, can be made to
exhibit each of the three combinations of uniqueness and non-uniqueness for problems
(B) and (F) which were illustrated by the examples in §8.4. A further reason for
discussing it here is that much attention has already been devoted to uniqueness pro-
blems for the birth-and-death process the most complete results being those recently
announced by Karlin & McGregor [14]. We shall show that the uniqueness criteria
of Theorems 7 and 10 can be applied to give a very simple alternative derivation of
these results.

Let E be labelled as 0,1, 2, ..., and let

by =0, b,>0, a,>0 (n=1);

we do not require that b,>0. (The b, and a, will be “birth rates” and “death
rates”, the state label n is the size of the “population”; when b,=0, the state 0
will be absorbing so that population cannot recover once it has become extinct;
when b,>0, the population may ‘‘revive” through ‘‘immigration’ at a rate b,. See
Feller ([7], pp. 371-3) for an explicit description of the system.) The conservative set
Q is now defined by
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Qoo = —b01 qu= — (@ +by) (1=1),
¢iiv1= + bi (’l/ > 0), qi,i-1= + a; (’L > 1), (88)

;=0  otherwise.

The equations (U,;) and (V;) are

(A+bg) Lo =041, } (8.9)
(z-‘*'an"'bn)zn:anCn~1+ann+1 (nzl), )
(A+bg) o= aymy, } (8.10)
(l‘*‘an+bn)"]n=bn—-17]n—1+an+l77n+1 (nZl)
We rewrite (8.9) (for n>1) as
bn (Cav1=Cn)=ALn+an ({n—Ln1)- (8.11)

When b,=0, {,=0 and ¢, is arbitrary, and {,, {;, ... are then uniquely determined ;

when b,>0, {, is arbitrary and (j, {,, ... are then determined. We take {; =1 when

be=0 and ;=1 (hence LHi=1+ bi) when b,>0; in either case, {; > {,=0 and an easy
0

induction from (8.11) shows that (,,1>{, (R=>1). We have then to decide whether
{n is bounded; if it is, then (U;) has a non-trivial solution.
For the second set of equations, (8.10), we sum the first (n+1) equations and

write g,=9y+ +++ +%,. This leads to

(A+a,+by) og=0a, 0y,

} (8.12)
an+1(0'n+1"0'n)=)~¢7n+bn (o0n—0n-1) (n=1).

Taking g,=1, we see by induction that g.;>0da[(n>0). We have to decide whether
(8.10) has a non-negative solution] with > #;< oo ie. whether o, =7+ + 7, is
bounded; if it is, then (V;) has a non-trivial solution.

It is now clear that (8.11) and (8.12) can be treated together by means of

Lemma 7. Suppose that f,>0, g,>0 for n=1, that 0<zy<z,<z,<---, and that
zn+1_zn=fnzn+gn (2n —2a-1) (8-13)

for n=1. Then z, is bounded if and only if

o0
”Zl(fn'*‘gnfn—l"‘"'*‘gngn—l cei Gofr T Gn oo G2 gy) < oo.
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Proof. Repeated applications of (8.13) give

zn+1_zn=fnzn+gnfn—1zn—l+ eer

F@ngn-1... Jof121+Gn .. G201 (21— 2)-
Hence

Znir—2n S (futgnfnort+gn .. Gofitgn .. §291) 20
=F,z, say ;
on the other hand,
Zni1— 20 = Fou (2, — 7).
These two inequalities give

n-1 n-1

z1+(zl—zo)kz Fp<z2,<2 EI(I—I—F,C) (n>1),

and this implies that z, is bounded if and only if > Fy< oo, as asserted.
1

To apply the lemma to (8.11) take zn={n, fn=A4/bn, gn=0x/bs. Then

/1 an an...az) O ... Oy (8.14)

F"=1(5-n+bnbn_1+m+bn T baby) Th by

The convergence of > F, does not, of course, depend on the choice of >0, nor is
it affected by omitting the last term (an ... a;)/(bs ... b,) in (8.14). Thus {, in (8.11)
is bounded if and only if R < oo, where

/(1 a a a
R= SR 2)' 8.15
,gl (bn bobn_y ba... byby ( )

Similarly we apply the lemma to (8.12) by taking z,=o0n, fa=A4/ds,: and
gn=>bn/@n,1. Then

roei

+
Oni1 Oni1Gnp Anil ... Qg

; (8.16)

L, b o beeby )+ bu ... by

an+1 e az

again the convergence of > F, does not depend on the choice of 4, and also we may
change the last term in (8.16) to (b, ... b;)/(@n+1 ... @5 a,). Thus o, in (8.12) is bounded
(equivalently, 7, in (8.10) satisfies > #, < oo) if and only if §< oo, where

SEZ( 1 b Bl ) (8.17)

n=1\@n+1 CGny1Qn Anil ... By Qg

Finally, we show that R and S are both finite if and only if 7' is finite, where

= E (ban ves Qg + bn P bl ). (8.18)

nw=l ”"'b2b1 a,,+1...a2 al
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Certainly 7 is finite if R and S are, because T<R+ 8. On the other hand, we

may write
R— § Gp ... Oy /I_LﬁJr...lebl“ b 1 ,
T bn...by b 9 Ay ... 0
& by by a, @y ... Ay
§= ‘?anﬁ. azczal(ljL bljL ! by ... by

If T is finite, then > (@, ... ay)/(bn ... b;) and 2> (bn ... b)/(@n.1 ... @;) both converge,

and the factors

are both bounded; hence R and S are finite.

A complete classification of birth-and-death processes can now be given.

THEOREM 11. Let the conservative set Q be defined by (8.10), and let R, S and
T be defined by (8.16)—(8.18).

(i) If R=co, there is exactly one Q-process; it is honest and satisfies the forward
equations.

(ity If B< oo and S= oo, there are infinitely many Q-processes. Only one of these
satisfres the forward equations, but it is dishonest.

(ili) If R<oo and S< oo, equivalently if T < oo, there are infinitely many Q-pro-

cesses satisfying the forward equations. Exactly one of these is honest.

Remarks (1). The backward equations hold in all cases because Q is conservative.

(2). The criteria have been stated so as not to involve b,. They can (as should
be clear from their derivation) be modified so as not to involve any pre-assigned
finite subset of the coefficients a, and b,.

(3). The criterion “R= oo’ for uniqueness of Q-processes is due to Dobrusin [3],
who obtained it from Feller’s conditions [6] for the honesty of the minimal Q-process
F; the method by which we have derived it is due to Kendall (unpublished).

(4). The criterion “T < oo’ for the existence of infinitely many Q-processes satis-
fying the forward equations was found (for b,>0) by Karlin & McGregor [14].

(5). The first example (with b,=0) of case (iii) was found by Ledermann &
Reuter [20]. They showed, by explicit construction of the transition probabilities p;,(f),
that for a suitable choice of the a, and b, there can exist an honest Q-process satisfying
the forward equations even when F is dishonest. It is clear from the definition (8.18)

of T and from (iii) of Theorem 11 that this is most likely to occur when both a,
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and b, grow rapidly with », with b, slightly larger than a,. Taking
bri1/bn=1+on'+0m? (0>0),
bpltn=1+an*+0(n3),

as in [20], simple computations show that case (iii) occurs if and only if p—1>0>1
(i.e. for a slightly larger range than that used in [20], Th. 10); a suitable choice of
@, b, would be a,=mnt b,=n%*(n+1)% (so that p=4, 6=2).
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