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I. Prel iminaries  

1. According to Cauchy, the initial value problem 

dw/dz=/(z,w), w(0) = 0  (1) 

has a unique (regular) solution w = w (z) in a neighborhood of z = 0 whenever / is a funct ion 

of two complex variables, z and w, which is regular in a neighborhood of (z, w ) =  (0,0). 

W h a t  is more, if a > 0 and b > 0 are chosen so small t h a t  /(z, w) is regular on the dicylinder 

l~l<a, Iwl<b (2) 
( that  is, if a convergent  expansion 

[(Z,'W)~ ~ ~ CmnZ, m'to n (3)  
m=O n=O 

holds on (2)), and if, wi thout  loss of generality, ](z, w) is supposed to be bounded on (2), 

say 
I1(~, w) l < M on (2) (M < oo), (4) 

then there exists a p > 0 which depends only on the three values a, b, M and which has 

the proper ty  tha t  the solution w (z) of (1) exists (as a regular function) on the circle I zl < p. 

I n  fact, if II/ll denotes the radius of convergence of the expansion, say 

w (z) = ~ an z n, (5) 
t t= l  

of the solution w(z) of (l), then it is known (cf. [8], pp. 127-128) tha t  

II/11 > rain (a, b /M).  (6) 

There is an extensive l i terature (cf. [4], pp. 169-172), init iated by  a paper of Painlev6 

([6]; not  quoted in [4]), which aims at  an improvement  of (6). I noticed however (el. [8], 

10-" 563802. Acta mathematlca. 96. Impr im6  le 31 d6cembre 1956. 
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pp. 128-129) that  (6) is the best estimate of its kind (and that  (6) cannot be improved in 

terms of universal constants even if ](z, w) is restricted to be independent of z, that  is, 

even if (1) and (6) reduce to 
dw/dz =](w), w(0) = 0 (7) 

and ]]] ]] => b/M respectively). 

From the methodical point of view, it is worth mentioning that  (6) has never been 

proved by the procedure which seems to be the most natural one, namely, by inserting (3) 

and (5) in (1) and comparing the coefficients of like powers of z. The trouble is tha t  the 

assumption (4) fails to imply (with reference to the fixed constants a, b, M which belong 

to ]) the inequality which results if /(z, w) is replaced by ]*(z, w) in (4), where /*(z, w) 

denotes the "best majorant"  of (3), 

m=0 n = 0  

(even though (8) is convergent on (2) whenever (3) is). 

By avoiding (8), and using Fej6r's estimate ([2], pp. 22-24) of the Cess sums in connec- 

tion with (3) itself, I found in a more general context [9] that  the method of the comparison 

of coefficients is capable of supplying something like (6), namely, 

I(]ll ~ min (a, �89 (9) 

But  (6) shows that  the �89 is superfluous in (9), and this has thus far been proved only by 

methods adapted from the real field, such as the method of successive approximations 

or the "polygonal" methods of Cauchy-Lipschitz or Peano. On the other hand, a glance 

at the proof in [9] shows that  the �89 of (9) is just a manifestation of the �89 of Rogosinski 

(concerning power series in general; cf. [2], pp. 25-26) and, correspondingly, it can be 

expected that ,  in order to obtain (6) on the basis of compared coefficients, the Cess 

sums, rather than the partial sums, of (5) must be used. 

2. In order to simplify the notations, it will, without loss of generality, be assumed 

that  a = 1 and b = 1. The resulting dicylinder (2) will be denoted by D: 

D = (Izl < 1, Iwl < 1). (10) 

Finally, it will be convenient to choose M to be its least possible value, that  is, to replace 

(4) by 
M=sup]/(z,w)[; s o t h a t  M=Mi<oo ( l l )  

D 

by assumption and, if the trivial case /(z, w) - 0 is disregarded, M > 0. 

Accordingly, (6) means that  

[[/[l>__l if M__<I, and ll/[[>I/M if l < M < c x z .  (12) 
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Actually, the ~ in the second par t  of (12) can be improved to a >,  tha t  is, 

II/ll > 1/M if  M > 1; (13) 
cf. [123. 

If  (1) is of the particular form (7) (so that  (11) reduces to 

2ti= sup [/(w)], (14) 
Iwl<l  

where 0 < M < c~ by assumption), then the a of (2) can be chosen arbitrarily large, hence 

the alternative (12) reduces simply to 

II/II -> 1 / ~  (for 0 < M < co). (15) 

Actually, (15) can be improved to 

IIIII>I/M (for 0 < M < c~), (16) 

since, in the proof of (12), the assumption, M > 1, of (13) is used in the form b/M < a, where- 

as a is arbitrarily large (and b is 1) in the present case. 

3. Cauchy's local existence theorem, referred to at the beginning of Section 1, merely 

states that  ]1/II > 0. He proved this by showing tha t  

II/l[ > 1 - e x p  ( -2M)-1  (for 0 < M < c~). (17) 

Today it seems to be curious tha t  Cauchy himself never applied his own "real"  methods 

(the "Cauchy-Picard"  or the "Cauchy-Lipschitz"  method), methods which improve 

(17) to (12), in order to obtain ]]/I] > 0. 

Cauchy's proof of (17) is based on what he called calcul dee limites. The latter comes 

from two sources, which will be referred to as (A) and (B): 

(A) Cauchy's coe//icient estimate. In  view of (11) and (10), the estimate in question 

states tha t  
Icm~l _<M ( m , n = O ,  1,2 . . . .  ) (18) 

holds for the coefficients of (3). 

(B) Cauchy's principle o/ majorants. This principle (the t ruth  of which follows by 

comparing coefficients in a recursive way) can be formulated as follows: If, besides (1) 

with (3), another initial value problem, say 

d W / d z = F ( z ,  W), W(0) = 0, (19) 

F (z, w)  = w (20) 
m O n - O  

with 

is considered, and if (5) and 

W(z) = ~ Anz n (21) 
7/=1 
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represent the (in case of divergence for z =~ 0, just formal) solutions of (1) and (19) respec- 

tively, then the assumption 

implies that  
[Crnnl g Cmn (m, n = 0, 1, 2 . . . .  ) (22) 

la~l<An ( n = l , 2  . . . .  ), (23) 

and therefore, in particular, tha t  
II/ll _>llFII. (23 bis) 

I t  follows from (A) that  the assumption of (B) is satisfied if F(z, W) is chosen as follows: 

F(z,W)= ~ ~ MzmWn~M/(1-z)(1-W) (24) 
m=O n=O 

(where [z] < 1 and]W] < 1). But  the case (24) of (19) can be solved explicitly (by separating 

the variables), and the resulting explicit form of the function W(z) (el. [8], pp. 119-121) 

shows that  I] F H = q (hence, II/[I > q) holds for the positive number q which is the difference 

on the right of the inequality (17). Hence (17) follows from (23 bis). 

This is Cauchy's proof of 07). As observed by St//ekel (cf. [8], p. 120), the assumption 

(10), which requires more than (18), is not used in the proof of (17); in fact, (18) alone 

suffices. But (18) is satisfied even by the F = F(z, w) defined by (24) (where w = W), and 

this / = F fails to satisfy ( l l )  by any M < c~, since it has a pole on the boundary of D. 

I t  should be mentioned that  if (1) is of the particular form (7), then Cauchy's own 

method can be applied to improve (17) to 

II/H => (2M)-1 (for 0 < M < c~) (25) 

and, incidentally, to nothing better than (25) (note tha t  (25) is twice as weak as the estimate 

(16) which, when improved to (16), is the best result on (7); cf. the parenthetical remark 

made in connection with (7) in Section 1). In fact, i f / (z ,  w) =/(w), then (24) can be re- 

placed by 

F(z,W)=F(W), where F ( W ) =  ~ MWm=~M/(1- W) (26) 
rn=0 

(where [W] < 1). But  the case (26) of (19) can be solved by the inversion of a quadrature, 

and the resulting explicit form of the function W(z) shows that  1/I]_F[I = 2 M  (hence, 

1/I]/ll _<_ 2M). Consequently, (25)follows from (23 bis). 

II. The "best majorant" equation of Lindel~f 

~. I t  is possible to apply (B) without involving (A) at all. In fact, the most favorable 

choice of Cmn in (22) is not Cauchy's choice, Cmn = M ,  but the choice Cm~ =lcm~l, first 

considered by Lindel6f [3]. Then (20) shows that  (19) reduces to 
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dw/dz  = [* (z, w), w(0) = 0 (27) 

(if w is written in place of W), where/* (z, w) is defined by (8), and it follows from (23 bis) 

that  
II!11 =>ll/*ll. r 

But the circle Izl <1[/* II is, in general, smaller than the circle I~[ <11/11. As emphasized 

already in [10], this shows the disadvantage of treating (1) by any majorant method, 

since (27) is the best majorant of (1). 

I t  is clear from (28) that  more than (17), where / = / ( z ,  w), and (25), where / = / ( w ) ,  

is contained in 
II1"11 ~ 1 - e x p  ( - 2 M )  -1  ( f o r  0 < M < o o )  ( 2 9 )  

and Ill* [I > (2M)- '  (for 0 < M < c~) (80) 

respectively. But since (17) and (25) depended only on (18), and since (18) remains true 

if cm~ is replaced by Icm~l, the calcul des limites actually proves (29) or (30) when it proves 

(17) or (25). 

Since (1), (8) and (10) imply tha t /*(z ,  w) is regular on D if (and only i f) / (z ,  w) is, it 

is possible to introduce, corresponding to the definition (11) of M, a norm M* for ](z, w) 

by placing 
M* = sup I/* (z, w)l. (31) 

D 

But it is well known that  (even if ] (z, w) is a function of a single variable and is, in addi- 

tion, uniformly continuous within the unit circle; cf. [2], pp. 29-31) the assumption, 

M < 0% of (11) does not imply that  M* < oo. On the other hand, if only those functions 

/(z, w) are considered on D which happen to satisfy the condition M* < oo (rather than just 

the condition M < o<~; for the t reatment  of the general case, the case in which not even 

M < co holds, cf. [12]), then 

H/*II>I if M * < I ,  and II/*II>I/+M * if l < M * < c ~ .  (32) 

In fact, (32) follows if (12) is applied to (27), rather than to (1) itself. 

The estimate of [I/II which results from (28) and (32) is the result of Lindelhf's paper 

[3]. He obtained (32) not as a consequence of (12) but  by a peculiar combination of the 

method of comparison of coefficients with the method of successive approximations 

(this method of Linde]hf remained unnoticed in the literature until it was put  to further 

use in [9]; subsequently, it was taken over by Kamke's Di//erentialgleichungen (1930) and 

it thus became generally known). 

5. The estimate (29) of I[/*]] has a structure quite different from the structure of 

(32), since (29) does not assume that  M* < c<) (but is, nevertheless, an estimate of H/*][, 
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ra ther  t han  of II/11). Bu t  (29) is bound to be quite rough in every  other  respect,  since it 

does not  depend on anyth ing  like (11), bu t  merely  on (18). I t  is therefore wor th  showing 

t h a t  it is possible to deduce f rom the "sharp" es t imate  (12) of II/ll an es t imate  of ]1/*]1 

which, like (29), does not  involve M* bu t  (except for a universal  constant  factor) has the  

same s t ructure  as (12) itself. 

The es t imate  in question is the following: 

[ [ /* l ]>O if M < I ,  and I]/*l]~O/M if l < M < c ~ ,  (33) 

where 0 is a universal  constant ,  defined as the (unique) posit ive root  of the  t ranscen-  

denta l  equat ion  

( n +  1)�89 ~ = �89  (34) 
n 1 

(incidentally, it will be clear f rom the proof t h a t  

O < 0 < 1 (35) 

the  �89 being the  universal  constant  of Bohr; cf. [2], pp. 32-34). 

I t  will t u rn  out  (cf. Section 7) t h a t  (33) does not  contain the best  es t imate  of II/*]l 

(in te rms  of i alone). Bu t  since (33), in contras t  to the best  es t imate  of I[/*ll, has the  

same s t ruc ture  as (12) itself, it is worthwhile to prove  (33) directly.  

6. First ,  if a power series 

bk t ~ (36) 
k 0 

converges within the uni t  circle and if there exists a constant  M majorizing the  absolute  

value of the funct ion (36) if Itl < 1, then 

Ib~l < 2 ( / - Ibo l ) ,  where k : 1, 2 . . . . .  

This inequal i ty ,  due to Carathdodory,  is connected with his and Toepli tz '  cri terion for 

power  series having a non-negat ive  real pa r t  in the circle I t[ < 1. For  a short  direct  proof,  

of. [2], pp.  33-34. 

Next ,  i f / ( z ,  w) is regular  on D and satisfies (11), then,  by  replacing (z, w) by  (tz, tw), 

where t varies on the  circle ]t I < 1 and (z, w) is any  point  of D, it is seen f rom (3) t h a t  the  

conditions required of (36) are satisfied if 

bk= ~ Cmnwmz ~ (/c=O, 1 . . . .  ). 
m + n = k  

But  since (w, z) is any  point  of (z, w), the  last  two formula  lines imply  t h a t  

s u p l  Z CmnW mznl--<2(M-[c001),  where k = l ,  2 . . . . .  (37) 
D m + r t = / ~  
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7. Ill view of ( l l )  and (37), Parseval 's  relation implies tha t  

and so, since there are k + 1 terms in the sum on the left, 

I -  < 2 (M-I%o I)(k+ 

(Schwarz), where k = 1, 2 . . . . .  I t  follows therefore from (8) that,  if 0 < 0 < 1, 

F (@, O)_-< ICoo I+2 (M-leoo + 0 h, 

and so, if @ is chosen to be the positive root of the equation (34), 

1" (@, (3) =< M. (38) 

What  this actuMly proves is the following fact: I f  a funct ion/(z ,  w) is regular on D, 

then (11) implies (38). This fact can be thought  of as the two-dimensional analogue of 

the result of Bohr, referred to in connection with (35). But  it  remains undecided whether 

the absolute constant O, defined by (35), is the best universal constant in (38). 

I t  is clear from (8) tha t  (4) (or, rather, tha t  variant  of (4) in which the < is relaxed 

to a g )  is satisfied i f / ,  a, b, M are replaced by /* ,  @, (3, /* (@, (3) respectively. I t  follows 

therefore from (4) tha t  
][/*ll-> min ((3, (3//* ((3, (3)). (39) 

In  view of (38), this proves (33). 

Since 0 < 1, for no value of M can the result (33) assure for the solution w(z) of (27) 

a circle 
Izl < R = R M (40)  

which comes close to the circle I zl < 1, the first factor of the product set (10) on which the 

/* (z, w) of (27) is given as regular. On the other hand, (29) is free of this shortcoming, 

since it assures that  R M can be brought arbitrarily close to 1 by choosing M small enough. 

But  is it true tha t  the solution w(z) of (27) must  become regular on the fixed circle 

Izl < 1 whenever M is small enough? In  other words, is i t  true tha t  

II/*11 > 1  whenever 0 < M g O 0 ,  (41) 

where 00 is a certain (sufficiently small) absolute constant? I f  []/*[[ is replaced by II/ll, 

then (12) shows tha t  the answer becomes affirmative (the best value of the corresponding 

absolute constant being 1). But  (11) and (31) are so far apar t  tha t  (41) will be expected 

to be false. I t  turns out, however, tha t  this argument  is misleading; in other words, that  

(4I) happens to be true for a certain @0 > 0. 
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More than  this will be shown by proving the following fact, which will be the main 

result  of this paper: 

IIl*ll~l if i_<~,  and [I/*[l~sin(l~/L~x) if M>�89  (42) 

The two assertions of (42) coincide if M = �89 The first assertion of (42) implies (41), with 

Oo = 1 I.t fs easy to  verify t h a t  (42) contains both (29) and (33) as corollaries. 

Note  tha t  (42), in contrast  to  (29) and (33), where 0 < 1, has the same structm'e as (12). 

There are indications (cf. Section 12 below) tha t  (42) is the best possible result for every 

M (in the same sense in which (12) is sure to be the best possible result for every M; cf. 

the parenthetical  remark  made in connection with (7) in Section 1), bu t  this will not  he 

proved. 

I t  will also be shown tha t  i f / ( z ,  w) or [*(z, w) is independent  of z, as in (30), then 

(42) can he improved to 
Ilf*ll~/M (for 0 < 21I < oo). (43) 

This, of course, is sharper than  (30), and (43) seems to be final (in the same sense in which 

(15) is sure to be final). 

The proofs will be adaptat ions  of those developed in [13], where, however, the issues 

are disguised by  the choice M - 1 and by  the introduct ion of an erroneous " t ranscendenta l  

equat ion" .  

III. The Parseval subordination of the "best majorant" equation 

8. Ins tead  of Cauehy's  principle of majorants ,  formulated under  (B) in Section 3, 

recourse will have to be had to the following comparison theorem (C) (which is the par- 

t ieular case of a more general lemma on "subordinat ion,"  ,~ lemma in which the comparison 

function, the F of (C) below, need not  be a power series but  can be any  continuous funct ion 

of the non-negat ive variables r = I w [, s = I z ]). 

(C) The principle of subordination. I f / ( z ,  w) and F(z, w) are regular on a dieylinder 

D about  (0, 0), say on (10), and if 

Ii(z, w)l F(I I, Iwl) (44) 
holds at  every point  (z, w) of D, then  

lifll ~IIFN. (45) 

Note  t h a t  the assertion, (45), of (C) is the same as the corollary, (23 his), of the actual  

assertion, (23) of (B) (in this regard, cf. the  concluding remark of [11]). Bu t  the point  is 

t h a t  the assumption,  (44), of (C) requires much less than  the assumption,  (22), of (13); 

cf., in fact, (3) and (22). 
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As pointed  out  in [11], the t ru th  of (C) can be read off f rom methods  of proof cus tomary  

in the (local) existence proofs for the initial value problem of ord inary  differential  equat ions 

in the real field. In  a slightly different version, and with  a more  e laborate  proof, the assert ion 

of (C) (and more) is contained in a note  of Nakano  ([5]; el. [4], p. 170). A direct  proof of 

(C) (and of much  more) was based in [12] on the me thod  of successive approximat ions .  

In  wha t  follows, (C) will be needed only in the  par t icular  case in which the / of (C) 

is an /* ;  ef. (3) and (8). Clearly, (C) then  reduces to the following assert ion (C his): 

(C his) I / / ( z ,  w) and g(z, w) are regular on D, and i/  

]* (r, s) g g (r, s) (46) 
holds on the square 

0 _ < r < l ,  0 < s < l  (47) 

(which, i / r  = Iz] and s - ]w [, corresponds to the dicylinder (10)), then 

l[ 1"11 ~ II g II. (48) 

Needless to say, (46) implies t ha t  g (r, s) > 0 on (47). 

9. In  order to deduce (42) f rom (C his), suppose t ha t  /(z, w) is regular  on D and 

satisfies (11) (for a fixed M). Then it follows f rom (3) and (10) tha t ,  by  vi r tue  of Parseva l ' s  

relat ion (or just  of Bessels's inequali ty) ,  the sum of all squares Ic,,~p does not  exceed MK 

Hence  it is seen f rom (8) and (47) tha t ,  in view of Schwarz '  inequali ty,  condit ion (46) is 

satisfied by  

g(r,s)=~]//(  ~ ~ r 2 m s 2 n ) � 8 9 1 8 9  �89 (49) 
m - 0  n - 0  

I t  follows therefore f rom (48) t h a t  (42) will be p roved  if it is shown t h a t  (42) is t rue  when 

II/ll is read in place of ]l/*ll, t ha t  is, if (19)is  replaced by  

dw/dz = g (z, w)  w (0) - O, (50)  

where g(z, w) = M /  (1 - z2) ~ (1 - w2) �89 (51) 

on D. 

Incidental ly ,  
bm~ > 0 (52) 

if g ( z , w ) =  f ~ bmnw mz ~. (53) 
m=0 n=0  

In  fact,  it is clear from (51) and (53), tha t ,  if 

(1 - s2 ) -~  = ~ ~ s  ~ 
k=0 

then  t)mn is Mfltmt3�89 or 0 according as 

since (54), being equivalent  to 

(54) 

m and n are even or not.  S i n c e M > 0 ,  and  
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k 

fik = I~ ( 2 / -  1) / (2])  ( r io-  1), (55) 
J -1  

implies t h a t  fik > 0, the assert ion (52) follows. But  it  is clear f rom the comments  made  on 

(C) in Section 7 t h a t  (52) will be irrelevant ,  since, even though (52) happens  to be true,  it 

is not t rue  t h a t  the  assumpt ion,  (22), of (B) becomes satisfied by  Cmn = b,,n. 

This is precisely the reason why  (C bis) will, whereas (B) cannot  possibly, lead to the 

proof of any th ing  like (42). Correspondingly,  the best  t h a t  (B), when combined with (A), 

could supply  was Cauchy 's  majoran t ,  the  case 

g(z, w) =M/(1 -z) (1 -w) 

of (50); cf. Section 3. Bu t  the point  is tha t ,  a t  every  point  (z, w) - (r, s) ~- (0, 0) of (47), 

this g of Cauchy is greater t han  the g assigned by  (51) (in fact,  the greater  the closer is 

(r, s) to the common  singulari ty a t  (r, s) = (1, 1)). 

10. The only use to which (52) will be pu t  will be a slight (and actual ly  unnecessary)  

simplification of the  discussion of the  solution w(z) of (51). The simplification consists 

of the following circumstance:  

I f  (5) is the solution of (50) (for small ]z ]), and if bo th  (53) and (5) are inserted in (50), 

then  compar ison of like powers of z shows t h a t  an ~ 0 holds by  vir tue  of (52). Bu t  an _> 0 

is known to imply  (Vivant i -Pr ingsheim;  cf. [2], pp.  72-73) tha t ,  since I]gH denotes the 

radius of convergence of (5), the funct ion w(z) mus t  become singular a t  z=]]gl] (if 

Ilgll < oo). Hence,  instead of discussing the case (51) of (50) on the dicylinder (10), it is 

sufficient to discuss 
d s / d r - M / ( 1  - r2)�89 - s 2 )  ~, s(0) = 0  (56) 

on the  square (47). Bu t  this will readily lead to the  following de te rmina t ion  (instead of 

just  an est imate)  of the value of Jig]l: 

I ] g ] ] = l  if M<�89 and ] lgH=sin( �88 if M >  1~. (57) 

In  view of (48), this will prove  more  t han  wha t  is needed for the complet ion of the proof 

of (42). 

Whe the r  t = r or t = s, let arc sin t, where 0 _~ t < 1, denote  the de te rmina t ion  satisfying 

0 ~ arc sint  < �89 Jr. Then, since the  square roots  in (56) refer to their  posi t ive determinat ions ,  

two quadra tures  show tha t  the (differentiable) solution s = s(r) of (56) (as far  as it exists 

for r _> 0) is given by  
h(s) = 2 M  arc sin r, (58) 

where h(s) denotes  the integral  of 2 (1 - t 2 )  �89 over  0 _< t _< s ( <  1), t h a t  is, 

h(s) = s(1 - s2) -~ + arc sin s. (59) 
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But  (59), where 0 ~ s < l, is positive and increasing for 0 < s < 1 (the derivative of (59) 

is 2(1 - s2) �89 > 0). Since (59) also shows tha t  h(0) = 0 and h(1 - 0) = �89 ~, it follows tha t  

(59) defines a one-to-one (continuous) correspondence between 0 g s < 1 and 0 _< h < �89 ~. 

For  every M > 0, let M o be defined by  the proper ty  tha t  0 g r < M 0 is the greatest  

r- interval  on which the solution s = s (r) of (56), where r ~ 0, exists (as a differentiable 

function). I t  is clear f rom (56) tha t  s (r) is positive and increasing on the interval  0 < r < M 0 

(while s ( 0 ) =  0), and tha t  the value of M 0 can also be characterized by  the following 

condition: 1 > s (r) -~ 1 if 0 ~ r-~ M 0. I f  this is compared with (58) and with tha t  proper ty  

of h(s) which was pointed out  at  the end of the preceding paragra2h,  then it is seen that ,  

for every M > 0, the value of M 0 is given by  the al ternative condition which results if 

M 0 is read in place of Ilg]] in (57). 

For  the sake of clarity, let the funct ion (51) be now denoted by  gM(Z, W). Thus HgMII 

is the radius of the greatest  circle (about z = 0) within which the solution w(z)= WM(Z) 

of the case g = gM Of (50) is regular. I t  follows therefore from the  fact which, just  before 

the introduct ion of (56), was concluded from a~ >_ 0, t ha t  the number  IIgMH is precisely 

the number  M0, defined at  the beginning of the preceding paragraph.  Consequently, the 

t ru th  of (57) for Ilgl[ ~llgMII follows from the al ternative representat ion of M 0, found 

a t  the end of the preceding paragraph.  

:il .  This completes the proof of (42), where / =  ](z, w). The proof of (43), where 

] = / (w) ,  requires only slight alterations in the proof of (42). 

First ,  it is clear t ha t  (46) and (49) now reduce t o / *  (r) ~ g(r) and 

g (r) = M  ( ~ r2") ~- - M / ( 1  - r')�89 
m=0 

respectively. Hence the case (51) of (50) reduces to the case g(z, w) = gM(w) of (50), where 

gM = 21//(1 -- W2) �89 and (48) shows tha t  (43) (and more) will be proved if it is verified tha t  

IIg ll = �88 (60) 

Next,  instead of the case g(z, w) = gM(z )  Of (50) on (10), it is sufficient to discuss the 

initial value problem 
ds /dr=M/(1  s2) �89 s ( 0 ) = 0  (61) 

on (47). I n  fact, the possibility of this reduct ion follows, via the possibility of the coef- 

ficients, (55), of (54), in the same way  as the reduct ion of (50)-(51) to (56) did. 

Clearly, the solution s = s(r) of (61) is given by  

h(s) = 2Mr, (62) 
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if h(s) is defined, as before, by  (59). This means tha t  (58) must  now be replaced by  (62). 

Bu t  if M ~ is defined, with reference to (61), in the same way in which M 0 was defined with 

reference to (56), then, on the one hand, 

MO = [fg'l l  (63) 

(cf. the end of Section 10) and, on the other  hand, M ~ is characterized by  the proper ty  

tha t  1 > s-> 1 if 0-< r--> M ~ where s - s ( r )  is the solution of (61). Clearly, this characteri- 

zat ion of M ~ when compared with (62) and with the mono tony  of the funct ion of (59) 

on 0 g s  < 1, can be re-stated as follows: 2 M r - > h ( 1  - 0 )  as r - - > M ~  

Since (59) shows tha t  h(1 - 0 )  = �89 this means tha t  2 M  = � 8 9  o. I n  view of (63), 

this proves (60). Finally, (43) follows f rom (60) and (48), where g = gi .  

12. There remains to he decided whether  or no t  the universal l imitations (42), (43) 

of H/*]] are final; final in the sense that ,  when nothing more than  a fixed value i of the  

norm (11) of / is given, then,  for this value of M, the l imitation of il/*ll which is supplied 

by (42) or (43) cannot  be improved in terms of absolute constants (which, however, could 

depend on M).  

Since (42) refers to any  / = / ( z ,  w) but  (43) only to the part icular  type  / = / ( w ) ,  and 

since 0 < sin ~ < :r if 0 < cr < �89 ~, it is clear that ,  in the sense just  specified, (42) mus t  be 

final (for a given M) if (43) is final (for the same M). But  there is an indication tha t  (43) 

is final (for any  given M). 

The indication results if, on the one hand, (54) and (55) are taken  into account  in (61) 

and, on the other  hand, the resulting partial  sums (which are the polynomials 

fikt k, cf. (55), (64) 
k 0 

if M = 1 and t = s ~) occur in Landau ' s  determinat ion of the extremal functions of his 

"coefficient problem";  ef. [2], pp. 26-28. In  fact, it is precisely (61) tha t  led, via (60), 

to  (43). The suspected connection could perhaps be established by  using, instead of Lan- 

dau ' s  own approach alone, a fact  discovered by  Schur [7], pp. 122-124; he embedded 

Landau ' s  result  into a general theory,  f rom which he was able to conclude tha t  the (rational) 

functions which are the solutions of Landau ' s  extremal  problem are (finite) J a c o b i ~ e n s e n  

products.  

13. I t  was ment ioned in Section 2 that ,  a l though the universal constants ( =  1) 

which occur in (12) and (15) are final for every fixed M (cf. the parenthetical  remark made 

in connection with (7) in Section 1), both  (12) and (15) can be improved (in another  sense), 

since both (13) and (16) are true. I t  turns out  tha t  (42) and (43) can be improved similarly. 



S U B O R D I N A T I O N  I N  T H E  T H E O R Y  OF A N A L Y T I C  D I F F E R E N T I A L  E Q U A T I O N S  1 5 5  

I t  will be sufficient to consider the case of (43), since it will be clear tha t  the proof applies 

to the case of (42) also. I n  the ease of (43), the improvement  in question states t ha t  the 

sign of equali ty cannot  hold (for any  M) in (43); so tha t  

II/*II>~/M (for 0 < M < c~). (65) 

This can be seen as follows: 

I f  ](w) = ~ c , w  ~, hence ]*(w) = ~ Ic~l w ~ as well, is convergent  for Iwl < 1, and if 
n = O  n = 0  

I I (w) l -< M for ]wl < 1, then, according to Hardy ,  two dillerent s ta tements  can be made on 

]* (s), where s = I w i < 1: 
]* (s) < M / ( 1  - s2) ~ for 0 ~ s < 1 (66) 

and 
]*(s) =s(s ) / (1  - s2) -~, where lira s(s) - 0 (67) 

S-->I 

(cf. [1]; in [2], pp. 31-32, just (67) is reproduced explicitly, whereas (66) is between the 

lines of the proof). Bu t  only the s t raightforward inequal i ty  (66) (Parseval, Schwarz) 

was used, via (61) and (60), in the proof of (43). I f  (67), too, is used, then it is clear t ha t  

the proof (43) leads to (65). 

H a r d y  [1] refers to an example of Fabry ,  and gives another  example, to the effect 

tha t  (66)-(67) cannot be improved. But  as the s i tuat ion is somewhat  involved in those 

examples, I could not  decide whether  the same examples also prove tha t  (43) is final (in 

the sense specified at the beginning of Section 12 above). 
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