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1. Introduction and résumé of results

Equations of the form
(r(@)y’y + K(x)y =0, (H

where r(x) >0 and K (x) are real continuous functions on — oo <x < oo, are classified,
by the behavior of their real solutions, as (+)-oscillatory or non-oscillatory. In the first
instance one non-trivial (not identically zero), and thereby every, solution vanishes at
arbitrarily large abscissas; in the second instance every non-trivial solution is non-vanishing
for sufficiently large abscissas. A special instance of non-oscillation is the disconjugate case
in which every (non-trivial) solution has at most one zero on — co < < co. It is known
that an equation of the form (1) is disconjugate if and only if there is a solution which is
everywhere positive.

Our principal interest concerns the situation where r{x)=1 and K (z) = —a + bp(x).
Here (a,b) are real parameters and p(z) is a real almost periodic function. We shall note,
in this case, that non-oscillation and disconjugacy are coincident. Also we shall find that
the domain D in the (a,b)-parameter plane, for which the corresponding equations are
disconjugate, is closed and convex.

We generalize the theory of Hill’s equation (in which p(x) is periodic) but, of course,
without using the Floquet representation, which is not applicable here. For example,
interior to the disconjugacy domain D there is a basis of solutions each of which has an

almost periodic logarithmic derivative. For the boundary of D the analysis is more com-

1 This research was supported by the Office of Scientific Research of the United States
Air Force.

T—563802. Acta mathematica. 96. Imprimé le 22 octobre 1956.



100 LAWRENCE MARKUS AND RICHARD A. MOORE

plicate since here we can display an example of an appropriate equation having no (non-
trivial) bounded solution—from the analogy with Hill’s equation one might expect an al-
most periodic solution in such a case.

Finally we investigate the effect on D of perturbations in the function p(x).

2. The disconjugacy domain for equations with almost periodic coefficients

DEerFiNiTION. The disconjugacy domasin D of
(r@)y) +(—a+bp@)y =0, (2)

r(x) >0 and p(x) being real continuous functions on ~ co <z < oo, is the subset of the real
{a, b)-plane wherein the corresponding equations are disconjugate.

We shall picture the b-axis horizontally and the a-axis vertically. Of course, D depends
on the particular functions r (x) >0 and p (z), but D always contains the half-axis ¢ > 0,
b = 0. The set of points (a, b) for which the corresponding equations (2) are oscillatory is the
oscillation domain O and, when r(x) =1, this always contains the half-axis a <0, b =0.

We shall be interested in the disconjugacy domain D, particularly for r(x) =1, and
for various functions p(z). Below are several examples indicating some of the possibilities
for the form of D.

Ezxample 1. lim p(zx) = + oo, lim p(x) = —oo, e.g. p(xr)=x. Here D is the half-

axis ¢ >0, b=0.

Example 2. p(x) =0. Here D is the half-plane a > 0.

Ezample 3. p(z) unbounded above (below). Here D contains no ray in b <0 (in b > 0).
However D can contain an interior, e.g., for p(x) =« sin (2?), D contains the parabolic
region a = b*/4.

Example 4. sup px)=M >0, inf p(x)=m <0. Here the largest sector

contained in D is bounded by the rays a = Mb, ¢ =0 and a =mb, a = 0. If, say, M > 0
and m >0, then the largest sector contained in D is bounded by the rays a = M b > 0 and
a=mb<0. i

Example 5. p(r) =sinlog, |z|. Here D is exactly the sector in which |b|<a > 0.
In studying the linear equation (1) one often utilizes the associated Riccati equation
w +ud/r(x) + K (x) =0. (3)

For a solution y(z) of (1), non-vanishing on some interval I, u(x) =y’ (x)r(x)/y(x) is a

solution of (3) on I. Moreover, every solution of (3) can be so obtained. We shall be pri-
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marily interested in the case where 7(x) =1 and | K (x)| < M2, for some real bound M2.
Then a solution u(z) of the Riccati equation can be defined for all z if and only if |u (x) | < M
everywhere.

Also, in case r(z) =1 and | K () | < M2, the bounded solutions of the Riccati equation
fill a closed band which is either empty, a single solution curve, or a homeomorph of
0<y<1, —ooc<x<oo in the plane. This band is non-empty if and only if the corre-
sponding linear equation (1) is disconjugate. The band is closed, that is the extremal upper
and lower solutions are easily seen to be bounded since otherwise each nearby solution
u(x) would somewhere satisfy |u(x,)|> M. But then |u(z)| would grow more rapidly to
infinity then an unbounded solution of ' = — u? + M2 and so u(x) would not exist for

all real =z.

Levma 1. Lef r(x) > 0 and K () be real almost periodic functions. If the equation
(r(@y) + K(x)y =0 (1

s not disconjugate, then it is oscillatory at both + co.
Proof. Suppose a non-trivial solution y(x) of (1) vanishes at two distinct points
x = o and z = f. For each & > 0 there are arbitrarily large ¢ -almost periods, say 7,, of r(z)

and K (z). Consider the translated equations
(rx+1)y)Y + Kx +1,)y =0 (1,)

with solutions y, (x) which assume the same initial values at « = o as does y(z). Also there
is a solution Y, (x) of (1) for which Y, (z +1,) =y, (2).

For each £ >0 there exists an ¢ >0 such that y,(z) vanishes on g — &<z <g +&.
Then Y,(x) vanishes at x = o + 71, and also near § +1,. Hence every solution of (1) must
vanish on « +7, <x<f +71, + & Since the franslation numbers 7, are arbitrarily large

{or small), (1) is oscillatory. Q.E.D.

Levmma 2. Let the real continuous functions K,(x), r,(x) >0, n=1, 2,..., on
—oo <z <oco, converge uniformly on each compact interval to K (x) and r(zx) > 0, respec-
tvely. If each equation

(ra(@)y’) + Ko (2)y =0 (Ia)
18 disconjugate, then so is
(r@y) + K @)y =0. )

Proof. Suppose that a (non-trivial) solution y(z) of (1) has two distinct zeros, x,
and z,. Consider the solutions y,(x) of (1,) with initial data y, (z,) =0, yn (zo) = ¥’ (z,).
Let L be a compact interval containing x, and #, in its interior. For sufficiently large

n, |7 (@) —r(x)|, |K.(x) - K(x)|, and |y,(x) —y(x)| are smaller than any prescribed
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€ >0 for x€ L. Therefore y,(x) vanishes near x,. But this contradicts the hypothesis
that (1,) is disconjugate. Thus (1) is necessarily disconjugate. Q.E.D.
Lemma 3. Let ri(x) >0, K;(z) be real continuous functions on —oo<x <oco and
such that
(ri@)y’) + Ki@)y =0 (=1,2) (1)
are non-oscillatory at x = + co. Then for each t on 0 <t <1 the equation

[(try (@) + (1 = t)ry(2)y'] + K, (2) + (1 — ) Ky (2)]y =0 (1)

is also non-oscillatory at x = + oo.
Proof. Let w;(x) =7, (x) y; (x) /1 (), where y;(x) is a solution of (1;), positive for x > x,.
Then
u; +ul/r (@) + K@) =0  (i=1,2) (3)
for z >z, Consider u,(z) = tu;(x) + (1 — ) uy(x). Then we compute

— 1 =) (rpuy —ryuy)®
ryrg [try + (1 —£)r,]

wg +ur/ftry + (1 —t)ry) +1EK; + (1 — ) K,] =

Thus there is a solution, continuous for x >z, of
w +ud/try + (L= O] +[EK, + (L -6 K] =0.

Therefore (1,) is non-oscillatory at z = +oco. Q.E.D.
One is often interested in the disconjugacy domain of the translates of equation (1)
or even of limit translates. If K (x) is almost periodic and z, are real numbers such that

lim K (z +,) = K*(x) uniformly on — oo < < oo, then one states that K*(z) is in

n->00

the hull H{K (x)} generated by K (). It is known that K" (x) is almost periodic and
K(x)€H {K* ()}, cf. [5, p. 73].
THEOREM 1. Let r(x) >0 and p(x) be real almost periodic functions. Then the dis-
conjugacy domain D of
(r@y’) +(—a+bp)y=0 (2)
is a closed convexr subset of the (a,b)-plane. Furthermore, ¢f for real translates x,,n =1, 2,

o lim r(@ 4 x,) = (@) >0 and lim p(z + x,) = p* () uniformly on — oo <z < oo, then

N—>00 >0

D* = D, where D* is the disconjugacy domain of
(" (@)y) +(—a+bp’(x)y=0. 2"
Proof. By the above three lemmas, D is closed, convex and its complement is the

oscillation domain Q. To show D* = D we need only show that D < D* and then the

conclusion follows from symmetry.
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For a fixed (a,b) €D each solution of (2) and of
(r(@+a,)y") + (—a+bp(@+a))y =0 (2n)

is disconjugate. Suppose there is a non-trivial oscillatory solution y* (x) of (2*). Then, for
sufficiently large integers », the solution of (2,) having the same initial values as y* (x)
must have more than one zero and thus be oscillatory. But this contradicts the disconju-
gacy of (2,). Therefore D< D*. Q.E.D.

CoroLLARY. The oscillation domain O of (2) is open, connected and its complement
1n the (a,b)-plane is D.

Proof. Since D and O are complementary, QO is open. If (a,b,) € O, then, by the
Sturm-Picone comparison theorem, so is (¢, — &, b,) €O for each £ > 0. Moreover, O con-

tains the sector @ < —|b| sup p(z). Therefore O is connected. Q.E.D.

— 0 X< 00
We next proceed to a detailed study of the form of D. To simplify the analysis we
treat only the case r(x) =1 and we often make the convention that p(zx) has mean zero.

For the equation (1) Leighton [9] gives the following criterion for oscillation:

fdx/r(x)=oo and fK(x)dx=oo.

Zo
From this, if () =1 and p(x) is real almost periodic with zero mean, it follows that D
lies in the half-plane a >0, for the linear equation
y't(—atbpl)y=0. (L)
By a refinement of Leighton’s test one can show that D, excepting the origin, lies in @ > 0.

THEOREM 2. Let p(x) =0 be a real almost periodic function of mean zero. Then for
Yy’ +(—atbp)y =0, (L)

D, excepting the origin, lies in a >0

Proof. We need only show that for a =0, b+ 0 the corresponding equation (L) is
&

oscillatory. For the first case assume f p(s)ds is unbounded. Then one can replace p{x)
0

by a function in H {p(z)}, which we shall still denote as p(x), for which either

x x
lim sup b fp(s)ds = co or lim sup bf p(s)ds =o0, [4, p. 48]. Then from a known result
[11, p. 138], (L) is oscillatory.
z
For the second case assume that f p(s)ds is almost periodic. Let v(z) be the almost
0
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periodic function with mean zero and such that v’ (x) = p(x). Then there exists a number

x
z, for which v(z,) =0 and v(x) = fp(s)ds. Suppose that the Riccati equation

Lo
w +ut+bp(x)=0, b+0 (R)

has a bounded solution. Now if for every p*(z)€H {p(x)}, the corresponding Riccati
equation (B*) had a unique bounded solution, then it is easy to show (cf. Theorem 9 and
remark after Theorem 16) that this solution u(z) is almost periodic. But this contradicts
the fact that the mean of u(x)? is clearly zero. Thus we replace p(x) by some function in

Hp{(x)}, still called p(x), for which there are two bounded solutions, u,(z) and u,(z).

x T
Now u; (@) = w(zy) — J' u;(s)2ds — bf p(s)ds.
To To
x
Let Hm  [u;(2y) — [ u(s)?ds] =
T—>+ 00 Zo
and lim [u;(x,) — fui(s)zds] =, +=1,2
r—>— o

Tt can be shown, cf. Theorem 14, that lim inf |u, (¥) — u, (x)| =0 and so o, =ay = a,

z->+1 o0

w, = w, = . Either « >0 or w < 0. Say w <0 and the other case is similar. Then u, (x) <

x
w/2 — bf p(s)ds = z{(z) for large x > k. But 2(x) is an almost periodic function with negative

Zo
z z

mean and so 0 <exp f u;(syds < exp f z(s)ds < K, for some bound K, when x > k. There-
k k

fore the linear equation (L) has a basis of bounded solutions on a half-axis and thus (L)
is oscillatory. But this contradicts the assumption that (R) has a bounded solution and
so (L) is oscillatory. Q.E.D.

THEOREM 3. The disconjugacy domain D of
y' H(—a+bp@)y =0, (L)

where p(x) £ 0 is real almost periodic with mean zero, contains the sector bounded by the rays

a=b sup p@E)>0and a=>b inf p(x)>0. This is the largest sector belonging to D in

—00 TR0 — 0TI
that no other rays are in D. The boundary of D is a continuous curve a(b) which s strictly

monotone decreasing on b <0 and increasing on b > 0.
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Proof. Consider a ray a =kb > 0. Then for such parameter values (L) becomes
y o=k +p@)y=0. (L)

Thus in b >0 the rays for which —k+ sup p(x) <0 yield disconjugate equations. In

—O LT <R

b <0, the rays which lie in D correspond to —k -+ inf p(z) > 0. For any other ray, in

—00 < T <00

a>0, b(—k+p(x)) becomes positive for z on some interval. Thus for large |b|, the
corresponding equation is oscillatory and such rays do not belong to D.

That the boundary of D is a monotone continuous curve a(b) follows from the fact
that D is convex and contains a sector. Q.E.D.

COROLLARY. a(b)~ Mb for b— + coy; a(b)~ mb for b— — co.

If p(x) assumes its supremum M or its infimum m at some point, then one can further

estimate a(b).

TrEOREM 4. Let p(x) 0 be a real almost periodic function of mean zero and

pr)ECD. If plag) =M= sup plx) (or if p(x,)=m= inf p(x)) then the domain

— 00 <T <o

D for the equation (L) has a boundary

ab)=Mb—0(@®* for b>0
(or a®) =mb—0(b*) for b<0).

Proof. Let p(zy) = M. Then for each h < p' (z,) there is an ¢ > 0 such that p(z) > M

+ 3h(x —xy)? on |x —xy| <e. Take & small and define k by } (M — k)/h = — ¢2. Consider
the rays a = kb > 0 for k just less than M. Along such rays we have

y' +b(—k+p)y=0, b>0. (L)
For these equations, whenever |z —z,|< &

b(~k+p(x))2b(——k+M+g (x—xo)z) 27-89(M—k).
Now if (76/8)(M — k) > — hn?/(M — k) on an interval of length [ — (M — k)/A]}, our

equation (L) is oscillatory. Thus the curve
7b
~8—(M—k) = —hn?/(M —-k), a=kb

lies in the oscillatory region of (L). Thus a (b) lies above M b — 2l — 2hb /7 for sufficiently
large b > 0. A similar calculation holds for 6 <0. Q.E.D.

If one assumes that p(x) has a higher order of “flatness’

3

at its maximum then still
sharper asymptotic estimates for a(b) are possible. We indicate the results only in the

extreme case where p(z) =M (or p(z) =m) on an interval.
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THEOREM b. Let p(x) £0 be real almost periodic of mean zero. Assume p(x) =M =

sup p(z) (or p(x) =m= inf p(x)) for x on an interval. Then, for (L), a(b) =Mb— 0 (1)

<Tr<oQ

for 8>0 (or a(d) =mb — O (1) for b <0). Thus the boundary curve a(b) is asymptotic to a
line of slope M (or slope m).

Proof. Assume p(x) =M on |z —x,|<e. On the ray a =kb, b >0, we have
y ' +o(—k+p@)y =0 (L)

But b(—k+p@) =b(—k+M)on|x—ay|<e Ifb(—k+ M) =>n?/4¢2 (L) is oscillatory.
Thus for a =Mb—n%/4¢2, large b >0, we have oscillation. Because of its convexity,
a(b) is asymptotic to a line of slope M between a = Mb and a = Mb —n?/4¢% The case
for p(x) =m is similar. Q.E.D.

We now show that, in most important cases, the boundary of D is tangent to the

b-axis at the origin. Thereby D contains the maximal sector properly in its interior.
T

THROREM 6. Let p(x) be real almost periodic and f p(s)ds also almost periodic. Then
0

the domain D of equation (L) has a boundary a (b) which is tangent to the b-axis at the origin.
Proof. Let y =exp(Vax)z, where y(z) is a solution of
¥y +(—a+bpa)y=0, a>0. (L)
Then one computes
(exp (2Vaz) 2') +{exp (2Vaz) bp(x))z = 0.
Now a non-oscillation test of Moore [12] states that equation (1) is non-oscillatory

x oo
on 0 <z <oo in case w(x) =f K(t) fﬁdt has an oscillation <1 on 0 <z <oo. For
0 i

r(s)

our above equation

w(x) =;1% f p(t)dt.
0

Let w = oscillation fp(t)dt. Then the parabola (b/2Vc;)w =1 or a = (w?/4)b? lies in D.
0

Therefore a’ (b) exists at b =0 and there equals zero. Q.E.D.

Zz
COROLLARY. In case f p(s) is almost periodic, the domain D of (L) contains the
0

maximal sector (except for the origin) in tts interior. Also on the boundary curve a(b) of D,

(—a +bp(x)) ts somewhere positive.
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Proof. Since a’(0) =0, the convex domain D contains the rays a =mb, a =M b, for
b >0, in its interior. Thus D contains the rays a = Mb —¢, a =mb — ¢ for some ¢ >0
when |b| is large. Since (— a + bp(x)) is arbitrarily near to zero at points of the extremal
rays, (—a +bp(x)) becomes positive in D. Q.E.D.

Finally we show that in many important cases D is symmetric in the a-axis.

TurorEM 7. Let p(x) be real almost periodic with Fourier frequencies {A,}. If the
{A.} are rationally independent, then for the boundary curve a(b) of D for the equation (L),

we have the symmetry

a(b) = a(—b).
Proof. Let p(x) have Fourier series > a,e*»" where «, =& ,. Within the hull

H{p(x)}, convergence of the Fourier coefficients of translates p(x -+ k,,) implies uniform
<@

convergence on — oo <& < co. Now one can select a translate h,, so that | A,k, —x
(mod 2 z) for » =1,2, ..., m. This is possible since the frequencies are linearly independent
over the rationals. But then we can define a sequence of translates p(x + h,) whose Fourier
coefficients converge to those of —p(2). Thus — p(x) EH {p(x)} and D is symmetric in
the a-axis. Q.E.D.

3. Interior of the disconjugacy domain

We shall now consider the differential equations
Y+ (—a i bp)y =0 (L)
for (a,b) in the interior of the disconjugacy domain D. Then the associated Riccati equation
wtutt(—a+bpx)=0 (R)

has solutions which are defined and bounded on — co <2 < co.

THEOREM 8. Let
w +ut+ Kx)+e=0 (B.)

have bounded solutions on — oo <x < oo for all small ¢, e > ¢ > 0, where K () is « real con-
tinuous bounded function on — oo <x < oo, | K (x)| < M2 Then for each such ¢ there are
tnfinitely many bounded solutions of R, and these fill a closed bounded domain B, in the
(x,u)-plane. Also B, lies interior to B, if & <&, The upper and lower bounded solutions
U, (x) and uy (x), respectively, of Ry are separated, that 1is,

2

. e
nf | te) =@ s e we
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Furthermore for any two bounded solutions u, (x), uy(x) of R, which are not both the extreme

solutions, we have

lim | %, (x) — uy(2)|=0 as a— + oo or as x— — co.

Proof. In the (x,u)-plane each Riccati equation R, defines a slope field. If g, > & >0
then the slope of the solution curve of E,, is more negative than that of the solution curve
of R.,, through each point (x,u). If R, had just one bounded solution on — co <z < oo,
then it is easily seen that E,, would have no such bounded solutions. Thus each K, has
a band B, of bounded solutions. Each band B, is closed (by the argument just preceding
Lemma 1 of Section 2) and so has an upper and a lower solution curve for the correspond-
ing equation R,.

If & > g, >0, then each solution curve of R, which intersects either extremal solution
of R, must become unbounded. Thus B,, lies interior to B, .

Let wu,(x) be the solution of R,, ¢ >0, through (z,, u,(x,)) for some z, Then on

x> 2 Uy (%) > u,(x) and, since u,(x) lies above the lower edge of B,, u.(x) > u.(z). Now

Uy (1) — U () = [ [ () + u ()2 + £]dt

and Uy (X) —u (@) < (M2 +6)(x —xp) for x>,
But then wy () — e (%) = (@ — 70) +Q (),

where Q (@)= f[ue (8) = wy ()] [eee (8) + w, ()]t
Hence |Q ()] §(2M2+e)2Mf(t—xo)dt

or |Q(x)] < MEM2+e) (x — 24)%

An elementary calculation shows that
Uy Xy +h) —u (g T h)=n>0,

&

where h= Tm

and n=he— M(2M?+e)h2
Thus u, (xy+ k) —ug (xg+h)>n. But z, is arbitrary and so u, (z) —u; (¥) =7 on
— oo <2 < oco. In the statement of the theorem we take & =¢/2.

Let u,(x) and u,(x) be two bounded solutions of R, and say that u,(x) < u,(x) and

that u, (x) is not the lowest bounded solution of R, (the other cases are similar). We shall
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show that

lim |u,(z) — u, (x)| = 0.

200

Let u, (x) be a solution of R, lying below the band of bounded solutions. Then

Uy ((K) Uy (%) _ Ueo (x)

u (=)

ES — uu
Uy (@) —ug(®) 0 Uee (¥) —ur(2)

3

for a constant A. Now at 2 =0, choose u (0) so near to u;(0) that || is determined
smaller than a prescribed positive number &, Now for each number — N2 there is an
abscissa © such that w (x) < — N2 wherever u (z) is defined for x >& Thus one can
choose N2 so large that, for @ =&, [Ue () — %, (2)]/ (U () — uy (2)] is arbitrarily near +1.
But this means that the ratio |[u;(®) — u, (€)]/[%, () — u ()]} becomes smaller than &.

Thus lim inf. |u, () — u, (x)|=0.

I—>00

We complete the proof by showing that the ratio [u. (2) — u, ()] /(e () — u(2)] 18

monotonely decreasing. But the derivative of this ratio is easily found to be

(204 (%) — oo ()] [, () — wr ()] [heo (x) — 2 ()] < 0.

Therefore the ratio [u, (x) — u, (¥)]/[u; (x) — u.(x)] decreases monotonely to zero as x—oo.
Thus im |u,(z) —u,(x)|=0. QE.D.
T->0Q

We can now prove an important result concerning almost periodic solutions for the
Riccati equation (R) interior to the domain of disconjugacy. We follow the method intro-
duced by Favard [5, Ch. 3]. Similar results are obtained in [1] and [7].

THEOREM 9. Let u,(x) and ug(x) be bounded solutions of
w +ut+ K (x) =0, (B)

where K (x) is a real almost periodic function. If u,(x) —ug(x) > >0 on — oo <x < oo,
then uy (x) and u,(x) are almost periodic and the modules of their frequencies are contained in
the module of K (x).

Proof. Since u,{(x) — uy(x) > 0 > 0, %, (z) is the upper bounded solution and u,(x) is
the lower bounded solution of (R). Further we make the notational simplification

inf |y (x) —uy(2) | = 6.

00 < T <00

Consider a sequence of real numbers {k,} and corresponding translates of u,(z), that
is, uy(x + h,). We shall show that, for some subsequence, u; (x + h,) converges uniformly
on — oo <z < oo. This shows that u, (x) is almost periodic and a similar argument would

hold for u, (x).
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Since the numbers u,(0 +h,) and u,(0 + A,) are bounded sets, extract a subse-
quence (again called %,) for which (0 + A,)—>o, u,(0 + h,)—p. Also one can require
K (x + h,)—> K" (x) uniformly on — oo <z < oo.

Let uf (x) and uj (x) be the solutions of
W+ ut+ K* () =0 (R*)

with initial conditions uf(0) =«, u3(0) = f. Then, by the continuous dependence of the

solutions of a differential equation upon the coefficients, lim u,(x + k,) = uf (z) and

N>R

lim wy(z + h,) = uj (x) where the convergence is uniform on each compact interval.

n—>0

Now inf |w (@ +h,) —up(@+h,)| =0 for each h, If |uf(xy) —us(xo)|<d at

some point x,, then for large n, |u,(xy+ h,) — up(ay+ ky)| <4, which is false. Thus

inf |uf(xr) —u(x)|=6>0. Therefore uf(x) is the upper bounded solution of (R”)

and w3 (x) is the lower bounded solution of (E¥).

We need to show that a subsequence of u,(x + &,) is Cauchy in the metric space of
real, bounded, continuous functions Cg(— oo, oo). Suppose the contrary. Then there exists
¢ >0 such that: for each N, there are integers n, > N;, m; > N; and some z, at which
|uy (zy + ha) = uy{xy + hm)|>¢. Choose a sequence N,—»oo and corresponding integers
ny, my > N, and numbers @, at which |u,(z;, + k) — (2, +hn )| > 6

Extract a subsequence k; (again called k) for which wu, (x, + hnk)—>5( and also

uq (X +h,,,k) —a+a. But consider the translates u, (x +x, + hy) and % (x +z, +hp,)
and again extract a subsequence k; (again called k) so that K (x + x, + hhk)—>I€* () and
K(x+x, thy) —K*(x). Then the upper bounded solutions of the corresponding equations
(RB*) and (R*) are 4 (x) and @7 (z), respectively, with F(0) = & and #f (0) = &.

But |K((x+ay,) + by ) — K((x + ) +h )| <n for any prescribed # >0 and suf-

my
ficiently large k. Therefore K*(z) = K* (2) and (R*) is the same as (B*). But then a* (x) =
4*(x) and o« = which is a contradiction.

Therefore u, (z + %y,) —uf (z) uniformly on — co <z < co and u, () is almost periodic.
Furthermore for each sequence {k,} with K{(x +h,)— K" (x) there is a subsequence %,
such that u,(x + knl)»u’{ () with uniform convergence on — oo <z < co. Therefore we
actually must have u, (¥ + h,) =7 (x) uniformly on - oo <z < co. Thus the module of
frequencies of u,(z) is contained in that of K (z). Q.E.D.

Using Theorem 8, one can easily see that there are no other almost periodic solutions

than u, (z) and u, ().
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We now relate our results directly to the linear differential equation (L) and describe

a distinguished solution basis for this equation.

THEOREM 10. Let
Yy’ +(—a+bplx))y =0, (L)

with p(x) real almost periodic, belong to the interior of the disconjugacy domain D. Then there

s o solution basis of the form

Yy, (@) =e* exp [, (t)dt
0

yo{x) =e * exp J‘q,’;L(t)dt,
0

where o >0 and ¢, (x), ¢.(x) are almost periodic functions of mean zero. Also 2« is mean
of the width of the band of bounded solutions of the associated Riccati equation and f (. (8) +
0

¢ ()]d¢ is almost periodic. Thus y, (x)y, (x) and s reciprocal are almost periodic.
Proof. Let u,(x) and u,(x) be the upper and lower almost periodic solutions of the

Riccati equation. Then define

These are clearly linearly independent and thus form the required basis,
Now 1, (®) = oy, + e, {x), ug(x) =oy +ér(x) where ¢,{(x), $.(x) are almost periodic

with mean zero. The width of the band B of bounded solutions of the Riccati equation is

w
Ax) =u, (2) —u, () :.;/m;j’

where the Wronskian W =y, (z)y, () — y7(2)¥, (%) is a non-zero constant. Therefore
0<c<y,(r)y,lx) <C
for bounds ¢, C and for all z.

However, y,(x)y,(x) = exp {(a, +a;)zx+ f [h. () -, (t)]dt}. Since y,(x)y,(x) is
0

bounded as indicated, «, = — o, = « and the almost periodic function A(x) has a mean

of 2a+ 0. Thus y,(x)y.(x) and its reciprocal are almost periodic. But this means that

z
f[«ﬁu(t) + ¢, (t)]dt is bounded and thus almost periodic. Q.E.D.
0
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CororLLARY 1. y,(x) (or y.(x)) ¢s the unique (up to a constant factor) solution of (L)
bounded on a negative (or positive) half-axis. Also if the product of two solutions of (L) 4s

bounded, then the factors are (up to constant multiples) y, (x) amd y, (x).
If f¢u(t)dt and _quL(t)dt are bounded, then they are each almost periodic. In this
0 0

case the canonical solution basis has the form
Yulx) =W (x)e*, y(x) =¥ (x)e ™,
where W', (z) and ¥, (z) are almost periodic functions. Moreover one shows easily that

both the integrals f¢u(t)dt, j ¢ (t)dt are bounded if one of them is bounded.
0 0 .
CorROLLARY 2. There is a solution basis for (L) of the form ¢(z) exp fdt/g&(t)z,
0

¢ (x) exp f —dt/$ (1), where ¢ (x) is almost periodic and 0 <c¢ <d(x) < C.
0
Proof. Define z(x) by y(z) :l"_;/;Ta;)'yL(x)z =¢(x)z where y(x) is a solution of (L.)
Then we compute
w

@) i 0

where we can take the Wronskian W =y,y7 —y,y. = 2. But this equation can be solved
&x

explicitly to yield solutions exp J‘ +dt/$ ()2 QE.D.
0

We next explicitly list certain data on the means of the almost periodic functions

described above.
COROLLARY 3. mean [u,(x) —u,(x)] =2a
mean %, (z)? = mean % (x)?
mean ¢, (x)? = mean ¢, (x)*

mean ¢ ()72 = .

If mean p(x)=0, then o + mean ¢;(x)? = a and thus [mean ¢;(x)]* <a —a?  i=L or wu.

Proof. In the theorem we showed that mean [u, () —u;(z)] = mean A (x) =2a«. Now
mean u, (z)? = mean [a? + ad, (z) + ¢, (*)?] and mean u ; ()2 = mean [a? + ad (x) + b ()?].
Then since mean ¢, (x) = mean ¢ (z) =0, mean [u, ()2 — u, (x)?] = mean [¢, () — o (x)2].
But u, (2)? — u, ()2 = w7 (x) — uy () which has a zero mean.

Now ¢ (x)2 =A(x)/W =A(x)/2 and this has a mean of «.
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Finally from the Riccati equation
¢i t(Fat)2+(—a+bpa)=
Taking means one obtains 2 + mean ¢;(z)2 — a = 0. Since [mean ¢;(2)]? < mean ¢, (z)? one
also has [mean ¢;(x)]? <a —a® Q.E.D.
For the equation (L) interior to D we say that the numbers («, — «) appearing in the
canonical solutions of Theorem 10 are the characteristic exponents [10] of (L). They satisfy

the usual definition of characteristic exponents in that

lim L sup — log |y, (@) |= e
and lim sup - log |y (@)= — o

X—>00

Using this definition for the characteristic exponents we shall later show that they are
zero when (L) belongs to the boundary of D.

For the classical case of Hill's equation, the solutions are exponential functions multi-
plied by periodic functions. The following example shows that the difficulties which are
mentioned in the above theorem and corollaries do actually arise.

Consider the equation

y' +(—a+bpx)y =0, (L)

where ¢ = a® —mean y(2)%, b= — 1, and p(x) = 2« + 4 (x)2 + %" () —mean y(z)% Then
o0 1 PN

taking o > 0 and y ()= 2 o (zc ) , p(x) is an almost periodie function with mean
~ n

zero and (L) has a solution

n-1MN \"

y(x)=exp {ocx+ % 1 sin (E)} = exp {ochr f%(t)dt}.

Since the characteristic exponent of y(x) is « >0, ( lim - J y(tydt = ) the equation (L)

x——)o@
belongs to the interior of D, ef. Theorem 15. Then it is easy to see that there is no solution

basis of the form exp {(— 1) oz +m, (x)} where m;(x) are almost periodic, s =1, 2. For one
X

would then require that y(z) =c¢ exp (az +m, (), for ¢+ 0, and 7, (x) = fx(t)dt which
0

is not bounded. It is unknown whether such a difficulty can occur if p(z) is, say, a trigo-
nometric polynomial.

LeEMMA. Let
Yy’ +(—a+bp()y=0. (L)
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with p(x) a real almost periodic function, be in the intervor of D. Then the characteristic expo-

nent «, and the quantities 8 = inf |u,(x) — u(x)| (for the upper and lower almost periodic
0T <O
solutions of the associated Riccati equation), and u = sup luu(z) ~u L(oc)| are conttnuous,
— LT <0

strictly increasing functions along each line b = const., as a increases away from the boundary
of D.

Proof. Let (a4,b,) lie in the interior of D and let u,(x), u(x) be the upper and lower
almost periodic solutions of the associated Riccati equation. Then A(z) =wu,(x) —u, (x)
has a mean of 2a, where a, is the corresponding characteristic exponent. By Theorem 8§,
a, 0, and u are strictly increasing along the line b = const. and we next show that they are
continuous functions.

Consider the almost periodic functions
w (@) =ty (x) + (1 —Hu (@)
and wy(x) = (1 — t)u,(x) +tu () for 0 <t <1.

Then a calculation shows that both of these almost periodic functions are solutions of the

equation
w Fwr [ —ay+beplx) +E(1 — 1) (u,(x) —u(x)?] =0.

Also wy (x) ~ wy(x) = (2t — 1) [u,(x) —u,(x)]. Then the width A, (x) of the band of
bounded solutions of
w +w?+[—ay+byplx)+¢] =0,

where 0 <c <t(l —¢) inf (u, —u;)? satisfies
- 00 <X o0

Ap(@) = (28 = 1) [u, () =y (@)] = (28 — 1) A().

For a prescribed & >0 choose ¢ so near 1 that A(z) — A, (x) <& whenever ¢ >0 is
sufficiently small. Therefore «, 4, and u are continuous from below along b = const. But
within a fixed neighborhood of (a,, by), ¢ can be chosen independently of (a’, b,) so that
the band width of

w twrA+{—a +byplx)] =0

and that of w twt[—a +etbyp(x)]=0

differ by less than &. Therefore «, d, and u are continuous along b =b,. Q.E.D.

TureoreM 11. Let

;

y' F(—a+bp)y =0, (L)
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for a real almost periodic p(x), belong to the interior of D. On the interior of D the real func-
tions o(a, b) and d(a, b) are continuous. Let Dy, and Es be the subsets of the interior of D
tively closed in the interior of D. Also D, (or Es) is properly contained in the interior of
Dy, (or Es) whenever oy < oy (0r 03 < 9y). On the relative boundary of D, (of Es) the charac-

teristic exponent (the inf |u,(x) —u,(z)|) ts ewactly a (or §).

00 LT <
Proof. Let (a,, b)) and (ay, by) lie in Dy (or lie in Ey). Let u$ (x), u (x) be the upper
almost periodic solutions and «$’(x), P (x) be the lower almost periodic solutions of
the corresponding Riccati equations. Consider w, () =tul(x) + (1 —#)uP(xr) and

wy(x) =tuP (@) + (1 —t)uP(x) for 0<t<1l. A computation shows that w,(x) satisfies
w +w?+{ =[ta, + (1 —)ay] ~[th, + (1 —t)bylp(x))} = t(1 — #) [uP (x) — uP (x)]2 = 0.
Thus the upper almost periodic solution of
w +w? +{~[tay + (1 —t)ay] T[thy + (1L —t)bylp ()} =0 (R)

lies above w, (x). Similarly the lower almost periodic solution of the last equation (R,) lies
below w, (z). Thus the band width A, of (R,) satisfies

At > tA(l)(x) + (] . t)A(Z)(x),

Thus E; is convex. Since mean 3A, = o, the characteristic exponent corresponding to
(R,), Dy is convex.
By the lemma, the characteristic exponent corresponding to a boundary point of D,,

interior to D, is exactly «. Also on the relative boundary of E,, inf |u,(z) —u (x)]| = 9.
—oC X ~Ioe

Thus both D, and E; are relatively closed in the interior of D. The enclosure relations
mentioned in the theorem are then elementary.

Finally we verify that o (¢, b) and d(«, b) are continuous on the interior of D. But this
follows easily from the enclosure and convexity conditions. Q.E.D.

One can further describe D, by noting that it must contain the sector bounded by

the rays
a=a+b inf p(x)
— 00 <L 100
and a=o*+b sup px).
— 00 <T <00

Similarly F,; must contain the sector bounded by the rays

a=062+b inf p(x)

ot T Ton

and a=02+b sup p(z).

--oe =T Toc

8 — 563802, Acta mathematica. 96. Imprimé le 23 octobre 1956.
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Also each domain D, and E; is invariant under translations, and even limits of such,
of the equation (L).

Later, of. Theorem 14, we shall show that ¢ —0 near the boundary of D and thus
that each Ej; lies interior to D. However, although it is very likely true, we have not been
able to show that «->0 near the boundary of D.

We conclude this section with a result for a forced or non-homogeneous differential
equation.

THEOREM 12. Let

y' +(—a+bp)y =0, (L)

where p(x) and p’' (z) are real almost periodic functions, lie interior to D. If f(x) is almost
periodic, then the equation
Yy +(—at+bp@)y =f(z) (F)
has a unique bounded solution and this is almost periodic.
Proof. Since the homogeneous equations (L*) have no (non-trivial) bounded solutions,

(F) has at most one bounded solution. Moreover, by Favard’s theory {5, Ch. 3], if there

is a bounded solution y(x) for which y'(z) is also bounded, then y(x) is almost periodic.
A solution basis for the homogeneous equation is ¢ (x)exp f +dt/d(t)* where ¢(x) is
0
almost periodic and 0 < ¢ < (x) << (. Construct the Green’s function
|
J

2

A LR

T dt
[ 3w

Consider the solution of (F) given by

o0

y@) = [ G Hf(E)dE.
The integral exists since f(z) is bounded and G (x,£) has an exponential decrease at both
+ oo.

From the definition of ¢(x), c¢f. Corollary 2 of Theorem 10, we see that ¢'(x) and
¢’ (v) are also almost periodic. Then one can differentiate the expression for y(z) to see
that y(x) is a solution of (F).

Since y(x) and y” (z) are bounded, so is ¥’ (z) bounded, as is required. Q.E.D.
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4. Boundary of the disconjugacy domain

We first give a criterion for distinguishing between the interior and the boundary
of .D by the behavior of the solutions of (L).
THEOREM 13. Let
y' T (—at+bpla)y =0, (L)

where p(x) ts real almost periodic, be disconjugate. Then (L) belongs to the interior of D if and
only if there is a solution basis y,(x)y . (x) of (L) for which 0 <y, (x)y,(x) <C.

Proof. If (L) lies interior to D, then by Theorem 10 there is a solution basis of the
required type.

Conversely let y4(z), ¥, (x) be a basis whose product is bounded, as above. Then the
functions u, () = yo(x)/¥,(x) and w, () = y1(x)/y, (x) are solutions of the associated Ric-
cati equation

wHut+ (—a+bpa)=0. (R)

Let us write u, (x) > % (x) and u; (x) —wu, (x) =2/C. Consider the function w (x) =

Hu, (x) —ug(z)]. A computation yields

w Fwtt (—a+bpa) +i[ug(x) —uy(2)]>=0.
Thus the equation wAwtt (—a+bp@) +1/02=0
has a bounded solution. Therefore y'+{—a+bpx) +1/Cy=0

is disconjugate and (L) lies interior to D. Q.E.D.

COROLLARY. In the interior of D no (non-trivial) solution of the corresponding linear
differential equation (L) has a square which is bounded. However, if on the boundary of D,
the product of two positive solutions of (L) is bounded (even only positive with a bounded
product on a half-axis), then the two solutions are linearly dependent.

We can now complete the discussion of é(a, b) which was begun in Theorem 11.
THEOREM 14. Let
Yyt (—a+bpl)y =0, (L)

where p(x) s real almost periodic, belong to D. Then on the boundary of D

lim inf |u,(x) —w%,(x)|=0

for any two (possibly coincident) bounded solutions of the associated Riccati equation (R).

Therefore d(a, b) =0 on the boundary of D and furthermore & is continuous on all of D.
* — 563802,
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Proof. Suppose the point (a,, b,) yields a point interior to D but (¢, — &, b,) for a
certain ¢ > 0 yields an oscillatory equation (L). If, for (a,, b,), the width of the band for
the associated Riccati equation is A(z) > 2Ve, then the point (a, — ¢, b,) lies interior to
D, as follows from the calculation occuring in the proof of Theorem 13. Therefore
A(x) <2Ve for some z and §—0 near the boundary of D.

Now for (@, b) on the boundary of D, the band for the associated Riccati equation
must lie interior to the band for (a + ¢, b), ¢ > 0. But for the width A, () of this band one

has lim inf A,(z) = 6(a + ¢, b). Since é(a +¢&, b)—0 as ¢—0, as we have the desired result.

Tt
Q.E.D.

We next turn to the problem of computing the characteristic exponent « on the
boundary of D.

TaHEOREM 15. Let

w A+ud -+ (—a+bpx)) =0, (R)

for real almost periodic p(x), correspond to the boundary of D. If a solution of (R) is almost
periodic, it must have zero mean. Also there can be at most one almost periodic solution of (R).
Proof. Let u(z) be an almost periodic solution of (R) and suppose mean u{x) = a > 0.

Consider the auxillary equation
2= 2u(x)z=1.

o !

Then a solution is z(x) = — | [ex — 2u(s)ds]dt, which is bounded on a right half-axis,
P g

7

say x> 0. Define w(z) by z(x) = — w(x)exp fu(t)dt. An easy computation shows that
0
w(x) is a positive solution of
y' H(—a+bpla)y =0. (L)

But then the product of two positive solutions of (L) is bounded on a right half-axis and,
by the Corollary to Theorem 13, they must be linearly dependent solutions. But this is

z

impossible since fu(s)ds» +o0 as x—>o0 and so w(x)—0 as  —oo. From this contra-
0

diction we conclude that mean u(x) <O0.
A similar contradiction arises from the supposition that mean u(x) <0. Here one

uses the function

2y (x) = f [expj’ 2u(s)ds]dt
e ;
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which satifies the same auxilliary equation, and which is bounded on a left half-axis.
x

Again define w,{x) by 2,(x) =w,(x) exp fu(t)dt and observe, that w,(x) is a positive
0

solution of (L). Then the same reasoning as in the earlier case shows that mean u(x) = 0.
If there were two almost periodic solutions of (R) then these differences would be

a positive almost periodic function of zero mean and this is impossible. Q.E.D.

CoroLLARY. Let y(x) be a positive solution of (L), for the boundary of D,
such that w(x) =y (x)/y(x) is almost periodic. Then the characteristic exponent o =

lim sup (1/z) log |y (x)|=0.
>0

The following example shows that an equation (L) on the boundary of D) need not
have a (non-trivial) bounded solution. Qur example does have a solution y(x) >0 such
that y' (z)/y (x) is almost periodic. Whether or not there is always such a solution in this
situation is unknown. We shall have further comments on this dilemma later.

21
2

Consider " +[— y ()2 — ¢’ ()] y =0 where y (x) = > cos (%), Here take a =
4 x x “ n

n

mean y (x)%, b =1, p(x) = — y(x)? — %’ (x) + meany (r)2. The equation is disconjugate since a
x

positive solution is y(z) = exp fx(t)dt. Since lim sup (1/x) log ¥ (x) = mean g (x) = 0, the
0 T—>00

equation belongs to the boundary of D. We also note that lim sup v (z) = + oo,

lim inf y(z) = 0.

If Y (x) were a bounded solution, say Y (x) >0 for x > z,, then 0 < Y (x) <cy(x) for

x>z, and a constant ¢. But then lim inf W (2) =0 where W (x) is the Wronskian of Y (x)

Z—>00
and y(x). However, W () is constant. Thus there are no (non-trivial) bounded solutions.
The next theorem shows that one can always obtain a bounded solution for (L) on
the boundary of D, merely by translating to a limit equation (L*).

TaurorREM 16. Let
y' t(—atbplx)y =0, (L)

where p(x) and p'(x) are real almost periodic functions, belong to the boundary of D. Then
there exists p* (x)€ H{p(x)} such that
y' '+ (—a+bp*()y=0 (L")

has a positive bounded solution.
Proof. For each ¢ > 0 a solution basis y, (x), ¥ () of "' -+ (— a + bp(x) — &)y = 0 yields

a general solution
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11 (T)? + ey () Y2 (%) + c3ys (2)?
of w”’ +4(—a+bp(x)—e)w +2bp" (x)w=0.

Then there is just one positive solution w, (x) = y, (x) ¥, (x) which is bounded on — co <z <o

and such that sup w.(x) =1. An easy calculation, based on the explicit form of v, (z)

0 CT <0

and y,(z) (cf. Theorem 10), yields that |w, (z)|< M, and so |w,(x)|< M, where the
bounds M, and M, depend only on (—a + bp(zr)) and not on .
Let ¢, be a sequence of positive numbers decreasing monotonely to zero. Let w, ()

be the correspondingly defined, positive, bounded solutions of
w't4(—a+bplx) —e)w + 26p (x)w=0.

Then let z, be a sequence of points such that w, (2,)— g+ 0, wy (x,) =0y, Wy (T,)—> ks,
p(x +z,)—>p* (x) and p'(x + x,)—p™ (x) uniformly on —co <z < co. Let w*(x) be the
solution of

W +4(—a+bp*(x)w +2bp (x)w =10

with the initial data w* (0) = oy, w* (0) = &y, w*""(0) = «s.

Now w, (x +,)>w" (x) uniformly on compact intervals. Thus w* (z) <1 on
—oo< ¥ <oo. But w*(z)is the product of two solutions of (L*). Thus w* () must be the
square of one such solution y*(x) which is thereby bounded.

Since wy, (x + ,)—>w* (x) and wy, (& + z,) —>w*"’ (

z) uniformly on compact intervals,
one must have w* (z,) = w*" (r,) =0 wherever w*(z,) =0. Thus w*(x) >0 and we take
¥y (@) >0. QE.D.

CoROLLARY. For the equation (L*), the associated Riccati equation (R*) has a unique
bounded solution.

Proof. Let w*(x)=y" (x)/y"(x) where y*(x) >0 is the bounded solution of (L*).
x

Suppose #(x) is a bounded solution of (R*) and say #(z) < %" (x). Then 7 (z) = exp f?i(t)dt
0

and 0 <g(x) <y*(z) for > 0. But if (L*) has two linearly independent solutions which
are bounded on a half-axis, then (L*) is oscillatory. Q.E.D.

We remark that if for each p* (xv)€ H{p(x)} the equation (R*) on the boundary
of D has a unique bounded solution, then this solution is almost periodic and (Z*) has
a positive solution whose logarithmic derivative is almost periodic. This remark can be
obtained in the manner indicated in the proof of Theorem 9. It is our conjecture that
each such (R*) actually does have a unique bounded solution.

Using the construction of Theorem 16 we can find an equation (L*) on the boundary
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of D with a bounded positive solution which is not almost periodic. To do this, let (L)
be an equation, on the boundary of D, for which there are no (non-trivial) bounded solu-
tions, cf., previous example. Consider a limit translate (L*) for which there is a positive
bounded solution 3" (x). If ¥ (x) were almost periodic, then (L) would have a positive

almost periodic solution which is contrary to the construction.

5. Perturbations of p (x).
Consider y' ' +(—a+bp(x))y =0, (L)

for p(x) real almost periodic, belonging to the boundary of D. Then if —a +bp(z) is
replaced by —a + bp(x) + ¢(x), where ¢(x) £0 is a non-negative almost periodic function,
the resulting equation is oscillatory. If the band for the associated Riccati equation de-
generates to a single bounded solution, as is the case when p(z) is periodic, then &(x) need
not be almost periodic but merely continuous in order to change (L) from disconjugacy
to oscillatory.

We now study the dependence of the disconjugacy domain D upon the choice of the
almost periodic function p(x).

THEOREM 17. Let p(x) be real almost periodic, and 7 (z) = kp(x) +1, for k= 0, 1 real

numbers. Then the disconjugacy domain A of
Yy (—atfale)y =0 (A)
s the image of the disconjugacy domain D of
Yy’ +(—a+bp)y =0 (L)
under the map T of the (a,b)-plane onto the (o, B)-plane, where
T: (a b)—(x, ) =(a +bl/k, b/k).

Proof. The point («, B) for (A) yields the same solutions as doesa =o — g1, b=k
for (L). Thus a set A in the {, f)-plane describes the same differential equations as the

set D in the (a, b)-plane, provided A is the image of D under

T: (a, b)—>(a+bl/k, b/k).
Q.E.D.
CoROLLARY. Let K(x) be a non-constant, real, almost periodic function decomposed
as K(x) = —a,+by plx) and K(x) = — oy + By (x). Then the corresponding disconjugacy
domains D and A for varying (a, b) and («, ) respectively, are related by the map
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. 7’ L p%e T % {)ﬂ) .
T: ((l, b)l>(o{-) /3)_(“ cb bo > bo)

Proof. Here k=10by/B, 1= (g ay) /B, and we use the formula of the theorem.
Q.E.D.
Also one notes that, in the Corollary, if z(z) and p(x) have mean zero, b, and f, are

positive, sup m(x)= sup p(x), then 7 (x) = p(x), ag =y, Sy = b and A = D.

— 0L — QI 00
We shall show that the domain D varies continuously with the choice of the almost
periodic function p(x). On the space F of real almost periodic functions we utilize the

uniform topology defined by the metric g (p(x), py(x)) = su | p1(x) — pa(x)|. On the

—c<a<
space § of non-empty closed plane sets we define a topology of uniform convergence on
bounded regions by a neighborhood prescription as follows. For D€ § define an open
neighborhood U (K, €) of D depending on an open disc K, centered at the origin, which
intersects D and a number ¢ > 0. Let D, € U in case D, intersects K and

max { sup o(P, DnK), sup o(P, D;nK)}<e.
PeD\NKE PeDNEK

Here g is the distance function in the plane. It is easily verified that a topology on § is
defined by this open neighborhood system.
LeEmMMA. Let 7(x) = p(x) for all x, where n(x), p(x) € F. Let the disconjugacy domains

D and A of
y' i (—atbpx)y =0 (L)

and y' +(—a+bax)y=0, (A)

respectively, have bounding curves a;(b) and a,(b). Then ax(b) >a,(b) for b >0 and
ar{b) <a;(d) for b<0.

Proof. For b>0, —a-+ba(x)> —a+bp(x). Thus, if (L) is oscillatory for some
parameter values (@, b), then so is (A) oscillatory. Therefore a, (b) = a,(b). For b <0 the

argument is similar. Q.E.D.

THEOREM 18. For each real almost periodic function p(x) € F there is a corresponding
disconjugacy domain D€ §. The map p(x)— D is continuous.

Proof. Consider a neighborhood U (K, &) of D,, the disconjugacy domain for p,(x).
There is a number I >0 such that for each I(x)€F with |I(z)| <1, the domain Dy +A D,
corresponding to p,(x) +1I(z), has boundary curves which lie between those corresponding
to pe(x) +1 and p,(x) —1€F. From Theorem 17 we see that, for I sufficiently small,
the boundary curves of Dy + A D are within the required ¢-closeness of those of D, inside
K. QE.D.
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