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Introduction 

The aim of  this work is to continue Van den Dries '  treatment of  the theory of e-fold 

ordered fields along the lines of  the treatment given in Jarden-Kiehne [10] to the theory 

of  e-free Ax fields. 

Van den Dries generalizes in his thesis [18] the theory of  real closed fields. He 

considers structures (K, P~ . . . . .  Pe) that consist of  a field K and e orderings P1 . . . . .  P~ of  

K. He proves in [18, p. 54]: 

The theory of  e-fold ordered fields OFe has a model companion OFt, the models 

o f  which are the e-fold ordered fields (E, Pt . . . . .  Pe) satisfying: 

(et) Pi and Pj. induce different order topologies on E for all l<~i<j<~e. 

(13) I f f E  E[T, X] is an irreducible polynomial and if there exists an ao E E such that 

f(ao, X) changes sign on E with respect  to each of the Pi ' s ,  then there exist a, b E E such 

that fla, b) = O. 

In particular it follows from this theorem that the absolute Galois group G(E) of E 

is a pro-2-group generated by e involutions (cf. [18, p. 77 and p. 92]). If  E is algebraic 

(1) This work was done while the author was visiting the University of California at Irvine. He was also 
supported in part by a BSF grant. 
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over  Q and R is a real closure of  Q, this means that there exist (71 . . . . .  o e E G(Q) such 

that E=RO'N...NR ae. In general, if Ol . . . . .  ~reEG(Q) we write Qo=R~ ~ and 

denote by  Po~ the ordering of Qo induced by the unique ordering of the real field R a'. 

Thus we have a family ~o=(Q~,,Pal . . . . .  P,,e) of  e-fold ordered fields indexed by 

G(Q) e. The absolute Galois group G(Qo) is still generated by e involutions but it is not 

necessarily a pro-2-group. Indeed,  Geyer  proved in [5] that for almost all ~ E G(Q) e the 

group G(Qo) is isomorphic to the free profinite product , / )~ ,  of e copies of Z/2Z. Here  

"a lmost  all" is used in the sense of  the Haar  measure/~ of  the compact  group G(Q) ~. 

The models ~ a  of  OFe appear  therefore to be ' rare '  among all the models ~o. We 

therefore concentrate  in this work on the theory Te of  sentences that are true in 5fo for 

almost all o E G(Q) e. We prove  the following theorems: 

THEOREM A. Almost all o ~ G(Q) e have the following properties: 

(y) I f  V is an absolutely irreducible variety defined over Qo and if P~l .....  Pae can 

be extended to orderings o f  the function field o f  V, then the set V(Qo) of  all Qo - 

rational points o f  V is not empty. Moreover, for every l <.i<~e and every simple point qi 

o f  V which is rational over R ~ can be Prapproximated by points in V(Qa). 

(6) The orderings Pal .....  Poe induce distinct topologies on Q,, 

THEOREM B. I f  ~=(E, P1 . . . . .  Pe) and F=(F, Q1 . . . . .  Qe) are two e-fold ordered 

fields that satisfy (y) and (6), i f  G(E)-~G(F)-~s and if  (~ N ~ ( ~  N ~ then ~ is elementar- 

ily equivalent to ~. Here ON ~ = ( 0 N E , 0 N P 1  . . . .  , (~NPe). 

Using Theorems A and B and the above mentioned theorem of  Geyer  we show that 

every  sentence 0 of  the theory of  e-fold ordered fields is equivalent to a, so called, ' test  

sentence ' ,  that amounts  to a s tatement about e-fold ordered fields which are contained 

in a finite normal extension L of Q. This enables us to compute (in a recursive way) the 

measure of  the set 

which turns to be 

#(A(0))= I. Thus 

a(o) = {o ~ G(Q)el~eo ~ O) 

a rational number. In particular we can find whether  or not 

THEOREM C. Te is a decidable theory. 

Acknowledgement. The author  is indebted to Wulf-Dieter Geyer  and to Dan Haran 

for some useful conversat ions on this paper. 
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1. Ordered fields 

Let < be an ordering of a field K. Then the set P=  {x E K[ x>0} of all positive elements 

of K determines < uniquely. We can therefore view our ordered field as a couple 

(K, P). Then we abuse our language and speak about P as the ordering of K. The 

appropriate first-order predicate calculus language is denoted by S~1. 

A polynomial fE  K[X] is said to change sign on K if there exist a, b E K such that 

f(a)<0 andflb)>0. I f f i s  in addition irreducible over K and a is a root of K, then P can 

be extended to an ordering of K(a) (cf. Ribenboim [15, p. 150]). In particular if an 

algebraic extension L of K has an odd degree, then P can be extended to L. 

Every ordered field (K, P) has a real closure (Iii, P), where /~ is an algebraic 

extension of K,/5 is an extension of P and no proper algebraic extension of /s  can be 

ordered. Indeed, the algebraic closure/s of K is equal to /~(V" -1  ) and the absolute 

Galois group, G(/~)= ~3(/~//0, of/(7 is a cyclic group of order 2. The field/s is then said 

to be real closed. Conversely, given an involution e in G(K) (i.e. an element that 

satisfies e2=l and e+l) ,  then its fixed field,/s in /~ is a real closed field. It has a 

unique ordering/5 that consists of all non zero squares of/~. The restriction of this 

ordering to K is the ordering of  K induced by I(S, or, as we also say, by e. If e' is an 

additional involution in G(K) and it induces the same ordering on K as e, then e and e' 

are conjugate in G(K), and/('(e) and/~(e') are isomorphic over K (cf. [15, p. 163]). Also 

there are no K-automorphisms of/~ besides the identity (cf. [15, p. 165]). In particular 

all the real closed fields which are algebraic over Q are isomorphic and they have no 

non-identity automorphisms, since Q has a unique ordering. 

More generally, if q0: (K1, P1)-* (K2, P2) is an isomorphism of ordered fields and 

/~1,/~2 are real closures of K1, K2, respectively, then q~ can be uniquely extended to an 

isomorphism ~b:/~---~/(72 (cf. Jacobson [6, p. 285]). 

Another important extension theorem is the following: 

If (Ll, Ql) and (L2,Q2) are extensions of an ordered field (K, P) and if LI, L2 are 

linearly disjoint over K, then L1L2 has an ordering Q that extends both Q~ and Q2. 

Moreover, if both L~ and L2 are algebraic over K, then the extension Q is unique. 

A proof for the existence part of this theorem is given in Van den Dries [18, p. 75]. 

Both the existence and the uniqueness part in the case where L~, L2 are algebraic over 

K can be proved in the following way.( )  

First one observes that if suffices to prove the assertion for L~ and L2 finite over 

K. Second, one notes that if L is a finite extension of K and (/~, 15) is a real closure of 

(1) This argument is due to Dan Haran. 
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(K, P), then there is a bijection between the K-embedding of L into/(  and the orderings 

of L that extend P. Indeed, a K-embedding ~: L--->/~ corresponds to the ordering 

Po=a-~(oLnP) of L. Finally, one uses the fact that for every pair al,02 of K- 

embeddings of L~,L2, respectively, into /( there exists a unique K-embedding 

o: L~ L2--->/~ that extends both Ol and oz, since L1 and L2 are linearly disjoint over K. 

If (K, P) is an ordered field and if x is a transcendental element over K, then P can 

be extended to K(x). 
If V is an absolutely irreducible variety defined over K and has a simple point with 

coordinates in a real closure /~ of (K, P), then the function field F of V over K is 

formally real, i.e. - 1 is not the sum of squares of F (cf. Lang [11, p. 281]). By the same 

reason / (F  is formally real. A real closure o f / ( F  induces then an ordering of F that 

extends P. Conversely, if P can be extended to an ordering of F, then the set V(/~) of/(-  

rational points of V is Zariski-dense in V. This property of real closed fields motivates 

our definition of pseudo-real-closed fields in the next section. 

2. Pseudo real closed fields 

Let M be a field and let <l  . . . . .  <e be e orderings of M. Denote by Pi the set of 

<;-positive elements of M. The structure (M, P~ .. . . .  Pe) is said to be an e-fold ordered 
field. The corresponding first order predicate calculus language is denoted by Ale. If K 

is a formally real field, then ~?e(K) denotes the language ~e augmented by constant 

symbols for the elements of K. We also denote by Ali the real closure of M with respect 

to Pi. 

An e-fold ordered field (M, P1 ... .  , P~) is said to be psuedo-real-closed (abbreviated 

PRC) if it has the following properties: 

(a) If V is a (non-empty) absolutely irreducible variety defined over M and if each 

of the Pds can be extended to an ordering of the function field of V over M, then V has 

an M-rational point. 

(b) The orderings P~ . . . . .  Pe induce distinct order topologies on M. 

Note that condition (b) implies that if for each l~i<~e, Ui is a non-empty Propen 

subset of M, then Ui['] . . ,  n Ue:JF(~. This conclusion is known as the approximation 
theorem (cf, [14, p. 327]). 

Remark, A field M is said to be PAC if every absolutely irreducible variety defined 

over M h a s  an M-rational point (cf. Frey [2], or [7] where it was still called a Z-field). 

The PRC fields are therefore the analogue of PAC fields for e-fold ordered fields. Also, 

our definition of PRC fields becomes that of McKenna [13] in the case e--1. 
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LEMMA 2.1. Let (M, P~ . . . . .  Pe) be a PRC field. 

(i) I f  V is an absolutely irreducible variety defined over M and if each of  the Pi's 

can be extended to an ordering o f  the function field of  V over M, then V(M) is Zariski- 

dense in V. 

(ii) For every absolutely irreducible polynomial f E M[ TI,... ,  Tr, X] for which there 

exists an a o E M  r such that flao, X) changes sign on M with respect to each o f  the Pi's, 

and for  every 0~=g E M[T], there exists an (a, b) E M r+ 1 such that fla, b) =0 and g(a)+0. 

Proof. (i) Use Rabinovitz  trick (cf. [4, L e m m a  3.3]). (ii) Le t  q , . . . ,  tr be r algebra- 

ically independent  elements over  M. Extend each of  the P; 's  to an ordering of  M(t) such 

that t is infinitesimally close to ao. Hence  if x is an element such that f(t ,  x )=0  we can 

extend Pi to M(t ,x) .  By (i) there exists ( a , b ) C M  r§ such that f ( a , b ) = 0  and 

g(a)4=0. Q.E.D.  

LEMMA 2,2. Let (M, P1 ... . .  Pe) be a PRC field. I f  fEM[T1 ... . .  Tr, X] is an 

absolutely irreducible polynomial for which there exists an ao E M r such that f(ao, X) 

changes sign on M with respect to each o f  the Pi and if  Ui is a Pi-neighbourhood of  ao 

for i=1 . . . . .  e, then there exists an ( a , b ) E M  r+l such that aEU1N. . .NUe  a n d  

f(a,  b)=0. 

Proof. In order  to facilitate notation we carry out the proof  only for r=  1. Let  c b'e 

an element of  M which is Pi-large for i= 1 . . . . .  e. Then there exists a positive integer m 

and polynomials O~:g EM[T1, Tz, T3] and h E [T), T2, T3,X] such that 

f {ao+ 2 1 , 2' X~ = g(T,, T 2, T3) h(T l, T 2, T3,X ) 
\ 

and h is a primitive polynomial  in X. By [8, Lemma 10.3] h is an absolutely irreducible 

polynomial.  Consider  now three elements tl, t2, t3 which are algebraically independent 

over  M, and extend each of  the Pi 's to an ordering of M(q, t2, t3). 

Then ao+(c+t~+t~+t~)-I is Pr-close to ao and therefore h(q, t2, t3,X) changes sign on 

M(q, t2, t3). It follows that if x is a root  of  h(q, t2, t3,X), then Pi can be extended to an 

ordering of  M(q,t2,  t3,X). This implies that there exist ml,m2, m3, b E X  such that 

h(mj,mz,  m3, b)=O. Let a=ao+(c+m~+m~+m~) -1. Then a is e r c l o s e  to ao, for  

i=1 . . . . .  e, and f(a,  b)=0.  Q.E.D.  

The converse  to L e m m a  2.2 is 

LEMMA 2.3. Let ~t=(M, P1 ... . .  Pe) be an e-fold ordered field with the following 

properties: 
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(i) I f  fEM[T~ . . . . .  Tr, X] is an absolutely irreducible polynomial for which there 

exists an aoEM r such that j~ao, X) changes sign on M with respect to each of  the Pi's 

and if Ui is a Prneighbourhood of  ao for i= 1 .. . . .  e, then there exists an (a, b) E M r+ l 

such that aE U1N ... N Ue, and f(a, b)=0. 

(ii) P1 .. . . .  Pe induce distinct order topologies on M. 

Then Jt~ is a PRC field. 

Proof. We prove first that M is P-dense  in/~; .  Let g(S)=Sn+clSn-l+...+Cn be 

a polynomial in M[X] such that g(s)g(t)<i0 for two elements s<i t of M. The polynomi- 

al f (T,X)=Xn+TIXn-I+. . .+Tn is absolutely irreducible and fle, X)=g(X). Hence 

there exists (a, b)EM r+~ such that a is Pl-close to e and f (a ,b)=0.  It follows that 

g(b)=f(c, b) is Prc lose  to zero. Using Van den Dries [18, p. 108], we conclude that M is 

indeed, P;-dense in hT/i. 

Let  now V be an absolutely irreducible variety defined over M, let F be its function 

field over M and suppose that each of the Pi can be extended to an ordering o fF ,  Using 

an M-birational transformation we can assume that V is defined by an absolutely 

irreducible polynomial f E  M[T1 . . . . .  Tr, X] and F=M(t ,  x), where tl . . . . .  tr are algebra- 

ically independent over M and f(t, x)=0. Denote by/?i a real closure o f F  with respect to 

Pi. Then M N ie; is a real closure of M with respect to Pi, and without loss of generality 

we may assume that ~/i=)~N/~i. Then hT/i is an elementary subfield of/~i (cf. [1, p. 

267]). Clearly (af/ax)(t, x)=~o, hence f i t ,X)  changes sign in lei. It follows that there 

exists an ai E/~r such thatflai, X) changes sign on Mi. By (ii) and by the first part of  the 

proof there exists an a0EM r such that f (ao,x)  changes sign on M with respect to each 

of the P,-. It follows by (i) that there exist an ( a , b ) E M  r§ such that f (a ,b )=0 .  

Moreover, a can be taken arbitrarily Prc lose  to a0. In particular it can be chosen such 

that (a, b) is mapped by the birational transformation onto an M-rational point of the 

original variety V. Q.E.D. 

It follows from Lemmas 2.2 and 2.3 that the property of an e-fold ordered field 

(M, P1 ..... Pe) to be PRC can be reformulated by conditions (i) and (ii) of Lemma 2.3. 

The advantage of this reformulation is that theses conditions are equivalent to an 

explicit countable list of sentences in the language ~e. Indeed, condition (i) can be 

rewritten as a list of  sentences using e.g. [10, p. 278]. 

We have therefore proved the following: 

LEMMA 2.4. There exists an explicit set 11 of sentences Of ~e such that an e-fold 



THE ELEMENTARY THEORY OF LARGE e-FOLD ORDERED FIELDS 245 

ordered field (M, P1 . . . . .  Pe) is P R C / f  and only i f  it satisfies 11. In particular ultraprod- 

ucts o f  PRC fields are again PRC fields. 

Another conclusion that can be drawn from Lemma 2.2 and from the proof of 

Lemma 2.3 is 

COROLLARY 2.5. Let (M, PI . . . . .  ee) be a PRC field. Then M is Prdense in ~Iifor 

i=1, ..., e. 

Using the original definition for PRC fields we deduce a uniqueness theorem for 

the orderings. However the advantage of this definition can be recognized only in the 

following section. 

LEMMA 2.6. Let (M, P1,.. . ,Pe) be a PRC field. Then eifl. . . flee---M2+M 2 and 

P1 ..... Pe are the only orderings o f  M. 

Proof. f f  c E P1 N... N Pc, then (0, X/b--) is a simple point of the absolutely irreduci- 

ble equation X2+ y2-c=0 ,  which is contained in each of the fields Mi, for i= 1 . . . . .  e. It 

follows that each of the orderings Pi can be extended to the function field of the 

equation. Hence there exist a, b EM such that a2+b2=c. 

This conclusion implies that if Q is an ordering of M, then Q contains Pl ft... APe. 

The assumption that P1, ..-, Pe induce distinct topologies on M implies, by a theorem of 

Van den Dries [18, p. 90], that Q coincides with one of the P;'s. Q.E.D. 

3. The elementary equivalence theorem for PRC fields 

Let (M, P 1  . . . . .  ee) be an e-fold ordered field and let D be an integral domain that 

contains M. Then D is said to be real and absolutely entire (with respect to the Pi' s) if 

each of the Pi's can be extended to an ordering of D and if M is algebraically closed in 

the quotient field of D. 

Clearly, (M, PI .. . . .  Pc) is PRC if and only for every real and absolutely entire 

integral domain D which is finitely generated over M, there exists an M-homomorphism 

go: D---~M. We use this observation as a motivation for the following definition. 

An e-fold ordered field (F, P1 ..... ee) is said to be hyper real closed (abbreviated 

HRC) if for every real and absolutely entire integral domain D which is countably 

generated over F there exists an F-homomorphism go: D ~ F .  

Obviously, every HRC field is a PRC field. Conversely, every ~l-saturated PRC 
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field is HRC. In particular, by Lemma 2.4, every non-principal ultra-product on a 

countable index set of PRC fields is an HRC field (cf. [10, Lemma 1.2]). 

Our main algebraic tool in analysing PRC fields is the following analogue to [10, 

Lemma 2.1]. 

LEMMA 3.1. Let (E, P1 . . . . .  Pe) be a countable e-fold ordered field and let 

(F, Q1 ..... Qe) be an HRC field. Let 6 i and ~i be involutions in G(E) and G(F) that 

induce ei and Qi on E and F respectively. Suppose that L is a common, subfield o f  E 

and F. Suppose further that there exists a homomorphism qD: G(PO--*G(E) such that: 

(a) Res L ~o)=ResL, a for every a ~ G(IO. 

(b) q~(~i)=eifor i=1 ..... e. 

Then there exists an L-embedding ~: E,--~F such that: 

(i) dP(q)(o)x)=a~(x) for  every x ~ E and every a ~ G(P-). 

(ii) r for  i= 1 .. . . .  e. 

(iii) The restriction o f  r to E gives an embedding o f  (E, P1 . . . . .  Be) into 

(F, Q1 ..... Qe). 

Proof. Without loss of generality we may assume that/~ is free from F over s 

Then/~ is also linearly disjoint from ,~ over s and hence every a E G(F) can be uniquely 

extended to an element 0 E ~(E,F/EF) such that 

ox if x E P  
Ox= ~ a ) x  if x~/~. 

The map g~-~d is an embedding of G(F) into ~J(EF/EF) whose inverse is the restriction 

map. Denote by D the fixed field of the image of G(F). Then Res: ~I(E[:/D)---~G(F) is an 

isomorphism and hence D N/~=F and DF=/~F. 

For every l ~ i ~ e  let Ei=E(ei) and Fi=F(~i). Then/~i and/~i are real closed and by 

(a) and (b) s 1 6 3  N Ei=L(ei) =s = s  N Fi is also real closed. It follows that there exists 

an ordering Pi Qi of E, if'i that extends the orderings Pi and Qi of gi and Fi, respectively. 

In addition/~=/~i(X/-1 ) and F = # i ( X / - 1  ), hence / ~ = / ~ i ~ . ( X / - 1  ). It follows that 

~(EF/F, iFi) is a group of order 2, generated by (i. In particular it follows that D~_Eif;i. 

The restriction of Pi Qi to D is therefore an ordering that extends Qi. 

Now/~/~ is an algebraic extension of D. Hence/~_/~/~=D[/~] =F[D]. Every element 

x E/~ can be therefore written in the form 

x=Xyjdj ,  where yjEF;djED. (3.1) 
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The set Do of all the dj appearing in the expressions (3.1) (one expression for every 

x E/~) is countable, s ince/~ is, and /~ / e [Do] .  The ring F[Do] is a real and absolutely 

entire domain which is countably generated over F. Hence there exists an F-homomor- 

phism ~0: F[Dol---~F. Also, F[Do] is linearly disjoint from P over F. Hence ~p can be 

extended to an /Lhomomorph i sm ~b: F[Do]---~/5. It satisfies 

~b((rx) = o~b(x), for every oE G(F) (3.2) 

and for every x that belongs to F or to Do. It follows that (3.2) is true for every 

x E F[D0] and in particular for every x E/~. 

Let  ~ = R e s ~ .  Then �9 is an/~-embedding of /~ into F that satisfies (i), hence it 

satisfies (ii) and (iii) too. Q.E.D. 

THEOREM 3.2. Let (E, Pl . . . . .  Pe) and (F, Q1 . . . . .  Qe) be two PRC fields. Let ei and 

~i be involutions in G(E) and G(F) that induce Pi and Qi on E and F respectively. Let L 

be a common subfield of  E and F respectively and suppose that there exists an 

isomorphism q~: G(F)---~G(E) such that: 

(a) ResL q~(o)=Resccr for every oE G(F). 

(b) qg(~i)=eifor i=1 . . . . .  e. 

Then (E, P1 .... , Pe) is elementarily equivalent over L to (F, Q1 ..... Qe). 

Proof. In every sentence of ~e(L) there appear only finitely many elements of L. 

We can therefore suppose that L is a countable field. Secondly, by going over to non- 

principal ultrapowers with respect to a countable index set we may assume that 

(E, P1 . . . . .  e e )  and (F, Q1 . . . . .  Oe) are HRC fields. (Here we use the remarks preceeding 

Lemma 3.1.) 

By a repeated use of the Skolem-Lrwenheim theorem together with Lemma 3.1 we 

can construct by the go and forth method two elementary submodels (E',P~, ...,P'e) 

and (F',  Q] . . . . .  Q') of  (E, P1 . . . . .  e e )  and (F, Ql . . . . .  Oe) respectively, which are iso- 

morphic over L, (cf. the proofs of Lemma 2.2, Lemma 3.1 and Theorem 3.2 of [10]). It 

follows that 

(E, P1 .. . . .  Pe) =--L(F, Ql .. . . .  Qe). Q.E.D. 

COROLLARY 3.3. Let (E, P1 . . . . .  e e )~_(F ,  Ol  . . . . .  Qe) be two PRC fields. I f  

Res: G(F)--~G(E) is an isomorphism, then (E, P1 ..... Pe) is an elementary submodel o f  

(F, Q1 . . . . .  Qe). 
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4. Geyer-fields 

Denote by D,  the free product  in the category of groups of  e copies of  Z/2Z. Consider 

its completion /)e =limDe/N, where N runs over  all the normal subgroups of  finite 

i n d e x . / ~ e  has a system of  e generators el . . . . .  e~ satisfying e2=...=eZe = 1. If xt .....  Xe are 

involutions in a profinite group G, then the map ei~xi, i= 1 . . . . .  e, can be extended to a 

homomorphism of  ~)e into G. Indeed,  every  system of e involutions that genera tes / )e  

has this property.  Thus /~e  is the free product  in the category of  profinite groups of  e 

copies of  Z/2Z. It follows that a finite group H is a homomorphic  image of / )~  if and 

only if it is generated by e involutions. Conversely:  

LEMMA 4.1. I f  a profinite group G satisfies "a finite group H is a homomorphic 

image o f  G if and only i f  it is generated by e involutions", then G is isomorphic to 19e. 

Proof. See e.g. Schuppar  [17, Satz 2.1]. Q.E.D.  

LEMMA 4.2. / f  el . . . . .  ee are involutions generating l)e then no two of  them are 

conjugate. 

Proof. Indeed the map of  el . . . . .  ee onto a basis of  (Z/2Z) e can be extended to an 

epimorphism o f / ) e  onto (Z/2Z) e. Q.E.D.  

PRC fields (M, P1 . . . . .  Pe) for  which G(M)~I~)e are called Geyer-fields of corank e. 

The motivation for this name comes from a theorem of  Wulf-Dieter Geyer ,  where 

'a lot '  of  e-fold ordered  fields are proved to have / )e  a s  their absolute Galois group. For  

Geyer  fields we have the following stronger form of Lem m a  2.6. 

LEMMA 4.3. Let (E, P1 .. . . .  Pe) be a Geyer-field and let el . . . . .  ee be involutions 

that generate G(E). Then P1 n... APe=E x2 and the orderings orE  induced by el . . . . .  ee 

coincide (possibly after a permutation) with P1 ... . .  Pe. 

Proof. The orderings Q1 . . . . .  Qe of  E induced by el . . . . .  e e are distinct. Indeed,  if 

Qi=Qj, then e i is conjugate to e i in G(E), hence i=j, by Lemma 4.2. 

If  xEPIN. . . f lPe,  then x is a square in IEi=E(ei), for i = l  . . . . .  e. Hence  

~r-x-~/~l A... N/~e=E, i.e. x E E  2. 

It follows from Van den Dries [18, p. 90], that P1 . . . . .  Pe are the only prderings of  

E. Hence  (P1 . . . . .  Pe}={Q1 ..... Qe). Q.E.D.  

Using the characterizat ions of  J~e given by Lemma 4.1 and imitating the arguments 

in section 5 of  [10], one can write down a sequence of  sentences in ~e such that a field 
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E satisfies this sequence if and only i f  G(E)-~19 e. If  we combine this sequence with the 

sequence 17 of  L e m m a  2.4 we obtain an elementary characterization of Geyer  fields. 

LEMMA 4.4. There exist an explicit set FIe o f  sentences o f  Sfe such that an e-fold 

ordered f ield (E, PI . . . . .  Pe) is a Geyer-field o f  corank e i f  and only i f  it satisfies IIe. 

5. The elementary equivalence theorem for Geyer-fields 

Let  ~=(E,  P1 . . . . .  Pc) be an e-fold ordered field and let K be a subfield of E. Then 

/s ~=( / (NE, /~NP1,  . . , / s  is a substructure of ~. 

LEMMA 5.1. Let  g'=(E, QI . . . . .  Qe) and ~ ' = ( E ' ,  Q] . . . . .  Q') be two e-fold ordered 

fields and let ~ = ( K ,  P1 . . . . .  ee) be a common  substructure. I f  ~=--ir then 

Kn ~=KRn ~'. 

Proof. The p roof  applies a general principle in the theory of  models which was 

communicated to the author by Saharon Shelah. 

Le t  al . . . . .  an be elements of  /( 'NE and denote by q~o(X1 . . . . .  An) the formula 

[f1(X1)=OA...Afn(Xn)=O], where  O:#f,.EK[Xi] is the monic irreducible polynomial 

such that fi(ai)=O. For  every  quantifierfree formula q~(X1 . . . . .  An) in ~e(K) such that 

~ ~0(al . . . . .  an) denote  by A'(q~) the set of  all n-tuples (a~ . . . . .  a ' ) E E  'n such that 

~'~  q~o(a],.,.,a'~)Aq~(a] . . . . .  a ') .  Clearly A'(r is a finite non-empty set. Also, if 
v v " t (a] . . . . .  a ' )  EA'(q0), then al . . . . .  an E K N E  a n d / ~ N E '  ~ q~o(a')Aq~(a'). The intersection 

B'(al  . . . . .  a ,)  of  all the sets A'(q0) is a non-empty finite set, by e.g. the compactness  

theorem. Also, if (a~ . . . . .  a'n)EB'(al . . . . .  an), then (a] . . . . .  a ' _ l ) E B ' ( a l  . . . . .  an_O. 

Using compactness  arguments once more one concludes the existence of  a map 

f'. Is such that if al . . . . .  anEI~NE and if q0(X~ . . . . .  Xn) is a quantifier-free 

formula of  5re(K) such that /~N ~ r q~(aa, . . . ,an),  then I~N~' ~ cp~a~) . . . . .  f (a,)) .  It is 

now not difficult to see that f is the desired isomorphism. Q.E.D.  

In o rde r  to go in the other  direction we need an analogue to a lemma of  Gaschfitz 

that plays an essential role in [10]. We start with some definitions. 

Let  (E, PJ . . . . .  Pc) be an e-fold ordered field and let F be a normal extension of  E 

which is not formally real. Then  (13, P(fli)) is said to be an ordering-pair for  F/E iffli is 

an involution of  ~(F/E) and P(fli) is an ordering of  F(fli). I f  in addition, P(fli) extends Pi, 

then (fli, P(fli)) is said to be an ordering pair for  F/(E, Pi). 

An e-tuple ([3, P(l$))=(ffll,P(fl0) . . . . .  (fie, P(fle))) is said to be an e-tuple o f  ordering 

pairs for  F/(E, P b . . . ,  Pe) if (fli, P(fli) is an ordering pair for F/(E, Pi), for i= 1 . . . . .  e. 

17-822908 Acta Mathematica 149. Imprim6 le 25 Avril 1.983 
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I f N  is an additional normal extension of E that contains F, then an e-tuple (~,, P(~/)) 

of ordering pairs for N/(E, P1 ... . .  Pe) is said to be an extension of (l~, P([$)) if ReSF~i=fli 

and if FNP(Ti)=P(fli) for i= 1 . . . . .  e. 

LEMMA 5.2 (D. Haran). Let (E, P) be all ordered field and let F be a finite normal 

extension o f  E which is not formally real. Then the number o f  ordering-pairs (~, P(e)) 

for F/(E, P) is equal to �89 IF: E]. 

Proof. Let /~  be a real closure of (E,P) and denote L=FN/~, Q=LN/~ x2. Then 

L=F(e), where e is an involution of ~(F/E), since F is not formally real, and Q is an 

ordering of L that extends P. The set Z of all E-isomorphisms of L into/~ has ~ [F: E] 

elements. To every a EZ there corresponds an ordering-pair for F/(E, P), namely 

(e o, QO). If or, f E Z  and (e ~ Q~ Q~), then err -1 is an automorphism of L over E 

that leaves Q invariant. It can be extended to an automorphism of E/E, and hence u=r.  

If (~, P(~i)) is an ordering-pair for F/(E, P) and F(6) is a real closure of (F(6), P(6)), then 

F(6) is also a real closure of (E, P). Hence there exists a 0 E G(E) such that F(6) =/~o. 

Then (6, P(6))=(e ~ Q~), where a=ResL 0. It follows that the number of ordering-pairs 

for F/(E, P) is equal to tZI=~ [F: E]. Q.E.D. 

LEMMA 5.3. Let (E,P 1 .. . . .  ee) be an e-fold ordered fe ld ,  let F be a normal 

algebraic extension o f  E which is not formally real and let (~1, P(ll)) be an e-tuple o f  

ordering pairs for F/(E, Pb . . . ,  Pe) such that fll . . . . .  f i e  generate ~(F/E). 

Let N be a normal extension o f  E that contains F. Suppose that there exists an e- 

tupte o f  ordering pairs (~, P(~)) for N/(E, PI ... . .  Pe) such that ~1 . . . . .  ( e  generate 

~g(NIE). 

Then there exists an e-tuple (e, P(e)) of  ordering pairs for N/E that extends (f~, P(I~)) 

such that el .. . . .  ee generate G(N/E). 

Proof. Using compactness arguments twice one is reduced to the case where both 

F and N have finite degrees over E. 

Denote by J the set of all fields K between E and N such that FNK=E and 

P1 .. . . .  Pe can be extended to orderings of K. 

Let KEJ.  Denote by J(K, P) the set of all e-tuples Q=(Q1 .... > Oe) of orderings of 

K that extend P. 

For every Q in J(K, P) there exists a unique e-tuple (~,, P(~,)) of ordering pairs for 

L/(K, QI ... . .  Qe) that extends (1~, P([i)) (see Section 1) where L=FK. Denote by 
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H(K, Q,(y, P(y)) the set of all e-tuples (e, P(e)) of ordering pairs for N/K that extend 

(y, P(y)). By Lemma 5.2 we have 

IH(K, Q,(~,, P(~,))[ = (�89 L(~q)]) e = [N: L] e (5.1) 

Note that V1 ... . .  Ve generate fg(L/K). Hence, it makes sense to consider the set 

I(K, Q,(,/, P(,/))) of all (e, P(t~)) in H(K,Q,(y, P(y)) that Satisfy K=N(e~ ..... ee). 

Claim. If (y', P(y')) is an additional e-tuple of ordering pairs in L/(K,Q) such that 

y] ..... y" generate ~g(L/K), then I(K, Q,(y', P(y'))) has the same number of elements as 

I(K, Q,(y, P(y))). In other words, ilK, Q)=tl(K, Q,(y, P(~')))I does not depend on 

(Y, P(Y)). 

We prove our claim by induction on [N: K]. Suppose the claim has already been 

proved for every K in J that properly contains E. We prove that also [I(E, P,(I], P(~)))[ 

does not depend on (1~, P(I~))- Indeed, let (e,P(e)) be in H(E, P,(IL P(I3))). Then 

K=N(el . . . . .  s  belongs to J. Let Qi=KflP(ei) and ~'i=ReSFKei and P(yi)= 

FK(~i) n P(ei) for i= 1 . . . . .  e. Then Qt ... . .  Qe are orderings of K, (,/, P(~,)) is the unique e- 

tuple for FK/(K, Q1 ... . .  Qe) that extends (I~,P(I~)) and (e,P(e)) belongs to 

I(K,Q,(y, P(~,))). Obviously, these objects are uniquely determined by (t, P(E)). It fol- 

lows that 

H(E, P,(fl, P(I]))) = LI LI I(g, Q,(y, P(y))) 
K ~ J  Q E J(K, P) 

Obviously J(E, P) contains only one element, namely P. Hence, by an induction 

hypothesis and by (1) 

[N:F]e=[I(E'P'(~'P([I))I+ E E f(K,Q) 
K E J  QEJ(K, P) 
K,I=E 

and our claim is proved. 

Return now to the given e-tuple (~, P(~)) and denote its restriction to F by 

(~', P(~')). Then r .. . . .  r generate ~(F/E) and (~, P(~)) belongs to I(E, P,(~', P(~'))). It 

follows that I(E, P,(I~, P(I~))) is not empty either. Every e-tuple (~, P(t)) in it extends 

(1~, P(I~)) and el, . . . ,  s  generate ~(N/E). Q.E.D. 

Remark. The proof Lemma 5.3 is modeled after an unpublished version of the 

proof of Gaschiitz' lemma, due to Peter Roquette. 

THEOREM 5.4. Let ~=(E, P1,...,Pe) and ff=(F, Q1 ... . .  Qe) be two Geyer fields 
and let L be a common subfield of E and F, I f  [~ f3 ~-L s fl ~, then ~---L ~- 
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Proof. Without loss of  generality we may assume that / ;n ,=LnY= 
(M, S1 ... .  , Se). Let  el . . . . .  ~e be involutions that generate G(E). By Lem m a  4.3 they 

induce P1 . . . . .  e e ,  respect ively,  on E. Let  7i=Resl:ei, for i=l,  ..., e. Then 71 . . . . .  ~,, are 

involutions that generate G(M) and induce $1 . . . . .  Se on M, respectively. The fields 

M(y3 and F are linearly disjoint over  M, hence there exists an e-tuple of ordering pairs 

(6, P(~)) for  ~IF/(F, Q1 . . . . .  Q,) that extends (~/, P(~,)). Again, by Lem m a  4.3, there exist 

involutions ~i . . . . .  ~; that generate G(F) and induce Q1 . . . . .  Q~ on F,  respectively.  By 

Lemma  5.3 there exists an e-tuple of ordering pairs (~, P(~)) for [:/F that extends 

(& P(6)) such that ~l . . . . .  ~e generate G(F). The map ~ e i  for i=1 . . . . .  e can be 

extended to an isomorphism cp: G(F)---~G(E) such that ResLg(a )=Resge ,  since both 

G(E) and G(bO are isomorphic to De. It follows, by Theorem 3.2, that ~=L if- Q.E.D.  

COROLLARY 5.5. I f  (E, P1 . . . . .  Pe)~-(F, Q1 . . . . .  Qe) are two Geyer-fields such that 

E is algebraically closed in F, then (E, PI . . . . .  Pe )  is an elementary substructure of  

(F, Q1 . . . . .  Oe). 

6. The existence of Geyer-fields 

We start by proving some new technical lemmas on the normalized Haar  measure/~ of 

the absolute Galois group of  a field K. 

LEMMA 6.1. Let K be a field, let Kl, K2, ..., Kn be finite separable extensions of 

K, linearly disjoint over K. Denote by K' the composition of  K1 . . . . .  K n and let L be a 

finite Galois extension of  K that contains K'. Let el . . . . .  on E Cg(L/K). Then 

1 1 
[L:-----~-#{eE ~d(L/K)lResKiei = ResK e i for i= 1 . . . . .  n} = [g,----7-_~. ~ 

Proof. Our assumption implies that K'~KK1 @KK2QK...  @~:Kn. Hence  there 

exists a unique K-isomorphism o' of K'  into L such that Resr e '=ResKei  for  

i= 1 . . . . .  n. This isomorphism can be extended exactly in [L: K'] ways to a K-automor-  

phism of  L. Our formula follows. Q.E.D.  

COROLLARY 6.2. Let K be a field, let K 1 ,  . . . .  g n  be finite separable extensions of  

K, linearly disjoint over K and let ol . . . . .  on E G(K). For  i= 1 . . . .  , e denote 

Si = {eE G(K)lResre  = ResK oi} 
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Then 

1 
- - -  

[Ki: K] 

and $1, ..., S ,  are t~-independent. 

LEMMA 6.3. Le t  K be a f i e ld  and let K1, Kz, 1(3 . . . . .  be a linearly disjoint sequence 

o f  f inite separable extensions o f  K. Le t  also 

{(oil,oi2 . . . . .  oi~)}i=1,2,3 . . . .  ) be a sequence o f  e-tuples o f  elements o f  G(K). For 

every i denote 

S i = {(o I . . . . .  o~) E G(K)eIResKoj = ReSKO 0 f o r j  = 1 . . . . .  e}. 

Then 

/Ld S i = 1 if 1 
i i=1 [/~i: g ]  e 

Proof. Corollary 6.2 implies that the sequence $1, Sz, $3 . . . .  is k~-independent and 

that t~(S~)=[Ki: K] -e. Our conclusion follows now in the usual way (cf. [7, Lemma 

1.10] or [9, Lemma 1.1]). Q.E.D. 

Suppose now that K is a countable Hilbertian field equipped with e-orderings 

P~ . . . .  , Pc. Let  /s . . . . .  /~e be some fixed real closures of K that induce the orderings 

P1 . . . . .  Pe, respectively. For  every al . . . . .  Oe E G(K) let Ko =/~l ~ N... N/~eeand denote by 

Po~ . . . . .  Poe the orderings of Ko induced by /(~ . . . . .  /~e, respectively. Then 

YE,,=(K~ P~ . . . .  , Poe) is an e-fold ordered field that extends YE=(K, P1 . . . . .  Pe). 

LEMMA 6.4 Le t  ~ = ( L ,  QI . . . . .  Qe) be a finite extension o f  Y{. Le t  

fEL[T1 . . . . .  Tr, X] be an absolutely irreducible polynomial and let 04=gE 

L[TI . . . . .  Tr]. Suppose that there exists an ao E L ~ such that f(a0, X) changes sign on L 

with respect to each o f  the Qi's. Le t  Us be a Qrneighbourhood o f  ao in U .  Then for  

almost all (ol . . . .  , (re) E G(K) e for  which Q1 . . . . .  Q~ are induced by I~l ~ . . . . .  I~e ~, respec- 

tively, there exists an (a,b) CK ~+1 such that aE U~ N ... N Ue, f ( a ,b )=0  and g(a)=~0. 

Proof. Let  s be a real closure of L that induces Q;. Then there exists a r; E G(K) 

such that s  =/~i .  If  o; E G(K) is an additional element such that/~/i  induces Q; on L, 

then there exists a 2 E G(L) such that/~/i=/~i~.  Hence oi=r/2,  since /~/ has no K- 
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automorphisms besides the identity (cf. Ribenboim [15, p. 163]). Conversely /~; 

induces the ordering Qi on L for every 2 E G(L). It follows that (rl G(L) ..... re G(L)) is 

the set of all e-tuples (ol . . . . .  ae) in G(K) e for which Qi is induced by /~.i for i= 1 . . . .  , e. 

Without loss of generality we may assume that f(a,X) changes sign with respect to 

Qi for every a fi Ui for i= 1 . . . . .  e. By Lemma 8.4 of Geyer [5] and since L is Hilbertian 

the set H n  U1N... n Ue is not empty for every Hilbertian set H in L r. Using the fact that 

f is absolutely irreducible one can find a sequence al, az, a3 . . . . .  of elements L ~ and a 

sequence bl, bz, b3 .... of elements of s such that 

(a) ajC U~ n ... n Ue and f(aj, X) is an irreducible polynomial over L of degree 

n=degx fand  changes sign on L with respect to Qi for every i and j ;  

(b) flaj, bj.)=0 and g(aj)=~0 for every j ;  

(c) denoting Lj=L(bj), we have that LI, L2, L3 . . . .  is a linearly disjoint sequence of 

extensions of  L of degree n (cf. the proof of Lemma 2.2 of [7]). 

Condition (a) implies that each of the Qi can be extended to an ordering Q0 of Lj. 

Let / ]0  be a real closure of Lj that induces Qe. Then/]u induces Q,. on L. It follows that 

there exists 00-E G(L) such that s163 Denote by A the set of all (21 . . . . .  ~,~) E G(L) e 

for which there exists a j  such that 2~ coincides with Q~I on Lj for i= 1 . . . . .  e. By Lemma 

6.3, A differs from G(L) ~ only by a zero set. In addition, the map a~--~o -z is measure 

preserving, hence 

Z =  {(a, . . . . .  Oe)~G(K)el3(2, .....  ~,e) EA: ai=ri). ~1 for i=1 . . . . .  e) 

differs from the set (rl G(L) . . . . .  r e G(L) only by a zero set. 

Le t  (a l , . . . ,ae)s  Then there exists (21 . . . . .  2e)EA such that a;=ri2,71 for 

i= 1 . . . . .  e. By construction, there exists a j  such that ;t; coincides with 0~ 1 on Lj, hence 
,.. ~ . ' -R~'~o'-E"'~L there exists a riEG(Lj) such that 2i=v[lo~ 1 for i=1 . ,e.  Hence --i - - - i  - - o - - i .  

Hence (aj, bj) ~ K~o +1. Q.E.D. 

COROLLARY 6.5. Almost  all (o)EG(K) e have the following property: I f  

f E  Ko[T1 ... . .  Tr, X] is an absolutely irreducible polynomial for which there exists an 

ao E K~such that f(ao, X) changes sign on Ko with respect to each of  the orderings Poi, 

if Ui is a Poi-neighbourhood o f  a0 for i= 1 .. . . .  e, and if  O~g E Ko[ TI .. . . .  Tr], then there 

exists an (a, b)E K~ +1 such that a E U 1 N . . .  f] U e ,  f i n ,  b)=0 and g(a)=~0. 

Proof. Here one uses the countability of  K together with the observation that if f is 

as above, then there exists a finite extension L of K over which everything happens. 

Compare also the proof of  Theorem 2.5 of  [7]. Q.E.D. 
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LEMMA 6.6. The orderings P~ . . . . .  P~e induce distinct topologies on Ko for 
almost all ~ E G(K) e. 

Proof. It suffices to prove that for every l<.i<j<.e, for every dE K such that 0 <id, 
O<jd and for almost all oE G(K) e 

(1) there exists a zEK~ such that -d<iz<id  and 1 - d  <jz<jl+d. Also, without 

loss, let i=I  and j=2.  

Consider the polynomial g(Z)=Z2-Z and consider the absolutely irreducible 

polynomial fiX, Y,Z)=Z2-XZ+ Y. As in the proof of Lemma 6.4 we construct a 

sequence of triples (aj, bj, cj) f o r j = l ,  2, 3 . . . . .  such that 

(a) (aj, bj) E K•  are Pk-Close to (1,0) for k= 1~ . . . . .  e, 

(b) gj(Z)=Z2-ajZ+bj is irreducible having cj as a root, 

(c) the sequence Lj=K(cj), j =  1,2, 3 .... of quadratic extensions of K is linearly 

disjoint. 

The polynomial gj(Z) us Pk-close to g(Z)=Z(Z- 1). Hence, in every real closure R 

of K that induces Pk there exists two roots z~ and zz of gj(Z) satisfying - d  <kz~ <kd 

and 1 - d  <kz2<k l+d .  In particular LjcKo for every t lEG(K) e. Taking R=/s the 

map cj~-->zi induces an ordering P~j of Lj such that -d<~jcj<~jd. Similarly the map 

cj-->z2 induces an ordering P2j of Lj such that 1-d<2jcj<2jl+d. Let s and/]2j be 

real closures of Lj that induce the orderings PIj and P~-, respectively. Then there exist 

Olj, Q2j~-G(K) such that Lkj= /~k k~ for k= l ,2 .  

By Lemma 6.3 and by (c), for almost all the e-tuples (th, ~r2 . . . . .  Oe) E G(K) e there 

exists a j such that oh coincides with 9kj on Lj, for k= 1,2. Consider such an e-tuple. 
- k _  -2k Then there exist 21,).2CG(Lj) such that ak=pkj2k for k=l ,2 .  Hence /~k--Lkj and 

therefore/~k k induces the orderings Pkj on Lj. Recalling that cj E Ko we obtain that 

satisfies (1). Q.E.D. 

To Lemmas 2.3, 6.5 and 6.6 we add now the following remarkable result of Wulf- 

Dieter Geyer: 

G(K~,) -~ JDe for almost all o E G(K) e 

(cf. [5, Theorem 4.3]) and conclude: 

THEOREM 6.7. Let K be a countable Hilbertian field with e orderings Pa . . . . .  Pc. 

Then 5~o is a Geyer field for almost all ~ E G(K) e. 
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7. The theory of almost all 3'~,, 

We continue to consider an e-fold ordered field (K, P~ . . . . .  Pe), where K is a countable 

Hilbertian field, and retain the convent ion made in Section 6. 

Recall that an ultrafilter ~ of  G(K) e is said to be regular, if @ contains all subsets 

of G(K) e of  measure 1 (cf. [10, p. 287]). 

LEMMA 7.1. For every ~ E G(h0 e there exists a regular ultrafilter D of  G(K) e such 

that ~{r I~ N flS{o/~). 

Proof. Let  L be a finite Galois extension of  K. For  every  ~. E ~d(L/K) we denote  

S(L, 2) = {oEG(K)elReffLai = (ResLri)). for i =  I . . . . .  e} 

and let S(L) to be the union of  the S(L, ~.)'s. Clearly S(L, ).) and hence S(L) are non- 

empty open subsets of  G(K) e. If  L '  is a finite Galois extension of  K that contains L, 

then S(L')~_S(L). It follows that the intersection of  finitely many sets of  the form S(L) is 

a non-empty open set. By [10, L e m m a  6.1] there exists a regular ultrafilter ~ of  G(K) e 

that contains all the sets S(L). 

Let  F=FIKo/~, Qi=I-IPoi/~ and f ' , .=PNII/~i /~.  Then ,~=(F, Q1 ... . .  Oe)=Ilff{o/~ 

a n d / ' i  is a real closure of  (F, Qi). 

Consider a finite Galois extension L of  K. Then S(L) E 9.  Hence  there exists a 

2ECg(L/K) such that S ( L , 2 ) E ~ .  If oES(L,2) ,  then LNI~oi=(LNI~i) ~, hence 

LN/~ i= (Ln /~3  z for i=1 . . . . .  e. 

Le t  now L run over  all the finite Galois extensions o f  K. Using compactness  

arguments one obtains an element  2 E G(K) such t ha t  KNFi=I~'tri for i= 1 . . . . .  e. Hence  

/'~ N ,.7~ K ff'C,r. Q.E.D.  

THEOREM 7.2. Let Y(=(K, P1 . . . . .  Pe) be an e-fold ordered field such that K is 

countable and Hilbertian. Then a sentence 0 o f  5re(K) is true in all Geyer fields of  co- 

rank e that extend ~ if  and only i f  0 is true in Y{~, for almost all ~ E G(K) e. 

Proof. One direction follows from Theorem 6.7. 

�9 Suppose in the other  direction that 0 is true in ~o  for almost all o E G(IO e and let 

~=(E,  Q1 . . . . .  Qe) be a Geyer  field that extends YL Then/~N ~=Y(~ for some x E G(IO e. 

By Lemma  7.1, there exists a regular ultrafilter ~ of G(K) e such tha t /~  N I I X ~ / ~ K  5T~. 

It follows from Theorem 5.4 that lqK~/~=K ~. The sentence 0 is true in IIXo/~, since 

is regular, hence it is true in ~. Q.E.D.  
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8. The probability of a sentence to be true 

Let  Yd=(K, P1 . . . . .  Pe) be again an e-fold ordered field with K a countable Hilbertian 

field. For  every  sentence 0 of  ACe(K) denote  A(O)={~EG(K)e[Y(~, ~ 0}. The measure of  

A(O), which we shall prove  to exist, can be viewed as the probability of  0 to be true 

among the Geyer  fields. 

Denote  by Mo the family of  all sentences of  the form A(2o), where 20 is a sentence 

of  the form 

(1) 3X1 ... 3X,,cp(X1 . . . . .  X , ) ,  where q~(X1 . . . . .  X,)  is a quantifier-free formula of  

~e(K) for which there exist finitely many n-tuples a~ . . . . .  am in /~" such that if 

~=(L ,  Q1 . . . . .  Q,) is an extension of  Y( and if a is an n-tuple in Ln such that ~ ~ cp(a), 

then a is equal to one of  the ai's. 

Note  that i f  L=(L,  Q1 . . . . .  Qn) and ~L~~ ', QI . . . . .  Q~,) are two extensions of  Y(, if 

a E L "  and if L~_L', then ~ ~ cp(a) if and only if ~ '  ~ r Also, we have seen in the 

proof  of  Lemma  5.1 that if ~ and ~ a r e  two extensions of  5~ and if they satisfy the same 

sentences (1), t h e n / ~ n  ~ - K / ~ n  ~.  

Denote  by ~/ the  Boolean algebra of  G(K) ~ generated by ~/0 and all the zero sets. If  

0 is an arbitrary sentence of  ~ ( K ) ,  then A(O) belongs to M. Otherwise there exist two 

regu la r  ultrafilters 91 and 92 of  G(K) ~ such that 9 1 n ~ / = 9 2 N M  and A ( 0 ) E g l  and 

A(0)~i92 (cf. the p roof  of  Theorem 7.4 in [10]). Hence  I~nFIY(o/91-~-K 

/~flIIY(o/92. It follows by Theorem 5.4 that IlYdJ~I-----KIJY(o/g2, a contradiction. It 

follows that there exists a sentence 2 which is a Boolean combination of  sentences of  

the form (1) such that A(O) differs from A(2) only by a zero set. 

By construct ion there exists a finite Galois extension L of  K a n d  there exist finitely 

many extensions ff{i=(Ki, Pil . . . . .  Pie), i= 1 . . . .  , s of  Y{ such that K i l L  and such that 2 is 

true in ~o  if and only if LNg{o=~.,  for some l<.i<.s. It follows that A(2) is an open- 

closed subset of  G(K) e and that/~(A(2)) is a rational number  (see also the proof  of  

Theorem 7.5 of  [10]). 

We have therefore  proved 

THEOREM 8.1. I f  0 is a sentence o f  Sly(K), then A(O) is a measurable set and 

I~(A(O)) is a rational number. 

9. A decision procedure 

We come now to the case where the basic field is the field Q of  rational numbers and all 

the e orderings are equal to the one Q has. We show that in this case there is a recursive 

procedure  to compute  the rational numbers /z(A(O)). In particular it is possible to 
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determine when ~(A(0))= 1, i.e. when 0 is true in all Geyer-fields. In order  to do it we 

have first to improve L e m m a  5.1. We start with the following notion. 

A test sentence in ~ge(Q) is a sentence of  the form 

( 3 ! X ) [ f ( X ) = O A A a i < i X < i a i + r ] ,  
i=1 (9.1) 

where f E  Q[X], a l . . . . .  ae, r E Q, r>0  and '3  !X' means there exists a unique X. A one 

variable sentence in &re(Q) is a Boolean combination of test sentences.  

LEMMA 9.1. Let  ~ = ( L ,  PI . . . .  ,ee) and ~ ' = ( L ~ , P i  . . . . .  P'e) be two e-fold ordered 

f ields such that L and L '  are algebraic over  Q. I f  ~ and ~ '  satisfy the same test 

sentences, then they are isomorphic. 

Proof. Let  x E L  and let f E Q [ X ]  be an irreductible polynomial such that f (x)=0.  

Then there exist at . . . . .  ae, rE  Q such that 

a i<ix<ia i+r  for i =  1 . . . . .  e (9.2) 

and x is the unique root  o f f  that satisfies these inequalities. By assumption there exists 

a unique x'  EL '  such that f ( x ' ) = 0  and a i<ix '< ia i+r  for  i= 1 . . . . .  e. This x'  then does 

not depend on al . . . . .  ae, r. Indeed,  let also bl . . . . .  be,s be elements of  Q such that x is 

the unique root  of  f i n  L that satisfies b~<x<b~+s for  i= 1 . . . . .  e and let x" be the unique 

element of  L '  that satisfies f(x")=0 and bi<x"<bi+s for i---1 . . . . .  e. Define ci= 

max{ai ,  bi), i=1 . . . .  ,e ,  and t = m i n { r , s ) .  Then x is the unique root  o f f  in L that 

satisfies c~ < ; x < ;  c;+ t for i= 1 . . . . .  e. Both x '  and x" satisfy the same inequalities. Hence  

X p -~-X". 

The map q~: x~,x '  f rom L into L '  is therefore well defined. It satisfies 

ai<ix<iai+r=~ ilk ai<icP(x)<,ai+r 
i=1 i=  1 

for every  al . . . . .  ae, rEQ.  

Clearly 9 maps every  element  of  Q on itself. We show that q0 is additive. Le t  

x ,y ,  z E L  such that x + y = z .  Let  a~, b~, ci, r E Q  such that 

ae<ix<~ai+r and b i<iy<ib i+r  and ci,(iz<ici-k-r, for i =  I, . . . ,e .  

Then 

ai<iq~(x)<iai+r and bi<igo(y)<ibi+r and c~<iq~(z)<~c~+r for  i=1 . . . . .  e. It follows 

that C l - 2 r < l  cp(x)+cp(y) <~ Cl+3r, hence - 3 r < l  qg(z)-(q0(x)+q~(y))<l 3r. This inequality 
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is true for every  r>0 ,  hence q0(z)=q~(x)+q~(y). Similarly one shows that q~ is multiplica- 

tive, preserves the orderings and surjective. It follows that q~ is an isomorphism of  5f 

onto ~ ' .  Q.E.D.  

THEOREM 9.2. The funct ion that assigns to every sentence 0 of  Sfe(Q) the rational 

number lt(A'(O)) is recursive. In particular the theory o f  Geyer-fields o f  corank e is 

(recursively) decidable. 

Proof. As  in Section 8, one concludes that for every  sentence 0 there exists a one 

variable sentence 2, such that A(O)=A(2). Using G6del completeness theorem and 

Lemma 4.4 one can find 2, once 0 is given (cf. [10, the proof  of  Theorem 8.2]). We may 

therefore assume that Q is a one variable sentence. 

In order  to simplify notation assume that 0 is a sentence of  the form (9.1) and f(X) 

is an irreducible polynomial.  For  every  l<~i<-e we check,  e.g. by Sturm's  sequences if 

fiX) has a root  in R in the interval (ai, ai+r). If  there exists an i such that there is none,  

~(A(0))=0. Suppose therefore that the answer is positive. By dividing (ai, bi) in Q to 

subintervals and changing 0 appropriately we can finally assume that each interval 

(al, ai+r) in R contains exactly one root  xi o f f .  

Construct  the splitting field L of f (X)  over  Q. Let  x be a root  off (X) ,  let K=Q(x)  

and let e E Cg(L/K) such that e z= 1 and ex=x. Find an irreducible polynomial g E Q[x], a 

root  y of  which generates L(e). Find a polynomial h E Q[X] such that x=h(y)  and check 

whether  the following sentence is ture in R. 

(3 Y) [g(Y) = 0 Af(h(Y)) = 0 A a i < h(Y) < bd. 

If  this sentence is true and y '  E R satisfies the formula in the brackets,  then the map 

y~--~y' induces an ordering on L(e) and h(y')=x~. In this ordering we have ai<x<bi. We 

do it for  every  l<<,i~e and for every  e as above.  In this way we find all the e-tuples 

(el . . . . .  ee) of involutions in ~(L/K)  such that L(e~) can be ordered and (9.1) is true in 

L(eO N ... NL(ee). If  we take one such e-tuples then all the others will have the form 
O 1 O e (e~ . . . . .  e e ), where  ol . . . . .  oe E ~e~L/K). We can therefore  count  the number  of e-tuples 

(al . . . . .  Oe)E ~(L/K) e for which is true in L(e~ ... NL(e~ The measure /~(A(O)) is 

then this number  divided by [L: Q]~. Q.E.D.  
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