Analytic capacity and differentiability properties of finely harmonic functions

by

ALEXANDER M. DAVIE and BERNT ØKSENDAL

University of Edinburgh, Scotland Agder Distriktshøgskole, Kristiansand, Norway

1. Introduction

Let f be a finely harmonic function defined on a finely open set V in the complex plane C. In this paper we investigate the problem: To what extent is f differentiable in V?

There are of course several ways of interpreting the question. Debiard and Gaveau [4], [5] have proved the following: Let $K \subset C$ be compact and let H(K) denote the uniform closure on K of functions harmonic in a neighbourhood of K. Then H(K) coincides with the set of functions continuous on K and finely harmonic on the fine interior K' of K. And if $g \in H(K)$ is the uniform limit of functions g_n harmonic in a neighbourhood of K, then ∇g_n converges in $L^2(m)$ to a limit ∇g , which does not depend on the sequence chosen. Here and later m denotes planar Lebesgue measure. In the other direction they give an example of a compact set K and a point $x_0 \in K'$ such that $|\nabla g_n(x_0)| \to \infty$ as $n \to \infty$.

It was conjectured by T. J. Lyons (private communication) that $\{\nabla g_n(x)\}$ always converges outside a set of zero *logarithmic* capacity. In section 3 we prove that this conjecture fails: For any compact set E with zero *analytic* capacity, there exists a compact set E with $E \subseteq E'$ and functions E0 uniformly on E1 uniformly on E3 uniformly on E4.

In section 4 we show that parts of the proof of Theorem 1 can be used to prove the following estimate for analytic capacity γ (Theorem 2): If E, F are compact sets and $0 < \alpha < 1$, then

$$\gamma(E) \leq A_a [\gamma(E \setminus F) + C_a(F)^{1/a}],$$

where C_{α} is the capacity associated to the potential $|z|^{-\alpha}$ and A_{α} is a constant depending only on α . This result in turn implies that any compact set of Hausdorff dimension less than 1 is γ -negligible, i.e. negligible with respect to approximation by bounded analytic functions (Theorem 3).

In section 5 we prove a partial converse of Theorem 1. More precisely, we prove that if $\{f_n\}$ are functions harmonic in a neighbourhood of K converging uniformly to a function f such that $|f_n-f|<2^{-n}$ on K, then for any rectifiable arc J the sequence $\{\nabla f_n\}$ converges a.e. on $J\cap K'$ w.r.t. arc length on J to a limit depending on f but not on the sequence $\{f_n\}$ (Theorem 4). We also prove that $\{\nabla f_n\}$ converges C_1 -everywhere on K', where C_1 denotes Newtonian capacity (Theorem 5).

In section 6 we consider a different interpretation of the question above: Given a finely harmonic function f on a finely open set, what can be said about the set of points where f is finely differentiable? Fuglede [8] has proved, using a theorem of Mizuta [16], that f is always finely differentiable outside a set G with $C_h^*(G)=0$, where C_h^* is the outer capacity associated to the kernel $h(z)=|z|^{-1}\log(1/|z|)$. For completeness we include a proof of this result (Theorem 6). In the opposite direction, we prove that given any compact set E with $C_h(E)=0$, then we can find a finely open set $V\supseteq E$ and a finely harmonic function f on V such that f is not finely differentiable at any point of E (Theorem 7).

2. Some preliminaries

We refer the reader to Helms [11] for information about the fine topology, and to Fuglede [7] for the theory of finely harmonic functions; the latter is used only in section 6.

Let k(z) denote one of the kernels

$$W(z) = \log \frac{1}{|z|},$$

$$R_{\alpha}(z) = |z|^{-\alpha}; \text{ where } 0 < \alpha \le 1,$$

$$h(z) = |z|^{-1} \log \frac{1}{|z|}.$$

Then if $G \subseteq \{z: |z| \le \frac{1}{2}\}$ is a Borel set, the capacity of G (associated to the kernel k(z)) is defined by

$$C_k(G) = \sup \{\mu(E); \mu \in \Gamma_k(G)\}$$

where $\Gamma_k(G)$ is the set of positive measures μ on G such that

$$\int k(x-y) \, d\mu(y) \le 1 \quad \text{for all } x \in \mathbb{C}.$$

If k=W, the corresponding capacity is the *Wiener* capacity, which we denote by C_W . The *logarithmic* capacity, cap, is connected to the Wiener capacity as follows:

$$\operatorname{cap}(G) = \exp(-C_W(G)^{-1}).$$

In particular, cap and C_W have the same null sets. If $k(z)=R_\alpha(z)$ or k(z)=h(z), the corresponding capacities are denoted by C_α and C_h , respectively. If $\alpha=1$ we get the Newtonian capacity C_1 . We refer to Carleson [2] for more information about these capacities.

Let g(t) be a continuous, increasing function on $[0,\infty)$ such that g(0)=0. Let E be a bounded, plane set. For $\delta>0$ we consider all coverings of E with a countable number of discs Δ_i with radii $\varrho_i \leq \delta$ and define

$$\Lambda_g^{\delta}(E) = \inf \left\{ \sum_j g(\varrho_j) \right\},\,$$

the inf being taken over all such coverings. The limit

$$\Lambda_g(E) = \lim_{\delta \to 0} \Lambda_g^{\delta}(E)$$

is called the *Hausdorff measure* of E with respect to the measure function g. If $g(t)=t^{\alpha}$ for some $\alpha>0$, Λ_g is called α -dimensional Hausdorff measure and denoted by Λ^{α} . The *Hausdorff dimension* of the set E is the unique number r such that

$$\Lambda_{\alpha}(E) = \infty$$
 for all $\alpha < r$

and

$$\Lambda_{\alpha}(E) = 0$$
 for all $\alpha > r$.

A set function related to Λ_g is the Hausdorff content

$$M_g(E) = \inf \left\{ \sum g(\varrho_j) \right\},$$

the inf being taken over all coverings of E with a countable number of discs Δ_j with radii ϱ_j . If $g(t)=t^{\alpha}$ we get the α -dimensional Hausdorff content M_{α} . Properties of Hausdorff measure and Hausdorff content can be found in Carleson [2] and Garnett [10].

Finally we recall the definition of analytic capacity: If $K \subset \mathbb{C}$ is compact, the analytic capacity of K, $\gamma(K)$, is defined by

$$\gamma(K) = \sup \{ |f'(\infty)|; f \in B(K) \},\$$

where B(K) is the set of functions f analytic outside K such that $f(\infty)=0$, $|f(z)| \le 1$ outside K.

For a general set E we define

$$\gamma(E) = \sup \{ \gamma(K); K \text{ compact}, K \subset E \}.$$

The analytic capacity plays a crucial role in problems involving approximation by analytic functions. See Gamelin [9], Garnett [10] and Vitushkin [17]. Some of the metric properties of analytic capacity are:

- (1) If K is compact then $\gamma(K) \leq M_1(K) \leq \Lambda_1(K)$.
- (2) There exists compact sets L such that

$$\gamma(L) = 0$$
 and $\Lambda_1(L) > 0$.

(3) For linear, Borel sets E we have

$$\gamma(E) = \frac{1}{4}l(E),$$

where l(E) is the length of E.

- (4) If E is a Borel set and $\Lambda_{\alpha}(E)>0$ for some $\alpha>1$, then $\gamma(E)>0$. Analytic capacity is related to logarithmic and Newtonian capacity by:
- (5) If K is compact $C_1(K) \le \gamma(K) \le \operatorname{cap}(K)$, with equality on the right hand side if K is also connected.

3. Differentiation in terms of approximating sequences (I)

Throughout this article we will let $D=\{z; |z|<\frac{1}{4}\}$ and \bar{D} the closure of D. If μ is a measure on E we put

$$P_{\mu}(z) = \int_{E} \log \frac{1}{|\xi - z|} d\mu(\xi)$$

and

$$\hat{\mu}(z) = \int_{E} \frac{1}{\zeta - z} d\mu(\zeta),$$

when the integrals converge. If K is compact, C(K) and $C_R(K)$ denote the complex and real continuous functions on K respectively.

LEMMA 1. Let E be a compact subset of D with $\gamma(E)=0$. Then for any M>0 we can find a real measure ρ on a compact subset of $\bar{D}-E$ such that

(i)
$$P_{lol}(z) \leq 1$$
; $z \in E$,

and

(ii) $|\hat{\varrho}(z)| \ge M$; $z \in E$.

Proof. Choose $\varepsilon > 0$ with

$$\varepsilon^{-1} > 2 \cdot \log \frac{1}{\operatorname{dist}(E, \mathbb{C} \setminus D)}$$
.

Since $\gamma(E)=0$, we can find an open set $V\supset E$, with $V\subset D$, such that $\gamma(\bar{V})<\varepsilon^2$ ([18], p. 16). Let $F=\bar{D}\setminus V$, $K=\bar{V}$. Let Ω denote the set of real measures ϱ on F such that $P_{|\varrho|}\leq 1$ on E. Assume the conclusion of the lemma is false. Then the sets of functions $A=\{\operatorname{Re}\hat{\varrho}(z);\ \varrho\in\Omega\}$ and $B=\{f\in C_R(E);\ f\geqslant M \text{ on } E\}$ are disjoint convex subsets of $C_R(E)$, and the separation theorem for convex sets yields a real measure μ on E with

$$\int g d\mu \leq 1 \quad \text{for } g \in A, \qquad \int f d\mu \geq 1 \quad \text{for } f \in B.$$

This implies that μ is positive, $||\mu|| \ge \frac{1}{M}$ and

$$\left| \operatorname{Re} \int \int \frac{d\mu(\zeta)d\varrho(z)}{\zeta - z} \right| \le 1 \quad \text{for } \varrho \in \Omega.$$
 (3.1)

Let G be the set of functions $g \in C_R(F)$ such that

$$g(z) \le \sum_{i=1}^{n} \alpha_i \log \frac{1}{|z - z_i|}$$
 on F ,

for some $z_1, ..., z_n \in E$ and $\alpha_1, ..., \alpha_n > 0$, $\sum_{i=1}^n \alpha_i \le 1$. If ϱ is a real measure on F such that

$$\varrho(g) \le 1 \quad \text{for all } g \in G,$$
 (3.2)

then $\varrho \ge 0$ and $\varrho \in \Omega$. Hence by (3.1) we have

$$\varrho(\operatorname{Re}\,\hat{\mu}) \le 1 \text{ and } \varrho(-\operatorname{Re}\,\hat{\mu}) \le 1.$$
 (3.3)

So, by the separation theorem applied to the functions Re $\hat{\mu}$ and $-\text{Re }\hat{\mu}$ separately, we can conclude that there must exist $z_1, \ldots, z_n \in E$ and $\alpha_1, \ldots, \alpha_n > 0$ with $\sum_{i=1}^n \alpha_i \leq 4$ and

$$|\operatorname{Re} \hat{\mu}(z)| \leq \psi(z), \quad z \in F$$
 (3.4)

where

$$\psi(z) = \sum_{i=1}^{n} \alpha_i \log \frac{1}{|z - z_i|}.$$

Define

$$f(z) = \exp\left(\varepsilon \int \frac{d\mu(\zeta)}{\zeta - z}\right) - 1; \quad z \in \mathbb{C} \setminus V$$

and extend f continuously to C so that

$$|f(z)| \le 1 + \exp[\varepsilon \psi(z)]$$
 for $z \in D$.

Then f is analytic outside K, $f(\infty)=0$ and

$$|f'(\infty)| = \lim_{z \to \infty} |zf(z)| = \varepsilon ||\mu|| \ge \frac{\varepsilon}{M}.$$
 (3.5)

Let θ be a C^1 function on **R** with $0 \le \theta(x) \le 1$ for $x \in \mathbf{R}$, $\theta(x) = 1$ if $x \le \varepsilon^{-1}$, $\theta(x) = 0$ for $x \ge 2\varepsilon^{-1}$ and $\theta'(x) \le 4\varepsilon$ for $x \in \mathbf{R}$. Put

$$\varphi(z) = \theta(\psi(z)).$$

Then φ is C^1 on \mathbb{C} .

Define

$$g(\zeta) = f(\zeta) \varphi(\zeta) + \frac{1}{\pi} \int \frac{f(z)}{z - \zeta} \frac{\partial \varphi}{\partial \bar{z}} dm(z)$$

and put

$$h = f - g. ag{3.6}$$

By the choice of ε we have $\psi < \varepsilon^{-1}$ outside D, so

$$\operatorname{supp} \frac{\partial \varphi}{\partial \bar{z}} \subseteq \bar{D}.$$

Since $\bar{\partial}g = \bar{\partial}(f\varphi) - f\bar{\partial}\varphi = \varphi\bar{\partial}f$, we see that g is analytic outside $K \cap \{\psi \leq 2\varepsilon^{-1}\}$ and h is analytic outside $K \cap \{\psi \geq \varepsilon^{-1}\}$. Moreover, $g(\infty) = 0$ and both g and h are continuous on C. (See Gamelin [9], Lemma II.1.7.)

Note that

$$\left| \frac{\partial \varphi}{\partial \bar{z}} \right| \le 4\varepsilon \left| \frac{\partial \psi}{\partial \bar{z}} \right| \le 4\varepsilon \sum_{i=1}^{n} \frac{\alpha_i}{|z - z_i|} \quad \text{for all } z,$$

and

$$|f(z)| \le e^2 + 1$$
, on supp $\frac{\partial \varphi}{\partial \bar{z}}$.

Now let

$$\zeta \in \bar{D} \cap \{ \psi \leq 2\varepsilon^{-1} \}.$$

Then

$$|f(\zeta)| \le e^2 + 1$$

and so

$$|g(\zeta)| \leq e^{2} + 1 + \frac{4\varepsilon}{\pi} (e^{2} + 1) \sum_{i=1}^{n} \alpha_{i} \int_{D} \frac{dm(z)}{|z - \zeta| |z - z_{i}|}$$

$$\leq N_{1} + N_{2} \varepsilon \sum_{i=1}^{n} \alpha_{i} \log \frac{1}{|\zeta - z_{i}|}$$

$$= N_{1} + N_{2} \varepsilon \psi(\zeta) \leq N_{1} + 2N_{2} = N_{3},$$

where N_1 , N_2 , ... denote constants.

(The inequality

$$\int_{D} \frac{dm(z)}{|z - \zeta| |z - z_{i}|} \le \text{const.} \cdot \log \frac{1}{|\zeta - z_{i}|}$$

can for exampel be seen by splitting D into 4 parts:

$$D_{1}=D \cap \{z; |z-\zeta| \leq \frac{1}{2} |\zeta-z_{i}|\}, \quad D_{2}=D \cap \{z; |z-z_{i}| \leq \frac{1}{2} |\zeta-z_{i}|\},$$

$$D_{3}=(D \setminus D_{1}) \cap \{z; |z-\zeta| \leq |z-z_{i}|\}, \quad D_{4}=(D \setminus D_{2}) \cap \{z; |z-\zeta| \geq |z-z_{i}|\}.)$$

Therefore by the maximum principle

$$|g(\zeta)| \leq N_3$$
 on C,

and therefore

9†-822906 Acta Mathematica 149

$$|g'(\infty)| \leq N_3 \gamma(K) \leq N_3 \varepsilon^2$$
.

Also

$$|h'(\infty)| = \frac{1}{\pi} \left| \int f(\zeta) \frac{\partial \varphi}{\partial \bar{z}} dm(z) \right| \leq \frac{4\varepsilon (e^2 + 1)}{\pi} \sum_{|z| \geq \varepsilon^{-1}} \frac{dm(z)}{|z - z_i|}.$$

Now if Δ is a disc of radius r, then

$$\int_{\Delta} \frac{1}{|z - z_i|} dm(z) \le 2\pi r = 2\pi \cdot M_1(\Delta)$$

so

$$|h'(\infty)| \le 32\varepsilon(e^2+1) M_1(\{\psi \ge \varepsilon^{-1}\}) \le N_4 \varepsilon^2, \tag{3.8}$$

by Corollary 1, p. 202 in Landkof [12].

Combining (3.5)–(3.8) we get

$$\frac{\varepsilon}{M} \leq \left| f'(\infty) \right| \leq \left| g'(\infty) \right| + \left| h'(\infty) \right| \leq \left(N_3 + N_4 \right) \varepsilon^2,$$

which is a contradiction if ε is small enough.

THEOREM 1. Let E be a compact set with $\gamma(E)=0$. Then we can find a compact set K with $E\subseteq K'$ and a sequence f_n of real-valued functions, each harmonic in a neighbourhood of K, such that $f_n\to 0$ uniformly on K and $|\partial f_n/\partial \bar{z}|\to \infty$ uniformly on E.

Proof. We may assume $E \subseteq D$. By Lemma 1 we can find a sequence of real measures ϱ_n , each supported on a compact subset of $\bar{D} \setminus E$, with

$$P_{|\varrho_n|} \leq 2^{-n}$$
 and $|\hat{\varrho}_n| \geq 3^n$ on E .

We may also assume that ϱ_n is a finite linear combination of point masses. Let

$$\varrho = \sum_{n} |\varrho_{n}|$$

and let

$$K = \{z; P_o(z) \leq 2\} \cap \tilde{D}.$$

Then, since P_{ϱ} is lower semicontinuous, K is compact. Moreover, $K \cap \text{supp}(\varrho_n) = 0$ for all n. Since P_{ϱ} is finely continuous and $P_{\varrho} \le 1$ on E, we must have $E \subseteq K'$.

Now let

$$f_n = 2^{-n} P_{\varrho_n}.$$

Then f_n is harmonic in a neighbourhood of K, $|f_n| \le 2^{1-n}$ on K, and if $z \in E$

$$\left|\frac{\partial f_n}{\partial \bar{z}}(z)\right| = 2^{-n} \left|\hat{\varrho}_n(z)\right| \geqslant \left(\frac{3}{2}\right)^n.$$

That completes the proof of Theorem 1.

Remark. For finely homomorphic functions the situation is different. T. J. Lyons ([13], [14]) has proved that if $f \in C(K)$ is finely holomorphic in K' (i.e. $f \in A_f(K)$) then f'(z) exists for all $z \in K'$, in the sense that if we choose any sequence of functions $f_n \in A_f(K)$ extending holomorphically to a neighbourhood of z and converging uniformly to f on K, then $\lim_{n\to\infty} f'_n(z)$ exists and depends only on f, not on the sequence chosen.

4. An estimate for analytic capacity

Part of the proof of Lemma 1 can be adapted to yield the following estimate for analytic capacity. As mentioned in section 2 we let C_{α} denote the capacity associated to the potential $|z|^{-\alpha}$.

THEOREM 2. Let E and F be compact, $0 < \alpha < 1$. Then

$$\gamma(E) \leq N(\alpha) \left[\gamma(E \setminus F) + C_{\alpha}(F)^{1/\alpha} \right],$$

where $N(\alpha)$ is a constant depending only on α .

Proof. We may assume that F has a smooth boundary, since in general we can find a set $F_0 \supseteq F$ with smooth boundary and $C_\alpha(F_0) - C_\alpha(F)$ as small as we wish. Then by Theorem 3, p. 17, in Carleson [2] there is a positive measure μ on F with $||\mu|| = C_\alpha(F)$ and, writing

$$\psi(z) = \int \frac{d\mu(\zeta)}{|\zeta - z|^{\alpha}},$$

 $\psi(z)=1$ for $z \in F$ and $\psi(z) \le 1$ everywhere.

Let θ be a C^1 function on **R** with $0 \le \theta \le 1$, $\theta(x) = 1$ for $x \le \frac{1}{2}$, $\theta(x) = 0$ for $x \ge \frac{3}{4}$ and $|\theta'(x)| \le 8$ everywhere. Put

$$\varphi(z) = \theta(\psi(z)).$$

Then φ is C^1 on \mathbb{C} .

Let f be analytic outside E and satisfy

$$|f| \le 1$$
, $f(\infty) = 0$ and $f'(\infty) = \gamma(E)$.

Define f to be 0 on E and put

$$g(\zeta) = \varphi(\zeta)f(\zeta) + \frac{1}{\pi} \int \frac{f(z)}{z - \zeta} \frac{\partial \varphi}{\partial \bar{z}} dm(z).$$

Then g is analytic outside $E \cap \{\psi \leq \frac{3}{4}\}$, and therefore outside a compact subset of $E \setminus F$. Put

$$h = f - g$$
.

Then h is analytic outside $E \cap \{\psi \ge \frac{1}{2}\}$. (See Gamelin [9], Lemma I.1.7.)

Note that

$$\left| \frac{\partial \varphi}{\partial \bar{z}} \right| \le 8 \left| \frac{\partial \psi}{\partial \bar{z}} \right| \le 16 \, \alpha \int \frac{d\mu(w)}{|w - z|^{\alpha + 1}}.$$

Thus for $\zeta \in \mathbb{C}$ we have

$$\begin{split} \left|g(\zeta)\right| &\leq 1 + \frac{16\,\alpha}{\pi} \int \int \frac{dm(z)d\mu(w)}{\left|z - \zeta\right| \left|w - z\right|^{\alpha + 1}} \\ &\leq 1 + N_1(\alpha) \int \frac{d\mu(w)}{\left|w - \zeta\right|^{\alpha}} = 1 + N_1(\alpha)\,\psi(\zeta) \leq 1 + N_1(\alpha). \end{split}$$

 $(N_1(\alpha), N_2(\alpha), ...,$ denote constants depending only on α). Therefore

$$|g'(\infty)| \le [1 + N_1(\alpha)] \gamma(E \setminus F). \tag{4.2}$$

Also, for $\zeta \in \mathbb{C}$ we have

$$|h(\zeta)| \leq 2 + N_1(\alpha),$$

$$|h'(\infty)| \le [2 + N_1(\alpha)] \gamma(\{\psi \ge \frac{1}{2}\}). \tag{4.3}$$

Now

$$\gamma(\{\psi \ge \frac{1}{2}\} \le M_1\{\psi \ge \frac{1}{2}\}) \le N_2(\alpha) C_\alpha(\{\psi \ge \frac{1}{2}\})^{1/\alpha}.$$
 (4.4)

(The last inequality follows from the existence of a positive measure μ on E such that $\mu(\Delta(z, r)) \le r$ for all $z \in \mathbb{C}$, r > 0 and $\mu(E) \ge N \cdot \mathbf{M}_1(E)$, where N is a constant.)

Moreover, by Lemma 2.4, p. 149 in Landkof [12]

$$C_{\alpha}(\{\psi \geqslant \frac{1}{2}\}) \leqslant 4C_{\alpha}(F). \tag{4.5}$$

So, by combining (4.1)–(4.5) we conclude that

$$\gamma(E) = f'(\infty) \le |h'(\infty)| + |g'(\infty)| \le N_3(\alpha) \left[\gamma(E \setminus F) + C_\alpha(F)^{1/\alpha} \right],$$

and the proof is complete. Theorem 2 is an improvement on Theorem 6.1 of Davie [3]. One application of Theorem 2 is the following:

A subset G of the extended complex plane S^2 is called γ -negligible if for some constant M>0 whenever f is a bounded Borel function on S^2 , analytic on some open set V, we can find bounded Borel functions on S^2 analytic on an open set containing $V \cup G$ such that $|f_n| \leq M|f|$ on S^2 and $f_n \rightarrow f$ pointwise on V. In other words, the γ -negligible sets are the negligible sets in connection with bounded pointwise approximation by analytic functions. A bounded, plane set G is γ -negligible if and only if

$$\gamma(T \cup G) \le M\gamma(T),\tag{4.6}$$

for some constant M>0 and all plane sets T (see Davie [3]). Using Theorem 2 we get:

THEOREM 3. Let K be a compact set of Hausdorff dimension less than 1. Then K is γ -negligible.

*Proof.*Let L be a compact subset of T. Then by Theorem 2

$$\gamma(L \cup K) \leq A(\alpha) \left[\gamma(L \setminus K) + C_{\alpha}(K)^{1/\alpha} \right].$$

By assumption there exists $\alpha < 1$ such that $\Lambda_{\alpha}(K) = 0$, and this implies that $C_{\alpha}(K) = 0$ (see Theorem 1, p. 28 in Carleson [2]), so the result follows from (4.6).

5. Differentiation in terms of approximating sequences (II)

We now set out to prove a converse of Theorem 1 in section 3. To get a more general result we will use the following theorem of Calderon [1]:

There exists $\alpha > 0$ such that if φ is a real function on **R** with $|\varphi'| \ge \alpha$ and $z(t) = t + i\varphi(t)$, then, writing

$$Qf(t) = \sup_{\varepsilon > 0} \left| \int_{|s-t| \ge \varepsilon} \frac{f(s)}{z(s) - z(t)} \, ds \right|,$$

we have

$$|\{t; Qf(t) > \lambda\}| \le \frac{N_1 ||f||_1}{\lambda}$$
, for all $f \in L^1(\mathbf{R})$, $\lambda \in \mathbf{R}$.

Here | denotes 1-dimensional Lebesgue measure and, as before, $N_1, N_2, ...$ denote constants.

We require the following corollary:

COROLLARY 1. Let φ , z be as above. Let a>0 and write

$$Tf(t) = \int \frac{f(s) ds}{ia + z(s) - z(t)}.$$

Then

$$|\{t;|Tf(t)|>\lambda\}| \leq \frac{N_2||f||_1}{\lambda}$$
 for all $f \in L^1(\mathbf{R})$, $\lambda > 0$.

Proof.

$$\begin{split} |Tf(t)| &\leq \left| \int_{|s-t| \leq a} \frac{f(s) \, ds}{ia + z(s) - z(t)} \right| \\ &+ a \left| \int_{|s-t| \geq a} \frac{f(s) \, ds}{\{ia + z(s) - z(t)\} \{z(s) - z(t)\}} \right| + \left| \int_{|s-t| \geq a} \frac{f(s) \, ds}{z(s) - z(t)} \right| \\ &\leq \frac{N_3}{a} \int_{|s-t| \leq a} |f(s)| \, ds + N_4 \, a \int_{|s-t| \geq a} \frac{|f(s)|}{(s-t)^2} \, ds + \left| \int_{|s-t| \geq a} \frac{f(s) \, ds}{z(s) - z(t)} \right|. \end{split}$$

The first two terms have L^1 -norms bounded by $N_5||f||_1$, so the result follows from Calderon's theorem.

COROLLARY 2. Let φ , z be as above, let a>0 and let ϱ be a (complex) measure on **R**. Then

$$\left| \left\{ t; \left| \int \frac{d\varrho(s)}{ia + z(s) - z(t)} \right| > \lambda \right\} \right| \leq \frac{N_2 \|\varrho\|}{\lambda}; \quad \lambda > 0.$$

Proof. This follows from Corollary 1 by approximating ϱ by absolutely continuous measures.

LEMMA 2. Let φ , z be as above. Then there is a constant N_6 such that for any compact subset E of **R** with |E|>0, there is a positive measure μ on z(E) with

$$||\mu|| \ge N_6 |E|$$
 and $|\hat{\mu}(z)| \le 1$, $z \in \mathbb{C} \setminus z(E)$.

Proof. It suffices to show that, given a>0, there is a positive measure μ on z(E) with

$$\|\mu\| \ge N_6 |E|$$
 and $|\hat{\mu}(z)| \le 1$ for $z = t + iy$, $|y - \varphi(t)| > a$. (5.1)

Then we can take a sequence $a_n \rightarrow 0$ and a weak-star cluster point of the corresponding μ 's. So suppose there is an a>0 such that (5.1) does not hold for any positive measure μ on z(E). Then there is no positive measure σ on E with

$$||\sigma|| \ge N_6 |E|$$
 and $\left| \int \frac{d\sigma(s)}{\varepsilon i a + z(s) - z(t)} \right| \le 1$ for $t \in \mathbb{R}$, $\varepsilon = \pm 1$.

Let C_0 (**R**) be the continuous functions on **R** vanishing at ∞ . Consider the space $S=C_0(\mathbf{R})+C_0(\mathbf{R})$, with norm $||(x,y)||=\max(||x||,||y||)$. Apply the separation theorem for convex sets to the unit ball **B** and the set $K=\{(f_{\sigma}^{+1},f_{\sigma}^{-1}); \sigma \text{ positive measure on } E, ||\sigma|| \ge N_6|E|\}$, where

$$f^{\varepsilon}_{\sigma}(t) = \int \frac{d\sigma(s)}{\varepsilon i a + z(s) - z(t)}; \quad \varepsilon = \pm 1.$$

Then we get complex measures ϱ , τ on **R** such that $||\varrho|| + ||\tau|| \le 1$ and

$$\operatorname{Re}\left[\int \frac{d\varrho(s)}{ia+z(s)-z(t)} + \int \frac{d\tau(s)}{-ia+z(s)-z(t)}\right] > (N_6|E|)^{-1} \quad \text{for } t \in E.$$

But this contradicts Corollary 2 if $N_6 = 1/3A_2$.

We will also need the following result, which is an adaptation of Theorem 9.9 in Fuglede [7]:

LEMMA 3. Let K be compact and let $z_0 \in K'$. Then we can find a fine neighbourhood $L \subseteq K$ of z_0 and M>0 such that whenever f is a real harmonic function in a neighbourhood of K with $|f| \le 1$ there, we can find a measure μ supported on a compact subset of $\mathbb{C} \setminus L$, with $|\mu| \le M$ and

$$P_{\mu} = f$$
 on L .

Proof. Let U, V be open sets with $K \subseteq V$, $\bar{V} \subseteq U$. We may assume $U \subseteq D = \{|z| < \frac{1}{4}\}$. Let φ be a C^2 function with compact support in U, with $\varphi = 1$ on V. Choose a bounded C^2 superharmonic function p on U with p(z) > 1 for $z \in U$ and

$$\int p\,dv < p(z_0),$$

where ν is the Keldysh measure for z_0 w.r.t. K. (This is possible since $z_0 \in K'$.) Let U_n be a decreasing sequence of open sets with smooth boundary, such that

$$\bar{U}_n \subseteq V$$
 and $\bigcap_{n=1}^{\infty} U_n = K$.

Define p_n on U by

$$p_n = \begin{cases} p & \text{on } U \setminus U_n \\ p \mid \partial U_n & \text{on } U_n \end{cases}$$

where $p|\partial U_n$ is the harmonic extension of $p|\partial U_n$ to U_n . Then p_n is continuous, superharmonic and $p_n \uparrow q$, where q is superharmonic on U. Moreover,

$$q(z_0) = \int p \, dv < p(z_0)$$
 and $q(z) \le p(z)$ for $z \in U$.

Choose $\lambda > (p(z_0) - q(z_0))^{-1}$ and let

$$L = \{z \in U; \lambda(p(z) - q(z)) > 1\}.$$

Then $L \subseteq K$ and L is a fine neighbourhood of z_0 .

Also let

$$L_n = \{z \in U; \lambda(p(z) - p_n(z)) > 1\}.$$

Then L_n is open and $L\subseteq L_n\subseteq U_n$.

Now let f be a real harmonic function on an open set $W \supseteq K$, with $|f| \le 1$. Choose n so that $\bar{U}_n \subseteq W$. Define u on U by

$$u = \begin{cases} \min \left\{ \lambda p, f + (\lambda + 1) p_n \right\} & \text{on } W \\ \lambda p & \text{on } U \setminus \bar{U}_n \end{cases}$$

The two definitions agree on $W \setminus \bar{U}_n$, since $p = p_n$ there. The function u is superharmonic in U and

$$f = u - (\lambda + 1) p_n$$
 in L_n .

Since u and p_n are harmonic in L_n , so is u.

Since u and p_n are superharmonic, $\nabla^2 u$ and $\nabla^2 p_n$ are positive measures on U. Let $\sigma = \nabla^2 (\varphi u)$, $\tau = \nabla^2 (\varphi p_n)$ and $\mu = \sigma - (\lambda + 1) p_n$. Then σ and τ have no mass on L_n , $P_{\sigma} = \varphi u$ and $P_{\tau} = \varphi p_n$. So $P_{\mu} = f$.

Now $\sigma|V$ is positive, so $P_{\sigma|V}(z) \ge \log 2 \cdot ||\sigma|V||$, $z \in U$ (using $U \subseteq D$). Outside a compact subset of V we have $\nabla^2(\varphi u) = \lambda \nabla^2(\varphi p)$. Hence $||\sigma|U \setminus V|| \le N_1$ and $|P_{\sigma|U \setminus V}(z)| \le N_2$, $z \in U$ $(N_1, N_2, \ldots$ denote constants independent of f). So $||\sigma|V|| \le (\log 2)^{-1}$ [sup $|\varphi u| + N_2] = N_3$ and $||\sigma|| \le N_1 + N_3$. Similarly $||\tau|| \le N_4$. That completes the proof.

We are now ready for a partial converse of Theorem 1. A weaker form of this result (with straight line segments instead of rectifiable arcs) could be proved without the use of Calderon's theorem, but using the weak-type (1,1) estimate for the Hilbert transform instead.

THEOREM 4. Let $K \subset \mathbb{C}$ be compact and $J \subset \mathbb{C}$ a rectifiable arc. Let f_n be real functions harmonic in a neighbourhood of K such that $f_n \to f$ uniformly on K, with $|f_n(z)-f(z)| < 2^{-n}$ for $z \in K$. Then ∇f_n converges a.e. on $J \cap K'$ with respect to arc length on J to a limit depending on f but not on the sequence $\{f_n\}$.

Proof. Suppose ∇f_n does not converge a.e. on $J \cap K'$. Let F be a compact subset of $J \cap K'$ of positive length such that $\nabla f_n(z)$ does not converge for any $z \in F$. Parametrize J by $z=\theta(s)$, s=arc length, $0 \le s \le S$. Then θ' exists a.e. and $|\theta'|=1$ a.e. By Egoroff's theorem there is a compact set $E_0 \subseteq [0, S]$ such that $|E_0| > 0$, $\varphi(E_0) \subseteq F$ and

$$\frac{\theta(s+t)-\theta(s)}{t} \to \theta'(s) \quad \text{as } t \to 0, \text{ uniformly for } s \in E_0.$$

Then one can readily find, after rotating the coordinates if necessary, a function z(t) as in Calderon's theorem and a compact set $E \subseteq \mathbb{R}$ such that |E| > 0 and $z(E) \subseteq F_0$.

Let t_0 be a point of density of E w.r.t. Lebesgue measure on R. Since $z(t_0) \in K'$, there exists, by Lemma 3, a fine neighbourhood $L \subseteq K$ of $z(t_0)$ and a constant M such that for every function g harmonic in a neighbourhood of K we can find a measure μ with support in $C \setminus L$ such that

$$g(z) = P_{\mu}(z)$$
 in L , $||\mu|| \le M \cdot \sup_{K} |g|$

Since L is a fine neighbourhood of $z(t_0)$ and t_0 is a point of density for E, there exists a compact set $Q \subseteq E$ with |Q| > 0 and $z(Q) \subseteq L$. For each n let σ_n be a measure with support in $C \setminus L$ such that

$$f_n - f_{n+1} = P_{\sigma_n}; \quad ||\sigma_n|| \leq M \cdot 2^{1-n}.$$

Write

$$h_n(z) = \frac{\partial}{\partial \bar{z}} \left(f_n(z) - f_{n+1}(z) \right) = \bar{\hat{\sigma}}_n(z), \tag{5.2}$$

and let

$$Q_n = \left\{ t \in Q; \ \left| h_n(z(t)) \right| > 2^{-n/2} \right\} \tag{5.3}$$

We can find a compact set $R_n \subseteq Q_n$ and a $w_n \in \mathbb{C}$ such that

$$|w_n| = 1, |R_n| \ge \frac{1}{3} |Q_n| \text{ and } \text{Re}[wh_n(z(t))] > 2^{-(n/2)-1} \text{ on } R_n.$$
 (5.4)

By Lemma 2 there is a positive measure μ_n on $z(R_n)$ with

$$||\mu|| \ge \frac{N_6}{3} |Q_n|$$
 and $|\hat{\mu}_n(z)| \le 1$, $z \in \mathbb{C} \setminus z(R_n)$. (5.5)

Combining (5.2) and (5.5) we get

$$\left|\frac{N_6}{3}\cdot 2^{-n/2-1}|Q_n| \leq \left|\int h_n d\mu_n\right| = \left|\int\int \frac{d\mu_n(z)\,d\sigma_n(\zeta)}{\zeta-z}\right| \leq \left|\left|\sigma_n\right|\right| \leq M\cdot 2^{1-n}.$$

So

$$|Q_n| \leq N_7 \cdot 2^{-n/2}.$$

Therefore

$$\left|\bigcap_{m=1}^{\infty}\left(\bigcup_{n=m}^{\infty}Q_{n}\right)\right|=0,$$

so for a.a. $t \in Q$ there exists m with $t \notin \bigcup_{n=m}^{\infty} Q_n$.

For such a t we have, for $r \ge m$ and $k \ge 0$,

$$\left|\frac{\partial f_{r+k}}{\partial \bar{z}}(z(t)) - \frac{\partial f_r}{\partial \bar{z}}(z(t))\right| \leq \sum_{j=r}^{r+k-1} \left|h_j(z(t))\right| \leq \sum_{j=r}^{r+k-1} 2^{-j/2} \leq 2^{2-r/2},$$

so that $\{\partial f_n/\partial \bar{z}\}$ converges a.e. on Q.

This contradiction shows that $\{\nabla f_n\}$ converges a.e. on $J \cap K'$.

If f=0 then the same argument applied to f_n instead of f_n-f_{n+1} shows that $\nabla f_n \to 0$ a.e. on $J \cap K'$. So the limit is independent of the choice of f_n (up to sets of zero length). That completes the proof.

Basically the same proof also gives the following:

THEOREM 5. Let $K \subset \mathbb{C}$ be compact and let f_n be real functions, harmonic in a neighbourhood of K, such that $f_n \to f$ uniformly on K, with $\sup_K |f_n - f| < 2^{-n}$. Then ∇f_n converges C_1 -everywhere on K' to a limit depending on f but not on the sequence $\{f_n\}$.

 $(C_1 \text{ is the Newtonian capacity, defined in the introduction.})$

Proof. Suppose there exists a Borel set G with $C_1(G)>0$ and such that ∇f_n does not converge for any $z \in G$. By Doob's quasi Lindelöf principle for the fine topology (see Doob [6]) and the subadditivity of C_1 (see Carleson [2], p. 24) we conclude that there exists a point $z_0 \in G$ such that

$$C_1(G \cap U) > 0$$

for all finely open sets U with $z_0 \in U$.

As in the proof of Theorem 4 we find a fine neighbourhood L of z_0 , $L \subset K$, a constant M and measures σ_n with support in $\mathbb{C} \setminus L$ with

$$f_n - f_{n+1} = P_{\sigma_n}$$
 on L , $||\sigma_n|| \le M \cdot 2^{1-n}$.

So we put

$$h_n(z) = \frac{\partial}{\partial \bar{z}} \left(f_n(z) - f_{n+1}(z) \right) = \bar{\hat{\sigma}}_n(z),$$

and

$$Q_n = \{ z \in G \cap L; |h_n(z)| > 2^{-n/2} \}.$$

Then we can find a compact set $R_n \subseteq Q_n$ and $w_n \in \mathbb{C}$ with $|w_n| = 1$, such that

$$C_1(R_n) \ge \frac{1}{4} C_1(Q_n)$$
 and $\text{Re}[wh_n(z)] > 2^{-n/2-1}$ on R_n .

Choose a positive measure μ_n on R_n such that

$$\mu_n(R_n) \ge \frac{1}{2} C_1(R_n)$$
 and $\int \frac{d\mu_n(\zeta)}{|\zeta - z|} \le 1$ for $z \notin R_n$.

Then

$$2^{-n/2-4} \cdot C_1(Q_n) \leq \left| \int h_n \, d\mu_n \right| = \left| \int \int \frac{d\mu_n(z)}{\zeta - z} \, d\sigma_n(\zeta) \right| \leq \left| \left| \sigma_n \right| \right|.$$

Therefore

$$C_1(Q_n) \leq 32M \cdot 2^{n/2},$$

and we conclude that $\{\partial f_n/\partial \bar{z}\}$ converge C_1 -everywhere on $G \cap L$.

This contradiction proves the theorem.

If we combine Theorem 1 and Theorem 4 we get the following:

COROLLARY 3. Let J be a rectifiable arc and E a Borel subset of J of positive length. Then $\gamma(E)>0$.

Corollary 3 was conjectured by Denjoy and recently proved by Marshall [15], also using Calderon's theorem.

In the light of Theorem 1 and Theorem 4 it is natural to conjecture that, in the circumstances of Theorem 4, $\{\nabla f_n\}$ converges on K', except on a set of zero analytic capacity. One could prove this by the method of proof of Theorem 4 provided one could show that

(a) analytic capacity is subadditive, i.e.

$$\gamma(S \cup T) \leq \gamma(S) + \gamma(T)$$
,

for all Borel sets S, T. (See Davie [3].)

(b) Any compact set E with $\gamma(E)>0$ admits a non-zero positive measure μ with

$$|\hat{\mu}(z)| \le 1$$
 for all $z \in \mathbb{C} \setminus E$.

(See Zalcman [18], p. 20.)

(The proof actually requires $||\mu|| \ge A\gamma(E)$ where A > 0 is independent of E, but one can in fact show that (b) implies this.) The validity of (a) and (b) is open.

6. Fine differentiability

Let f be a real function defined on a finely open, plane set V. We say that f is finely differentiable at a point $z_0 \in V$ if there exists a vector $\nabla f(z_0) \in \mathbb{R}^2$ (called the fine gradient of f at z_0) such that

$$\frac{\left|f(z)-f(z_0)-\left\langle z-z_0,\nabla f(z_0)\right\rangle\right|}{\left|z-z_0\right|}\to 0$$

when z converge finely to z_0 . (If z=a+ib, w=u+iv then $\langle z, w \rangle = au+bv$.)

If f is finely harmonic in V, to what extent is f finely differentiable in V? As mentioned in the introduction, Fuglede [8] has proved, using a result of Mizuta [16], that f is finely differentiable outside a C_h^* -null set where C_h^* is the outer capacity associated to the kernel $h(z)=|z|^{-1}\log 1/|z|$. For completeness we first give a proof of Fuglede's result (Theorem 6), and then we proceed to prove that this result is the best possible (Theorem 7).

THEOREM 6. (Fuglede). Let f be finely harmonic on a finely open set V. Then f is finely differentiable at each point, except on a C_h^* -null set.

Proof. Suppose not. We may assume $V \subseteq D$. Then there is a set $E \subseteq V$ with $C_h^*(E) > 0$ such that f is not finely differentiable at any point of E. By Doob's quasi-Lindelöf principle ([6]) we can find $z_0 \in E$ such that $C_h^*(E \cap W) > 0$ for every finely open set W containing z_0 . By Theorem 9.9 in Fuglede [7], there is a finely open set U containing z_0 , with $U \subseteq V$, and a real measure μ such that

$$f = P_u$$
 on U .

Since $C_h^*(U \cap E) > 0$ we can find $z \in U \cap E$ such that $\int h(\zeta - z) d|\mu|(\zeta) < \infty$. We shall obtain a contradiction by showing that P_{μ} is differentiable at z:

Fix $\varepsilon > 0$ and write $\mu = \sigma + \tau$, where $\int h(\zeta - z)d|\sigma|(\zeta) < \varepsilon$ and $z \notin \text{supp } \tau$.

Let
$$A_n = \{\zeta; 2^{-n-1} < |\zeta - z| \le 2^{-n}\}$$
. Then

$$\sum_{n=1}^{\infty} n 2^n |\sigma|(A_n) < N_1 \varepsilon, \text{ where } N_1 \text{ is a constant.}$$

Let $\sigma_n = \sigma | A_n$ and put

$$\Omega_n = \left\{ \zeta; 2^{-n-2} < |\zeta - z| < 2^{-n+1} \text{ and } P_{|\sigma_n|}(\zeta) \ge \varepsilon 2^{-n} \right\}.$$

Then

$$C_{W}(\Omega_{n}) \leq \frac{2^{n}|\sigma|(A_{n})}{\varepsilon},$$

where C_W is the Wiener capacity defined in the introduction.

Therefore

$$\sum nC_{w}(\Omega_{n}) < \infty,$$

so if we put $L=V \setminus \bigcup_n \Omega_n$, L is a fine neighbourhood of z_0 by Wiener's criterion.

Now let $\zeta \in L$. Then $\zeta \in A_n$ for some n.

Writing $B_n = A_{n-1} \cup A_n \cup A_{n+1}$ we have

$$\left| \frac{P_{\sigma}(\zeta) - P_{\sigma}(z)}{\zeta - z} \right| \le \frac{1}{|\zeta - z|} \int_{\mathbf{C} \setminus B_n} \left| \log \frac{1}{|w - \zeta|} - \log \frac{1}{|w - z|} \right| d|\sigma|(w)$$

$$+ \frac{1}{|\zeta - z|} \int_{B_n} \left(\log \frac{1}{|w - \zeta|} + \log \frac{1}{|w - z|} \right) d|\sigma|(w)$$

The first term is bounded by

$$N_2 \int \frac{d|\sigma|(w)}{|w-z|} \leq N_3 \, \varepsilon$$

and the second by

$$[P_{|\sigma_{n-1}|+|\sigma_n|+|\sigma_{n+1}|}(\zeta)+(n+1)|\sigma|(B_n)]2^{n+1} \le N_4 \varepsilon,$$

since $\xi \notin \Omega_{n-1} \cup \Omega_n \cup \Omega_{n+1}$.

So

$$\left|\frac{P_o(\zeta) - P_o(z)}{\zeta - z}\right| \leq N_5 \varepsilon,$$

and since P_{τ} is differentiable at z we conclude that P_{μ} is finely differentiable at z.

Next we turn to the converse of Theorem 6. We need the following lemma:

LEMMA 4. Let $E \subseteq D$ be compact such that $C_h(E) = 0$. Then there is a positive measure μ on D consisting of a countable sum of point masses such that

$$\int h(\zeta - z) \, d\mu(\zeta) = \infty \quad \text{and} \quad \int \frac{d\mu(\zeta)}{|\zeta - z|} \le 1, \quad \text{for all } z \in E.$$

Proof. It suffices to construct, for a given M>0, a positive measure σ on a compact subset of $D \setminus E$ such that

$$\int h(\zeta - z) \, d\sigma(\zeta) \ge M \quad \text{and} \quad \int \frac{d\mu(\zeta)}{|\zeta - z|} \le 1, \quad \text{for } z \in E.$$

For then we can modify σ so that it is a finite sum of point masses.

Then we can take a sequence $M_n=3^n$ with corresponding σ_n and define $\mu=\Sigma 2^{-n}\sigma_n$.

So let M be given. Choose $\varepsilon > 0$. Let F be a compact neighbourhood of E such that $F \subseteq D$, $C_h(F) < \varepsilon$ and F has smooth boundary. By Theorem 3 of Carleson [2], p. 17, there is a positive measure ν on F with

$$||v|| = C_h(F)$$
 and $\int h(\zeta - z) \, dv(\zeta) = 1$, $z \in F$. (6.1)

Choose $\delta < \text{dist}(E, \mathbb{C} \setminus F)$ and let

$$\psi(z) = \frac{1}{\pi \delta^2} \cdot \int_{|\xi - z| \le \delta} d\nu(\xi). \tag{6.2}$$

Then

$$\psi(z) \le \frac{\varepsilon}{\pi \delta^2} \quad \text{for } z \in \mathbb{C},$$
 (6.3)

$$\int \psi(z) \, dm(z) = \frac{1}{\pi \delta^2} \cdot \int_F \left(\int_{|\xi - z_{h}| > \delta} dm(z) \right) d\nu(\zeta) = C_h(F) \tag{6.4}$$

and for $z \in E$ we have, by (6.1),

$$\int h(w-z)\,\psi(w)\,dm(w)=1.$$

(To see this, note that from (6.1) we have, for $z \in E$

$$\pi \delta^2 = \int_{\Delta(z,\delta)} \left(\int_{\mathbf{C}} h(\zeta - w) \, d\nu(\zeta) \right) dm(w) = \int_{\mathbf{C}} \left(\int_{|w-z| \leq \delta} h(\zeta - w) \, dm(w) \right) d\nu(\zeta).$$

Substituting $w' = \zeta + z - w$ in the inner integral we get

$$\pi\delta^{2} = \int_{C} \left(\int_{|\xi-w'| \leq \delta} h(w'-z) \, dm(w') \right) d\nu(\zeta) = \int_{C} \left(\int_{|\xi-w'| \leq \delta} d\nu(\zeta) \right) h(w'-z) \, dm(w').$$

Hence

$$\int \psi(w') h(w'-z) dm(w') = 1 \quad \text{for } z \in E.$$

Since $C_h(F) < \varepsilon$, it follows that if we choose ε small enough ($\varepsilon < 1/30M^2e^M$ will do), we have

$$\int \frac{\psi(\zeta) \, dm(\zeta)}{|\zeta - z|} \le \frac{1}{2M} \quad \text{for all } z \in E.$$
 (6.5)

Let U be open, $E \subseteq U \subseteq D$, with M(U) so small that

$$\int_{U} h(\zeta - z) \, dm(\zeta) \leq \frac{\pi \delta^{2}}{2\varepsilon}, \quad \text{for } z \in \mathbb{C}.$$

Then

$$\int_{U} h(\zeta - z) \, \psi(\zeta) \, dm(\zeta) \leq \frac{1}{2}, \quad \text{using (6.3)}.$$

Now put $\sigma = 2M\psi m|_{C \setminus U}$. Then σ has the desired properties.

For the proof of our last result, we will need the following lemma:

LEMMA 5. Let μ be a positive measure on D and let a>0. Put

$$A = \{z \in D; P_{\nu}(z) > a\}.$$

Then

(i)
$$C_w(A) \le a^{-1} ||\mu||$$
.

If in addition μ has no mass outside A, then

(ii)
$$C_{\mathbf{w}}(A) \leq a^{-1} ||\mu||$$
.

Proof. Let σ be any positive measure on A, $P_{\sigma} \le 1$. Then

$$||\sigma|| \le a^{-1} \int P_{\mu} d\sigma = a^{-1} \int P_{\sigma} d\mu \le a^{-1} ||\mu||,$$

which proves (i).

If μ has no mass outside A, we obtain, since $P_{a^{-1}\mu} \leq 1$ outside A,

$$C_W(A) = \sup \{ \sigma(A); \sigma \text{ positive measure on } A, P_{\sigma} \le 1 \text{ outside } A \}$$

 $\ge a^{-1}\mu(A) = a^{-1}||\mu||,$

which proves (ii).

THEOREM 7. Let E be a compact set with $C_h(E)=0$. Then we can find a finely open set $V \supseteq E$ and a finely harmonic function f on V such that f is not finely differentiable at any point of E.

Proof. Assume $E \subseteq D$. Let μ be as given by Lemma 4. Then $P_{\mu} < 1$ on E, because $\log t < t$ for all t > 0.

Let

$$V = \{z \in D; P_{\mu}(z) < 1\}$$

and put

$$f = P_{\mu}$$
.

Then V is finely open, $E \subseteq V$ and f is finely harmonic on V.

Fix $z \in E$. We show that f is not finely differentiable at z; in fact we show that if L is a fine neighbourhood of z with $L \subseteq V$ then $(f(\zeta) - f(z))/(\zeta - z)$ cannot be bounded for $\zeta \in L$. Suppose on the contrary that

$$\left| \frac{f(\zeta) - f(z)}{\zeta - z} \right| \le M \quad \text{for } \zeta \in L. \tag{6.6}$$

Let A_n , B_n be as in the proof of Theorem 6. If $\zeta \in A_n$ we have

$$\left| \frac{f(\zeta) - f(z)}{\zeta - z} \right| \ge \frac{1}{|\zeta - z|} \int_{B_n} \log \frac{1}{|w - \zeta|} d\mu(w) - \frac{1}{|\zeta - z|} \int_{B_n} \log \frac{1}{|w - z|} d\mu(w)
- \frac{1}{|\zeta - z|} \int_{\mathbb{C} \setminus \mathbb{B}_n} \left| \log \frac{1}{|w - \zeta|} - \log \frac{1}{|w - z|} \right| d\mu(w)
\ge 2^n \int_{A_n} \log \frac{1}{|w - \zeta|} d\mu(w) - N_1 n 2^n \mu(B_n) - N_2,$$
(6.7)

using the fact that $\int d\mu(w)/|w-z| \le 1$.

Let

$$\Omega_n = \left\{ \zeta; P_{\mu|A_n}(\zeta) > 2^{-n} (M + N_1 n 2^n \mu(B_n) + N_2) \right\}.$$

Then $\Omega_n \subseteq B_n$ if we choose $N_1 \ge 3 \log 2$. Since μ is a sum of point masses, $\mu | A_n$ has no mass outside Ω_n and therefore

$$C_W(\Omega_n) = \frac{2^n \mu(A_n)}{M + N_1 n 2^n \mu(B_n) + N_2},$$

using Lemma 5.

Since $\sum n2^n\mu(A_n)=\infty$ and $\sum 2^n\mu(A_n)<\infty$ it follows that $\sum nC_W(\Omega_n)=\infty$. This can be seen as follows: Let $a_n=n2^n\mu(A_n)$, $C_n=nC_W(\Omega_n)$, $n\geqslant 3$, $b=N_1^{-1}(M+N_2)$.

Then $\Sigma a_n = \infty$, $\Sigma n^{-1} a_n < \infty$. Suppose $\Sigma C_n < \infty$. Then there exists n_0 such that

$$n > n_0 \implies C_n < (b+9)^{-1}N_1^{-1}.$$

So for $n > n_0$,

$$(b+9) a_n \le 3a_{n-1} + a_n + a_{n+1} + b.$$

Hence if $n > n_0$ and $a_n \ge 1$,

$$3a_{n-1} + a_{n+1} \ge 8a_n$$
.

So either

$$a_{n+1} \geqslant 2a_n$$
 or $a_{n-1} \geqslant 2a_n$.

In the former case repeated application gives

$$a_{n+k} \ge 2^k a_n$$
 for all $k \ge 1$,

which contradicts $\sum n^{-1}a_n < \infty$.

In the latter case we get $a_{n-k} \ge 2^k a_n$ as long as $n-k \ge n_0$. So

$$a_n \le 2^{n_0 - n} a_{n_0}$$
 if $n > n_0$ and $a_n \ge 1$.

This implies that $a_n < 1$ for n large enough, and therefore

$$C_n \ge \frac{a_n}{(5+b)N_1}$$

for n large enough, which contradicts $\Sigma C_n < \infty$. But by (6.6) and (6.7) we see that $A_n \cap L \cap \Omega_n = \emptyset$, hence $A_n \cap \Omega_n \subseteq A_n \setminus L$. Since $\Sigma nC_W(B_n \cap \Omega_n) = \infty$, we have $\Sigma nC_W(A_n \cap \Omega_n) = \infty$ and therefore $\Sigma nC_W(A_n \setminus L) = \infty$, contradicting the assumption that L is a fine neighbourhood of z.

Acknowledgements. We wish to thank B. Fuglede and T. J. Lyons for valuable conversations. A. M. Davie holds an S.R.C. (U.K.) Advanced Fellowship.

References

- [1] CALDERON, A. P., Cauchy integrals on Lipschitz curves and related operators. *Proc. Nat. Acad. Sci. U.S.A*, 74 (1977), 1324–1327.
- [2] CARLESON, L., Selected problems on exceptional sets. D. Van Nostrand Co., 1967.
- [3] DAVIE, A. M., Analytic capacity and approximation problems. *Trans. Amer. Math. Soc.*, 171 (1972), 409-444.
- [4] DEBIARD, A. & GAVEAU, B., Potentiel fin et algèbres de fonctions analytiques, II. J. Funct. Anal., 17 (1974), 296-310.
- [5] Differentiabilité des fonctions finement harmoniques. *Invent. Math.*, 29 (1975), 111–123.
- [6] DOOB, J. L., Application to analysis of a topological definition of smallness of a set. *Bull. Amer. Math. Soc.*, 72 (1966), 579–600.
- [7] FUGLEDE, B., Finely harmonic functions. Springer Lecture Notes in Mathematics 289, Springer-Verlag 1970.
- [8] Fonctions BLD et fonctions finement surharmoniques. To appear in Séminaire de Théorie du Potential Paris, No. 6. Springer Lecture Notes in Mathematics.
- [9] GAMELIN, T. W., Uniform algebras. Pretice-Hall 1969.
- [10] GARNETT, J., Analytic capacity and measure. Springer Lecture Notes in Mathematics 297, Springer-Verlag 1972.
- [11] HELMS, L. L., *Introduction to potential theory*. Wiley Interscience Pure and Applied Mathematics 22, New York 1969.
- [12] LANDKOF, N. S., Foundations of modern potential theory. Springer-Verlag 1972.
- [13] LYONS, T. J., Finely holomorphic functions. J. Funct. Anal., 37 (1980), 1–18.

- [14] A theorem in fine potential theory and applications to finely holomorphic functions. J. Funct. Anal., 37 (1980), 19-26.
- [15] MARSHALL, D., Removable sets for bounded analytic functions. In *Investigations in Linear Operators and the Theory of Functions* (99 unsolved problems in linear and complex analysis). Zapiski Nauk, seminar LOMI Vol. 81 (1978), 202-205. Ed.: N. K. Nikolski, V. P. Havin and S. V. Hruscev.
- [16] MIZUTA, T., Fine differentiability of Riesz potentials. *Hiroshima Math. J.*, 8 (1978), 505-514.
- [17] VITUSHKIN, A. G., The analytic capacity of sets in problems of approximation theory. Uspehi Mat. Nauk, 22 (1967), 141-199 (= Russian Math. Surveys, 22 (1967), 139-200).
- [18] ZALCMAN, L., Analytic capacity and rational approximation. Springer Lecture Notes in Mathematics, 50. Springer-Verlag, 1968.

Received April 18, 1981