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1. Introduction

Let f be a finely harmonic function defined on a finely open set V in the complex plane
C. In this paper we investigate the problem: To what extent is f differentiable in V?

There are of course several ways of interpreting the question. Debiard and Gaveau
[4], [5] have proved the following: Let Kc=C be compact and let H(K) denote the
uniform closure on K of functions harmonic in a neighbourhood of K. Then H(K)
coincides with the set of functions continuous on K and finely harmonic on the fine
interior K’ of K. And if g€ H(K) is the uniform limit of functions g, harmonic in a
neighbourhood of K, then Vg, converges in L*(m) to a limit Vg, which does not depend
on the sequence chosen. Here and later m denotes planar Lebesgue measure. In the
other direction they give an example of a compact set K and a point xo € K’ such that
[Vg, (xp)| > as n—c,

It was conjectured by T. J. Lyons (private communication) that {Vg, (x)} always
converges outside a set of zero logarithmic capacity. In section 3 we prove that this
conjecture fails: For any compact set E with zero analytic capacity, there exists a
compact set K with Ec K’ and functions g,, harmonic in a neighbourhood of K such that
g.—0 uniformly on K and |9g,/9Z|-— uniformly on E (Theorem 1).

In section 4 we show that parts of the proof of Theorem 1 can be used to prove the
following estimate for analytic capacity y (Theorem 2): If E, F are compact sets and
0<a<l, then

PE) <A [HENP+C, (F)"],

where C, is the capacity associated to the potential |z|™* and A, is a constant
depending only on a. This result in turn implies that any compact set of Hausdorff
dimension less than 1 is y-negligible, i.e. negligible with respect to approximation by
bounded analytic functions (Theorem 3).



128 A. M. DAVIE AND B. §KSENDAL

In section 5 we prove a partial converse of Theorem 1. More precisely, we prove that
if {f,} are functions harmonic in a neighbourhood of K converging uniformly to a
function f'such that | f, —f|]<27" on K, then for any rectifiable arc J the sequence {Vf,}
converges a.e. on JNK' w.r.t. arc length on J to a limit depending on f but not on the
sequence {f,} (Theorem 4). We also prove that {Vf,} converges C;-everywhere on K’,
where C; denotes Newtonian capacity (Theorem 5).

In section 6 we consider a different interpretation of the question above: Given a
finely harmonic function f on a finely open set, what can be said about the set of points
where f'is finely differentiable? Fuglede [8] has proved, using a theorem of Mizuta [16],
that f is always finely differentiable outside a set G with C}#(G)=0, where Cj is the
outer capacity associated to the kernel h(z)=|z|'log(1/|z]). For completeness we
include a proof of this result (Theorem 6). In the opposite direction, we prove that
given any compact set £ with C,,(E)=0, then we can find a finely open set VoFE and a
finely harmonic function f on V such that fis not finely differentiable at any point of E
(Theorem 7).

2. Some preliminaries

We refer the reader to Helms [11] for information about the fine topology, and to
Fuglede [7] for the theory of finely harmonic functions; the latter is used only in-section
6.

Let k(z) denote one of the kernels

W(z) =log -~

1
l2l”

R (2)=12™% where 0<a=l1,
1

h(z) = |z| 'log =l

Then if G {z:|z|<}} is a Borel set, the capacity of G (associated to the kernel k(z)) is
defined by

C(G) = sup {u(E); u€T(G)}

where I';(G) is the set of positive measures 4 on G such that

fk(x—y) du(y)<1 forall x€C.
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If k=W, the corresponding capacity is the Wiener capacity, which we denote by Cy.
The logarithmic capacity, cap, is connected to the Wiener capacity as follows:
cap(G) = exp(—Cy(G)™).
In particular, cap and Cy have the same null sets. If k(z)=R.(z) or k(z)=h(2), the
corresponding capacities are denoted by C, and Cj, respectively. If a=1 we get the
Newtonian capacity C;. We refer to Carleson [2] for more information about these
capacities.
Let g(¢) be a continuous, increasing function on [0,%) such that g(0)=0. Let E be a

bounded, plane set. For >0 we consider all coverings of E with a countable number of
discs A; with radii o;<0 and define

AE) = inf{Zg(gj)},
J
the inf being taken over all such coverings. The limit
AJE) = lim AXE)
30

is called the Hausdorff measure of E with respect to the measure function g. If g(#)=¢*
for some a>0, A, is called a-dimensional Hausdorff measure and denoted by A*. T he
Hausdorff dimension of the set E is the unique number r such that

AJAE)= o forall a<r
and
AJ[E)=0 forall a>r.

A set function related to A, is the Hausdorff content
M (B)= inf{Zg(@,-)},

theinf being taken overall coverings of E with a countable number of discs A; with radii
0;- If g(£)=1" we get the a-dimensional Hausdorff content M,. Properties of Hausdorff
measure and Hausdorff content can be found in Carleson [2] and Garnett [10].

Finally we recall the definition of analytic capacity: If KcC is compact, the
analytic capacity of K, y(K), is defined by
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y(K) = sup {|f"(=)|; FEB(K)},

where B(K) is the set of functions f analytic outside K such that f()=0, |f(z)|<1
outside X.
For a general set E we define
y(E) = sup {y(K); K compact, KcE}.
The analytic capacity plays a crucial role in problems involving approximation by
analytic functions. See Gamelin [9], Garnett [10] and Vitushkin [17]. Some of the metric

properties of analytic capacity are:
(1) If K is compact then »(K) < M(K) < A(K).
(2) There exists compact sets L such that

y(L)=0 and A(L)>0.
(3) For linear, Borel sets E we have

-1
VE) = 2 I(E),

where I(E) is the length of E.
(4) If E is a Borel set and A (E)>0 for some a>1, then y(E)>0. Analytic capacity

is related to logarithmic and Newtonian capacity by:
(5) If K is compact C(K)<y(K)< cap(K), with equality on the right hand side if K

is also connected.

3. Differentiation in terms of approximating sequences (I)
Throughout this article we will let D={z; |¢|<l} and D the closure of D. If u is a
measure on E we put

1
P@)=1]1 d
() fE 0g 77 du®

and

@) = f L g,
EC—2

when the integrals converge. If K is compact, C(K) and Cg(K) denote the complex and

real continuous functions on K respectively.
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LEMMA 1. Let E be a compact subset of D with y(E)=0. Then for any M>0 we can
find a real measure @ on a compact subset of D—E such that

() Py(2)=<1; zEE,
and

(i) |o(x)|=M; zEE.

Proof. Choose >0 with

. 1
152 log— L
¢ B Jist(E, CD)

Since y(E)=0, we can find an open set VoE, with V<D, such that }/(V)<.s2 ([18],
p. 16). Let F=D\V, K=V. Let Q denote the set of real measures ¢ on F such that
P, <1 on E. Assume the conclusion of the lemma is false. Then the sets of functions
A={Reé(z); 0€Q} and B={fE€Cr(E); f=M on E} are disjoint convex subsets of
Cgr(E), and the separation theorem for convex sets yields a real measure 4 on E with

fgd,usl for g€A, jfd,u?l for fE€B.

This implies that u is positive, H/AHBA—I/I and

j f du(C)dQ(z)

Let G be the set of functions g € Cg (F) such that

N 1
g = ;ailogl—z——zil on F,
for some z,,...,z,€F and «,, ..., a,>0, £, a,<1. If ¢ is a real measure on F such that
o(g)<1 forall g€QG, (3.2)
then 0=0 and ¢ € Q. Hence by (3.1) we have
oReg)<1land o(—Re ) =<1. (3.3)

So, by the separation theorem applied to the functions Re 4 and —Re ji separately, we
can conclude that there must exist z,,..., z, €E and a4,..., a,>0 with  L!  a,<4 and
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Re g(2)| <y(z), z€F (3.4)
where

1
lz—z]

Y(z) = Eai log
i=1

Define

f(z) =exp (sf——dg‘@ ) —1; zEC\V
-z
and extend f continuously to C so that

|f(2)| < 1+exp [ey(2)] for zED.

Then fis analytic outside K, f(%)=0 and

()] = lim [2f(@)] = eljl| = (3.5)

Let 8 be a C! function on R with 0<6(x)<1 for xER, 6(x)=1 if x<e~ !, 8(x)=0 for
x=2¢"" and 0'(x)<4¢ for xER. Put

@(2) = 0(y(2)).

Then ¢ is C! on C.
Define

() = f©) HO)+-- f S@ 39 4(r)
x| z—¢& 3z

and put
h=f—g. (3.6)
By the choice of ¢ we have y<e~! outside D, so
supp 2—? cD.
Since dg=38(fp)—f3p=@df, we see that g is analytic outside Kn{y<2e~'} and h is

analytic outside Kn {yp=¢"'}. Moreover, g(»)=0 and both g and 4 are continuous on
C. (See Gamelin [9], Lemma 11.1.7.)
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Note that
n a
a__ <de a_q_)\$482-—'— for all z,
9z Z = ez
and
2 dp
|f2)| <e*+1, on supp —-.
oz
Now let
LEDN {y=<2e1}.
Then
lf@)=<e+1
and so

- 4e dm(2)
lg®)| < ef+1+ 2 e+1)z f]_mz 2

< N,+N, eZalog = Z|

=N, +N,e¢({) <N, +2N, = N,,

where Ny, N,, ... denote constants.
(The inequality

j __dm@) < const. -log
lz—t| |2~z

1
[
can for exampel be seen by splitting D into 4 parts:
D=Dn{z; z=C|<}[¢~z]}, D,=Dn{z |z—z|<}|—z]},
D,=(D\D)n{z; |z—¢<lz—zl}, D=(D\Dyn{z|z—¢=lz—z{}.)
Therefore by the maximum principle
lg(®)|<Ns onC,

and therefore

91-822906 Acta Mathematica 149
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()| < N3 y(K) < N3 €.

Also

< de(e’+1) Za' dm(z)
T ' v=e

-1 |Z"Z,|

(@) =L ‘ f £022 dm(z)
i 4 oz

Now if A is a disc of radius r, then

f 1 dm(z) <2mr=21-M,(A)
A |Z_Zi|

SO
|h'(w)| < 32e(?+ DM, ({p ="' }) SN, &, (3.8)

by Corollary 1, p. 202 in Landkof [12].
Combining (3.5)—(3.8) we get

S @ISl @]+ h ()] < (NN e,
which is a contradiction if ¢ is small enough.

THEOREM 1. Let E be a compact set with y(E)=0. Then we can find a compact set
K with EcK' and a sequence f, of real-valued functions, each harmonic in a neigh-
bourhood of K, such that f,, — 0 uniformly on K and |8f,/3Z| — o uniformly on E.

Proof. We may assume EcD. By Lemma 1 we can find a sequence of real

measures g,, each supported on a compact subset of D\ E, with

P, <27 and |6,/|=3" onE.

We may also assume that g, is a finite linear combination of point masses. Let
o=, e
n

and let

K={z;P,(z)<2}nD.
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Then, since P, is lower semicontinuous, K is compact. Moreover, KN supp (0,,)=0 for
all n. Since P, is finely continuous and P,<1 on E, we must have EcK’.
Now let

f,=27"P,.
Then £, is harmonic in a neighbourhood of X, | f,,]sZ“" on K, and if ZEE

of,
oz

@| =276, )| = (%)

That completes the proof of Theorem 1.

Remark. For finely homomorphic functions the situation is different. T. J. Lyons
([13], [14]) has proved that if f€ C(K) is finely holomorphic in K’ (i.e. f€ A ((K)) then
f'(z) exists for all zEK’, in the sense that if we choose any sequence of functions
f1€A(K) extending holomorphically to a neighbourhood of z and converging uniform-
ly to f on K, then lim,_ . f,(z) exists and depends only on f, not on the sequence

chosen.

4. An estimate for analytic capacity

Part of the proof of Lemma 1 can be adapted to yield the following estimate for analytic
capacity. As mentioned in section 2 we let C, denote the capacity associated to the
potential |z|™°.

THEOREM 2. Let E and F be compact, 0<a<1. Then
Y(E) < N(a) [{ENF)+C,(F)"],
where N(a) is a constant depending only on a.

Proof. We may assume that F has a smooth boundary, since in general we can find
a set FyoF with smooth boundary and C,(Fy)—C.(F) as small as we wish. Then by
Theorem 3, p. 17, in Carleson [2] there is a positive measure u on F with ||u||=C(F)
and, writing

du(%)
@)= f ale)
v |&—z|*

Y(z)=1 for zEF and y(z)<1 everywhere.
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Let 6 be a C' function on R with 0<6<1, 6(x)=1 for x<}, 6(x)=0 for x=} and

[6"(x)|<8 everywhere. Put
@(2) = 0(y(2)).

Then ¢ is C' on C.
Let f be analytic outside E and satisfy

|f]1=<1, Alc) =0 and f'(x) = p(E).

Define f to be 0 on E and put
2 = pOAD+— f ﬂZ)C 2L dm(a).

Then g is analytic outside En {ws%}, and therefore outside a compact subset of ENF

Put
h=f-g.

Then 4 is analytic outside £ ﬂ{’(/)?%}. (See Gamelin (9], Lemma [.1.7.)

Note that

1% < 3_1/) <l16a M
az- oz . ’w_zlaﬂ

Thus for { €C we have

lg@))<s 1+ 16a f f dm(z)du(w)
[z CHW Zla+l

<1+N (a)j Id“(w) = 1+N, (@) 9(©) < 1+N, (0.

(N, (a), Ny(a), ..., denote constants depending only on «). Therefore

lg (@) <[1+N, (] HEN\F).

Also, for £€EC we have
[R(D)]| <2+N, (@),

SO

4.2)
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|A' ()| < [2+ N, ()] y({y =1}). 4.3)

Now
y{yz}sM{y=1})<N,(@)C,({y=1})Ve. 4.4)
(The last inequality follows from the existence of a positive measure ¢ on E such that

Az, )=rforall zEC, r>0 and u(Ey=N-M, (E), where N is a constant.)
Moreover, by Lemma 2.4, p. 149 in Landkof [12]

C.({w =) =<4C, (). @
So, by combining (4.1)—(4.5) we conclude that

YE) = f' () < |h'()| +]g'(®)| < N, (a) [HENF)+C ()],

and the proof is complete. Theorem 2 is an improvement on Theorem 6.1 of Davie [3].
One application of Theorem 2 is the following:

A subset G of the extended complex plane S? is called y-negligible if for some
constant M>0 whenever fis a bounded Borel function on $?, analytic on some open set
V, we can find bounded Borel functions on $? analytic on an open set containing VUG
such that |f,|<M]|f] on $? and f,—f pointwise on V. In other words, the y-negligible
sets are the negligible sets in connection with bounded pointwise approximation by
analytic functions. A bounded, plane set G is y-negligible if and only if

WTUG) < My(D), (4.6)

for some constant M>0 and all plane sets T (see Davie [3]). Using Theorem 2 we get:

THEOREM 3. Let K be a compact set of Hausdorff dimension less than 1. Then K
is y-negligible.

Proof.Let L be a compact subset of T. Then by Theorem 2
HLUK) < A(a) [HIL\K)+C,, (K)"].

By assumption there exists a<1 such that A,(K)=0, and this implies that C,(K)=0
(see Theorem 1, p. 28 in Carleson [2]), so the result follows from (4.6).

10-822906 Acta Mathematica 149
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5. Differentiation in terms of approximating sequences (II)

We now set out to prove a converse of Theorem 1 in section 3. To get a more general
result we will use the following theorem of Calderon [1]:
There exists a>0 such that if ¢ is a real function on R with |¢’|=a and z(f)=1+i¢(?),

then, writing

= fs)
o Segg Jls_,‘gg 2(s)—z(®) ds‘,
we have
{t; Of (>4} sN—'!ﬂﬁ, for all FEL'(R), 1ER.

Here | | denotes 1-dimensional Lebesgue measure and, as before, N;, N,, ... denote
constants.
We require the following corollary:

COROLLARY 1. Let ¢, z be as above. Let a>0 and write

- fls)ds
Tro= ia+z(s)—z(0)
Then
{6\ TF (| > A} SN2|/|1ﬂ|1 for all fEL'(R), A>0.
Proof.

|Zf (0| <

f _f©)ds

[s—tl<a ia+z(s) —Z(t)

+ J SfG)ds
|

s—t|za Z(S) —Z(t)

f f(s)ds
|

e 2200

+a

J fls)ds
|s=t|za {ia+z(s)—z(t)} {Z(S)—Z(t)}
S& |f($)|ds+N,a MO ds +

2
ls—t<a ls—t|=a (S—t)

The first two terms have L'-norms bounded by Ns||f]|;, so the result follows from

Calderon’s theorem.
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COROLLARY 2. Let @, z be as above, let a>0 and let ¢ be a (complex) measure on

R. Then
f _dos) 1o
ia+z(s)—z(t)

Proof. This follows from Corollary 1 by approximating ¢ by absolutely continuous
measures.

N
< zl\@ll; 150,

LEMMA 2. Let ¢, z be as above. Then there is a constant N such that for any
compact subset E of R with |E|>0, there is a positive measure u on Z(E) with

llull = Ng|E| and |a(@)|<1, z€C\z(E).

Proof. It suffices to show that, given a>0, there is a positive measure u on z(E)
with

lull= Ng|E| and |a(z)|<1 for z=t+iy, [y—@(t)|>a. 5.0

Then we can take a sequence a,—0 and a weak-star cluster point of the corresponding
w’'s. So suppose there is an ¢>0 such that (5.1) does not hold for any positive measure u
on z(E). Then there is no positive measure ¢ on E with

do(s)

— 2 <] fort€ER, e==1.
eia+z(s)—z(t)

lloll= Ng|E| and U

Let Cy (R) be the continuous functions on R vanishing at . Consider the space
S=Cy(R)+Cy (R), with norm ||(x, y)||=max(||x||, ||y]). Apply the separation theorem for
convex sets to the unit ball B and the set K={(f,', f,'); o positive measure on
E, ||o||=N|E|}, where

erey — do(s) D=
f°(t)_f£ia+z(s)'—z(t)’ e==*l.

Then we get complex measures g, 7 on R such that |jo||+||z||<1 and

do(s) d(s) .
e U ia+z(s)=z() +f —ia+z(s)—z(t)]>(N6|E|) for tEE.

But this contradicts Corollary 2 if N,=1/3A,.
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We will also need the following result, which is an adaptation of Theorem 9.9 in
Fuglede [7]:

LEMMA 3. Let K be compact and let zo€E K'. Then we can find a fine neighbour-
hood LcK of zo and M>0 such that whenever f is a real harmonic function in a
neighbourhood of K with |f|<1 there, we can find a measure u supported on a compact
subset of C\\L, with |ju||<M and

P,=f onlL.

Proof. Let U, V be open sets with KcV, VcU. We may assume UgD={|z|<‘l‘]. Let

@ be a C? function with compact support in U, with g=1 on V. Choose a bounded C?
superharmonic function p on U with p(z)>1 for z€ U and

deV<P(Zo)»

where v is the Keldysh measure for zo w.r.t. K. (This is possible since z€K'.)
Let U, be a decreasing sequence of open sets with smooth boundary, such that

UcV and N U,=K.

n=1

Define p,, on U by

P on U\U,
p = Lonnd
" |ploU, on U,

L d
where p|oU, is the harmonic extension of p|oU, to U,. Then p, is continuous,
superharmonic and p, 1 g, where g is superharmonic on U. Moreover,

q(zy) = f pdv<p(z) and q(x)<p(z) forzEU.

Choose 1>(p(z9)—q(z,))”' and let

L= {z€U;Mp(2)—q(2))>1}.

Then LK and L is a fine neighbourhood of z;.
Also let

Ln = {Z € U; A(P(Z)—Pn(Z))> 1} .
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Then L, is open and LcL,cU,.
Now let f be a real harmonic function on an open set WoK, with |f|<1. Choose n
so that U,cW. Define u on U by

_ min {Ap, f+(4+1)p,} on W
" |Ap on U\U,

The two definitions agree on W\ U,, since p=p,, there. The function « is superhar-
monic in U and

f=u—@A+1Dp, inL,.

Since u and p,, are harmonic in L, so is u.

Since u and p,, are superharmonic, V2« and V?p,, are positive measures on U. Let
o=V*@uw, r=V*(gp,) and u=0—(A+1)p,. Then o and r have no mass on L,, P,=qu
and P.=¢p,. So P,=f.

Now 0|V is positive, so P,y (z)=log2-|lo]V||, zEU (using UcD). Outside a com-
pact subset of V we have VX(pu)=iVi(gp). Hence |o]U\V||<N, and
[P D)|€N,, ZEU (N}, N,, ... denote constants independent of f). So |lo|V]|<
(log2)~! [sup |pu|+N,]=N; and ||o||<N,+N;. Similarly ||z]|<N,. That completes the
proof.

We are now ready for a partial converse of Theorem 1. A weaker form of this
result (with straight line segments instead of rectifiable arcs) could be proved without
the use of Calderon’s theorem, but using the weak-type (1,1) estimate for the Hilbert
transform instead.

THEOREM 4. Let KcC be compact and J=C a rectifiable arc. Let f, be real
functions harmonic in a neighbourhood of K such that f,—f uniformly on K, with
| £, —f(DI<2™" for zEK. Then Vf, converges a.e. on JNK' with respect to arc length

on J to a limit depending on f but not on the sequence {f,}.

Proof.Suppose Vf, does not converge a.e. on JNK'. Let F be a compact subset of
JNK' of positive length such that Vf,(z) does not converge for any z € F. Parametrize J
by z=0(s), s=arc length, 0<s<S$§. Then 6’ exists a.e. and |#'|=1 a.e. By Egoroff’s
theorem there is a compact set Eoc[0, S] such that |[Ey|>0, ¢(Eg)<F and

w—» 0'(s) as t—0, uniformly for s € E,.
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Then one can readily find, after rotating the coordinates if necessary, a function z(z) as
in Calderon’s theorem and a compact set EcR such that |[E|>0 and z(E)< F,.

Let ¢ty be a point of density of E w.r.t. Lebesgue measure on R. Since z(to) EK’,
there exists, by Lemma 3, a fine neighbourhood LcK of z(7y) and a constant M such
that for every function g harmonic in a neighbourhood of K we can find a measure u
with support in C\ L such that

g@)=P,z) inL, |uljsM- 5111(p|g|

Since L is a fine neighbourhood of z(¢y) and ¢, is a point of density for E, there exists a
compact set Qc E with |Q}>0 and z(Q)<L. For each n let 0, be a measure with support
in C\ L such that

fotoni=Po; ||| sM-2"7"
Write
h(2) =2 (D~ (@) = 5,0 (5.2)
and let
Q,= {t€Q; |h,(1)|>27""} (5.3)

We can find a compact set R,,=Q,, and a w, € C such that

]wnl =1, |Rn| 2% |Qn| and Re[wh,(z(1)]> 2-D=1 on R,. 5.4
By Lemma 2 there is a positive measure y,, on z(R,) with
N .
k=@, and oG] <1 2EC\R,). (5.5

Combining (5.2) and (5.5) we get

2—n/2 IIQ |< h d sHO_’lngM_zl—n.

‘ f f dun(Z) do,(£)

|Q.| <N, 27"

So
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(o)
1 \n=m

so for a.a. 7€ Q there exists m with té U_ O,

Therefore

9

=9,

m

For such a ¢t we have, for r=m and k=0,

ik of,
TZ_(Z(I‘)) ~ 2 z(®)

r+k—1 r+k—1

= Z |hj(z(t))|s E 27 < 9212
Jj=r j=r

so that {3f,/9Z} converges a.e. on Q.

This contradiction shows that {Vf,} converges a.e. on JNK'.

If f=0 then the same argument applied to f, instead of f,—f,,, shows that Vf, >0
a.e. on JNK'. So the limit is independent of the choice of £, (up to sets of zero length).
That completes the proof.

Basically the same proof also gives the following:

THEOREM 5. Let KcC be compact and let f,, be real functions, harmonic in a
neighbourhood of K, such that f,—f uniformly on K, with supg | fi=f |<2_". Then Vf,
converges C\—everywhere on K’ to a limit depending on f but not on the sequence {f,}.

(Cy is the Newtonian capacity, defined in the introduction.)

Proof. Suppose there exists a Borel set G with C(G)>0 and such that Vf,, does not
converge for any z€ G. By Doob’s quasi Lindeldf principle for the fine topology (see
Doob [6]) and the subadditivity of C; (see Carleson [2], p. 24) we conclude that there
exists a point zo € G such that

C{(GnUY>0

for all finely open sets U with zo € U.
As in the proof of Theorem 4 we find a fine neighbourhood L of z,, LcK, a
constant M and measures o,, with support in C\ L with

fofoi=P, onlL, |loj|<M-2""

0’1

So we put

h(2) = aiz (@D —fon(D) = 6,(2),
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and
0,= {zEGnL; ]h,,(z)] > 2""’2}.

Then we can find a compact set R,,cQ, and w, €C with |w,|=1, such that

C\(R,) ?%CI(Q,,) and Re[wh,(2)]>2""*"" onR,.

Choose a positive measure y,, on R,, such that

#(R)=2-C,(R,) and f ‘liﬁ—(fl) <1 for z4R,.
Then
274 Cy(Q,) < f h,du,| = ‘ J f dgi(? do 0| <||o]-
Therefore

C,(Q,) <32M 2",

and we conclude that {3f,/8Z} converge C,—everywhere on GNL.
This contradiction proves the theorem.
If we combine Theorem 1 and Theorem 4 we get the following:

COROLLARY 3. Let J be a rectifiable arc and E a Borel subset of J of positive
length. Then y(E)>0.

Corollary 3 was conjectured by Denjoy and recently proved by Marshall [15], also
using Calderon’s theorem.

In the light of Theorem 1 and Theorem 4 it is natural to conjecture that, in the
circumstances of Theorem 4, {Vf,} converges on K’, except on a set of zero analytic
capacity. One could prove this by the method of proof of Theorem 4 provided one
could show that

(a) analytic capacity is subadditive, i.e.

SUT) S p($)+¥(T),

for all Borel sets S, 7. (See Davie [3].)
(b) Any compact set E with y(E)>0 admits a non-zero positive measure u with
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d@i=<1 for all zEC\E.

(See Zalcman [18], p. 20.)

(The proof actually requires ||u||=Ay(E) where A>0 is independent of E, but one
can in fact show that (b) implies this.) The validity of (a) and (b) is open.

6. Fine differentiability

Let f be a real function defined on a finely open, plane set V. We say that f is finely
differentiable at a point zo€V if there exists a vector Vf(zo) ER? (called the fine
gradient of f at z) such that

f@~f(z) (=2 WD _

=

when z converge finely to zo. (If z=a+ib, w=u+iv then (z, w)=au+bv.)

If £ is finely harmonic in V, to what extent is f finely differentiable in V? As
mentioned in the introduction, Fuglede [8] has proved, using a result of Mizuta [16],
that f is finely differentiable outside a C}-null set where C§ is the outer capacity
associated to the kernel h(z)=|z] ™" log 1/|z]. For completeness we first give a proof of
Fuglede’s result (Theorem 6), and then we proceed to prove that this result is the best
possible (Theorem 7).

THEOREM 6. (Fuglede). Let f be finely harmonic on a finely open set V. Then f is
finely differentiable at each point, except on a C}-null set.

Proof. Suppose not. We may assume VcD. Then there is a set EcV with C} (E)>0
such that f is not finely differentiable at any point of E. By Doob’s quasi-Lindelof
principle ([6]) we can find 7z, € E such that C} (En W)>0 for every finely open set W
containing zy. By Theorem 9.9 in Fuglede {7], there is a finely open set U containing z,,
with UcV, and a real measure u such that

f=P, onU.

Since C¥(UNE)>0 we can find z € UNE such that [ A(—z)d|u|()<c. We shall obtain
a contradiction by showing that P, is differentiable at z:

Fix £>0 and write u=0+7, where [ h({—2z)d|o|(§)<e and z& suppr.

Let A,={¢;27""'<|{—z]<27"}. Then
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ZnZ" lol(A,) <N,&, where N, is a constant.

n=1
Let 0,=0]A, and put
Q, = {g;z—"—2< |E—z]<2™*' and P, (D=7}
Then

2"o|(A
CW(Qn)s——I I« "),
£

where Cy is the Wiener capacity defined in the introduction.
Therefore

anW(Qn)< o,

so if we put L=V\U,Q,, L is a fine neighbourhood of z, by Wiener’s criterion.
Now let {€L. Then €A, for some n.
Writing B,=A,_, UA, UA,,, we have

PG(C)_PO(Z)
-z

1
|C—Z| C\B,

log

—log ! ’d|a|(w)
I w—z]

1
lw—¢

1 1 1
+—— 1 (1 +1 d
= f(g gy OB ) Al

The first term is bounded by

d|o|(w
5 ———l I )sN3e
lw—2]

and the second by
[Pl f+fou foun OV (1 + D ol (B)] 27 < N,
since §¢Q,_,UQ, UQ,,,.

So
P(8)—P(2)
o= 9 =

and since P, is differentiable at z we conclude that P, is finely differentiable at z.

< Nse,
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Next we turn to the converse of Theorem 6. We nieed the following lemma:

LEMMA 4. Let EcD be compact such that C,(E)=0. Then there is a positive

measure u on D consisting of a countable sum of point masses such that

fh(C—z)d,u(C) =o and J‘Eﬂ——(i)ls 1, forall zEE.

Proof. 1t suffices to construct, for a given M>0, a positive measure ¢ on a compact
subset of D\ E such that

f WE—-2)do@© =M and f Idcﬂ(g)l <1, forz€E.
-z
For then we can modify o so that it is a finite sum of point masses.

Then we can take a sequence M,=3" with corresponding o, and define
u=L2""o,.
So let M be given. Choose £>0. Let F be a compact neighbourhood of E such that

FeD, Cy(F)<e and F has smooth boundary. By Theorem 3 of Carleson [2], p. 17, there
is a positive measure v on F with

|lv|| = C,(F) and fh(c—z)dv(6)=1, ZEF. 6.1)

Choose d<dist (E, C\F) and let

1

@)= . dv(g). (6.2)
Y 7o’ [g-z|=d
Then
)<=, for z€C, 6.3)
70
f Y(z)dm(z) = J; . J ( f dm(z)) av(§) = C\(F) (6.4)
70" Jr -z, -0

and for zEE we have, by (6.1),

J h(w—2) Y(w) dm(w) =1,
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(To see this, note that from (6.1) we have, for zEE

not = f ( f h(E—w) dv(?,‘))dm(w) = f ( f h(E—w) dm(w)) av(f).
Alz.®) \JC C\J|w—z|<0o

Substituting w’=¢+z—w in the inner integral we get

ot = f ( f h(w'—z)dm(w’)) dv(t) = f ( f dv(C)) h(w'—2z) dm(w").
C [E~w'|<d C\J{t-w|<d

Hence

jVJ(W') h(w'—z)dm(w’)=1 for zE€E.)

Since C,(F)<e, it follows that if we choose ¢ small enough (e<1/30M?%e™ will do), we
have

Y(@)dmi@) _ 1
J-——|C—Z| $2M for all zEE. 6.5

Let U be open, EcUcD, with M(U) so small that

2
f h(C—z)dm(C)S%, for zEC.
U

Then

f h(E—2) p(©) dm@s%, using (6.3).
U

Now put 0=2Mym|. - Then ¢ has the desired properties.
For the proof of our last result, we will need the following lemma:
LEMMA 5. Let u be a positive measure on D and let a>0. Put
A= {z€D;P,(2)>a}.
Then
@) Cpld)<a™"||ull-

If in addition u has no mass outside A, then
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(i) CylA) <a™'|jul|.

Proof. Let o be any positive measure on A, P,<1. Then
loll <a™ f P,do=a"" f P,du<a™ul,

which proves (i).

If # has no mass outside A, we obtain, since Pa_,”$1 outside A,
Cw(A) = sup {0(A); o positive measure on A, P, <1 outside A}

=a 'wA)=a"|lull,

which proves (ii).

THEOREM 7. Let E be a compact set with C,(E)=0. Then we can find a finely open

set VoF and a finely harmonic function f on V such that fis not finely differentiable at
any point of E.

Proof. Assume EcD. Let u be as given by Lemma 4. Then P,<1 on E, because
log t<t for all £>0.
Let

V={z€D;P,(1)<1}

and put

Then V is finely open, EcV and fis finely harmonic on V.
Fix z € E. We show that fis not finely differentiable at z; in fact we show that if L is

a fine neighbourhood of z with Lc V then (f({)—f(2))/({—2z) cannot be bounded for € L.
Suppose on the contrary that

fO)—f(@)
-z

<M forCEL. (6.6)

Let A,, B, be as in the proof of Theorem 6. If { €A, we have
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f0)—fz)
-z

1 1 1 1
= 1 d - I d
= f g T ey f OB T #)
1

1
w={|

log - log du(w) 6.7)

|C—Z| C\B, IW—ZI }

1
=2"| log——du(w)—N,n2"u(B,)—N,,
Ln = 1 2H(E,) =N

using the fact that {du(w)/lw—z|<1.
Let

Q, = {§:Pya, (©)>27(M+N,n2'u(B,)+Ny) }.

Then Q,cB, if we choose N,=3 log 2. Since u is a sum of point masses, u|A, has no
mass outside Q,, and therefore

2"u(A,)
M+N, n2"u(B,)+N,

Cw(S2) =

using Lemma 5.
Since Tn2"u(A,)= and L2"u(A,)<x it follows that ZnCy(Q,)=c. This can be
seen as follows: Let a,=n2"u(A,), C,=nCy(Q,), n=3, b=N{'(M+N,).

Then La,=, £n~'a,<%. Suppose LC,<. Then there exists ny such that
n>n, = C,<(b+9)7'N{".

So for n>ny,

b+9a,<3a,_,+a,ta,, +b.

Hence if n>ny and a,=1,
3a,_,+a,,,=8a,.
So either
a,.,=2a, or a, =2

ne

In the former case repeated application gives
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a,,,=2a, forallk=1,

which contradicts n~'a,<w®.

In the latter case we get a,_,=2%a, as long as n—k=ny. So
a,<2""a, ifn>nyanda,=1.

This implies that a,<1 for n large enough, and therefore

aﬂ

C,z2—"
"~ (5+b)N,

for n large enough, which contradicts XC,<o. But by (6.6) and (6.7) we
see that A,NLNQ,=0, hence A,NQ,cA,\L. Since LnCw(B,NQ,)=2, we have
InCw(A,nQ, )= and therefore TnCyw(A,\L)=», contradicting the assumption
that L is a fine neighbourhood of z.
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